1
|
Li K, Wang H, Jiang B, Jin X. The impact of dysregulation SUMOylation on prostate cancer. J Transl Med 2025; 23:286. [PMID: 40050932 PMCID: PMC11887156 DOI: 10.1186/s12967-025-06271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
Prostate cancer (PCa) remains one of the most common malignancies in men, with its development and progression being governed by complex molecular pathways. SUMOylation, a post-translational modification (PTM) that involves the covalent attachment of small ubiquitin-like modifier (SUMO) proteins to target substrates, has emerged as a critical regulator of various cellular processes such as transcription, DNA repair, cell cycle progression, and apoptosis. Emerging evidence reveals that abnormal SUMOylation may contribute to PCa pathogenesis, and notably, SUMO-associated enzymes are commonly dysregulated in PCa. This review explores the mechanisms by which SUMOylation is implicated in the regulation of key pathways, and summary aberrant expression of SUMO-related enzymes or SUMOylation sites mutations of substrtes in PCa, as well as the therapeutic implications of targeting the SUMO-related enzymes in PCa treatment.
Collapse
Affiliation(s)
- Kailang Li
- Department of Oncology, Beilun Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Ningbo, 315826, China
- Department of Oncology, Beilun District People's Hospital, Ningbo, 315826, China
| | - Haifeng Wang
- Department of Oncology, Beilun Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Ningbo, 315826, China
- Department of Oncology, Beilun District People's Hospital, Ningbo, 315826, China
| | - Bitao Jiang
- Department of Oncology, Beilun Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Ningbo, 315826, China.
- Department of Oncology, Beilun District People's Hospital, Ningbo, 315826, China.
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Kundu G, Ghasemi M, Yim S, Rohil A, Xin C, Ren L, Srivastava S, Akinfolarin A, Kumar S, Srivastava GP, Sabbisetti VS, Murugaiyan G, Ajay AK. STAT3 Protein-Protein Interaction Analysis Finds P300 as a Regulator of STAT3 and Histone 3 Lysine 27 Acetylation in Pericytes. Biomedicines 2024; 12:2102. [PMID: 39335615 PMCID: PMC11428717 DOI: 10.3390/biomedicines12092102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) is a member of the cytoplasmic inducible transcription factors and plays an important role in mediating signals from cytokines, chemokines, and growth factors. We and others have found that STAT3 directly regulates pro-fibrotic signaling in the kidney. The STAT3 protein-protein interaction plays an important role in activating its transcriptional activity. It is necessary to identify these interactions to investigate their function in kidney disease. Here, we investigated the protein-protein interaction among three species to find crucial interactions that can be targeted to alleviate kidney disease. METHOD In this study, we examined common protein-protein interactions leading to the activation or downregulation of STAT3 among three different species: humans (Homo sapiens), mice (Mus musculus), and rabbits (Oryctolagus cuniculus). Further, we chose to investigate the P300 and STAT3 interaction and performed studies of the activation of STAT3 using IL-6 and inhibition of the P300 by its specific inhibitor A-485 in pericytes. Next, we performed immunoprecipitation to confirm whether A-485 inhibits the binding of P300 to STAT3. RESULTS Using the STRING application from ExPASy, we found that six proteins, including PIAS3, JAK1, JAK2, EGFR, SRC, and EP300, showed highly confident interactions with STAT3 in humans, mice, and rabbits. We also found that IL-6 treatment increased the acetylation of STAT3 and increased histone 3 lysine acetylation (H3K27ac). Furthermore, we found that the disruption of STAT3 and P300 interaction by the P300 inhibitor A-485 decreased STAT3 acetylation and H3K27ac. Finally, we confirmed that the P300 inhibitor A-485 inhibited the binding of STAT3 with P300, which inhibited its transcriptional activity by reducing the expression of Ccnd1 (Cyclin D1). CONCLUSIONS Targeting the P300 protein interaction with STAT3 may alleviate STAT3-mediated fibrotic signaling in humans and other species.
Collapse
Affiliation(s)
- Gautam Kundu
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- US Military HIV Research Program (MHRP), Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Maryam Ghasemi
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Seungbin Yim
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ayanna Rohil
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Cuiyan Xin
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Leo Ren
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | | | - Akinwande Akinfolarin
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Subodh Kumar
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gyan P. Srivastava
- Department of Electrical Engineering & Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Venkata S. Sabbisetti
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amrendra K. Ajay
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Center for Polycystic Kidney Disease, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Cancer as a Channelopathy—Appreciation of Complimentary Pathways Provides a Different Perspective for Developing Treatments. Cancers (Basel) 2022; 14:cancers14194627. [PMID: 36230549 PMCID: PMC9562872 DOI: 10.3390/cancers14194627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary While improvements in technology have improved our ability to treat many forms of cancer when diagnosed at an early stage of the disease, the ability to improve survival and quality of life for patients with late stage disease has been limited, largely due to the ability of cancer cells to evade destruction when treatments block preferred paths for survival. Here, we review the role that ions and ion channels play in normal cell function, the development of disease and their role in the life and death of a cell. It is hoped that viewing cancer from the perspective of altered ion channel expression and ion balance may provide a novel approach for developing more effective treatments for this devastating disease. Abstract Life depends upon the ability of cells to evaluate and adapt to a constantly changing environment and to maintain internal stability to allow essential biochemical reactions to occur. Ions and ion channels play a crucial role in this process and are essential for survival. Alterations in the expression of the transmembrane proteins responsible for maintaining ion balance that occur as a result of mutations in the genetic code or in response to iatrogenically induced changes in the extracellular environment is a characteristic feature of oncogenesis and identifies cancer as one of a constellation of diseases known as channelopathies. The classification of cancer as a channelopathy provides a different perspective for viewing the disease. Potentially, it may expand opportunities for developing novel ways to affect or reverse the deleterious changes that underlie establishing and sustaining disease and developing tolerance to therapeutic attempts at treatment. The role of ions and ion channels and their interactions in the cell’s ability to maintain ionic balance, homeostasis, and survival are reviewed and possible approaches that mitigate gain or loss of ion channel function to contribute to new or enhance existing cancer therapies are discussed.
Collapse
|
4
|
Li C, Wang R, Zhang Y, Hu C, Ma Q. PIAS3 suppresses damage in an Alzheimer's disease cell model by inducing the STAT3-associated STAT3/Nestin/Nrf2/HO-1 pathway. Mol Med 2021; 27:150. [PMID: 34837964 PMCID: PMC8626961 DOI: 10.1186/s10020-021-00410-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/09/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD), the most common form of dementia, is caused by the degeneration of the central nervous system (CNS). A previous study reported that signal transducer and activator of transcription 3 (STAT3) is activated during AD development; nonetheless, the related mechanism remains unknown. Thus, this study used a cell model to explore whether and how the protein inhibitor of activated STAT3 (PIAS3) is involved in AD development. METHODS Cerebrospinal fluid (CSF) specimens of 30 patients with AD and 10 normal participants were included in this study. SH-SY5Y cells were used to constructed AD model. Relevant indices were then detected and analyzed. RESULTS The results showed that compared with the control group, PIAS3 expression was substantially decreased in patients with AD and amyloid beta (Aβ)-treated SH-SY5Y cells. PIAS3 overexpression was able to reverse the detrimental effects of Aβ treatment on cell survival and growth. Further, it could also ameliorate apoptosis and oxidative stress in Aβ-treated SH-SY5Y cells. Additionally, PIAS3 was shown to reduce the activated form of STAT3 and increase the activity of the downstream Nestin/nuclear factor erythroid 2-related factor/heme oxygenase-1 pathway. CONCLUSIONS STAT3 reactivation by colivelin treatment negated the influence of PIAS3 on the survival, growth, apoptosis, and oxidative stress of Aβ-treated SH-SY5Y cells.
Collapse
Affiliation(s)
- Chen Li
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, 710004 Shaanxi People’s Republic of China
| | - Ruili Wang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, 710004 Shaanxi People’s Republic of China
| | - Youyou Zhang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, 710004 Shaanxi People’s Republic of China
| | - Chunting Hu
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, 710004 Shaanxi People’s Republic of China
| | - Qiaoya Ma
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, 710004 Shaanxi People’s Republic of China
| |
Collapse
|
5
|
Ali S, Khan MR, Iqbal J, Batool R, Naz I, Yaseen T, Abbasi BA, Nasir JA, El-Serehy HA. Chemical composition and pharmacological bio-efficacy of Parrotiopsis jacquemontiana (Decne) Rehder for anticancer activity. Saudi J Biol Sci 2021; 28:4969-4986. [PMID: 34466072 PMCID: PMC8381063 DOI: 10.1016/j.sjbs.2021.07.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 11/17/2022] Open
Abstract
Consistent STAT3 (Single transducer and activator of transcription 3) activation is observed in many tumors and promotes malignant cell transformation. In the present investigation, we evaluated the anticancer effects of Parrotiopsis jacquemontiana methanol fraction (PJM) on STAT3 inhibition in HCCLM3 and MDA-MB 231 cells. PJM suppressed the activation of upstream kinases i.e. JAK-1/2 (Janus kinase-1/2), and c-Src (Proto-oncogene tyrosine-protein kinase c-Src), and upregulated the expression levels of PIAS-1/3 (Protein Inhibitor of Activated STATs-1/3), SHP-1/2 (Src-homology region 2 domain-containing phosphatase-1/2), and PTP-1β (Protein tyrosine phosphatase 1 β) which negatively regulate STAT3 signaling pathway. PJM also decreased the levels of protein products conferring to various oncogenes, which in turn repressed the proliferation, migration, invasion, and induced apoptosis in cancer cell lines. The growth inhibitory effects of PJM on cell-cycle and metastasis were correlated with decreased expression levels of CyclinD1, CyclinE, MMP-2 (Matrix metalloproteinases-2), and MMP-9 (Matrix metalloproteinases-9). Induction of apoptosis was indicated by the cleavage and subsequent activation of Caspases (Cysteine-dependent Aspartate-directed Proteases) i.e. caspase-3, 7, 8, 9, and PARP (Poly (ADP-ribose) polymerase) as well as through the down-regulation of anti-apoptotic proteins. These apoptotic effects of PJM were preceded by inhibition of STAT3 cell-signaling pathway. STAT3 was needed for PJM-induced apoptosis, and inhibition of STAT3 via pharmacological inhibitor (Stattic; SC-203282) abolished the apoptotic effects. Conclusively, our results demonstrate the capability of PJM to inhibit cancer cell-proliferation and induce apoptosis by suppressing STAT3 via upregulation of STAT3 inhibitors and pro-apoptotic proteins whereas the down-regulation of upstream kinases and anti-apoptotic protein expression. In future, one-step advance studies of PHM regarding its role in metastatic inhibition, immune response modulation for reducing tumor, and inducing apoptosis in suitable animal models would be an interesting and promising research area.
Collapse
Key Words
- Apoptosis
- BAK, Bcl-2 homologous antagonist/killer
- BAX, Bcl-2-Associate X protein
- BCL-XL, B-cell lymphoma-extra large
- Cancer
- HCCLM3
- JAK-1/2, Janus kinase-1/2
- MDA–MB 231
- MMP-2/9, Matrix metalloproteinases-2/9
- MTT, 3-(4, 5-Dimethylthiazol-2-yl) −2,5 diphenyltetrazoliumbromide
- PARP, Poly (ADP-ribose) polymerase
- PIAS-1/3, Protein Inhibitor of Activated STATs-1/3
- Parrotiopsis jacquemontiana
- SHP-1/2, Src-homology region 2 domain-containing phosphatase-1/2
- STAT3
- STAT3, Single transducer and activator of transcription 3
- Stattic
- XIAP, X-linked inhibitor of apoptosis protein
Collapse
Affiliation(s)
- Saima Ali
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkkhwa, Pakistan
| | - Riffat Batool
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Irum Naz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkkhwa, Pakistan
| | - Banzeer Ahsan Abbasi
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Jamal Abdul Nasir
- University College London, Kathleen Lonsdale Materials Chemistry, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, UK
| | - Hamed A El-Serehy
- Department of Zoology, College of Science, King Saud University, Riyadh l1451, Saudi Arabia
| |
Collapse
|
6
|
Wang Y, Yu J. Dissecting multiple roles of SUMOylation in prostate cancer. Cancer Lett 2021; 521:88-97. [PMID: 34464672 DOI: 10.1016/j.canlet.2021.08.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022]
Abstract
Protein modification with small ubiquitin-like modifiers (SUMOs) plays dual roles in prostate cancer (PCa) tumorigenesis and development. Any intermediary of the SUMO conjugation cycle going awry may forfeit the balance between tumorigenic potential and anticancer effects. Deregulated SUMOylation on the androgen receptor and oncoproteins also takes part in this pathological process, as exemplified by STAT3/NF-κB and tumor suppressors such as PTEN and p53. Here, we outline recent developments and discoveries of SUMOylation in PCa and present an overview of its multiple roles in PCa tumorigenesis/promotion and suppression, while elucidating its potential as a therapeutic target for PCa.
Collapse
Affiliation(s)
- Yishu Wang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
7
|
Wu M, Song D, Li H, Yang Y, Ma X, Deng S, Ren C, Shu X. Negative regulators of STAT3 signaling pathway in cancers. Cancer Manag Res 2019; 11:4957-4969. [PMID: 31213912 PMCID: PMC6549392 DOI: 10.2147/cmar.s206175] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022] Open
Abstract
STAT3 is the most ubiquitous member of the STAT family and involved in many biological processes, such as cell proliferation, differentiation, and apoptosis. Mounting evidence has revealed that STAT3 is aberrantly activated in many malignant tumors and plays a critical role in cancer progression. STAT3 is usually regarded as an effective molecular target for cancer treatment, and abolishing the STAT3 activity may diminish tumor growth and metastasis. Recent studies have shown that negative regulators of STAT3 signaling such as PIAS, SOCS, and PTP, can effectively retard tumor progression. However, PIAS, SOCS, and PTP have also been reported to correlate with tumor malignancy, and their biological function in tumorigenesis and antitumor therapy are somewhat controversial. In this review, we summarize actual knowledge on the negative regulators of STAT3 in tumors, and focus on the potential role of PIAS, SOCS, and PTP in cancer treatment. Furthermore, we also outline the STAT3 inhibitors that have entered clinical trials. Targeting STAT3 seems to be a promising strategy in cancer therapy.
Collapse
Affiliation(s)
- Moli Wu
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China.,College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Danyang Song
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Hui Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Yang Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Sa Deng
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Changle Ren
- Surgery Department of Dalian Municipal Central Hospital, Dalian Medical University, Dalian 116033, People's Republic of China
| | - Xiaohong Shu
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| |
Collapse
|
8
|
Model MA, Mudrak NJ, Rana PS, Clements RJ. Staurosporine-induced apoptotic water loss is cell- and attachment-specific. Apoptosis 2018; 23:449-455. [PMID: 29978434 DOI: 10.1007/s10495-018-1471-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Apoptotic volume decrease (AVD) is a characteristic cell shrinkage observed during apoptosis. There are at least two known processes that may result in the AVD: exit of intracellular water and splitting of cells into smaller fragments. Although AVD has traditionally been attributed to water loss, direct evidence for that is often lacking. In this study, we quantified intracellular water in staurosporine-treated cells using a previously described optical microscopic technique that combines volume measurements with quantitative phase analysis. Water loss was observed in detached HeLa and in adherent MDCK but not in adherent HeLa cells. At the same time, adherent HeLa and adherent MDCK cells exhibited visually similar apoptotic morphology, including fragmentation and activation of caspase-3. Morphological changes and caspase activation were prevented by chloride channel blockers DIDS and NPPB in both adherent and suspended HeLa cells, while potassium channel blocker TEA was ineffective. We conclude that staurosporine-induced dehydration is not a universal cell response but depends on the cell type and substrate attachment and can only be judged by direct water measurements. The effects of potassium or chloride channel blockers do not always correlate with the AVD.
Collapse
Affiliation(s)
- Michael A Model
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA.
| | - Nathan J Mudrak
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Priyanka S Rana
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Robert J Clements
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
9
|
Imran M, Ullah A, Saeed F, Nadeem M, Arshad MU, Suleria HAR. Cucurmin, anticancer, & antitumor perspectives: A comprehensive review. Crit Rev Food Sci Nutr 2017; 58:1271-1293. [PMID: 27874279 DOI: 10.1080/10408398.2016.1252711] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cucurmin, a naturally yellow component isolated from turmeric, ability to prevent various life-style related disorders. The current review article mainly emphasizes on different anticancer perspectives of cucurmin, i.e., colon, cervical, uterine, ovarian, prostate head and neck, breast, pulmonary, stomach and gastric, pancreatic, bladder oral, oesophageal, and bone cancer. It holds a mixture of strong bioactive molecule known as cucurminoids that has ability to reduce cancer/tumor at initial, promotion and progression stages of tumor development. In particular, these compounds block several enzymes required for the growth of tumors and may therefore involve in tumor treatments. Moreover, it modulates an array of cellular progressions, i.e., nitric oxide synthetase activity, protein kinase C activity, epidermal growth factor (EGF) receptor intrinsic kinase activity, nuclear factor kappa (NF-kB) activity, inhibiting lipid peroxidation and production of reactive oxygen species. However, current manuscript summarizes most of the recent investigations of cucurmin but still further research should be conducted to explore the role of curcumin to mitigate various cancers.
Collapse
Affiliation(s)
- Muhammad Imran
- a Department of Diet and Nutritional Sciences , Imperial College of Business Studies , Lahore , Pakistan.,b National Institute of Food Science and Technology , University of Agriculture Faisalabad , Pakistan
| | - Azmat Ullah
- e Department of Food Science and Human Nutrition , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Farhan Saeed
- c Institute of Home & Food Sciences , Government College University Faisalabad , Pakistan
| | - Muhammad Nadeem
- d Department of Environmental Sciences , COMSATS Institute of Information Technology Vehari , Pakistan
| | - Muhammad Umair Arshad
- c Institute of Home & Food Sciences , Government College University Faisalabad , Pakistan
| | | |
Collapse
|
10
|
Zhang H, Wu CO, Yang Y, Berndt SI, Chanock SJ, Yu K. A multi-locus genetic association test for a dichotomous trait and its secondary phenotype. Stat Methods Med Res 2016; 27:1464-1475. [PMID: 27507288 DOI: 10.1177/0962280216662071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genetic association studies often collect information on secondary phenotypes related to the primary disease status. In many situations, the secondary phenotypes are only measured in subjects with the disease condition. It would be advantageous to model the primary trait and the secondary phenotype together if they share certain level of genetic heritability. We propose a family of multi-locus testing procedures to detect the composite association between a set of genetic markers and two traits (the primary trait and a secondary phenotype), in order to identify genes influencing both traits. The proposed test is derived from a random effect model with two variance components, with each presenting the genetic effect on one trait, and incorporates a model selection procedure for seeking the optimal model to represent the two sources of genetic effects. We conduct simulation studies to evaluate performance of the proposed procedure and apply the method to a genome-wide association study of prostate cancer with the Gleason score as the secondary phenotype.
Collapse
Affiliation(s)
- Han Zhang
- 1 Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Colin O Wu
- 2 Office of Biostatistics Research, National Heart, Lung and Blood Institute, Bethesda, USA
| | - Yifan Yang
- 3 Department of Statistics, University of Kentucky, Lexington, USA
| | - Sonja I Berndt
- 1 Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Stephen J Chanock
- 1 Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Kai Yu
- 1 Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| |
Collapse
|
11
|
Ko JH, Ho Baek S, Nam D, Chung WS, Lee SG, Lee J, Mo Yang W, Um JY, Seok Ahn K. 3-Formylchromone inhibits proliferation and induces apoptosis of multiple myeloma cells by abrogating STAT3 signaling through the induction of PIAS3. Immunopharmacol Immunotoxicol 2016; 38:334-43. [DOI: 10.1080/08923973.2016.1203928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Brassinin inhibits STAT3 signaling pathway through modulation of PIAS-3 and SOCS-3 expression and sensitizes human lung cancer xenograft in nude mice to paclitaxel. Oncotarget 2016; 6:6386-405. [PMID: 25788267 PMCID: PMC4467444 DOI: 10.18632/oncotarget.3443] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/21/2015] [Indexed: 12/14/2022] Open
Abstract
Persistent phosphorylation of signal transducers and activators of transcription 3 (STAT3) is frequently observed in tumor cells. We found that brassinin (BSN) suppressed both constitutive and IL-6-inducible STAT3 activation in lung cancer cells. Moreover, BSN induced PIAS-3 protein and mRNA, whereas the expression of SOCS-3 was reduced. Knockdown of PIAS-3 by small interfering RNA prevented inhibition of STAT3 and cytotoxicity by BSN. Overexpression of SOCS-3 in BSN-treated cells increased STAT3 phosphorylation and cell viability. BSN down-regulated STAT3-regulated gene products, inhibited proliferation, invasion, as well as induced apoptosis. Most importantly, when administered intraperitoneally, combination of BSN and paclitaxel significantly decreased the tumor development in a xenograft lung cancer mouse model associated with down-modulation of phospho-STAT3, Ki-67 and CD31. We suggest that BSN inhibits STAT3 signaling through modulation of PIAS-3 and SOCS-3, thereby attenuating tumor growth and increasing sensitivity to paclitaxel.
Collapse
|
13
|
Yang SF, Hou MF, Chen FM, Ou-Yang F, Wu YC, Chai CY, Yeh YT. Prognostic value of protein inhibitor of activated STAT3 in breast cancer patients receiving hormone therapy. BMC Cancer 2016; 16:20. [PMID: 26768588 PMCID: PMC4714466 DOI: 10.1186/s12885-016-2063-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/10/2016] [Indexed: 12/12/2022] Open
Abstract
Background Deregulated signal transducer and activator of transcription 3 (STAT3) signaling has been well documented in certain cancers. Alterations in specific negative regulators, such as protein inhibitor of activated STAT3 (PIAS3), may contribute to cancer development. Methods The expression of total PIAS3 was determined in 100 paired cancerous and non-cancerous breast tissues by immunoblotting and was statistically analyzed along with the clinicopathological characteristics and overall survival of the patients. XTT, immunoblotting, and chromatin immunoprecipitation (Chip) were used to examine the biological effect of PIAS3 in breast cancer cells. Results Hormone therapy failed to improve the overall survival in patients presenting with increased PIAS3 expression. Ectopic PIAS3 overexpression increased the proliferation and expression of cyclin D1 in estrogen receptor (ER)-positive MCF-7 and T47D cells, but decreased those in ER-negative MDA-MB-231 and SKBR3 cells. Furthermore, PIAS3 overexpression attenuated cytotoxicity of tamoxifen and increased proliferation and cyclin D1 expression in MCF-7 cells. PIAS3 also decreased the binding of itself on the cyclin D1 promoter and this decreased binding was not affected by tamoxifen. Conclusion PIAS3 may serve as a biomarker for predicting hormone therapy stratification, although it is limited to those breast cancer patients receiving hormone therapy Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2063-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheau-Fang Yang
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, No. 68, Zhonghua 3rd Rd, Qianjin Dist, Kaohsiung, 801, R O C, Taiwan.,Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shiquan 1st Rd, Sanmin Dist, Kaohsiung, 807, R O C, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, No. 68, Zhonghua 3rd Rd, Qianjin Dist, Kaohsiung, 801, R O C, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1st Rd, Sanmin Dist, Kaohsiung, 807, R O C, Taiwan
| | - Fang-Ming Chen
- Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, No. 68, Zhonghua 3rd Rd, Qianjin Dist, Kaohsiung, 801, R O C, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1st Rd, Sanmin Dist, Kaohsiung, 807, R O C, Taiwan.,Department of Laboratory, Kaohsiung Municipal Ta-Tung Hospital, No. 68, Zhonghua 3rd Rd, Qianjin Dist, Kaohsiung, 801, R O C, Taiwan
| | - Fu Ou-Yang
- Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, No. 68, Zhonghua 3rd Rd, Qianjin Dist, Kaohsiung, 801, R O C, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1st Rd, Sanmin Dist, Kaohsiung, 807, R O C, Taiwan
| | - Yang-Chang Wu
- School of Pharmacy, College of Pharmacy, China Medical University, No. 91, Hsueh-Shih Road, Taichung, R O C, 40402, Taiwan.,Chinese Medicine Research and Development Center, China Medical University Hospital, No. 2, Yude Road, Taichung, 40447, R O C, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shiquan 1st Rd, Sanmin Dist, Kaohsiung, 807, R O C, Taiwan.
| | - Yao-Tsung Yeh
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, No.151, Jinxue Rd, Daliao Dist, Kaohsiung, 831, R O C, Taiwan.
| |
Collapse
|
14
|
Lai PS, Rosa DA, Magdy Ali A, Gómez-Biagi RF, Ball DP, Shouksmith AE, Gunning PT. A STAT inhibitor patent review: progress since 2011. Expert Opin Ther Pat 2015; 25:1397-421. [PMID: 26394986 DOI: 10.1517/13543776.2015.1086749] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The clinical utility of effective direct STAT inhibitors, particularly STAT3 and STAT5, for treating cancer and other diseases is well studied and known. AREAS COVERED This review will highlight the STAT inhibitor patent literature from 2011 to 2015 inclusive. Emphasis will be placed on inhibitors of the STAT3, STAT5a/b, and STAT1 proteins for cancer treatment. The review will, where suitably investigated, describe the mode and the site of inhibition, list indications that were evaluated, and rank the inhibitor's relative potency among compounds in the same class. The reader will gain an understanding of the diverse set of approaches, used both in academia and industry, to target STAT proteins. EXPERT OPINION There is still much work to be done to directly target the STAT3 and STAT5 proteins. As yet, there is still no direct STAT3 inhibitor in the clinic. While the SH2 domain remains a popular target for therapeutic intervention, the DNA-binding domain and N-terminal region are now attracting attention as possible sites for inhibition. Multiple putative STAT3 and STAT5 inhibitors have now been patented across a broad spectrum of chemotypes, each with their own advantages and limitations.
Collapse
Affiliation(s)
- Ping-Shan Lai
- a University of Toronto Mississauga, Department of Chemical and Physical Sciences , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada +1 90 55 69 45 88 ; +1 90 55 69 49 29 ;
| | - David A Rosa
- a University of Toronto Mississauga, Department of Chemical and Physical Sciences , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada +1 90 55 69 45 88 ; +1 90 55 69 49 29 ;
| | - Ahmed Magdy Ali
- a University of Toronto Mississauga, Department of Chemical and Physical Sciences , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada +1 90 55 69 45 88 ; +1 90 55 69 49 29 ;
| | - Rodolfo F Gómez-Biagi
- a University of Toronto Mississauga, Department of Chemical and Physical Sciences , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada +1 90 55 69 45 88 ; +1 90 55 69 49 29 ;
| | - Daniel P Ball
- a University of Toronto Mississauga, Department of Chemical and Physical Sciences , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada +1 90 55 69 45 88 ; +1 90 55 69 49 29 ;
| | - Andrew E Shouksmith
- a University of Toronto Mississauga, Department of Chemical and Physical Sciences , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada +1 90 55 69 45 88 ; +1 90 55 69 49 29 ;
| | - Patrick T Gunning
- a University of Toronto Mississauga, Department of Chemical and Physical Sciences , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada +1 90 55 69 45 88 ; +1 90 55 69 49 29 ;
| |
Collapse
|
15
|
Henley JM, Craig TJ, Wilkinson KA. Neuronal SUMOylation: mechanisms, physiology, and roles in neuronal dysfunction. Physiol Rev 2014; 94:1249-85. [PMID: 25287864 PMCID: PMC4187031 DOI: 10.1152/physrev.00008.2014] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein SUMOylation is a critically important posttranslational protein modification that participates in nearly all aspects of cellular physiology. In the nearly 20 years since its discovery, SUMOylation has emerged as a major regulator of nuclear function, and more recently, it has become clear that SUMOylation has key roles in the regulation of protein trafficking and function outside of the nucleus. In neurons, SUMOylation participates in cellular processes ranging from neuronal differentiation and control of synapse formation to regulation of synaptic transmission and cell survival. It is a highly dynamic and usually transient modification that enhances or hinders interactions between proteins, and its consequences are extremely diverse. Hundreds of different proteins are SUMO substrates, and dysfunction of protein SUMOylation is implicated in a many different diseases. Here we briefly outline core aspects of the SUMO system and provide a detailed overview of the current understanding of the roles of SUMOylation in healthy and diseased neurons.
Collapse
Affiliation(s)
- Jeremy M Henley
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Tim J Craig
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Kevin A Wilkinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
16
|
Bortner CD, Cidlowski JA. Ion channels and apoptosis in cancer. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130104. [PMID: 24493752 DOI: 10.1098/rstb.2013.0104] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Humans maintain a constant cell number throughout their lifespan. This equilibrium of cell number is accomplished when cell proliferation and cell death are kept balanced, achieving a steady-state cell number. Abnormalities in cell growth or cell death can lead to an overabundance of cells known as neoplasm or tumours. While the perception of cancer is often that of an uncontrollable rate of cell growth or increased proliferation, a decrease in cell death can also lead to tumour formation. Most cells when detached from their normal tissue die. However, cancer cells evade cell death, tipping the balance to an overabundance of cell number. Therefore, overcoming this resistance to cell death is a decisive factor in the treatment of cancer. Ion channels play a critical role in cancer in regards to cell proliferation, malignant angiogenesis, migration and metastasis. Additionally, ion channels are also known to be critical components of apoptosis. In this review, we discuss the modes of cell death focusing on the ability of cancer cells to evade apoptosis. Specifically, we focus on the role ion channels play in controlling and regulating life/death decisions and how they can be used to overcome resistance to apoptosis in the treatment of cancer.
Collapse
Affiliation(s)
- Carl D Bortner
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health, , Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
17
|
Laing B, Han DY, Ferguson LR. Candidate genes involved in beneficial or adverse responses to commonly eaten brassica vegetables in a New Zealand Crohn's disease cohort. Nutrients 2013; 5:5046-64. [PMID: 24352087 PMCID: PMC3875924 DOI: 10.3390/nu5125046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/22/2013] [Accepted: 11/29/2013] [Indexed: 12/20/2022] Open
Abstract
Crohn’s disease (CD) is one of the two manifestations of inflammatory bowel disease. Particular foods are thought with CD to exacerbate their illness. Vegetables, especially Brassicaceae, are often shunned by people with CD because of the negative effects they are alleged to have on their symptoms. Brassicaceae supply key nutrients which are necessary to meet recommended daily intakes. We sought to identify the candidate genes involved in the beneficial or adverse effects of Brassicaceae most commonly eaten, as reported by the New Zealand adults from the “Genes and Diet in Inflammatory Bowel disease Study” based in Auckland. An analysis of associations between the single nucleotide polymorphisms (SNPs) and the beneficial or adverse effects of the ten most commonly eaten Brassicaceae was carried out. A total of 37 SNPs were significantly associated with beneficial effects (p = 0.00097 to 0.0497) and 64 SNPs were identified with adverse effects (p = 0.0000751 to 0.049). After correcting for multiple testing, rs7515322 (DIO1) and rs9469220 (HLA) remained significant. Our findings show that the tolerance of some varieties of Brassicaceae may be shown by analysis of a person’s genotype.
Collapse
Affiliation(s)
- Bobbi Laing
- Discipline of Nutrition, School of Medical Sciences, Auckland University, 85 Park Road, Grafton Campus, Auckland 1142, New Zealand.
| | | | | |
Collapse
|
18
|
Huang L, Huang QY, Huang HQ. The evidence of HeLa cell apoptosis induced with tetraethylammonium using proteomics and various analytical methods. J Biol Chem 2013; 289:2217-29. [PMID: 24297172 DOI: 10.1074/jbc.m113.515932] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tetraethylammonium (TEA) is a potassium channel (KCh) blocker applied in the functional and pharmacological studies of the KChs. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, a colorimetric assay to quantitatively measure living cells, demonstrated that TEA reduced the HeLa cell viability dose-dependently. Flow cytometry analysis indicated an increased apoptosis rate of the HeLa cell after exposing to TEA. The patch clamp technique revealed that the K(+) current of the HeLa cell was inhibited up to 80% when exposed to TEA. In addition, quantitative real-time PCR approach set up cross-talk among the cytotoxicity of TEA, 4-aminopyridine, and anti-cancer drug such as cisplatin. Using comparative proteomics combined with MALDI-TOF MS/MS, 33 significantly changed proteins were found from TEA treatment group; among these proteins, 12 were up-regulated, and 21 were down-regulated. Here we indicated that these proteins were closely connected with many biological functions such as oxidative stress response, signal transduction, metabolism, protein synthesis, and degradation. Both Western blotting and quantitative real-time PCR approaches further verified these differential proteins. Ingenuity Pathways Analysis software, a tool to analyze "omics" data and model biological system, was applied to analyze the interaction pathways of these proteins. The subcellular locations of the differential proteins are also predicted from Uniprot. All results above can help in our understanding of the mechanism of TEA-induced cytotoxicity and provide potential cancer biomarkers. Various experimental results in this study (like those for cisplatin) indicated that TEA is not only a KCh blocker but also a potential anti-cancer drug.
Collapse
Affiliation(s)
- Lin Huang
- From the State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China and
| | | | | |
Collapse
|
19
|
Li H, Gao H, Bijukchhe SM, Wang Y, Li T. PIAS3 may represent a potential biomarker for diagnosis and therapeutic of human colorectal cancer. Med Hypotheses 2013; 81:1151-4. [PMID: 24120699 DOI: 10.1016/j.mehy.2013.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/30/2013] [Accepted: 09/15/2013] [Indexed: 01/22/2023]
Abstract
Colorectal cancer (CRC) is a challenging problem both for the developed and underdeveloped countries. Despite numerous improvements in early diagnosis and treatment, the incidence and mortality is still keeping in a high level. Molecule targeted therapy has drawn much attention as next generation anticancer agents for diagnosis and therapeutic of CRC. Protein Inhibitor of Activated Signal Transducer and Activators of Transcription 3 (PIAS3) as a novel biomarker has been focused to have a role in the development of malignancy, which was expressed at a higher level in most common malignancies compared with corresponding normal tissues. Furthermore, evidences suggest that the expression of PIAS3 can affect the growth of cancer cells by inhibiting the JAK/STAT and PI3-K/Akt signaling pathways or regulating its SUMO (small-ubiquitin like modifiers) ligase activity in some malignancy. Therefore, we hypothesized that PIAS3 may be a potential biomarker target for early cancer detection and therapeutic of human CRC.
Collapse
Affiliation(s)
- Heping Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital to Xinjiang Medical University, Urumqi 830054, China
| | | | | | | | | |
Collapse
|
20
|
Chen M, Sun HY, Hu P, Wang CF, Li BX, Li SJ, Li JJ, Tan HY, Gao TM. Activation of BKCa Channels Mediates Hippocampal Neuronal Death After Reoxygenation and Reperfusion. Mol Neurobiol 2013; 48:794-807. [DOI: 10.1007/s12035-013-8467-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/26/2013] [Indexed: 11/29/2022]
|
21
|
Novoselova TV, Rose RS, Marks HM, Sullivan JA. SUMOylation regulates the homologous to E6-AP carboxyl terminus (HECT) ubiquitin ligase Rsp5p. J Biol Chem 2013; 288:10308-17. [PMID: 23443663 DOI: 10.1074/jbc.m112.424234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The post-translational modifiers ubiquitin and small ubiquitin-related modifier (SUMO) regulate numerous critical signaling pathways and are key to controlling the cellular fate of proteins in eukaryotes. The attachment of ubiquitin and SUMO involves distinct, but related, machinery. However, it is now apparent that many substrates can be modified by both ubiquitin and SUMO and that some regulatory interaction takes place between the respective attachment machinery. Here, we demonstrate that the Saccharomyces cerevisiae ubiquitin ligase Rsp5p, a member of the highly conserved Nedd4 family of ubiquitin ligases, is SUMOylated in vivo. We further show that Rsp5p SUMOylation is mediated by the SUMO ligases Siz1p and Siz2p, members of the conserved family of PIAS SUMO ligases that are, in turn, substrates for Rsp5p-mediated ubiquitylation. Our experiments show that SUMOylated Rsp5p has reduced ubiquitin ligase activity, and similarly, ubiquitylated Siz1p demonstrates reduced SUMO ligase activity leading to respective changes in both ubiquitin-mediated sorting of the manganese transporter Smf1p and polySUMO chain formation. This reciprocal regulation of these highly conserved ligases represents an exciting and previously unidentified system of cross talk between the ubiquitin and SUMO systems.
Collapse
|
22
|
Social networking among voltage-activated potassium channels. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:269-302. [PMID: 23663972 DOI: 10.1016/b978-0-12-386931-9.00010-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Voltage-activated potassium channels (Kv channels) are ubiquitously expressed proteins that subserve a wide range of cellular functions. From their birth in the endoplasmic reticulum, Kv channels assemble from multiple subunits in complex ways that determine where they live in the cell, their biophysical characteristics, and their role in enabling different kinds of cells to respond to specific environmental signals to generate appropriate functional responses. This chapter describes the types of protein-protein interactions among pore-forming channel subunits and their auxiliary protein partners, as well as posttranslational protein modifications that occur in various cell types. This complex oligomerization of channel subunits establishes precise cell type-specific Kv channel localization and function, which in turn drives a diverse range of cellular signal transduction mechanisms uniquely suited to the physiological contexts in which they are found.
Collapse
|
23
|
Lehen'kyi V, Shapovalov G, Skryma R, Prevarskaya N. Ion channnels and transporters in cancer. 5. Ion channels in control of cancer and cell apoptosis. Am J Physiol Cell Physiol 2011; 301:C1281-9. [PMID: 21940667 DOI: 10.1152/ajpcell.00249.2011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ion channels contribute to virtually all basic cellular processes, including such crucial ones for maintaining tissue homeostasis as proliferation, differentiation, and apoptosis. The involvement of ion channels in regulation of programmed cell death, or apoptosis, has been known for at least three decades based on observation that classical blockers of ion channels can influence cell death rates, prolonging or shortening cell survival. Identification of the central role of these channels in regulation of cell cycle and apoptosis as well as the recent discovery that the expression of ion channels is not limited solely to the plasma membrane, but may also include membranes of internal compartments, has led researchers to appreciate the pivotal role of ion channels plays in development of cancer. This review focuses on the aspects of programmed cell death influenced by various ion channels and how dysfunctions and misregulations of these channels may affect the development and progression of different cancers.
Collapse
Affiliation(s)
- V'yacheslav Lehen'kyi
- Laboratory of Cell Physiology, INSERM U1003, Cité Scientifique, Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
24
|
Sumoylation of vimentin354 is associated with PIAS3 inhibition of glioma cell migration. Oncotarget 2011; 1:620-7. [PMID: 21317457 DOI: 10.18632/oncotarget.101101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The invasive phenotype of glioblastoma multiforme (GBM) is a hallmark of malignant process, yet the molecular mechanisms that dictate this locally invasive behavior remain poorly understood. Over-expression of PIAS3 effectively changes cell shape and inhibits GBM cell migration. We focused on the molecular target(s) of PIAS3 stimulated sumoylation, which play an important role in the inhibition of GBM cell motility. Here we report, through the immunoprecipitation with SUMO1 antibody, followed by proteomic analysis, the identification of vimentin (vimentin354), a nuclear component in GBM cells, as the main target of sumoylation promoted by PIAS3.
Collapse
|
25
|
Wang L, Zhang J, Banerjee S, Barnes L, Sajja V, Liu Y, Guo B, Du Y, Agarwal MK, Wald DN, Wang Q, Yang J. Sumoylation of vimentin354 is associated with PIAS3 inhibition of glioma cell migration. Oncotarget 2010; 1:620-627. [PMID: 21317457 PMCID: PMC3248133 DOI: 10.18632/oncotarget.196] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 11/10/2010] [Indexed: 11/25/2022] Open
Abstract
The invasive phenotype of glioblastoma multiforme (GBM) is a hallmark of malignant process, yet the molecular mechanisms that dictate this locally invasive behavior remain poorly understood. Over-expression of PIAS3 effectively changes cell shape and inhibits GBM cell migration. We focused on the molecular target(s) of PIAS3 stimulated sumoylation, which play an important role in the inhibition of GBM cell motility. Here we report, through the immunoprecipitation with SUMO1 antibody, followed by proteomic analysis, the identification of vimentin (vimentin354), a nuclear component in GBM cells, as the main target of sumoylation promoted by PIAS3.
Collapse
Affiliation(s)
- Liming Wang
- School of Life Science, Lanzhou University, Lanzhou, P. R. China
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, USA
| | | | - Sipra Banerjee
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, USA
| | - Laura Barnes
- Molecular Genetics, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, USA
| | - Venkateswara Sajja
- Molecular Genetics, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, USA
| | - Yiding Liu
- Department of Chemistry, Cleveland State University, Cleveland, USA
| | - Baochuan Guo
- Department of Chemistry, Cleveland State University, Cleveland, USA
| | - Yuping Du
- School of Life Science, Lanzhou University, Lanzhou, P. R. China
| | | | - David N. Wald
- Department of Pathology, Case Western Reserve University, Cleveland, USA
| | - Qin Wang
- School of Life Science, Lanzhou University, Lanzhou, P. R. China
| | - Jinbo Yang
- School of Life Science, Lanzhou University, Lanzhou, P. R. China
- Molecular Genetics, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, USA
| |
Collapse
|
26
|
Saydmohammed M, Joseph D, Syed V. Curcumin suppresses constitutive activation of STAT-3 by up-regulating protein inhibitor of activated STAT-3 (PIAS-3) in ovarian and endometrial cancer cells. J Cell Biochem 2010; 110:447-56. [PMID: 20235152 DOI: 10.1002/jcb.22558] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Signal transducer and activator of transcription-3 (STAT-3) is constitutively activated in ovarian and endometrial cancers and is implicated in uncontrolled cell growth. Thus, its disruption could be an effective approach to control tumorigenesis. Curcumin is a dihydroxyphenolic compound, with proven anti-cancer efficacy in various cancer models. We examined the anti-tumor mechanism of curcumin on STAT-3 and on the negative regulators of STAT-3, including suppressors of cytokine signaling proteins (SOCS-1 and SOCS-3), protein inhibitors of activated STAT (PIAS-1 and PIAS-3), and SH2 domain-containing phosphatases (SHP-1 and SHP-2) in ovarian and endometrial cancer cell lines. Treatment of cancer cells with curcumin induced a dose- and time-dependent decrease of constitutive IL-6 expression and of constitutive and IL-6-induced STAT-3 phosphorylation, which is associated with decreased cell viability and increased cleavage of caspase-3. The inhibition of STAT-3 activation by curcumin was reversible, and phosphorylated STAT-3 levels returned to control levels 24 h after curcumin removal. Compared to normal cells baseline expression of SOCS-3 was high in cancer cells and a marked decrease in SOCS-3 expression was seen following curcumin treatment. Overexpression of SOCS-3 in curcumin-treated cells increased expression of phosphorylated STAT-3 and resulted in increased cell viability. Normal ovarian and endometrial cells exhibited high expression of PIAS-3 protein, whereas in cancer cells the expression was greatly reduced. Curcumin increased PIAS-3 expression in cancer cells. Of significance, siRNA-mediated knockdown of PIAS-3 overcomes the inhibitory effect of curcumin on STAT-3 phosphorylation and cell viability. In conclusion, curcumin suppresses JAK-STAT signaling via activation of PIAS-3, thus attenuating STAT-3 phosphorylation and tumor cell growth.
Collapse
Affiliation(s)
- Manush Saydmohammed
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | | | |
Collapse
|
27
|
Abstract
Since the first discovery of Kvbeta-subunits more than 15 years ago, many more ancillary Kv channel subunits were characterized, for example, KChIPs, KCNEs, and BKbeta-subunits. The ancillary subunits are often integral parts of native Kv channels, which, therefore, are mostly multiprotein complexes composed of voltage-sensing and pore-forming Kvalpha-subunits and of ancillary or beta-subunits. Apparently, Kv channels need the ancillary subunits to fulfill their many different cell physiological roles. This is reflected by the large structural diversity observed with ancillary subunit structures. They range from proteins with transmembrane segments and extracellular domains to purely cytoplasmic proteins. Ancillary subunits modulate Kv channel gating but can also have a great impact on channel assembly, on channel trafficking to and from the cellular surface, and on targeting Kv channels to different cellular compartments. The importance of the role of accessory subunits is further emphasized by the number of mutations that are associated in both humans and animals with diseases like hypertension, epilepsy, arrhythmogenesis, periodic paralysis, and hypothyroidism. Interestingly, several ancillary subunits have in vitro enzymatic activity; for example, Kvbeta-subunits are oxidoreductases, or modulate enzymatic activity, i.e., KChIP3 modulates presenilin activity. Thus different modes of beta-subunit association and of functional impact on Kv channels can be delineated, making it difficult to extract common principles underlying Kvalpha- and beta-subunit interactions. We critically review present knowledge on the physiological role of ancillary Kv channel subunits and their effects on Kv channel properties.
Collapse
Affiliation(s)
- Olaf Pongs
- Institut für Neurale Signalverarbeitung, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany.
| | | |
Collapse
|
28
|
Borghouts C, Tittmann H, Delis N, Kirchenbauer M, Brill B, Groner B. The intracellular delivery of a recombinant peptide derived from the acidic domain of PIAS3 inhibits STAT3 transactivation and induces tumor cell death. Mol Cancer Res 2010; 8:539-53. [PMID: 20371673 DOI: 10.1158/1541-7786.mcr-09-0417] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Signaling components, which confer an "addiction" phenotype on cancer cells, represent promising drug targets. The transcription factor signal transducers and activators of transcription 3 (STAT3) is constitutively activated in many different types of tumor cells and its activity is indispensible in a large fraction. We found that the expression of the endogenous inhibitor of STAT3, protein inhibitor of activated STAT3 (PIAS3), positively correlates with STAT3 activation in normal cells. This suggests that PIAS3 controls the extent and the duration of STAT3 activity in normal cells and thus prevents its oncogenic function. In cancer cells, however, the expression of PIAS3 is posttranscriptionally suppressed, possibly enhancing the oncogenic effects of activated STAT3. We delimited the interacting domains of STAT3 and PIAS3 and identified a short fragment of the COOH-terminal acidic region of PIAS3, which binds strongly to the coiled-coil domain of STAT3. This PIAS3 fragment was used to derive the recombinant STAT3-specific inhibitor rPP-C8. The addition of a protein transduction domain allowed the efficient internalization of rPP-C8 into cancer cells. This resulted in the suppression of STAT3 target gene expression, in the inhibition of migration and proliferation, and in the induction of apoptosis at low concentrations [half maximal effective concentration (EC(50)), <3 micromol/L]. rPP-C8 did not affect normal fibroblasts and represents an interesting lead for the development of novel cancer drugs targeting the coiled-coil domain of STAT3.
Collapse
Affiliation(s)
- Corina Borghouts
- Institute for Biomedical Research, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Kralj M, Tusek-Bozić L, Frkanec L. Biomedical potentials of crown ethers: prospective antitumor agents. ChemMedChem 2009; 3:1478-92. [PMID: 18683175 DOI: 10.1002/cmdc.200800118] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Crown ethers are of enormous interest and importance in chemistry, biochemistry, materials science, catalysis, separation, transport and encapsulated processes, as well as in the design and synthesis of various synthetic systems with specific properties, diverse capabilities, and programmable functions. Classical crown ethers are macrocyclic polyethers that contain 3-20 oxygen atoms separated from each other by two or more carbon atoms. They are exceptionally versatile in selectively binding a range of metal ions and a variety of organic neutral and ionic species. Crown ethers are currently being studied and used in a variety of applications beyond their traditional place in chemistry. This review presents additional applications and the ever-increasing biomedical potentials of these intriguing compounds, with particular emphasis on the prospects of their relevance as anticancer agents. We believe that further research in this direction should be encouraged, as crown compounds could either induce toxicities that are different from those of conventional antitumor drugs, or complement drugs in current use, thereby providing a valuable adjunct to therapy.
Collapse
Affiliation(s)
- Marijeta Kralj
- Division of Molecular Medicine, Ruder Bosković Institute, Bijenicka cesta 54, 10002 Zagreb, Croatia.
| | | | | |
Collapse
|
30
|
Brantley EC, Nabors LB, Gillespie GY, Choi YH, Palmer CA, Harrison K, Roarty K, Benveniste EN. Loss of protein inhibitors of activated STAT-3 expression in glioblastoma multiforme tumors: implications for STAT-3 activation and gene expression. Clin Cancer Res 2008; 14:4694-704. [PMID: 18676737 DOI: 10.1158/1078-0432.ccr-08-0618] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE STATs activate transcription in response to numerous cytokines, controlling proliferation, gene expression, and apoptosis. Aberrant activation of STAT proteins, particularly STAT-3, is implicated in the pathogenesis of many cancers, including GBM, by promoting cell cycle progression, stimulating angiogenesis, and impairing tumor immune surveillance. Little is known about the endogenous STAT inhibitors, the PIAS proteins, in human malignancies. The objective of this study was to examine the expression of STAT-3 and its negative regulator, PIAS3, in human tissue samples from control and GBM brains. EXPERIMENTAL DESIGN Control and GBM human tissues were analyzed by immunoblotting and immunohistochemistry to determine the activation status of STAT-3 and expression of the PIAS3 protein. The functional consequence of PIAS3 inhibition by small interfering RNA or PIAS3 overexpression in GBM cells was determined by examining cell proliferation, STAT-3 transcriptional activity, and STAT-3 target gene expression. This was accomplished using [(3)H]TdR incorporation, STAT-3 dominant-negative constructs, reverse transcription-PCR, and immunoblotting. RESULTS AND CONCLUSIONS STAT-3 activation, as assessed by tyrosine and serine phosphorylation, was elevated in GBM tissue compared with control tissue. Interestingly, we observed expression of PIAS3 in control tissue, whereas PIAS3 protein expression in GBM tissue was greatly reduced. Inhibition of PIAS3 resulted in enhanced glioblastoma cellular proliferation. Conversely, PIAS3 overexpression inhibited STAT-3 transcriptional activity, expression of STAT-3-regulated genes, and cell proliferation. We propose that the loss of PIAS3 in GBM contributes to enhanced STAT-3 transcriptional activity and subsequent cell proliferation.
Collapse
Affiliation(s)
- Emily C Brantley
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Generelli S, Jacquemart R, de Rooij NF, Jolicoeur M, Koudelka-Hep M, Guenat OT. Potentiometric platform for the quantification of cellular potassium efflux. LAB ON A CHIP 2008; 8:1210-1215. [PMID: 18584100 DOI: 10.1039/b801042k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Renewed interest in the measurement of cellular K(+) effluxes has been prompted by the observation that potassium plays an active and important role in numerous key cellular events, in particular cell necrosis and apoptosis. Although necrosis and apoptosis follow different pathways, both induce intracellular potassium effluxes. Here, we report the use of potassium-selective microelectrodes located in a microfluidic platform for cell culture to monitor and quantify such effluxes in real time. Using this platform, we observed and measured the early signs of cell lysis induced by a modification of the extracellular osmolarity. Furthermore, we were able to quantify the number of dying cells by evaluating the extracellular potassium concentration. A comparison between the potentiometric measurement with a fluorescent live-dead assay performed under similar conditions revealed the delay between potassium effluxes and cell necrosis. These results suggest that such platforms may be exploited for applications, such as cytotoxicological screening assays or tumor cell proliferation assays, by using extracellular K(+) as cell death marker.
Collapse
Affiliation(s)
- Silvia Generelli
- Department of Engineering Physics and Biomedical Engineering Institute, Ecole Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, (Québec) H3C 3A7, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Brantley EC, Benveniste EN. Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Mol Cancer Res 2008; 6:675-84. [PMID: 18505913 PMCID: PMC3886801 DOI: 10.1158/1541-7786.mcr-07-2180] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glioblastoma is the most common and severe primary brain tumor in adults. Its aggressive and infiltrative nature renders the current therapeutics of surgical resection, radiation, and chemotherapy relatively ineffective. Accordingly, recent research has focused on the elucidation of various signal transduction pathways in glioblastoma, particularly aberrant activation. This review focuses on the signal transducer and activator of transcription-3 (STAT-3) signal transduction pathway in the context of this devastating tumor. STAT-3 is aberrantly activated in human glioblastoma tissues, and this activation is implicated in controlling critical cellular events thought to be involved in gliomagenesis, such as cell cycle progression, apoptosis, angiogenesis, and immune evasion. There are no reports of gain-of-function mutations in glioblastoma; rather, the activation of STAT-3 is thought to be a consequence of either dysregulation of upstream kinases or loss of endogenous inhibitors. This review provides detailed insight into the multiple mechanisms of STAT-3 activation in glioblastoma, as well as describing endogenous and chemical inhibitors of this pathway and their clinical significance. In glioblastoma, STAT-3 acts a molecular hub to link extracellular signals to transcriptional control of proliferation, cell cycle progression, and immune evasion. Because STAT-3 plays this central role in glioblastoma signal transduction, it has significant potential as a therapeutic target.
Collapse
Affiliation(s)
- Emily C Brantley
- Department of Cell Biology, 1918 University Boulevard, MCLM 395A, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA
| | | |
Collapse
|
33
|
Bortner CD, Cidlowski JA. Cell shrinkage and monovalent cation fluxes: role in apoptosis. Arch Biochem Biophys 2007; 462:176-88. [PMID: 17321483 PMCID: PMC1941616 DOI: 10.1016/j.abb.2007.01.020] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 01/18/2007] [Accepted: 01/23/2007] [Indexed: 12/25/2022]
Abstract
The loss of cell volume or cell shrinkage has been a morphological hallmark of the programmed cell death process known as apoptosis. This isotonic loss of cell volume has recently been term apoptotic volume decrease or AVD to distinguish it from inherent volume regulatory responses that occurs in cells under anisotonic conditions. Recent studies examining the intracellular signaling pathways that result in this unique cellular characteristic have determined that a fundamental movement of ions, particularly monovalent ions, underlie the AVD process and plays an important role on controlling the cell death process. An efflux of intracellular potassium was shown to be a critical aspect of the AVD process, as preventing this ion loss could protect cells from apoptosis. However, potassium plays a complex role as a loss of intracellular potassium has also been shown to be beneficial to the health of the cell. Additionally, the mechanisms that a cell employs to achieve this loss of intracellular potassium vary depending on the cell type and stimulus used to induce apoptosis, suggesting multiple ways exist to accomplish the same goal of AVD. Additionally, sodium and chloride have been shown to play a vital role during cell death in both the signaling and control of AVD in various apoptotic model systems. This review examines the relationship between this morphological change and intracellular monovalent ions during apoptosis.
Collapse
Affiliation(s)
- Carl D Bortner
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
34
|
Prevarskaya N, Skryma R, Bidaux G, Flourakis M, Shuba Y. Ion channels in death and differentiation of prostate cancer cells. Cell Death Differ 2007; 14:1295-304. [PMID: 17479110 DOI: 10.1038/sj.cdd.4402162] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Plasma membrane ion channels contribute to virtually all basic cellular processes, including such crucial ones for maintaining tissue homeostasis as proliferation, differentiation, and apoptosis. Enhanced proliferation, aberrant differentiation, and impaired ability to die are the prime reasons for abnormal tissue growth, which can eventually turn into uncontrolled expansion and invasion, characteristic of cancer. Prostate cancer (PCa) cells express a variety of plasma membrane ion channels. By providing the influx of essential signaling ions, perturbing intracellular ion concentrations, regulating cell volume, and maintaining membrane potential, PCa cells are critically involved in proliferation, differentiation, and apoptosis. PCa cells of varying metastatic ability can be distinguished by their ion channel characteristics. Increased malignancy and invasiveness of androgen-independent PCa cells is generally associated with the shift to a 'more excitable' phenotype of their plasma membrane. This shift is manifested by the appearance of voltage-gated Na(+) and Ca(2+) channels which contribute to their enhanced apoptotic resistance together with downregulated store-operated Ca(2+) influx, altered expression of different K(+) channels and members of the Transient Receptor Potential (TRP) channel family, and strengthened capability for maintaining volume constancy. The present review examines channel types expressed by PCa cells and their involvement in metastatic behaviors.
Collapse
Affiliation(s)
- N Prevarskaya
- Laboratoire de Physiologie Cellulaire, Equipe labellisée par la Ligue contre le cancer, INSERM U800, Université de Lille 1, Villeneuve d'Ascq F-59650, France.
| | | | | | | | | |
Collapse
|
35
|
Marjanović M, Kralj M, Supek F, Frkanec L, Piantanida I, Smuc T, Tusek-Bozić L. Antitumor Potential of Crown Ethers: Structure−Activity Relationships, Cell Cycle Disturbances, and Cell Death Studies of a Series of Ionophores. J Med Chem 2007; 50:1007-18. [PMID: 17300184 DOI: 10.1021/jm061162u] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present paper demonstrates the antiproliferative ability and structure-activity relationships (SAR) of 14 crown and aza-crown ether analogues on five tumor-cell types. The most active compounds were di-tert-butyldicyclohexano-18-crown-6 (3), which exhibited cytotoxicity in the submicromolar range, and di-tert-butyldibenzo-18-crown-6 (5) (IC50 values of approximately 2 microM). Also, 3 and 5 induced marked influence on the cell cycle phase distribution--strong G1 arrest, followed by the induction of apoptosis. A computational SAR modeling effort offers insight into possible mechanisms of crown ether biological activity, presumably involving penetration into cell membranes, and points out structural features of molecules important for this activity. The results reveal that crown ethers possess marked tumor-cell growth inhibitory activity, the extent of which depends on the characteristics of the hydrophilic macrocylic cavity and the surrounding hydrophobic ring. Our work supports the hypothesis that crown ether compounds inhibit tumor-cell growth by disrupting potassium ion homeostasis, which in turn leads to cell cycle perturbations and apoptosis.
Collapse
Affiliation(s)
- Marko Marjanović
- Laboratory of Functional Genomics, Rudjer Bosković Institute, Bijenicka cesta 54, P.O. Box 180, HR-10002 Zagreb, Croatia
| | | | | | | | | | | | | |
Collapse
|
36
|
Benson MD, Li QJ, Kieckhafer K, Dudek D, Whorton MR, Sunahara RK, Iñiguez-Lluhí JA, Martens JR. SUMO modification regulates inactivation of the voltage-gated potassium channel Kv1.5. Proc Natl Acad Sci U S A 2007; 104:1805-10. [PMID: 17261810 PMCID: PMC1794304 DOI: 10.1073/pnas.0606702104] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Indexed: 11/18/2022] Open
Abstract
The voltage-gated potassium (Kv) channel Kv1.5 mediates the I(Kur) repolarizing current in human atrial myocytes and regulates vascular tone in multiple peripheral vascular beds. Understanding the complex regulation of Kv1.5 function is of substantial interest because it represents a promising pharmacological target for the treatment of atrial fibrillation and hypoxic pulmonary hypertension. Herein we demonstrate that posttranslational modification of Kv1.5 by small ubiquitin-like modifier (SUMO) proteins modulates Kv1.5 function. We have identified two membrane-proximal and highly conserved cytoplasmic sequences in Kv1.5 that conform to established SUMO modification sites in transcription factors. We find that Kv1.5 interacts specifically with the SUMO-conjugating enzyme Ubc9 and is a target for modification by SUMO-1, -2, and -3 in vivo. In addition, purified recombinant Kv1.5 serves as a substrate in a minimal in vitro reconstituted SUMOylation reaction. The SUMO-specific proteases SENP2 and Ulp1 efficiently deconjugate SUMO from Kv1.5 in vivo and in vitro, and disruption of the two identified target motifs results in a loss of the major SUMO-conjugated forms of Kv1.5. In whole-cell patch-clamp electrophysiological studies, loss of Kv1.5 SUMOylation, by either disruption of the conjugation sites or expression of the SUMO protease SENP2, leads to a selective approximately 15-mV hyperpolarizing shift in the voltage dependence of steady-state inactivation. Reversible control of voltage-sensitive channels through SUMOylation constitutes a unique and likely widespread mechanism for adaptive tuning of the electrical excitability of cells.
Collapse
Affiliation(s)
- Mark D. Benson
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-0632
| | - Qiu-Ju Li
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-0632
| | - Katherine Kieckhafer
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-0632
| | - David Dudek
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-0632
| | - Matthew R. Whorton
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-0632
| | - Roger K. Sunahara
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-0632
| | - Jorge A. Iñiguez-Lluhí
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-0632
| | - Jeffrey R. Martens
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-0632
| |
Collapse
|
37
|
Ogata Y, Osaki T, Naka T, Iwahori K, Furukawa M, Nagatomo I, Kijima T, Kumagai T, Yoshida M, Tachibana I, Kawase I. Overexpression of PIAS3 suppresses cell growth and restores the drug sensitivity of human lung cancer cells in association with PI3-K/Akt inactivation. Neoplasia 2006; 8:817-25. [PMID: 17032498 PMCID: PMC1715929 DOI: 10.1593/neo.06409] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Constitutively activated signal transducers and activators of transcription (STAT) are reported to cause uncontrolled transmission of growth signals. In this study, we analyzed the roles of an inhibitor of STAT, protein inhibitor of activated STAT (PIAS) 3, in the development of lung cancer. Treatment with an inhibitor of phosphatidylinositol 3-kinase, LY294002, retarded the growth of human lung cancer cells and rendered them more sensitive to chemotherapeutic agents. However, the inhibition of JAK/STAT by AG490 significantly suppressed cell growth but did not increase drug sensitivity at all. Overexpression of PIAS3 not only significantly inhibited cell growth but also rendered cancer cells up to 12.0-fold more sensitive to the above drugs, which was associated with the suppression of Akt phosphorylation. Inhibition of PIAS3 with small interfering RNA, nevertheless, led cancer cells to accelerate cell proliferation, deteriorate chemosensitivity, and augment Akt phosphorylation. Although the overexpression of suppressors of cytokine signaling 3 in cancer cells also inhibited cell growth and STAT3 phosphorylation, it neither increased sensitivity to chemotherapeutic drugs nor affected the phosphorylation of Akt. These results indicate that PIAS3 may be an attractive candidate for targeting the JAK/STAT and PI3-K/Akt signaling pathways in cancer treatment.
Collapse
Affiliation(s)
- Yoshitaka Ogata
- Department of Respiratory Medicine, Allergy, and Rheumatic Diseases, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fantozzi I, Platoshyn O, Wong AH, Zhang S, Remillard CV, Furtado MR, Petrauskene OV, Yuan JXJ. Bone morphogenetic protein-2 upregulates expression and function of voltage-gated K+ channels in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2006; 291:L993-1004. [PMID: 16815889 DOI: 10.1152/ajplung.00191.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activity of voltage-gated K(+) (K(V)) channels in pulmonary artery smooth muscle cells (PASMC) plays an important role in control of apoptosis and proliferation in addition to regulating membrane potential and pulmonary vascular tone. Bone morphogenetic proteins (BMPs) inhibit proliferation and induce apoptosis in normal human PASMC, whereas dysfunctional BMP signaling and downregulated K(V) channels are involved in pulmonary vascular medial hypertrophy associated with pulmonary hypertension. This study evaluated the effect of BMP-2 on K(V) channel function and expression in normal human PASMC. BMP-2 (100 nM for 18-24 h) significantly (>2-fold) upregulated mRNA expression of KCNA5, KCNA7, KCNA10, KCNC3, KCNC4, KCNF1, KCNG3, KCNS1, and KCNS3 but downregulated (at least 2-fold) KCNAB1, KCNA2, KCNG2, and KCNV2. The most dramatic change was the >10-fold downregulation of KCNG2 and KCNV2, two electrically silent gamma-subunits that form heterotetramers with functional K(V) channel alpha-subunits (e.g., KCNB1-2). Furthermore, the amplitude and current density of whole cell K(V) currents were significantly increased in PASMC treated with BMP-2. It has been demonstrated that K(+) currents generated by KCNB1 and KCNG1 (or KCNG2) or KCNB1 and KCNV2 heterotetramers are smaller than those generated by KCNB1 homotetramers, indicating that KCNG2 and KCNV2 (2 subunits that were markedly downregulated by BMP-2) are inhibitors of functional K(V) channels. These results suggest that BMP-2 divergently regulates mRNA expression of various K(V) channel alpha-, beta-, and gamma-subunits and significantly increases whole cell K(V) currents in human PASMC. Finally, we present evidence that attenuation of c-Myc expression by BMP-2 may be involved in BMP-2-mediated increase in K(V) channel activity and regulation of K(V) channel expression. The increased K(V) channel activity may be involved in the proapoptotic and/or antiproliferative effects of BMP-2 on PASMC.
Collapse
MESH Headings
- Apoptosis/physiology
- Bone Morphogenetic Protein 2
- Bone Morphogenetic Proteins/metabolism
- Bone Morphogenetic Proteins/pharmacology
- Cells, Cultured
- Gene Expression/drug effects
- Gene Expression/physiology
- Humans
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Patch-Clamp Techniques
- Potassium/metabolism
- Potassium Channels, Voltage-Gated/genetics
- Potassium Channels, Voltage-Gated/metabolism
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Pulmonary Artery/cytology
- Pulmonary Artery/drug effects
- Pulmonary Artery/physiology
- RNA, Messenger/metabolism
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta/pharmacology
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Ivana Fantozzi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Diego, 9500 Gilman Drive, MC 0725, La Jolla, 92093-0725, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Basu A, Castle VP, Bouziane M, Bhalla K, Haldar S. Crosstalk between extrinsic and intrinsic cell death pathways in pancreatic cancer: synergistic action of estrogen metabolite and ligands of death receptor family. Cancer Res 2006; 66:4309-18. [PMID: 16618756 DOI: 10.1158/0008-5472.can-05-2657] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
2-Methoxyestradiol is a physiologic metabolite of 17beta-estradiol. This orally active compound can inhibit tumor growth or metastasis in tumor models without inducing any clinical sign of toxicity. Our previous studies indicated that 2-methoxyestradiol-mediated apoptosis involves the disappearance of intact 21-kDa Bid protein, cytochrome c release, and predominant procaspase-3 cleavage. Here, using MIA PaCa-2 cells as a model, we investigated whether this estrogen metabolite induces apoptosis by converging two major pathways: the death receptor-mediated extrinsic and the mitochondrial intrinsic pathway. Exogenous expression of dominant-negative caspase-8 or dominant-negative FADD reverts the effect of 2-methoxyestradiol-mediated cell death. In parallel with this observation, Z-IETD-FMK, a cell permeable irreversible inhibitor of caspase-8, can render significant protection against 2-methoxyestradiol-induced apoptosis. RNase protection assay and cell surface receptor analysis by flow cytometry show the up-regulation of members of death receptor family in 2-methoxyestradiol-exposed pancreatic cancer cells. Our mechanistic studies also implicate that oxidative stress precedes 2-methoxyestradiol-mediated c-Jun NH2-terminal kinase activation, leading to elevated Fas level. Because 2-methoxyestradiol is able to trigger death receptor signaling, we were interested in examining the effects of 2-methoxyestradiol and Fas ligand (FasL)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) together on pancreatic cancer cell death. Interestingly, the endogenous angiogenesis inhibitor 2-methoxyestradiol augments FasL/TRAIL-induced apoptosis in these cells. Moreover, the combination of 2-methoxyestradiol and TRAIL reduces the tumor burden in vivo in MIA PaCa-2 tumor xenograft model by caspase-3 activation.
Collapse
Affiliation(s)
- Aruna Basu
- Department of Pharmacology, Case Comprehensive Cancer Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio 44109, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
A proper rate of programmed cell death or apoptosis is required to maintain normal tissue homeostasis. In disease states such as cancer and some forms of hypertension, apoptosis is blocked, resulting in hyperplasia. In neurodegenerative diseases, uncontrolled apoptosis leads to loss of brain tissue. The flow of ions in and out of the cell and its intracellular organelles is becoming increasingly linked to the generation of many of these diseased states. This review focuses on the transport of K(+) across the cell membrane and that of the mitochondria via integral K(+)-permeable channels. We describe the different types of K(+) channels that have been identified, and investigate the roles they play in controlling the different phases of apoptosis: early cell shrinkage, cytochrome c release, caspase activation, and DNA fragmentation. Attention is also given to K(+) channels on the inner mitochondrial membrane, whose activity may underlie anti- or pro-apoptotic mechanisms in neurons and cardiomyocytes.
Collapse
Affiliation(s)
- E D Burg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0725, La Jolla, 92093-0725, USA
| | | | | |
Collapse
|
41
|
Abstract
The heart is a rhythmic electromechanical pump, the functioning of which depends on action potential generation and propagation, followed by relaxation and a period of refractoriness until the next impulse is generated. Myocardial action potentials reflect the sequential activation and inactivation of inward (Na(+) and Ca(2+)) and outward (K(+)) current carrying ion channels. In different regions of the heart, action potential waveforms are distinct, owing to differences in Na(+), Ca(2+), and K(+) channel expression, and these differences contribute to the normal, unidirectional propagation of activity and to the generation of normal cardiac rhythms. Changes in channel functioning, resulting from inherited or acquired disease, affect action potential repolarization and can lead to the generation of life-threatening arrhythmias. There is, therefore, considerable interest in understanding the mechanisms that control cardiac repolarization and rhythm generation. Electrophysiological studies have detailed the properties of the Na(+), Ca(2+), and K(+) currents that generate cardiac action potentials, and molecular cloning has revealed a large number of pore forming (alpha) and accessory (beta, delta, and gamma) subunits thought to contribute to the formation of these channels. Considerable progress has been made in defining the functional roles of the various channels and in identifying the alpha-subunits encoding these channels. Much less is known, however, about the functioning of channel accessory subunits and/or posttranslational processing of the channel proteins. It has also become clear that cardiac ion channels function as components of macromolecular complexes, comprising the alpha-subunits, one or more accessory subunit, and a variety of other regulatory proteins. In addition, these macromolecular channel protein complexes appear to interact with the actin cytoskeleton and/or the extracellular matrix, suggesting important functional links between channel complexes, as well as between cardiac structure and electrical functioning. Important areas of future research will be the identification of (all of) the molecular components of functional cardiac ion channels and delineation of the molecular mechanisms involved in regulating the expression and the functioning of these channels in the normal and the diseased myocardium.
Collapse
Affiliation(s)
- Jeanne M Nerbonne
- Dept. of Molecular Biology and Pharmacology, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|
42
|
Crane JK, Vezina CM. Externalization of host cell protein kinase C during enteropathogenic Escherichia coli infection. Cell Death Differ 2005; 12:115-27. [PMID: 15578063 DOI: 10.1038/sj.cdd.4401531] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a common cause of diarrhea in children in developing countries. Protein kinase C (PKC), a serine- and threonine-directed protein kinase, is rapidly activated following EPEC infection and this is accompanied by its translocation to a membrane-bound location where it is tightly bound to phosphatidylserine (PS). EPEC infection causes host cell death, one of whose features is externalization of PS. We hypothesized that externalization of PS would be accompanied by externalization of PKC as well. We report that EPEC infection triggers the externalization of PKC to the outer surface of the host cell. Ecto-PKC remains firmly tethered to the cell but can be released by incubation with peptide or protein substrates for the enzyme. Ecto-PKC is intact and biologically active and able to phosphorylate protein substrates on the surface of the host cell. Phosphorylation of whole EPEC bacteria or EPEC-secreted proteins could not be detected. Externalization of PKC could be reproduced by the combination of an apoptotic stimulus (ultraviolet (UV) irradiation) and phorbol myristate acetate (PMA), a procedure which resulted in externalization of >25% of the total cellular content of PKC-alpha. In the presence of ATP, ecto-PKC inhibited UV-induced cell shrinkage, membrane blebbing, and propidium iodide uptake but not the activation of caspases 3 and 7. This is the first report that expression of an ecto-protein kinase is altered by a microbial pathogen and the first to note that externalization of PKC can accompany apoptosis.
Collapse
Affiliation(s)
- J K Crane
- Department of Medicine, University at Buffalo, Buffalo, NY, USA.
| | | |
Collapse
|
43
|
Abstract
Small ubiquitin-related modifier (SUMO) family proteins function by becoming covalently attached to other proteins as post-translational modifications. SUMO modifies many proteins that participate in diverse cellular processes, including transcriptional regulation, nuclear transport, maintenance of genome integrity, and signal transduction. Reversible attachment of SUMO is controlled by an enzyme pathway that is analogous to the ubiquitin pathway. The functional consequences of SUMO attachment vary greatly from substrate to substrate, and in many cases are not understood at the molecular level. Frequently SUMO alters interactions of substrates with other proteins or with DNA, but SUMO can also act by blocking ubiquitin attachment sites. An unusual feature of SUMO modification is that, for most substrates, only a small fraction of the substrate is sumoylated at any given time. This review discusses our current understanding of how SUMO conjugation is controlled, as well as the roles of SUMO in a number of biological processes.
Collapse
Affiliation(s)
- Erica S Johnson
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|
44
|
Henke G, Maier G, Wallisch S, Boehmer C, Lang F. Regulation of the voltage gated K+ channel Kv1.3 by the ubiquitin ligase Nedd4-2 and the serum and glucocorticoid inducible kinase SGK1. J Cell Physiol 2004; 199:194-9. [PMID: 15040001 DOI: 10.1002/jcp.10430] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The stimulation of cell proliferation by insulin like growth factor IGF-1 has previously been shown to depend on activation of voltage gated K(+) channels. The signaling involved in activation of voltage gated K(+) channel Kv1.3 includes the phosphatidylinositol-3 (PI3) protein kinase, 3-phosphoinositide dependent protein kinase PDK1 and the serum and glucocorticoid inducible kinase SGK1. However, nothing is known about mechanisms mediating the stimulation of Kv1.3 by SGK1. Most recently, SGK1 has been shown to phosphorylate and thus inactivate the ubiquitin ligase Nedd4-2. The present study has been performed to explore whether the regulation of Kv1.3 involves Nedd4-2. To this end Kv1.3 has been expressed in Xenopus oocytes with or without coexpression of Nedd4-2 and/or constitutively active (S422D)SGK1. In oocytes expressing Kv1.3 but not in water injected oocytes, depolarization from a holding potential of -80 mV to +20 mV triggers rapidly inactivating currents typical for Kv1.3. Coexpression of Nedd4-2 decreases, coexpression of (S422D)SGK1 enhances the currents significantly. The effects of either Nedd4-2 or of SGK1 are abrogated by destruction of the respective catalytic subunits ((C938S)Nedd4-2 or (K127N)SGK1). Further experiments revealed that wild type SGK1 and SGK3 and to a lesser extent SGK2 are similarly effective in stimulating Kv1.3 in both, presence and absence of Nedd4-2. It is concluded that Kv1.3 is downregulated by Nedd4-2 and stimulates by SGK1, SGK2, and SGK3. The data thus disclose a novel mechanism of Kv1.3 channel regulation.
Collapse
Affiliation(s)
- G Henke
- Department of Physiology, University of Tubingen, Tubingen, Germany
| | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Jane B Trepel
- Medical Oncology Clinical Research Unit, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
46
|
Abstract
Post-translational modification with the ubiquitin-like SUMO protein is involved in the regulation of many cellular key processes. The SUMO system modulates signal transduction pathways, including cytokine, Wnt, growth factor and steroid hormone signalling. SUMO frequently restrains the activity of downstream transcription factors in these pathways presumably by facilitating the recruitment of corepressors or mediating the assembly of repressor complexes. Additionally, evidence is accumulating that SUMO controls pathways important for the surveillance of genome integrity. SUMO regulates the PML/p53 tumour suppressor network, a key determinant in the cellular response to DNA damage. Moreover, proteins that maintain genomic stability by functioning at the interface between DNA replication, recombination and repair processes undergo SUMOylation. We will discuss some key findings that exemplify the role of SUMO in transcriptional regulation and genome surveillance.
Collapse
Affiliation(s)
- Stefan Müller
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| | | | | |
Collapse
|
47
|
Remillard CV, Yuan JXJ. Activation of K+ channels: an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol 2004; 286:L49-67. [PMID: 14656699 DOI: 10.1152/ajplung.00041.2003] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell apoptosis and proliferation are two counterparts in sharing the responsibility for maintaining normal tissue homeostasis. In recent years, the process of the programmed cell death has gained much interest because of its influence on malignant cell growth and other pathological states. Apoptosis is characterized by a distinct series of morphological and biochemical changes that result in cell shrinkage, DNA breakdown, and, ultimately, phagocytic death. Diverse external and internal stimuli trigger apoptosis, and enhanced K+ efflux has been shown to be an essential mediator of not only early apoptotic cell shrinkage, but also of downstream caspase activation and DNA fragmentation. The goal of this review is to discuss the role(s) played by K+ transport or flux across the plasma membrane in the regulation of the apoptotic volume decrease and apoptosis. Attention has also been paid to the role of inner mitochondrial membrane ion transport in the regulation of mitochondrial permeability and apoptosis. We provide specific examples of how deregulation of the apoptotic process contributes to pulmonary arterial medial hypertrophy, a major pathological feature in patients with pulmonary arterial hypertension. Finally, we discuss the targeting of K+ channels as a potential therapeutic tool in modulating apoptosis to maintain the balance between cell proliferation and cell death that is essential to the normal development and function of an organism.
Collapse
Affiliation(s)
- Carmelle V Remillard
- Division of Pulmonary and Critical Care Medicine, Dep[artment of Medicine, School of Medicine, University of California, San Diego, 92103-8382, USA
| | | |
Collapse
|
48
|
Affiliation(s)
- Ke Shuai
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
49
|
Duval D, Duval G, Kedinger C, Poch O, Boeuf H. The 'PINIT' motif, of a newly identified conserved domain of the PIAS protein family, is essential for nuclear retention of PIAS3L. FEBS Lett 2003; 554:111-8. [PMID: 14596924 DOI: 10.1016/s0014-5793(03)01116-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PIAS proteins, cytokine-dependent STAT-associated repressors, exhibit intrinsic E3-type SUMO ligase activities and form a family of transcriptional modulators. Three conserved domains have been identified so far in this protein family, the SAP box, the MIZ-Zn finger/RING module and the acidic C-terminal domain, which are essential for protein interactions, DNA binding or SUMO ligase activity. We have identified a novel conserved domain of 180 residues in PIAS proteins and shown that its 'PINIT' motif as well as other conserved motifs (in the SAP box and in the RING domain) are independently involved in nuclear retention of PIAS3L, the long form of PIAS3, that we have characterized in mouse embryonic stem cells.
Collapse
Affiliation(s)
- D Duval
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, P.O. Box 10142, C.U. de Strasbourg, 67404 Illkirch, France
| | | | | | | | | |
Collapse
|
50
|
Abstract
Programmed cell death or apoptosis is broadly responsible for the normal homeostatic removal of cells and has been increasingly implicated in mediating pathological cell loss in many disease states. As the molecular mechanisms of apoptosis have been extensively investigated a critical role for ionic homeostasis in apoptosis has been recently endorsed. In contrast to the ionic mechanism of necrosis that involves Ca(2+) influx and intracellular Ca(2+) accumulation, compelling evidence now indicates that excessive K(+) efflux and intracellular K(+) depletion are key early steps in apoptosis. Physiological concentration of intracellular K(+) acts as a repressor of apoptotic effectors. A huge loss of cellular K(+), likely a common event in apoptosis of many cell types, may serve as a disaster signal allowing the execution of the suicide program by activating key events in the apoptotic cascade including caspase cleavage, cytochrome c release, and endonuclease activation. The pro-apoptotic disruption of K(+) homeostasis can be mediated by over-activated K(+) channels or ionotropic glutamate receptor channels, and most likely, accompanied by reduced K(+) uptake due to dysfunction of Na(+), K(+)-ATPase. Recent studies indicate that, in addition to the K(+) channels in the plasma membrane, mitochondrial K(+) channels and K(+) homeostasis also play important roles in apoptosis. Investigations on the K(+) regulation of apoptosis have provided a more comprehensive understanding of the apoptotic mechanism and may afford novel therapeutic strategies for apoptosis-related diseases.
Collapse
Affiliation(s)
- Shan Ping Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, Medical University of South Carolina, 280 Calhoun Street, PO Box 250140, Charleston, SC 29425, USA.
| |
Collapse
|