1
|
Liu Z, Wang Y, Li L, Liu L, Li Y, Li Z, Xie Y, Yu F. SNAI2, a potential crossing point between cancer and cardiovascular disease. FASEB J 2025; 39:e70459. [PMID: 40059450 DOI: 10.1096/fj.202500198r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 05/13/2025]
Abstract
Cancer and cardiovascular disease remain the leading causes of morbidity and mortality worldwide, and the two separate disease entities share several similarities and possible interactions. Patients with cancer may have underlying cardiovascular disease, which is often exacerbated by the stress of tumor growth or treatment. At the same time, cardiotoxicity induced by anti-cancer therapies or the malignant process itself can lead to new cardiovascular diseases. Efforts have been made to find a rational explanation for this phenomenon. As a classical tumor-promoting factor, we notice that SNAI2 simultaneously plays an important pathogenic role in cardiovascular diseases. Moreover, there are several striking parallels in the mechanisms of cancer and CVD, such as shared risk factors (e.g., smoking and diabetes), cellular phenotypic switching, and metabolic remodeling, all of which are mediated by SNAI2. This review aims to summarize SNAI2's role in the core mechanisms linking cancer and CVD, as well as explore therapeutic approaches targeting SNAI2 and also seeks to provide insights into the common mechanisms underlying both cancer and CVD.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yingzi Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lei Li
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Linlu Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Li
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhixin Li
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yucheng Xie
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fengxu Yu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Cardiovascular Remodeling and Dysfunction Key Laboratory of Luzhou, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Lyukmanova EN, Kirichenko AV, Medyanik IA, Yashin KS, Kirpichnikov MP, Bychkov ML. Extracellular Vesicles from Plasma of Patients with Glioblastoma Promote Invasion of Glioblastoma Cells Even After Tumor Resection. Biomedicines 2024; 12:2834. [PMID: 39767739 PMCID: PMC11673896 DOI: 10.3390/biomedicines12122834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Glioblastoma (GB) is a highly aggressive tumor, whose progression is mediated by secretion of extracellular vesicles (EVs), which can pass the brain-blood barrier and be found in the plasma. Here, we performed a comparative analysis of the effects of EVs from the plasma of healthy donors (hEVs) and GB patients before (bEVs) and after (aEVs) tumor surgical resection on invasion of normal astrocytes and GB cells. Methods: We performed the transwell invasion assay, analyzed MAP kinases activation by Western blotting, studied SNAI1/SNAI2 cellular localization by confocal microscopy, measured cadherins expression by flow cytometry, and analyzed secretion of cytokines, which regulate migration and inflammation, by immunoassay. Results: hEVs did not affect invasion of astrocytes and GB cells, there was down-regulated cadherins expression in astrocytes, while there was increased E- and N-cadherin expression in GB cells. hEVs increased the secretion of inflammation and adhesion regulators both in astrocytes and GB cells. bEVs enhanced the invasion of GB cells but not of astrocytes via MAP AKT, JNK1/2/3, and p38 kinases activation, stimulated the clasterization of SNAI1 in the GB cell nucleus, promoted an E/N cadherin switch, and caused the secretion of inflammation and adhesion regulators in astrocytes and GB cells. aEVs exhibited the most of pro-oncogenic effects of bEVs (stimulation of GB cell invasion, SNAI1 nuclear localization, JNK1/2/3 activation, E/N cadherin switch, and secretion of inflammation and adhesion regulators in astrocytes and GB cells). However, aEVs effects were less pronounced than those of bEVs. Conclusions: In our study, we revealed common and different effects of plasma-derived hEVs, aEVs, and bEVs. hEVs can stimulate some pro-oncogenic effects in GB cells. Being less tumorigenic then bEVs, aEVs are still able to promote invasion of GB cells, probably remaining after tumor resection.
Collapse
Affiliation(s)
- Ekaterina N. Lyukmanova
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.V.K.); (M.P.K.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Artem V. Kirichenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.V.K.); (M.P.K.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Igor A. Medyanik
- Department of Neurosurgery, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.A.M.); (K.S.Y.)
| | - Konstantin S. Yashin
- Department of Neurosurgery, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.A.M.); (K.S.Y.)
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.V.K.); (M.P.K.)
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Maxim L. Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.V.K.); (M.P.K.)
| |
Collapse
|
3
|
Liu L, Henry J, Liu Y, Jouve C, Hulot JS, Georges A, Bouatia-Naji N. LRP1 Repression by SNAIL Results in ECM Remodeling in Genetic Risk for Vascular Diseases. Circ Res 2024; 135:1084-1097. [PMID: 39355906 PMCID: PMC11542979 DOI: 10.1161/circresaha.124.325269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Genome-wide association studies implicate common genetic variations in the LRP1 (low-density lipoprotein receptor-related protein 1 gene) locus at risk for multiple vascular diseases and traits. However, the underlying biological mechanisms are unknown. METHODS Fine mapping analyses included Bayesian colocalization to identify the most likely causal variant. Human induced pluripotent stem cells were genome-edited using CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated protein 9) to delete or modify candidate enhancer regions and generate LRP1 knockout cell lines. Cells were differentiated into smooth muscle cells through a mesodermal lineage. Transcription regulation was assessed using luciferase reporter assay, transcription factor knockdown, and chromatin immunoprecipitation. Phenotype changes in cells were conducted using cellular assays, bulk RNA sequencing, and mass spectrometry. RESULTS Multitrait colocalization analyses pointed at rs11172113 as the most likely causal variant in LRP1 for fibromuscular dysplasia, migraine, pulse pressure, and spontaneous coronary artery dissection. We found the rs11172113-T allele to associate with higher LRP1 expression. Genomic deletion in induced pluripotent stem cell-derived smooth muscle cells supported rs11172113 to locate in an enhancer region regulating LRP1 expression. We found transcription factors MECP2 (methyl CpG binding protein 2) and SNAIL (Zinc Finger Protein SNAI1) to repress LRP1 expression through an allele-specific mechanism, involving SNAIL interaction with disease risk allele. LRP1 knockout decreased induced pluripotent stem cell-derived smooth muscle cell proliferation and migration. Differentially expressed genes were enriched for collagen-containing extracellular matrix and connective tissue development. LRP1 knockout and deletion of rs11172113 enhancer showed potentiated canonical TGF-β (transforming growth factor beta) signaling through enhanced phosphorylation of SMAD2/3 (Mothers against decapentaplegic homolog 2/3). Analyses of the protein content of decellularized extracts indicated partial extracellular matrix remodeling involving enhanced secretion of CYR61 (cystein rich angiogenic protein 61), a known LRP1 ligand involved in vascular integrity and TIMP3 (Metalloproteinase inhibitor 3), implicated in extracellular matrix maintenance and also known to interact with LRP1. CONCLUSIONS Our findings support allele-specific LRP1 expression repression by the endothelial-to-mesenchymal transition regulator SNAIL. We propose decreased LRP1 expression in smooth muscle cells to remodel the extracellular matrix enhanced by TGF-β as a potential mechanism of this pleiotropic locus for vascular diseases.
Collapse
Affiliation(s)
- Lu Liu
- Université Paris Cité, Inserm, PARCC, Paris, France
| | | | - Yingwei Liu
- Université Paris Cité, Inserm, PARCC, Paris, France
| | | | | | | | | |
Collapse
|
4
|
Stephan A, Suhrmann JH, Skowron MA, Che Y, Poschmann G, Petzsch P, Kresbach C, Wruck W, Pongratanakul P, Adjaye J, Stühler K, Köhrer K, Schüller U, Nettersheim D. Molecular and epigenetic ex vivo profiling of testis cancer-associated fibroblasts and their interaction with germ cell tumor cells and macrophages. Matrix Biol 2024; 132:10-23. [PMID: 38851302 DOI: 10.1016/j.matbio.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Germ cell tumors (GCT) are the most common solid tumors in young men of age 15 - 40. In previous studies, we profiled the interaction of GCT cells with cells of the tumor microenvironment (TM), which showed that especially the 3D interaction of fibroblasts (FB) or macrophages with GCT cells influenced the growth behavior and cisplatin response as well as the transcriptome and secretome of the tumor cells, suggesting that the crosstalk of these cells with GCT cells is crucial for tumor progression and therapy outcome. In this study, we shed light on the mechanisms of activation of cancer-associated fibroblasts (CAF) in the GCT setting and their effects on GCT cells lines and the monocyte cell line THP-1. Ex vivo cultures of GCT-derived CAF were established and characterized molecularly and epigenetically by performing DNA methylation arrays, RNA sequencing, and mass spectrometry-based secretome analysis. We demonstrated that the activation state of CAF is influenced by their former prevailing tumor environment in which they have resided. Hereby, we postulate that seminoma (SE) and embryonal carcinoma (EC) activate CAF, while teratoma (TER) play only a minor role in CAF formation. In turn, CAF influence proliferation and the expression of cisplatin sensitivity-related factors in GCT cells lines as well as polarization of in vitro-induced macrophages by the identified effector molecules IGFBP1, LGALS3BP, LYVE1, and PTX3. Our data suggests that the vital interaction of CAF with GCT cells and with macrophages has a huge influence on shaping the extracellular matrix as well as on recruitment of immune cells to the TM. In conclusion, therapeutically interfering with CAF and / or macrophages in addition to the standard therapy might slow-down progression of GCT and re-shaping of the TM to a tumor-promoting environment. Significance: The interaction of CAF with GCT and macrophages considerably influences the microenvironment. Thus, therapeutically interfering with CAF might slow-down progression of GCT and re-shaping of the microenvironment to a tumor-promoting environment.
Collapse
Affiliation(s)
- Alexa Stephan
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan-Henrik Suhrmann
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Margaretha A Skowron
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Yue Che
- Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory (MPL), Biological and Medical Research Centre (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Patrick Petzsch
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Catena Kresbach
- Institute of Neuropathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Wasco Wruck
- Institute for Stem cell Research and Regenerative Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Pailin Pongratanakul
- Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem cell Research and Regenerative Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory (MPL), Biological and Medical Research Centre (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen, Bonn, Cologne, Düsseldorf (CIO ABCD), Germany.
| |
Collapse
|
5
|
Pan C, Dai J, Wei Y, Yang L, Ding Z, Wang X, He J. Matrix Metalloproteinase 11 Promotes Migration and Invasion of Colorectal Cancer by Elevating Slug Protein. Int J Med Sci 2024; 21:2170-2188. [PMID: 39239548 PMCID: PMC11373555 DOI: 10.7150/ijms.98007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/03/2024] [Indexed: 09/07/2024] Open
Abstract
Purpose: Matrix metalloproteinase-11 (MMP11), which belongs to the stromelysin subgroup, has been reported to play a role in the progression of colorectal cancer (CRC). However, the significance of MMP11 in the tumor microenvironment, immune/stromal cells, and its mechanism in CRC remain unclear. Methods: The impact of MMP11 knockdown using specific short hairpin RNAs (shRNAs) on the metastasis and invasion of colorectal cancer RKO and SW480 cells was investigated using western blot, quantitative real-time polymerase chain reaction (qRT-PCR), transwell assays, and immunohistochemistry. Results: MMP11 mRNA expression was significantly higher in CRC cells than in normal cells, and its expression was stimulated in CCD-18Co fibroblasts. Additionally, MMP11 expression was found to be higher in individuals aged ≤ 65 years, the T4/T3 group, and Stage III/IV patients. Overall survival (OS) and disease-free survival rates were significantly different between the high and low MMP11 groups. Furthermore, the receiver operating characteristic (ROC) curves for MMP11 at 1-, 3-, and 5-years were 0.450, 0.552, and 0.560, respectively. Moreover, MMP11 promoted the migration and invasion of CRC cells by elevating the expression of Slug protein. Most importantly, MMP11 was positively associated with M0-macrophages and negatively associated with M1-macrophages, NK cells activated, NK cells resting, T cells CD4 memory activated, and T cells follicular helper, indicating the remarkable interactions of MMP11 with tumor immunology. Conclusions: MMP11 plays an important role in colorectal cancer development, and its mechanism in CRC needs to be further explored in the future.
Collapse
Affiliation(s)
- Chaomin Pan
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingping Dai
- Department of Gastroenterology, Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Yiyi Wei
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhuoyu Ding
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinke Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Juan He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Ren Z, Dharmaratne M, Liang H, Benard O, Morales-Gallego M, Suyama K, Kumar V, Fard AT, Kulkarni AS, Prystowsky M, Mar JC, Norton L, Hazan RB. Redox signalling regulates breast cancer metastasis via phenotypic and metabolic reprogramming due to p63 activation by HIF1α. Br J Cancer 2024; 130:908-924. [PMID: 38238426 PMCID: PMC10951347 DOI: 10.1038/s41416-023-02522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Redox signaling caused by knockdown (KD) of Glutathione Peroxidase 2 (GPx2) in the PyMT mammary tumour model promotes metastasis via phenotypic and metabolic reprogramming. However, the tumour cell subpopulations and transcriptional regulators governing these processes remained unknown. METHODS We used single-cell transcriptomics to decipher the tumour cell subpopulations stimulated by GPx2 KD in the PyMT mammary tumour and paired pulmonary metastases. We analyzed the EMT spectrum across the various tumour cell clusters using pseudotime trajectory analysis and elucidated the transcriptional and metabolic regulation of the hybrid EMT state. RESULTS Integration of single-cell transcriptomics between the PyMT/GPx2 KD primary tumour and paired lung metastases unraveled a basal/mesenchymal-like cluster and several luminal-like clusters spanning an EMT spectrum. Interestingly, the luminal clusters at the primary tumour gained mesenchymal gene expression, resulting in epithelial/mesenchymal subpopulations fueled by oxidative phosphorylation (OXPHOS) and glycolysis. By contrast, at distant metastasis, the basal/mesenchymal-like cluster gained luminal and mesenchymal gene expression, resulting in a hybrid subpopulation using OXPHOS, supporting adaptive plasticity. Furthermore, p63 was dramatically upregulated in all hybrid clusters, implying a role in regulating partial EMT and MET at primary and distant sites, respectively. Importantly, these effects were reversed by HIF1α loss or GPx2 gain of function, resulting in metastasis suppression. CONCLUSIONS Collectively, these results underscored a dramatic effect of redox signaling on p63 activation by HIF1α, underlying phenotypic and metabolic plasticity leading to mammary tumour metastasis.
Collapse
Affiliation(s)
- Zuen Ren
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Malindrie Dharmaratne
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Huizhi Liang
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | | | - Kimita Suyama
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Viney Kumar
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Atefeh Taherian Fard
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Ameya S Kulkarni
- Department of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Michael Prystowsky
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jessica C Mar
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Larry Norton
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
| | - Rachel B Hazan
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
7
|
Pérez Millán MI, Cheung LYM, Mercogliano F, Camilletti MA, Chirino Felker GT, Moro LN, Miriuka S, Brinkmeier ML, Camper SA. Pituitary stem cells: past, present and future perspectives. Nat Rev Endocrinol 2024; 20:77-92. [PMID: 38102391 PMCID: PMC10964491 DOI: 10.1038/s41574-023-00922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
Pituitary cells that express the transcription factor SOX2 are stem cells because they can self-renew and differentiate into multiple pituitary hormone-producing cell types as organoids. Wounding and physiological challenges can activate pituitary stem cells, but cell numbers are not fully restored, and the ability to mobilize stem cells decreases with increasing age. The basis of these limitations is still unknown. The regulation of stem cell quiescence and activation involves many different signalling pathways, including those mediated by WNT, Hippo and several cytokines; more research is needed to understand the interactions between these pathways. Pituitary organoids can be formed from human or mouse embryonic stem cells, or from human induced pluripotent stem cells. Human pituitary organoid transplantation is sufficient to induce corticosterone release in hypophysectomized mice, raising the possibility of therapeutic applications. Today, pituitary organoids have the potential to assess the role of individual genes and genetic variants on hormone production ex vivo, providing an important tool for the advancement of exciting frontiers in pituitary stem cell biology and pituitary organogenesis. In this article, we provide an overview of notable discoveries in pituitary stem cell function and highlight important areas for future research.
Collapse
Affiliation(s)
- María Inés Pérez Millán
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Leonard Y M Cheung
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Florencia Mercogliano
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Maria Andrea Camilletti
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Gonzalo T Chirino Felker
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Lucia N Moro
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Santiago Miriuka
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sally A Camper
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
García de Herreros A. Dual role of Snail1 as transcriptional repressor and activator. Biochim Biophys Acta Rev Cancer 2024; 1879:189037. [PMID: 38043804 DOI: 10.1016/j.bbcan.2023.189037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Snail1 transcriptional factor plays a key role in the control of epithelial to mesenchymal transition, a process that remodels tumor cells increasing their invasion and chemo-resistance as well as reprograms their metabolism and provides stemness properties. During this transition, Snail1 acts as a transcriptional repressor and, as growing evidences have demonstrated, also as a direct activator of mesenchymal genes. In this review, I describe the different proteins that interact with Snail1 and are responsible for these two different functions on gene expression; I focus on the transcriptional factors that associate to Snail1 in their target promoters, both activated and repressed. I also present working models for Snail1 action both as repressor and activator and raise some issues that still need to be investigated.
Collapse
Affiliation(s)
- Antonio García de Herreros
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Unidad Asociada al CSIC, Barcelona, Spain; Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
9
|
AlZaim I, de Rooij LPMH, Sheikh BN, Börgeson E, Kalucka J. The evolving functions of the vasculature in regulating adipose tissue biology in health and obesity. Nat Rev Endocrinol 2023; 19:691-707. [PMID: 37749386 DOI: 10.1038/s41574-023-00893-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/27/2023]
Abstract
Adipose tissue is an endocrine organ and a crucial regulator of energy storage and systemic metabolic homeostasis. Additionally, adipose tissue is a pivotal regulator of cardiovascular health and disease, mediated in part by the endocrine and paracrine secretion of several bioactive products, such as adipokines. Adipose vasculature has an instrumental role in the modulation of adipose tissue expansion, homeostasis and metabolism. The role of the adipose vasculature has been extensively explored in the context of obesity, which is recognized as a global health problem. Obesity-induced accumulation of fat, in combination with vascular rarefaction, promotes adipocyte dysfunction and induces oxidative stress, hypoxia and inflammation. It is now recognized that obesity-associated endothelial dysfunction often precedes the development of cardiovascular diseases. Investigations have revealed heterogeneity within the vascular niche and dynamic reciprocity between vascular and adipose cells, which can become dysregulated in obesity. Here we provide a comprehensive overview of the evolving functions of the vasculature in regulating adipose tissue biology in health and obesity.
Collapse
Affiliation(s)
- Ibrahim AlZaim
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Laura P M H de Rooij
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bilal N Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Emma Börgeson
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
10
|
Yang S, Jiang K, Li L, Xiang J, Li Y, Kang L, Yang G, Liang Z. MircroRNA-92b as a negative regulator of the TGF-β signaling by targeting the type I receptor. iScience 2023; 26:108131. [PMID: 37867958 PMCID: PMC10587525 DOI: 10.1016/j.isci.2023.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023] Open
Abstract
Transforming growth factor β1 (TGFβ1) has been identified as a major pathogenic factor underlying the development of chronic kidney disease (CKD). This study investigated the role of miR-92b-3p in the progression of renal fibrosis in unilateral ureteral occlusion (UUO) and unilateral ischemia-reperfusion injury (uIRI) mouse models, as well as explored its underlying mechanisms in human proximal tubular epithelial (HK2) cells. We found that renal fibrosis increased in UUO mice after miR-92b knockout, while it reduced in miR-92b overexpressing mice. MiR-92b knockout aggravated renal fibrosis in uIRI mice. RNA-sequencing analysis, the luciferase reporter assay, qPCR analysis, and western blotting confirmed that miR-92b-3p directly targeted TGF-β receptor 1, thereby ameliorating renal fibrosis by suppressing the TGF-β signaling pathway. Furthermore, we found that TGF-β suppressed miR-92b transcription through Snail family transcriptional repressors 1 and 2. Our results suggest that miR-92b-3p may serve as a novel therapeutic for mitigating fibrosis in CKD.
Collapse
Affiliation(s)
- Shu Yang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Kewei Jiang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Lixing Li
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Jiaqing Xiang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Yanchun Li
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Lin Kang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
- The Biobank of National Innovation Center for Advanced Medical Devices, Shenzhen People’s Hospital, Shenzhen 518000, China
| | - Guangyan Yang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Zhen Liang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| |
Collapse
|
11
|
Pavičić I, Rokić F, Vugrek O. Effects of S-Adenosylhomocysteine Hydrolase Downregulation on Wnt Signaling Pathway in SW480 Cells. Int J Mol Sci 2023; 24:16102. [PMID: 38003292 PMCID: PMC10671441 DOI: 10.3390/ijms242216102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
S-adenosylhomocysteine hydrolase (AHCY) deficiency results mainly in hypermethioninemia, developmental delay, and is potentially fatal. In order to shed new light on molecular aspects of AHCY deficiency, in particular any changes at transcriptome level, we enabled knockdown of AHCY expression in the colon cancer cell line SW480 to simulate the environment occurring in AHCY deficient individuals. The SW480 cell line is well known for elevated AHCY expression, and thereby represents a suitable model system, in particular as AHCY expression is regulated by MYC, which, on the other hand, is involved in Wnt signaling and the regulation of Wnt-related genes, such as the β-catenin co-transcription factor LEF1 (lymphoid enhancer-binding factor 1). We selected LEF1 as a potential target to investigate its association with S-adenosylhomocysteine hydrolase deficiency. This decision was prompted by our analysis of RNA-Seq data, which revealed significant changes in the expression of genes related to the Wnt signaling pathway and genes involved in processes responsible for epithelial-mesenchymal transition (EMT) and cell proliferation. Notably, LEF1 emerged as a common factor in these processes, showing increased expression both on mRNA and protein levels. Additionally, we show alterations in interconnected signaling pathways linked to LEF1, causing gene expression changes with broad effects on cell cycle regulation, tumor microenvironment, and implications to cell invasion and metastasis. In summary, we provide a new link between AHCY deficiency and LEF1 serving as a mediator of changes to the Wnt signaling pathway, thereby indicating potential connections of AHCY expression and cancer cell phenotype, as Wnt signaling is frequently associated with cancer development, including colorectal cancer (CRC).
Collapse
Affiliation(s)
| | | | - Oliver Vugrek
- Laboratory for Advanced Genomics, Divison of Molecular Medicine, Institute Ruđer Bošković, Bijenička Cesta 54, 10000 Zagreb, Croatia; (I.P.); (F.R.)
| |
Collapse
|
12
|
Arumi-Planas M, Rodriguez-Baena FJ, Cabello-Torres F, Gracia F, Lopez-Blau C, Nieto MA, Sanchez-Laorden B. Microenvironmental Snail1-induced immunosuppression promotes melanoma growth. Oncogene 2023; 42:2659-2672. [PMID: 37516803 PMCID: PMC10473961 DOI: 10.1038/s41388-023-02793-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
Melanoma is an aggressive form of skin cancer due to its high metastatic abilities and resistance to therapies. Melanoma cells reside in a heterogeneous tumour microenvironment that acts as a crucial regulator of its progression. Snail1 is an epithelial-to-mesenchymal transition transcription factor expressed during development and reactivated in pathological situations including fibrosis and cancer. In this work, we show that Snail1 is activated in the melanoma microenvironment, particularly in fibroblasts. Analysis of mouse models that allow stromal Snail1 depletion and therapeutic Snail1 blockade indicate that targeting Snail1 in the tumour microenvironment decreases melanoma growth and lung metastatic burden, extending mice survival. Transcriptomic analysis of melanoma-associated fibroblasts and analysis of the tumours indicate that stromal Snail1 induces melanoma growth by promoting an immunosuppressive microenvironment and a decrease in anti-tumour immunity. This study unveils a novel role of Snail1 in melanoma biology and supports its potential as a therapeutic target.
Collapse
Affiliation(s)
| | | | | | - Francisco Gracia
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, Spain
| | | | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | | |
Collapse
|
13
|
Min Y, Park HB, Baek KH, Hwang S. Cellular Functions of Deubiquitinating Enzymes in Ovarian Adenocarcinoma. Genes (Basel) 2023; 14:genes14040886. [PMID: 37107644 PMCID: PMC10137459 DOI: 10.3390/genes14040886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
In ovarian cancer patients, the 5-year survival rate is 90% for stages I and II, but only 30% for stages III and IV. Unfortunately, as 75% of the patients are diagnosed at stages III and IV, many experience a recurrence. To ameliorate this, it is necessary to develop new biomarkers for early diagnosis and treatment. The ubiquitin-proteasome system is a post-translational modification that plays an important role in regulating protein stability through ubiquitination. In particular, deubiquitinating enzymes (DUBs) regulate protein stability through deubiquitinating substrate proteins. In this review, DUBs and substrates regulated by these enzymes are summarized based on their functions in ovarian cancer cells. This would be useful for the discovery of biomarkers for ovarian cancer and developing new therapeutic candidates.
Collapse
Affiliation(s)
- Yosuk Min
- Department of Biomedical Science, CHA University, Seongnam 13488, Gyeonggi-do, Republic of Korea
| | - Hong-Beom Park
- Department of Biomedical Science, CHA University, Seongnam 13488, Gyeonggi-do, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Seongnam 13488, Gyeonggi-do, Republic of Korea
| | - Sohyun Hwang
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Gyeonggi-do, Republic of Korea
- CHA Future Medicine Research Institute, CHA Bundang Medical Center, Seongnam 13496, Gyeonggi-do, Republic of Korea
| |
Collapse
|
14
|
Ang HL, Mohan CD, Shanmugam MK, Leong HC, Makvandi P, Rangappa KS, Bishayee A, Kumar AP, Sethi G. Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds. Med Res Rev 2023. [PMID: 36929669 DOI: 10.1002/med.21948] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 12/19/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a complex process with a primordial role in cellular transformation whereby an epithelial cell transforms and acquires a mesenchymal phenotype. This transformation plays a pivotal role in tumor progression and self-renewal, and exacerbates resistance to apoptosis and chemotherapy. EMT can be initiated and promoted by deregulated oncogenic signaling pathways, hypoxia, and cells in the tumor microenvironment, resulting in a loss-of-epithelial cell polarity, cell-cell adhesion, and enhanced invasive/migratory properties. Numerous transcriptional regulators, such as Snail, Slug, Twist, and ZEB1/ZEB2 induce EMT through the downregulation of epithelial markers and gain-of-expression of the mesenchymal markers. Additionally, signaling cascades such as Wnt/β-catenin, Notch, Sonic hedgehog, nuclear factor kappa B, receptor tyrosine kinases, PI3K/AKT/mTOR, Hippo, and transforming growth factor-β pathways regulate EMT whereas they are often deregulated in cancers leading to aberrant EMT. Furthermore, noncoding RNAs, tumor-derived exosomes, and epigenetic alterations are also involved in the modulation of EMT. Therefore, the regulation of EMT is a vital strategy to control the aggressive metastatic characteristics of tumor cells. Despite the vast amount of preclinical data on EMT in cancer progression, there is a lack of clinical translation at the therapeutic level. In this review, we have discussed thoroughly the role of the aforementioned transcription factors, noncoding RNAs (microRNAs, long noncoding RNA, circular RNA), signaling pathways, epigenetic modifications, and tumor-derived exosomes in the regulation of EMT in cancers. We have also emphasized the contribution of EMT to drug resistance and possible therapeutic interventions using plant-derived natural products, their semi-synthetic derivatives, and nano-formulations that are described as promising EMT blockers.
Collapse
Affiliation(s)
- Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hin Chong Leong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia Centre for Materials Interface, Pontedera, Pisa, Italy
| | | | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
15
|
An Overview of Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Canine Tumors: How Far Have We Come? Vet Sci 2022; 10:vetsci10010019. [PMID: 36669020 PMCID: PMC9865109 DOI: 10.3390/vetsci10010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Historically, pre-clinical and clinical studies in human medicine have provided new insights, pushing forward the contemporary knowledge. The new results represented a motivation for investigators in specific fields of veterinary medicine, who addressed the same research topics from different perspectives in studies based on experimental and spontaneous animal disease models. The study of different pheno-genotypic contexts contributes to the confirmation of translational models of pathologic mechanisms. This review provides an overview of EMT and MET processes in both human and canine species. While human medicine rapidly advances, having a large amount of information available, veterinary medicine is not at the same level. This situation should provide motivation for the veterinary medicine research field, to apply the knowledge on humans to research in pets. By merging the knowledge of these two disciplines, better and faster results can be achieved, thus improving human and canine health.
Collapse
|
16
|
Gazzillo A, Polidoro MA, Soldani C, Franceschini B, Lleo A, Donadon M. Relationship between Epithelial-to-Mesenchymal Transition and Tumor-Associated Macrophages in Colorectal Liver Metastases. Int J Mol Sci 2022; 23:16197. [PMID: 36555840 PMCID: PMC9783529 DOI: 10.3390/ijms232416197] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The liver is the most common metastatic site in colorectal cancer (CRC) patients. Indeed, 25-30% of the cases develop colorectal liver metastasis (CLM), showing an extremely poor 5-year survival rate and resistance to conventional anticancer therapies. Tumor-associated macrophages (TAMs) provide a nurturing microenvironment for CRC metastasis, promoting epithelial-to-mesenchymal transition (EMT) through the TGF-β signaling pathway, thus driving tumor cells to acquire mesenchymal properties that allow them to migrate from the primary tumor and invade the new metastatic site. EMT is known to contribute to the disruption of blood vessel integrity and the generation of circulating tumor cells (CTCs), thus being closely related to high metastatic potential in numerous solid cancers. Despite the fact that it is well-recognized that the crosstalk between tumor cells and the inflammatory microenvironment is crucial in the EMT process, the association between the EMT and the role of TAMs is still poorly understood. In this review, we elaborated on the role that TAMs exert in the induction of EMT during CLM development. Since TAMs are the major source of TGF-β in the liver, we also focused on novel insights into their role in TGF-β-induced EMT.
Collapse
Affiliation(s)
- Aurora Gazzillo
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
| | - Cristiana Soldani
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
| | - Barbara Franceschini
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
| | - Ana Lleo
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, MI, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
| | - Matteo Donadon
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, NO, Italy
- Department of General Surgery, University Maggiore Hospital Della Carità, 28100 Novara, NO, Italy
| |
Collapse
|
17
|
Role of Snai2 and Notch signaling in salivary gland myoepithelial cell fate. J Transl Med 2022; 102:1245-1256. [PMID: 36775450 DOI: 10.1038/s41374-022-00814-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Myoepithelial (ME) cells in exocrine glands exhibit both epithelial and mesenchymal features, contributing to fluid secretion through contraction. However, the regulation mechanism of behind this unique phenotype in salivary glands remains unclear. We established a flow cytometry-based purification method using cell surface molecules, epithelial cell adhesion molecule (EpCAM) and alpha 6 integrin (CD49f), to characterize ME cells. EpCAM+CD49fhigh cells showed relatively high expression of ME cell-marker genes, such as alpha-smooth muscle actin (α-SMA). For lineage tracing and strict isolation, tdTomato+EpCAM+CD49fhigh-ME cells were obtained from myosin heavy chain 11 (Myh11) -CreERT2/tdTomato mice. Transcriptome analysis revealed that expression of genes involved in the epithelial-mesenchymal transition, including Snai2, were upregulated in the ME cell-enriched subset. Snai2 suppression in stable ME cells decreased α-SMA and increased Krt14 expression, suggesting that ME cell features may be controlled by the epithelial-mesenchymal balance regulated by Snai2. In contrast, ME cells showed reduced ME properties and expressed the ductal markers Krt18/19 under sphere culture conditions. Notch signaling was activated under sphere culture conditions; excessive activation of Notch signaling accelerated Krt18/19 expression, but reduced α-SMA and Snai2 expression, suggesting that the behavior of Snai2-expressing ME cells may be controlled by Notch signaling.
Collapse
|
18
|
Feng YN, Li BY, Wang K, Li XX, Zhang L, Dong XZ. Epithelial-mesenchymal transition-related long noncoding RNAs in gastric carcinoma. Front Mol Biosci 2022; 9:977280. [PMCID: PMC9605205 DOI: 10.3389/fmolb.2022.977280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
As an evolutionarily phenotypic conversion program, the epithelial-mesenchymal transition (EMT) has been implicated in tumour deterioration and has facilitated the metastatic ability of cancer cells via enhancing migration and invasion. Gastric cancer (GC) remains a frequently diagnosed non-skin malignancy globally. Most GC-associated mortality can be attributed to metastasis. Recent studies have shown that EMT-related long non-coding RNAs (lncRNAs) play a critical role in GC progression and GC cell motility. In addition, lncRNAs are associated with EMT-related transcription factors and signalling pathways. In the present review, we comprehensively described the EMT-inducing lncRNA molecular mechanisms and functional perspectives of EMT-inducing lncRNAs in GC progression. Taken together, the statements of this review provided a clinical implementation in identifying lncRNAs as potential therapeutic targets for advanced GC.
Collapse
|
19
|
Tsirigoti C, Ali MM, Maturi V, Heldin CH, Moustakas A. Loss of SNAI1 induces cellular plasticity in invasive triple-negative breast cancer cells. Cell Death Dis 2022; 13:832. [PMID: 36171192 PMCID: PMC9519755 DOI: 10.1038/s41419-022-05280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/23/2023]
Abstract
The transcription factor SNAI1 mediates epithelial-mesenchymal transition, fibroblast activation and controls inter-tissue migration. High SNAI1 expression characterizes metastatic triple-negative breast carcinomas, and its knockout by CRISPR/Cas9 uncovered an epithelio-mesenchymal phenotype accompanied by reduced signaling by the cytokine TGFβ. The SNAI1 knockout cells exhibited plasticity in differentiation, drifting towards the luminal phenotype, gained stemness potential and could differentiate into acinar mammospheres in 3D culture. Loss of SNAI1 de-repressed the transcription factor FOXA1, a pioneering factor of mammary luminal progenitors. FOXA1 induced a specific gene program, including the androgen receptor (AR). Inhibiting AR via a specific antagonist regenerated the basal phenotype and blocked acinar differentiation. Thus, loss of SNAI1 in the context of triple-negative breast carcinoma cells promotes an intermediary luminal progenitor phenotype that gains differentiation plasticity based on the dual transcriptional action of FOXA1 and AR. This function of SNAI1 provides means to separate cell invasiveness from progenitor cell de-differentiation as independent cellular programs.
Collapse
Affiliation(s)
- Chrysoula Tsirigoti
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Mohamad Moustafa Ali
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Varun Maturi
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden ,grid.8993.b0000 0004 1936 9457Department of Pharmacy, Drug Delivery, Uppsala University, SE-752 37 Uppsala, Sweden
| | - Carl-Henrik Heldin
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Aristidis Moustakas
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
20
|
Cessna H, Baritaki S, Zaravinos A, Bonavida B. The Role of RKIP in the Regulation of EMT in the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14194596. [PMID: 36230521 PMCID: PMC9559516 DOI: 10.3390/cancers14194596] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Raf kinase inhibitor protein (RKIP) expression in cancer cells is significantly reduced and promoting cancer cells growth and invasiveness. Overexpresssion of RKIP has been reported to mediate pleiotropic anti-cancer activities including the inhibition of survival signaling pathways, sensitization to cell death by cytotoxic drugs, inhibition of invasion, EMT and metastasis. The molecular mechanism by which RKIP inhibits EMT is not clear. In this review, we have examined how RKIP inhibits the selected EMT gene products (Snail, vimentin, N-cadherin, laminin alpha) and found that it involves signaling cross-talks between RKIP and each of the EMT gene products. These findings were validated by bioinformatic analyses demonstrating in various human cancers a negative correlation between the expression of RKIP and the expression of the EMT gene products. These findings suggest that targeting RKIP induction in cancer cells will result in multiple hits by inhibiting tumor growth, metastasis and reversal of chemo-immuno resistance. Abstract The Raf Kinase Inhibitor Protein (RKIP) is a unique gene product that directly inhibits the Raf/Mek/Erk and NF-kB pathways in cancer cells and resulting in the inhibition of cell proliferation, viability, EMT, and metastasis. Additionally, RKIP is involved in the regulation of cancer cell resistance to both chemotherapy and immunotherapy. The low expression of RKIP expression in many cancer types is responsible, in part, for the pathogenesis of cancer and its multiple properties. The inhibition of EMT and metastasis by RKIP led to its classification as a tumor suppressor. However, the mechanism by which RKIP mediates its inhibitory effects on EMT and metastases was not clear. We have proposed that one mechanism involves the negative regulation by RKIP of the expression of various gene products that mediate the mesenchymal phenotype as well as the positive regulation of gene products that mediate the epithelial phenotype via signaling cross talks between RKIP and each gene product. We examined several EMT mesenchymal gene products such as Snail, vimentin, N-cadherin, laminin and EPCAM and epithelial gene products such as E-cadherin and laminin. We have found that indeed these negative and positive correlations were detected in the signaling cross-talks. In addition, we have also examined bioinformatic data sets on different human cancers and the findings corroborated, in large part, the findings observed in the signaling cross-talks with few exceptions in some cancer types. The overall findings support the underlying mechanism by which the tumor suppressor RKIP regulates the expression of gene products involved in EMT and metastasis. Hence, the development of agent that can selectively induce RKIP expression in cancers with low expressions should result in the activation of the pleiotropic anti-cancer activities of RKIP and resulting in multiple effects including inhibition of tumor cell proliferation, EMT, metastasis and sensitization of resistant tumor cells to respond to both chemotherapeutics and immunotherapeutics.
Collapse
Affiliation(s)
- Hannah Cessna
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Basic and Translational Cancer Research Center (BTCRC), Cancer Genetics, Genomics and Systems Biology Laboratory, Nicosia 1516, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
21
|
Chen F, Xiao M, Feng J, Wufur R, Liu K, Hu S, Zhang Y. Different Inhibition of Nrf2 by Two Keap1 Isoforms α and β to Shape Malignant Behaviour of Human Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms231810342. [PMID: 36142252 PMCID: PMC9499251 DOI: 10.3390/ijms231810342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022] Open
Abstract
Nrf2 (nuclear factor E2-related factor 2, encoded by Nfe2l2) acts as a master transcriptional regulator in mediating antioxidant, detoxification, and cytoprotective responses against oxidative, electrophilic, and metabolic stress, but also plays a crucial role in cancer metabolism and multiple oncogenic pathways, whereas the redox sensor Keap1 functions as a predominant inhibitor of Nrf2 and, hence, changes in its expression abundance directly affect the Nrf2 stability and transcriptional activity. However, nuanced functional isoforms of Keap1 α and β have rarely been identified to date. Herein, we have established four distinct cell models stably expressing Keap1-/-, Keap1β(Keap1Δ1-31), Keap1-Restored, and Keap1α-Restored aiming to gain a better understanding of similarities and differences of two Keap1 isoforms between their distinct regulatory profiles. Our experimental evidence revealed that although Keap1 and its isoforms are still localized in the cytoplasmic compartments, they elicited differential inhibitory effects on Nrf2 and its target HO-1. Furthermore, transcriptome sequencing unraveled that they possess similar but different functions. Such functions were further determined by multiple experiments in vivo (i.e., subcutaneous tumour formation in nude mice) and in vitro (e.g., cell cloning, infection, migration, wound healing, cell cycle, apoptosis, CAT enzymatic activity, and intracellular GSH levels). Of note, the results obtained from tumourigenesis experiments in xenograft model mice were verified based on the prominent changes in the PTEN signaling to the PI3K-AKT-mTOR pathways, in addition to substantially aberrant expression patterns of those typical genes involved in the EMT (epithelial-mesenchymal transition), cell cycle, and apoptosis.
Collapse
Affiliation(s)
- Feilong Chen
- College of Bioengineering, Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Mei Xiao
- College of Bioengineering, Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Jing Feng
- College of Bioengineering, Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Reziyamu Wufur
- College of Bioengineering, Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Keli Liu
- College of Bioengineering, Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Shaofan Hu
- College of Bioengineering, Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Yiguo Zhang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
- Correspondence:
| |
Collapse
|
22
|
Singh R, Singh UP, Agrawal V, Garg M. Epithelial-to-mesenchymal transition based diagnostic and prognostic signature markers in non-muscle invasive and muscle invasive bladder cancer patients. Mol Biol Rep 2022; 49:7541-7556. [PMID: 35593896 DOI: 10.1007/s11033-022-07563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Diagnostic and prognostic significance of epithelial-to-mesenchymal transition (EMT) associated biomarkers are evaluated in a cohort of NMIBC (non-muscle invasive bladder cancer) and MIBC (muscle invasive bladder cancer) patients. METHODS AND RESULTS Real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemical (IHC) staining were carried out in 100 tumor specimens (59 NMIBC and 41 MIBC). The expressions of the epithelial marker, mesenchymal markers and EMT-activating transcription factors (EMT-ATFs) were determined at transcriptome and protein level followed by their statistical associations with clinicohistopathological variables of the patients. Transcriptomic expression analysis showed statistical relevance of tumor stage with increased Twist and Zeb-1; tumor type with reduced E-cadherin and increased Snail; and smoking/tobacco chewing status (S/TC) of patients with increased N-cadherin and Snail in NMIBC patients. Tumor grade with reduced message E-cadherin, gain of N-cadherin, Snail, Twist and Zeb-1; patients' age with reduced E-cadherin and Twist gain; and tumor type with increased message N-cadherin exhibited associations in MIBC patients. Protein expression analysis identified statistical relevance of tumor grade with nuclear gain of Snail and Twist; and nuclear gain of Slug with S/TC status of NMIBC patients. Novel gain of membranous Vimentin deduced association with patients' age in MIBC patients. Survival analysis identified novel Vimentin as the positive predictor of short progression free survival (PFS) and short overall survival (OS) in MIBC patients. Study established altered EMT profile as the independent negative predictor of short recurrence free survival (RFS) in NMIBC patients and positive predictor of short PFS and OS in MIBC patients. CONCLUSIONS EMT associated biomarkers could provide diagnostic and prognostic risk stratification and hence could be of importance in the clinical management of bladder cancer patients.
Collapse
Affiliation(s)
- R Singh
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India
| | - U P Singh
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| | - V Agrawal
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| | - M Garg
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
23
|
Abstract
BACKGROUND Peritoneal adhesion formation is common after abdominal surgery and results in severe complications. Tissue hypoxia is one of the main drivers of peritoneal adhesions. Thus, we determined the clinical role of hypoxia-inducible factor (HIF)-1 signaling in peritoneal adhesions and investigated whether the biguanide antidiabetic drug metformin shows HIF-inhibitory effects and could be repurposed to prevent adhesion formation. STUDY DESIGN As part of the ReLap study (DRKS00013001), adhesive tissue from patients undergoing relaparotomy was harvested and graded using the adhesion grade score. HIF-1 signaling activity within tissue biopsies was determined and correlated with adhesion severity. The effect of metformin on HIF-1 activity was analyzed by quantification of HIF target gene expression and HIF-1 protein stabilization in human mesothelial cells and murine fibroblast under normoxia and hypoxia. Mice were treated with vehicle or metformin 3 days before and until 7 days after induction of peritoneal adhesions; alternatively, metformin treatment was discontinued 48 hours before induction of peritoneal adhesions. RESULTS HIF-1 signaling activity correlated with adhesion severity in patient biopsies. Metformin significantly mitigated HIF-1 activity in vitro and in vivo. Oral treatment with metformin markedly prevented adhesion formation in mice even when the treatment was discontinued 48 hours before surgery. Although metformin treatment did not alter macrophage polarization, metformin reduced proinflammatory leucocyte infiltration and attenuated hypoxia-induced profibrogenic expression patterns and myofibroblast activation. CONCLUSIONS Metformin mitigates adhesion formation by inhibiting HIF-1-dependent (myo)fibroblast activation, conferring an antiadhesive microenvironment after abdominal surgery. Repurposing the clinically approved drug metformin might be useful to prevent or treat postoperative adhesions.
Collapse
|
24
|
Aibara D, Takahashi S, Yagai T, Kim D, Brocker CN, Levi M, Matsusue K, Gonzalez FJ. Gene repression through epigenetic modulation by PPARA enhances hepatocellular proliferation. iScience 2022; 25:104196. [PMID: 35479397 PMCID: PMC9036120 DOI: 10.1016/j.isci.2022.104196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 02/22/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARA) is a key mediator of lipid metabolism and inflammation. Activation of PPARA in rodents causes hepatocyte proliferation, but the underlying mechanism is poorly understood. This study focused on genes repressed by PPARA and analyzed the mechanism by which PPARA promotes hepatocyte proliferation in mice. Activation of PPARA by agonist treatment was autoregulated, and induced expression of the epigenetic regulator UHRF1 via activation of the newly described PPARA target gene E2f8, which, in turn, regulates Uhrf1. UHRF1 strongly repressed the expression of CDH1 via methylation of the Cdh1 promoter marked with H3K9me3. Repression of CDH1 by PPARA activation was reversed by PPARA deficiency or knockdown of E2F8 or UHRF1. Furthermore, a forced expression of CDH1 inhibited expression of the Wnt signaling target genes such as Myc after PPARA activation, and suppressed hepatocyte hyperproliferation. These results demonstrate that the PPARA-E2F8-UHRF1-CDH1 axis causes epigenetic regulation of hepatocyte proliferation. PPARA activation induces the UHRF1 expression via novel PPARA target gene E2f8 Induction of UHRF1 by PPARA activation represses Cdh1 gene marked with H3K9me3 CDH1 suppresses hepatocyte proliferation after PPARA activation Autoinduction of PPARA by agonist enhances cell proliferation via E2F8-UHRF1-CDH1
Collapse
Affiliation(s)
- Daisuke Aibara
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC 20057, USA
- Corresponding author
| | - Tomoki Yagai
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donghwan Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chad N. Brocker
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | - Kimihiko Matsusue
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author
| |
Collapse
|
25
|
Samudh N, Shrilall C, Arbuthnot P, Bloom K, Ely A. Diversity of Dysregulated Long Non-Coding RNAs in HBV-Related Hepatocellular Carcinoma. Front Immunol 2022; 13:834650. [PMID: 35154157 PMCID: PMC8831247 DOI: 10.3389/fimmu.2022.834650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Infection with the hepatitis B virus (HBV) continues to pose a major threat to public health as approximately 292 million people worldwide are currently living with the chronic form of the disease, for which treatment is non-curative. Chronic HBV infections often progress to hepatocellular carcinoma (HCC) which is one of the world’s leading causes of cancer-related deaths. Although the process of hepatocarcinogenesis is multifaceted and has yet to be fully elucidated, several studies have implicated numerous long non-coding RNAs (lncRNAs) as contributors to the development of HCC. These host-derived lncRNAs, which are often dysregulated as a consequence of viral infection, have been shown to function as signals, decoys, guides, or scaffolds, to modulate gene expression at epigenetic, transcriptional, post-transcriptional and even post-translational levels. These lncRNAs mainly function to promote HBV replication and oncogene expression or downregulate tumor suppressors. Very few lncRNAs are known to suppress tumorigenesis and these are often downregulated in HCC. In this review, we describe the mechanisms by which lncRNA dysregulation in HBV-related HCC promotes tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Nazia Samudh
- Wits/South African Medical Research Council (SAMRC) Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Creanne Shrilall
- Wits/South African Medical Research Council (SAMRC) Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- Wits/South African Medical Research Council (SAMRC) Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kristie Bloom
- Wits/South African Medical Research Council (SAMRC) Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Abdullah Ely
- Wits/South African Medical Research Council (SAMRC) Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
26
|
Xu Y, Shi H, Wang M, Huang P, Xu M, Han S, Li H, Wang Y. LACTB suppresses carcinogenesis in lung cancer and regulates the EMT pathway. Exp Ther Med 2022; 23:247. [PMID: 35222724 PMCID: PMC8815028 DOI: 10.3892/etm.2022.11172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/31/2021] [Indexed: 11/24/2022] Open
Abstract
Lung cancer causes thousands of deaths worldwide every year, and present therapeutics show little benefit for advanced-stage patients. Researchers do not know why and how lung cancer begins. Lactamase β (LACTB) is a tumor-suppressor in some cancers. However, its role in lung cancer is unknown. By analyzing the TCGA database and Kaplan-Meier Plotter database, LACTB was found to be downregulated in lung cancer tissues but the methylation level was increased. Patients with high LACTB expression exhibited improved survival. Then, in vitro assays demonstrated that LACTB overexpression inhibited cell migration and invasion, and induced apoptosis in H1299 and H1975 cells. Knockdown of LACTB caused the reverse effects. Moreover, a much higher apoptotic rate and more potent inhibitory effects on H1299 and H1975 cells were obtained when LACTB was combined with docetaxel. In addition, members of the epithelial-mesenchymal transition (EMT) signaling pathway were assessed using western blot analysis. The expression of E-cadherin was decreased while levels of N-cadherin and vimentin were increased after knockdown of LACTB in lung cancer cells. By contrast, overexpression of LACTB increased the level of E-cadherin but decreased N-cadherin and vimentin. Therefore, LACTB is a tumor suppressor in lung cancer that inhibits cell migration and invasion and induces cell apoptosis. Meanwhile, LACTB was found to strengthen the anticancer role of docetaxel and to suppress the EMT pathway in lung cancer.
Collapse
Affiliation(s)
- Yihui Xu
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Hubo Shi
- Department of Thoracic Surgery, Shangdong Public Health Clinical Center, Jinan, Shandong 250102, P.R. China
| | - Min Wang
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Ping Huang
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Mingjie Xu
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Shuyi Han
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Huanjie Li
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yunshan Wang
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
27
|
Zhao W, Dai S, Yue L, Xu F, Gu J, Dai X, Qian X. Emerging mechanisms progress of colorectal cancer liver metastasis. Front Endocrinol (Lausanne) 2022; 13:1081585. [PMID: 36568117 PMCID: PMC9772455 DOI: 10.3389/fendo.2022.1081585] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy and the second most common cause of cancer-related mortality worldwide. A total of 20% of CRC patients present with distant metastasis. The hepatic portal venous system, responsible for collecting most intestinal blood, makes the liver the most common site of CRC metastasis. The formation of liver metastases from colorectal cancer is a long and complex process. It involves the maintenance of primary tumors, vasculature invasion, distant colonization, and metastasis formation. In this review, we serve on how the CRC cells acquire stemness, invade the vascular, and colonize the liver. In addition, we highlight how the resident cells of the liver and immune cells interact with CRC cells. We also discuss the current immunotherapy approaches and challenges we face, and finally, we look forward to finding new therapeutic targets based on novel sequencing technologies.
Collapse
|
28
|
Sauer AK, Malijauskaite S, Meleady P, Boeckers TM, McGourty K, Grabrucker AM. Zinc is a key regulator of gastrointestinal development, microbiota composition and inflammation with relevance for autism spectrum disorders. Cell Mol Life Sci 2021; 79:46. [PMID: 34936034 PMCID: PMC11072240 DOI: 10.1007/s00018-021-04052-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/31/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022]
Abstract
Gastrointestinal (GI) problems and microbiota alterations have been frequently reported in autism spectrum disorders (ASD). In addition, abnormal perinatal trace metal levels have been found in ASD. Accordingly, mice exposed to prenatal zinc deficiency display features of ASD-like behavior. Here, we model GI development using 3D intestinal organoids grown under zinc-restricted conditions. We found significant morphological alterations. Using proteomic approaches, we identified biological processes affected by zinc deficiency that regulate barrier permeability and pro-inflammatory pathways. We confirmed our results in vivo through proteomics studies and investigating GI development in zinc-deficient mice. These show altered GI physiology and pro-inflammatory signaling, resulting in chronic systemic and neuroinflammation, and gut microbiota composition similar to that reported in human ASD cases. Thus, low zinc status during development is sufficient to compromise intestinal barrier integrity and activate pro-inflammatory signaling, resulting in changes in microbiota composition that may aggravate inflammation, altogether mimicking the co-morbidities frequently observed in ASD.
Collapse
Affiliation(s)
- Ann Katrin Sauer
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, Bernal Institute, Analog Devices Building AD3-018, Castletroy, Limerick, V94PH61, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Sigita Malijauskaite
- Bernal Institute, University of Limerick, Limerick, Ireland
- Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Paula Meleady
- School of Biotechnology and National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- DZNE, Ulm Unit, Ulm, Germany
| | - Kieran McGourty
- Bernal Institute, University of Limerick, Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland
- Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Andreas M Grabrucker
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, Bernal Institute, Analog Devices Building AD3-018, Castletroy, Limerick, V94PH61, Ireland.
- Bernal Institute, University of Limerick, Limerick, Ireland.
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland.
| |
Collapse
|
29
|
Chakraborty S, Carnazza M, Jarboe T, DeSouza N, Li XM, Moscatello A, Geliebter J, Tiwari RK. Disruption of Cell-Cell Communication in Anaplastic Thyroid Cancer as an Immunotherapeutic Opportunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1350:33-66. [PMID: 34888843 DOI: 10.1007/978-3-030-83282-7_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thyroid cancer incidence is increasing at an alarming rate, almost tripling every decade. About 44,280 new cases of thyroid cancer (12,150 in men and 32,130 in women) are estimated to be diagnosed in 2021, with an estimated death toll of around 2200. Although most thyroid tumors are treatable and associated with a favorable outcome, anaplastic thyroid cancer (ATC) is extremely aggressive with a grim prognosis of 6-9 months post-diagnosis. A large contributing factor to this aggressive nature is that ATC is completely refractory to mainstream therapies. Analysis of the tumor microenvironment (TME) associated with ATC can relay insight to the pathological realm that encompasses tumors and aids in cancer progression and proliferation. The TME is defined as a complex niche that surrounds a tumor and involves a plethora of cellular components whose secretions can modulate the environment in order to favor tumor progression. The cellular heterogeneity of the TME contributes to its dynamic function due to the presence of both immune and nonimmune resident, infiltrating, and interacting cell types. Associated immune cells discussed in this chapter include macrophages, dendritic cells (DCs), natural killer (NK) cells, and tumor-infiltrating lymphocytes (TILs). Nonimmune cells also play a role in the establishment and proliferation of the TME, including neuroendocrine (NE) cells, adipocytes, endothelial cells (ECs), mesenchymal stem cells (MSCs), and fibroblasts. The dynamic nature of the TME contributes greatly to cancer progression.Recent work has found ATC tissues to be defined by a T cell-inflamed "hot" tumor immune microenvironment (TIME) as evidenced by presence of CD3+ and CD8+ T cells. These tumor types are amenable to immune checkpoint blockade (ICB) therapy. This therapeutic avenue, as of 2021, has remained unexplored in ATC. New studies should seek to explore the therapeutic feasibility of a combination therapy, through the use of a small molecule inhibitor with ICB in ATC. Screening of in vitro model systems representative of papillary, anaplastic, and follicular thyroid cancer explored the expression of 29 immune checkpoint molecules. There are higher expressions of HVEM, BTLA, and CD160 in ATC cell lines when compared to the other TC subtypes. The expression level of HVEM was more than 30-fold higher in ATC compared to the others, on average. HVEM is a member of tumor necrosis factor (TNF) receptor superfamily, which acts as a bidirectional switch through interaction with BTLA, CD160, and LIGHT, in a cis or trans manner. Given the T cell-inflamed hot TIME in ATC, expression of HVEM on tumor cells was suggestive of a possibility for complex crosstalk of HVEM with inflammatory cytokines. Altogether, there is emerging evidence of a T cell-inflamed TIME in ATC along with the expression of immune checkpoint proteins HVEM, BTLA, and CD160 in ATC. This can open doors for combination therapies using small molecule inhibitors targeting downstream effectors of MAPK pathway and antagonistic antibodies targeting the HVEM/BTLA axis as a potentially viable therapeutic avenue for ATC patients. With this being stated, the development of adaptive resistance to targeted therapies is inevitable; therefore, using a combination therapy that targets the TIME can serve as a preemptive tactic against the characteristic therapeutic resistance that is seen in ATC. The dynamic nature of the TME, including the immune cells, nonimmune cells, and acellular components, can serve as viable targets for combination therapy in ATC. Understanding the complex interactions of these associated cells and the paradigm in which their secretions and components can serve as immunomodulators are critical points of understanding when trying to develop therapeutics specifically tailored for the anaplastic thyroid carcinoma microenvironment.
Collapse
Affiliation(s)
- Sanjukta Chakraborty
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, USA.,Weill Cornell Medicine, New York, NY, USA
| | - Michelle Carnazza
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, USA
| | - Tara Jarboe
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, USA
| | - Nicole DeSouza
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, USA
| | - Xiu-Min Li
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, USA
| | | | - Jan Geliebter
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, USA
| | - Raj K Tiwari
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
30
|
Kałafut J, Czerwonka A, Anameriç A, Przybyszewska-Podstawka A, Misiorek JO, Rivero-Müller A, Nees M. Shooting at Moving and Hidden Targets-Tumour Cell Plasticity and the Notch Signalling Pathway in Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:6219. [PMID: 34944837 PMCID: PMC8699303 DOI: 10.3390/cancers13246219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is often aggressive, with poor response to current therapies in approximately 40-50% of the patients. Current therapies are restricted to operation and irradiation, often combined with a small number of standard-of-care chemotherapeutic drugs, preferentially for advanced tumour patients. Only very recently, newer targeted therapies have entered the clinics, including Cetuximab, which targets the EGF receptor (EGFR), and several immune checkpoint inhibitors targeting the immune receptor PD-1 and its ligand PD-L1. HNSCC tumour tissues are characterized by a high degree of intra-tumour heterogeneity (ITH), and non-genetic alterations that may affect both non-transformed cells, such as cancer-associated fibroblasts (CAFs), and transformed carcinoma cells. This very high degree of heterogeneity likely contributes to acquired drug resistance, tumour dormancy, relapse, and distant or lymph node metastasis. ITH, in turn, is likely promoted by pronounced tumour cell plasticity, which manifests in highly dynamic and reversible phenomena such as of partial or hybrid forms of epithelial-to-mesenchymal transition (EMT), and enhanced tumour stemness. Stemness and tumour cell plasticity are strongly promoted by Notch signalling, which remains poorly understood especially in HNSCC. Here, we aim to elucidate how Notch signal may act both as a tumour suppressor and proto-oncogenic, probably during different stages of tumour cell initiation and progression. Notch signalling also interacts with numerous other signalling pathways, that may also have a decisive impact on tumour cell plasticity, acquired radio/chemoresistance, and metastatic progression of HNSCC. We outline the current stage of research related to Notch signalling, and how this pathway may be intricately interconnected with other, druggable targets and signalling mechanisms in HNSCC.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alinda Anameriç
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Julia O. Misiorek
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Matthias Nees
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
- Western Finland Cancer Centre (FICAN West), Institute of Biomedicine, University of Turku, 20101 Turku, Finland
| |
Collapse
|
31
|
Epithelial Mesenchymal Transition and its transcription factors. Biosci Rep 2021; 42:230017. [PMID: 34708244 PMCID: PMC8703024 DOI: 10.1042/bsr20211754] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Epithelial–mesenchymal transition or EMT is an extremely dynamic process involved in conversion of epithelial cells into mesenchymal cells, stimulated by an ensemble of signaling pathways, leading to change in cellular morphology, suppression of epithelial characters and acquisition of properties such as enhanced cell motility and invasiveness, reduced cell death by apoptosis, resistance to chemotherapeutic drugs etc. Significantly, EMT has been found to play a crucial role during embryonic development, tissue fibrosis and would healing, as well as during cancer metastasis. Over the years, work from various laboratories have identified a rather large number of transcription factors (TFs) including the master regulators of EMT, with the ability to regulate the EMT process directly. In this review, we put together these EMT TFs and discussed their role in the process. We have also tried to focus on their mechanism of action, their interdependency, and the large regulatory network they form. Subsequently, it has become clear that the composition and structure of the transcriptional regulatory network behind EMT probably varies based upon various physiological and pathological contexts, or even in a cell/tissue type-dependent manner.
Collapse
|
32
|
Guo Y, Wang S, Zhao ZY, Li JN, Shang A, Li DL, Wang M. Skeletal muscle metastasis with bone metaplasia from colon cancer: A case report and review of the literature. World J Clin Cases 2021; 9:9285-9294. [PMID: 34786415 PMCID: PMC8567510 DOI: 10.12998/wjcc.v9.i30.9285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colon cancer is a common malignant disease of the gastrointestinal tract and usually occurs at the junction of the rectum and sigmoid colon. Lymphatic and hematogenous metastases occur frequently in colon cancer and the most common metastatic sites include the liver, lung, peritoneum, bone, and lymph nodes. As a manifestation of advanced tumor spread and metastasis, soft tissue metastasis, especially skeletal muscle metastasis with bone metaplasia caused by colon cancer, is rare, accounting for less than 1% of metastases.
CASE SUMMARY A 43-year-old male patient developed skeletal muscle metastasis with bone metaplasia of the right proximal thigh 5 mo after colon cancer was diagnosed. The patient was admitted to the hospital because of pain caused by a local mass on his right thigh. Positron emission tomography-computed tomography showed many enlarged lymph nodes around the abdominal aorta but no signs of lung or liver metastases. Color ultrasound revealed a mass located in the skeletal muscle and the results of histological biopsy revealed a poorly differentiated adenocarcinoma suspected to be distant metastases from colon cancer. Immunohistochemistry showed small woven bone components that were considered to be ossified.
CONCLUSION This case reminds us that for patients with advanced colorectal tumors, we should be alert to the possibility of unconventional metastasis.
Collapse
Affiliation(s)
- Yu Guo
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Shuang Wang
- Department of Dermatology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Ze-Yun Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jian-Nan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - An Shang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Dong-Lin Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Min Wang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
33
|
Vedagiri D, Gupta D, Mishra A, Krishna G, Bhaskar M, Sah V, Basu A, Nayak D, Kalia M, Valiya Veettil M, Harshan KH. Retinoic Acid-Inducible Gene I-Like Receptors Activate Snail To Limit RNA Viral Infections. J Virol 2021; 95:e0121621. [PMID: 34379517 PMCID: PMC8513471 DOI: 10.1128/jvi.01216-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022] Open
Abstract
Retinoic acid-inducible gene I-like receptors (RLRs) are important cytosolic pattern recognition receptors (PRRs) that sense viral RNA before mounting a response leading to the activation of type I IFNs. Several viral infections induce epithelial-mesenchymal transition (EMT), even as its significance remains unclear. Here, we show that EMT or an EMT-like process is a general response to viral infections. Our studies identify a previously unknown mechanism of regulation of an important EMT-transcription factor (EMT-TF) Snail during RNA viral infections and describe its possible implication. RNA viral infections, poly(I·C) transfection, and ectopic expression of RLR components induced Snail levels, indicating that RLR pathway could regulate its expression. Detailed examination using mitochondrial antiviral signaling protein knockout (MAVS-KO) cells established that MAVS is essential in this regulation. We identified two interferon-stimulated response elements (ISREs) in the SNAI1 promoter region and demonstrated that they are important in its transcriptional activation by phosphorylated IRF3. Increasing the levels of Snail activated RLR pathway and dramatically limited replication of the RNA viruses dengue virus, Japanese encephalitis virus (JEV), and vesicular stomatitis virus, pointing to their antiviral functions. Knockdown of Snail resulted in a considerable increase in the JEV titer, validating its antiviral functions. Finally, transforming growth factor β-mediated IFNB activation was dependent on Snail levels, confirming its important role in type I IFN activation. Thus, EMT-TF Snail is transcriptionally coregulated with type I IFN by RLRs and, in turn, promotes the RLR pathway, further strengthening the antiviral state in the cell. Our work identified an interesting mechanism of regulation of Snail that demonstrates potential coregulation of multiple innate antiviral pathways triggered by RLRs. Identification of antiviral functions of Snail also provides an opportunity to expand the sphere of RLR signaling. IMPORTANCE RLRs sense viral genomic RNA or the double-stranded RNA intermediates and trigger the activation of type I IFNs. Snail transcription factor, commonly associated with epithelial-mesenchymal transition (EMT), has been reported to facilitate EMT in several viral infections. Many of these reports are based on oncoviruses, leading to the speculation that EMT induced during infection is an important factor in the oncogenesis triggered by these infections. However, our studies reveal that EMT or EMT-like processes during viral infections have important functions in antiviral response. We have characterized a new mechanism of transcriptional regulation of Snail by IRF3 through interferon-stimulated response elements in their promoters, and this finding could have importance in nonviral contexts as well. We also identify that EMT-TF Snail promotes antiviral status of the infected cells through the RLR pathway. This study characterizes a new regulatory mechanism of activation of Snail and establishes its unidentified function in antiviral response.
Collapse
Affiliation(s)
- Dhiviya Vedagiri
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Academy for Scientific and Innovative Research, Ghaziabad, India
| | - Divya Gupta
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Anurag Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, India
| | - Gayathri Krishna
- Virology Laboratory, Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, India
| | | | - Vishal Sah
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Academy for Scientific and Innovative Research, Ghaziabad, India
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, India
| | - Debasis Nayak
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, India
| | - Manjula Kalia
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Mohanan Valiya Veettil
- Virology Laboratory, Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, India
| | - Krishnan Harinivas Harshan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Academy for Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
34
|
Chong ZX, Yeap SK, Ho WY. Unraveling the roles of miRNAs in regulating epithelial-to-mesenchymal transition (EMT) in osteosarcoma. Pharmacol Res 2021; 172:105818. [PMID: 34400316 DOI: 10.1016/j.phrs.2021.105818] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/01/2021] [Accepted: 08/12/2021] [Indexed: 12/16/2022]
Abstract
Osteosarcoma is one of the most prevalent primary bone tumors with a high metastatic and recurrence rate with poor prognosis. MiRNAs are short and non-coding RNAs that could regulate various cellular activities and one of them is the epithelial-to-mesenchymal transition (EMT). Osteosarcoma cells that have undergone EMT would lose their cellular polarity and acquire invasive and metastatic characteristics. Our literature search showed that many pre-clinical and clinical studies have reported the roles of miRNAs in modulating the EMT process in osteosarcoma and compared to other cancers like breast cancer, there is a lack of review article which effectively summarizes the various roles of EMT-regulating miRNAs in osteosarcoma. This review, therefore, was aimed to discuss and summarize the EMT-promoting and EMT-suppressing roles of different miRNAs in osteosarcoma. The review would begin with the discussion on the concepts and principles of EMT, followed by the exploration of the diverse roles of EMT-regulating miRNAs in osteosarcoma. Subsequently, the potential use of miRNAs as prognostic biomarkers in osteosarcoma to predict the likelihood of metastases and as therapeutic agents would be discussed.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
35
|
Zhang N, Ng AS, Cai S, Li Q, Yang L, Kerr D. Novel therapeutic strategies: targeting epithelial-mesenchymal transition in colorectal cancer. Lancet Oncol 2021; 22:e358-e368. [PMID: 34339656 DOI: 10.1016/s1470-2045(21)00343-0] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a process during which cells lose their epithelial characteristics, for instance apical-basal cell polarity and cell-cell contact, and gain mesenchymal properties, such as increased motility. In colorectal cancer, EMT has an important role in tumour progression, metastasis, and drug resistance. There has been accumulating evidence from preclinical and early clinical studies that show that EMT markers might serve as outcome predictors and potential therapeutic targets in colorectal cancer. This Review describes the fundamentals of EMT, including biology, newly partial EMT, and associated changes. We also provide a comprehensive summary of therapeutic compounds capable of targeting EMT markers, including drugs in preclinical and clinical trials and those with repurpose potential. Lastly, we explore the obstacles of EMT bench-to-bedside drug development.
Collapse
Affiliation(s)
- Nan Zhang
- West China School of Medicine, Sichuan University, Chengdu, China; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; University of Oxford-Sichuan University Huaxi Joint Centre for Gastrointestinal Cancer, Oxford, UK; Department of Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Aik Seng Ng
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; University of Oxford-Sichuan University Huaxi Joint Centre for Gastrointestinal Cancer, Oxford, UK
| | - Shijie Cai
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; University of Oxford-Sichuan University Huaxi Joint Centre for Gastrointestinal Cancer, Oxford, UK
| | - Qiu Li
- West China School of Medicine, Sichuan University, Chengdu, China; Department of Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- West China School of Medicine, Sichuan University, Chengdu, China; University of Oxford-Sichuan University Huaxi Joint Centre for Gastrointestinal Cancer, Oxford, UK; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
| | - David Kerr
- West China School of Medicine, Sichuan University, Chengdu, China; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; University of Oxford-Sichuan University Huaxi Joint Centre for Gastrointestinal Cancer, Oxford, UK
| |
Collapse
|
36
|
Dan VM, Raveendran RS, Baby S. Resistance to Intervention: Paclitaxel in Breast Cancer. Mini Rev Med Chem 2021; 21:1237-1268. [PMID: 33319669 DOI: 10.2174/1389557520999201214234421] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/22/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022]
Abstract
Breast cancer stands as the most prevalent cancer in women globally, and contributes to the highest percentage of mortality due to cancer-related deaths in women. Paclitaxel (PTX) is heavily relied on as a frontline chemotherapy drug in breast cancer treatment, especially in advanced metastatic cancer. Generation of resistance to PTX often derails clinical management and adversely affects patient outcomes. Understanding the molecular mechanism of PTX resistance is necessary to device methods to aid in overcoming the resistance. Recent studies exploring the mechanism of development of PTX resistance have led to unveiling of a range novel therapeutic targets. PTX resistance pathways that involve major regulatory proteins/RNAs like RNF8/Twist/ROR1, TLR, ErbB3/ErbB2, BRCA1- IRIS, MENA, LIN9, MiRNA, FoxM1 and IRAK1 have expanded the complexity of resistance mechanisms, and brought newer insights into the development of drug targets. These resistance-related targets can be dealt with synthetic/natural therapeutics in combination with PTX. The present review encompasses the recent understanding of PTX resistance mechanisms in breast cancer and possible therapeutic combinations to overcome resistance.
Collapse
Affiliation(s)
- Vipin Mohan Dan
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| | - Reji Saradha Raveendran
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| | - Sabulal Baby
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| |
Collapse
|
37
|
Chen G, Qiu L, Gao J, Wang J, Dang J, Li L, Jin Z, Liu X. Stress Hormones: Emerging Targets in Gynecological Cancers. Front Cell Dev Biol 2021; 9:699487. [PMID: 34307378 PMCID: PMC8299464 DOI: 10.3389/fcell.2021.699487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/09/2021] [Indexed: 01/06/2023] Open
Abstract
In the past decade, several discoveries have documented the existence of innervation in ovarian cancer and cervical cancer. Notably, various neurotransmitters released by the activation of the sympathetic nervous system can promote the proliferation and metastasis of tumor cells and regulate immune cells in the tumor microenvironment. Therefore, a better understanding of the mechanisms involving neurotransmitters in the occurrence and development of gynecological cancers will be beneficial for exploring the feasibility of using inexpensive β-blockers and dopamine agonists in the clinical treatment of gynecological cancers. Additionally, this article provides some new insights into targeting tumor innervation and neurotransmitters in the tumor microenvironment.
Collapse
Affiliation(s)
- Guoqiang Chen
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lei Qiu
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Jinghai Gao
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianhong Dang
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lingling Li
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhijun Jin
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaojun Liu
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
38
|
Dian MJ, Li J, Zhang XL, Li ZJ, Zhou Y, Zhou W, Zhong QL, Pang WQ, Lin XL, Liu T, Liu YA, Li YL, Han LX, Zhao WT, Jia JS, Xiao SJ, Xiao D, Xia JW, Hao WC. MST4 negatively regulates the EMT, invasion and metastasis of HCC cells by inactivating PI3K/AKT/Snail1 axis. J Cancer 2021; 12:4463-4477. [PMID: 34149910 PMCID: PMC8210547 DOI: 10.7150/jca.60008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/08/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and has a poor prognosis due to the high incidence of invasion and metastasis-related progression. However, the underlying mechanism remains elusive, and valuable biomarkers for predicting invasion, metastasis, and poor prognosis of HCC patients are still lacking. Methods: Immunohistochemistry (IHC) was performed on HCC tissues (n = 325), and the correlations between MST4 expression of the clinical HCC tissues, the clinicopathologic features, and survival were further evaluated. The effects of MST4 on HCC cell migratory and invasive properties in vitro were evaluated by Transwell and Boyden assays. The intrahepatic metastasis mouse model was established to evaluate the HCC metastasis in vivo. The PI3K inhibitor, LY294002, and a specific siRNA against Snail1 were used to investigate the roles of PI3K/AKT pathway and Snail1 in MST4-regulated EMT, migration, and invasion of HCC cells, respectively. Results: In this study, by comprehensively analyzing our clinical data, we discovered that low MST4 expression is highly associated with the advanced progression of HCC and serves as a prognostic biomarker for HCC patients of clinical-stage III-IV. Functional studies indicate that MST4 inactivation induces epithelial-to-mesenchymal transition (EMT) of HCC cells, promotes their migratory and invasive potential in vitro, and facilitates their intrahepatic metastasis in vivo, whereas MST4 overexpression exhibits the opposite phenotypes. Mechanistically, MST4 inactivation elevates the expression and nuclear translocation of Snail1, a key EMT transcription factor (EMT-TF), through the PI3K/AKT signaling pathway, thus inducing the EMT phenotype of HCC cells, and enhancing their invasive and metastatic potential. Moreover, a negative correlation between MST4 and p-AKT, Snail1, and Ki67 and a positive correlation between MST4 and E-cadherin were determined in clinical HCC samples. Conclusions: Our findings indicate that MST4 suppresses EMT, invasion, and metastasis of HCC cells by modulating the PI3K/AKT/Snail1 axis, suggesting that MST4 may be a potential prognostic biomarker for aggressive and metastatic HCC.
Collapse
Affiliation(s)
- Mei-Juan Dian
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Radiotherapy Center, the First People's Hospital of Chenzhou, Xiangnan University, Chenzhou 423000, China
| | - Xiao-Ling Zhang
- Department of Physiology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China
| | - Zi-Jian Li
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wei Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiu-Ling Zhong
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wen-Qian Pang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Lin Lin
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tao Liu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yi-An Liu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yong-Long Li
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Liu-Xin Han
- The third people's hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Wen-Tao Zhao
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, China
| | - Jun-Shuang Jia
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng-Jun Xiao
- Department of Pathology, the Second Affiliated Hospital, Guilin Medical University, Guilin 541199, China
| | - Dong Xiao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Jia-Wei Xia
- The third people's hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Wei-Chao Hao
- Department of Oncology, The First Affiliation Hospital of Guangdong Pharmaceutical University, Guangzhou 510062, China
| |
Collapse
|
39
|
Børretzen A, Gravdal K, Haukaas SA, Mannelqvist M, Beisland C, Akslen LA, Halvorsen OJ. The epithelial-mesenchymal transition regulators Twist, Slug, and Snail are associated with aggressive tumour features and poor outcome in prostate cancer patients. J Pathol Clin Res 2021; 7:253-270. [PMID: 33605548 PMCID: PMC8073012 DOI: 10.1002/cjp2.202] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 12/17/2022]
Abstract
The prognostic importance of transcription factors promoting epithelial-mesenchymal transition (EMT) and angiogenesis has not been well explored in prostate cancer patients with long follow-up, nor the interplay between these factors. The objective of this study was to assess the individual protein expression and co-expression of Twist, Slug (Snai2), Snail (Snai1), and hypoxia-inducible factor-1 alpha (Hif-1α) in prostate cancer in relation to EMT, angiogenesis, hypoxia, tumour features, disease recurrence, and patient survival. Immunohistochemical staining was performed on tissue microarray sections from 338 radical prostatectomies with long follow-up. In addition, 41 cases of prostatic hyperplasia, 33 non-skeletal metastases, 13 skeletal metastases, and 33 castration-resistant prostate carcinomas were included. Our findings were validated in external gene expression data sets. Twist was overexpressed in primary prostate cancer and markedly reduced in distant metastases (p < 0.0005). Strong expression of Twist and Slug was associated with Hif-1α in localised prostate cancer (p ≤ 0.001), and strong Twist was associated with Hif-1α in castration-resistant carcinomas (p = 0.044). Twist, Slug, and increased Snail at the tumour stromal border were associated with vascular factors (p ≤ 0.045). Each of the three EMT-regulating transcription factors were associated with aggressive tumour features and shorter time to recurrence and cancer-specific death. Notably, the co-expression of factors demonstrated an enhanced influence on outcome. In the subgroup of E-cadherinlow carcinomas, strong Slug was associated with shorter time to all end points and was an independent predictor of time to multiple end points, including cancer-specific death (hazard ratio 3.0, p = 0.041). To conclude, we demonstrate an important relation between EMT, hypoxia, and angiogenesis and a strong link between the investigated EMT regulators and aggressive tumour features and poor patient outcome in prostate cancer. Despite the retrospective nature of this long-term study, our findings could have a significant impact on the future treatment of prostate cancer, where tailored therapies might be directed simultaneously against epithelial-mesenchymal phenotypes, angiogenesis, and tumour hypoxia.
Collapse
Affiliation(s)
- Astrid Børretzen
- Centre for Cancer Biomarkers CCBIO, Gade Laboratory for Pathology, Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of PathologyHaukeland University HospitalBergenNorway
| | - Karsten Gravdal
- Department of PathologyHaukeland University HospitalBergenNorway
| | - Svein A Haukaas
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of UrologyHaukeland University HospitalBergenNorway
| | - Monica Mannelqvist
- Centre for Cancer Biomarkers CCBIO, Gade Laboratory for Pathology, Department of Clinical MedicineUniversity of BergenBergenNorway
| | - Christian Beisland
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of UrologyHaukeland University HospitalBergenNorway
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, Gade Laboratory for Pathology, Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of PathologyHaukeland University HospitalBergenNorway
| | - Ole J Halvorsen
- Centre for Cancer Biomarkers CCBIO, Gade Laboratory for Pathology, Department of Clinical MedicineUniversity of BergenBergenNorway
| |
Collapse
|
40
|
Soltanian S, Sheikhbahaei M. Effect of Menadione and Combination of Gemcitabine and Cisplatin on Cancer Stem Cells in Human Non-small Cell Lung Cancer (NSCLC) Cell Line A549. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:105-117. [PMID: 34400945 PMCID: PMC8170754 DOI: 10.22037/ijpr.2020.112373.13715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Chemotherapy-induced adverse effects and resistance of NSCLC to conventional drugs reduce the efficacy of current therapies. Tumors contain a small population of cancer stem cells (CSCs) that play a critical role in tumor initiation, maintenance, and drug resistance that finally lead to cancer recurrence. Therefore, CSC-targeting therapies can offer the best hope for developing curative cancer therapies. Vitamins have a high potential for cancer prevention and treatment. Vitamins also ameliorate the side effects which occur in chemo-radio therapy. Menadione (2-methyl-1,4-naphthoquinone/vitamin-K3) is a synthetic form of vitamin K that indicated antitumor activities. The purpose of this study was to evaluate the anti-CSCs effect of menadione and combination of cisplatin and gemcitabine as a first-line treatment in patients with NSCLC on the NSCLC cell line A549. MTT results displayed decreased cell survival after treatment with cisplatin/gemcitabine for 48 h treatment (IC50 values 0.25 µM for cisplatin and 5 µM for gemcitabine). Menadione also inhibited the cell growth in A549 cells (IC50: 16 µM). Quantitative RT-PCR showed significant downregulation of CSC markers (Oct4, Nanog, Sox2, Aldh1, Abcb1, CD44, and CD133) and Snail, epithelial-mesenchymal transition marker, after treatment with menadione and cisplatin/gemcitabine. Flow cytometry showed CD44-positive cells that constitute a high percentage (70%) of A549 cells reduced significantly after treatment with cisplatin/gemcitabine or menadione. However, A549 cells did not show a significant population positive for CD133 and ABCB1 (less than 0.05%), and these fractions did not change after treatment with two agents.
Collapse
|
41
|
Iron elevates mesenchymal and metastatic biomarkers in HepG2 cells. Sci Rep 2020; 10:21926. [PMID: 33318518 PMCID: PMC7736862 DOI: 10.1038/s41598-020-78348-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/23/2020] [Indexed: 01/20/2023] Open
Abstract
Liver iron excess is observed in several chronic liver diseases and is associated with the development of hepatocellular carcinoma (HCC). However, apart from oxidative stress, other cellular mechanisms by which excess iron may mediate/increase HCC predisposition/progression are not known. HCC pathology involves epithelial to mesenchymal transition (EMT), the basis of cancer phenotype acquisition. Here, the effect of excess iron (holo-transferrin 0–2 g/L for 24 and 48 h) on EMT biomarkers in the liver-derived HepG2 cells was investigated. Holo-transferrin substantially increased intracellular iron. Unexpectedly, mRNA and protein expression of the epithelial marker E-cadherin either remained unaltered or increased. The mRNA and protein levels of metastasis marker N-cadherin and mesenchymal marker vimentin increased significantly. While the mRNA expression of EMT transcription factors SNAI1 and SNAI2 increased and decreased, respectively after 24 h, both factors increased after 48 h. The mRNA expression of TGF-β (EMT-inducer) showed no significant alterations. In conclusion, data showed direct link between iron and EMT. Iron elevated mesenchymal and metastatic biomarkers in HepG2 cells without concomitant decrement in the epithelial marker E-cadherin and altered the expression of the key EMT-mediating transcription factors. Such studies can help identify molecular targets to devise iron-related adjunctive therapies to ameliorate HCC pathophysiology.
Collapse
|
42
|
Metastatic behavior analyses of tetraspanin TM4SF5-expressing spheres in three-dimensional (3D) cell culture environment. Arch Pharm Res 2020; 43:1162-1172. [PMID: 33222072 DOI: 10.1007/s12272-020-01291-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022]
Abstract
Cancer metastasis involves diverse cellular functions via bidirectional communications between intracellular and extracellular spaces. To achieve development of the anti-metastatic drugs, one needs to consider the efficacy and mode of action (MOA) of the drug candidates to block the metastatic potentials of cancerous cells. Rather than under two-dimensional environment, investigation of the metastatic potentials under three-dimensional environment would be much pharmaceutically beneficent, since it can mimic the in vivo tumor lesions in cancer patients, leading to allowance of drug candidates analyzed in the 3D culture systems to lower failure rates during the anti-metastatic drug development. Here we have reviewed on the analyses of metastatic potentials of certain cancer models in 3D culture systems surrounded with extracellular matrix proteins, which could be supported by TM4SF5- and/or EMT-mediated actions. We particularly focused the initial events of the cancer metastasis, such as invasive outgrowth and dissemination from the cancer cell masses, spheroids, embedded in the 3D gel culture systems. This review summarizes the significance of tetraspanin TM4SF5 and Snail1 that are related to EMT in the metastatic potentials explored in the 3D gel systems.
Collapse
|
43
|
Cancer-driving mutations and variants of components of the membrane trafficking core machinery. Life Sci 2020; 264:118662. [PMID: 33127517 DOI: 10.1016/j.lfs.2020.118662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
The core machinery for vesicular membrane trafficking broadly comprises of coat proteins, RABs, tethering complexes and SNAREs. As cellular membrane traffic modulates key processes of mitogenic signaling, cell migration, cell death and autophagy, its dysregulation could potentially results in increased cell proliferation and survival, or enhanced migration and invasion. Changes in the levels of some components of the core machinery of vesicular membrane trafficking, likely due to gene amplifications and/or alterations in epigenetic factors (such as DNA methylation and micro RNA) have been extensively associated with human cancers. Here, we provide an overview of association of membrane trafficking with cancer, with a focus on mutations and variants of coat proteins, RABs, tethering complex components and SNAREs that have been uncovered in human cancer cells/tissues. The major cellular and molecular cancer-driving or suppression mechanisms associated with these components of the core membrane trafficking machinery shall be discussed.
Collapse
|
44
|
Ji R, Zhu XJ, Wang ZR, Huang LQ. Cortactin in Epithelial-Mesenchymal Transition. Front Cell Dev Biol 2020; 8:585619. [PMID: 33195233 PMCID: PMC7606982 DOI: 10.3389/fcell.2020.585619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Cortactin, a member of the actin-binding protein family, plays an important role in cell movement involving the cytoskeleton, as cell movement mediated by cortactin may induce the epithelial–mesenchymal transition. Cortactin participates in tumor proliferation, migration, and invasion and other related disease processes by binding to different proteins and participating in different pathways and mechanisms that induce the occurrence of these disease processes. Therefore, this article reviews the correlations between cortactin, the actin cytoskeleton, and the epithelial–mesenchymal transition and discusses its clinical importance in tumor therapy.
Collapse
Affiliation(s)
- Rong Ji
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| | - Xiao-Juan Zhu
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| | - Zhi-Rong Wang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| | - Li-Qiang Huang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| |
Collapse
|
45
|
Goes CP, Vieceli FM, De La Cruz SM, Simões-Costa M, Yan CYI. Scratch2, a Snail Superfamily Member, Is Regulated by miR-125b. Front Cell Dev Biol 2020; 8:769. [PMID: 32984310 PMCID: PMC7477046 DOI: 10.3389/fcell.2020.00769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Scratch2 is a transcription factor expressed in a very restricted population of vertebrate embryonic neural cell precursors involved in their survival, differentiation, and migration. The mechanisms that control its expression remain unknown and could contribute towards our understanding of gene regulation during neural differentiation and evolution. Here we investigate the role of microRNAs (miRNAs) in the Scrt2 post-transcriptional regulatory mechanism. We identified binding sites for miR-125b and -200b in the Scrt2 3′UTR in silico. We confirmed the repressive-mediated activity of the Scrt2 3′UTR through electroporation of luciferase constructs into chick embryos. Further, both CRISPR/Cas9-mediated deletion of miR-125b/-200b responsive elements from chicken Scrt2 3′UTR and expression of miRNAs sponges increased Scrt2 expression field, suggesting a role for these miRNAs as post-transcriptional regulators of Scrt2. The biological effect of miR-125b titration was much more pronounced than that of miR-200b. Therefore, we propose that, after transcription, miR-125b fine-tunes the Scrt2 expression domain.
Collapse
Affiliation(s)
- Carolina Purcell Goes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Molecular Biology and Genetics, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Felipe Monteleone Vieceli
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Shirley Mirna De La Cruz
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcos Simões-Costa
- Department of Molecular Biology and Genetics, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Chao Yun Irene Yan
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Angiotensin Inhibition, TGF-β and EMT in Cancer. Cancers (Basel) 2020; 12:cancers12102785. [PMID: 32998363 PMCID: PMC7601465 DOI: 10.3390/cancers12102785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Angiotensin inhibitors are standard drugs in cardiovascular and renal diseases that have antihypertensive and antifibrotic properties. These drugs also exert their antifibrotic effects in cancer by reducing collagen and hyaluronan deposition in the tumor stroma, thus enhancing drug delivery. Angiotensin II signaling interferes with the secretion of the cytokine TGF-β-a known driver of malignancy. TGF-β stimulates matrix production in cancer-associated fibroblasts, and thus drives desmoplasia. The effect of TGF-β on cancer cells itself is stage-dependent and changes during malignant progression from inhibitory to stimulatory. The intracellular signaling for the TGF-β family can be divided into an SMAD-dependent canonical pathway and an SMAD-independent noncanonical pathway. These capabilities have made TGF-β an interesting target for numerous drug developments. TGF-β is also an inducer of epithelial-mesenchymal transition (EMT). EMT is a highly complex spatiotemporal-limited process controlled by a plethora of factors. EMT is a hallmark of metastatic cancer, and with its reversal, an important step in the metastatic cascade is characterized by a loss of epithelial characteristics and/or the gain of mesenchymal traits.
Collapse
|
47
|
Dai X, Xin Y, Xu W, Tian X, Wei X, Zhang H. CBP-mediated Slug acetylation stabilizes Slug and promotes EMT and migration of breast cancer cells. SCIENCE CHINA-LIFE SCIENCES 2020; 64:563-574. [PMID: 32737855 DOI: 10.1007/s11427-020-1736-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/16/2020] [Indexed: 12/24/2022]
Abstract
Slug, a member of the Snail family of transcriptional repressors, plays a key role in cancer progression, cellular plasticity, and epithelial to mesenchymal transition (EMT). Slug is a fast-turnover protein and its stability is controlled by post-translational modifications. Here, we identified that Slug is acetylated by acetyltransferase CREB-binding protein (CBP) in breast cancer cells. CBP directly interacts with the C-terminal domain of Slug through its catalytic histone acetyltransferase (HAT) domain, leading to acetylation of Slug at lysines 166 and 211. Analysis with acetylation-specific antibodies revealed that Slug is highly acetylated in metastatic breast cancer cells. Notably, Slug acetylation, mediated by CBP at lysines 166 and 211, doubles its half-life and increases its stability. Further, acetylated Slug downregulates the expression of E-cadherin, the epithelial marker, and upregulates the expression of N-cadherin and vimentin, thereby promoting breast cancer cell migration. In conclusion, the present study demonstrates that CBP-mediated Slug acetylation increases its stability, promoting EMT and migration of breast cancer cells.
Collapse
Affiliation(s)
- Xiaoyan Dai
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.,Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yanli Xin
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Weizhi Xu
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xinxia Tian
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Xiaofan Wei
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Hongquan Zhang
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
48
|
Hernández-Segura T, Pastor N. Identification of an α-MoRF in the Intrinsically Disordered Region of the Escargot Transcription Factor. ACS OMEGA 2020; 5:18331-18341. [PMID: 32743208 PMCID: PMC7392517 DOI: 10.1021/acsomega.0c02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Molecular recognition features (MoRFs) are common in intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs). MoRFs are in constant order-disorder structural transitions and adopt well-defined structures once they are bound to their targets. Here, we study Escargot (Esg), a transcription factor in Drosophila melanogaster that regulates multiple cellular functions, and consists of a disordered N-terminal domain and a group of zinc fingers at its C-terminal domain. We analyzed the N-terminal domain of Esg with disorder predictors and identified a region of 45 amino acids with high probability to form ordered structures, which we named S2. Through 54 μs of molecular dynamics (MD) simulations using CHARMM36 and implicit solvent (generalized Born/surface area (GBSA)), we characterized the conformational landscape of S2 and found an α-MoRF of ∼16 amino acids stabilized by key contacts within the helix. To test the importance of these contacts in the stability of the α-MoRF, we evaluated the effect of point mutations that would impair these interactions, running 24 μs of MD for each mutation. The mutations had mild effects on the MoRF, and in some cases, led to gain of residual structure through long-range contacts of the α-MoRF and the rest of the S2 region. As this could be an effect of the force field and solvent model we used, we benchmarked our simulation protocol by carrying out 32 μs of MD for the (AAQAA)3 peptide. The results of the benchmark indicate that the global amount of helix in shorter peptides like (AAQAA)3 is reasonably predicted. Careful analysis of the runs of S2 and its mutants suggests that the mutation to hydrophobic residues may have nucleated long-range hydrophobic and aromatic interactions that stabilize the MoRF. Finally, we have identified a set of residues that stabilize an α-MoRF in a region still without functional annotations in Esg.
Collapse
Affiliation(s)
- Teresa Hernández-Segura
- Laboratorio
de Dinámica de Proteínas, Centro de Investigación
en Dinámica Celular-IICBA, Universidad
Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, México
- Doctorado
en Ciencias CIDC-IICBA, Universidad Autónoma
del Estado de Morelos, Cuernavaca 62209, Morelos, México
| | - Nina Pastor
- Laboratorio
de Dinámica de Proteínas, Centro de Investigación
en Dinámica Celular-IICBA, Universidad
Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, México
| |
Collapse
|
49
|
Wang XL, Wang S, Wu ZZ, Yang QC, Li H, Xiong HG, Wan SC, Sun ZJ. Overexpression of ATAD2 indicates Poor Prognosis in Oral Squamous Cell Carcinoma. Int J Med Sci 2020; 17:1598-1609. [PMID: 32669963 PMCID: PMC7359390 DOI: 10.7150/ijms.46809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022] Open
Abstract
ATPase family AAA domain-containing protein 2 (ATAD2) is highly expressed in a variety of malignancies and can promote the proliferation of tumor cells and inhibit their differentiation. However, the expression of ATAD2 and its related mechanism in oral squamous cell carcinoma (OSCC) are still unknown. Immunohistochemical staining of ATAD2, cancer stem cells (CSCs) markers and immune checkpoint molecules was conducted on human OSCC specimens to determine the expression levels of these proteins and their correlations with the clinicopathological characteristics of ATAD2 in OSCC. Moreover, the role of ATAD2 in cell proliferation, apoptosis, migration and epithelial-mesenchymal transition (EMT) were assessed by silencing ATAD2 in vitro. Immunohistochemical analysis revealed that ATAD2 expression in OSCC tissues was markedly higher than that in adjacent dysplastic tissues and normal mucosal tissues. Overexpression of ATAD2 was related to poor overall survival in OSCC patients. In addition, the protein expression of ATAD2 was notably correlated with the expression of B7-H4, PD-L1, CMTM6, Slug and ALDH1 in human OSCC. ATAD2 knockdown arrested the cell cycle, promoted the apoptosis, and inhibited the proliferation, migration, and EMT of OSCC cells. In conclusion, these findings revealed that ATAD2 is highly expressed in OSCC and can act as a poor prognostic indicator.
Collapse
Affiliation(s)
- Xiao-Long Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Stomatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Shuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Zhong Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qi-Chao Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hong-Gang Xiong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shu-Cheng Wan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
50
|
Micati DJ, Radhakrishnan K, Young JC, Rajpert‐De Meyts E, Hime GR, Abud HE, Loveland KL. ‘Snail factors in testicular germ cell tumours and their regulation by the BMP4 signalling pathway’. Andrology 2020; 8:1456-1470. [DOI: 10.1111/andr.12823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/20/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Diana J. Micati
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
| | - Karthika Radhakrishnan
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
| | - Julia C. Young
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
| | - Ewa Rajpert‐De Meyts
- Department of Growth and Reproduction, Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - Gary R. Hime
- Department of Anatomy and Neuroscience University of Melbourne Melbourne Victoria Australia
| | - Helen E. Abud
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
- Stem Cells and Development Program Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
| | - Kate L. Loveland
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
| |
Collapse
|