1
|
Chen H, Adam A, Oudit GY. Editorial Commentary to Apelin Analog Reduces the Burden of Post-Myocardial Infarction Adverse Remodelling: A New Therapeutic Approach for Ischemic Heart Disease. Can J Cardiol 2025; 41:925-927. [PMID: 39788201 DOI: 10.1016/j.cjca.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Affiliation(s)
- Huachen Chen
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda Adam
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Pahlavani M, Pham K, Kalupahana NS, Morovati A, Ramalingam L, Abidi H, Kiridana V, Moustaid-Moussa N. Thermogenic adipose tissues: Promising therapeutic targets for metabolic diseases. J Nutr Biochem 2025; 137:109832. [PMID: 39653156 DOI: 10.1016/j.jnutbio.2024.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025]
Abstract
The ongoing increase in the prevalence of obesity and its comorbidities such as cardiovascular disease, type 2 diabetes (T2D) and dyslipidemia warrants discovery of novel therapeutic options for these metabolic diseases. Obesity is characterized by white adipose tissue expansion due to chronic positive energy balance as a result of excessive energy intake and/or reduced energy expenditure. Despite various efforts to prevent or reduce obesity including lifestyle and behavioral interventions, surgical weight reduction approaches and pharmacological methods, there has been limited success in significantly reducing obesity prevalence. Recent research has shown that thermogenic adipocyte (brown and beige) activation or formation, respectively, could potentially act as a therapeutic strategy to ameliorate obesity and its related disorders. This can be achieved through the ability of these thermogenic cells to enhance energy expenditure and regulate circulating levels of glucose and lipids. Thus, unraveling the molecular mechanisms behind the formation and activation of brown and beige adipocytes holds the potential for probable therapeutic paths to combat obesity. In this review, we provide a comprehensive update on the development and regulation of different adipose tissue types. We also emphasize recent interventions in harnessing therapeutic potential of thermogenic adipocytes by bioactive compounds and new pharmacological anti-obesity agents.
Collapse
Affiliation(s)
- Mandana Pahlavani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Department of Nutrition and Food Sciences, Texas Woman's University, Dallas, Texas, USA
| | - Kenneth Pham
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Nishan Sudheera Kalupahana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Ashti Morovati
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Department of Nutrition and Food Studies, Syracuse University, Syracuse, New York, USA
| | - Hussain Abidi
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Vasana Kiridana
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Institute for One Health Innovation, Texas Tech University and Texas Tech Health Sciences Center, Lubbock, Texas, USA.
| |
Collapse
|
3
|
Zhao J, Li X, Liang C, Yan Y. Can Exercise-Mediated Adipose Browning Provide an Alternative Explanation for the Obesity Paradox? Int J Mol Sci 2025; 26:1790. [PMID: 40076419 PMCID: PMC11898606 DOI: 10.3390/ijms26051790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Overweight patients with cardiovascular disease (CVD) tend to survive longer than normal-weight patients, a phenomenon known as the "obesity paradox". The phenotypic characteristics of adipose distribution in these patients (who survive longer) often reveal a larger proportion of subcutaneous white adipose tissue (scWAT), suggesting that the presence of scWAT is negatively associated with all-cause mortality and that scWAT appears to provide protective benefits in patients facing unhealthy states. Exercise-mediated browning is a crucial aspect of the benign remodeling process of adipose tissue (AT). Reduced accumulation, reduced inflammation, and associated adipokine secretion are directly related to the reduction in CVD mortality. This paper summarized the pathogenetic factors associated with AT accumulation in patients with CVD and analyzed the possible role and pathway of exercise-mediated adipose browning in reducing the risk of CVD and CVD-related mortality. It is suggested that exercise-mediated browning may provide a new perspective on the "obesity paradox"; that is, overweight CVD patients who have more scWAT may gain greater cardiovascular health benefits through exercise.
Collapse
Affiliation(s)
- Jiani Zhao
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing 100084, China; (J.Z.); (X.L.)
| | - Xuehan Li
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing 100084, China; (J.Z.); (X.L.)
| | - Chunyu Liang
- School of Physical Education, Guangxi University (GXU), Nanning 530004, China
| | - Yi Yan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing 100084, China; (J.Z.); (X.L.)
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University (BSU), Beijing 100084, China
- Exercise and Physical Fitness, Beijing Sport University (BSU), Beijing 100084, China
| |
Collapse
|
4
|
Loukas N, Vrachnis D, Antonakopoulos N, Stavros S, Machairiotis N, Fotiou A, Christodoulaki C, Lolos M, Maroudias G, Potiris A, Drakakis P, Vrachnis N. Decoding Apelin: Its Role in Metabolic Programming, Fetal Growth, and Gestational Complications. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1270. [PMID: 39457235 PMCID: PMC11506081 DOI: 10.3390/children11101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Placental insufficiency and gestational diabetes, which are both serious pregnancy complications, are linked to altered fetal growth, whether restricted or excessive, and result in metabolic dysfunction, hypoxic/oxidative injury, and adverse perinatal outcomes. Although much research has been carried out in this field, the underlying pathogenetic mechanisms have not as yet been fully elucidated. Particularly because of the role it plays in cardiovascular performance, glucose metabolism, inflammation, and oxidative stress, the adipokine apelin was recently shown to be a potential regulator of fetal growth and metabolic programming. This review investigated the numerous biological actions of apelin in utero and aimed to shed more light on its role in fetal growth and metabolic programming. The expression of the apelinergic system in a number of tissues indicates its involvement in many physiological mechanisms, including angiogenesis, cell proliferation, energy metabolism, inflammation, and oxidative stress. Moreover, it appears that apelin has a major function in disorders such as diabetes mellitus, fetal growth abnormalities, fetal hypoxia, and preeclampsia. We herein describe in detail the regulatory effects exerted by the adipokine apelin on fetal growth and metabolic programming while stressing the necessity for additional research into the therapeutic potential of apelin and its mechanisms of action in pregnancy-related disorders.
Collapse
Affiliation(s)
- Nikolaos Loukas
- Department of Obstetrics and Gynecology, Tzaneio General Hospital, 185 36 Piraeus, Greece
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Dionysios Vrachnis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | | | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Nikolaos Machairiotis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Alexandros Fotiou
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Chryssi Christodoulaki
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Markos Lolos
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Georgios Maroudias
- Department of Obstetrics and Gynecology, Santorini General Hospital, 847 00 Thira, Greece
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Petros Drakakis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Nikolaos Vrachnis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
- Vascular Biology, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK
| |
Collapse
|
5
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
6
|
Zhang Y, Xue J, Zhu W, Wang H, Xi P, Tian D. TRPV4 in adipose tissue ameliorates diet-induced obesity by promoting white adipocyte browning. Transl Res 2024; 266:16-31. [PMID: 37926276 DOI: 10.1016/j.trsl.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/12/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
The induction of adipocyte browning to increase energy expenditure is a promising strategy to combat obesity. Transient receptor potential channel V4 (TRPV4) functions as a nonselective cation channel in various cells and plays physiological roles in osmotic and thermal sensations. However, the function of TRPV4 in energy metabolism remains controversial. This study revealed the role of TRPV4 in adipose tissue in the development of obesity. Adipose-specific TRPV4 overexpression protected mice against diet-induced obesity (DIO) and promoted white fat browning. TRPV4 overexpression was also associated with decreased adipose inflammation and improved insulin sensitivity. Mechanistically, TRPV4 could directly promote white adipocyte browning via the AKT pathway. Consistently, adipose-specific TRPV4 knockout exacerbated DIO with impaired thermogenesis and activated inflammation. Corroborating our findings in mice, TRPV4 expression was low in the white adipose tissue of obese people. Our results positioned TRPV4 as a potential regulator of obesity and energy expenditure in mice and humans.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin 300203, China
| | - Jie Xue
- Department of Pathology, Handan Central Hospital, Handan, Hebei 057150, China
| | - Wenjuan Zhu
- Department of Nuclear Medicine, Third Hospital of Nanchang, Nanchang, Jiangxi 330008, China
| | - Haomin Wang
- Department of Human Anatomy and Histology, Tianjin Medical University, Tianjin 300070, China
| | - Pengjiao Xi
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin 300203, China.
| | - Derun Tian
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin 300203, China; Department of Human Anatomy and Histology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
7
|
Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord 2024; 25:279-308. [PMID: 38051471 PMCID: PMC10942928 DOI: 10.1007/s11154-023-09850-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.
Collapse
Affiliation(s)
- Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Frank Gieseler
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
8
|
Kaminska B, Kurowicka B, Kiezun M, Dobrzyn K, Kisielewska K, Gudelska M, Kopij G, Szymanska K, Zarzecka B, Koker O, Zaobidna E, Smolinska N, Kaminski T. The Role of Adipokines in the Control of Pituitary Functions. Animals (Basel) 2024; 14:353. [PMID: 38275812 PMCID: PMC10812442 DOI: 10.3390/ani14020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The pituitary gland is a key endocrine gland in all classes of vertebrates, including mammals. The pituitary gland is an important component of hypothalamus-pituitary-target organ hormonal regulatory axes and forms a functional link between the nervous system and the endocrine system. In response to hypothalamic stimuli, the pituitary gland secretes a number of hormones involved in the regulation of metabolism, stress reactions and environmental adaptation, growth and development, as well as reproductive processes and lactation. In turn, hormones secreted by target organs at the lowest levels of the hormonal regulatory axes regulate the functions of the pituitary gland in the process of hormonal feedback. The pituitary also responds to other peripheral signals, including adipose-tissue-derived factors. These substances are a broad group of peptides known as adipocytokines or adipokines that act as endocrine hormones mainly involved in energy homeostasis. Adipokines, including adiponectin, resistin, apelin, chemerin, visfatin, and irisin, are also expressed in the pituitary gland, and they influence the secretory functions of this gland. This review is an overview of the existing knowledge of the relationship between chosen adipose-derived factors and endocrine functions of the pituitary gland, with an emphasis on the pituitary control of reproductive processes.
Collapse
Affiliation(s)
- Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Beata Kurowicka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Katarzyna Kisielewska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (K.K.); (M.G.)
| | - Marlena Gudelska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (K.K.); (M.G.)
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Barbara Zarzecka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Oguzhan Koker
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| |
Collapse
|
9
|
Sato S. Adipo-oncology: adipocyte-derived factors govern engraftment, survival, and progression of metastatic cancers. Cell Commun Signal 2024; 22:52. [PMID: 38238841 PMCID: PMC10797898 DOI: 10.1186/s12964-024-01474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
Conventional therapies for metastatic cancers have limited efficacy. Recently, cancer therapies targeting noncancerous cells in tumor microenvironments have shown improved clinical outcomes in patients. However, further advances in our understanding of the metastatic tumor microenvironment are required to improve treatment outcomes. Adipocytes are distributed throughout the body, and as a part of the metastatic tumor microenvironment, they interact with cancer cells in almost all organs. Adipocytes secrete various factors that are reported to exert clinical effects on cancer progression, including engraftment, survival, and expansion at the metastatic sites. However, only a few studies have comprehensively examined their impact on cancer cells. In this review, we examined the impact of adipocytes on cancer by describing the adipocyte-secreted factors that are involved in controlling metastatic cancer, focusing on adipokines, such as adiponectin, leptin, visfatin, chemerin, resistin, apelin, and omentin. Adipocyte-secreted factors promote cancer metastasis and contribute to various biological functions of cancer cells, including migration, invasion, proliferation, immune evasion, and drug resistance at the metastatic sites. We propose the establishment and expansion of "adipo-oncology" as a research field to enhance the comprehensive understanding of the role of adipocytes in metastatic cancers and the development of more robust metastatic cancer treatments.
Collapse
Affiliation(s)
- Shinya Sato
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
- Department of Pathology, Kanagawa Cancer Center Hospital, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
| |
Collapse
|
10
|
Tian Y, Wang R, Liu L, Zhang W, Liu H, Jiang L, Jiang Y. The regulatory effects of the apelin/APJ system on depression: A prospective therapeutic target. Neuropeptides 2023; 102:102382. [PMID: 37716179 DOI: 10.1016/j.npep.2023.102382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Depression is a debilitating neuropsychological disorder characterized by high incidence, high recurrence, high suicide, and high disability rates, which poses serious threats to human health and imposes heavy psychological and economic burdens on family and society. The pathogenesis of depression is extremely complex, and its etiology is multifactorial. Mounting evidence suggests that apelin and apelin receptor APJ, which compose the apelin/APJ system, are related to the development of depression. However, the specific mechanism is still unclear, and research in this area in human is still insufficient. Acceleration of research into the regulatory effects and underlying mechanisms of the apelin/APJ system in depression may identify attractive therapeutic targets and contribute to the development of novel intervention strategies against this devastating psychological disorder. In this review, we mainly discuss the regulatory effects of apelin/APJ system on depression and its potential therapeutic applications.
Collapse
Affiliation(s)
- Yanjun Tian
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining 272067, China
| | - Ruihao Wang
- School of Mental Health, Jining Medical University, Jining 272067, China
| | - Lin Liu
- School of Mental Health, Jining Medical University, Jining 272067, China
| | - Wenhuan Zhang
- School of Mental Health, Jining Medical University, Jining 272067, China
| | - Haiqing Liu
- Department of Physiology, School of Basic Medical Sciences (Institute of Basic Medical Sciences), Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250024, China
| | - Liqing Jiang
- Department of Clinical Laboratory, Affiliated Hospital of Jining Medical University, Jining, China.
| | - Yunlu Jiang
- School of Mental Health, Jining Medical University, Jining 272067, China.
| |
Collapse
|
11
|
Chae SA, Du M, Son JS, Zhu MJ. Exercise improves homeostasis of the intestinal epithelium by activation of apelin receptor-AMP-activated protein kinase signalling. J Physiol 2023; 601:2371-2389. [PMID: 37154385 PMCID: PMC10280693 DOI: 10.1113/jp284552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Intestinal remodelling is dynamically regulated by energy metabolism. Exercise is beneficial for gut health, but the specific mechanisms remain poorly understood. Intestine-specific apelin receptor (APJ) knockdown (KD) and wild-type male mice were randomly divided into two subgroups, with/without exercise, to obtain four groups: WT, WT with exercise, APJ KD and APJ KD with exercise. Animals in the exercise groups were subjected to daily treadmill exercise for 3 weeks. Duodenum was collected at 48 h after the last bout of exercise. AMP-activated protein kinase (AMPK) α1 KD and wild-type mice were also utilized for investigating the mediatory role of AMPK on exercise-induced duodenal epithelial development. AMPK and peroxisome proliferator-activated receptor γ coactivator-1 α were upregulated by exercise via APJ activation in the intestinal duodenum. Correspondingly, exercise induced permissive histone modifications in the PR domain containing 16 (PRDM16) promoter to activate its expression, which was dependent on APJ activation. In agreement, exercise elevated the expression of mitochondrial oxidative markers. The expression of intestinal epithelial markers was downregulated due to AMPK deficiency, and AMPK signalling facilitated epithelial renewal. These data demonstrate that exercise-induced activation of the APJ-AMPK axis facilitates the homeostasis of the intestinal duodenal epithelium. KEY POINTS: Apelin receptor (APJ) signalling is required for improved epithelial homeostasis of the small intestine in response to exercise. Exercise intervention activates PRDM16 through inducing histone modifications, enhanced mitochondrial biogenesis and fatty acid metabolism in duodenum. The morphological development of duodenal villus and crypt is enhanced by the muscle-derived exerkine apelin through the APJ-AMP-activated protein kinase axis.
Collapse
Affiliation(s)
- Song Ah Chae
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jun Seok Son
- Laboratory of Perinatal Kinesioepigenetics, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
12
|
Gawałko M, Saljic A, Li N, Abu-Taha I, Jespersen T, Linz D, Nattel S, Heijman J, Fender A, Dobrev D. Adiposity-associated atrial fibrillation: molecular determinants, mechanisms, and clinical significance. Cardiovasc Res 2023; 119:614-630. [PMID: 35689487 PMCID: PMC10409902 DOI: 10.1093/cvr/cvac093] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is an important contributing factor to the pathophysiology of atrial fibrillation (AF) and its complications by causing systemic changes, such as altered haemodynamic, increased sympathetic tone, and low-grade chronic inflammatory state. In addition, adipose tissue is a metabolically active organ that comprises various types of fat deposits with discrete composition and localization that show distinct functions. Fatty tissue differentially affects the evolution of AF, with highly secretory active visceral fat surrounding the heart generally having a more potent influence than the rather inert subcutaneous fat. A variety of proinflammatory, profibrotic, and vasoconstrictive mediators are secreted by adipose tissue, particularly originating from cardiac fat, that promote atrial remodelling and increase the susceptibility to AF. In this review, we address the role of obesity-related factors and in particular specific adipose tissue depots in driving AF risk. We discuss the distinct effects of key secreted adipokines from different adipose tissue depots and their participation in cardiac remodelling. The possible mechanistic basis and molecular determinants of adiposity-related AF are discussed, and finally, we highlight important gaps in current knowledge, areas requiring future investigation, and implications for clinical management.
Collapse
Affiliation(s)
- Monika Gawałko
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-197 Warsaw, Poland
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Arnela Saljic
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Issam Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Dominik Linz
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Centre for Heart Rhythm Disorders, Royal Adelaide Hospital, University of Adelaide, Port Road, SA 5000 Adelaide, Australia
- Department of Cardiology, Radboud University Medical Centre, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Stanley Nattel
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
- Medicine and Research Center, Montréal Heart Institute and University de Montréal, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- IHU LIRYC Institute, Avenue du Haut Lévêque, 33600 Pessac, Bordeaux, France
| | - Jordi Heijman
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Anke Fender
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Medicine and Research Center, Montréal Heart Institute and University de Montréal, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
13
|
Grewal T, Buechler C. Adipokines as Diagnostic and Prognostic Markers for the Severity of COVID-19. Biomedicines 2023; 11:1302. [PMID: 37238973 PMCID: PMC10215701 DOI: 10.3390/biomedicines11051302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Accumulating evidence implicates obesity as a risk factor for increased severity of disease outcomes in patients infected with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Obesity is associated with adipose tissue dysfunction, which not only predisposes individuals to metabolic complications, but also substantially contributes to low-grade systemic inflammation, altered immune cell composition, and compromised immune function. This seems to impact the susceptibility and outcome of diseases caused by viruses, as obese people appear more vulnerable to developing infections and they recover later from infectious diseases than normal-weight individuals. Based on these findings, increased efforts to identify suitable diagnostic and prognostic markers in obese Coronavirus disease 2019 (COVID-19) patients to predict disease outcomes have been made. This includes the analysis of cytokines secreted from adipose tissues (adipokines), which have multiple regulatory functions in the body; for instance, modulating insulin sensitivity, blood pressure, lipid metabolism, appetite, and fertility. Most relevant in the context of viral infections, adipokines also influence the immune cell number, with consequences for overall immune cell activity and function. Hence, the analysis of the circulating levels of diverse adipokines in patients infected with SARS-CoV-2 have been considered to reveal diagnostic and prognostic COVID-19 markers. This review article summarizes the findings aimed to correlate the circulating levels of adipokines with progression and disease outcomes of COVID-19. Several studies provided insights on chemerin, adiponectin, leptin, resistin, and galectin-3 levels in SARS-CoV-2-infected patients, while limited information is yet available on the adipokines apelin and visfatin in COVID-19. Altogether, current evidence points at circulating galectin-3 and resistin levels being of diagnostic and prognostic value in COVID-19 disease.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
| |
Collapse
|
14
|
De Los Santos S, Reyes-Castro LA, Coral-Vázquez RM, Mendez JP, Zambrano E, Canto P. (-)-EPICATECHIN INCREASES APELIN/APLNR EXPRESSION AND MODIFIES PROTEINS INVOLVED IN LIPID METABOLISM OF OFFSPRING DESCENDANTS OF MATERNAL OBESITY. J Nutr Biochem 2023; 117:109350. [PMID: 37044135 DOI: 10.1016/j.jnutbio.2023.109350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Several studies have shown the beneficial effects of (-)-epicatechin (Epi) in metabolic profile and that this flavanol is a biased ligand of the apelin receptor. The apelinergic system is expressed in adipocytes and has been related to obesity and metabolic disorders. The study aim was to evaluate the effect of Epi on apelin, on its receptor and on proteins involved in lipolysis, lipogenesis, and adipogenesis in the retroperitoneal adipose tissue of male rats descended from obese mothers. We evaluated the effect of Epi in the retroperitoneal adipose tissue of four groups of male offspring, analyzing mRNA expression and protein levels of apelin and its Apj receptor. We also analyzed, by Western Blot, the levels of AMPKα, ACC, C/EBPα, ATGL, Fas, and FABP4 of the AP2 proteins. Epi significantly elevated apelin mRNA expression and protein levels as well as its Apj receptor. Besides, the flavanol significantly promoted AMPKα phosphorylation with the concomitant reduction of Fas, and the increase of the ATGL protein. In contrast, there was an increase in the inactive phosphorylated form of ACC and a decrease in the phosphorylated active form of C/EBPα. Similarly, Epi treatment induced a reduction in the fatty acid-binding protein 4 in the C+Epi and MO+Epi groups. In conclusion, Epi increases the expression of the apelinergic system and the active phosphorylated form of AMPKα; likewise, it modifies the expression level or active form of proteins involved in lipolysis, lipogenesis and adipogenesis in the retroperitoneal adipose tissue of male offspring of obese mothers.
Collapse
Affiliation(s)
- Sergio De Los Santos
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México; Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México.
| | - Luis Antonio Reyes-Castro
- Departamento de Biología de Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Ramón Mauricio Coral-Vázquez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México; Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Juan Pablo Mendez
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México; Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Elena Zambrano
- Departamento de Biología de Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Patricia Canto
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México; Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México.
| |
Collapse
|
15
|
Popov SV, Maslov LN, Mukhomedzyanov AV, Kurbatov BK, Gorbunov AS, Kilin M, Azev VN, Khlestkina MS, Sufianova GZ. Apelin Is a Prototype of Novel Drugs for the Treatment of Acute Myocardial Infarction and Adverse Myocardial Remodeling. Pharmaceutics 2023; 15:pharmaceutics15031029. [PMID: 36986889 PMCID: PMC10056827 DOI: 10.3390/pharmaceutics15031029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
In-hospital mortality in patients with ST-segment elevation myocardial infarction (STEMI) is 5-6%. Consequently, it is necessary to develop fundamentally novel drugs capable of reducing mortality in patients with acute myocardial infarction. Apelins could be the prototype for such drugs. Chronic administration of apelins mitigates adverse myocardial remodeling in animals with myocardial infarction or pressure overload. The cardioprotective effect of apelins is accompanied by blockage of the MPT pore, GSK-3β, and the activation of PI3-kinase, Akt, ERK1/2, NO-synthase, superoxide dismutase, glutathione peroxidase, matrix metalloproteinase, the epidermal growth factor receptor, Src kinase, the mitoKATP channel, guanylyl cyclase, phospholipase C, protein kinase C, the Na+/H+ exchanger, and the Na+/Ca2+ exchanger. The cardioprotective effect of apelins is associated with the inhibition of apoptosis and ferroptosis. Apelins stimulate the autophagy of cardiomyocytes. Synthetic apelin analogues are prospective compounds for the development of novel cardioprotective drugs.
Collapse
Affiliation(s)
- Sergey V Popov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Leonid N Maslov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Alexandr V Mukhomedzyanov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Boris K Kurbatov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Alexandr S Gorbunov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Michail Kilin
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Viacheslav N Azev
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maria S Khlestkina
- Department of Pharmacology, Tyumen State Medical University, Tyumen 625023, Russia
| | - Galina Z Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen 625023, Russia
| |
Collapse
|
16
|
Chu X, Hou Y, Zhang X, Li M, Ma D, Tang Y, Yuan C, Sun C, Liang M, Liu J, Wei Q, Chang Y, Wang C, Zhang J. Hepatic Glucose Metabolism Disorder Induced by Adipose Tissue-Derived miR-548ag via DPP4 Upregulation. Int J Mol Sci 2023; 24:ijms24032964. [PMID: 36769291 PMCID: PMC9917501 DOI: 10.3390/ijms24032964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The present study aimed to explore the molecular mechanism underlying the regulation of glucose metabolism by miR-548ag. For the first time, we found that miR-548ag expression was elevated in the abdominal adipose tissue and serum of subjects with obesity and type 2 diabetes mellitus (T2DM). The conditional knockout of adipose tissue Dicer notably reduced the expression and content of miR-548ag in mouse adipose tissue, serum, and liver tissue. The combined use of RNAseq, an miRNA target gene prediction software, and the dual luciferase reporter assay confirmed that miR-548ag exerts a targeted regulatory effect on DNMT3B and DPP4. miR-548ag and DPP4 expression was increased in the adipose tissue, serum, and liver tissue of diet-induced obese mice, while DNMT3B expression was decreased. It was subsequently confirmed both in vitro and in vivo that adipose tissue-derived miR-548ag impaired glucose tolerance and insulin sensitivity by inhibiting DNMT3B and upregulating DPP4. Moreover, miR-548ag inhibitors significantly improved the adverse metabolic phenotype in both obese mice and db/db mice. These results revealed that the expression of the adipose tissue-derived miR-548ag increased in obese subjects, and that this could upregulate the expression of DPP4 by targeting DNMT3B, ultimately leading to glucose metabolism disorder. Therefore, miR-548ag could be utilized as a potential target in the treatment of T2DM.
Collapse
Affiliation(s)
- Xiaolong Chu
- Medical College, Shihezi University, Shihezi 832000, China
- Department of Medical Genetics, Medical College of Tarim University, Alaer 843300, China
| | - Yanting Hou
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Xueting Zhang
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Menghuan Li
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Dingling Ma
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Yihan Tang
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Chenggang Yuan
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Chaoyue Sun
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Maodi Liang
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Jie Liu
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Qianqian Wei
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Yongsheng Chang
- Medical College, Shihezi University, Shihezi 832000, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Cuizhe Wang
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
- Correspondence: (C.W.); (J.Z.); Tel./Fax: +86-993-205-5801 (C.W. & J.Z.)
| | - Jun Zhang
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
- Correspondence: (C.W.); (J.Z.); Tel./Fax: +86-993-205-5801 (C.W. & J.Z.)
| |
Collapse
|
17
|
Murali S, Aradhyam GK. Structure-function relationship and physiological role of apelin and its G protein coupled receptor. Biophys Rev 2023; 15:127-143. [PMID: 36919024 PMCID: PMC9995629 DOI: 10.1007/s12551-023-01044-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/19/2023] Open
Abstract
Apelin receptor (APJR) is a class A peptide (apelin) binding G protein-coupled receptor (GPCR) that plays a significant role in regulating blood pressure, cardiac output, and maintenance of fluid homeostasis. It is activated by a wide range of endogenous peptide isoforms of apelin and elabela. The apelin peptide isoforms contain distinct structural features that aid in ligand recognition and activation of the receptor. Site-directed mutagenesis and structure-based studies have revealed the involvement of extracellular and transmembrane regions of the receptor in binding to the peptide isoforms. The structural features of APJR activation of the receptor as well as mediating G-protein and β-arrestin-mediated signaling are delineated by multiple mutagenesis studies. There is increasing evidence that the structural requirements of APJR to activate G-proteins and β-arrestins are different, leading to biased signaling. APJR also responds to mechanical stimuli in a ligand-independent manner. A multitude of studies has focused on developing both peptide and non-peptide agonists and antagonists specific to APJR. Apelin/elabela-activated APJR orchestrates major signaling pathways such as extracellular signal-regulated kinase (ERKs), protein kinase B (PKB/Akt), and p70S. This review focuses on the structural and functional characteristics of apelin, elabela, APJR, and their interactions involved in the binding and activation of the downstream signaling cascade. We also focus on the diverse signaling profile of APJR and its ligands and their involvement in various physiological systems.
Collapse
Affiliation(s)
- Subhashree Murali
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biological Sciences, Indian Institute of Technology Madras, Chennai, India
| | - Gopala Krishna Aradhyam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biological Sciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
18
|
Mudhol S, Serva Peddha M. Development of capsaicin loaded nanoparticles based microneedle patch for transdermal drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Targeting APLN/APJ restores blood-testis barrier and improves spermatogenesis in murine and human diabetic models. Nat Commun 2022; 13:7335. [PMID: 36443325 PMCID: PMC9705293 DOI: 10.1038/s41467-022-34990-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Type 2 diabetes mellitus is one of the most prevalent metabolic diseases presenting with systemic pathologies, including reproductive disorders in male diabetic patients. However, the molecular mechanisms that contributing to spermatogenesis dysfunction in diabetic patients have not yet been fully elucidated. Here, we perform STRT-seq to examine the transcriptome of diabetic patients' testes at single-cell resolution including all major cell types of the testis. Intriguingly, whereas spermatogenesis appears largely preserved, the gene expression profiles of Sertoli cells and the blood-testis barrier (BTB) structure are dramatically impaired. Among these deregulate pathways, the Apelin (APLN) peptide/Apelin-receptor (APJ) axis is hyper-activated in diabetic patients' testes. Mechanistically, APLN is produced locally by Sertoli cells upon high glucose treatment, which subsequently suppress the production of carnitine and repress the expression of cell adhesion genes in Sertoli cells. Together, these effects culminate in BTB structural dysfunction. Finally, using the small molecule APLN receptor antagonist, ML221, we show that blocking APLN/APJ significantly ameliorate the BTB damage and, importantly, improve functional spermatogenesis in diabetic db/db mice. We also translate and validate these findings in cultured human testes. Our findings identify the APLN/APJ axis as a promising therapeutic target to improve reproduction capacity in male diabetic patients.
Collapse
|
20
|
Alizadeh Pahlavani H. Possible roles of exercise and apelin against pregnancy complications. Front Endocrinol (Lausanne) 2022; 13:965167. [PMID: 36093083 PMCID: PMC9452694 DOI: 10.3389/fendo.2022.965167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
The prevalence of maternal obesity during pregnancy is associated with the risk of gestational diabetes, preeclampsia, and cardiomyopathy. Environmental factors such as active lifestyles and apelin may lead to beneficial changes. In rats, apelin and exercise (45 to 65% VO2max for 6 to 9 weeks) during pregnancy increase brown adipose tissue (BAT) proteins such as Cidea, Elovl3, UCP1, PRDM16, and PGC-1α in males and females fetuses, while white adipose tissue (WAT) is reduced. In humans and animals, apelin and exercise stimulate the expression of the glucose transporters (GLUT1/2/4) in the muscle and adipose tissue through the PI3K/Akt and AMPK pathways. Hence, exercise and apelin may are known as regulators of energy metabolism and be anti-obesity and anti-diabetic properties. In mice, exercise also creates a short-term hypoxic environment in the pregnant mother, activating HIF-1, VEGF, and VEGFR, and increasing angiogenesis. Exercise and apelin also increase vasodilation, angiogenesis, and suppression of inflammation through the L-arginine/eNOS/NO pathway in humans. Exercise can stimulate the ACE2-Ang-(1-7)-Mas axis in parallel with inhibiting the ACE-Ang II-AT1 pathway. Exercise and apelin seem to prevent preeclampsia through these processes. In rats, moderate-intensity exercise (60 to 70% VO2max for 8 weeks) and apelin/APJ also may prevent pathological hypertrophy in pregnancy by activating the PI3K/Akt/mTOR/p70S6K pathway, PI3k-Akt-ERK1/2-p70S6K pathway, and the anti-inflammatory cytokine IL-10. Since pre-clinical studies have been more on animal models, future research with scientific guidelines should pay more attention to human specimens. In future research, time factors such as the first, second, and third trimesters of pregnancy and the intensity and duration of exercise are important variables that should be considered to determine the optimal intensity and duration of exercise.
Collapse
|
21
|
Angiotensin II Promotes White Adipose Tissue Browning and Lipolysis in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6022601. [PMID: 35799891 PMCID: PMC9253869 DOI: 10.1155/2022/6022601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
Emerging evidence has revealed that all components of the renin-angiotensin system (RAS) are present in adipose tissue. Angiotensin II (Ang II), the major bioactive component of the RAS, has been recognized as an adipokine involved in regulating energy homeostasis. However, the precise role of Ang II in white adipose tissue (WAT) remodeling remains to be elucidated. In this present study, C57BL/C male mice were continuously infused with different doses of Ang II (1.44 mg/kg/d or 2.5 mg/kg/d) or saline for 2 weeks and treated with or without the Ang II type 1 receptor blocker valsartan. H&E staining and immunohistochemistry were conducted to investigate the white-to-brown fat conversion. The level of serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) was measured. RNA sequencing was employed to explore the differentially expressed genes and their enriched pathways between control and Ang II groups. Our results showed that Ang II substantially resulted in loss of body weight and fat mass. Most importantly, Ang II treatment induced WAT browning in mice, which was partially attenuated by valsartan treatment. Furthermore, Ang II perturbed the serum lipid profiles. Ang II treatment elevated serum levels of TC, TG, LDL-C, and HDL-C in mice. Mechanistically, thermogenesis, cell respiration, and lipid metabolism-associated mRNAs showed significantly increased expression profiling in Ang II-treated WATs compared with control WATs. Moreover, we found that Ang II treatment enhanced AMPK phosphorylation in adipocytes. Therefore, Ang II promotes WAT browning and lipolysis via activating the AMPK signaling pathway.
Collapse
|
22
|
Chae SA, Son JS, Zhao L, Gao Y, Liu X, Marie de Avila J, Zhu MJ, Du M. Exerkine apelin reverses obesity-associated placental dysfunction by accelerating mitochondrial biogenesis in mice. Am J Physiol Endocrinol Metab 2022; 322:E467-E479. [PMID: 35403440 PMCID: PMC9126223 DOI: 10.1152/ajpendo.00023.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternal exercise (ME) protects against adverse effects of maternal obesity (MO) on fetal development. As a cytokine stimulated by exercise, apelin (APN) is elevated due to ME, but its roles in mediating the effects of ME on placental development remain to be defined. Two studies were conducted. In the first study, 18 female mice were assigned to control (CON), obesogenic diet (OB), or OB with exercise (OB/Ex) groups (n = 6); in the second study, the same number of female mice were assigned to three groups; CON with PBS injection (CD/PBS), OB/PBS, or OB with apelin injection (OB/APN). In the exercise study, daily treadmill exercise during pregnancy significantly elevated the expression of PR domain 16 (PRDM16; P < 0.001), which correlated with enhanced oxidative metabolism and mitochondrial biogenesis in the placenta (P < 0.05). More importantly, these changes were partially mirrored in the apelin study. Apelin administration upregulated PRDM16 protein level (P < 0.001), mitochondrial biogenesis (P < 0.05), placental nutrient transporter expression (P < 0.001), and placental vascularization (P < 0.01), which were impaired due to MO (P < 0.05). In summary, MO impairs oxidative phosphorylation in the placenta, which is improved by ME; apelin administration partially mimics the beneficial effects of exercise on improving placental function, which prevents placental dysfunction due to MO.NEW & NOTEWORTHY Maternal exercise prevents metabolic disorders of mothers and offspring induced by high-fat diet. Exercise intervention enhances PRDM16 activation, oxidative metabolism, and vascularization of placenta, which are inhibited due to maternal obesity. Similar to maternal exercise, apelin administration improves placental function of obese dams.
Collapse
Affiliation(s)
- Song Ah Chae
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Jun Seok Son
- Laboratory of Perinatal Kinesioepigenetics, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Liang Zhao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Yao Gao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Xiangdong Liu
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Jeanene Marie de Avila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| |
Collapse
|
23
|
Biondi G, Marrano N, Borrelli A, Rella M, Palma G, Calderoni I, Siciliano E, Lops P, Giorgino F, Natalicchio A. Adipose Tissue Secretion Pattern Influences β-Cell Wellness in the Transition from Obesity to Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23105522. [PMID: 35628332 PMCID: PMC9143684 DOI: 10.3390/ijms23105522] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
The dysregulation of the β-cell functional mass, which is a reduction in the number of β-cells and their ability to secure adequate insulin secretion, represents a key mechanistic factor leading to the onset of type 2 diabetes (T2D). Obesity is recognised as a leading cause of β-cell loss and dysfunction and a risk factor for T2D. The natural history of β-cell failure in obesity-induced T2D can be divided into three steps: (1) β-cell compensatory hyperplasia and insulin hypersecretion, (2) insulin secretory dysfunction, and (3) loss of β-cell mass. Adipose tissue (AT) secretes many hormones/cytokines (adipokines) and fatty acids that can directly influence β-cell function and viability. As this secretory pattern is altered in obese and diabetic patients, it is expected that the cross-talk between AT and pancreatic β-cells could drive the maintenance of the β-cell integrity under physiological conditions and contribute to the reduction in the β-cell functional mass in a dysmetabolic state. In the current review, we summarise the evidence of the ability of the AT secretome to influence each step of β-cell failure, and attempt to draw a timeline of the alterations in the adipokine secretion pattern in the transition from obesity to T2D that reflects the progressive deterioration of the β-cell functional mass.
Collapse
|
24
|
Palmer ES, Irwin N, O’Harte FPM. Potential Therapeutic Role for Apelin and Related Peptides in Diabetes: An Update. Clin Med Insights Endocrinol Diabetes 2022; 15:11795514221074679. [PMID: 35177945 PMCID: PMC8844737 DOI: 10.1177/11795514221074679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an epidemic with an ever-increasing global prevalence. Current treatment strategies, although plentiful and somewhat effective, often fail to achieve desired glycaemic goals in many people, leading ultimately to disease complications. The lack of sustained efficacy of clinically-approved drugs has led to a heightened interest in the development of novel alternative efficacious antidiabetic therapies. One potential option in this regard is the peptide apelin, an adipokine that acts as an endogenous ligand of the APJ receptor. Apelin exists in various molecular isoforms and was initially studied for its cardiovascular benefits, however recent research suggests that it also plays a key role in glycaemic control. As such, apelin peptides have been shown to improve insulin sensitivity, glucose tolerance and lower circulating blood glucose. Nevertheless, native apelin has a short biological half-life that limits its therapeutic potential. More recently, analogues of apelin, particularly apelin-13, have been developed that possess a significantly extended biological half-life. These analogues may represent a promising target for future development of therapies for metabolic disease including diabetes and obesity.
Collapse
Affiliation(s)
- Ethan S Palmer
- Ethan S Palmer, Diabetes Research Group, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK.
| | | | | |
Collapse
|
25
|
Maternal exercise intergenerationally drives muscle-based thermogenesis via activation of apelin-AMPK signaling. EBioMedicine 2022; 76:103842. [PMID: 35081489 PMCID: PMC8790600 DOI: 10.1016/j.ebiom.2022.103842] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Sarcolipin and uncoupling protein 3 (UCP3) mediate muscle-based non-shivering thermogenesis (NST) to improve metabolic homeostasis. The impacts of maternal obesity (MO) and maternal exercise (ME) on NST in offspring muscle remain unexamined. METHODS Female mice were fed with a control diet or high fat diet to induce obesity. Then, obese mice were further separated into two groups: obesity only (OB) and OB plus daily exercise (OB/Ex). Fetal muscle was collected at embryonic day 18.5 and offspring mice at 3-month-old. Apelin administration during pregnancy and apelin receptor (APJ) knockout mouse were further used for investigating the mediatory role of APJ on muscle-based thermogenesis. To explore the direct effects of exercise on AMP-activated protein kinase (AMPK) downstream targets, AMPK knockout mouse was used. FINDINGS MO inhibited while ME activated AMPK and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) in fetal muscle. AMPK activation increased sarcolipin expression, which inhibited the uptake of calcium ions into sarcoplasmic reticulum, thereby activating CaMKK2. Consistently, the expression of UCP3 and sarcolipin was suppressed due to MO but activated in ME fetal muscle. Importantly, changes of UCP3 and sarcolipin maintained in offspring muscle, showing the transgenerational effects. Furthermore, apelin administration during pregnancy mimicked the effects of ME on AMPK and CaMKK2 activation, and UCP3 and sarcolipin expression, underscoring the mediatory roles of apelin-AMPK signaling in improving fetal muscle development. INTERPRETATION ME, via activation of apelin signaling-AMPK axis, enhances NST gene expression in fetal and offspring muscle impaired due to MO, which intergenerationally protects offspring from diet-induced obesity and metabolic disorders. FUNDING This work was supported by National Institutes of Health Grant R01-HD067449.
Collapse
|
26
|
Abstract
Brown adipose tissue (BAT) was first identified by Conrad Gessner in 1551, but it was only in 1961 that it was firmly identified as a thermogenic organ. Key developments in the subsequent two decades demonstrated that: (1) BAT is quantitatively important to non-shivering thermogenesis in rodents, (2) uncoupling of oxidative phosphorylation through a mitochondrial proton conductance pathway is the central mechanism by which heat is generated, (3) uncoupling protein-1 is the critical factor regulating proton leakage in BAT mitochondria. Following pivotal studies on cafeteria-fed rats and obese ob/ob mice, BAT was then shown to have a central role in the regulation of energy balance and the etiology of obesity. The application of fluorodeoxyglucose positron emission tomography in the late 2000s confirmed that BAT is present and active in adults, resulting in renewed interest in the tissue in human energetics and obesity. Subsequent studies have demonstrated a broad metabolic role for BAT, the tissue being an important site of glucose disposal and triglyceride clearance, as well as of insulin action. BAT continues to be a potential target for the treatment of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Paul Trayhurn
- Obesity Biology Unit, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
- Clore Laboratory, University of Buckingham, Buckingham, UK.
| |
Collapse
|
27
|
FGF2 disruption enhances thermogenesis in brown and beige fat to protect against adiposity and hepatic steatosis. Mol Metab 2021; 54:101358. [PMID: 34710640 PMCID: PMC8605413 DOI: 10.1016/j.molmet.2021.101358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Fibroblast growth factor 2 (FGF2) has been reported to play divergent roles in white adipogenic differentiation, however, whether it regulates thermogenesis of fat tissues remains largely unknown. We therefore aimed to investigate the effect of FGF2 on fat thermogenesis and elucidate the underlying mechanisms. Methods FGF2-KO and wild-type (WT) mice were fed with chow diet and high-fat diet (HFD) for 14 weeks. The brown and white fat mass, thermogenic capability, respiratory exchange ratio, and hepatic fat deposition were determined. In vitro experiments were conducted to compare the thermogenic ability of FGF2-KO- with WT-derived brown and white adipocytes. Exogenous FGF2 was supplemented to in vitro-cultured WT brown and ISO-induced beige adipocytes. The FGFR inhibitor, PPARγ agonist, and PGC-1α expression lentivirus were used with the aid of technologies including Co-IP, ChIP, and luciferase reporter assay to elucidate the mechanisms underlying the FGF2 regulation of thermogenesis. Results FGF2 gene disruption results in increased thermogenic capability in both brown and beige fat, supporting by increased UCP1 expression, enhanced respiratory exchange ratio, and elevated thermogenic potential in response to cold exposure. Thus, the deletion of FGF2 protects mice from high fat-induced adiposity and hepatic steatosis. Mechanistically, in vitro investigations indicated FGF2 acts in autocrine/paracrine fashions. Exogenous FGF2 supplementation inhibits both PGC-1α and PPARγ expression, leading to suppression of UCP1 expression in brown and beige adipocytes. Conclusions These findings demonstrate that FGF2 is a novel thermogenic regulator, suggesting a viable potential strategy for using FGF2-selective inhibitors in combat adiposity and associated hepatic steatosis. FGF2-KO mice show potentiated stimulation on thermogenic capability under both basal and cold challenge stimulation. FGF2 disruption protected mice against HFD-induced adiposity and hepatic steatosis. FGF2 acts in autocrine/paracrine fashions in vitro. Both PPARγ and PGC-1α play roles in FGF2 suppression of thermogenesis.
Collapse
|
28
|
Role of Inflammatory Cytokines, Growth Factors and Adipokines in Adipogenesis and Insulin Resistance. Inflammation 2021; 45:31-44. [PMID: 34536157 PMCID: PMC8449520 DOI: 10.1007/s10753-021-01559-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 01/06/2023]
Abstract
Obesity, manifested by increased adiposity, represents a main cause of morbidity in the developed countries, causing increased risk of insulin resistance and type 2 diabetes mellitus. Recruitment of macrophages and activation of innate immunity represent the initial insult, which can be further exacerbated through secretion of chemokines and adipocytokines from activated macrophages and other cells within the adipose tissue. These events can impact adipogenesis, causing dysfunction of the adipose tissue and increased risk of insulin resistance. Various factors mediate adiposity and related insulin resistance including inflammatory and non-inflammatory factors such as pro and anti-inflammatory cytokines, adipokines and growth factors. In this review we will discuss the role of these factors in adipogenesis and development of insulin resistance and type 2 diabetes mellitus in the context of obesity. Understanding the molecular mechanisms that mediate adipogenesis and insulin resistance could help the development of novel therapeutic strategies for individuals at higher risk of insulin resistance and type 2 diabetes mellitus.
Collapse
|
29
|
Role of Brown and Beige Adipose Tissues in Seasonal Adaptation in the Raccoon Dog ( Nyctereutes procyonoides). Int J Mol Sci 2021; 22:ijms22179623. [PMID: 34502532 PMCID: PMC8431801 DOI: 10.3390/ijms22179623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/05/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Brown adipose tissue (BAT) expresses uncoupling protein-1 (UCP1), which enables energy to be exerted towards needed thermogenesis. Beige adipocytes are precursor cells interspersed among white adipose tissue (WAT) that possess similar UCP1 activity and capacity for thermogenesis. The raccoon dog (Nyctereutes procyonoides) is a canid species that utilizes seasonal obesity to survive periods of food shortage in climate zones with cold winters. The potential to recruit a part of the abundant WAT storages as beige adipocytes for UCP1-dependent thermogenesis was investigated in vitro by treating raccoon dog adipocytes with different browning inducing factors. In vivo positron emission tomography/computed tomography (PET/CT) imaging with the glucose analog 18F-FDG showed that BAT was not detected in the adult raccoon dog during the winter season. In addition, UCP1 expression was not changed in response to chronic treatments with browning inducing factors in adipocyte cultures. Our results demonstrated that most likely the raccoon dog endures cold weather without the induction of BAT or recruitment of beige adipocytes for heat production. Its thick fur coat, insulating fat, and muscle shivering seem to provide the adequate heat needed for surviving the winter.
Collapse
|
30
|
Shokrollahi B, Shang JH, Saadati N, Ahmad HI, Yang CY. Reproductive roles of novel adipokines apelin, visfatin, and irisin in farm animals. Theriogenology 2021; 172:178-186. [PMID: 34175524 DOI: 10.1016/j.theriogenology.2021.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/31/2022]
Abstract
The adipose tissue has a substantial impact on reproduction in mammals, specifically in females. As an energy depository organ, it is precisely associated with the reproductive success of mammals. Adipose tissue secretes many single molecules that are called 'adipokines' which mainly act as endocrine hormones. Adipokines homeostasis is fundamental to energy regulation, metabolic and cardiovascular diseases. The endocrine function of adipokines is influential for the long-term control of energy metabolism and performs an important function in metabolic state and fertility modulation. During the last years, new roles for adipokines have been appearing in the field of fertility. The adipokines have functions in reproduction at levels of the hypothalamus, the pituitary, and the gonads in humans, rodents, and other animals. Normal levels of adipokines are indispensable to protect the integrity of the hypothalamus-hypophysis-gonadal axis, regular ovulatory processes, and successful embryo implantation. Leptin and adiponectin are the most studied adipokines, but also the novel adipokines; apelin, visfatin, and irisin are important adipokines having several functions within the reproductive tract. Due to the known and unknown effects of these novel adipokines in the reproduction of farm animals, in this review, we will highlight the reproductive functions of apelin, visfatin, and irisin and summarize the known reproductive effects in farm animals to introduce the gaps for future studies in farm animals.
Collapse
Affiliation(s)
- Borhan Shokrollahi
- Department of Animal Science, Faculty of Agriculture, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Jiang-Hua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Nazila Saadati
- Department of Plant Biotechnology, Faculty of Agriculture, Kurdistan University, Sanandaj, Kurdistan province, Iran
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Pakistan
| | - Chun-Yan Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| |
Collapse
|
31
|
Brandão BB, Poojari A, Rabiee A. Thermogenic Fat: Development, Physiological Function, and Therapeutic Potential. Int J Mol Sci 2021; 22:5906. [PMID: 34072788 PMCID: PMC8198523 DOI: 10.3390/ijms22115906] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The concerning worldwide increase of obesity and chronic metabolic diseases, such as T2D, dyslipidemia, and cardiovascular disease, motivates further investigations into preventive and alternative therapeutic approaches. Over the past decade, there has been growing evidence that the formation and activation of thermogenic adipocytes (brown and beige) may serve as therapy to treat obesity and its associated diseases owing to its capacity to increase energy expenditure and to modulate circulating lipids and glucose levels. Thus, understanding the molecular mechanism of brown and beige adipocytes formation and activation will facilitate the development of strategies to combat metabolic disorders. Here, we provide a comprehensive overview of pathways and players involved in the development of brown and beige fat, as well as the role of thermogenic adipocytes in energy homeostasis and metabolism. Furthermore, we discuss the alterations in brown and beige adipose tissue function during obesity and explore the therapeutic potential of thermogenic activation to treat metabolic syndrome.
Collapse
Affiliation(s)
- Bruna B. Brandão
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Ankita Poojari
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA;
| | - Atefeh Rabiee
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|
32
|
The Role of Peptide Hormones Discovered in the 21st Century in the Regulation of Adipose Tissue Functions. Genes (Basel) 2021; 12:genes12050756. [PMID: 34067710 PMCID: PMC8155905 DOI: 10.3390/genes12050756] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Peptide hormones play a prominent role in controlling energy homeostasis and metabolism. They have been implicated in controlling appetite, the function of the gastrointestinal and cardiovascular systems, energy expenditure, and reproduction. Furthermore, there is growing evidence indicating that peptide hormones and their receptors contribute to energy homeostasis regulation by interacting with white and brown adipose tissue. In this article, we review and discuss the literature addressing the role of selected peptide hormones discovered in the 21st century (adropin, apelin, elabela, irisin, kisspeptin, MOTS-c, phoenixin, spexin, and neuropeptides B and W) in controlling white and brown adipogenesis. Furthermore, we elaborate how these hormones control adipose tissue functions in vitro and in vivo.
Collapse
|
33
|
Loss of APJ mediated β-arrestin signalling improves high-fat diet induced metabolic dysfunction but does not alter cardiac function in mice. Biochem J 2021; 477:3313-3327. [PMID: 32779693 DOI: 10.1042/bcj20200343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 01/21/2023]
Abstract
Apelin receptor (APJ) is a G protein-coupled receptor that contributes to many physiological processes and is emerging as a therapeutic target to treat a variety of diseases. For most disease indications the role of G protein vs β-arrestin signalling in mitigating disease pathophysiology remains poorly understood. This hinders the development of G protein biased APJ agonists, which have been proposed to have several advantages over balanced APJ signalling agonists. To elucidate the contribution of APJ β-arrestin signalling, we generated a transgenic mouse harbouring a point mutation (APJ I107A) that maintains full G protein activity but fails to recruit β-arrestin following receptor activation. APJ I107A mutant mice did not alter cardiac function at rest, following exercise challenge or in response to pressure overload induced cardiac hypertrophy. Additionally, APJ I107A mice have comparable body weights, plasma glucose and lipid levels relative to WT mice when fed a chow diet. However, APJ I107A mice showed significantly lower body weight, blood insulin levels, improved glucose tolerance and greater insulin sensitivity when fed a high-fat diet. Furthermore, loss of APJ β-arrestin signalling also affected fat composition and the expression of lipid metabolism related genes in adipose tissue from high-fat fed mice. Taken together, our results suggest that G protein biased APJ activation may be more effective for certain disease indications given that loss of APJ mediated β-arrestin signalling appears to mitigate several aspects of diet induced metabolic dysfunction.
Collapse
|
34
|
Hu G, Wang Z, Zhang R, Sun W, Chen X. The Role of Apelin/Apelin Receptor in Energy Metabolism and Water Homeostasis: A Comprehensive Narrative Review. Front Physiol 2021; 12:632886. [PMID: 33679444 PMCID: PMC7928310 DOI: 10.3389/fphys.2021.632886] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
The apelin receptor (APJ) is a member of the family A of G-protein-coupled receptors (GPCRs) and is involved in range of physiological and pathological functions, including fluid homeostasis, anxiety, and depression, as well as cardiovascular and metabolic disorders. APJ was classically described as a monomeric transmembrane receptor that forms a ternary complex together with its ligand and associated G proteins. More recently, increasing evidence indicates that APJ may interact with other GPCRs to form heterodimers, which may selectively modulate distinct intracellular signal transduction pathways. Besides, the apelin/APJ system plays important roles in the physiology and pathophysiology of several organs, including regulation of blood pressure, cardiac contractility, angiogenesis, metabolic balance, and cell proliferation, apoptosis, or inflammation. Additionally, the apelin/APJ system is widely expressed in the central nervous system, especially in neurons and oligodendrocytes. This article reviews the role of apelin/APJ in energy metabolism and water homeostasis. Compared with the traditional diuretics, apelin exerts a positive inotropic effect on the heart, while increases water excretion. Therefore, drugs targeting apelin/APJ system undoubtedly provide more therapeutic options for patients with congestive heart failure accompanied with hyponatremia. To provide more precise guidance for the development of clinical drugs, further in-depth studies are warranted on the metabolism and signaling pathways associated with apelin/APJ system.
Collapse
Affiliation(s)
- Gonghui Hu
- Department of Physiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Zhen Wang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Rumin Zhang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Wenping Sun
- Department of Pathology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Xiaoyu Chen
- Department of Physiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| |
Collapse
|
35
|
Estienne A, Bongrani A, Froment P, Dupont J. Apelin and chemerin receptors are G protein-coupled receptors involved in metabolic as well as reproductive functions: Potential therapeutic implications? ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.coemr.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Ranjbar Kohan N, Tabandeh MR, Nazifi S, Soleimani Z. L-carnitine improves metabolic disorders and regulates apelin and apelin receptor genes expression in adipose tissue in diabetic rats. Physiol Rep 2020; 8:e14641. [PMID: 33278072 PMCID: PMC7718837 DOI: 10.14814/phy2.14641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/16/2023] Open
Abstract
Apelin is a new adipocytokine that acts as an endogenous hormone in various tissues through its receptor (APJ). This study aimed to investigate the effects of oral administration of L-carnitine (LC) on the expression of Apelin and APJ in adipose tissue of experimentally induced insulin-resistant and type 2 diabetic rats. In this experimental study, 60 male rats fed with high fat/high carbohydrate (HF/HC) diet. After 50 mg/kg intraperitoneally injection of streptozotocin (STZ) and confirmation of diabetes (FBS higher than 126 mg/dl), the animals were daily treated with 300 mg/kg LC for 28 days. At days 7, 14, and 28 of posttreatment, the expression of apelin and APJ in adipose tissue were determined using qPCR in diabetic, diabetic + LC treated, control, and control + LC treated groups. Apelin, insulin, TNF-α, and IL1-β were measured by the ELISA method. Results demonstrated that the rats fed with the HF/HC diet for 5 weeks were hyperinsulinemic and normoglycemic, while after STZ injection, they showed hyperinsulinemia and hyperglycemia with higher levels of HOMA-IR. Apelin serum level, APJ and apelin gene expression in adipose tissue increased significantly with the development of diabetes compared to the control group. Treatment with LC for 14 days caused a reduction in apelin and APJ expressions in adipose tissue of diabetic rats. TNF-α and IL1-β levels were reduced in diabetic rats 14 days after their treatment with LC. The study results show that L-carnitine could act as a new regulator in apelin gene expression in adipose tissue, improving the metabolic disorders in diabetic patients.
Collapse
Affiliation(s)
- Neda Ranjbar Kohan
- Department of Clinical Studies, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Biochemistry Section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Saeed Nazifi
- Department of Clinical Studies, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Zahra Soleimani
- Department of Basic Sciences, Histology Section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
37
|
Son JS, Chae SA, Wang H, Chen Y, Bravo Iniguez A, de Avila JM, Jiang Z, Zhu MJ, Du M. Maternal Inactivity Programs Skeletal Muscle Dysfunction in Offspring Mice by Attenuating Apelin Signaling and Mitochondrial Biogenesis. Cell Rep 2020; 33:108461. [PMID: 33264618 PMCID: PMC8137280 DOI: 10.1016/j.celrep.2020.108461] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/14/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022] Open
Abstract
Although maternal exercise (ME) becomes increasingly uncommon, the effects of ME on offspring muscle metabolic health remain largely undefined. Maternal mice are subject to daily exercise during pregnancy, which enhances mitochondrial biogenesis during fetal muscle development; this is correlated with higher mitochondrial content and oxidative muscle fibers in offspring muscle and improved endurance capacity. Apelin, an exerkine, is elevated due to ME, and maternal apelin administration mirrors the effect of ME on mitochondrial biogenesis in fetal muscle. Importantly, both ME and apelin induce DNA demethylation of the peroxisome proliferator-activated receptor γ coactivator-1α (Ppargc1a) promoter and enhance its expression and mitochondrial biogenesis in fetal muscle. Such changes in DNA methylation were maintained in offspring, with ME offspring muscle expressing higher levels of PGC-1α1/4 isoforms, explaining improved muscle function. In summary, ME enhances DNA demethylation of the Ppargc1a promoter in fetal muscle, which has positive programming effects on the exercise endurance capacity and protects offspring muscle against metabolic dysfunction. Son et al. demonstrate that maternal exercise facilitates fetal muscle development, which improves muscle function and exercise endurance in offspring. Maternal administration of apelin, an exerkine, mirrors the beneficial effects of maternal exercise on mitochondrial biogenesis and fetal muscle development. These findings suggest apelin and its receptor as potential drug targets for improving fetal muscle development of sedentary mothers.
Collapse
Affiliation(s)
- Jun Seok Son
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Song Ah Chae
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Hongyang Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yanting Chen
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | | | - Jeanene M de Avila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Zhihua Jiang
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
38
|
Karlina R, Lutter D, Miok V, Fischer D, Altun I, Schöttl T, Schorpp K, Israel A, Cero C, Johnson JW, Kapser-Fischer I, Böttcher A, Keipert S, Feuchtinger A, Graf E, Strom T, Walch A, Lickert H, Walzthoeni T, Heinig M, Theis FJ, García-Cáceres C, Cypess AM, Ussar S. Identification and characterization of distinct brown adipocyte subtypes in C57BL/6J mice. Life Sci Alliance 2020; 4:4/1/e202000924. [PMID: 33257475 PMCID: PMC7723269 DOI: 10.26508/lsa.202000924] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022] Open
Abstract
Using a number of cell biological and statistical methods we identify and characterize EIF5, TCF25 and BIN1 as markers for individual brown adipocyte subtypes in C57BL/6J mice. Brown adipose tissue (BAT) plays an important role in the regulation of body weight and glucose homeostasis. Although increasing evidence supports white adipose tissue heterogeneity, little is known about heterogeneity within murine BAT. Recently, UCP1 high and low expressing brown adipocytes were identified, but a developmental origin of these subtypes has not been studied. To obtain more insights into brown preadipocyte heterogeneity, we use single-cell RNA sequencing of the BAT stromal vascular fraction of C57/BL6 mice and characterize brown preadipocyte and adipocyte clonal cell lines. Statistical analysis of gene expression profiles from brown preadipocyte and adipocyte clones identify markers distinguishing brown adipocyte subtypes. We confirm the presence of distinct brown adipocyte populations in vivo using the markers EIF5, TCF25, and BIN1. We also demonstrate that loss of Bin1 enhances UCP1 expression and mitochondrial respiration, suggesting that BIN1 marks dormant brown adipocytes. The existence of multiple brown adipocyte subtypes suggests distinct functional properties of BAT depending on its cellular composition, with potentially distinct functions in thermogenesis and the regulation of whole body energy homeostasis.
Collapse
Affiliation(s)
- Ruth Karlina
- Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Dominik Lutter
- German Center for Diabetes Research (DZD), Neuherberg, Germany .,Computational Discovery Research Unit, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
| | - Viktorian Miok
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Computational Discovery Research Unit, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - David Fischer
- Institute for Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Irem Altun
- Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Theresa Schöttl
- Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Institute for Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andreas Israel
- Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cheryl Cero
- Diabetes, Endocrinology and Obesity Branch, National Institutes of Health, Bethesda, MD, USA
| | - James W Johnson
- Diabetes, Endocrinology and Obesity Branch, National Institutes of Health, Bethesda, MD, USA
| | - Ingrid Kapser-Fischer
- Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anika Böttcher
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Susanne Keipert
- Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elisabeth Graf
- Institute for Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tim Strom
- Institute for Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Thomas Walzthoeni
- Institute for Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Matthias Heinig
- Institute for Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Fabian J Theis
- Institute for Computational Biology, Helmholtz Center Munich, Neuherberg, Germany.,Department of Mathematics and School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Cristina García-Cáceres
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Aaron M Cypess
- Diabetes, Endocrinology and Obesity Branch, National Institutes of Health, Bethesda, MD, USA
| | - Siegfried Ussar
- Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany .,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Department of Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|
39
|
Kim DY, Choi MJ, Ko TK, Lee NH, Kim OH, Cheon HG. Angiotensin AT 1 receptor antagonism by losartan stimulates adipocyte browning via induction of apelin. J Biol Chem 2020; 295:14878-14892. [PMID: 32839272 DOI: 10.1074/jbc.ra120.013834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
Adipocyte browning appears to be a potential therapeutic strategy to combat obesity and related metabolic disorders. Recent studies have shown that apelin, an adipokine, stimulates adipocyte browning and has negative cross-talk with angiotensin II receptor type 1 (AT1 receptor) signaling. Here, we report that losartan, a selective AT1 receptor antagonist, induces browning, as evidenced by an increase in browning marker expression, mitochondrial biogenesis, and oxygen consumption in murine adipocytes. In parallel, losartan up-regulated apelin expression, concomitant with increased phosphorylation of protein kinase B and AMP-activated protein kinase. However, the siRNA-mediated knockdown of apelin expression attenuated losartan-induced browning. Angiotensin II cotreatment also inhibited losartan-induced browning, suggesting that AT1 receptor antagonism-induced activation of apelin signaling may be responsible for adipocyte browning induced by losartan. The in vivo browning effects of losartan were confirmed using both C57BL/6J and ob/ob mice. Furthermore, in vivo apelin knockdown by adeno-associated virus carrying-apelin shRNA significantly inhibited losartan-induced adipocyte browning. In summary, these data suggested that AT1 receptor antagonism by losartan promotes the browning of white adipocytes via the induction of apelin expression. Therefore, apelin modulation may be an effective strategy for the treatment of obesity and its related metabolic disorders.
Collapse
Affiliation(s)
- Dong Young Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Mi Jin Choi
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Tae Kyung Ko
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Na Hyun Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Ok-Hee Kim
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Hyae Gyeong Cheon
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea; Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
40
|
Jasaszwili M, Wojciechowicz T, Strowski MZ, Nowak KW, Skrzypski M. Adropin stimulates proliferation but suppresses differentiation in rat primary brown preadipocytes. Arch Biochem Biophys 2020; 692:108536. [PMID: 32798458 DOI: 10.1016/j.abb.2020.108536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/21/2020] [Accepted: 08/02/2020] [Indexed: 01/14/2023]
Abstract
Adropin is a peptide hormone encoded by Energy Homeostasis Associated (Enho) gene. Adropin modulates glucose and lipid metabolism, and adiposity. Recently, we found that adropin suppresses differentiation of rodent white preadipocytes into mature fat cells. By contrast, the role of adropin in controlling brown adipogenesis is largely unknown. Therefore, in the present study we evaluated the effects of adropin on proliferation and differentiation of adipocyte precursor cells in rats. Brown adipocyte precursor cells were isolated from male Wistar rats. Cell replication was measured by BrdU incorporation. Gene expression was studied using real time PCR. Protein phosphorylation and production was assessed by Western blot. Lipid accumulation was evaluated by Oil Red O staining. Colorimetric kits were used to evaluate glycerol and free fatty acids release. We report here that adropin stimulates proliferation of brown preadipocytes. Moreover, in brown preadipocytes, adropin suppresses mRNA expression of adipogenic genes (C/ebpα, C/ebpβ, Pgc1α, Pparγ and Prdm16) during differentiation process. In addition, adropin suppresses UCP1 protein production in brown adipocytes. Finally, adropin reduces intracellular lipid content in brown adipocytes. These results indicate that adropin stimulates proliferation of brown preadipocytes and suppresses their differentiation into mature adipocytes.
Collapse
Affiliation(s)
- Mariami Jasaszwili
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637, Poznań, Poland.
| | - Tatiana Wojciechowicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637, Poznań, Poland.
| | - Mathias Z Strowski
- Department of Hepatology and Gastroenterology, Charité-University Medicine Berlin, 13353, Berlin, Germany; Department of Internal Medicine-Gastroenterology, Park-Klinik Weissensee, 13086, Berlin, Germany.
| | - Krzysztof W Nowak
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637, Poznań, Poland.
| | - Marek Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637, Poznań, Poland.
| |
Collapse
|
41
|
Hossain M, Park DS, Rahman MS, Ki SJ, Lee YR, Imran KM, Yoon D, Heo J, Lee TJ, Kim YS. Bifidobacterium longum DS0956 and Lactobacillus rhamnosus DS0508 culture-supernatant ameliorate obesity by inducing thermogenesis in obese-mice. Benef Microbes 2020; 11:361-373. [PMID: 32755263 DOI: 10.3920/bm2019.0179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Excessive body fat and the related dysmetabolic diseases affect both developed and developing countries. The aim of this study was to investigate the beneficial role of a bacterial culture supernatant (hereafter: BS) of Lactobacillus and Bifidobacterium and their potential mechanisms of action on white-fat browning and lipolysis. For selection of four candidates among 55 Lactic acid producing bacteria (LAB) from human infant faeces, we evaluated by Oil Red O staining and Ucp1 mRNA quantitation in 3T3-L1 preadipocytes. The expression of browning and lipolysis markers was examined along with in vitro assays. The possible mechanism was revealed by molecular and biological experiments including inhibitor and small interfering RNA (siRNA) assays. In a mouse model, physiological, histological, and biochemical parameters and expression of some thermogenesis-related genes were compared among six experimental groups fed a high-fat diet and one normal-diet control group. The results allow us to speculate that BS treatment promotes browning and lipolysis both in vitro and in vivo. Moreover, the BS may activate thermogenic programs via a mechanism involving PKA-CREB signaling in 3T3-L1 cells. According to our data, we can propose that two LAB strains, Bifidobacterium longum DS0956 and Lactobacillus rhamnosus DS0508, may be good candidates for a dietary supplement against obesity and metabolic diseases; however, further research is required for the development as dietary supplements or drugs.
Collapse
Affiliation(s)
- M Hossain
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan Chung-nam 31151, Republic of Korea.,Department of Microbiology, College of Medicine, Soonchunhyang University, Soonchunhyang 6 gil 31, Dongnam-Gu, Cheonan Chung-nam 31151, Republic of Korea
| | - D-S Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do 580-185, Republic of Korea
| | - M S Rahman
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan Chung-nam 31151, Republic of Korea.,Department of Microbiology, College of Medicine, Soonchunhyang University, Soonchunhyang 6 gil 31, Dongnam-Gu, Cheonan Chung-nam 31151, Republic of Korea
| | - S-J Ki
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do 580-185, Republic of Korea
| | - Y R Lee
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do 580-185, Republic of Korea
| | - K M Imran
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan Chung-nam 31151, Republic of Korea.,Department of Microbiology, College of Medicine, Soonchunhyang University, Soonchunhyang 6 gil 31, Dongnam-Gu, Cheonan Chung-nam 31151, Republic of Korea
| | - D Yoon
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan Chung-nam 31151, Republic of Korea.,Department of Microbiology, College of Medicine, Soonchunhyang University, Soonchunhyang 6 gil 31, Dongnam-Gu, Cheonan Chung-nam 31151, Republic of Korea
| | - J Heo
- International Agricultural Development and Cooperation Center, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - T-J Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Y-S Kim
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan Chung-nam 31151, Republic of Korea.,Department of Microbiology, College of Medicine, Soonchunhyang University, Soonchunhyang 6 gil 31, Dongnam-Gu, Cheonan Chung-nam 31151, Republic of Korea
| |
Collapse
|
42
|
Phthalate exposure causes browning-like effects on adipocytes in vitro and in vivo. Food Chem Toxicol 2020; 142:111487. [DOI: 10.1016/j.fct.2020.111487] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/11/2020] [Accepted: 05/29/2020] [Indexed: 01/04/2023]
|
43
|
Than A, Duong PK, Zan P, Liu J, Leow MKS, Chen P. Lancing Drug Reservoirs into Subcutaneous Fat to Combat Obesity and Associated Metabolic Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002872. [PMID: 32603020 DOI: 10.1002/smll.202002872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Obesity is a serious epidemic health problem that can cause many other diseases including type 2 diabetes and cardiovascular diseases. Current approaches to combat obesity suffer from low effectiveness and adverse side effects. Here, a new self-administrable and minimally invasive transdermal drug delivery strategy for home-based long-term treatment of obesity and other diseases is developed. Specifically, ultrathin, core-shelled, and lance-shaped polymeric drug reservoirs (micro-lances [MLs]) are readily fabricated by a thermal pressing molding method and totally implanted into subcutaneous fat by lancing through the skin. Using a diet-induced obese mouse model, it is shown that the development of obesity and associated metabolic disorders is effectively inhibited by applying therapeutic core-shelled MLs once every 2 weeks. The outstanding therapeutic effects are attributable to highly localized and biphasic drug release, as well as combination therapy based on browning transformation of white fat and enhanced insulin sensitivity.
Collapse
Affiliation(s)
- Aung Than
- Innovative Centre for Flexible Devices, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Phan Khanh Duong
- Innovative Centre for Flexible Devices, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Ping Zan
- Innovative Centre for Flexible Devices, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Junjie Liu
- Affiliated Tumor Hospital, Guangxi Medical University, 71 Hedi Road, Nanning, 5300021, P. R. China
| | - Melvin Khee-Shing Leow
- Endocrine and Diabetes, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Peng Chen
- Innovative Centre for Flexible Devices, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
44
|
Man XF, Hu N, Tan SW, Tang HN, Guo Y, Tang CY, Liu YQ, Tang J, Zhou CL, Wang F, Zhou HD. Insulin receptor substrate-1 inhibits high-fat diet-induced obesity by browning of white adipose tissue through miR-503. FASEB J 2020; 34:12308-12323. [PMID: 32721050 DOI: 10.1096/fj.201903283rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/13/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022]
Abstract
Genetic variation of insulin receptor substrate 1 (IRS-1) was found to modulate the insulin resistance of adipose tissues, but the underlying mechanism was not clear. To investigate how the IRS-1 was involved in the browning of white adipose tissue through miRNA, we identified a mutated Irs-1 (Irs-1-/- ) mice model and found that this mice had a reduced subcutaneous WAT (sWAT) and increased brown adipose tissue (BAT) in the interscapular region. So we isolated the bone marrow stromal cells and analyzed differentially expressed miRNAs and adipogenesis-related genes with miRNA arrays and PCR arrays. Irs-1-/- mice showed decreased miR-503 expression, but increased expression of its target, bone morphogenetic protein receptor type 1a (BMPR1a). Overexpression of miR-503 in preadipocytes downregulated BMPR1a and impaired adipogenic activity through the phosphotidylinositol 3-kinase (PI3K/Akt) pathway, while the inhibitor had the opposite effect. In both Irs-1-/- and cold-induced models, sWAT exhibited BAT features, and showed tissue-specific increased BMPR1a expression, PI3K expression, and Akt phosphorylation. Thus, our results showed that IRS-1 regulated brown preadipocyte differentiation and induced browning in sWAT through the miR-503-BMPR1a pathway, which played important roles in high-fat diet-induced obesity.
Collapse
Affiliation(s)
- Xiao-Fei Man
- Hunan Provincial Key Laboratory For Metabolic Bone Diseases, Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nan Hu
- Hunan Provincial Key Laboratory For Metabolic Bone Diseases, Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shu-Wen Tan
- Hunan Provincial Key Laboratory For Metabolic Bone Diseases, Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hao-Neng Tang
- Hunan Provincial Key Laboratory For Metabolic Bone Diseases, Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yue Guo
- Hunan Provincial Key Laboratory For Metabolic Bone Diseases, Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chen-Yi Tang
- Hunan Provincial Key Laboratory For Metabolic Bone Diseases, Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Qing Liu
- Hunan Provincial Key Laboratory For Metabolic Bone Diseases, Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Tang
- Hunan Provincial Key Laboratory For Metabolic Bone Diseases, Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ci-La Zhou
- Hunan Provincial Key Laboratory For Metabolic Bone Diseases, Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fang Wang
- Hunan Provincial Key Laboratory For Metabolic Bone Diseases, Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hou-De Zhou
- Hunan Provincial Key Laboratory For Metabolic Bone Diseases, Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
45
|
You L, Wang Y, Gao Y, Wang X, Cui X, Zhang Y, Pang L, Ji C, Guo X, Chi X. The role of microRNA-23b-5p in regulating brown adipogenesis and thermogenic program. Endocr Connect 2020; 9:457-470. [PMID: 32348962 PMCID: PMC7274556 DOI: 10.1530/ec-20-0124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Enhanced brown adipose tissue (BAT) mass and activity have been demonstrated to promote the expenditure of excess stored energy and reduce prevalence of obesity. Cold is known as a potent stimulator of BAT and activates BAT primarily through the β3-adrenergic-cAMP signaling. Here, we performed RNA-sequencing to identify differential miRNAs in mouse BAT upon cold exposure and a total of 20 miRNAs were validated. With the treatment of CL-316,243 (CL) and forskolin (Fsk) in mouse and human differentiated brown adipocyte cells in vitro, miR-23b-5p, miR-133a-3p, miR-135-5p, miR-491-5p, and miR-150-3p expression decreased and miR-455-5p expression increased. Among these deferentially expressed miRNAs, miR-23b-5p expression was differentially regulated in activated and aging mouse BAT and negatively correlated with Ucp1 expression. Overexpression of miR-23b-5p in the precursor cells from BAT revealed no significant effects on lipid accumulation, but diminished mitochondrial function and decreased expression of BAT specific markers. Though luciferase reporter assays did not confirm the positive association of miR-23b-5p with the 3'UTRs of the predicted target Ern1, miR-23b-5p overexpression may affect brown adipocyte thermogenic capacity mainly through regulating genes expression involving in lipolysis and fatty acid β-oxidation pathways. Our results suggest that miRNAs are involved in cold-mediated BAT thermogenic activation and further acknowledged miR-23b-5p as a negative regulator in controlling thermogenic programs, further providing potential molecular therapeutic targets to increase surplus energy and treat obesity.
Collapse
Affiliation(s)
- Lianghui You
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yan Wang
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yao Gao
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xingyun Wang
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xianwei Cui
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yanyan Zhang
- Beijing Chaoyang Distirct Maternal and Child Health Care Hospital, Beijing, China
| | - Lingxia Pang
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Chenbo Ji
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Xirong Guo
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Correspondence should be addressed to X Chi or X Guo: or
| | - Xia Chi
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China
- Correspondence should be addressed to X Chi or X Guo: or
| |
Collapse
|
46
|
Son JS, Zhao L, Chen Y, Chen K, Chae SA, de Avila JM, Wang H, Zhu MJ, Jiang Z, Du M. Maternal exercise via exerkine apelin enhances brown adipogenesis and prevents metabolic dysfunction in offspring mice. SCIENCE ADVANCES 2020; 6:eaaz0359. [PMID: 32494609 PMCID: PMC7164955 DOI: 10.1126/sciadv.aaz0359] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/22/2020] [Indexed: 05/07/2023]
Abstract
The obesity rate is rapidly increasing, which has been attributed to lack of exercise and excessive energy intake. Here, we found a previously unidentified explanation, due to lack of maternal exercise. In this study, healthy maternal mice were assigned either to a sedentary lifestyle or to exercise daily, and fetal brown adipose tissue (BAT) development and offspring metabolic health were analyzed. Compared to the sedentary group, maternal exercise enhanced DNA demethylation of Prdm16 promoter and BAT development and prevented obesity of offspring when challenged with a high-energy diet. Apelin, an exerkine, was elevated in both maternal and fetal circulations due to exercise, and maternal administration of apelin mimicked the beneficial effects of exercise on fetal BAT development and offspring metabolic health. Together, maternal exercise enhances thermogenesis and the metabolic health of offspring mice, suggesting that the sedentary lifestyle during pregnancy contributes to the obesity epidemic in modern societies.
Collapse
Affiliation(s)
- Jun Seok Son
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Liang Zhao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Yanting Chen
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Ke Chen
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Song Ah Chae
- Department of Movement Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Jeanene M. de Avila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Hongyang Wang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
- Corresponding author.
| |
Collapse
|
47
|
Withers SB, Dewhurst T, Hammond C, Topham CH. MiRNAs as Novel Adipokines: Obesity-Related Circulating MiRNAs Influence Chemosensitivity in Cancer Patients. Noncoding RNA 2020; 6:ncrna6010005. [PMID: 31979312 PMCID: PMC7151601 DOI: 10.3390/ncrna6010005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is an endocrine organ, capable of regulating distant physiological processes in other tissues via the release of adipokines into the bloodstream. Recently, circulating adipose-derived microRNAs (miRNAs) have been proposed as a novel class of adipokine, due to their capacity to regulate gene expression in tissues other than fat. Circulating levels of adipokines are known to be altered in obese individuals compared with typical weight individuals and are linked to poorer health outcomes. For example, obese individuals are known to be more prone to the development of some cancers, and less likely to achieve event-free survival following chemotherapy. The purpose of this review was twofold; first to identify circulating miRNAs which are reproducibly altered in obesity, and secondly to identify mechanisms by which these obesity-linked miRNAs might influence the sensitivity of tumors to treatment. We identified 8 candidate circulating miRNAs with altered levels in obese individuals (6 increased, 2 decreased). A second literature review was then performed to investigate if these candidates might have a role in mediating resistance to cancer treatment. All of the circulating miRNAs identified were capable of mediating responses to cancer treatment at the cellular level, and so this review provides novel insights which can be used by future studies which aim to improve obese patient outcomes.
Collapse
Affiliation(s)
- Sarah B. Withers
- Biomedical Research Centre, School of Science, Engineering and Environment, Peel Building, University of Salford, Salford M5 4WT, UK; (S.B.W.); (T.D.); (C.H.)
- Salford Royal Foundation Trust, Clinical Sciences Building, Stott Lane, Salford M6 8HD, UK
| | - Toni Dewhurst
- Biomedical Research Centre, School of Science, Engineering and Environment, Peel Building, University of Salford, Salford M5 4WT, UK; (S.B.W.); (T.D.); (C.H.)
| | - Chloe Hammond
- Biomedical Research Centre, School of Science, Engineering and Environment, Peel Building, University of Salford, Salford M5 4WT, UK; (S.B.W.); (T.D.); (C.H.)
| | - Caroline H. Topham
- Biomedical Research Centre, School of Science, Engineering and Environment, Peel Building, University of Salford, Salford M5 4WT, UK; (S.B.W.); (T.D.); (C.H.)
- Correspondence: ; Tel.: +44-(0)-161-295-4292
| |
Collapse
|
48
|
Esmaeili S, Bandarian F, Esmaeili B, Nasli-Esfahani E. Apelin and stem cells: the role played in the cardiovascular system and energy metabolism. Cell Biol Int 2019; 43:1332-1345. [PMID: 31166051 DOI: 10.1002/cbin.11191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/02/2019] [Indexed: 01/24/2023]
Abstract
Apelin, a member of the adipokine family, is widely distributed in the body and exerts cytoprotective effects on many organs. Apelin isoforms are involved in different physiological processes, including regulation of the cardiovascular system, cardiac contractility, angiogenesis, and energy metabolism. Several investigations have been performed to study the effect of apelin on stem cell therapy. This review aims to summarize the literature representing the effects of apelin on stem cell properties. Furthermore, this review discusses the therapeutic potential of apelin-treated stem cells for cardiovascular diseases and demonstrates the effect of stem cells overexpressing apelin on energy metabolism. Stem cells with their unique characteristics play a crucial role in the maintenance of tissue integrity. These cells participate in tissue regeneration via multiple mechanisms. Although preclinical and clinical studies have demonstrated the therapeutic potential of stem cells in various diseases, their application in regenerative medicine has not been efficient. A number of strategies such as genetic modification or treatment of stem cells with different factors have been used to improve the efficacy of cell therapy and to increase their survival after transplantation. This article reviews the effect of apelin treatment on the efficacy of cell therapy.
Collapse
Affiliation(s)
- Shahnaz Esmaeili
- Diabetic Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Fatemeh Bandarian
- Diabetic Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Behnaz Esmaeili
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Ensieh Nasli-Esfahani
- Diabetic Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| |
Collapse
|
49
|
Tu WZ, Fu YB, Xie X. RepSox, a small molecule inhibitor of the TGFβ receptor, induces brown adipogenesis and browning of white adipocytes. Acta Pharmacol Sin 2019; 40:1523-1531. [PMID: 31235818 PMCID: PMC7471457 DOI: 10.1038/s41401-019-0264-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/27/2019] [Indexed: 01/21/2023]
Abstract
Unlike white adipose tissue (WAT), brown adipose tissue (BAT) is mainly responsible for energy expenditure via thermogenesis by uncoupling the respiratory chain. Promoting the differentiation of brown fat precursor cells and the browning of white fat have become a research hotspot for the treatment of obesity and associated metabolic diseases. Several secreted factors and a number of small molecules have been found to promote brown adipogenesis. Here we report that a single small-molecule compound, RepSox, is sufficient to induce adipogenesis from mouse embryonic fibroblasts (MEFs) in fibroblast culture medium. RepSox is an inhibitor of the transforming growth factor-beta receptor I (TGF-β-RI), other inhibitors of TGF-β pathway such as SB431542, LY2157299, A83-01, and Tranilast are also effective in inducing adipogenesis from MEFs. These adipocytes express brown adipocyte-specific transcription factors and thermogenesis genes, and contain a large number of mitochondria and have a high level of mitochondrial respiratory activity. More interestingly, RepSox has also been found to promote the differentiation of the brown fat precursor cells and induce browning of the white fat precursor cells. These findings suggest that inhibitors of TGF-β signaling pathway might be developed as new therapeutics for obesity and type 2 diabetes.
Collapse
|
50
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|