1
|
Leguay K, Kent OA. Dynamic Coupling of MAPK Signaling to the Guanine Nucleotide Exchange Factor GEF-H1. Onco Targets Ther 2025; 18:147-159. [PMID: 39882405 PMCID: PMC11776410 DOI: 10.2147/ott.s496228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/18/2025] [Indexed: 01/31/2025] Open
Abstract
The KRAS gene is nearly ubiquitously subjected to activating mutation in pancreatic adenocarcinomas (PDAC), occurring at a frequency of over 90% in tumors. Mutant KRAS drives sustained signaling through the MAPK pathway to affect frequently disrupted cancer phenotypes including transcription, proliferation and cell survival. Recent research has shown that PDAC tumor growth and survival required a guanine nucleotide exchange factor for RAS homolog family member A (RhoA) called GEF-H1. The GEF-H1 protein, encoded by the ARHGEF2 gene, is a microtubule-associated GEF for RhoA that promotes invasion-migration of PDAC cells via activation of RhoA. Unexpectedly, independent of its RhoGEF activity, GEF-H1 was found to potentiate MAPK signaling by scaffolding protein phosphatase 2A (PP2A) to the kinase suppressor of Ras 1 (KSR-1). In a feedback-dependent manner, enhanced MAPK activity drives expression of ARHGEF2 via regulation of transcription factors ETS and SP, and the RAS responsive element-binding protein 1 (RREB1). RREB1 a negative regulator of ARHGEF2 expression, is downregulated in PDAC cells, which permits sustained expression of GEF-H1 for PDAC tumor survival and subsequent MAPK pathway activation. Given that MAPK targeted therapies show limited clinical efficacy, highlights the need for novel targets. This review describes the unexpected complexity of GEF-H1 function leading to positive feedback that potentiates RAS-MAPK signaling and suggests inhibition of GEF-H1 as a therapeutic strategy for RAS-driven cancers.
Collapse
Affiliation(s)
- Kévin Leguay
- Department of Pharmacology, adMare BioInnovations, Montréal, Quebec, H4S 1Z9, Canada
| | - Oliver A Kent
- Department of Pharmacology, adMare BioInnovations, Montréal, Quebec, H4S 1Z9, Canada
| |
Collapse
|
2
|
Casacuberta-Serra S, González-Larreategui Í, Capitán-Leo D, Soucek L. MYC and KRAS cooperation: from historical challenges to therapeutic opportunities in cancer. Signal Transduct Target Ther 2024; 9:205. [PMID: 39164274 PMCID: PMC11336233 DOI: 10.1038/s41392-024-01907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
RAS and MYC rank amongst the most commonly altered oncogenes in cancer, with RAS being the most frequently mutated and MYC the most amplified. The cooperative interplay between RAS and MYC constitutes a complex and multifaceted phenomenon, profoundly influencing tumor development. Together and individually, these two oncogenes regulate most, if not all, hallmarks of cancer, including cell death escape, replicative immortality, tumor-associated angiogenesis, cell invasion and metastasis, metabolic adaptation, and immune evasion. Due to their frequent alteration and role in tumorigenesis, MYC and RAS emerge as highly appealing targets in cancer therapy. However, due to their complex nature, both oncogenes have been long considered "undruggable" and, until recently, no drugs directly targeting them had reached the clinic. This review aims to shed light on their complex partnership, with special attention to their active collaboration in fostering an immunosuppressive milieu and driving immunotherapeutic resistance in cancer. Within this review, we also present an update on the different inhibitors targeting RAS and MYC currently undergoing clinical trials, along with their clinical outcomes and the different combination strategies being explored to overcome drug resistance. This recent clinical development suggests a paradigm shift in the long-standing belief of RAS and MYC "undruggability", hinting at a new era in their therapeutic targeting.
Collapse
Affiliation(s)
| | - Íñigo González-Larreategui
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Daniel Capitán-Leo
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain.
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
3
|
Mukhopadhyay S, Huang HY, Lin Z, Ranieri M, Li S, Sahu S, Liu Y, Ban Y, Guidry K, Hu H, Lopez A, Sherman F, Tan YJ, Lee YT, Armstrong AP, Dolgalev I, Sahu P, Zhang T, Lu W, Gray NS, Christensen JG, Tang TT, Velcheti V, Khodadadi-Jamayran A, Wong KK, Neel BG. Genome-Wide CRISPR Screens Identify Multiple Synthetic Lethal Targets That Enhance KRASG12C Inhibitor Efficacy. Cancer Res 2023; 83:4095-4111. [PMID: 37729426 PMCID: PMC10841254 DOI: 10.1158/0008-5472.can-23-2729] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
UNLABELLED Non-small lung cancers (NSCLC) frequently (∼30%) harbor KRAS driver mutations, half of which are KRASG12C. KRAS-mutant NSCLC with comutated STK11 and/or KEAP1 is particularly refractory to conventional, targeted, and immune therapy. Development of KRASG12C inhibitors (G12Ci) provided a major therapeutic advance, but resistance still limits their efficacy. To identify genes whose deletion augments efficacy of the G12Cis adagrasib (MRTX-849) or adagrasib plus TNO155 (SHP2i), we performed genome-wide CRISPR/Cas9 screens on KRAS/STK11-mutant NSCLC lines. Recurrent, potentially targetable, synthetic lethal (SL) genes were identified, including serine-threonine kinases, tRNA-modifying and proteoglycan synthesis enzymes, and YAP/TAZ/TEAD pathway components. Several SL genes were confirmed by siRNA/shRNA experiments, and the YAP/TAZ/TEAD pathway was extensively validated in vitro and in mice. Mechanistic studies showed that G12Ci treatment induced gene expression of RHO paralogs and activators, increased RHOA activation, and evoked ROCK-dependent nuclear translocation of YAP. Mice and patients with acquired G12Ci- or G12Ci/SHP2i-resistant tumors showed strong overlap with SL pathways, arguing for the relevance of the screen results. These findings provide a landscape of potential targets for future combination strategies, some of which can be tested rapidly in the clinic. SIGNIFICANCE Identification of synthetic lethal genes with KRASG12C using genome-wide CRISPR/Cas9 screening and credentialing of the ability of TEAD inhibition to enhance KRASG12C efficacy provides a roadmap for combination strategies. See related commentary by Johnson and Haigis, p. 4005.
Collapse
Affiliation(s)
- Suman Mukhopadhyay
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Hsin-Yi Huang
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Ziyan Lin
- Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, United States
| | - Michela Ranieri
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Shuai Li
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Soumyadip Sahu
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Yingzhuo Liu
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Yi Ban
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Kayla Guidry
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Hai Hu
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Alfonso Lopez
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Fiona Sherman
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Yi Jer Tan
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Yeuan Ting Lee
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Amanda P. Armstrong
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Igor Dolgalev
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Priyanka Sahu
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, California, United States
| | - Wenchao Lu
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, California, United States
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, California, United States
| | | | - Tracy T. Tang
- Vivace Therapeutics, Inc., San Mateo, California, United States
| | - Vamsidhar Velcheti
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, United States
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Benjamin G. Neel
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| |
Collapse
|
4
|
Narayanan V, Purkayastha P, Yu B, Pendyala K, Chukkapalli S, Cabe JI, Dickinson RB, Conway DE, Lele TP. Rho activation drives luminal collapse and eversion in epithelial acini. Biophys J 2023; 122:3630-3645. [PMID: 36617192 PMCID: PMC10541472 DOI: 10.1016/j.bpj.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/30/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Epithelial cells lining a gland and cells grown in a soft extracellular matrix polarize with apical proteins exposed to the lumen and basal proteins in contact with the extracellular matrix. Alterations to polarity, including an apical-out polarity, occur in human cancers. Although some aberrant polarity states may result from altered protein trafficking, recent observations of an extraordinary tissue-level inside-out unfolding suggest an alternative pathway for altered polarity. Because mechanical alterations are common in human cancer, including an upregulation of RhoA-mediated actomyosin tension in acinar epithelia, we explored whether perturbing mechanical homeostasis could cause apical-out eversion. Acinar eversion was robustly induced by direct activation of RhoA in normal and tumor epithelial acini, or indirect activation of RhoA through blockage of β1-integrins, disruption of the LINC complex, oncogenic Ras activation, or Rac1 inhibition. Furthermore, laser ablation of a portion of the untreated acinus was sufficient to induce eversion. Analyses of acini revealed high curvature and low phosphorylated myosin in the apical cell surfaces relative to the basal surfaces. A vertex-based mathematical model that balances tension at cell-cell interfaces revealed a fivefold greater basal cell surface tension relative to the apical cell surface tension. The model suggests that the difference in surface energy between the apical and basal surfaces is the driving force for acinar eversion. Our findings raise the possibility that a loss of mechanical homeostasis may cause apical-out polarity states in human cancers.
Collapse
Affiliation(s)
- Vani Narayanan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Purboja Purkayastha
- Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Bo Yu
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Kavya Pendyala
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Sasanka Chukkapalli
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Jolene I Cabe
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Richard B Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville, Florida.
| | - Daniel E Conway
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio.
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas; Department of Chemical Engineering, Texas A&M University, College Station, Texas; Department of Translational Medical Sciences, Texas A&M University, College Station, Texas.
| |
Collapse
|
5
|
Nyga A, Muñoz JJ, Dercksen S, Fornabaio G, Uroz M, Trepat X, Baum B, Matthews HK, Conte V. Oncogenic RAS instructs morphological transformation of human epithelia via differential tissue mechanics. SCIENCE ADVANCES 2021; 7:eabg6467. [PMID: 34644109 PMCID: PMC8514103 DOI: 10.1126/sciadv.abg6467] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 08/22/2021] [Indexed: 05/05/2023]
Abstract
The loss of epithelial homeostasis and the disruption of normal tissue morphology are hallmarks of tumor development. Here, we ask how the uniform activation oncogene RAS affects the morphology and tissue mechanics in a normal epithelium. We found that inducible induction of HRAS in confined epithelial monolayers on soft substrates drives a morphological transformation of a 2D monolayer into a compact 3D cell aggregate. This transformation was initiated by the loss of monolayer integrity and formation of two distinct cell layers with differential cell-cell junctions, cell-substrate adhesion, and tensional states. Computational modeling revealed how adhesion and active peripheral tension induces inherent mechanical instability in the system, which drives the 2D-to-3D morphological transformation. Consistent with this, removal of epithelial tension through the inhibition of actomyosin contractility halted the process. These findings reveal the mechanisms by which oncogene activation within an epithelium can induce mechanical instability to drive morphological tissue transformation.
Collapse
Affiliation(s)
- Agata Nyga
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jose J. Muñoz
- Department of Mathematics, Polytechnic University of Catalonia (UPC), Barcelona, Spain
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Barcelona, Spain
- Institut de Matemàtiques de la UPC - BarcelonaTech (IMTECH), Barcelona, Spain
| | - Suze Dercksen
- Department of Biomedical Engineering, Eindhoven University of Technology (TU/e), Eindhoven, Netherlands
| | - Giulia Fornabaio
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Physics, University of Barcelona (UB), Barcelona, Spain
| | - Marina Uroz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
- Department of Biomedicine, University of Barcelona (UB), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Buzz Baum
- MRC Laboratory of Molecular Biology, Cambridge, UK
- MRC Laboratory of Molecular Cell Biology, University College London (UCL), London, UK
| | - Helen K. Matthews
- MRC Laboratory of Molecular Cell Biology, University College London (UCL), London, UK
| | - Vito Conte
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Biomedical Engineering, Eindhoven University of Technology (TU/e), Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology (TU/e), Eindhoven, Netherlands
| |
Collapse
|
6
|
Moruzzi M, Nestor-Bergmann A, Goddard GK, Tarannum N, Brennan K, Woolner S. Generation of anisotropic strain dysregulates wild-type cell division at the interface between host and oncogenic tissue. Curr Biol 2021; 31:3409-3418.e6. [PMID: 34111402 PMCID: PMC8360906 DOI: 10.1016/j.cub.2021.05.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 03/19/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022]
Abstract
Epithelial tissues are highly sensitive to anisotropies in mechanical force, with cells altering fundamental behaviors, such as cell adhesion, migration, and cell division.1-5 It is well known that, in the later stages of carcinoma (epithelial cancer), the presence of tumors alters the mechanical properties of a host tissue and that these changes contribute to disease progression.6-9 However, in the earliest stages of carcinoma, when a clonal cluster of oncogene-expressing cells first establishes in the epithelium, the extent to which mechanical changes alter cell behavior in the tissue as a whole remains unclear. This is despite knowledge that many common oncogenes, such as oncogenic Ras, alter cell stiffness and contractility.10-13 Here, we investigate how mechanical changes at the cellular level of an oncogenic cluster can translate into the generation of anisotropic strain across an epithelium, altering cell behavior in neighboring host tissue. We generated clusters of oncogene-expressing cells within otherwise normal in vivo epithelium, using Xenopus laevis embryos. We find that cells in kRasV12, but not cMYC, clusters have increased contractility, which introduces radial stress in the tissue and deforms surrounding host cells. The strain imposed by kRasV12 clusters leads to increased cell division and altered division orientation in neighboring host tissue, effects that can be rescued by reducing actomyosin contractility specifically in the kRasV12 cells. Our findings indicate that some oncogenes can alter the mechanical and proliferative properties of host tissue from the earliest stages of cancer development, changes that have the potential to contribute to tumorigenesis.
Collapse
Affiliation(s)
- Megan Moruzzi
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Alexander Nestor-Bergmann
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK; School of Mathematics, University of Manchester, Manchester M13 9PL, UK
| | - Georgina K Goddard
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nawseen Tarannum
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Keith Brennan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Sarah Woolner
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
7
|
Soriano O, Alcón-Pérez M, Vicente-Manzanares M, Castellano E. The Crossroads between RAS and RHO Signaling Pathways in Cellular Transformation, Motility and Contraction. Genes (Basel) 2021; 12:genes12060819. [PMID: 34071831 PMCID: PMC8229961 DOI: 10.3390/genes12060819] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ras and Rho proteins are GTP-regulated molecular switches that control multiple signaling pathways in eukaryotic cells. Ras was among the first identified oncogenes, and it appears mutated in many forms of human cancer. It mainly promotes proliferation and survival through the MAPK pathway and the PI3K/AKT pathways, respectively. However, the myriad proteins close to the plasma membrane that activate or inhibit Ras make it a major regulator of many apparently unrelated pathways. On the other hand, Rho is weakly oncogenic by itself, but it critically regulates microfilament dynamics; that is, actin polymerization, disassembly and contraction. Polymerization is driven mainly by the Arp2/3 complex and formins, whereas contraction depends on myosin mini-filament assembly and activity. These two pathways intersect at numerous points: from Ras-dependent triggering of Rho activators, some of which act through PI3K, to mechanical feedback driven by actomyosin action. Here, we describe the main points of connection between the Ras and Rho pathways as they coordinately drive oncogenic transformation. We emphasize the biochemical crosstalk that drives actomyosin contraction driven by Ras in a Rho-dependent manner. We also describe possible routes of mechanical feedback through which myosin II activation may control Ras/Rho activation.
Collapse
Affiliation(s)
- Olga Soriano
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Marta Alcón-Pérez
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Miguel Vicente-Manzanares
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| |
Collapse
|
8
|
Nakao Y, Nakagawa S, Yamashita YI, Umezaki N, Okamoto Y, Ogata Y, Yasuda-Yoshihara N, Itoyama R, Yusa T, Yamashita K, Miyata T, Okabe H, Hayashi H, Imai K, Baba H. High ARHGEF2 (GEF-H1) Expression is Associated with Poor Prognosis Via Cell Cycle Regulation in Patients with Pancreatic Cancer. Ann Surg Oncol 2021; 28:4733-4743. [PMID: 33393038 DOI: 10.1245/s10434-020-09383-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pancreatic cancer has an extremely poor prognosis, even after curative resection. Treatment options for pancreatic cancer remain limited, therefore new therapeutic targets are urgently needed. We searched for genes predictive of poor prognosis in pancreatic cancer using a public database and validated the survival impact of the selected gene in a patient cohort. METHODS We used a public database to search for genes associated with early pancreatic cancer recurrence. As a validation cohort, 201 patients who underwent radical resection in our institution were enrolled. Expression of the target gene was evaluated using immunohistochemistry (IHC). We evaluated growth and invasiveness using small interfering RNAs, then performed pathway analysis using gene set enrichment analysis. RESULTS We extracted ARHGEF2 from GSE21501 as a gene with a high hazard ratio (HR) for early recurrence within 1 year. The high ARHGEF2 expression group had significantly poorer recurrence-free survival (RFS) and poorer overall survival (OS) than the low ARHGEF2 expression group. Multivariate analysis demonstrated that high ARHGEF2 expression was an independent poor prognostic factor for RFS (HR 1.92) and OS (HR 1.63). In vitro, ARHGEF2 suppression resulted in reduced cell growth and invasiveness. Bioinformatic analysis revealed that ARHGEF2 expression was associated with MYC, G2M, E2F, and CDC25A expression, suggesting that c-Myc and cell cycle genes are associated with high ARHGEF2 expression. IHC revealed a positive correlation between ARHGEF2 and c-Myc expression. CONCLUSIONS High ARHGEF2 expression is associated with cell cycle progression, and predicts early recurrence and poor survival in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Yosuke Nakao
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yo-Ichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoki Umezaki
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuya Okamoto
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoko Ogata
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Noriko Yasuda-Yoshihara
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Rumi Itoyama
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshihiko Yusa
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohei Yamashita
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirohisa Okabe
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsunori Imai
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
9
|
Eisa-Beygi S, Vo NJ, Link BA. RhoA activation-mediated vascular permeability in capillary malformation-arteriovenous malformation syndrome: a hypothesis. Drug Discov Today 2020; 26:1790-1793. [PMID: 33358701 DOI: 10.1016/j.drudis.2020.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/19/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022]
Abstract
Capillary malformation-arteriovenous malformation (CM-AVM) syndrome is a class of capillary anomalies that are associated with arteriovenous malformations and arteriovenous fistulas, which carry a risk of hemorrhages. There are no broadly effective pharmacological therapies currently available. Most CM-AVMs are associated with a loss of RASA1, resulting in constitutive activation of RAS signaling. However, protein interaction analysis revealed that RASA1 forms a complex with Rho GTPase-activating protein (RhoGAP), a negative regulator of RhoA signaling. Herein, we propose that loss of RASA1 function results in constitutive activation of RhoA signaling in endothelial cells, resulting in enhanced vascular permeability. Therefore, strategies aimed at curtailing RhoA activity should be tested as an adjunctive therapeutic approach in cell culture studies and animal models of RASA1 deficiency.
Collapse
Affiliation(s)
- Shahram Eisa-Beygi
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Nghia Jack Vo
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Radiology, Pediatric Imaging and Interventional Radiology, Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
10
|
Moose DL, Krog BL, Kim TH, Zhao L, Williams-Perez S, Burke G, Rhodes L, Vanneste M, Breheny P, Milhem M, Stipp CS, Rowat AC, Henry MD. Cancer Cells Resist Mechanical Destruction in Circulation via RhoA/Actomyosin-Dependent Mechano-Adaptation. Cell Rep 2020; 30:3864-3874.e6. [PMID: 32187555 PMCID: PMC7219793 DOI: 10.1016/j.celrep.2020.02.080] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 12/27/2022] Open
Abstract
During metastasis, cancer cells are exposed to potentially destructive hemodynamic forces including fluid shear stress (FSS) while en route to distant sites. However, prior work indicates that cancer cells are more resistant to brief pulses of high-level FSS in vitro relative to non-transformed epithelial cells. Herein, we identify a mechano-adaptive mechanism of FSS resistance in cancer cells. Our findings demonstrate that cancer cells activate RhoA in response to FSS, which protects them from FSS-induced plasma membrane damage. We show that cancer cells freshly isolated from mouse and human tumors are resistant to FSS, that formin and myosin II activity protects circulating tumor cells (CTCs) from destruction, and that short-term inhibition of myosin II delays metastasis in mouse models. Collectively, our data indicate that viable CTCs actively resist destruction by hemodynamic forces and are likely to be more mechanically robust than is commonly thought.
Collapse
Affiliation(s)
- Devon L Moose
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Cancer Biology Program, Biomedical Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin L Krog
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Tae-Hyung Kim
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | - Gretchen Burke
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lillian Rhodes
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Marion Vanneste
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Patrick Breheny
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Mohammed Milhem
- Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA; Division of Hematology and Oncology, Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher S Stipp
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA; Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael D Henry
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Cancer Biology Program, Biomedical Sciences, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA; Departments of Pathology, Urology and Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
11
|
Trivedi DV, Nag S, Spudich A, Ruppel KM, Spudich JA. The Myosin Family of Mechanoenzymes: From Mechanisms to Therapeutic Approaches. Annu Rev Biochem 2020; 89:667-693. [PMID: 32169021 DOI: 10.1146/annurev-biochem-011520-105234] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Myosins are among the most fascinating enzymes in biology. As extremely allosteric chemomechanical molecular machines, myosins are involved in myriad pivotal cellular functions and are frequently sites of mutations leading to disease phenotypes. Human β-cardiac myosin has proved to be an excellent target for small-molecule therapeutics for heart muscle diseases, and, as we describe here, other myosin family members are likely to be potentially unique targets for treating other diseases as well. The first part of this review focuses on how myosins convert the chemical energy of ATP hydrolysis into mechanical movement, followed by a description of existing therapeutic approaches to target human β-cardiac myosin. The next section focuses on the possibility of targeting nonmuscle members of the human myosin family for several diseases. We end the review by describing the roles of myosin in parasites and the therapeutic potential of targeting them to block parasitic invasion of their hosts.
Collapse
Affiliation(s)
- Darshan V Trivedi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA; , , .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Suman Nag
- MyoKardia Inc., Brisbane, California 94005, USA;
| | - Annamma Spudich
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560-097, India;
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA; , , .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA; , , .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
12
|
Matthews HK, Ganguli S, Plak K, Taubenberger AV, Win Z, Williamson M, Piel M, Guck J, Baum B. Oncogenic Signaling Alters Cell Shape and Mechanics to Facilitate Cell Division under Confinement. Dev Cell 2020; 52:563-573.e3. [PMID: 32032547 PMCID: PMC7063569 DOI: 10.1016/j.devcel.2020.01.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/30/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
To divide in a tissue, both normal and cancer cells become spherical and mechanically stiffen as they enter mitosis. We investigated the effect of oncogene activation on this process in normal epithelial cells. We found that short-term induction of oncogenic RasV12 activates downstream mitogen-activated protein kinase (MEK-ERK) signaling to alter cell mechanics and enhance mitotic rounding, so that RasV12-expressing cells are softer in interphase but stiffen more upon entry into mitosis. These RasV12-dependent changes allow cells to round up and divide faithfully when confined underneath a stiff hydrogel, conditions in which normal cells and cells with reduced levels of Ras-ERK signaling suffer multiple spindle assembly and chromosome segregation errors. Thus, by promoting cell rounding and stiffening in mitosis, oncogenic RasV12 enables cells to proliferate under conditions of mechanical confinement like those experienced by cells in crowded tumors.
Collapse
Affiliation(s)
- Helen K Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Sushila Ganguli
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Katarzyna Plak
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Anna V Taubenberger
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Zaw Win
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Max Williamson
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Paris, France
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany; Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Staudtstraße 2, 91058 Erlangen, Germany
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK.
| |
Collapse
|
13
|
Harrell Stewart DR, Clark GJ. Pumping the brakes on RAS - negative regulators and death effectors of RAS. J Cell Sci 2020; 133:133/3/jcs238865. [PMID: 32041893 DOI: 10.1242/jcs.238865] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mutations that activate the RAS oncoproteins are common in cancer. However, aberrant upregulation of RAS activity often occurs in the absence of activating mutations in the RAS genes due to defects in RAS regulators. It is now clear that loss of function of Ras GTPase-activating proteins (RasGAPs) is common in tumors, and germline mutations in certain RasGAP genes are responsible for some clinical syndromes. Although regulation of RAS is central to their activity, RasGAPs exhibit great diversity in their binding partners and therefore affect signaling by multiple mechanisms that are independent of RAS. The RASSF family of tumor suppressors are essential to RAS-induced apoptosis and senescence, and constitute a barrier to RAS-mediated transformation. Suppression of RASSF protein expression can also promote the development of excessive RAS signaling by uncoupling RAS from growth inhibitory pathways. Here, we will examine how these effectors of RAS contribute to tumor suppression, through both RAS-dependent and RAS-independent mechanisms.
Collapse
Affiliation(s)
- Desmond R Harrell Stewart
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY 40222, USA
| | - Geoffrey J Clark
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY 40222, USA
| |
Collapse
|
14
|
Kent OA, Sandí MJ, Burston HE, Brown KR, Rottapel R. An oncogenic KRAS transcription program activates the RHOGEF ARHGEF2 to mediate transformed phenotypes in pancreatic cancer. Oncotarget 2018; 8:4484-4500. [PMID: 27835861 PMCID: PMC5354848 DOI: 10.18632/oncotarget.13152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/13/2016] [Indexed: 12/29/2022] Open
Abstract
Activating mutations of KRAS are nearly ubiquitous in pancreatic adenocarcinomas occurring in greater than 90% of cases. Cellular transformation by oncogenic RAS requires the RHO guanine exchange factor ARHGEF2 (also known as GEF-H1) for tumor growth and survival. Here, we find oncogenic KRAS activates ARHGEF2 through a minimal RAS responsive promoter. We have determined the endogenous ARHGEF2 promoter is positively regulated by the transcription factors ELK1, ETS1, SP1 and SP3 and negatively regulated by the RAS responsive element binding protein (RREB1). We find that the panel of ARHGEF2-regulating transcription factors modulates RAS transformed phenotypes including cellular viability, anchorage-independent growth and invasion-migration of pancreatic cancer cells. RREB1 knockdown activates the amplitude and duration of RHOA via increased ARHGEF2 expression. By relieving the negative regulation of RREB1 on the ARHGEF2 promoter, we determined that ETS1 and SP3 are essential for the normal expression of ARHGEF2 and contribute to the migratory behavior of pancreatic cancer cells. Furthermore, enforced expression of ARHGEF2 rescues loss of SP3 driven invasion-migration and anchorage-independent growth defective phenotypes through restored activation of RHOA. Collectively, our results identify a transcription factor program required for RAS transformation and provide mechanistic insight into the highly metastatic behavior of pancreatic cancer.
Collapse
Affiliation(s)
- Oliver A Kent
- Princess Margaret Cancer Centre, University Health Network, Toronto Medical Discovery Tower, University of Toronto, Toronto, Canada
| | - María-José Sandí
- Princess Margaret Cancer Centre, University Health Network, Toronto Medical Discovery Tower, University of Toronto, Toronto, Canada
| | - Helen E Burston
- Princess Margaret Cancer Centre, University Health Network, Toronto Medical Discovery Tower, University of Toronto, Toronto, Canada
| | - Kevin R Brown
- Donnelly Centre and Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, Toronto Medical Discovery Tower, University of Toronto, Toronto, Canada.,Department of Medicine, St. Michael's Hospital, Toronto, Canada.,Department of Medical Biophysics, St. Michael's Hospital, Toronto, Canada.,Department of Immunology, St. Michael's Hospital, Toronto, Canada.,Division of Rheumatology, St. Michael's Hospital, Toronto, Canada
| |
Collapse
|
15
|
Kent OA, Sandi MJ, Rottapel R. Co-dependency between KRAS addiction and ARHGEF2 promotes an adaptive escape from MAPK pathway inhibition. Small GTPases 2017; 10:441-448. [PMID: 28656876 PMCID: PMC6748365 DOI: 10.1080/21541248.2017.1337545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oncogenic KRAS engages multiple effector pathways including the MAPK cascade to promote proliferation and survival of pancreatic cancer cells. KRAS-transformed cancer cells exhibit oncogene addiction to sustained activity of RAS for maintenance of malignant phenotypes. Previously, we have shown an essential role for the RHO guanine exchange factor ARHGEF2 for growth and survival of RAS-transformed pancreatic tumors. Here, we have determined that pancreatic cancer cells demonstrating KRAS addiction are significantly dependent on expression of ARHGEF2. Furthermore, enforced expression of ARHGEF2 desensitizes cells to pharmacological MEK inhibition and initiates a positive feedback loop which activates ERK phosphorylation and the downstream ARHGEF2 promoter. Therefore, targeting ARHGEF2 expression may increase the efficacy of MAPK inhibitors for treatment of RAS-dependent pancreatic cancers.
Collapse
Affiliation(s)
- Oliver A Kent
- Princess Margaret Cancer Centre, University Health Network, Toronto Medical Discovery Tower, University of Toronto , Toronto , Canada
| | - Maria-Jose Sandi
- Princess Margaret Cancer Centre, University Health Network, Toronto Medical Discovery Tower, University of Toronto , Toronto , Canada
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, Toronto Medical Discovery Tower, University of Toronto , Toronto , Canada.,Department of Medicine , Toronto , Canada.,Department of Medical Biophysics , Toronto , Canada.,Department of Immunology , Toronto , Canada.,Division of Rheumatology, St. Michael's Hospital , Toronto , Canada
| |
Collapse
|
16
|
Two coffins and a funeral: early or late caspase activation determines two types of apoptosis induced by DNA damaging agents. Apoptosis 2016; 22:421-436. [DOI: 10.1007/s10495-016-1337-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Bronte E, Bronte G, Novo G, Bronte F, Bavetta MG, Lo Re G, Brancatelli G, Bazan V, Natoli C, Novo S, Russo A. What links BRAF to the heart function? New insights from the cardiotoxicity of BRAF inhibitors in cancer treatment. Oncotarget 2016; 6:35589-601. [PMID: 26431495 PMCID: PMC4742127 DOI: 10.18632/oncotarget.5853] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/22/2015] [Indexed: 12/14/2022] Open
Abstract
The RAS-related signalling cascade has a fundamental role in cell. It activates differentiation and survival. It is particularly important one of its molecules, B-RAF. B-RAF has been a central point for research, especially in melanoma. Indeed, it lacked effective therapeutic weapons since the early years of its study. Molecules targeting B-RAF have been developed. Nowadays, two classes of molecules are approved by FDA. Multi-target molecules, such as Sorafenib and Regorafenib, and selective molecules, such as Vemurafenib and Dabrafenib. Many other molecules are still under investigation. Most of them are studied in phase 1 trials. Clinical studies correlate B-RAF inhibitors and QT prolongation. Though this cardiovascular side effect is not common using these drugs, it must be noticed early and recognize its signals. Indeed, Oncologists and Cardiologists should work in cooperation to prevent lethal events, such as fatal arrhythmias or sudden cardiac death. These events could originate from an uncontrolled QT prolongation.
Collapse
Affiliation(s)
- Enrico Bronte
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Giuseppe Bronte
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Giuseppina Novo
- Department of Internal Medicine and Cardiovascular Disease, University of Palermo, Palermo, Italy
| | - Fabrizio Bronte
- DiBiMIS, Section of Gastroenterology, University of Palermo, Palermo, Italy
| | | | - Giuseppe Lo Re
- Department of Radiology, University of Palermo, Palermo, Italy
| | | | - Viviana Bazan
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Clara Natoli
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio", Chieti, Italy
| | - Salvatore Novo
- Department of Internal Medicine and Cardiovascular Disease, University of Palermo, Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| |
Collapse
|
18
|
Newell-Litwa KA, Horwitz R, Lamers ML. Non-muscle myosin II in disease: mechanisms and therapeutic opportunities. Dis Model Mech 2015; 8:1495-515. [PMID: 26542704 PMCID: PMC4728321 DOI: 10.1242/dmm.022103] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The actin motor protein non-muscle myosin II (NMII) acts as a master regulator of cell morphology, with a role in several essential cellular processes, including cell migration and post-synaptic dendritic spine plasticity in neurons. NMII also generates forces that alter biochemical signaling, by driving changes in interactions between actin-associated proteins that can ultimately regulate gene transcription. In addition to its roles in normal cellular physiology, NMII has recently emerged as a critical regulator of diverse, genetically complex diseases, including neuronal disorders, cancers and vascular disease. In the context of these disorders, NMII regulatory pathways can be directly mutated or indirectly altered by disease-causing mutations. NMII regulatory pathway genes are also increasingly found in disease-associated copy-number variants, particularly in neuronal disorders such as autism and schizophrenia. Furthermore, manipulation of NMII-mediated contractility regulates stem cell pluripotency and differentiation, thus highlighting the key role of NMII-based pharmaceuticals in the clinical success of stem cell therapies. In this Review, we discuss the emerging role of NMII activity and its regulation by kinases and microRNAs in the pathogenesis and prognosis of a diverse range of diseases, including neuronal disorders, cancer and vascular disease. We also address promising clinical applications and limitations of NMII-based inhibitors in the treatment of these diseases and the development of stem-cell-based therapies.
Collapse
Affiliation(s)
- Karen A Newell-Litwa
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Rick Horwitz
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Marcelo L Lamers
- Department of Morphological Sciences, Institute of Basic Health Science, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-010, Brazil
| |
Collapse
|
19
|
Abstract
The extracellular matrix regulates tissue development and homeostasis, and its dysregulation contributes to neoplastic progression. The extracellular matrix serves not only as the scaffold upon which tissues are organized but provides critical biochemical and biomechanical cues that direct cell growth, survival, migration and differentiation and modulate vascular development and immune function. Thus, while genetic modifications in tumor cells undoubtedly initiate and drive malignancy, cancer progresses within a dynamically evolving extracellular matrix that modulates virtually every behavioral facet of the tumor cells and cancer-associated stromal cells. Hanahan and Weinberg defined the hallmarks of cancer to encompass key biological capabilities that are acquired and essential for the development, growth and dissemination of all human cancers. These capabilities include sustained proliferation, evasion of growth suppression, death resistance, replicative immortality, induced angiogenesis, initiation of invasion, dysregulation of cellular energetics, avoidance of immune destruction and chronic inflammation. Here, we argue that biophysical and biochemical cues from the tumor-associated extracellular matrix influence each of these cancer hallmarks and are therefore critical for malignancy. We suggest that the success of cancer prevention and therapy programs requires an intimate understanding of the reciprocal feedback between the evolving extracellular matrix, the tumor cells and its cancer-associated cellular stroma.
Collapse
Affiliation(s)
- Michael W Pickup
- Department of Surgery, Center for Bioengineering and Tissue Regeneration UCSF, San Francisco, CA, USA
| | - Janna K Mouw
- Department of Surgery, Center for Bioengineering and Tissue Regeneration UCSF, San Francisco, CA, USA
| | - Valerie M Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration UCSF, San Francisco, CA, USA Departments of Anatomy, Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research UCSF, San Francisco, CA, USA UCSF Helen Diller Comprehensive Cancer Center UCSF, San Francisco, CA, USA
| |
Collapse
|
20
|
RAS/ERK signaling controls proneural genetic programs in cortical development and gliomagenesis. J Neurosci 2014; 34:2169-90. [PMID: 24501358 DOI: 10.1523/jneurosci.4077-13.2014] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural cell fate specification is well understood in the embryonic cerebral cortex, where the proneural genes Neurog2 and Ascl1 are key cell fate determinants. What is less well understood is how cellular diversity is generated in brain tumors. Gliomas and glioneuronal tumors, which are often localized in the cerebrum, are both characterized by a neoplastic glial component, but glioneuronal tumors also have an intermixed neuronal component. A core abnormality in both tumor groups is overactive RAS/ERK signaling, a pro-proliferative signal whose contributions to cell differentiation in oncogenesis are largely unexplored. We found that RAS/ERK activation levels differ in two distinct human tumors associated with constitutively active BRAF. Pilocytic astrocytomas, which contain abnormal glial cells, have higher ERK activation levels than gangliogliomas, which contain abnormal neuronal and glial cells. Using in vivo gain of function and loss of function in the mouse embryonic neocortex, we found that RAS/ERK signals control a proneural genetic switch, inhibiting Neurog2 expression while inducing Ascl1, a competing lineage determinant. Furthermore, we found that RAS/ERK levels control Ascl1's fate specification properties in murine cortical progenitors--at higher RAS/ERK levels, Ascl1(+) progenitors are biased toward proliferative glial programs, initiating astrocytomas, while at moderate RAS/ERK levels, Ascl1 promotes GABAergic neuronal and less glial differentiation, generating glioneuronal tumors. Mechanistically, Ascl1 is phosphorylated by ERK, and ERK phosphoacceptor sites are necessary for Ascl1's GABAergic neuronal and gliogenic potential. RAS/ERK signaling thus acts as a rheostat to influence neural cell fate selection in both normal cortical development and gliomagenesis, controlling Neurog2-Ascl1 expression and Ascl1 function.
Collapse
|
21
|
Cullis J, Meiri D, Sandi MJ, Radulovich N, Kent OA, Medrano M, Mokady D, Normand J, Larose J, Marcotte R, Marshall CB, Ikura M, Ketela T, Moffat J, Neel BG, Gingras AC, Tsao MS, Rottapel R. The RhoGEF GEF-H1 is required for oncogenic RAS signaling via KSR-1. Cancer Cell 2014; 25:181-95. [PMID: 24525234 DOI: 10.1016/j.ccr.2014.01.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 11/26/2013] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
Abstract
Cellular transformation by oncogenic RAS engages the MAPK pathway under strict regulation by the scaffold protein KSR-1. Here, we report that the guanine nucleotide exchange factor GEF-H1 plays a critical role in a positive feedback loop for the RAS/MAPK pathway independent of its RhoGEF activity. GEF-H1 acts as an adaptor protein linking the PP2A B' subunits to KSR-1, thereby mediating the dephosphorylation of KSR-1 S392 and activation of MAPK signaling. GEF-H1 is important for the growth and survival of HRAS(V12)-transformed cells and pancreatic tumor xenografts. GEF-H1 expression is induced by oncogenic RAS and is correlated with pancreatic neoplastic progression. Our results, therefore, identify GEF-H1 as an amplifier of MAPK signaling and provide mechanistic insight into the progression of RAS mutant tumors.
Collapse
Affiliation(s)
- Jane Cullis
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - David Meiri
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Maria Jose Sandi
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Nikolina Radulovich
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Oliver A Kent
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mauricio Medrano
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Daphna Mokady
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Josee Normand
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Jose Larose
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Richard Marcotte
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Christopher B Marshall
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Troy Ketela
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Donnelly Centre and Banting and Best Department of Medical Research, 160 College Street, Room 8-804, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Donnelly Centre and Banting and Best Department of Medical Research, 160 College Street, Room 8-804, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Benjamin G Neel
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Room 992A, Toronto, ON M5G 1X5, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Room 8-703, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Division of Rheumatology, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada.
| |
Collapse
|
22
|
Organ SL, Hai J, Radulovich N, Marshall CB, Leung L, Sasazuki T, Shirasawa S, Zhu CQ, Navab R, Ikura M, Tsao MS. p120RasGAP is a mediator of rho pathway activation and tumorigenicity in the DLD1 colorectal cancer cell line. PLoS One 2014; 9:e86103. [PMID: 24465899 PMCID: PMC3897622 DOI: 10.1371/journal.pone.0086103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/05/2013] [Indexed: 12/25/2022] Open
Abstract
KRAS is mutated in ∼40% of colorectal cancer (CRC), and there are limited effective treatments for advanced KRAS mutant CRC. Therefore, it is crucial that downstream mediators of oncogenic KRAS continue to be studied. We identified p190RhoGAP as being phosphorylated in the DLD1 CRC cell line, which expresses a heterozygous KRAS G13D allele, and not in DKO4 in which the mutant allele has been deleted by somatic recombination. We found that a ubiquitous binding partner of p190RhoGAP, p120RasGAP (RasGAP), is expressed in much lower levels in DKO4 cells compared to DLD1, and this expression is regulated by KRAS. Rescue of RasGAP expression in DKO4 rescued Rho pathway activation and partially rescued tumorigenicity in DKO4 cells, indicating that the combination of mutant KRAS and RasGAP expression is crucial to these phenotypes. We conclude that RasGAP is an important effector of mutant KRAS in CRC.
Collapse
Affiliation(s)
- Shawna L. Organ
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Josephine Hai
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Lisa Leung
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Takehiko Sasazuki
- Department of Pathology, Research Institute, International Medical Center of Japan, Tokyo, Japan
| | - Senji Shirasawa
- Department of Cell Biology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Chang-Qi Zhu
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Roya Navab
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
23
|
Chew TW, Liu XJ, Liu L, Spitsbergen JM, Gong Z, Low BC. Crosstalk of Ras and Rho: activation of RhoA abates Kras-induced liver tumorigenesis in transgenic zebrafish models. Oncogene 2013; 33:2717-27. [PMID: 23812423 DOI: 10.1038/onc.2013.240] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/22/2013] [Accepted: 05/03/2013] [Indexed: 12/15/2022]
Abstract
RAS and Rho small GTPases are key molecular switches that control cell dynamics, cell growth and tissue development through their distinct signaling pathways. Although much has been learnt about their individual functions in both cell and animal models, the physiological and pathophysiological consequences of their signaling crosstalk in multi-cellular context in vivo remain largely unknown, especially in liver development and liver tumorigenesis. Furthermore, the roles of RhoA in RAS-mediated transformation and their crosstalk in vitro remain highly controversial. When challenged with carcinogens, zebrafish developed liver cancer that resembles the human liver cancer both molecularly and histopathologically. Capitalizing on the growing importance and relevance of zebrafish (Danio rerio) as an alternate cancer model, we have generated liver-specific, Tet-on-inducible transgenic lines expressing oncogenic Kras(G12V), RhoA, constitutively active RhoA(G14V) or dominant-negative RhoA(T19N). Double-transgenic lines expressing Kras(G12V) with one of the three RhoA genes were also generated. Based on quantitative bioimaging and molecular markers for genetic and signaling aberrations, we showed that the induced expression of oncogenic Kras during early development led to liver enlargement and hepatocyte proliferation, associated with elevated Erk phosphorylation, activation of Akt2 and modulation of its two downstream targets, p21Cip and S6 kinase. Such an increase in liver size and Akt2 expression was augmented by dominant-negative RhoA(T19N), but was abrogated by the constitutive-active RhoA(G14V). Consequently, induced expression of the oncogenic Kras in adult transgenic fish led to the development of hepatocellular carcinomas. Survival studies further revealed that the co-expression of dominant-negative RhoA(T19N) with oncogenic Kras increased the mortality rate compared with the other single or double-transgenic lines. This study provides evidence of the previously unappreciated signaling crosstalk between Kras and RhoA in regulating liver overgrowth and liver tumorigenesis. Our results also implicate that activating Rho could be beneficial to suppress the Kras-induced liver malignancies.
Collapse
Affiliation(s)
- T W Chew
- 1] Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore [2] Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - X J Liu
- Molecular Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - L Liu
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - J M Spitsbergen
- Department of Microbiology and Marine and Freshwater Biomedical Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Z Gong
- Molecular Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - B C Low
- 1] Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore [2] Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Cao ZH, Tao Y, Sang JR, Gu YJ, Bian XJ, Chen YC. Type II, but not type I, cGMP-dependent protein kinase reverses bFGF-induced proliferation and migration of U251 human glioma cells. Mol Med Rep 2013; 7:1229-34. [PMID: 23404188 DOI: 10.3892/mmr.2013.1319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/29/2013] [Indexed: 11/06/2022] Open
Abstract
Previous data have shown that the type II cGMP‑dependent protein kinase (PKG II) inhibits the EGF‑induced MAPK signaling pathway. In order to thoroughly investigate PKG, it is necessary to elucidate the function of another type of PKG, PKG I. The aim of this study was to investigate the possible inhibitory effect of PKG II and PKG I activity on the basic fibroblast growth factor (bFGF)‑induced proliferation and migration of U251 human glioma cells and the possible underlying mechanisms. U251 cells were infected with adenoviral constructs encoding cDNA of PKG I (Ad‑PKG I) or PKG II (Ad‑PKG II) to increase the expression levels of PKG I or PKG II and then treated with 8‑Br‑cGMP and 8‑pCPT‑cGMP, respectively, to activate the enzyme. An MTT assay was used to detect the proliferation of the U251 cells. The migration of the U251 cells was analyzed using a Transwell migration assay. Western blot analysis was used to detect the phosphorylation/activation of the fibroblast growth factor receptor (FGFR), MEK and ERK and the nuclear distribution of p-ERK. The results showed that bFGF treatment increased the proliferation and migration of U251 cells, accompanied by increased phosphorylation of FGFR, MEK and ERK. Furthermore, the nuclear distribution of p-ERK increased following bFGF treatment. Increasing the activity of PKG II through infection with Ad-PKG II and stimulation with 8-pCPT-cGMP significantly attenuated the aforementioned effects of the bFGF treatment, while increased PKG I activity did not inhibit the effects of bFGF treatment. These data suggest that increased PKG II activity attenuates bFGF‑induced proliferation and migration by inhibiting the MAPK/ERK signaling pathway, whereas PKG I does not.
Collapse
Affiliation(s)
- Zhi-Hong Cao
- Department of Intensive Care Unit, Affiliated Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | | | | | | | | | | |
Collapse
|
25
|
Casteel DE, Turner S, Schwappacher R, Rangaswami H, Su-Yuo J, Zhuang S, Boss GR, Pilz RB. Rho isoform-specific interaction with IQGAP1 promotes breast cancer cell proliferation and migration. J Biol Chem 2012; 287:38367-78. [PMID: 22992742 DOI: 10.1074/jbc.m112.377499] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We performed a proteomics screen for Rho isoform-specific binding proteins to clarify the tumor-promoting effects of RhoA and C that contrast with the tumor-suppressive effects of RhoB. We found that the IQ-motif-containing GTPase-activating protein IQGAP1 interacts directly with GTP-bound, prenylated RhoA and RhoC, but not with RhoB. Co-immunoprecipitation of IQGAP1 with endogenous RhoA/C was enhanced when RhoA/C were activated by epidermal growth factor (EGF) or transfection of a constitutively active guanine nucleotide exchange factor (GEF). Overexpression of IQGAP1 increased GTP-loading of RhoA/C, while siRNA-mediated depletion of IQGAP1 prevented endogenous RhoA/C activation by growth factors. IQGAP1 knockdown also reduced the amount of GTP bound to GTPase-deficient RhoA/C mutants, suggesting that IQGAP enhances Rho activation by GEF(s) or stabilizes Rho-GTP. IQGAP1 depletion in MDA-MB-231 breast cancer cells blocked EGF- and RhoA-induced stimulation of DNA synthesis. Infecting cells with adenovirus encoding constitutively active RhoA(L63) and measuring absolute amounts of RhoA-GTP in infected cells demonstrated that the lack of RhoA(L63)-induced DNA synthesis in IQGAP1-depleted cells was not due to reduced GTP-bound RhoA. These data suggested that IQGAP1 functions downstream of RhoA. Overexpression of IQGAP1 in MDA-MB-231 cells increased DNA synthesis irrespective of siRNA-mediated RhoA knockdown. Breast cancer cell motility was increased by expressing a constitutively-active RhoC(V14) mutant or overexpressing IQGAP1. EGF- or RhoC-induced migration required IQGAP1, but IQGAP1-stimulated migration independently of RhoC, placing IQGAP1 downstream of RhoC. We conclude that IQGAP1 acts both upstream of RhoA/C, regulating their activation state, and downstream of RhoA/C, mediating their effects on breast cancer cell proliferation and migration, respectively.
Collapse
Affiliation(s)
- Darren E Casteel
- Department of Medicine and Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Coló GP, Hernández-Varas P, Lock J, Bartolomé RA, Arellano-Sánchez N, Strömblad S, Teixidó J. Focal adhesion disassembly is regulated by a RIAM to MEK-1 pathway. J Cell Sci 2012; 125:5338-52. [PMID: 22946047 DOI: 10.1242/jcs.105270] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cell migration and invasion require regulated turnover of integrin-dependent adhesion complexes. Rap1-GTP-interacting adaptor molecule (RIAM) is an adaptor protein that mediates talin recruitment to the cell membrane, and whose depletion leads to defective melanoma cell migration and invasion. In this study, we investigated the potential involvement of RIAM in focal adhesion (FA) dynamics. RIAM-depleted melanoma and breast carcinoma cells displayed an increased number, size and stability of FAs, which accumulated centrally at the ventral cell surface, a phenotype caused by defective FA disassembly. Impairment in FA disassembly resulting from RIAM knockdown correlated with deficient integrin-dependent mitogen-activated protein kinase kinase (MEK)-Erk1/2 activation and, importantly, overexpression of constitutively active MEK resulted in rescue of FA disassembly and recovery of cell invasion. Furthermore, RIAM-promoted Ras homologue gene family, member A (RhoA) activation following integrin engagement was needed for subsequent Erk1/2 activation. In addition, RhoA overexpression partially rescued the FA phenotype in RIAM-depleted cells, also suggesting a functional role for RhoA downstream of RIAM, but upstream of Erk1/2. RIAM knockdown also led to enhanced phosphorylation of paxillin Tyr118 and Tyr31. However, expression of phosphomimetic and nonphosphorylatable mutants at these paxillin residues indicated that paxillin hyperphosphorylation is a subsequent consequence of the blockade of FA disassembly, but does not cause the FA phenotype. RIAM depletion also weakened the association between FA proteins, suggesting that it has important adaptor roles in the correct assembly of adhesion complexes. Our data suggest that integrin-triggered, RIAM-dependent MEK activation represents a key feedback event required for efficient FA disassembly, which could help explain the role of RIAM in cell migration and invasion.
Collapse
Affiliation(s)
- Georgina P Coló
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Sang J, Chen Y, Jiang L, Tao Y, Wu Y, Wang Y, Li Y, Lan T, Shao G. Type II cGMP-dependent protein kinase inhibits ERK/JNK-mediated activation of transcription factors in gastric cancer cells. Mol Med Rep 2012; 6:1190-4. [PMID: 22940826 DOI: 10.3892/mmr.2012.1050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 08/13/2012] [Indexed: 11/05/2022] Open
Abstract
A previous study has shown that type II cGMP‑dependent protein kinase (PKG II) inhibits the proliferation of gastric cancer cells through blocking EGF-triggered MAPK/ERK signal transduction, indicating that the kinase may be a potential anticancer factor. In the present study, the role of PKG II in the EGF-induced activation of transcription factors in the MAPK/ERK signal transduction pathway was investigated. BGC-823 human gastric cancer cells were infected with adenoviral constructs encoding the cDNA of PKG II (pAd‑PKG II) to increase the expression of PKG II and treated with 8-pCPT‑cGMP to activate the enzyme. Using luciferase reporter assays, it was revealed that PKG II markedly suppressed the EGF-induced transcriptional activities of AP-1 and Elk1. Consistent with the inhibitory effect of PKG II on AP-1 activity, the expression levels of c-Jun and c-Fos, components of AP-1, were also inhibited. Co-immunoprecipitation analysis demonstrated that EGF treatment increased the AP-1 content through inducing the formation of p-c-Jun-c-Jun homodimers and p-c-Jun-c-Fos heterodimers. However, this combination was efficiently blocked by activated PKG II. While pretreatments with MAPK inhibitors suppressed the EGF-induced transcriptional activities of AP-1 and Elk1, PKG II prevented the EGF-induced phosphorylation/activation of ERK and JNK, but not the phosphorylation of p38MAPK induced by EGF. These data suggest that PKG II inhibits the EGF-triggered proliferation of gastric cancer cells through suppressing ERK-/JNK-, but not p38MAPK, -mediated AP-1 and Elk1 transactivation.
Collapse
Affiliation(s)
- Jianrong Sang
- School of Medical Science and Laboratory Medicine, Jiangsu University, Jiangsu 212013, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li C, Zhao X, Toline EC, Siegal GP, Evans LM, Ibrahim-Hashim A, Desmond RA, Hardy RW. Prevention of carcinogenesis and inhibition of breast cancer tumor burden by dietary stearate. Carcinogenesis 2011; 32:1251-8. [PMID: 21586513 PMCID: PMC3149204 DOI: 10.1093/carcin/bgr092] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/22/2011] [Accepted: 05/06/2011] [Indexed: 02/06/2023] Open
Abstract
Previous studies have shown that stearate (C18:0), a dietary long-chain saturated fatty acid, inhibits breast cancer cell neoplastic progression; however, little is known about the mechanism modulating these processes. We demonstrate that stearate, at physiological concentrations, inhibits cell cycle progression in human breast cancer cells at both the G(1) and G(2) phases. Stearate also increases cell cycle inhibitor p21(CIP1/WAF1) and p27(KIP1) levels and concomitantly decreases cyclin-dependent kinase 2 (Cdk2) phosphorylation. Our data also show that stearate induces Ras- guanosine triphosphate formation and causes increased phosphorylation of extracellular signal-regulated kinase (pERK). The MEK1 inhibitor, PD98059, reversed stearate-induced p21(CIP1/WAF1) upregulation, but only partially restored stearate-induced dephosphorylation of Cdk2. The Ras/mitogen-activated protein kinase/ERK pathway has been linked to cell cycle regulation but generally in a positive way. Interestingly, we found that stearate inhibits both Rho activation and expression in vitro. In addition, constitutively active RhoC reversed stearate-induced upregulation of p27(KIP1), providing further evidence of Rho involvement. To test the effect of stearate in vivo, we used the N-Nitroso-N-methylurea rat breast cancer carcinogen model. We found that dietary stearate reduces the incidence of carcinogen-induced mammary cancer and reduces tumor burden. Importantly, mammary tumor cells from rats on a stearate diet had reduced expression of RhoA and B as well as total Rho compared with a low-fat diet. Overall, these data indicate that stearate inhibits breast cancer cell proliferation by inhibiting key check points in the cell cycle as well as Rho expression in vitro and in vivo and inhibits tumor burden and carcinogen-induced mammary cancer in vivo.
Collapse
Affiliation(s)
- Chuanyu Li
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiangmin Zhao
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Eric C. Toline
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gene P. Siegal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Departments of Cell Biology and Surgery, University of Alabama at Birmingham and the UAB Comprehensive Cancer Center, Birmingham, AL 35294, USA
| | - Lynda M. Evans
- Department of Physiology and Biophysics, University of Alabama at Birmingham
- Present address: Women's Cancers Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 35294-0007, USA
| | - Arig Ibrahim-Hashim
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Renee A. Desmond
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robert W. Hardy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
29
|
Haidari M, Zhang W, Ganjehei L, Ali M, Chen Z. Inhibition of MLC phosphorylation restricts replication of influenza virus--a mechanism of action for anti-influenza agents. PLoS One 2011; 6:e21444. [PMID: 21731751 PMCID: PMC3121769 DOI: 10.1371/journal.pone.0021444] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/28/2011] [Indexed: 01/21/2023] Open
Abstract
Influenza A viruses are a severe threat worldwide, causing large epidemics that kill thousands every year. Prevention of influenza infection is complicated by continuous viral antigenic changes. Newer anti-influenza agents include MEK/ERK and protein kinase C inhibitors; however, the downstream effectors of these pathways have not been determined. In this study, we identified a common mechanism for the inhibitory effects of a significant group of anti-influenza agents. Our studies showed that influenza infection activates a series of signaling pathways that converge to induce myosin light chain (MLC) phosphorylation and remodeling of the actin cytoskeleton. Inhibiting MLC phosphorylation by blocking RhoA/Rho kinase, phospholipase C/protein kinase C, and HRas/Raf/MEK/ERK pathways with the use of genetic or chemical manipulation leads to the inhibition of influenza proliferation. In contrast, the induction of MLC phosphorylation enhances influenza proliferation, as does activation of the HRas/Raf/MEK/ERK signaling pathway. This effect is attenuated by inhibiting MLC phosphorylation. Additionally, in intracellular trafficking studies, we found that the nuclear export of influenza ribonucleoprotein depends on MLC phosphorylation. Our studies provide evidence that modulation of MLC phosphorylation is an underlying mechanism for the inhibitory effects of many anti-influenza compounds.
Collapse
Affiliation(s)
- Mehran Haidari
- Department of Internal Medicine, Division of Cardiology, University of Texas Health Science Center at Houston, Houston, Texas, United States of America.
| | | | | | | | | |
Collapse
|
30
|
The RHO-1 RhoGTPase modulates fertility and multiple behaviors in adult C. elegans. PLoS One 2011; 6:e17265. [PMID: 21387015 PMCID: PMC3046162 DOI: 10.1371/journal.pone.0017265] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 01/28/2011] [Indexed: 11/21/2022] Open
Abstract
The Rho family of small GTPases are essential during early embryonic development making it difficult to study their functions in adult animals. Using inducible transgenes expressing either a constitutively active version of the single C. elegans Rho ortholog, RHO-1, or an inhibitor of endogenous Rho (C3 transferase), we demonstrate multiple defects caused by altering Rho signaling in adult C. elegans. Changes in RHO-1 signaling in cholinergic neurons affected locomotion, pharyngeal pumping and fecundity. Changes in RHO-1 signaling outside the cholinergic neurons resulted in defective defecation, ovulation, and changes in C. elegans body morphology. Finally both increased and decreased RHO-1 signaling in adults resulted in death within hours. The multiple post-developmental roles for Rho in C. elegans demonstrate that RhoA signaling pathways continue to be used post-developmentally and the resulting phenotypes provide an opportunity to further study post-developmental Rho signaling pathways using genetic screens.
Collapse
|
31
|
Wu M, Wu ZF, Rosenthal DT, Rhee EM, Merajver SD. Characterization of the roles of RHOC and RHOA GTPases in invasion, motility, and matrix adhesion in inflammatory and aggressive breast cancers. Cancer 2010; 116:2768-82. [PMID: 20503409 DOI: 10.1002/cncr.25181] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND The 2 closely related small GTPases, RHOC and RHOA, are involved in mammary gland carcinogenesis; however, their specific roles in determining cancer cell adhesion and invasion have not been elucidated. METHODS RHOA and RHOC are highly homologous, thereby posing a major challenge to study their individual functions in cancer cells. By selectively knocking down these proteins, we have been able to alternatively inhibit RHOC and RHOA, while preserving expression of the other rho protein. Quantitative analyses of the growth patterns and invasion in the aggressive estrogen receptor negative cell lines MDA-231 and SUM149 were carried out on collagen I and Matrigel substrates. RESULTS RHOC, and not RHOA, modulates surface expression and colocalization of alpha2 and beta1 integrins in MDA-MB-231 on collagen I. Neither RHOC or RHOA affected integrin expression in the inflammatory breast cancer cell line SUM149, further highlighting the different regulation of adhesion and motility in inflammatory breast cancer. CONCLUSIONS This work shows that RHOC and RHOA play different roles in cell-matrix adhesion, motility, and invasion of MDA-MB-231 and reaffirms the crucial role of RHOC-GTPase in inflammatory breast cancer cell invasion.
Collapse
Affiliation(s)
- Mei Wu
- Department of Internal Medicine, Division of Hematology and Oncology and Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | |
Collapse
|
32
|
Extracellular signal-regulated kinase promotes Rho-dependent focal adhesion formation by suppressing p190A RhoGAP. Mol Cell Biol 2010; 30:3233-48. [PMID: 20439493 DOI: 10.1128/mcb.01178-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cell migration is critical for normal development and for pathological processes including cancer cell metastasis. Dynamic remodeling of focal adhesions and the actin cytoskeleton are crucial determinants of cell motility. The Rho family and the mitogen-activated protein kinase (MAPK) module consisting of MEK-extracellular signal-regulated kinase (ERK) are important regulators of these processes, but mechanisms for the integration of these signals during spreading and motility are incompletely understood. Here we show that ERK activity is required for fibronectin-stimulated Rho-GTP loading, Rho-kinase function, and the maturation of focal adhesions in spreading cells. We identify p190A RhoGAP as a major target for ERK signaling in adhesion assembly and identify roles for ERK phosphorylation of the C terminus in p190A localization and activity. These observations reveal a novel role for ERK signaling in adhesion assembly in addition to its established role in adhesion disassembly.
Collapse
|
33
|
Yoo BH, Wu X, Li Y, Haniff M, Sasazuki T, Shirasawa S, Eskelinen EL, Rosen KV. Oncogenic ras-induced down-regulation of autophagy mediator Beclin-1 is required for malignant transformation of intestinal epithelial cells. J Biol Chem 2009; 285:5438-49. [PMID: 19778902 DOI: 10.1074/jbc.m109.046789] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Detachment of non-malignant epithelial cells from the extracellular matrix causes their growth arrest and, ultimately, death. By contrast, cells composing carcinomas, cancers of epithelial origin, can survive and proliferate without being attached to the extracellular matrix. These properties of tumor cells represent hallmarks of malignant transformation and are critical for cancer progression. Previously we identified several mechanisms by which ras, a major oncogene, blocks detachment-induced apoptosis of intestinal epithelial cells, but mechanisms by which Ras promotes proliferation of those cells that remain viable following detachment are unknown. We show here that detachment of non-malignant intestinal epithelial cells promotes formation of autophagosomes, vacuole-like structures that mediate autophagy (a process of cellular self-cannibalization), and that oncogenic ras prevents this autophagosome formation. We also found that ras activates a GTPase RhoA, that RhoA promotes activation of a protease calpain, and that calpain triggers degradation of Beclin-1, a critical mediator of autophagy, in these cells. The reversal of the effect of ras on Beclin-1 (achieved by expression of exogenous Beclin-1) promoted autophagosome formation following cell detachment, significantly reduced the fraction of detached cells in the S phase of the cell cycle and their rate of proliferation without affecting their viability. Furthermore, RNA interference-induced Beclin-1 down-regulation in non-malignant intestinal epithelial cells prevented detachment-dependent reduction of the fraction of these cells in the S phase of the cell cycle. Thus, ras oncogene promotes proliferation of those malignant intestinal epithelial cells that remain viable following detachment via a distinct novel mechanism that involves Ras-induced down-regulation of Beclin-1.
Collapse
Affiliation(s)
- Byong Hoon Yoo
- Department of Pediatrics, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kakiashvili E, Speight P, Waheed F, Seth R, Lodyga M, Tanimura S, Kohno M, Rotstein OD, Kapus A, Szászi K. GEF-H1 mediates tumor necrosis factor-alpha-induced Rho activation and myosin phosphorylation: role in the regulation of tubular paracellular permeability. J Biol Chem 2009; 284:11454-66. [PMID: 19261619 DOI: 10.1074/jbc.m805933200] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-alpha), an inflammatory cytokine, has been shown to activate the small GTPase Rho, but the underlying signaling mechanisms remained undefined. This general problem is particularly important in the kidney, because TNF-alpha, a major mediator of kidney injury, is known to increase paracellular permeability in tubular epithelia. Here we aimed to determine the effect of TNF-alpha on the Rho pathway in tubular cells (LLC-PK(1) and Madin-Darby canine kidney), define the upstream signaling, and investigate the role of the Rho pathway in the TNF-alpha-induced alterations of paracellular permeability. We show that TNF-alpha induced a rapid and sustained RhoA activation that led to stress fiber formation and Rho kinase-dependent myosin light chain (MLC) phosphorylation. To identify new regulators connecting the TNF receptor to Rho signaling, we applied an affinity precipitation assay with a Rho mutant (RhoG17A), which captures activated GDP-GTP exchange factors (GEFs). Mass spectrometry analysis of the RhoG17A-precipitated proteins identified GEF-H1 as a TNF-alpha-activated Rho GEF. Consistent with a central role of GEF-H1, its down-regulation by small interfering RNA prevented the activation of the Rho pathway. Moreover GEF-H1 and Rho activation are downstream of ERK signaling as the MEK1/2 inhibitor PD98059 mitigated TNF-alpha-induced activation of these proteins. Importantly TNF-alpha enhanced the ERK pathway-dependent phosphorylation of Thr-678 of GEF-H1 that was key for activation. Finally the TNF-alpha-induced paracellular permeability increase was absent in LLC-PK(1) cells stably expressing a non-phosphorylatable, dominant negative MLC. In summary, we have identified the ERK/GEF-H1/Rho/Rho kinase/phospho-MLC pathway as the mechanism mediating TNF-alpha-induced elevation of tubular epithelial permeability, which in turn might contribute to kidney injury.
Collapse
Affiliation(s)
- Eli Kakiashvili
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario M5B 1W8, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Li H, Ung CY, Ma XH, Li BW, Low BC, Cao ZW, Chen YZ. Simulation of crosstalk between small GTPase RhoA and EGFR-ERK signaling pathway via MEKK1. ACTA ACUST UNITED AC 2008; 25:358-64. [PMID: 19074159 DOI: 10.1093/bioinformatics/btn635] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MOTIVATION Small GTPase RhoA regulates cell-cycle progression via several mechanisms. Apart from its actions via ROCK, RhoA has recently been found to activate a scaffold protein MEKK1 known to promote ERK activation. We examined whether RhoA can substantially affect ERK activity via this MEKK1-mediated crosstalk between RhoA and EGFR-ERK pathway. By extending the published EGFR-ERK simulation models represented by ordinary differential equations, we developed a simulation model that includes this crosstalk, which was validated with a number of experimental findings and published simulation results. RESULTS Our simulation suggested that, via this crosstalk, RhoA elevation substantially prolonged duration of ERK activation at both normal and reduced Ras levels. Our model suggests ERK may be activated in the absence of Ras. When Ras is overexpressed, RhoA elevation significantly prolongs duration of ERK activation but reduces the amount of active ERK partly due to competitive binding between ERK and RhoA to MEKK1. Our results indicated possible roles of RhoA in affecting ERK activities via MEKK1-mediated crosstalk, which seems to be supported by indications from several experimental studies that may also implicate the collective regulation of cell fate and progression of cancer and other diseases.
Collapse
Affiliation(s)
- Hu Li
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Blk S16, Level 8, 3 Science Drive 2, Singapore 117543
| | | | | | | | | | | | | |
Collapse
|
36
|
Bustos RI, Forget MA, Settleman JE, Hansen SH. Coordination of Rho and Rac GTPase function via p190B RhoGAP. Curr Biol 2008; 18:1606-11. [PMID: 18948007 DOI: 10.1016/j.cub.2008.09.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 09/08/2008] [Accepted: 09/09/2008] [Indexed: 12/30/2022]
Abstract
The Rac GTPase regulates Rho signaling in a broad range of physiological settings and in oncogenic transformation [1-3]. Here, we report a novel mechanism by which crosstalk between Rac and Rho GTPases is achieved. Activated Rac1 binds directly to p190B Rho GTPase-activating protein (RhoGAP), a major modulator of Rho signaling. p190B colocalizes with constitutively active Rac1 in membrane ruffles. Moreover, activated Rac1 is sufficient to recruit p190B into a detergent-insoluble membrane fraction, a process that is accompanied by a decrease in GTP-bound RhoA from membranes. p190B is recruited to the plasma membrane in response to integrin engagement [4]. We demonstrate that collagen type I, a potent inducer of Rac1-dependent cell motility in HeLa cells, counteracts cytoskeletal collapse resulting from overexpression of wild-type p190B, but not that resulting from overexpression of a p190B mutant specifically lacking the Rac1-binding sequence. Furthermore, this p190B mutant exhibits dramatically enhanced RhoGAP activity, consistent with a model whereby binding of Rac1 relieves autoinhibition of p190B RhoGAP function. Collectively, these observations establish that activated Rac1, through direct interaction with p190B, modulates subcellular RhoGAP localization and activity, thereby providing a novel mechanism for Rac control of Rho signaling in a broad range of physiological processes.
Collapse
Affiliation(s)
- Rodrigo I Bustos
- GI Cell Biology Laboratory, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
37
|
Tao Y, Chen YC, Li YY, Yang SQ, Xu WR. Localization and translocation of RhoA protein in the human gastric cancer cell line SGC-7901. World J Gastroenterol 2008; 14:1175-81. [PMID: 18300342 PMCID: PMC2690664 DOI: 10.3748/wjg.14.1175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To elucidate the localization of RhoA in gastric SGC-7901 cancer cells and its translocation by lysophosphatidic acid (LPA) and/or 8-chlorophenylthio-cAMP (CPT-cAMP).
METHODS: Immunofluorescence microscopy was used to determine the localization of RhoA. Western blotting was used to detect both endogenous and exogenous RhoA in different cellular compartments (membrane, cytosol, nucleus) and the translocation of RhoA following treatment with LPA, CPT-cAMP, or CPT-cAMP + LPA.
RESULTS: Immunofluorescence staining revealed endogenous RhoA to be localized in the membrane, the cytosol, and the nucleus, and its precise localization within the nucleus to be the nucleolus. Western blotting identified both endogenous and exogenous RhoA within different cellular compartments (membrane, cytosol, nucleus, nucleolus). After stimulation with LPA, the amount of RhoA within membrane and nuclear extracts increased, while it decreased in the cytosol fractions. After treatment with CPT-cAMP the amount of RhoA within the membrane and the nuclear extracts decreased, while it increased within the cytosol fraction. Treatment with a combination of both substances led to a decrease in RhoA in the membrane and the nucleus but to an increase in the cytosol.
CONCLUSION: In SGC-7901 cells RhoA was found to be localized within the membrane, the cytosol, and the nucleus. Within the nucleus its precise localization could be demonstrated to be the nucleolus. Stimulation with LPA caused a translocation of RhoA from the cytosol towards the membrane and the nucleus; treatment with CPT-cAMP caused the opposite effect. Furthermore, pre-treatment with CPT-cAMP was found to block the effect of LPA.
Collapse
|
38
|
Masoumi A, Reed-Gitomer B, Kelleher C, Schrier RW. Potential pharmacological interventions in polycystic kidney disease. Drugs 2008; 67:2495-510. [PMID: 18034588 DOI: 10.2165/00003495-200767170-00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polycystic kidney diseases (autosomal dominant and autosomal recessive) are progressive renal tubular cystic diseases, which are characterised by cyst expansion and loss of normal kidney structure and function. Autosomal dominant polycystic kidney disease (ADPKD) is the most common life- threatening, hereditary disease. ADPKD is more prevalent than Huntington's disease, haemophilia, sickle cell disease, cystic fibrosis, myotonic dystrophy and Down's syndrome combined. Early diagnosis and treatment of hypertension with inhibitors of the renin-angiotensin-aldosterone system (RAAS) and its potential protective effect on left ventricular hypertrophy has been one of the major therapeutic goals to decrease cardiac complications and contribute to improved prognosis of the disease. Advances in the understanding of the genetics, molecular biology and pathophysiology of the disease are likely to facilitate the improvement of treatments for these diseases. Developments in describing the role of intracellular calcium ([Ca(2+)](i)) and its correlation with cellular signalling systems, Ras/Raf/mitogen extracellular kinase (MEK)/extracellular signal-regulated protein kinase (ERK), and interaction of these pathways with cyclic adenosine monophosphate (cAMP) levels, provide new insights on treatment strategies. Blocking the vasopressin V(2) receptor, a major adenylyl cyclase agonist, demonstrated significant improvements in inhibiting cytogenesis in animal models. Because of activation of the mammalian target of rapamycin (mTOR) pathway, the use of sirolimus (rapamycin) an mTOR inhibitor, markedly reduced cyst formation and decreased polycystic kidney size in several animal models. Caspase inhibitors have been shown to decrease cytogenesis and renal failure in rats with cystic disease. Cystic fluid secretion results in cyst enlargement and somatostatin analogues have been shown to decrease renal cyst progression in patients with ADPKD. The safety and efficacy of these classes of drugs provide potential interventions for experimental and clinical trials.
Collapse
Affiliation(s)
- Amirali Masoumi
- Department of Medicine, Health Sciences Center, University of Colorado School of Medicine, Denver, Colorado, USA
| | | | | | | |
Collapse
|
39
|
Oncogenic H-Ras V12 promotes anchorage-independent cytokinesis in human fibroblasts. Proc Natl Acad Sci U S A 2007; 104:20338-43. [PMID: 18077377 DOI: 10.1073/pnas.0706609105] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cell anchorage is required for cell proliferation of untransformed cells, whereas anchorage-independent growth can be induced by oncogenes and is a hallmark of transformation. Whereas anchorage-dependent control of the progression of the G(1) phase of the cell cycle has been extensively studied, it is less clear whether and how anchorage may control other cell cycle phases and whether oncogenes may affect such controls. Here, we found that lack of cell anchorage did not influence progression through the cell cycle S phase, G(2) phase, or most of mitosis of primary human fibroblasts. However, unanchored fibroblasts could not complete cytokinesis. The cleavage furrow and central spindle were still formed in the absence of anchorage, but cells were unable to complete ingression, causing binucleation. Importantly, V12 H-Ras-transformed fibroblasts and two cancer cell lines progressed through the entire cell cycle without anchorage, including through cytokinesis. This indicates that oncogenic signaling may contribute to anchorage-independent growth and tumorigenesis by promoting the final cleavage furrow ingression during cytokinesis.
Collapse
|
40
|
Abstract
The Ras superfamily consists of over 50 low-molecular-weight proteins that cycle between an inactive guanosine diphosphate-bound state and an active guanosine triphosphate (GTP)-bound state. They are involved in a variety of signal transduction pathways that regulate cell growth, intracellular trafficking, cell migration, and apoptosis. Several methods have been devised to measure the activation state of Ras proteins, defined as the percent of Ras molecules in the active GTP-bound state. We have previously developed a quantitative biochemical method that can be applied to animal and human tissues and have used it to measure the activation state of Ras, Rap1, Rheb, and Rho proteins in cultured cells and in animal and human tumors. Ras, Rac, and Rho all play roles in regulating the functions of T and B lymphocytes and dendritic cells, and these proteins are clearly important in maintaining normal immune system function.
Collapse
Affiliation(s)
- Juergen S Scheele
- Co-ordinating Center for Clinical Trials, Martin Luther University, Halle, Germany
| | | | | |
Collapse
|
41
|
Turner SJ, Zhuang S, Zhang T, Boss GR, Pilz RB. Effects of lovastatin on Rho isoform expression, activity, and association with guanine nucleotide dissociation inhibitors. Biochem Pharmacol 2007; 75:405-13. [PMID: 17920041 DOI: 10.1016/j.bcp.2007.08.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Revised: 08/20/2007] [Accepted: 08/28/2007] [Indexed: 01/10/2023]
Abstract
3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (EC1.1.1.88) inhibitors (statins) reduce cholesterol synthesis and prevent cardiovascular disease; they can also inhibit prenylation of Ras and Rho proteins, and have anti-neoplastic effects. Rho proteins cycle between an active, GTP-bound, and an inactive, GDP-bound form, and Rho prenylation is important for Rho's interaction with upstream regulators and downstream effectors, but the effects of statins on Rho signaling are incompletely understood. We found that the HMG-CoA reductase inhibitor lovastatin markedly induced the expression of RhoA, B, and C in human erythroleukemia (HEL) cells. The drug increased RhoA and C only in their unprenylated forms, but it increased both prenylated and unprenylated RhoB and did not significantly affect N- and K-Ras prenylation, suggesting that it inhibited geranyl-geranylation more efficiently than farnesylation. Quantitative analysis of nucleotides bound to Rho demonstrated a 3.7-fold increase in Rho-GTP and a similar increase in Rho-GDP in lovastatin-treated cells, leaving the fraction of Rho in the active, GTP-bound form constant at 5.8%. Lovastatin reduced Rho association with Rho guanine dissociation inhibitor (RhoGDI)-alpha and -beta, and prenylation-deficient Rho mutants did not associate with RhoGDI. siRNA inhibition of RhoGDIalpha expression increased Rho-GTP, suggesting that decreased Rho/RhoGDIalpha association explained an increase in unprenylated Rho-GTP in lovastatin-treated cells. Unprenylated Rho A, B, and C were partly functional in activating serum response element-dependent transcription. In conclusion, we quantified effects of lovastatin on RhoA, B, and C isoforms, and provide a molecular mechanism whereby statins cause accumulation of unprenylated Rho-GTP.
Collapse
Affiliation(s)
- Stephanie J Turner
- Department of Medicine and Cancer Center, University of California, San Diego, La Jolla, CA 92093-0652, USA
| | | | | | | | | |
Collapse
|
42
|
de Godoy MAF, Patel CA, Waldman SA, Katsuki M, Regan RF, Rattan S. H-ras inhibits RhoA/ROCK leading to a decrease in the basal tone in the internal anal sphincter. Gastroenterology 2007; 132:1401-9. [PMID: 17408635 DOI: 10.1053/j.gastro.2007.01.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 01/04/2007] [Indexed: 01/13/2023]
Abstract
BACKGROUND & AIMS The present studies evaluated the role of H-ras and its implications in the RhoA/Rho kinase (ROCK) pathway in regulating basal tone in the internal anal sphincter (IAS). METHODS Studies were performed in the IAS from the wild-type (H-ras(+/+)) and knock-out (H-ras(-/-)) mice. The basal tone of smooth muscle strips was measured by isometric force transducers. Length of smooth muscle cells (SMC) isolated from the IAS in the basal state was determined by phase contrast microscopy. Experiments were repeated in the presence of Y 27632, a ROCK inhibitor. Involvement of the RhoA/ROCK machinery was analyzed by reverse-transcription polymerase chain reaction, Western blot, and immunocytochemistry. Reversal of H-ras knock-out effect was evaluated by transfection of SMCs with the constitutively activated (G12V) mutant. RESULTS Basal tone of the H-ras(-/-) IAS was significantly higher and resistant to relaxation by Y 27632, compared with the H-ras(+/+) IAS. Similarly, the length of SMCs from H-ras(-/-) IAS was significantly shorter. Y 27632 eliminated this difference. RhoA immunoreactivity shifted from cytoplasm to plasma membrane in H-ras(-/-) SMCs, a change typically associated with contraction. Further, SMCs from H-ras(-/-) mice exhibited higher levels of the contractile proteins ROCK II, phosphorylated-MYPT(1) and phosphorylated-MLC(20). Transfection with the G12V mutant increased the length of H-ras(-/-) cells. Conversely, the dominant negative H-ras (S17N) mutant decreased the length of H-ras(+/+) cells. CONCLUSIONS H-ras negatively regulates basal tone in the IAS by inhibiting RhoA/Rho-kinase machinery. Studies may have significant relevance in the pathophysiology and therapy of certain anorectal motility disorders associated with the IAS dysfunction.
Collapse
Affiliation(s)
- Márcio A F de Godoy
- Departments of Medicine, Division of Gastroenterology & Hepatology, Pharmacology and Experimental Therapeutics, and Emergency Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennyslvania 19107, USA
| | | | | | | | | | | |
Collapse
|
43
|
Semenova MM, Mäki-Hokkonen AMJ, Cao J, Komarovski V, Forsberg KM, Koistinaho M, Coffey ET, Courtney MJ. Rho mediates calcium-dependent activation of p38alpha and subsequent excitotoxic cell death. Nat Neurosci 2007; 10:436-43. [PMID: 17369826 DOI: 10.1038/nn1869] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Accepted: 02/16/2007] [Indexed: 11/08/2022]
Abstract
Excitotoxic neuronal death contributes to many neurological disorders, and involves calcium influx and stress-activated protein kinases (SAPKs) such as p38alpha. There is indirect evidence that the small Rho-family GTPases Rac and cdc42 are involved in neuronal death subsequent to the withdrawal of nerve growth factor (NGF), whereas Rho is involved in the inhibition of neurite regeneration and the release of the amyloidogenic Abeta(42) peptide. Here we show that Rho is activated in rat neurons by conditions that elevate intracellular calcium and in the mouse cerebral cortex during ischemia. Rho is required for the rapid glutamate-induced activation of p38alpha and ensuing neuronal death. The ability of RhoA to activate p38alpha was not expected, and it was specific to primary neuronal cultures. The expression of active RhoA alone not only activated p38alpha but also induced neuronal death that was sensitive to the anti-apoptotic protein Bcl-2, showing that RhoA was sufficient to induce the excitotoxic pathway. Therefore, Rho is an essential component of the excitotoxic cell death pathway.
Collapse
Affiliation(s)
- Maria M Semenova
- Department of Neurobiology, A.I. Virtanen Institute, University of Kuopio, Kuopio FIN 70211, Finland
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Torres VE, Harris PC. Mechanisms of Disease: autosomal dominant and recessive polycystic kidney diseases. ACTA ACUST UNITED AC 2006; 2:40-55; quiz 55. [PMID: 16932388 DOI: 10.1038/ncpneph0070] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 09/27/2005] [Indexed: 12/21/2022]
Abstract
Autosomal dominant polycystic kidney disease and autosomal recessive polycystic kidney disease are the best known of a large family of inherited diseases characterized by the development of renal cysts of tubular epithelial cell origin. Autosomal dominant and recessive polycystic kidney diseases have overlapping but distinct pathogeneses. Identification of the causative mutated genes and elucidation of the function of their encoded proteins is shedding new light on the mechanisms that underlie tubular epithelial cell differentiation. This review summarizes recent literature on the role of primary cilia, intracellular calcium homeostasis, and signaling involving Wnt, cyclic AMP and Ras/MAPK, in the pathogenesis of polycystic kidney disease. Improved understanding of pathogenesis and the availability of animal models orthologous to the human diseases provide an excellent opportunity for the development of pathophysiology-based therapies. Some of these have proven effective in preclinical studies, and clinical trials have begun.
Collapse
Affiliation(s)
- Vicente E Torres
- Mayo Clinic College of Medicine, Eisenberg S33B, Nephrology, 200 First St SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
45
|
Zeng Y, Zhuang S, Gloddek J, Tseng CC, Boss GR, Pilz RB. Regulation of cGMP-dependent protein kinase expression by Rho and Kruppel-like transcription factor-4. J Biol Chem 2006; 281:16951-16961. [PMID: 16632465 DOI: 10.1074/jbc.m602099200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I cGMP-dependent protein kinase (PKG I) plays a major role in vascular homeostasis by mediating smooth muscle relaxation in response to nitric oxide, but little is known about the regulation of PKG I expression in smooth muscle cells. We found opposing effects of RhoA and Rac1 on cellular PKG I expression: (i) cell density-dependent changes in PKG I expression varied directly with Rac1 activity and inversely with RhoA activity; (ii) RhoA activation by calpeptin suppressed PKG I, whereas RhoA down-regulation by small interfering RNA increased PKG I expression; and (iii) PKG I promoter activity was suppressed in cells expressing active RhoA or Rho-kinase but was enhanced in cells expressing active Rac1 or a dominant negative RhoA. Sp1 consensus sequences in the PKG I promoter were required for Rho regulation and bound nuclear proteins in a cell density-dependent manner, including the Krüppel-like factor 4 (KLF4). KLF4 was identified as a major trans-acting factor at two proximal Sp1 sites; active RhoA suppressed KLF4 DNA binding and trans-activation potential on the PKG I promoter. Experiments with actin-binding agents suggested that RhoA could regulate KLF4 via its ability to induce actin polymerization. Regulation of PKG I expression by RhoA may explain decreased PKG I levels in vascular smooth muscle cells found in some models of hypertension and vascular injury.
Collapse
Affiliation(s)
- Ying Zeng
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093
| | - Shunhui Zhuang
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093
| | - Jutta Gloddek
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093
| | - Chi-Chuan Tseng
- Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Gerry R Boss
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093
| | - Renate B Pilz
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093.
| |
Collapse
|
46
|
García-Mata R, Wennerberg K, Arthur WT, Noren NK, Ellerbroek SM, Burridge K. Analysis of activated GAPs and GEFs in cell lysates. Methods Enzymol 2006; 406:425-37. [PMID: 16472675 DOI: 10.1016/s0076-6879(06)06031-9] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
An assay was developed that allows the precipitation of the active pools of Rho-GEFs, Rho-GAPs, or effectors from cell or tissue lysates. This assay can be used to identify GEFs, GAPs, and effectors involved in specific cellular pathways to determine their GTPase specificity and to monitor the temporal activation of GEFs and GAPs in response to upstream signals.
Collapse
Affiliation(s)
- Rafael García-Mata
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | | | | | | | | | | |
Collapse
|
47
|
Pang JCS, Chang Q, Chung YF, Teo JGC, Poon WS, Zhou LF, Kong X, Ng HK. Epigenetic inactivation of DLC-1 in supratentorial primitive neuroectodermal tumor. Hum Pathol 2005; 36:36-43. [PMID: 15712180 DOI: 10.1016/j.humpath.2004.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Supratentorial primitive neuroectodermal tumors (SPNETs) and medulloblastomas (MBs) are histologically similar intracranial tumors found in different anatomic locations of the brain. Our group has previously demonstrated that loss of chromosome 8p is a frequent event in MBs. The aim of this study was to evaluate whether DLC-1, a newly identified tumor-suppressor gene on chromosome 8p22, is involved in the tumorigenesis of MBs and the histologically similar SPNETs. We first assessed for alterations of gene expression in microdissected tumors and detected lack of DLC-1 transcript in 1 of 9 MBs (case M44) and 1 of 3 SPNETs (case M1). Neither somatic base substitutions nor homozygous deletion were found in tumors without DLC-1 transcript. We then explored the possibility of hypermethylation of the CpG island in DLC-1 as the mechanism of suppressed expression. Methylation-specific polymerase chain reaction revealed promotor hypermethylation of DLC-1 in M1 but not in M44. Bisulfite sequencing further verified a densely methylated pattern of 35 CpG sites studied in M1 that were not found in normal brain, indicating that inactivation of DLC-1 by hypermethylation is involved in SPNET. Based on this finding, we examined an additional 20 MBs, 8 SPNETs, and 4 MB and 2 SPNET cell lines for hypermethylation of the CpG island of DLC-1, finding that none of these samples exhibited DLC-1 methylation. In conclusion, our results demonstrate that transcriptional silencing of DLC-1 through promoter hypermethylation may contribute to tumorigenesis in a subset of SPNETs, and that loss of DLC-1 expression in MBs may be related to mechanisms other than promoter hypermethylation, genomic deletion, and mutation.
Collapse
Affiliation(s)
- Jesse Chung-Sean Pang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Jeong HW, Nam JO, Kim IS. The COOH-terminal End of R-Ras Alters the Motility and Morphology of Breast Epithelial Cells through Rho/Rho-Kinase. Cancer Res 2005. [DOI: 10.1158/0008-5472.507.65.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
R-Ras has a high degree of sequence homology with Ras and other members of the Ras subfamily, including Rap, TC21, and M-Ras. Although R-Ras has been suggested to regulate cell adhesion, migration, and invasion, the biological mechanism has not been well assessed. In this report, we show that constitutively active R-Ras (38V) induces a more rounded cell shape and redistribution of focal adhesion, and enhances the phosphorylation of focal adhesion kinase and paxillin. Active R-Ras (38V) induces cell adhesion to type I collagen, but inhibits cell motility. In active R-Ras (38V) cells, the activity of RhoA is increased and accompanied with translocation to plasma membrane, but not that of Rac1 or Cdc42. In parallel, dominant-negative RhoA (N19RhoA) and Y27632, a specific inhibitor of Rho-associated kinase, dramatically reverse the rounded cell morphology to a spread cell shape and enhance motility. Furthermore, coincident with the formation of cortical actin filaments in active R-Ras (38V) cells, myosin light chain and Ser-19-phosphorylated myosin light chain mainly accumulate at the peripheral region, which is inhibited by the treatment of Y27632. Using H-Ras/R-Ras and R-Ras/H-Ras hybrid constructs, we show that the COOH-terminal region of R-Ras contains the specific signal for inducing changes in motility and morphology. Our results suggest that R-Ras in breast epithelial cells disrupts cell polarity and motility through the Rho/Rho–associated kinase pathway triggered by a signal from the COOH-terminal end of R-Ras.
Collapse
Affiliation(s)
- Ha-Won Jeong
- Cell and Matrix Biology National Research Laboratory, Department of Biochemistry, Kyungpook National University School of Medicine, Daegu, Korea
| | - Ju-Ock Nam
- Cell and Matrix Biology National Research Laboratory, Department of Biochemistry, Kyungpook National University School of Medicine, Daegu, Korea
| | - In-San Kim
- Cell and Matrix Biology National Research Laboratory, Department of Biochemistry, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
49
|
Lopez-Ilasaca MA, Bernabe-Ortiz JC, Na SY, Dzau VJ, Xavier RJ. Bioluminescence resonance energy transfer identify scaffold protein CNK1 interactions in intact cells. FEBS Lett 2004; 579:648-54. [PMID: 15670823 DOI: 10.1016/j.febslet.2004.12.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 10/08/2004] [Accepted: 12/05/2004] [Indexed: 11/16/2022]
Abstract
Connector enhancer of KSR (CNK) proteins have been proposed to act as scaffolds in the Ras-MAPK pathway. In this work, using in vivo bioluminescence resonance energy transfer (BRET) assays and in vitro co-immunoprecipitation, we show that hCNK1 interacts with the active form of Rho A (G14V) proteins. The domain of hCNK1 that allows binding to Rho proteins involves the C-terminal PH domain. Overexpression of hCNK1 does not affect the actin cytoskeleton and does not modify the appearance of stress fibers in cells overexpressing a constitutively active form of RhoA. In contrast, hCNK1 was able to significantly decrease the RhoA-induced transcriptional activity of the serum response element (SRE) without effect on the Ras-induced SRE activation. These results identify hCNK1 as a specific partner of Rho proteins both in vitro and in vivo and suggest a role of hCNK1 in the signal transduction of Rho proteins.
Collapse
Affiliation(s)
- Marco A Lopez-Ilasaca
- Cardiovascular Research Laboratories, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
50
|
Wozniak MA, Kwong L, Chodniewicz D, Klemke RL, Keely PJ. R-Ras controls membrane protrusion and cell migration through the spatial regulation of Rac and Rho. Mol Biol Cell 2004; 16:84-96. [PMID: 15525681 PMCID: PMC539154 DOI: 10.1091/mbc.e04-04-0277] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although it is known that the spatial coordination of Rac and Rho activity is essential for cell migration, the molecular mechanisms regulating these GTPases during migration are unknown. We found that the expression of constitutively activated R-Ras (38V) blocked membrane protrusion and random migration. In contrast, expression of dominant negative R-Ras (41A) enhanced migrational persistence and membrane protrusion. Endogenous R-Ras is necessary for cell migration, as cells that were transfected with siRNA for R-Ras did not migrate. Expression of R-Ras (38V) decreased Rac activity and increased Rho activity around the entire cell periphery, whereas expression of dominant negative R-Ras (41A) showed the converse, suggesting that R-Ras can spatially activate Rho and inactivate Rac. Consistent with this role, endogenous R-Ras localized and was preferentially activated at the leading edge of migratory cells in response to adhesion. The effects of R-Ras on cell migration are mediated by PI3-Kinase, as an effector mutant that uncouples PI3-Kinase binding from R-Ras (38V) rescued migration. From these data, we hypothesize that R-Ras plays a key role in cell migration by locally regulating the switch from Rac to Rho activity after membrane protrusion and adhesion.
Collapse
Affiliation(s)
- Michele A Wozniak
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|