1
|
Area-Gomez E, Schon EA. Towards a Unitary Hypothesis of Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2024; 98:1243-1275. [PMID: 38578892 PMCID: PMC11091651 DOI: 10.3233/jad-231318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 04/07/2024]
Abstract
The "amyloid cascade" hypothesis of Alzheimer's disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid-β protein precursor [AβPP] cleavage product amyloid-β [Aβ]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the AβPP cleavage product C99, not Aβ, is the main culprit, via its role as a regulator of cholesterol metabolism. C99, which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes, thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom, a lipid disorder.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY, USA
- Centro de Investigaciones Biológicas “Margarita Salas”, Spanish National Research Council, Madrid, Spain
| | - Eric A. Schon
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Genetics and Development>, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Poliakova T, Wellington CL. Roles of peripheral lipoproteins and cholesteryl ester transfer protein in the vascular contributions to cognitive impairment and dementia. Mol Neurodegener 2023; 18:86. [PMID: 37974180 PMCID: PMC10652636 DOI: 10.1186/s13024-023-00671-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
This narrative review focuses on the role of cholesteryl ester transfer protein (CETP) and peripheral lipoproteins in the vascular contributions to cognitive impairment and dementia (VCID). Humans have a peripheral lipoprotein profile where low-density lipoproteins (LDL) represent the dominant lipoprotein fraction and high-density lipoproteins (HDL) represent a minor lipoprotein fraction. Elevated LDL-cholesterol (LDL-C) levels are well-established to cause cardiovascular disease and several LDL-C-lowering therapies are clinically available to manage this vascular risk factor. The efficacy of LDL-C-lowering therapies to reduce risk of all-cause dementia and AD is now important to address as recent studies demonstrate a role for LDL in Alzheimer's Disease (AD) as well as in all-cause dementia. The LDL:HDL ratio in humans is set mainly by CETP activity, which exchanges cholesteryl esters for triglycerides across lipoprotein fractions to raise LDL and lower HDL as CETP activity increases. Genetic and pharmacological studies support the hypothesis that CETP inhibition reduces cardiovascular risk by lowering LDL, which, by extension, may also lower VCID. Unlike humans, wild-type mice do not express catalytically active CETP and have HDL as their major lipoprotein fraction. As HDL has potent beneficial effects on endothelial cells, the naturally high HDL levels in mice protect them from vascular disorders, likely including VCID. Genetic restoration of CETP expression in mice to generate a more human-like lipid profile may increase the relevance of murine models for VCID studies. The therapeutic potential of existing and emerging LDL-lowering therapies for VCID will be discussed. Figure Legend. Cholesteryl Ester Transfer Protein in Alzheimer's Disease. CETP is mainly produced by the liver, and exchanges cholesteryl esters for triglycerides across lipoprotein fractions to raise circulating LDL and lower HDL as CETP activity increases. Low CETP activity is associated with better cardiovascular health, due to decreased LDL and increased HDL, which may also improve brain health. Although most peripheral lipoproteins cannot enter the brain parenchyma due to the BBB, it is increasingly appreciated that direct access to the vascular endothelium may enable peripheral lipoproteins to have indirect effects on brain health. Thus, lipoproteins may affect the cerebrovasculature from both sides of the BBB. Recent studies show an association between elevated plasma LDL, a well-known cardiovascular risk factor, and a higher risk of AD, and considerable evidence suggests that high HDL levels are associated with reduced CAA and lower neuroinflammation. Considering the potential detrimental role of LDL in AD and the importance of HDL's beneficial effects on endothelial cells, high CETP activity may lead to compromised BBB integrity, increased CAA deposits and greater neuroinflammation. Abbreviations: CETP - cholesteryl transfer ester protein; LDL - low-density lipoproteins; HDL - high-density lipoproteins; BBB - blood-brain barrier; CAA - cerebral amyloid angiopathy, SMC - smooth muscle cells, PVM - perivascular macrophages, RBC - red blood cells.
Collapse
Affiliation(s)
- Tetiana Poliakova
- Department of Pathology and Laboratory Medicine, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
- Djavad Mowafagian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Djavad Mowafagian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- International Collaboration On Repair Discoveries, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Juhl AD, Wüstner D. Pathways and Mechanisms of Cellular Cholesterol Efflux-Insight From Imaging. Front Cell Dev Biol 2022; 10:834408. [PMID: 35300409 PMCID: PMC8920967 DOI: 10.3389/fcell.2022.834408] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
Cholesterol is an essential molecule in cellular membranes, but too much cholesterol can be toxic. Therefore, mammalian cells have developed complex mechanisms to remove excess cholesterol. In this review article, we discuss what is known about such efflux pathways including a discussion of reverse cholesterol transport and formation of high-density lipoprotein, the function of ABC transporters and other sterol efflux proteins, and we highlight their role in human diseases. Attention is paid to the biophysical principles governing efflux of sterols from cells. We also discuss recent evidence for cholesterol efflux by the release of exosomes, microvesicles, and migrasomes. The role of the endo-lysosomal network, lipophagy, and selected lysosomal transporters, such as Niemann Pick type C proteins in cholesterol export from cells is elucidated. Since oxysterols are important regulators of cellular cholesterol efflux, their formation, trafficking, and secretion are described briefly. In addition to discussing results obtained with traditional biochemical methods, focus is on studies that use established and novel bioimaging approaches to obtain insight into cholesterol efflux pathways, including fluorescence and electron microscopy, atomic force microscopy, X-ray tomography as well as mass spectrometry imaging.
Collapse
Affiliation(s)
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, PhyLife, Physical Life Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
4
|
Asaro A, Carlo-Spiewok AS, Malik AR, Rothe M, Schipke CG, Peters O, Heeren J, Willnow TE. Apolipoprotein E4 disrupts the neuroprotective action of sortilin in neuronal lipid metabolism and endocannabinoid signaling. Alzheimers Dement 2020; 16:1248-1258. [PMID: 32588544 DOI: 10.1002/alz.12121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/12/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Apolipoprotein E (apoE) is a carrier for brain lipids and the most important genetic risk factor for Alzheimer's disease (AD). ApoE binds the receptor sortilin, which mediates uptake of apoE-bound cargo into neurons. The significance of this uptake route for brain lipid homeostasis and AD risk seen with apoE4, but not apoE3, remains unresolved. METHODS Combining neurolipidomics in patient specimens with functional studies in mouse models, we interrogated apoE isoform-specific functions for sortilin in brain lipid metabolism and AD. RESULTS Sortilin directs the uptake and conversion of polyunsaturated fatty acids into endocannabinoids, lipid-based neurotransmitters that act through nuclear receptors to sustain neuroprotective gene expression in the brain. This sortilin function requires apoE3, but is disrupted by binding of apoE4, compromising neuronal endocannabinoid metabolism and action. DISCUSSION We uncovered the significance of neuronal apoE receptor sortilin in facilitating neuroprotective actions of brain lipids, and its relevance for AD risk seen with apoE4.
Collapse
Affiliation(s)
- Antonino Asaro
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | | | - Anna R Malik
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | | | - Carola G Schipke
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany
| | - Oliver Peters
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Joerg Heeren
- Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Yassine HN, Finch CE. APOE Alleles and Diet in Brain Aging and Alzheimer's Disease. Front Aging Neurosci 2020; 12:150. [PMID: 32587511 PMCID: PMC7297981 DOI: 10.3389/fnagi.2020.00150] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The APOE gene alleles modify human aging and the response to the diet at many levels with diverse pleotropic effects from gut to brain. To understand the interactions of APOE isoforms and diet, we analyze how cellular trafficking of apoE proteins affects energy metabolism, the immune system, and reproduction. The age-accelerating APOE4 allele alters the endosomal trafficking of cell surface receptors that mediate lipid and glucose metabolism. The APOE4 allele is the ancestral human allele, joined by APOE3 and then APOE2 in the human species. Under conditions of high infection, uncertain food, and shorter life expectancy, APOE4 may be adaptive for reducing mortality. As humans transitioned into modern less-infectious environments and longer life spans, APOE4 increased risks of aging-related diseases, particularly impacting arteries and the brain. The association of APOE4 with glucose dysregulation and body weight promotes many aging-associated diseases. Additionally, the APOE gene locus interacts with adjacent genes on chromosome 19 in haplotypes that modify neurodegeneration and metabolism, for which we anticipate complex gene-environment interactions. We summarize how diet and Alzheimer's disease (AD) risk are altered by APOE genotype in both animal and human studies and identify gaps. Much remains obscure in how APOE alleles modify nutritional factors in human aging. Identifying risk variant haplotypes in the APOE gene complex will clarify homeostatic adaptive responses to environmental conditions.
Collapse
Affiliation(s)
- Hussein N. Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Caleb E. Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
Hui L, Soliman ML, Geiger NH, Miller NM, Afghah Z, Lakpa KL, Chen X, Geiger JD. Acidifying Endolysosomes Prevented Low-Density Lipoprotein-Induced Amyloidogenesis. J Alzheimers Dis 2020; 67:393-410. [PMID: 30594929 DOI: 10.3233/jad-180941] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cholesterol dyshomeostasis has been linked to the pathogenesis of sporadic Alzheimer's disease (AD). In furthering the understanding of mechanisms by which increased levels of circulating cholesterol augments the risk of developing sporadic AD, others and we have reported that low-density lipoprotein (LDL) enters brain parenchyma by disrupting the blood-brain barrier and that endolysosome de-acidification plays a role in LDL-induced amyloidogenesis in neurons. Here, we tested the hypothesis that endolysosome de-acidification was central to amyloid-β (Aβ) generation and that acidifying endolysosomes protects against LDL-induced increases in Aβ levels in neurons. We demonstrated that LDL, but not HDL, de-acidified endolysosomes and increased intraneuronal and secreted levels of Aβ. ML-SA1, an agonist of endolysosome-resident TRPML1 channels, acidified endolysosomes, and TRPML1 knockdown attenuated ML-SA1-induced endolysosome acidification. ML-SA1 blocked LDL-induced increases in intraneuronal and secreted levels of Aβ as well as Aβ accumulation in endolysosomes, prevented BACE1 accumulation in endolysosomes, and decreased BACE1 activity levels. LDL downregulated TRPML1 protein levels, and TRPML1 knockdown worsens LDL-induced increases in Aβ. Our findings suggest that endolysosome acidification by activating TRPML1 may represent a protective strategy against sporadic AD.
Collapse
Affiliation(s)
- Liang Hui
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Mahmoud L Soliman
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Nicholas H Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Nicole M Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Koffi L Lakpa
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
7
|
van der Sluis RJ, Depuydt MAC, Verwilligen RAF, Hoekstra M, Van Eck M. Elimination of adrenocortical apolipoprotein E production does not impact glucocorticoid output in wild-type mice. Mol Cell Endocrinol 2019; 490:21-27. [PMID: 30953750 DOI: 10.1016/j.mce.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/07/2019] [Accepted: 04/02/2019] [Indexed: 12/26/2022]
Abstract
Apolipoprotein E (APOE) deficient mice exhibit unexplained hypercorticosteronemia. Given that APOE is also produced locally within the adrenals, we evaluated the effect of adrenal-specific APOE deficiency on the glucocorticoid function. Hereto, one adrenal containing or lacking APOE was transplanted into adrenalectomized wild-type mice. Adrenal APOE deficiency did not impact adrenal total cholesterol levels. Importantly, the ability of the two adrenal types to produce glucocorticoids was also not different as judged from the similar plasma corticosterone levels. Adrenal mRNA expression levels of HMG-CoA reductase and the LDL receptor were decreased by respectively 72% (p < 0.01) and 65% (p = 0.07), suggesting that cholesterol acquisition pathways were inhibited to possibly compensate the lack of APOE. In support, a parallel increase in the expression level of the cholesterol accumulation-associated ER stress marker CHOP was detected (+117%; p < 0.05). In conclusion, our studies show that elimination of adrenocortical APOE production does not impact glucocorticoid output in wild-type mice.
Collapse
Affiliation(s)
- Ronald J van der Sluis
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333CC, Leiden, the Netherlands.
| | - Marie A C Depuydt
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333CC, Leiden, the Netherlands
| | - Robin A F Verwilligen
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333CC, Leiden, the Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333CC, Leiden, the Netherlands
| | - Miranda Van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333CC, Leiden, the Netherlands
| |
Collapse
|
8
|
Yang H, Zhang N, Okoro EU, Guo Z. Transport of Apolipoprotein B-Containing Lipoproteins through Endothelial Cells Is Associated with Apolipoprotein E-Carrying HDL-Like Particle Formation. Int J Mol Sci 2018; 19:ijms19113593. [PMID: 30441770 PMCID: PMC6274886 DOI: 10.3390/ijms19113593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 12/15/2022] Open
Abstract
Passage of apolipoprotein B-containing lipoproteins (apoB-LPs), i.e., triglyceride-rich lipoproteins (TRLs), intermediate-density lipoproteins (IDLs), and low-density lipoproteins (LDLs), through the endothelial monolayer occurs in normal and atherosclerotic arteries. Among these lipoproteins, TRLs and IDLs are apoE-rich apoB-LPs (E/B-LPs). Recycling of TRL-associated apoE has been shown to form apoE-carrying high-density lipoprotein (HDL)-like (HDLE) particles in many types of cells. The current report studied the formation of HDLE particles by transcytosis of apoB-LPs through mouse aortic endothelial cells (MAECs). Our data indicated that passage of radiolabeled apoB-LPs, rich or poor in apoE, through the MAEC monolayer is inhibited by filipin and unlabeled competitor lipoproteins, suggesting that MAECs transport apoB-LPs via a caveolae-mediated pathway. The cholesterol and apoE in the cell-untreated E/B-LPs, TRLs, IDLs, and LDLs distributed primarily in the low-density (LD) fractions (d ≤ 1.063). A substantial portion of the cholesterol and apoE that passed through the MAEC monolayer was allotted into the high-density (HD) (d > 1.063) fractions. In contrast, apoB was detectable only in the LD fractions before or after apoB-LPs were incubated with the MAEC monolayer, suggesting that apoB-LPs pass through the MAEC monolayer in the forms of apoB-containing LD particles and apoE-containing HD particles.
Collapse
Affiliation(s)
- Hong Yang
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA.
| | - Ningya Zhang
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA.
| | - Emmanuel U Okoro
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA.
| | - Zhongmao Guo
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA.
| |
Collapse
|
9
|
Zanoni P, Velagapudi S, Yalcinkaya M, Rohrer L, von Eckardstein A. Endocytosis of lipoproteins. Atherosclerosis 2018; 275:273-295. [PMID: 29980055 DOI: 10.1016/j.atherosclerosis.2018.06.881] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/04/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
Abstract
During their metabolism, all lipoproteins undergo endocytosis, either to be degraded intracellularly, for example in hepatocytes or macrophages, or to be re-secreted, for example in the course of transcytosis by endothelial cells. Moreover, there are several examples of internalized lipoproteins sequestered intracellularly, possibly to exert intracellular functions, for example the cytolysis of trypanosoma. Endocytosis and the subsequent intracellular itinerary of lipoproteins hence are key areas for understanding the regulation of plasma lipid levels as well as the biological functions of lipoproteins. Indeed, the identification of the low-density lipoprotein (LDL)-receptor and the unraveling of its transcriptional regulation led to the elucidation of familial hypercholesterolemia as well as to the development of statins, the most successful therapeutics for lowering of cholesterol levels and risk of atherosclerotic cardiovascular diseases. Novel limiting factors of intracellular trafficking of LDL and the LDL receptor continue to be discovered and to provide drug targets such as PCSK9. Surprisingly, the receptors mediating endocytosis of high-density lipoproteins or lipoprotein(a) are still a matter of controversy or even new discovery. Finally, the receptors and mechanisms, which mediate the uptake of lipoproteins into non-degrading intracellular itineraries for re-secretion (transcytosis, retroendocytosis), storage, or execution of intracellular functions, are largely unknown.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Srividya Velagapudi
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Mustafa Yalcinkaya
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Lucia Rohrer
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Khan N, Datta G, Geiger JD, Chen X. Apolipoprotein E isoform dependently affects Tat-mediated HIV-1 LTR transactivation. J Neuroinflammation 2018; 15:91. [PMID: 29558961 PMCID: PMC5861635 DOI: 10.1186/s12974-018-1129-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/13/2018] [Indexed: 12/02/2022] Open
Abstract
Background Apolipoprotein E (ApoE) is the major carrier protein that mediates the transport and delivery of cholesterol and other lipids in the brain. Three isoforms of ApoE (ApoE2, ApoE3, ApoE4) exist in humans, and their relative expression levels impact HIV-1 infection, HIV-1/AIDS disease progression, and cognitive decline associated with HIV-1-associated neurocognitive disorder. Because HIV-1 Tat, a viral protein essential for HIV-1 replication, can bind to low-density lipoprotein receptor-related protein 1 (LRP1) that controls ApoE uptake in the brain, we determined the extent to which different isoforms of ApoE affected Tat-mediated HIV-1 LTR transactivation. Methods Using U87MG glioblastoma cells expressing LTR-driven luciferase, we determined the extent to which LRP1 as well as ApoE2, ApoE3, and ApoE4 affected Tat-mediated HIV-1 LTR transactivation. Results A specific LRP1 antagonist and siRNA knockdown of LRP1 both restricted significantly Tat-mediated LTR transactivation. Of the three ApoEs, ApoE4 was the least potent and effective at preventing HIV-1 Tat internalization and at decreasing Tat-mediated HIV-1 LTR transactivation. Further, Tat-mediated LTR transactivation was attenuated by an ApoE mimetic peptide, and ApoE4-induced restriction of Tat-mediated LTR transactivation was potentiated by an ApoE4 structure modulator that changes ApoE4 into an ApoE3-like phenotype. Conclusions These findings help explain observed differential effects of ApoEs on HIV-1 infectivity and the prevalence of HAND in people living with HIV-1 infection and suggest that ApoE mimetic peptides and ApoE4 structure modulator might be used as a therapeutic strategy against HIV-1 infection and associated neurocognitive disorders. Electronic supplementary material The online version of this article (10.1186/s12974-018-1129-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Grand Forks, ND, 58203, USA
| | - Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Grand Forks, ND, 58203, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Grand Forks, ND, 58203, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Grand Forks, ND, 58203, USA.
| |
Collapse
|
11
|
Area-Gomez E, Schon EA. On the Pathogenesis of Alzheimer's Disease: The MAM Hypothesis. FASEB J 2017; 31:864-867. [PMID: 28246299 DOI: 10.1096/fj.201601309] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 01/19/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) is currently unclear and is the subject of much debate. The most widely accepted hypothesis designed to explain AD pathogenesis is the amyloid cascade, which invokes the accumulation of extracellular plaques and intracellular tangles as playing a fundamental role in the course and progression of the disease. However, besides plaques and tangles, other biochemical and morphological features are also present in AD, often manifesting early in the course of the disease before the accumulation of plaques and tangles. These include altered calcium, cholesterol, and phospholipid metabolism; altered mitochondrial dynamics; and reduced bioenergetic function. Notably, these other features of AD are associated with functions localized to a subdomain of the endoplasmic reticulum (ER), known as mitochondria-associated ER membranes (MAMs). The MAM region of the ER is a lipid raft-like domain closely apposed to mitochondria in such a way that the 2 organelles are able to communicate with each other, both physically and biochemically, thereby facilitating the functions of this region. We have found that MAM-localized functions are increased significantly in cellular and animal models of AD and in cells from patients with AD in a manner consistent with the biochemical findings noted above. Based on these and other observations, we propose that increased ER-mitochondrial apposition and perturbed MAM function lie at the heart of AD pathogenesis.-Area-Gomez, E., Schon, E. A. On the pathogenesis of Alzheimer's disease: the MAM hypothesis.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University, New York, New York, USA; and
| | - Eric A Schon
- Department of Neurology, Columbia University, New York, New York, USA; and.,Department of Genetics and Development, Columbia University, New York, New York, USA
| |
Collapse
|
12
|
Abstract
The most widely accepted hypothesis to explain the pathogenesis of Alzheimer disease (AD) is the amyloid cascade, in which the accumulation of extraneuritic plaques and intracellular tangles plays a key role in driving the course and progression of the disease. However, there are other biochemical and morphological features of AD, including altered calcium, phospholipid, and cholesterol metabolism and altered mitochondrial dynamics and function that often appear early in the course of the disease, prior to plaque and tangle accumulation. Interestingly, these other functions are associated with a subdomain of the endoplasmic reticulum (ER) called mitochondria-associated ER membranes (MAM). MAM, which is an intracellular lipid raft-like domain, is closely apposed to mitochondria, both physically and biochemically. These MAM-localized functions are, in fact, increased significantly in various cellular and animal models of AD and in cells from AD patients, which could help explain the biochemical and morphological alterations seen in the disease. Based on these and other observations, a strong argument can be made that increased ER-mitochondria connectivity and increased MAM function are fundamental to AD pathogenesis.
Collapse
|
13
|
Tiffany M, Szoka FC. Co-localization of fluorescent labeled lipid nanoparticles with specifically tagged subcellular compartments by single particle tracking at low nanoparticle to cell ratios. J Drug Target 2016; 24:857-864. [DOI: 10.1080/1061186x.2016.1233976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Matthew Tiffany
- Department of Bioengineering, Therapeutic Sciences and Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Department of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Francis C. Szoka
- Department of Bioengineering, Therapeutic Sciences and Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| |
Collapse
|
14
|
Mitochondria-associated ER membranes and Alzheimer disease. Curr Opin Genet Dev 2016; 38:90-96. [PMID: 27235807 DOI: 10.1016/j.gde.2016.04.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 12/28/2022]
Abstract
The series of events underlying the pathogenesis of Alzheimer disease (AD) in unknown. The most widely accepted hypothesis is called the amyloid cascade, based on the observation that the brains of AD patients contain high levels of extracellular plaques, composed mainly of β-amyloid (Aβ), and intracellular tangles, composed of hyperphosphorylated forms of the microtubule-associated protein tau. However, AD is also characterized by other features, including aberrant cholesterol, phospholipid, and calcium metabolism, and mitochondrial dysfunction, all ostensibly unrelated to plaque and tangle formation. Notably, these 'other' aspects of AD pathology are functions related to mitochondria-associated ER membranes (MAM), a subdomain of the endoplasmic reticulum (ER) that is apposed to, and communicates with, mitochondria. Given the potential relationship between MAM and AD, we explored the possibility that perturbed MAM function might play a role in AD pathogenesis. We found that γ-secretase activity, which processes the amyloid precursor protein to generate Aβ, is located predominantly in the MAM, and that ER-mitochondrial apposition and MAM function are increased significantly in cells from AD patients. These observations may help explain not only the aberrant Aβ production, but also many of the 'other' biochemical and morphological features of the disease. Based on these, and other, data we propose that AD is fundamentally a disorder of ER-mitochondrial hyperconnectivity.
Collapse
|
15
|
Perisa D, Rohrer L, Kaech A, von Eckardstein A. Itinerary of high density lipoproteins in endothelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:98-107. [DOI: 10.1016/j.bbalip.2015.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/02/2015] [Accepted: 11/09/2015] [Indexed: 01/30/2023]
|
16
|
Tambini MD, Pera M, Kanter E, Yang H, Guardia-Laguarta C, Holtzman D, Sulzer D, Area-Gomez E, Schon EA. ApoE4 upregulates the activity of mitochondria-associated ER membranes. EMBO Rep 2015; 17:27-36. [PMID: 26564908 PMCID: PMC4718413 DOI: 10.15252/embr.201540614] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022] Open
Abstract
In addition to the appearance of senile plaques and neurofibrillary tangles, Alzheimer's disease (AD) is characterized by aberrant lipid metabolism and early mitochondrial dysfunction. We recently showed that there was increased functionality of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a subdomain of the ER involved in lipid and cholesterol homeostasis, in presenilin-deficient cells and in fibroblasts from familial and sporadic AD patients. Individuals carrying the ε4 allele of apolipoprotein E (ApoE4) are at increased risk for developing AD compared to those carrying ApoE3. While the reason for this increased risk is unknown, we hypothesized that it might be associated with elevated MAM function. Using an astrocyte-conditioned media (ACM) model, we now show that ER-mitochondrial communication and MAM function-as measured by the synthesis of phospholipids and of cholesteryl esters, respectively-are increased significantly in cells treated with ApoE4-containing ACM as compared to those treated with ApoE3-containing ACM. Notably, this effect was seen with lipoprotein-enriched preparations, but not with lipid-free ApoE protein. These data are consistent with a role of upregulated MAM function in the pathogenesis of AD and may help explain, in part, the contribution of ApoE4 as a risk factor in the disease.
Collapse
Affiliation(s)
- Marc D Tambini
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, NY, USA
| | - Marta Pera
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Ellen Kanter
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Hua Yang
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | | | - David Holtzman
- Department of Neurology, Hope Center for Neurological Disorders Knight Alzheimer's Disease Research Center Washington University School of Medicine, St. Louis, MO, USA
| | - David Sulzer
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Eric A Schon
- Department of Neurology, Columbia University Medical Center, New York, NY, USA Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
17
|
Chen X, Hui L, Geiger JD. Role of LDL cholesterol and endolysosomes in amyloidogenesis and Alzheimer's disease. ACTA ACUST UNITED AC 2014; 5. [PMID: 26413387 DOI: 10.4172/2155-9562.1000236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogenesis of late-onset sporadic Alzheimer's disease (AD) is believed to result from complex interactions between nutritional, environmental, epigenetic and genetic factors. Among those factors, altered circulating cholesterol homeostasis, independent of the APOE genotype, continues to be implicated in brain deposition of amyloid beta protein (Aβ) and the pathogenesis of AD. It is believed that trafficking of amyloid beta precursor protein (AβPP) into endolysosomes appears to play a critical role in determining amyloidogenic processing of AβPP because this is precisely where two enzymes critically important in AβPP metabolism are located; beta amyloid converting enzyme (BACE-1) and gamma secretase enzyme. We have shown that elevated levels of LDL cholesterol promote AβPP internalization, disturb neuronal endolysosome structure and function, and increase Aβ accumulation in neuronal endolysosomes. Here, we will further discuss the linkage between elevated levels of LDL cholesterol and AD pathogenesis, and explore the underlying mechanisms whereby elevated levels of plasma LDL cholesterol promote amyloidogenesis.
Collapse
Affiliation(s)
- Xuesong Chen
- Department of Basic Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Liang Hui
- Department of Basic Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Jonathan D Geiger
- Department of Basic Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| |
Collapse
|
18
|
Fruhwürth S, Pavelka M, Bittman R, Kovacs WJ, Walter KM, Röhrl C, Stangl H. High-density lipoprotein endocytosis in endothelial cells. World J Biol Chem 2013; 4:131-140. [PMID: 24340136 PMCID: PMC3856308 DOI: 10.4331/wjbc.v4.i4.131] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/11/2013] [Accepted: 11/19/2013] [Indexed: 02/05/2023] Open
Abstract
AIM: To describe the way stations of high-density lipoprotein (HDL) uptake and its lipid exchange in endothelial cells in vitro and in vivo.
METHODS: A combination of fluorescence microscopy using novel fluorescent cholesterol surrogates and electron microscopy was used to analyze HDL endocytosis in great detail in primary human endothelial cells. Further, HDL uptake was quantified using radio-labeled HDL particles. To validate the in vitro findings mice were injected with fluorescently labeled HDL and particle uptake in the liver was analyzed using fluorescence microscopy.
RESULTS: HDL uptake occurred via clathrin-coated pits, tubular endosomes and multivesicular bodies in human umbilical vein endothelial cells. During uptake and resecretion, HDL-derived cholesterol was exchanged at a faster rate than cholesteryl oleate, resembling the HDL particle pathway seen in hepatic cells. In addition, lysosomes were not involved in this process and thus HDL degradation was not detectable. In vivo, we found HDL mainly localized in mouse hepatic endothelial cells. HDL was not detected in parenchymal liver cells, indicating that lipid transfer from HDL to hepatocytes occurs primarily via scavenger receptor, class B, type I mediated selective uptake without concomitant HDL endocytosis.
CONCLUSION: HDL endocytosis occurs via clathrin-coated pits, tubular endosomes and multivesicular bodies in human endothelial cells. Mouse endothelial cells showed a similar HDL uptake pattern in vivo indicating that the endothelium is one major site of HDL endocytosis and transcytosis.
Collapse
|
19
|
Sengupta B, Narasimhulu CA, Parthasarathy S. Novel technique for generating macrophage foam cells for in vitro reverse cholesterol transport studies. J Lipid Res 2013; 54:3358-72. [PMID: 24115226 PMCID: PMC3826683 DOI: 10.1194/jlr.m041327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Generation of foam cells, an essential step for reverse cholesterol transport studies, uses the technique of receptor-dependent macrophage loading with radiolabeled acetylated LDL. In this study, we used the ability of a biologically relevant detergent molecule, lysophosphatidylcholine (lyso-PtdCho), to form mixed micelles with cholesterol or cholesteryl ester (CE) to generate macrophage foam cells. Fluorescent or radiolabeled cholesterol/lyso-PtdCho mixed micelles were prepared and incubated with RAW 264.7 or mouse peritoneal macrophages. Results showed that such micelles were quite stable at 4°C and retained the solubilized cholesterol during one month of storage. Macrophages incubated with cholesterol or CE (unlabeled, fluorescently labeled, or radiolabeled)/lyso-PtdCho mixed micelles accumulated CE as documented by microscopy, lipid staining, labeled oleate incorporation, and by TLC. Such foam cells unloaded cholesterol when incubated with HDL but not with oxidized HDL. We propose that stable cholesterol or CE/lyso-PtdCho micelles would offer advantages over existing methods.
Collapse
Affiliation(s)
- Bhaswati Sengupta
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827
| | | | | |
Collapse
|
20
|
Yasuno F, Asada T. Effect of plasma lipids and APOE genotype on cognitive decline. DIALOGUES IN CLINICAL NEUROSCIENCE 2013. [PMID: 23576895 PMCID: PMC3622465 DOI: 10.31887/dcns.2013.15.1/fyasuno] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A central tenet of brain aging is that “what is good for the heart is good for the brain.” We examined the combined effect of plasma lipids and APOE genotype on cognitive function in elderly individuals. Plasma concentrations of high-density lipoprotein (HDL), low-density lipoprotein, triglyceride, total cholesterol, and apolipoprotein E (apoE) were evaluated in 622 community-dwelling individuals aged 65 years and older. We investigated the associations between plasma lipids and cognitive function in APOE4 carrier (E4+) and APOE4 noncarrier (E4-) groups using 3-year longitudinal data. At baseline and 3 years later, cognitive scores were correlated with plasma apoE levels in both E4- and E4+, and HDL level in E4-. Our findings suggest that an interaction between apoE and HDL is facilitated by APOE4, and is possibly linked with an enhancement of neuroplasticity and with resultant protective effects on cognitive function in later life. Preservation of higher plasma apoE and HDL from early life is proposed as a possible strategy for maintaining cognitive function in later life, especially for APOE4-positive individuals.
Collapse
Affiliation(s)
- Fumihiko Yasuno
- Department of Neuropsychiatry, Institute of Clinical Medicine, University of Tsukuba, Japan; Department of Neuropsychiatry, Nara Medical University, Nara, Japan
| | - Takashi Asada
- Department of Neuropsychiatry, Institute of Clinical Medicine, University of Tsukuba, Japan
| |
Collapse
|
21
|
Yasuno F, Tanimukai S, Sasaki M, Ikejima C, Yamashita F, Kodama C, Hidaka S, Mizukami K, Asada T. Effect of plasma lipids, hypertension and APOE genotype on cognitive decline. Neurobiol Aging 2012; 33:2633-40. [DOI: 10.1016/j.neurobiolaging.2011.12.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/22/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
|
22
|
Okoro EU, Zhao Y, Guo Z, Zhou L, Lin X, Yang H. Apolipoprotein E4 is deficient in inducing macrophage ABCA1 expression and stimulating the Sp1 signaling pathway. PLoS One 2012; 7:e44430. [PMID: 22984509 PMCID: PMC3439389 DOI: 10.1371/journal.pone.0044430] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/02/2012] [Indexed: 11/18/2022] Open
Abstract
ATP binding cassette A1 (ABCA1) is a membrane protein that promotes cellular cholesterol efflux. Using RAW 264.7 macrophages, we studied the relative effects of apolipoprotein (apo) E3 and apoE4 on ABCA1 and on the signaling pathway that regulates its expression. Both lipid-associated and lipid-free apoE4 forms induced ∼30% lower levels of ABCA1 protein and mRNA than apoE3 forms. Phosphorylated levels of phosphoinositol 3-kinase (PI3K), protein kinase Cζ (PKCζ) and specificity protein 1 (Sp1) were also lower when treated with apoE4 compared to apoE3. The reduced ability of apoE4 to induce ABCA1 expression, PKCζ and Sp1 phosphorylation were confirmed in human THP-1 monocytes/macrophages. Sequential phosphorylation of PI3K, PKCζ and Sp1 has been suggested as a mechanism for upregulation of ABCA1 expression. Both apoE3 and apoE4 reduced total cholesterol and cholesterol esters in lipid-laden RAW 264.7 cells, and induced apoAI-mediated cholesterol efflux. However, the cholesterol esters and cholesterol efflux in apoE4-treated cells were ∼50% and ∼24% lower, respectively, compared to apoE3-treated cells. Accumulation of cholesterol esters in macrophages is a mechanism for foam cell formation. Thus the reduced ability of apoE4 to activate the PI3K-PKCζ-Sp1 signaling pathway and induce ABCA1 expression likely impairs cholesterol ester removal, and increases foam cell formation.
Collapse
Affiliation(s)
- Emmanuel Ugochukwu Okoro
- Department of Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Yanfeng Zhao
- Department of Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - ZhongMao Guo
- Department of Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Lichun Zhou
- Department of Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Xinghua Lin
- Department of Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Hong Yang
- Department of Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
23
|
Association between cognitive function and plasma lipids of the elderly after controlling for apolipoprotein E genotype. Am J Geriatr Psychiatry 2012; 20:574-83. [PMID: 21407046 DOI: 10.1097/jgp.0b013e318211819b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Although the relationship between cognitive function and plasma lipids has attracted attention, previous studies have shown conflicting results. One possible confounding factor is due to the influence of gene-related modulator. We investigated the relationship between cognitive function and lipid plasma levels of old age after controlling for apolipoprotein E (APOE) genotype. METHODS One thousand three hundred ninety-five subjects without dementia age 65 and older participated in this study. They were divided into two groups, with and without APOE4 [E4 (+) and E4 (-)]. Plasma concentrations of high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglyceride (TG), total cholesterol (TC) and apolipoprotein E (apoE) were measured. Associations between plasma concentrations of lipids and cognitive function were investigated for each group. RESULTS We found a positive association between cognitive scores and plasma apoE level in both E4 (-) and E4 (+) groups. A positive relationship was also observed between cognitive score and HDL level in the E4 (-) group, but not in the E4 (+) group. No substantial association between cognitive score and LDL, TG, and TC levels was found in either of the groups. CONCLUSIONS Our findings suggest that plasma apoE have a positive influence on cognitive function in both E4 (-) and E4 (+) groups, whereas the positive influence of plasma HDL was shown only in E4 (-) group. The identification of the influences of (APOE) genotype and the intracellular linkage among apoE and HDL metabolism is hoped for new preventive and therapeutic strategies for cognitive change of elderly.
Collapse
|
24
|
Chatterjee C, Sparks DL. Extracellular nucleotides inhibit insulin receptor signaling, stimulate autophagy and control lipoprotein secretion. PLoS One 2012; 7:e36916. [PMID: 22590634 PMCID: PMC3349634 DOI: 10.1371/journal.pone.0036916] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/16/2012] [Indexed: 01/15/2023] Open
Abstract
Hyperglycemia is associated with abnormal plasma lipoprotein metabolism and with an elevation in circulating nucleotide levels. We evaluated how extracellular nucleotides may act to perturb hepatic lipoprotein secretion. Adenosine diphosphate (ADP) (>10 µM) acts like a proteasomal inhibitor to stimulate apoB100 secretion and inhibit apoA-I secretion from human liver cells at 4 h and 24 h. ADP blocks apoA-I secretion by stimulating autophagy. The nucleotide increases cellular levels of the autophagosome marker, LC3-II, and increases co-localization of LC3 with apoA-I in punctate autophagosomes. ADP affects autophagy and apoA-I secretion through P2Y13. Overexpression of P2Y13 increases cellular LC3-II levels by ∼50% and blocks induction of apoA-I secretion. Conversely, a siRNA-induced reduction in P2Y13 protein expression of 50% causes a similar reduction in cellular LC3-II levels and a 3-fold stimulation in apoA-I secretion. P2Y13 gene silencing blocks the effects of ADP on autophagy and apoA-I secretion. A reduction in P2Y13 expression suppresses ERK1/2 phosphorylation, increases the phosphorylation of IR-β and protein kinase B (Akt) >3-fold, and blocks the inhibition of Akt phosphorylation by TNFα and ADP. Conversely, increasing P2Y13 expression significantly inhibits insulin-induced phosphorylation of insulin receptor (IR-β) and Akt, similar to that observed after treatment with ADP. Nucleotides therefore act through P2Y13, ERK1/2 and insulin receptor signaling to stimulate autophagy and affect hepatic lipoprotein secretion.
Collapse
Affiliation(s)
- Cynthia Chatterjee
- Atherosclerosis, Genetics and Cell Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Daniel L. Sparks
- Atherosclerosis, Genetics and Cell Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
25
|
Laatsch A, Panteli M, Sornsakrin M, Hoffzimmer B, Grewal T, Heeren J. Low density lipoprotein receptor-related protein 1 dependent endosomal trapping and recycling of apolipoprotein E. PLoS One 2012; 7:e29385. [PMID: 22238606 PMCID: PMC3251589 DOI: 10.1371/journal.pone.0029385] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 11/28/2011] [Indexed: 11/19/2022] Open
Abstract
Background Lipoprotein receptors from the low density lipoprotein (LDL) receptor family are multifunctional membrane proteins which can efficiently mediate endocytosis and thereby facilitate lipoprotein clearance from the plasma. The biggest member of this family, the LDL receptor-related protein 1 (LRP1), facilitates the hepatic uptake of triglyceride-rich lipoproteins (TRL) via interaction with apolipoprotein E (apoE). In contrast to the classical LDL degradation pathway, TRL disintegrate in peripheral endosomes, and core lipids and apoB are targeted along the endocytic pathway for lysosomal degradation. Notably, TRL-derived apoE remains within recycling endosomes and is then mobilized by high density lipoproteins (HDL) for re-secretion. The aim of this study is to investigate the involvement of LRP1 in the regulation of apoE recycling. Principal Findings Immunofluorescence studies indicate the LRP1-dependent trapping of apoE in EEA1-positive endosomes in human hepatoma cells. This processing is distinct from other LRP1 ligands such as RAP which is efficiently targeted to lysosomal compartments. Upon stimulation of HDL-induced recycling, apoE is released from LRP1-positive endosomes but is targeted to another, distinct population of early endosomes that contain HDL, but not LRP1. For subsequent analysis of the recycling capacity, we expressed the full-length human LRP1 and used an RNA interference approach to manipulate the expression levels of LRP1. In support of LRP1 determining the intracellular fate of apoE, overexpression of LRP1 significantly stimulated HDL-induced apoE recycling. Vice versa LRP1 knockdown in HEK293 cells and primary hepatocytes strongly reduced the efficiency of HDL to stimulate apoE secretion. Conclusion We conclude that LRP1 enables apoE to accumulate in an early endosomal recycling compartment that serves as a pool for the intracellular formation and subsequent re-secretion of apoE-enriched HDL particles.
Collapse
Affiliation(s)
- Alexander Laatsch
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malamatenia Panteli
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marijke Sornsakrin
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Britta Hoffzimmer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Grewal
- Faculty of Pharmacy A15, The University of Sydney, Sydney, Australia
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
26
|
Zhao Y, Chen X, Yang H, Zhou L, Okoro EU, Guo Z. A novel function of apolipoprotein E: upregulation of ATP-binding cassette transporter A1 expression. PLoS One 2011; 6:e21453. [PMID: 21779326 PMCID: PMC3136925 DOI: 10.1371/journal.pone.0021453] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/28/2011] [Indexed: 11/18/2022] Open
Abstract
Despite the well known importance of apolipoprotein (Apo) E in cholesterol efflux, the effect of ApoE on the expression of ATP-binding cassette transporter A1 (ABCA1) has never been investigated. The objective of this study was to determine the effect of ApoE on ApoB-carrying lipoprotein-induced expression of ABCA1, a protein that mediates cholesterol efflux. Our data demonstrate that ApoB-carrying lipoproteins obtained from both wild-type and ApoE knockout mice induced ApoAI-mediated cholesterol efflux in mouse macrophages, which was associated with an enhanced ABCA1 promoter activity, and an increased ABCA1 mRNA and protein expression. In addition, these lipoproteins increased the level of phosphorylated specificity protein 1 (Sp1) and the amount of Sp1 bound to the ABCA1 promoter. However, all these inductions were significantly diminished in cells treated with ApoE-free lipoproteins, when compared to those treated with wild-type lipoproteins. Enrichment with human ApoE3 reversed the reduced inducibility of ApoE-free lipoproteins. Moreover, we observed that inhibition of Sp1 DNA-binding by mithramycin A diminished ABCA1 expression and ApoAI-mediated cholesterol efflux induced by ApoB-carrying lipoproteins, and that mutation of the Sp1-binding motif in the ABCA1 promoter region diminished ApoB-carrying lipoprotein-induced ABCA1 promoter activity. Collectively, these data suggest that ApoE associated with ApoB-carrying lipoproteins has an upregulatory role on ABCA1 expression, and that induction of Sp1 phosphorylation is a mechanism by which ApoE upregulates ABCA1 expression.
Collapse
Affiliation(s)
- Yanfeng Zhao
- Department of Physiology, Wuhan University School of Basic Medical Science, Wuhan, People's Republic of China
| | - Xinping Chen
- Department of Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Hong Yang
- Department of Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Lichun Zhou
- Department of Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Emmanuel U. Okoro
- Department of Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Zhongmao Guo
- Department of Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
27
|
Fan J, Stukas S, Wong C, Chan J, May S, DeValle N, Hirsch-Reinshagen V, Wilkinson A, Oda MN, Wellington CL. An ABCA1-independent pathway for recycling a poorly lipidated 8.1 nm apolipoprotein E particle from glia. J Lipid Res 2011; 52:1605-16. [PMID: 21705806 DOI: 10.1194/jlr.m014365] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Lipid transport in the brain is coordinated by glial-derived lipoproteins that contain apolipoprotein E (apoE) as their primary protein. Here we show that apoE is secreted from wild-type (WT) primary murine mixed glia as nascent lipoprotein subspecies ranging from 7.5 to 17 nm in diameter. Negative-staining electron microscropy (EM) revealed rouleaux, suggesting a discoidal structure. Potassium bromide (KBr) density gradient ultracentrifugation showed that all subspecies, except an 8.1 nm particle, were lipidated. Glia lacking the cholesterol transporter ABCA1 secreted only 8.1 nm particles, which were poorly lipidated and nondiscoidal but could accept lipids to form the full repertoire of WT apoE particles. Receptor-associated-protein (RAP)-mediated inhibition of apoE receptor function blocked appearance of the 8.1 nm species, suggesting that this particle may arise through apoE recycling. Selective deletion of the LDL receptor (LDLR) reduced the level of 8.1 nm particle production by approximately 90%, suggesting that apoE is preferentially recycled through the LDLR. Finally, apoA-I stimulated secretion of 8.1 nm particles in a dose-dependent manner. These results suggest that nascent glial apoE lipoproteins are secreted through multiple pathways and that a greater understanding of these mechanisms may be relevant to several neurological disorders.
Collapse
Affiliation(s)
- Jianjia Fan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wood P, Mulay V, Darabi M, Chan KC, Heeren J, Pol A, Lambert G, Rye KA, Enrich C, Grewal T. Ras/mitogen-activated protein kinase (MAPK) signaling modulates protein stability and cell surface expression of scavenger receptor SR-BI. J Biol Chem 2011; 286:23077-92. [PMID: 21525007 DOI: 10.1074/jbc.m111.236398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) Erk1/2 has been implicated to modulate the activity of nuclear receptors, including peroxisome proliferator activator receptors (PPARs) and liver X receptor, to alter the ability of cells to export cholesterol. Here, we investigated if the Ras-Raf-Mek-Erk1/2 signaling cascade could affect reverse cholesterol transport via modulation of scavenger receptor class BI (SR-BI) levels. We demonstrate that in Chinese hamster ovary (CHO) and human embryonic kidney (HEK293) cells, Mek1/2 inhibition reduces PPARα-inducible SR-BI protein expression and activity, as judged by reduced efflux onto high density lipoprotein (HDL). Ectopic expression of constitutively active H-Ras and Mek1 increases SR-BI protein levels, which correlates with elevated PPARα Ser-21 phosphorylation and increased cholesterol efflux. In contrast, SR-BI levels are insensitive to Mek1/2 inhibitors in PPARα-depleted cells. Most strikingly, Mek1/2 inhibition promotes SR-BI degradation in SR-BI-overexpressing CHO cells and human HuH7 hepatocytes, which is associated with reduced uptake of radiolabeled and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyane-labeled HDL. Loss of Mek1/2 kinase activity reduces SR-BI expression in the presence of bafilomycin, an inhibitor of lysosomal degradation, indicating down-regulation of SR-BI via proteasomal pathways. In conclusion, Mek1/2 inhibition enhances the PPARα-dependent degradation of SR-BI in hepatocytes.
Collapse
Affiliation(s)
- Peta Wood
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tayebi M, David M, Bate C, Jones D, Taylor W, Morton R, Pollard J, Hawke S. Epitope-specific anti-prion antibodies upregulate apolipoprotein E and disrupt membrane cholesterol homeostasis. J Gen Virol 2010; 91:3105-15. [DOI: 10.1099/vir.0.023838-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
30
|
Röhrl C, Pagler TA, Strobl W, Ellinger A, Neumüller J, Pavelka M, Stangl H, Meisslitzer-Ruppitsch C. Characterization of endocytic compartments after holo-high density lipoprotein particle uptake in HepG2 cells. Histochem Cell Biol 2010; 133:261-72. [PMID: 20039053 PMCID: PMC3182552 DOI: 10.1007/s00418-009-0672-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2009] [Indexed: 12/27/2022]
Abstract
Holo-high density lipoprotein (HDL) particle uptake, besides selective lipid uptake, constitutes an alternative pathway to regulate cellular cholesterol homeostasis. In the current study, the cellular path of holo-HDL particles was investigated in human liver carcinoma cells (HepG2) using combined light and electron microscopical methods. The apolipoprotein moiety of HDL was visualized with different markers: horseradish peroxidase, colloidal gold and the fluorochrome Alexa(568), used in fluorescence microscopy and after photooxidation correlatively at the ultrastructural level. Time course experiments showed a rapid uptake of holo-HDL particles, an accumulation in endosomal compartments, with a plateau after 1-2 h of continuous uptake, and a clearance 1-2 h upon replacement by unlabeled HDL. Correlative microscopy, using HDL-Alexa(568)-driven diaminobenzidine (DAB) photooxidation, identified the fluorescent organelles as DAB-positive multivesicular bodies (MVBs) in the electron microscope; their luminal contents but not the internal vesicles were stained. Labeled MVBs increased in numbers and changed shapes along with the duration of uptake, from polymorphic organelles with multiple surface domains and differently shaped protrusions dominating at early times of uptake to compact bodies with mainly tubular appendices and densely packed vesicles after later times. Differently shaped and labeled surface domains and appendices, as revealed by three dimensional reconstructions, as well as images of homotypic fusions indicate the dynamics of the HDL-positive MVBs. Double staining visualized by confocal microscopy, along with the electron microscopic data, shows that holo-HDL particles after temporal storage in MVBs are only to a minor degree transported to lysosomes, which suggests that different mechanisms are involved in cellular HDL clearance, including resecretion.
Collapse
Affiliation(s)
- Clemens Röhrl
- Center for Physiology and Pathophysiology, Institute of Medical Chemistry, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Datta G, White CR, Dashti N, Chaddha M, Palgunachari MN, Gupta H, Handattu SP, Garber DW, Anantharamaiah GM. Anti-inflammatory and recycling properties of an apolipoprotein mimetic peptide, Ac-hE18A-NH(2). Atherosclerosis 2010; 208:134-41. [PMID: 19656510 PMCID: PMC2813354 DOI: 10.1016/j.atherosclerosis.2009.07.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 06/11/2009] [Accepted: 07/05/2009] [Indexed: 02/02/2023]
Abstract
Apolipoprotein E (apoE) exerts prominent anti-inflammatory effects and undergoes recycling by target cells. We previously reported that the peptide Ac-hE18A-NH(2), composed of the receptor binding domain (LRKLRKRLLR) of apoE covalently linked to the Class A amphipathic peptide 18A, dramatically lowers plasma cholesterol and lipid hydroperoxides and enhances paraoxonase activity in dyslipidemic animal models. The objective of this study was to determine whether this peptide, analogous to apoE, exerts anti-inflammatory effects and undergoes recycling under in vitro conditions. Pulse chase studies using [(125)I]-Ac-hE18A-NH(2) in THP-1 derived macrophages and HepG2 cells showed greater amounts of intact peptide in the cells at later time points indicating recycling of the peptide. Ac-hE18A-NH(2) induced a 2.5-fold increase in prebeta-HDL in the conditioned media of HepG2 cells. This effect persisted for 3 days after removal of the peptide from culture medium. Ac-hE18A-NH(2) also induced the secretion of cell surface apoE from THP-1 macrophages. In addition, the peptide increased cholesterol efflux from THP-1 cells by an ABCA1 independent mechanism. Moreover, Ac-hE18A-NH(2) inhibited LPS-induced vascular cell adhesion molecule-1 (VCAM-1) expression, and reduced monocyte adhesion in human umbilical vein endothelial cells (HUVECs). It also reduced the secretion of interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) from THP-1 macrophages even when administered post-LPS and abolished the 18-fold increase in LPS-induced mRNA levels for MCP-1 in THP-1 cells. Taken together, these results suggest that addition of the putative apoE receptor-domain to the Class A amphipathic peptide 18A results in a peptide that, similar to apoE, recycles, thus enabling the potentiation and prolongation of its anti-atherogenic and anti-inflammatory effects. Such a peptide has great potential as a therapeutic agent in the management of atherosclerosis and other inflammatory diseases.
Collapse
Affiliation(s)
- Geeta Datta
- Department of Medicine, Atherosclerosis Research Unit, Division of Gerontology, Geriatrics and Palliative Medicine, University of Alabama at Birmingham, 1808 Seventh Avenue South, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gillard BK, Lin HYA, Massey JB, Pownall HJ. Apolipoproteins A-I, A-II and E are independently distributed among intracellular and newly secreted HDL of human hepatoma cells. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:1125-32. [PMID: 19635584 DOI: 10.1016/j.bbalip.2009.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 07/13/2009] [Accepted: 07/16/2009] [Indexed: 12/17/2022]
Abstract
Whereas hepatocytes secrete the major human plasma high density lipoproteins (HDL)-protein, apo A-I, as lipid-free and lipidated species, the biogenic itineraries of apo A-II and apo E are unknown. Human plasma and HepG2 cell-derived apo A-II and apo E occur as monomers, homodimers and heterodimers. Dimerization of apo A-II, which is more lipophilic than apo A-I, is catalyzed by lipid surfaces. Thus, we hypothesized that lipidation of intracellular and secreted apo A-II exceeds that of apo A-I, and once lipidated, apo A-II dimerizes. Fractionation of HepG2 cell lysate and media by size exclusion chromatography showed that intracellular apo A-II and apo E are fully lipidated and occur on nascent HDL and VLDL respectively, while only 45% of intracellular apo A-I is lipidated. Secreted apo A-II and apo E occur on small HDL and on LDL and large HDL respectively. HDL particles containing both apo A-II and apo A-I form only after secretion from both HepG2 and Huh7 hepatoma cells. Apo A-II dimerizes intracellularly while intracellular apo E is monomeric but after secretion associates with HDL and subsequently dimerizes. Thus, HDL apolipoproteins A-I, A-II and E have distinct intracellular and post-secretory pathways of hepatic lipidation and dimerization in the process of HDL formation. These early forms of HDL are expected to follow different apolipoprotein-specific pathways through plasma remodeling and reverse cholesterol transport.
Collapse
Affiliation(s)
- Baiba K Gillard
- Section of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, MS-A601, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
33
|
Parks BW, Srivastava R, Yu S, Kabarowski JHS. ApoE-dependent modulation of HDL and atherosclerosis by G2A in LDL receptor-deficient mice independent of bone marrow-derived cells. Arterioscler Thromb Vasc Biol 2009; 29:539-47. [PMID: 19164809 DOI: 10.1161/atvbaha.108.179937] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Deletion of the lysophospholipid-sensitive receptor, G2A, in low-density lipoprotein receptor knockout (LDLR(-/-)) mice elevates plasma high-density lipoprotein (HDL) cholesterol and suppresses atherosclerosis. However, chemotactic action of G2A in monocytes/macrophages, in addition to its modulatory effect on HDL, may contribute to the proatherogenic action of G2A. METHODS AND RESULTS We determined that deletion of G2A in LDLR(-/-) mice increases the ApoA1, ApoE, and cholesterol content of plasma HDL fractions. Hepatocytes were shown to express G2A and hepatocytes from G2A-deficient LDLR(-/-) mice secreted more ApoA1 and ApoE in HDL fractions compared to their G2A-sufficient counterparts. The atheroprotective and HDL modulatory effects of G2A deficiency were dependent on the presence of ApoE, as deletion of G2A in ApoE(-/-) and ApoE(-/-)LDLR(-/-) mice failed to raise HDL and did not suppress atherosclerosis. G2A deficiency in bone marrow-derived cells of LDLR(-/-) mice had no effect on atherosclerosis or HDL, whereas G2A deficiency in resident tissues was sufficient to raise HDL and suppress atherosclerosis. CONCLUSIONS These data demonstrate that the chemotactic function of G2A in bone marrow-derived monocytes does not modulate atherosclerosis in LDLR(-/-) mice and suggest an ApoE-dependent function for G2A in the control of hepatic HDL metabolism that might contribute to its proatherogenic action.
Collapse
Affiliation(s)
- Brian W Parks
- Department of Microbiology, University of Alabama at Birmingham, Birmingham AL 35294-2170, USA
| | | | | | | |
Collapse
|
34
|
de Chaves EP, Narayanaswami V. Apolipoprotein E and cholesterol in aging and disease in the brain. ACTA ACUST UNITED AC 2008; 3:505-530. [PMID: 19649144 DOI: 10.2217/17460875.3.5.505] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cholesterol can be detrimental or vital, and must be present in the right place at the right time and in the right amount. This is well known in the heart and the vascular system. However, in the CNS cholesterol is still an enigma, although several of its fundamental functions in the brain have been identified. Brain cholesterol has attracted additional attention owing to its close connection to ApoE, a key polymorphic transporter of extracellular cholesterol in humans. Indeed, both cholesterol and ApoE are so critical to fundamental activities of the brain, that the brain regulates their synthesis autonomously. Yet, similar control mechanisms of ApoE and cholesterol homeostasis may exist on either sides of the blood-brain barrier. One indication is that the APOE ε4 allele is associated with hypercholesterolemia and a proatherogenic profile on the vascular side and with increased risk of Alzheimer's disease on the CNS side. In this review, we draw attention to the association between cholesterol and ApoE in the aging and diseased brain, and to the behavior of the ApoE4 protein at the molecular level. The attempt to correlate in vivo and in vitro observations is challenging but crucial for developing future strategies to address ApoE-related aberrations in cholesterol metabolism selectively in the brain.
Collapse
|
35
|
|
36
|
Kockx M, Jessup W, Kritharides L. Regulation of endogenous apolipoprotein E secretion by macrophages. Arterioscler Thromb Vasc Biol 2008; 28:1060-7. [PMID: 18388328 DOI: 10.1161/atvbaha.108.164350] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apolipoprotein E has critical roles in the protection against atherosclerosis and is understood to follow the classical constitutive secretion pathway. Recent studies have indicated that the secretion of apoE from macrophages is a regulated process of unexpected complexity. Cholesterol acceptors such as apolipoprotein A-I, high density lipoprotein, and phospholipid vesicles can stimulate apoE secretion. The ATP binding cassette transporter ABCA1 is involved in basal apoE secretion and in lipidating apoE-containing particles secreted by macrophages. However, the stimulation of apoE secretion by apoA-I is ABCA1-independent, indicating the existence of both ABCA1-dependent and -independent pathways of apoE secretion. The release of apoE under basal conditions is also regulated, requiring intact protein kinase A activity, intracellular calcium, and an intact microtubular network. Mathematical modeling of apoE turnover indicates that whereas some pools of apoE are committed to either secretion or degradation, other pools can be diverted from degradation toward secretion. Targeted inhibition or stimulation of specific apoE trafficking pathways will provide unique opportunities to regulate the biology of this important molecule.
Collapse
Affiliation(s)
- Maaike Kockx
- Macrophage Biology Group, Centre for Vascular Research, Room 405C Wallace Wurth Building, University of New South Wales, High Street, Kensington, Sydney, NSW 2050, Australia
| | | | | |
Collapse
|
37
|
Rellin L, Heeren J, Beisiegel U. Recycling of apolipoprotein E is not associated with cholesterol efflux in neuronal cells. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:232-8. [PMID: 18359298 DOI: 10.1016/j.bbalip.2008.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 02/13/2008] [Accepted: 02/14/2008] [Indexed: 01/27/2023]
Abstract
After receptor-mediated endocytosis of apolipoprotein E (apoE)-containing lipoproteins in hepatocytes, the isoform apoE3 is efficiently recycled in a process which is associated with cholesterol efflux. Recycling and cholesterol efflux are greatly reduced when apoE4 is the only isoform present. ApoE is the main apolipoprotein in cerebrospinal fluid, and it plays a pivotal role in maintaining cholesterol homeostasis in the brain. The isoform apoE4 is associated with an increased risk of Alzheimer's disease and it has been postulated that high intracellular cholesterol levels promote the amyloidogenic processing of amyloid precursor protein. Therefore we investigated the cellular processing of different apoE isoforms as well as the associated cholesterol efflux in the murine neuronal cell line HT-22. Uptake of apoE3-containing lipoproteins resulted in the expected recycling while, as seen in non-neuronal cells, recycling of apoE4 was significantly reduced. However, despite these differences in apoE recycling, there was no difference in rates of cholesterol efflux. Therefore we conclude that in this neuronal cell model the reduced recycling of apoE4 does not affect cellular cholesterol metabolism.
Collapse
Affiliation(s)
- Lars Rellin
- University Medical Center Hamburg-Eppendorf, Department of Biochemistry and Molecular Biology II: Molecular Cell Biology, Martinistrasse 52, Hamburg, Germany
| | | | | |
Collapse
|
38
|
Cubells L, Vilà de Muga S, Tebar F, Wood P, Evans R, Ingelmo-Torres M, Calvo M, Gaus K, Pol A, Grewal T, Enrich C. Annexin A6-induced alterations in cholesterol transport and caveolin export from the Golgi complex. Traffic 2007; 8:1568-89. [PMID: 17822395 PMCID: PMC3003291 DOI: 10.1111/j.1600-0854.2007.00640.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Annexin A6 (AnxA6) belongs to a family of Ca(2+)-dependent membrane-binding proteins and is involved in the regulation of endocytic and exocytic pathways. We previously demonstrated that AnxA6 regulates receptor-mediated endocytosis and lysosomal targeting of low-density lipoproteins and translocates to cholesterol-enriched late endosomes (LE). As cholesterol modulates the membrane binding and the cellular location of AnxA6, but also affects the intracellular distribution of caveolin, we investigated the localization and trafficking of caveolin in AnxA6-expressing cells. Here, we show that cells expressing high levels of AnxA6 are characterized by an accumulation of caveolin-1 (cav-1) in the Golgi complex. This is associated with a sequestration of cholesterol in the LE and lower levels of cholesterol in the Golgi and the plasma membrane, both likely contributing to retention of caveolin in the Golgi apparatus and a reduced number of caveolae at the cell surface. Further strengthening these findings, knock down of AnxA6 and the ectopic expression of the Niemann-Pick C1 protein in AnxA6-overexpressing cells restore the cellular distribution of cav-1 and cholesterol, respectively. In summary, this study demonstrates that elevated expression levels of AnxA6 perturb the intracellular distribution of cholesterol, which indirectly inhibits the exit of caveolin from the Golgi complex.
Collapse
Affiliation(s)
- Laia Cubells
- Departament de Biologia Cel·lular, Facultat de Medicina, Universitat de BarcelonaCasanova 143, 08036-Barcelona, Spain
| | - Sandra Vilà de Muga
- Departament de Biologia Cel·lular, Facultat de Medicina, Universitat de BarcelonaCasanova 143, 08036-Barcelona, Spain
| | - Francesc Tebar
- Departament de Biologia Cel·lular, Facultat de Medicina, Universitat de BarcelonaCasanova 143, 08036-Barcelona, Spain
| | - Peta Wood
- Centre for Immunology, St. Vincent’s Hospital, University of New South WalesSydney, NSW 2010, Australia
| | - Rachael Evans
- Centre for Immunology, St. Vincent’s Hospital, University of New South WalesSydney, NSW 2010, Australia
| | - Mercedes Ingelmo-Torres
- Departament de Biologia Cel·lular, Facultat de Medicina, Universitat de BarcelonaCasanova 143, 08036-Barcelona, Spain
| | - Maria Calvo
- Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain
- Unitat de Microscòpia Confocal, Serveis Cientificotècnics, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain
| | - Katharina Gaus
- Centre of Vascular Research, School of Medical Sciences, University of New South WalesSydney, NSW 2052, Australia
| | - Albert Pol
- Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain
| | - Thomas Grewal
- Centre for Immunology, St. Vincent’s Hospital, University of New South WalesSydney, NSW 2010, Australia
| | - Carlos Enrich
- Departament de Biologia Cel·lular, Facultat de Medicina, Universitat de BarcelonaCasanova 143, 08036-Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain
| |
Collapse
|
39
|
Lorenzi I, von Eckardstein A, Cavelier C, Radosavljevic S, Rohrer L. Apolipoprotein A-I but not high-density lipoproteins are internalised by RAW macrophages: roles of ATP-binding cassette transporter A1 and scavenger receptor BI. J Mol Med (Berl) 2007; 86:171-83. [PMID: 17906976 DOI: 10.1007/s00109-007-0267-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 08/29/2007] [Accepted: 08/30/2007] [Indexed: 02/03/2023]
Abstract
Accumulation of lipid-loaded macrophages (foam cells) within the vessel wall is an early hallmark of atherosclerosis. High-density lipoproteins (HDL) and apolipoprotein A-I (apoA-I) can efficiently promote cholesterol efflux from macrophages. Therefore, the interaction of HDL and apoA-I with macrophages appears to be important in the initial steps of reverse cholesterol transport, i.e. the transport of excess cholesterol from foam cells to the liver. However, although several cellular apoA-I and HDL receptors and transporters have been identified, it is as yet controversial how these interactions lead to cholesterol efflux from foam cells. In this study, we show that RAW264.7 macrophages bind HDL and apoA-I in a compatible manner. Furthermore, cell surface biotinylation experiments revealed that apoA-I but not HDL is specifically internalised. Binding of HDL to macrophages is decreased by reducing the expression of scavenger receptor BI (SR-BI) with cyclic adenosine monophosphate (cAMP), acetylated low-density lipoprotein (acLDL) or RNA interference. In contrast, apoA-I cell association and internalisation is modulated in parallel with ATP-binding cassette transporter A1 (ABCA1) expression which is altered by stimulating cells with cAMP and acLDL or expressing short hairpin RNA (shRNA) against ABCA1. Consistent with this, cell surface trapping of ABCA1 with cyclosporin A (CsA) results in increased apoA-I binding but reduced internalisation. Furthermore, blocking apoA-I uptake inhibits cholesterol efflux to apoA-I but not to HDL. Taken together, these data suggest that apoA-I- but not HDL-mediated cholesterol efflux may involve retroendocytosis.
Collapse
Affiliation(s)
- Iris Lorenzi
- Institute of Clinical Chemistry and Center for Integrative Human Biology, University of Zurich, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
40
|
Abstract
Apolipoprotein E (APOE) is a cholesterol transport protein and an isoform-specific major risk factor for neurodegenerative diseases. The lipoprotein receptors that bind APOE have recently been recognized as pivotal components of the neuronal signalling machinery. The interaction between APOE receptors and one of their ligands, reelin, allows them to function directly as signal transduction receptors at the plasma membrane to control not only neuronal positioning during brain development, but also synaptic plasticity in the adult brain. Here, we review the molecular mechanisms through which APOE, cholesterol, reelin and APOE receptors control synaptic functions that are essential for cognition, learning, memory, behaviour and neuronal survival.
Collapse
Affiliation(s)
- Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texus 75390, USA.
| | | |
Collapse
|
41
|
Pagler TA, Golsabahi S, Doringer M, Rhode S, Schütz GJ, Pavelka M, Wadsack C, Gauster M, Lohninger A, Laggner H, Strobl W, Stangl H. A Chinese hamster ovarian cell line imports cholesterol by high density lipoprotein degradation. J Biol Chem 2006; 281:38159-71. [PMID: 17038318 DOI: 10.1074/jbc.m603334200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma high density lipoprotein (HDL) is inversely associated with the development of atherosclerosis. HDL exerts its atheroprotective role through involvement in reverse cholesterol transport in which HDL is loaded with cholesterol at the periphery and transports its lipid load back to the liver for disposal. In this pathway, HDL is not completely dismantled but only transfers its lipids to the cell. Here we present evidence that a Chinese hamster ovarian cell line (CHO7) adapted to grow in lipoprotein-deficient media degrades HDL and concomitantly internalizes HDL-derived cholesterol. Delivery of HDL cholesterol to the cell was demonstrated by a down-regulation of cholesterol biosynthesis, an increase in total cellular cholesterol content and by stimulation of cholesterol esterification after HDL treatment. This HDL degradation pathway is distinct from the low density lipoprotein (LDL) receptor pathway but also degrades LDL. 25-Hydroxycholesterol, a potent inhibitor of the LDL receptor pathway, down-regulated LDL degradation in CHO7 cells only in part and did not down-regulate HDL degradation. Dextran sulfate released HDL bound to the cell surface of CHO7 cells, and heparin treatment released protein(s) contributing to HDL degradation. The involvement of heparan sulfate proteoglycans and lipases in this HDL degradation was further tested by two inhibitors genistein and tetrahydrolipstatin. Both blocked HDL degradation significantly. Thus, we demonstrate that CHO7 cells degrade HDL and LDL to supply themselves with cholesterol via a novel degradation pathway. Interestingly, HDL degradation with similar properties was also observed in a human placental cell line.
Collapse
Affiliation(s)
- Tamara A Pagler
- Center for Physiology and Pathophysiology, Institute of Medical Chemistry, Medical University of Vienna, Währingerstrasse 10, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kahri J, Soro-Paavonen A, Ehnholm C, Taskinen MR. ApoE polymorphism is associated with C-reactive protein in low-HDL family members and in normolipidemic subjects. Mediators Inflamm 2006; 2006:12587. [PMID: 16951484 PMCID: PMC1592602 DOI: 10.1155/mi/2006/12587] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The study was aimed to compare inflammatory parameters between carriers of apoE4 isoforms (apoE4/3, apoE4/2, and apoE4/4 phenotypes) and those of carrying apoE3 isoform without apoE4 isoform (apoE3/3 phenotypes and apoE2/3 phenotypes). The concentrations of serum hsCRP, sVCAM-1, sICAM-1, and sE-selectin were measured in 211 subjects from Finnish low-HDL families and in 157 normolipidemic subjects. The subjects with apoE4 isoform had lower concentrations of serum hsCRP both in low-HDL family members (p < 0.05) and in normolipidemic subjects (p < 0.01). The differences in serum CRP values remained significant after adjustment for age, BMI, smoking status, hypertension, gender, lipoprotein variables, and family number. We conclude that apoE phenotype has a strong influence on serum CRP values.
Collapse
Affiliation(s)
- Juhani Kahri
- Division of Cardiology, Department of Internal Medicine,
Helsinki University Central Hospital, Haartmaninkatu 4, PO Box 340, 00029 HUS, Finland
- *Juhani Kahri:
| | - Aino Soro-Paavonen
- Division of Cardiology, Department of Internal Medicine,
Helsinki University Central Hospital, Haartmaninkatu 4, PO Box 340, 00029 HUS, Finland
- Baker Medical Research Institute, Melbourne, Victoria,
Australia
| | - Christian Ehnholm
- Department of Molecular Medicine, Biomedicum, National
Public Health Institute, 00251 Helsinki, Finland
| | - Marja-Riitta Taskinen
- Division of Cardiology, Department of Internal Medicine,
Helsinki University Central Hospital, Haartmaninkatu 4, PO Box 340, 00029 HUS, Finland
| |
Collapse
|
43
|
Cavelier C, Lorenzi I, Rohrer L, von Eckardstein A. Lipid efflux by the ATP-binding cassette transporters ABCA1 and ABCG1. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:655-66. [PMID: 16798073 DOI: 10.1016/j.bbalip.2006.04.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/05/2006] [Accepted: 04/28/2006] [Indexed: 11/23/2022]
Abstract
Plasma levels of high-density lipoproteins (HDL) and apolipoprotein A-I (apoA-I) are inversely correlated with the risk of cardiovascular disease. One major atheroprotective mechanism of HDL and apoA-I is their role in reverse cholesterol transport, i.e., the transport of excess cholesterol from foam cells to the liver for secretion. The ATP-binding cassette transporters ABCA1 and ABCG1 play a pivotal role in this process by effluxing lipids from foam cells to apoA-I and HDL, respectively. In the liver, ABCA1 activity is one rate-limiting step in the formation of HDL. In macrophages, ABCA1 and ABCG1 prevent the excessive accumulation of lipids and thereby protect the arteries from developing atherosclerotic lesions. However, the mechanisms by which ABCA1 and ABCG1 mediate lipid removal are still unclear. Particularly, three questions remain controversial and are discussed in this review: (1) Do apoA-I and HDL directly interact with ABCA1 and ABCG1, respectively? (2) Does cholesterol efflux involve retroendocytosis of apoA-I or HDL? (3) Which lipids are directly transported by ABCA1 and ABCG1?
Collapse
Affiliation(s)
- Clara Cavelier
- Institute of Clinical Chemistry, University Hospital Zurich, University Zurich, Rämistrasse 100, CH 8091 Zurich, Switzerland
| | | | | | | |
Collapse
|
44
|
Wüstner D. Steady State Analysis and Experimental Validation of a Model for Hepatic High-Density Lipoprotein Transport. Traffic 2006; 7:699-715. [PMID: 16637891 DOI: 10.1111/j.1398-9219.2006.00421.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Transport of high-density lipoprotein (HDL) in the hepatocyte plays a fundamental role in reverse cholesterol transport and regulation of plasma HDL levels. On the basis of a recently developed kinetic model, the steady state distribution of HDL was analyzed. Fractional fluorescence of labeled HDL in the basolateral membrane, sorting endosomes (SE), the subapical compartment/ apical recycling compartment, the biliary canaliculus and in late endosomes and lysosomes (LE/LYS) including expected standard deviation is predicted. Improved parameter estimation was obtained by including kinetic data of apical endocytosis of fluorescent markers for LE/LYS, asialoorosomucoid and Rhodamine-dextran, in the regression. Predicted values using the refined kinetic parameters are in good agreement with experimental values of compartmental steady state fluorescence of Alexa488-HDL in polarized hepatic HepG2 cells. From calculated steady state fluxes, it is suggested that export of HDL from basolateral SE is the key step for determining the transport of HDL through the hepatocyte. The analysis provides testable predictions for high-throughput fluorescence microscopy screening experiments on potential inhibitors of hepatic HDL processing. By quantitative fluorescence imaging and model analysis, it is shown that the phosphoinositide kinase inhibitor wortmannin prevents apical transport of fluorescent HDL from basolateral SE. The results support that endosomes of polarized hepatic cells have different sorting functions and that apical endocytosis is an integrative trafficking step in hepatocytes.
Collapse
Affiliation(s)
- Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| |
Collapse
|
45
|
Schmitz G, Langmann T. The lipid flux rheostat: implications of lipid trafficking pathways. J Mol Med (Berl) 2006; 84:262-5. [PMID: 16506023 DOI: 10.1007/s00109-006-0041-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 12/23/2005] [Indexed: 11/25/2022]
|
46
|
Pagler TA, Rhode S, Neuhofer A, Laggner H, Strobl W, Hinterndorfer C, Volf I, Pavelka M, Eckhardt ERM, van der Westhuyzen DR, Schütz GJ, Stangl H. SR-BI-mediated high density lipoprotein (HDL) endocytosis leads to HDL resecretion facilitating cholesterol efflux. J Biol Chem 2006; 281:11193-204. [PMID: 16488891 DOI: 10.1074/jbc.m510261200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The high density lipoprotein (HDL) receptor, scavenger receptor class B, type I (SR-BI), mediates selective cholesteryl ester uptake from lipoproteins into liver and steroidogenic tissues but also cholesterol efflux from macrophages to HDL. Recently, we demonstrated the uptake of HDL particles in SR-BI overexpressing Chinese hamster ovarian cells (ldlA7-SRBI) using ultrasensitive microscopy. In this study we show that this uptake of entire HDL particles is followed by resecretion. After uptake, HDL is localized in endocytic vesicles and organelles en route to the perinuclear area; many HDL-positive compartments were classified as multivesiculated and multilamellated organelles by electron microscopy. By using 125I-labeled HDL, we found that approximately 0.8% of the HDL added to the media is taken up by the ldlA7-SRBI cells within 1 h, and almost all HDL is finally resecreted. 125I-Labeled low density lipoprotein showed a very similar association, uptake, and resecretion pattern in ldlA7-SRBI cells that do not express any low density lipoprotein receptor. Moreover, we demonstrate that the process of HDL cell association, uptake, and resecretion occurs in three physiologically relevant cell systems, the liver cell line HepG2, the adrenal cell line Y1BS1, and phorbol myristate acetate-differentiated THP-1 cells as a model for macrophages. Finally, we present evidence that HDL retroendocytosis represents one of the pathways for cholesterol efflux.
Collapse
Affiliation(s)
- Tamara A Pagler
- Center for Physiology and Pathophysiology, Department of Medical Chemistry, Medical University of Vienna, Währingerstrasse 10, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Heeren J, Beisiegel U, Grewal T. Apolipoprotein E recycling: implications for dyslipidemia and atherosclerosis. Arterioscler Thromb Vasc Biol 2005; 26:442-8. [PMID: 16373604 DOI: 10.1161/01.atv.0000201282.64751.47] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
After receptor-mediated endocytosis, the intracellular fate of triglyceride-rich lipoproteins (TRLs) is far more complex than the classical degradation pathway of low-density lipoproteins. Once internalized, TRLs disintegrate in peripheral endosomes, followed by a differential sorting of TRL components. Although core lipids and apolipoprotein B are targeted to lysosomes, the majority of TRL-derived apolipoprotein E (apoE) remains in peripheral recycling endosomes. This pool of TRL-derived apoE is then mobilized by high-density lipoproteins (HDLs) or HDL-derived apoA-I to be recycled back to the plasma membrane, followed by apoE resecretion and the subsequent formation of apoE-containing HDL. The HDL-induced recycling of apoE is accompanied by cholesterol efflux and involves the internalization and targeting of HDL-derived apoA-I to endosomes containing both apoE and cholesterol. These findings point to a yet unknown intracellular link between TRL-derived apoE, cellular cholesterol transport, and HDL metabolism. Recent studies provide first evidence that impaired recycling of TRL-derived apoE4, but not apoE3, is associated with intracellular cholesterol accumulation, which might explain some well-documented effects of apoE4 on HDL metabolism. This review summarizes the current understanding of apoE recycling and its potential role in the regulation of plasma apoE levels in the postprandial state.
Collapse
Affiliation(s)
- Joerg Heeren
- Institute for Biochemistry and Molecular Biology II, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | |
Collapse
|
48
|
Descamps OS, Bruniaux M, Guilmot PF, Tonglet R, Heller FR. Lipoprotein metabolism of pregnant women is associated with both their genetic polymorphisms and those of their newborn children. J Lipid Res 2005; 46:2405-14. [PMID: 16106048 DOI: 10.1194/jlr.m500223-jlr200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To explore whether the placenta contributes to the lipoprotein metabolism of pregnant women, we took advantage of the fact that placental proteins are encoded from the fetal genome and examined the associations between lipids of 525 pregnant women and the presence, in their newborns, of genetic polymorphisms of LPL and apolipoprotein E (APOE), two genes expressed in placenta. After adjustment for maternal polymorphisms, newborn LPL*S447X was associated with lower triglycerides (-21 +/- 9 mg/dl), lower LDL-cholesterol (LDL-C; -12 +/- 5 mg/dl), lower apoB (-14 +/- 4 mg/dl), higher HDL-C (5 +/- 2 mg/dl), and higher apoA-I (9 +/- 4 mg/dl) in their mothers; newborn LPL*N291S was associated with higher maternal triglycerides (114 +/- 31 mg/dl); and newborn APOE*E2 (compared to E3E3) was associated with higher maternal LDL-C (14 +/- 6 mg/dl) and higher maternal apoB (14 +/- 5 mg/dl). These associations (all P < 0.05) were independent of polymorphisms carried by the mothers and of lipid concentrations in newborns and were similar in amplitude to the associations between maternal polymorphisms and maternal lipids. Such findings support the active role of placental LPL and APOE in the metabolism of maternal lipoproteins and suggest that fetal genes may modulate the risk for problems related to maternal dyslipidemia (preeclampsia, pancreatitis, and future cardiovascular disease).
Collapse
Affiliation(s)
- Olivier S Descamps
- Epidemiology Unit, School of Public Health, Université Catholique de Louvain, Brussels, Belgium.
| | | | | | | | | |
Collapse
|
49
|
Zhu MY, Hasty AH, Harris C, Linton MF, Fazio S, Swift LL. Physiological relevance of apolipoprotein E recycling: studies in primary mouse hepatocytes. Metabolism 2005; 54:1309-15. [PMID: 16154429 DOI: 10.1016/j.metabol.2005.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Accepted: 04/30/2005] [Indexed: 10/25/2022]
Abstract
Studies in our laboratory have shown that a fraction of apolipoprotein (apo) E internalized by hepatocytes escapes degradation and is resecreted. Although the intracellular routing is not fully understood, our studies suggest that a portion of apoE recycles through the Golgi apparatus. Given the role of the Golgi apparatus in lipoprotein secretion and the fact that apoE modulates the hepatic secretion of very low-density lipoprotein, we hypothesized that recycling apoE has an effect on hepatic very low-density lipoprotein assembly and/or secretion. To test this hypothesis, apoE-/- mice were transplanted with bone marrow from wild-type mice. In this model, extrahepatic (macrophage-derived) apoE is internalized by the hepatocytes in vivo and is resecreted when the hepatocytes are placed in culture. Unexpectedly, our studies demonstrate that recycling apoE has little effect on hepatic lipid content or hepatocyte triglyceride secretion. In addition, recycling apoE has little effect on the expression of enzymes and proteins involved in lipid synthesis as well as plasma lipoprotein apoproteins. We conclude that the physiological relevance of apoE recycling may not be related to cell-specific functions, such as lipoprotein assembly in the liver. Rather, recycling may provide a mechanism for modulating general cellular effects such as intracellular cholesterol transport or cholesterol efflux.
Collapse
Affiliation(s)
- Mei-Ying Zhu
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232-2561, USA
| | | | | | | | | | | |
Collapse
|
50
|
Yamato K, Tamasawa N, Murakami H, Matsui J, Tanabe J, Suda T, Yasujima M. Evaluation of apolipoprotein E secretion by macrophages in type 2 diabetic patients: role of HDL and apolipoprotein A-I. Diabetes Res Clin Pract 2005; 69:124-8. [PMID: 16005361 DOI: 10.1016/j.diabres.2004.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 10/04/2004] [Accepted: 11/12/2004] [Indexed: 12/01/2022]
Abstract
It has been shown that apolipoprotein A-I (ApoA-I) stimulates the secretion of apolipoprotein E (ApoE) from human macrophages. ApoA-I is a major protein constituent of HDL which because of its role in reverse cholesterol transport, has been implicated in the prevention of atherosclerosis. We herein investigated the ability of monocyte-derived macrophages (MDMs) in 42 patients with type 2 diabetes to secrete ApoE; these patients commonly have low plasma HDL and ApoA-I levels. Our data showed that ApoE secretion from these cells was reduced in patients with low plasma HDL and ApoA-I levels; there were positive correlation between ApoE secretion from MDMs and plasma HDL (r2=0.33, p=0.03) and ApoA-I (r2=0.31, p=0.03). Furthermore, we found that ApoE secretion increased concomitantly with an increase in HDL or ApoA-I in treated diabetics (n=24) from 1.99+/-1.86 to 3.40+/-1.77 ng/mg cell protein. These findings suggest another possible link between HDL and ApoA-I metabolism and atherosclerosis in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Kazumi Yamato
- Third Department of Internal Medicine, Hirosaki University School of Medicine, Zaifu-5, Hirosaki 036-8562, Japan
| | | | | | | | | | | | | |
Collapse
|