1
|
Chriqui LE, Cavin S, Perentes JY. Dual implication of endothelial adhesion molecules in tumor progression and cancer immunity. Cell Adh Migr 2025; 19:2472308. [PMID: 40071851 PMCID: PMC11913389 DOI: 10.1080/19336918.2025.2472308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/16/2024] [Accepted: 01/19/2025] [Indexed: 03/19/2025] Open
Abstract
Adhesion molecules are proteins expressed at the surface of various cell types. Their main contribution to immunity is to allow the infiltration of immune cells in an inflamed site. In cancer, adhesion molecules have been shown to promote tumor dissemination favoring the development of metastasis. While adhesion molecule inhibition approaches were unsuccessful for cancer control, their importance for the generation of an immune response alone or in combination with immunotherapies has gained interest over the past years. Currently, the balance of adhesion molecules for tumor promotion/inhibition is unclear. Here we review the role of selectins, intercellular adhesion molecules (ICAM) and vascular cell adhesion molecules (VCAM) from the perspective of the dual contribution of adhesion molecules in tumor progression and immunity.
Collapse
Affiliation(s)
- Louis-Emmanuel Chriqui
- Division of Thoracic Surgery, Department of Surgery, CHUV, Lausanne University Hospital, Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| | - Sabrina Cavin
- Division of Thoracic Surgery, Department of Surgery, CHUV, Lausanne University Hospital, Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| | - Jean Yannis Perentes
- Division of Thoracic Surgery, Department of Surgery, CHUV, Lausanne University Hospital, Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Chauhan W, Ferdowsi S, Sudharshan SJ, Zennadi R. Rpl13a snoRNAs-regulated NADPH oxidase 1-dependent ROS generation: A novel RBC pathway mediating complement C3a deposition and triggering thrombosis in aging and venous blood clotting disorders. Free Radic Biol Med 2025; 230:138-150. [PMID: 39938620 PMCID: PMC11936428 DOI: 10.1016/j.freeradbiomed.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/30/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Adults older than 45 years old are at higher risk of developing venous blood clotting known as venous thrombosis/thromboembolism than a cohort <45 years old. Complement activation, which can be mediated by oxidative stress, plays a central role in venous thrombosis. Yet, whether RBCs contribute to complement activation triggering thrombosis in aging and in patients with venous thrombosis/thromboembolism remains an open question. RBCs from healthy Mid-life stage (55-68 years old) adults and patients with venous thrombosis/thromboembolism showed higher deposition of the complement C3 and the anaphylatoxin C3a, and NADPH oxidase (Nox)1 expression than a younger cohort (21-30 years old). Increased C3/C3a deposition on RBCs from mid-life stage adults and patients with venous thrombosis/thromboembolism triggered prothrombin activation via Nox1-dependent reactive oxygen species (ROS) generation, and G protein-coupled receptor kinase 2 (GRK2) activation. Interaction of C3/C3a positive RBCs from mid-life stage adults with endothelial cells led to increased endothelial ROS production. TGF-β1-stimulated GRK2 and Nox1 activation in RBCs from the younger and older adults exacerbated RBC C3/C3a deposition and C3/C3a-mediated prothrombotic activation, which appears to result from ROS-mediated increased RBC phosphatidylserine exposure. Using human RBCs, and Rpl13a snoRNA knockout aged mice, we show that Rpl13a snoRNAs, the master regulators of ROS levels and oxidative stress response, regulate human and murine RBC C3a deposition and prothrombic activation in aging by modulating Nox1 mRNA expression. In vivo Rpl13a snoRNA knockout in aged mice decreased thrombi size by blunting RBC C3a deposition, and RBCs-triggering prothrombin activation. These findings point out to a novel role of RBC Rpl13a snoRNAs in dysregulating RBC ROS-induced C3a deposition promoting venous thrombosis in aging.
Collapse
Affiliation(s)
- Waseem Chauhan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Shirin Ferdowsi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - S J Sudharshan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Rahima Zennadi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
3
|
Cheng X, Liu J, Liu S, Fang D, Chen X, Ding X, Zhang X, Chen Y, Li Y. Red Blood Cell-Related Parameters in Rheumatoid Arthritis: Clinical Value and Immunological Significance. J Inflamm Res 2024; 17:10641-10650. [PMID: 39677289 PMCID: PMC11638476 DOI: 10.2147/jir.s479059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
Rheumatoid arthritis (RA) is characterized by chronic inflammation and autoimmunity. Moreover, the disease activity, co-morbidities, and prognosis of RA are closely associated with changes in red blood cell (RBC)-related parameters. The role of these parameters in RA has therefore been extensively studied. Accordingly, this article summarizes and analyzes the close relationship of RBC-related parameters such as RBC count, hemoglobin, and RBC distribution width with disease activity, co-morbidities, and prognosis in RA by reviewing the available literature. In addition, given the immunomodulatory functions of RBCs, their surface proteins, contents, and microparticles are involved in the immunomodulatory process during RA. Overall, this review aims to assess the important clinical value and immunological significance of RBCs and their related parameters in the monitoring and management of RA, thus providing a reference for the clinical diagnosis and treatment of RA and the direction for the research on RBC-related immunity.
Collapse
Affiliation(s)
- Xueni Cheng
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
- Anhui Key Laboratory of Application and Development of Internal Medicine of Modern Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Jian Liu
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
- Anhui Key Laboratory of Application and Development of Internal Medicine of Modern Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Shengfeng Liu
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Dahai Fang
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Xiaolu Chen
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Xiang Ding
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Xianheng Zhang
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Yiming Chen
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Yang Li
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| |
Collapse
|
4
|
Stockhausen S, Kilani B, Schubert I, Steinsiek AL, Chandraratne S, Wendler F, Eivers L, von Brühl ML, Massberg S, Ott I, Stark K. Differential Effects of Erythropoietin Administration and Overexpression on Venous Thrombosis in Mice. Thromb Haemost 2024; 124:1027-1039. [PMID: 37846465 PMCID: PMC11518618 DOI: 10.1055/s-0043-1775965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 08/06/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Deep vein thrombosis (DVT) is a common condition associated with significant mortality due to pulmonary embolism. Despite advanced prevention and anticoagulation therapy, the incidence of venous thromboembolism remains unchanged. Individuals with elevated hematocrit and/or excessively high erythropoietin (EPO) serum levels are particularly susceptible to DVT formation. We investigated the influence of short-term EPO administration compared to chronic EPO overproduction on DVT development. Additionally, we examined the role of the spleen in this context and assessed its impact on thrombus composition. METHODS We induced ligation of the caudal vena cava (VCC) in EPO-overproducing Tg(EPO) mice as well as wildtype mice treated with EPO for two weeks, both with and without splenectomy. The effect on platelet circulation time was evaluated through FACS analysis, and thrombus composition was analyzed using immunohistology. RESULTS We present evidence for an elevated thrombogenic phenotype resulting from chronic EPO overproduction, achieved by combining an EPO-overexpressing mouse model with experimental DVT induction. This increased thrombotic state is largely independent of traditional contributors to DVT, such as neutrophils and platelets. Notably, the pronounced prothrombotic effect of red blood cells (RBCs) only manifests during chronic EPO overproduction and is not influenced by splenic RBC clearance, as demonstrated by splenectomy. In contrast, short-term EPO treatment does not induce thrombogenesis in mice. Consequently, our findings support the existence of a differential thrombogenic effect between chronic enhanced erythropoiesis and exogenous EPO administration. CONCLUSION Chronic EPO overproduction significantly increases the risk of DVT, while short-term EPO treatment does not. These findings underscore the importance of considering EPO-related factors in DVT risk assessment and potential therapeutic strategies.
Collapse
Affiliation(s)
- Sven Stockhausen
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Badr Kilani
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Irene Schubert
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | | | - Sue Chandraratne
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Franziska Wendler
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Luke Eivers
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Marie-Luise von Brühl
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ilka Ott
- Department of cardiology, German Heart Center, Munich, Germany.
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
5
|
Wang P, Zheng L, Yan S, Xuan X, Yang Y, Qi X, Dong H. Understanding the role of red blood cells in venous thromboembolism: A comprehensive review. Am J Med Sci 2024; 367:296-303. [PMID: 38278361 DOI: 10.1016/j.amjms.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Traditionally, red blood cells (RBCs) have been perceived as passive entities within the fibrin network, without any significant role in the pathophysiology of venous thromboembolism (VTE). This review explores the involvement of RBCs in the VTE process, summarizing previous study findings and providing a comprehensive review of the latest theories. At first, it explores the influence of abnormal RBC counts (as seen in polycythemia vera and with erythropoietin use) and the exposure of RBCs to phosphatidylserine (Ptd-L-Ser) in the pathophysiology of VTE. The mechanisms of endothelial injury induced by RBCs and their adhesion to the endothelium under different disease models are then demonstrated. We explore the role of physical and chemical interactions between RBCs and platelets, as well as the interactions between RBCs and neutrophils - particularly the neutrophil extracellular traps (NETs) released by neutrophils - in the process of VTE. Additionally, we investigate the effect of RBCs on thrombin activation through two pathways, namely, the FXIIa-FXI-FIX pathway and the prekallikrein-dependent pathway. Lastly, we discuss the impact of RBCs on clot volume. In conclusion, we propose several potential methods aimed at unraveling the role of RBCs and their interaction with other components in the vascular system in the pathogenesis of VTE.
Collapse
Affiliation(s)
- Ping Wang
- Department of Vascular Surgery, The Second Hospital, Shanxi Medical University, Taiyuan 030001, China; Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Lin Zheng
- Department of Vascular Surgery, The Second Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Sheng Yan
- Department of Vascular Surgery, The Second Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Xuezhen Xuan
- Department of Vascular Surgery, The Second Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Yusi Yang
- Department of Cardiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Xiaotong Qi
- Department of Vascular Surgery, The Second Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
6
|
Ningtyas DC, Leitner F, Sohail H, Thong YL, Hicks SM, Ali S, Drew M, Javed K, Lee J, Kenangalem E, Poespoprodjo JR, Anstey NM, Rug M, Choi PYI, Kho S, Gardiner EE, McMorran BJ. Platelets mediate the clearance of senescent red blood cells by forming prophagocytic platelet-cell complexes. Blood 2024; 143:535-547. [PMID: 37992231 PMCID: PMC10934294 DOI: 10.1182/blood.2023021611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023] Open
Abstract
ABSTRACT In humans, ∼0.1% to 0.3% of circulating red blood cells (RBCs) are present as platelet-RBC (P-RBC) complexes, and it is 1% to 2% in mice. Excessive P-RBC complexes are found in diseases that compromise RBC health (eg, sickle cell disease and malaria) and contribute to pathogenesis. However, the physiological role of P-RBC complexes in healthy blood is unknown. As a result of damage accumulated over their lifetime, RBCs nearing senescence exhibit physiological and molecular changes akin to those in platelet-binding RBCs in sickle cell disease and malaria. Therefore, we hypothesized that RBCs nearing senescence are targets for platelet binding and P-RBC formation. Confirming this hypothesis, pulse-chase labeling studies in mice revealed an approximately tenfold increase in P-RBC complexes in the most chronologically aged RBC population compared with younger cells. When reintroduced into mice, these complexes were selectively cleared from the bloodstream (in preference to platelet-free RBC) through the reticuloendothelial system and erythrophagocytes in the spleen. As a corollary, patients without a spleen had higher levels of complexes in their bloodstream. When the platelet supply was artificially reduced in mice, fewer RBC complexes were formed, fewer erythrophagocytes were generated, and more senescent RBCs remained in circulation. Similar imbalances in complex levels and senescent RBC burden were observed in humans with immune thrombocytopenia (ITP). These findings indicate that platelets are important for binding and clearing senescent RBCs, and disruptions in platelet count or complex formation and clearance may negatively affect RBC homeostasis and may contribute to the known risk of thrombosis in ITP and after splenectomy.
Collapse
Affiliation(s)
- Dian C. Ningtyas
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Florentina Leitner
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Medical University of Vienna, Vienna, Austria
| | - Huma Sohail
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Yee Lin Thong
- Division of Genome Science and Cancer, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- The National Platelet Research and Referral Centre, Australian National University, Canberra, ACT, Australia
| | - Sarah M. Hicks
- Division of Genome Science and Cancer, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- The National Platelet Research and Referral Centre, Australian National University, Canberra, ACT, Australia
| | - Sidra Ali
- Division of Genome Science and Cancer, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- The National Platelet Research and Referral Centre, Australian National University, Canberra, ACT, Australia
| | - Megan Drew
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Kiran Javed
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Jiwon Lee
- Centre for Advanced Microscopy, Australian National University, Canberra, ACT, Australia
| | - Enny Kenangalem
- Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Jeanne R. Poespoprodjo
- Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Department of Pediatrics, Gadjah Mada University, Yogyakarta, Indonesia
| | - Nicholas M. Anstey
- Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Melanie Rug
- Centre for Advanced Microscopy, Australian National University, Canberra, ACT, Australia
| | - Philip Y.-I. Choi
- Division of Genome Science and Cancer, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- The National Platelet Research and Referral Centre, Australian National University, Canberra, ACT, Australia
- Department of Clinical Haematology, The Canberra Hospital, Garran, ACT, Australia
| | - Steven Kho
- Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Elizabeth E. Gardiner
- Division of Genome Science and Cancer, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- The National Platelet Research and Referral Centre, Australian National University, Canberra, ACT, Australia
| | - Brendan J. McMorran
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
7
|
Krott KJ, Feige T, Elvers M. Flow Chamber Analyses in Cardiovascular Research: Impact of Platelets and the Intercellular Crosstalk with Endothelial Cells, Leukocytes, and Red Blood Cells. Hamostaseologie 2023; 43:338-347. [PMID: 37857296 DOI: 10.1055/a-2113-1134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Platelets are main drivers of thrombus formation. Besides platelet aggregate formation, platelets interact with different blood cells such as red blood and white blood cells (RBCs, WBCs) and endothelial cells (ECs), to promote thrombus formation and inflammation. In the past, the role of different proteins in platelet adhesion, activation, and aggregate formation has been analyzed using platelets/mice with a genetic loss of a certain protein. These knock-out mouse models have been investigated for changes in experimental arterial thrombosis or hemostasis. In this review, we focused on the Maastricht flow chamber, which is a very elegant tool to analyze thrombus formation under flow using whole blood or different blood cell components of genetically modified mice. Besides, the interaction of platelets with RBCs, WBCs, and ECs under flow conditions has been evaluated with regard to thrombus formation and platelet-mediated inflammation. Importantly, alterations in thrombus formation as emerged in the flow chamber frequently reflect arterial thrombosis in different mouse models. Thus, the results of flow chamber experiments in vitro are excellent indicators for differences in arterial thrombosis in vivo. Taken together, the Maastricht flow chamber can be used to (1) determine the severity of platelet alterations in different knock-out mice; (2) analyze differences in platelet adhesion, aggregation, and activation; (3) investigate collagen and non-collagen-dependent alterations of thrombus formation; and (4) highlight differences in the interaction of platelets with different blood/ECs. Thus, this experimental approach is a useful tool to increase our understanding of signaling mechanisms that drive arterial thrombosis and hemostasis.
Collapse
Affiliation(s)
- Kim Jürgen Krott
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tobias Feige
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Margitta Elvers
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
8
|
Sun L, Guo D, Jia Y, Shi M, Yang P, Wang Y, Liu F, Zhu Z, Zheng J. Intercellular adhesion molecule 4 and ischemic stroke: a two-sample Mendelian randomization study. Thromb J 2023; 21:40. [PMID: 37041579 PMCID: PMC10091569 DOI: 10.1186/s12959-023-00485-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 04/03/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Experimental studies suggested that intercellular adhesion molecule 4 (ICAM-4) might be implicated in ischemic stroke, but the population-based evidence on the relationship between ICAM-4 and ischemic stroke were limited. Herein, we performed a two-sample Mendelian randomization (MR) analysis to investigate the associations of genetically determined plasma ICAM-4 with the risks of ischemic stroke and its subtypes. METHODS A total of 11 single-nucleotide polymorphisms associated with ICAM-4 were selected as instrumental variables based on the genome-wide association studies (GWAS) with 3,301 European individuals. Summary-level data about ischemic stroke and its subtypes were obtained from the Multi-ancestry GWAS launched by the International Stroke Genetics Consortium. We used the inverse-variance weighted method followed by a series of sensitivity analyses to evaluate the associations of genetically determined ICAM-4 with the risks of ischemic stroke and its subtypes. RESULTS Genetically determined higher ICAM-4 levels were significantly associated with increased risks of ischemic stroke (in the IVW method fitted to multiplicative random effects model: odds ratio [OR] per standard deviation [SD] increase, 1.04; 95% confidence interval [CI], 1.01-1.07; P = 0.006; in the IVW analysis with fixed effects model: OR per SD increase, 1.04; 95% CI, 1.01-1.07; P = 0.003) and cardioembolic stroke (in multiplicative random effects model: OR per SD increase, 1.08; 95% CI, 1.02-1.14; P = 0.004; in fixed effects model: OR per SD increase, 1.08; 95% CI, 1.03-1.13; P = 0.003). There was no association of ICAM-4 with the risks of large artery stroke and small vessel stroke. MR-Egger regression showed no directional pleiotropy for all associations, and the sensitivity analyses with different MR methods further confirmed these findings. CONCLUSIONS We found positive associations of genetically determined plasma ICAM-4 with the risks of ischemic stroke and cardioembolic stroke. Future studies are needed to explore the detailed mechanism and investigate the targeting effect of ICAM-4 on ischemic stroke.
Collapse
Affiliation(s)
- Lulu Sun
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, 215123, Suzhou, Jiangsu Province, China
| | - Daoxia Guo
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, 215123, Suzhou, Jiangsu Province, China
- School of Nursing, Medical College of Soochow University, Suzhou, China
| | - Yiming Jia
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, 215123, Suzhou, Jiangsu Province, China
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, 215123, Suzhou, Jiangsu Province, China
| | - Pinni Yang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, 215123, Suzhou, Jiangsu Province, China
| | - Yu Wang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, 215123, Suzhou, Jiangsu Province, China
| | - Fanghua Liu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, 215123, Suzhou, Jiangsu Province, China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, 215123, Suzhou, Jiangsu Province, China.
| | - Jin Zheng
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Öhlinger T, Müllner EW, Fritz M, Werning M, Baron-Stefaniak J, Jungbauer C, Baron DM, Salzer U. Storage of packed red blood cells impairs an inherent coagulation property of erythrocytes. Front Physiol 2022; 13:1021553. [PMID: 36505041 PMCID: PMC9732456 DOI: 10.3389/fphys.2022.1021553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
Storage of packed red blood cells is associated with changes in erythrocytes that over time increasingly impair cellular function and potentially contribute to adverse effects associated with blood transfusion. Exposure of phosphatidylserine at the outer membrane leaflet of erythrocytes and shedding of microvesicles (MVs) during packed red blood cell storage are alterations assumed to increase the risk of prothrombotic events in recipients. Here, we used rotational thromboelastometry to study the coagulation process in blood samples with erythrocytes from stored PRBCs reconstituted with freshly prepared platelet-rich plasma. We explored the influence of following effects on the coagulation process: 1) PRBC storage duration, 2) differences between erythrocytes from stored PRBCs compared to freshly drawn erythrocytes, and 3) the contribution of added MVs. Interestingly, despite of a higher fraction of PS-positive cells, erythrocytes from PRBCs stored for 6 weeks revealed longer clotting times than samples with erythrocytes stored for 2 or 4 weeks. Further, clotting times and clot formation times were considerably increased in samples reconstituted with erythrocytes from stored PRBCs as compared to fresh erythrocytes. Moreover, MVs added to reconstituted samples elicited only comparably small and ambiguous effects on coagulation. Thus, this study provides no evidence for an amplified clotting process from prolonged storage of PRBCs but on the contrary implicates a loss of function, which may be of clinical significance in massive transfusion. Our observations add to the increasing body of evidence viewing erythrocytes as active players in the clotting process.
Collapse
Affiliation(s)
- Thomas Öhlinger
- Center for Medical Biochemistry, Max Perutz Labs (MPL), Medical University of Vienna, Vienna, Austria,Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Ernst W. Müllner
- Center for Medical Biochemistry, Max Perutz Labs (MPL), Medical University of Vienna, Vienna, Austria
| | - Magdalena Fritz
- Center for Medical Biochemistry, Max Perutz Labs (MPL), Medical University of Vienna, Vienna, Austria
| | - Maike Werning
- Center for Medical Biochemistry, Max Perutz Labs (MPL), Medical University of Vienna, Vienna, Austria
| | - Joanna Baron-Stefaniak
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Christof Jungbauer
- Blood Service for Vienna, Lower Austria and Burgenland, Austrian Red Cross, Vienna, Austria
| | - David M. Baron
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Ulrich Salzer
- Center for Medical Biochemistry, Max Perutz Labs (MPL), Medical University of Vienna, Vienna, Austria,*Correspondence: Ulrich Salzer,
| |
Collapse
|
10
|
Lamarre Y, Nader E, Connes P, Romana M, Garnier Y. Extracellular Vesicles in Sickle Cell Disease: A Promising Tool. Bioengineering (Basel) 2022; 9:bioengineering9090439. [PMID: 36134985 PMCID: PMC9495982 DOI: 10.3390/bioengineering9090439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 12/12/2022] Open
Abstract
Sickle cell disease (SCD) is the most common hemoglobinopathy worldwide. It is characterized by an impairment of shear stress-mediated vasodilation, a pro-coagulant, and a pro-adhesive state orchestrated among others by the depletion of the vasodilator nitric oxide, by the increased phosphatidylserine exposure and tissue factor expression, and by the increased interactions of erythrocytes with endothelial cells that mediate the overexpression of adhesion molecules such as VCAM-1, respectively. Extracellular vesicles (EVs) have been shown to be novel actors involved in SCD pathophysiological processes. Medium-sized EVs, also called microparticles, which exhibit increased plasma levels in this pathology, were shown to induce the activation of endothelial cells, thereby increasing neutrophil adhesion, a key process potentially leading to the main complication associated with SCD, vaso-occlusive crises (VOCs). Small-sized EVs, also named exosomes, which have also been reported to be overrepresented in SCD, were shown to potentiate interactions between erythrocytes and platelets, and to trigger endothelial monolayer disruption, two processes also known to favor the occurrence of VOCs. In this review we provide an overview of the current knowledge about EVs concentration and role in SCD.
Collapse
Affiliation(s)
- Yann Lamarre
- Université Paris Cité and Université des Antilles, Inserm, BIGR, F-75015 Paris, France
| | - Elie Nader
- Laboratoire Inter-Universitaire de Biologie de la Motricité EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Lyon, France
| | - Philippe Connes
- Laboratoire Inter-Universitaire de Biologie de la Motricité EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Lyon, France
| | - Marc Romana
- Université Paris Cité and Université des Antilles, Inserm, BIGR, F-75015 Paris, France
| | - Yohann Garnier
- Université Paris Cité and Université des Antilles, Inserm, BIGR, F-75015 Paris, France
- Correspondence: ; Tel.: +590-590-891530
| |
Collapse
|
11
|
Xue L, Tao L, Sun H, Wang Y, Zhang Y, Lei N, Liu Z, Zhang H, Jin L, Zhang T, Zhang J, Meng H, Huang F, Geng Y, Li M. Association Between Blood PLT and RBC Related Indices and Disease Activity in Patients with Rheumatoid Arthritis. Int J Gen Med 2022; 15:573-581. [PMID: 35046715 PMCID: PMC8763267 DOI: 10.2147/ijgm.s351505] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/24/2021] [Indexed: 11/23/2022] Open
Abstract
Background Platelet (PLT) and red blood cell (RBC) have been demonstrated to play a critical role in inflammatory processes. This study aimed to evaluate the association of blood PLT and RBC related parameters with the disease activity in rheumatoid arthritis (RA) patients, and also to investigate the role of these indices in differentiating among RA patients with different disease activity. Methods Clinical data from RA patients were retrospectively analyzed. RA patients were divided into inactive group and active group according to DAS28-CRP. The relationship between blood PLT and RBC counts-related indices and DAS28-CRP was detected by Spearman correlation. ROC curve was used to assess the diagnostic value of these indices in differentiating active RA from inactive RA. Results Active RA patients exhibited higher level of PLT counts but significantly lower levels of RBC counts, hemoglobin (Hb), red blood cells-platelet ratio (RPR) and hemoglobin-platelet ratio (HPR) compared with inactive RA. PLT counts were positively but RBC counts, Hb, RPR and HPR were negatively related with DAS28-CRP. Conclusion Blood PLT and RBC related indices were significantly associated with RA disease activity. These indices may be used to distinguish active RA from inactive RA.
Collapse
Affiliation(s)
- Li Xue
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Li Tao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Haifeng Sun
- Third Department of Medical Oncology, Shaanxi Provincial Cancer Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Yan Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Yanping Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Na Lei
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Zeshi Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Hua Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Li Jin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Ting Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Jing Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Hao Meng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Fang Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Yan Geng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Ming Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| |
Collapse
|
12
|
Guo K, Xiao N, Liu Y, Wang Z, Tóth J, Gyenis J, Thakur VK, Oyane A, Shubhra QT. Engineering polymer nanoparticles using cell membrane coating technology and their application in cancer treatments: Opportunities and challenges. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Wang Q, Zennadi R. The Role of RBC Oxidative Stress in Sickle Cell Disease: From the Molecular Basis to Pathologic Implications. Antioxidants (Basel) 2021; 10:antiox10101608. [PMID: 34679742 PMCID: PMC8533084 DOI: 10.3390/antiox10101608] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023] Open
Abstract
Sickle cell disease (SCD) is an inherited monogenic disorder and the most common severe hemoglobinopathy in the world. SCD is characterized by a point mutation in the β-globin gene, which results in hemoglobin (Hb) S production, leading to a variety of mechanistic and phenotypic changes within the sickle red blood cell (RBC). In SCD, the sickle RBCs are the root cause of the disease and they are a primary source of oxidative stress since sickle RBC redox state is compromised due to an imbalance between prooxidants and antioxidants. This imbalance in redox state is a result of a continuous production of reactive oxygen species (ROS) within the sickle RBC caused by the constant endogenous Hb autoxidation and NADPH oxidase activation, as well as by a deficiency in the antioxidant defense system. Accumulation of non-neutralized ROS within the sickle RBCs affects RBC membrane structure and function, leading to membrane integrity deficiency, low deformability, phosphatidylserine exposure, and release of micro-vesicles. These oxidative stress-associated RBC phenotypic modifications consequently evoke a myriad of physiological changes involved in multi-system manifestations. Thus, RBC oxidative stress in SCD can ultimately instigate major processes involved in organ damage. The critical role of the sickle RBC ROS production and its regulation in SCD pathophysiology are discussed here.
Collapse
|
14
|
Mencarini T, Roka-Moiia Y, Bozzi S, Redaelli A, Slepian MJ. Electrical impedance vs. light transmission aggregometry: Testing platelet reactivity to antiplatelet drugs using the MICELI POC impedance aggregometer as compared to a commercial predecessor. Thromb Res 2021; 204:66-75. [PMID: 34147831 PMCID: PMC11416791 DOI: 10.1016/j.thromres.2021.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/08/2021] [Accepted: 05/26/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Patients' responses to antiplatelet therapy significantly vary, with individuals showing high residual platelet reactivity associated with thrombosis. To personalize thrombosis management, platelet function testing has been suggested as a promising tool able to monitor the antithrombotic effect of antiplatelet agents in real-time. We have prototyped the MICELI, a miniature and easy-to-use electrical impedance aggregometer (EIA), measuring platelet aggregation in whole blood. Here, we tested the capability of the MICELI aggregometer to quantify platelet reactivity on antiplatelet agents, as compared with conventional light-transmission aggregometry (LTA). METHODS Platelet aggregation in ACD-anticoagulated whole blood and platelet-rich plasma of healthy donors (n = 30) was evaluated. The effect of clopidogrel, ticagrelor, cangrelor, cilostazol, and tirofiban on ADP-induced aggregation was tested, while aspirin was evaluated with arachidonic acid and collagen. Platelet aggregation was recorded using the MICELI or BioData PAP-8E (Bio/Data Corp.) aggregometers. RESULTS The MICELI aggregometer detected an adequate and comparable dose-dependent decrease of platelet aggregation in response to increments of drugs' concentrations, as compared to LTA (the inter-device R2 = 0.79-0.93). Platelet aggregation in platelet-rich plasma recorded by LTA showed higher sensitivity to antiplatelet agents, but it couldn't distinguish between different drug doses as indicated by saturation of the aggregatory response. CONCLUSION Platelet aggregation in whole blood as recorded by EIA represents a better model system for evaluation of platelet reactivity as compared with platelet aggregation in platelet-rich plasma as recorded by LTA, since EIA takes into consideration the modulatory effect of other blood cells on platelet hemostatic function and pharmacodynamics of antiplatelet drugs in vivo. As such, the MICELI impedance aggregometer could be potentially employed for the point-of-care monitoring of platelet function in patients on-treatment for personalized tailoring of their antiplatelet regimen.
Collapse
Affiliation(s)
- Tatiana Mencarini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Yana Roka-Moiia
- Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, AZ, United States of America; Department of Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, United States of America
| | - Silvia Bozzi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Marvin J Slepian
- Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, AZ, United States of America; Department of Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, United States of America.
| |
Collapse
|
15
|
Wan J, Konings J, de Laat B, Hackeng TM, Roest M. Added Value of Blood Cells in Thrombin Generation Testing. Thromb Haemost 2021; 121:1574-1587. [PMID: 33742437 DOI: 10.1055/a-1450-8300] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The capacity of blood to form thrombin is a critical determinant of coagulability. Plasma thrombin generation (TG), a test that probes the capacity of plasma to form thrombin, has improved our knowledge of the coagulation system and shows promising utility in coagulation management. Although plasma TG gives comprehensive insights into the function of pro- and anticoagulation drivers, it does not measure the role of blood cells in TG. In this literature review, we discuss currently available continuous TG tests that can reflect the involvement of blood cells in coagulation, in particular the fluorogenic assays that allow continuous measurement in platelet-rich plasma and whole blood. We also provide an overview about the influence of blood cells on blood coagulation, with emphasis on the direct influence of blood cells on TG. Platelets accelerate the initiation and velocity of TG by phosphatidylserine exposure, granule content release and surface receptor interaction with coagulation proteins. Erythrocytes are also major providers of phosphatidylserine, and erythrocyte membranes trigger contact activation. Furthermore, leukocytes and cancer cells may be important players in cell-mediated coagulation because, under certain conditions, they express tissue factor, release procoagulant components and can induce platelet activation. We argue that testing TG in the presence of blood cells may be useful to distinguish blood cell-related coagulation disorders. However, it should also be noted that these blood cell-dependent TG assays are not clinically validated. Further standardization and validation studies are needed to explore their clinical usefulness.
Collapse
Affiliation(s)
- Jun Wan
- Synapse Research Institute, Maastricht, The Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Joke Konings
- Synapse Research Institute, Maastricht, The Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Bas de Laat
- Synapse Research Institute, Maastricht, The Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Tilman M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Mark Roest
- Synapse Research Institute, Maastricht, The Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
16
|
Assessment of Fibrinogen Macromolecules Interaction with Red Blood Cells Membrane by Means of Laser Aggregometry, Flow Cytometry, and Optical Tweezers Combined with Microfluidics. Biomolecules 2020; 10:biom10101448. [PMID: 33076409 PMCID: PMC7602533 DOI: 10.3390/biom10101448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
An elevated concentration of fibrinogen in blood is a significant risk factor during many pathological diseases, as it leads to an increase in red blood cells (RBC) aggregation, resulting in hemorheological disorders. Despite the biomedical importance, the mechanisms of fibrinogen-induced RBC aggregation are still debatable. One of the discussed models is the non-specific adsorption of fibrinogen macromolecules onto the RBC membrane, leading to the cells bridging in aggregates. However, recent works point to the specific character of the interaction between fibrinogen and the RBC membrane. Fibrinogen is the major physiological ligand of glycoproteins receptors IIbIIIa (GPIIbIIIa or αIIββ3 or CD41/CD61). Inhibitors of GPIIbIIIa are widely used in clinics for the treatment of various cardiovascular diseases as antiplatelets agents preventing the platelets’ aggregation. However, the effects of GPIIbIIIa inhibition on RBC aggregation are not sufficiently well studied. The objective of the present work was the complex multimodal in vitro study of the interaction between fibrinogen and the RBC membrane, revealing the role of GPIIbIIIa in the specificity of binding of fibrinogen by the RBC membrane and its involvement in the cells’ aggregation process. We demonstrate that GPIIbIIIa inhibition leads to a significant decrease in the adsorption of fibrinogen macromolecules onto the membrane, resulting in the reduction of RBC aggregation. We show that the mechanisms underlying these effects are governed by a decrease in the bridging components of RBC aggregation forces.
Collapse
|
17
|
Windberger U, Läuger J. Blood Clot Phenotyping by Rheometry: Platelets and Fibrinogen Chemistry Affect Stress-Softening and -Stiffening at Large Oscillation Amplitude. Molecules 2020; 25:molecules25173890. [PMID: 32858936 PMCID: PMC7503632 DOI: 10.3390/molecules25173890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022] Open
Abstract
(1) Background: Together with treatment protocols, viscoelastic tests are widely used for patient care. Measuring at broader ranges of deformation than currently done will add information on a clot’s mechanical phenotype because fibrin networks follow different stretching regimes, and blood flow compels clots into a dynamic non-linear response. (2) Methods: To characterize the influence of platelets on the network level, a stress amplitude sweep test (LAOStress) was applied to clots from native plasma with five platelet concentrations. Five species were used to validate the protocol (human, cow, pig, rat, horse). By Lissajous plots the oscillation cycle for each stress level was analyzed. (3) Results: Cyclic stress loading generates a characteristic strain response that scales with the platelet quantity at low stress, and that is independent from the platelet count at high shear stress. This general behavior is valid in the animal models except cow. Here, the specific fibrinogen chemistry induces a stiffer network and a variant high stress response. (4) Conclusions: The protocol provides several thresholds to connect the softening and stiffening behavior of clots with the applied shear stress. This points to the reversible part of deformation, and thus opens a new route to describe a blood clot’s phenotype.
Collapse
Affiliation(s)
- Ursula Windberger
- Department for Biomedical Research, Decentralized Biomedical Facilities, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Correspondence: (U.W.); (J.L.); Tel.: +43-1-40160-37103 (U.W.)
| | - Jörg Läuger
- Anton Paar Germany GmbH, Helmuth-Hirth-Strasse 6, 73760 Ostfildern, Germany
- Correspondence: (U.W.); (J.L.); Tel.: +43-1-40160-37103 (U.W.)
| |
Collapse
|
18
|
Berens C, Oldenburg J, Pötzsch B, Müller J. Glycophorin A-based exclusion of red blood cells for flow cytometric analysis of platelet glycoprotein expression in citrated whole blood. Clin Chem Lab Med 2020; 58:2081-2087. [PMID: 32598296 DOI: 10.1515/cclm-2020-0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/31/2020] [Indexed: 11/15/2022]
Abstract
Objectives Analysis of platelet glycoprotein (GP) expression by flow cytometry is applied for diagnostic confirmation of GP-associated thrombocytopathies. While platelet-rich plasma may be used for distinct identification of target events, this strategy is not feasible for small sample volumes or for patients showing low platelet counts and/or giant platelets. However, also the use of whole blood (WB) is hampered by the difficulty to discriminate platelets from red blood cells (RBC) in such patients. To circumvent these limitations, we evaluated the feasibility of a RBC gating-out strategy. Methods In addition to platelet GPIb, GPIIa/IIIa, as well as P-selectin (CD62P), citrated whole blood (CWB) samples were stained for RBC-specific glycophorin A (CD235a). CD235a-negative platelet events were further discriminated by forward-/side-scatter characteristics and platelet GP expressions analyzed relative to that of a healthy control sample processed in parallel. Results Established reference intervals allowed for clear identification of decreased GPIIb/IIIa- or GPIb expression pattern in samples of patients with confirmed Glanzmann thrombasthenia or Bernard-Soulier syndrome, respectively. It could be shown that the analysis of 2,500 platelet events is sufficient for reliable GP expression analysis, rendering the proposed method applicable to samples with low platelet counts. Conclusions This study demonstrates the feasibility of CD235a-based exclusion of RBC for platelet GP expression analysis in CWB. In contrast to direct staining of platelet-specific antigens for target identification, this indirect gating out approach is generally applicable independent of any underlying platelet GP expression deficiency.
Collapse
Affiliation(s)
- Christina Berens
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Bernd Pötzsch
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Jens Müller
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
19
|
Oxidative Stress and Thrombosis during Aging: The Roles of Oxidative Stress in RBCs in Venous Thrombosis. Int J Mol Sci 2020; 21:ijms21124259. [PMID: 32549393 PMCID: PMC7352981 DOI: 10.3390/ijms21124259] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/17/2023] Open
Abstract
Mid-life stage adults are at higher risk of developing venous thrombosis (VT)/thromboembolism (VT/E). Aging is characterized by an overproduction of reactive oxygen species (ROS), which could evoke a series of physiological changes involved in thrombosis. Here, we focus on the critical role of ROS within the red blood cell (RBC) in initiating venous thrombosis during aging. Growing evidence has shifted our interest in the role of unjustifiably unvalued RBCs in blood coagulation. RBCs can be a major source of oxidative stress during aging, since RBC redox homeostasis is generally compromised due to the discrepancy between prooxidants and antioxidants. As a result, ROS accumulate within the RBC due to the constant endogenous hemoglobin (Hb) autoxidation and NADPH oxidase activation, and the uptake of extracellular ROS released by other cells in the circulation. The elevated RBC ROS level affects the RBC membrane structure and function, causing loss of membrane integrity, and decreased deformability. These changes impair RBC function in hemostasis and thrombosis, favoring a hypercoagulable state through enhanced RBC aggregation, RBC binding to endothelial cells affecting nitric oxide availability, RBC-induced platelet activation consequently modulating their activity, RBC interaction with and activation of coagulation factors, increased RBC phosphatidylserine exposure and release of microvesicles, accelerated aging and hemolysis. Thus, RBC oxidative stress during aging typifies an ultimate mechanism in system failure, which can affect major processes involved in the development of venous thrombosis in a variety of ways. The reevaluated concept of the critical role of RBC ROS in the activation of thrombotic events during aging will help identify potential targets for novel strategies to prevent/reduce the risk for VT/E or VT/E recurrences in mid-life stage adults.
Collapse
|
20
|
Windberger U, Dibiasi C, Lotz EM, Scharbert G, Reinbacher-Koestinger A, Ivanov I, Ploszczanski L, Antonova N, Lichtenegger H. The effect of hematocrit, fibrinogen concentration and temperature on the kinetics of clot formation of whole blood. Clin Hemorheol Microcirc 2020; 75:431-445. [PMID: 32390608 DOI: 10.3233/ch-190799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Dynamic mechanical analysis of blood clots can be used to detect the coagulability of blood. OBJECTIVE We investigated the kinetics of clot formation by changing several blood components, and we looked into the clot "signature" at its equilibrium state by using viscoelastic and dielectric protocols. METHODS Oscillating shear rheometry, ROTEM, and a dielectro-rheological device was used. RESULTS In fibrinogen- spiked samples we found the classical high clotting ability: shortened onset, faster rate of clotting, and higher plateau stiffness. Electron microscopy explained the gain of stiffness. Incorporated RBCs weakened the clots. Reduction of temperature during the clotting process supported the development of high moduli by providing more time for fiber assembly. But at low HCT, clot firmness could be increased by elevating the temperature from 32 to 37°C. In contrast, when the fibrinogen concentration was modified, acceleration of clotting via temperature always reduced clot stiffness, whatever the initial fibrinogen concentration. Electrical resistance increased continuously during clotting; loss tangent (D) (relaxation frequency 249 kHz) decreased when clots became denser: fewer dipoles contributed to the relaxation process. The relaxation peak (Dmax) shifted to lower frequencies at higher platelet count. CONCLUSION Increasing temperature accelerates clot formation but weakens clots. Rheometry and ROTEM correlate well.
Collapse
Affiliation(s)
- U Windberger
- Center for Biomedical Research, Medical University Vienna, Vienna, Austria
| | - Ch Dibiasi
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - E M Lotz
- Center for Biomedical Research, Medical University Vienna, Vienna, Austria
| | - G Scharbert
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - A Reinbacher-Koestinger
- Institute of Fundamentals and Theory in Electrical Engineering, Graz University of Technology, Graz, Austria
| | - I Ivanov
- Institute of Mechanics, Bulgarian Academy of Science, Sofia, Bulgaria
| | - L Ploszczanski
- Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - N Antonova
- Institute of Mechanics, Bulgarian Academy of Science, Sofia, Bulgaria
| | - H Lichtenegger
- Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
21
|
Pretini V, Koenen MH, Kaestner L, Fens MHAM, Schiffelers RM, Bartels M, Van Wijk R. Red Blood Cells: Chasing Interactions. Front Physiol 2019; 10:945. [PMID: 31417415 PMCID: PMC6684843 DOI: 10.3389/fphys.2019.00945] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Human red blood cells (RBC) are highly differentiated cells that have lost all organelles and most intracellular machineries during their maturation process. RBC are fundamental for the nearly all basic physiologic dynamics and they are key cells in the body's respiratory system by being responsible for the oxygen transport to all cells and tissues, and delivery of carbon dioxide to the lungs. With their flexible structure RBC are capable to deform in order to travel through all blood vessels including very small capillaries. Throughout their in average 120 days lifespan, human RBC travel in the bloodstream and come in contact with a broad range of different cell types. In fact, RBC are able to interact and communicate with endothelial cells (ECs), platelets, macrophages, and bacteria. Additionally, they are involved in the maintenance of thrombosis and hemostasis and play an important role in the immune response against pathogens. To clarify the mechanisms of interaction of RBC and these other cells both in health and disease as well as to highlight the role of important key players, we focused our interest on RBC membrane components such as ion channels, proteins, and phospholipids.
Collapse
Affiliation(s)
- Virginia Pretini
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Mischa H. Koenen
- Department of Laboratory of Translational Immunology and Department of Pediatric Immunology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Marcel H. A. M. Fens
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marije Bartels
- Paediatric Haematology Department, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Richard Van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
22
|
Mukhopadhyay S, Johnson TA, Duru N, Buzza MS, Pawar NR, Sarkar R, Antalis TM. Fibrinolysis and Inflammation in Venous Thrombus Resolution. Front Immunol 2019; 10:1348. [PMID: 31258531 PMCID: PMC6587539 DOI: 10.3389/fimmu.2019.01348] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022] Open
Abstract
Clinical observations and accumulating laboratory evidence support a complex interplay between coagulation, inflammation, innate immunity and fibrinolysis in venous thromboembolism (VTE). VTE, which includes deep vein thrombosis (DVT) and pulmonary embolism (PE), and the subsequent complications of post-thrombotic syndrome (PTS), are significant causes of morbidity and mortality in patients. Clinical risk factors for VTE include cancer, major trauma, surgery, sepsis, inflammatory bowel disease, paralysis, prolonged periods of immobility, and aging. Abnormalities in venous blood flow or stasis initiates the activation of endothelial cells, and in concert with platelets, neutrophils and monocytes, propagates VTE in an intact vein. In addition, inflammatory cells play crucial roles in thrombus recanalization and restoration of blood flow via fibrinolysis and vascular remodeling. Faster resolution of the thrombus is key for improved disease prognosis. While in the clinical setting, anticoagulation therapy is successful in preventing propagation of venous thrombi, current therapies are not designed to inhibit inflammation, which can lead to the development of PTS. Animal models of DVT have provided many insights into the molecular and cellular mechanisms involved in the formation, propagation, and resolution of venous thrombi as well as the roles of key components of the fibrinolytic system in these processes. Here, we review the recent advances in our understanding of fibrinolysis and inflammation in the resolution of VTE.
Collapse
Affiliation(s)
- Subhradip Mukhopadhyay
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Tierra A. Johnson
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nadire Duru
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marguerite S. Buzza
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nisha R. Pawar
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rajabrata Sarkar
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Toni M. Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
23
|
Piccin A, Murphy C, Eakins E, Rondinelli MB, Daves M, Vecchiato C, Wolf D, Mc Mahon C, Smith OP. Insight into the complex pathophysiology of sickle cell anaemia and possible treatment. Eur J Haematol 2019; 102:319-330. [PMID: 30664257 DOI: 10.1111/ejh.13212] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
Sickle cell anaemia (SCA) is the consequence of abnormal haemoglobin production due to an inherited point mutation in the β-globin gene. The resulting haemoglobin tetramer is poorly soluble when deoxygenated, and when this is prolonged, intracellular gelation of sickle haemoglobin occurs, followed by haemoglobin polymerisation. If many cycles of sickling and unsickling occur, the red cell membrane will be disrupted leading to haemolysis and vaso-occlusive events. Recent studies have also shown that leucocyte adhesion molecules and nitric oxide (NO) depletion are involved in endothelial damage. New insights in SCA pathophysiology and vascular biology have shown that cell-derived microparticle (MP) generation is also involved in the vaso-occlusion. Endothelial damage is perpetuated by impaired production or increased consumption of protective modulators such as protein C, protein S and NO. New therapeutic interventions should address these aspects of SCA pathogenesis. To date, the only US-FDA-approved therapy to prevent painful vaso-occulsive episodes is hydroxyurea that reduces haemoglobin polymerisation in sickle cells by increasing the production of foetal haemoglobin and L-glutamine. However, several new drugs have been tested in the last years in randomised clinical trials. We here report an update on the current status of knowledge on SCA.
Collapse
Affiliation(s)
- Andrea Piccin
- Department of Paediatric Haematology, Our Lady's Children's Hospital, Dublin, Ireland.,Internal Medicine V, University of Medicine, Innsbruck, Austria.,Transfusion Service, San Maurizio Regional Hospital, Bolzano, Italy.,Irish Blood Transfusion Service, Dublin, Ireland
| | | | - Elva Eakins
- Irish Blood Transfusion Service, Dublin, Ireland
| | | | - Massimo Daves
- Transfusion Service, San Maurizio Regional Hospital, Bolzano, Italy
| | - Cinzia Vecchiato
- Transfusion Service, San Maurizio Regional Hospital, Bolzano, Italy
| | - Dominik Wolf
- Internal Medicine V, University of Medicine, Innsbruck, Austria.,Medical Clinic 3, Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Corrina Mc Mahon
- Department of Paediatric Haematology, Our Lady's Children's Hospital, Dublin, Ireland.,University College Dublin (UCD), Dublin, Ireland
| | - Owen P Smith
- Department of Paediatric Haematology, Our Lady's Children's Hospital, Dublin, Ireland.,University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
24
|
Kho S, Barber BE, Johar E, Andries B, Poespoprodjo JR, Kenangalem E, Piera KA, Ehmann A, Price RN, William T, Woodberry T, Foote S, Minigo G, Yeo TW, Grigg MJ, Anstey NM, McMorran BJ. Platelets kill circulating parasites of all major Plasmodium species in human malaria. Blood 2018; 132:1332-1344. [PMID: 30026183 PMCID: PMC6161646 DOI: 10.1182/blood-2018-05-849307] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/27/2018] [Indexed: 01/12/2023] Open
Abstract
Platelets are understood to assist host innate immune responses against infection, although direct evidence of this function in any human disease, including malaria, is unknown. Here we characterized platelet-erythrocyte interactions by microscopy and flow cytometry in patients with malaria naturally infected with Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, or Plasmodium knowlesi Blood samples from 376 participants were collected from malaria-endemic areas of Papua, Indonesia, and Sabah, Malaysia. Platelets were observed binding directly with and killing intraerythrocytic parasites of each of the Plasmodium species studied, particularly mature stages, and was greatest in P vivax patients. Platelets preferentially bound to the infected more than to the uninfected erythrocytes in the bloodstream. Analysis of intraerythrocytic parasites indicated the frequent occurrence of platelet-associated parasite killing, characterized by the intraerythrocytic accumulation of platelet factor-4 and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling of parasite nuclei (PF4+TUNEL+ parasites). These PF4+TUNEL+ parasites were not associated with measures of systemic platelet activation. Importantly, patient platelet counts, infected erythrocyte-platelet complexes, and platelet-associated parasite killing correlated inversely with patient parasite loads. These relationships, taken together with the frequency of platelet-associated parasite killing observed among the different patients and Plasmodium species, suggest that platelets may control the growth of between 5% and 60% of circulating parasites. Platelet-erythrocyte complexes made up a major proportion of the total platelet pool in patients with malaria and may therefore contribute considerably to malarial thrombocytopenia. Parasite killing was demonstrated to be platelet factor-4-mediated in P knowlesi culture. Collectively, our results indicate that platelets directly contribute to innate control of Plasmodium infection in human malaria.
Collapse
Affiliation(s)
- Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Edison Johar
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Benediktus Andries
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Jeanne R Poespoprodjo
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Rumah Sakit Umum Daerah Kabupaten Mimika, Timika, Papua, Indonesia
- Department of Paediatrics, University of Gadjah Mada, Yogyakarta, Indonesia
| | - Enny Kenangalem
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Rumah Sakit Umum Daerah Kabupaten Mimika, Timika, Papua, Indonesia
| | - Kim A Piera
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Anna Ehmann
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Jesselton Medical Centre, Kota Kinabalu, Sabah, Malaysia; and
- Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Ministry of Health, Malaysia
| | - Tonia Woodberry
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Simon Foote
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Gabriela Minigo
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Tsin W Yeo
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Brendan J McMorran
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
25
|
Klatt C, Krüger I, Zey S, Krott KJ, Spelleken M, Gowert NS, Oberhuber A, Pfaff L, Lückstädt W, Jurk K, Schaller M, Al-Hasani H, Schrader J, Massberg S, Stark K, Schelzig H, Kelm M, Elvers M. Platelet-RBC interaction mediated by FasL/FasR induces procoagulant activity important for thrombosis. J Clin Invest 2018; 128:3906-3925. [PMID: 29952767 DOI: 10.1172/jci92077] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/21/2018] [Indexed: 12/16/2022] Open
Abstract
Red blood cells (RBCs) influence rheology, and release ADP, ATP, and nitric oxide, suggesting a role for RBCs in hemostasis and thrombosis. Here, we provide evidence for a significant contribution of RBCs to thrombus formation. Anemic mice showed enhanced occlusion times upon injury of the carotid artery. A small population of RBCs was located to platelet thrombi and enhanced platelet activation by a direct cell contact via the FasL/FasR (CD95) pathway known to induce apoptosis. Activation of platelets in the presence of RBCs led to platelet FasL exposure that activated FasR on RBCs responsible for externalization of phosphatidylserine (PS) on the RBC membrane. Inhibition or genetic deletion of either FasL or FasR resulted in reduced PS exposure of RBCs and platelets, decreased thrombin generation, and reduced thrombus formation in vitro and protection against arterial thrombosis in vivo. Direct cell contacts between platelets and RBCs via FasL/FasR were shown after ligation of the inferior vena cava (IVC) and in surgical specimens of patients after thrombectomy. In a flow restriction model of the IVC, reduced thrombus formation was observed in FasL-/- mice. Taken together, our data reveal a significant contribution of RBCs to thrombosis by the FasL/FasR pathway.
Collapse
Affiliation(s)
- Christoph Klatt
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Düsseldorf, Germany
| | - Irena Krüger
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Düsseldorf, Germany
| | - Saskia Zey
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Düsseldorf, Germany
| | - Kim-Jürgen Krott
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Düsseldorf, Germany
| | - Martina Spelleken
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Düsseldorf, Germany
| | - Nina Sarah Gowert
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Düsseldorf, Germany
| | - Alexander Oberhuber
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Düsseldorf, Germany
| | - Lena Pfaff
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig Maximilians-Universität, Munich, Germany
| | - Wiebke Lückstädt
- Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University, Düsseldorf, Germany and Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, University Düsseldorf, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| | - Martin Schaller
- Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz-Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig Maximilians-Universität, Munich, Germany
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig Maximilians-Universität, Munich, Germany
| | - Hubert Schelzig
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Düsseldorf, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University, Düsseldorf, Germany and Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, University Düsseldorf, Germany
| | - Margitta Elvers
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Düsseldorf, Germany
| |
Collapse
|
26
|
Effect of Erythrocyte Density on Blood Clot Properties in Healthy Individuals and in Patients with Hemophilia A. Bull Exp Biol Med 2018; 165:334-336. [PMID: 30003415 DOI: 10.1007/s10517-018-4163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 10/28/2022]
Abstract
We measured specific volume and hematocrit of blood clots prepared from the whole blood of patients with hemophilia A and healthy male volunteers. It was shown that in the hematocrit range of 43.5-52.5%, specific volume of the blood clot in hemophilia patients with low level of factor VIII (1-4%) was higher than in volunteers. After injection of factor VIII, specific volume of blood clots in hemophilia patients decreased. Hematocrit of the blood clots derived from the whole blood linearly depended on the mean erythrocyte density in both volunteers (r=-0.74, p=0.01) and patients with factor VIII level of 1-4% (r=-0.95, p<0.0001). The increase in the mean erythrocyte density led to a decrease in blood clot hematocrit. The curve describing blood clot hematocrit as a function of the mean erythrocyte density in hemophilia patients was lower than in healthy volunteers. The increase in factor VIII level was associated with an increase in blood clot hematocrit. The results showed that blood clot hematocrit depends on the mean erythrocyte density, and therefore, hematocrit of the blood clot can be changed by modulating the properties of erythrocyte population.
Collapse
|
27
|
Zhang Y, Sun J, Tan M, Liu Y, Li Q, Jiang H, Wang H, Li Z, Wan W, Jiang H, Lu H, Wang B, Ren J, Gong L. Species-Specific Involvement of Integrin αIIbβ3 in a Monoclonal Antibody CH12 Triggers Off-Target Thrombocytopenia in Cynomolgus Monkeys. Mol Ther 2018; 26:1457-1470. [PMID: 29724685 DOI: 10.1016/j.ymthe.2018.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
CH12 is a novel humanized monoclonal antibody against epidermal growth factor receptor variant III (EGFRvIII) for cancer treatment. Unfortunately, in pre-clinical safety evaluation studies, acute thrombocytopenia was observed after administration of CH12 in cynomolgus monkeys, but not rats. More importantly, in vitro experiments found that CH12 can bind and activate platelets in cynomolgus monkey, but not human peripheral blood samples. Cynomolgus monkey-specific thrombocytopenia has been reported previously; however, the underlying mechanism remains unclear. Here, we first showed that CH12 induced thrombocytopenia in cynomolgus monkeys through off-target platelet binding and activation, resulting in platelet destruction. We subsequently found that integrin αIIbβ3 (which is expressed on platelets) contributed to this off-target toxicity. Furthermore, three-dimensional structural modeling of the αIIbβ3 molecules in cynomolgus monkeys, humans, and rats suggested that an additional unique loop exists in the ligand-binding pocket of the αIIb subunit in cynomolgus monkeys, which may explain why CH12 binds to platelets only in cynomolgus monkeys. Moreover, this study supported the hypothesis that the minor differences between cynomolgus monkeys and humans can confuse human risk assessments and suggests that species differences can help the prediction of human risks and avoid losses in drug development.
Collapse
Affiliation(s)
- Yiting Zhang
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Sun
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Minjia Tan
- University of Chinese Academy of Sciences, Beijing 100049, China; The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongzhen Liu
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qian Li
- University of Chinese Academy of Sciences, Beijing 100049, China; The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hua Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Huamao Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Wei Wan
- University of Chinese Academy of Sciences, Beijing 100049, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- University of Chinese Academy of Sciences, Beijing 100049, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Henglei Lu
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bingshun Wang
- Department of Biostatistics, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Likun Gong
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
28
|
Abstract
Red blood cells (RBCs) have historically been considered passive bystanders in thrombosis. However, clinical and epidemiological studies have associated quantitative and qualitative abnormalities in RBCs, including altered hematocrit, sickle cell disease, thalassemia, hemolytic anemias, and malaria, with both arterial and venous thrombosis. A growing body of mechanistic studies suggests that RBCs can promote thrombus formation and enhance thrombus stability. These findings suggest that RBCs may contribute to thrombosis pathophysiology and reveal potential strategies for therapeutically targeting RBCs to reduce thrombosis.
Collapse
|
29
|
Qadri SM, Bissinger R, Solh Z, Oldenborg PA. Eryptosis in health and disease: A paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Rev 2017; 31:349-361. [PMID: 28669393 DOI: 10.1016/j.blre.2017.06.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/05/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
Abstract
During the course of their natural ageing and upon injury, anucleate erythrocytes can undergo an unconventional apoptosis-like cell death, termed eryptosis. Eryptotic erythrocytes display a plethora of morphological alterations including volume reduction, membrane blebbing and breakdown of the membrane phospholipid asymmetry resulting in phosphatidylserine externalization which, in turn, mediates their phagocytic recognition and clearance from the circulation. Overall, the eryptosis machinery is tightly orchestrated by a wide array of endogenous mediators, ion channels, membrane receptors, and a host of intracellular signaling proteins. Enhanced eryptosis shortens the lifespan of circulating erythrocytes and confers a procoagulant phenotype; this phenomenon has been tangibly implicated in the pathogenesis of anemia, deranged microcirculation, and increased prothrombotic risk associated with a multitude of clinical conditions. Herein, we reviewed the molecular mechanisms dictating eryptosis and erythrophagocytosis and critically analyzed the current evidence leading to the pathophysiological ramifications of eryptotic cell death in the context of human disease.
Collapse
Affiliation(s)
- Syed M Qadri
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.
| | - Rosi Bissinger
- Department of Internal Medicine, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Ziad Solh
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Medical Services and Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
30
|
Smeets MWJ, Bierings R, Meems H, Mul FPJ, Geerts D, Vlaar APJ, Voorberg J, Hordijk PL. Platelet-independent adhesion of calcium-loaded erythrocytes to von Willebrand factor. PLoS One 2017; 12:e0173077. [PMID: 28249049 PMCID: PMC5332109 DOI: 10.1371/journal.pone.0173077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022] Open
Abstract
Adhesion of erythrocytes to endothelial cells lining the vascular wall can cause vaso-occlusive events that impair blood flow which in turn may result in ischemia and tissue damage. Adhesion of erythrocytes to vascular endothelial cells has been described in multiple hemolytic disorders, especially in sickle cell disease, but the adhesion of normal erythrocytes to endothelial cells has hardly been described. It was shown that calcium-loaded erythrocytes can adhere to endothelial cells. Because sickle erythrocyte adhesion to ECs can be enhanced by ultra-large von Willebrand factor multimers, we investigated whether calcium loading of erythrocytes could promote binding to endothelial cells via ultra-large von Willebrand factor multimers. We used (immunofluorescent) live-cell imaging of washed erythrocytes perfused over primary endothelial cells at venular flow rate. Using this approach, we show that calcium-loaded erythrocytes strongly adhere to histamine-stimulated primary human endothelial cells. This adhesion is mediated by ultra-large von Willebrand factor multimers. Von Willebrand factor knockdown or ADAMTS13 cleavage abolished the binding of erythrocytes to activated endothelial cells under flow. Platelet depletion did not interfere with erythrocyte binding to von Willebrand factor. Our results reveal platelet-independent adhesion of calcium-loaded erythrocytes to endothelium-derived von Willebrand factor. Erythrocyte adhesion to von Willebrand factor may be particularly relevant for venous thrombosis, which is characterized by the formation of erythrocyte-rich thrombi.
Collapse
Affiliation(s)
- Michel W. J. Smeets
- Department of Molecular Cell Biology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Ruben Bierings
- Department of Plasma Proteins, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Henriet Meems
- Department of Plasma Proteins, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Frederik P. J. Mul
- Department of Molecular Cell Biology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Dirk Geerts
- Department of Pediatric Oncology/Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alexander P. J. Vlaar
- Department of Intensive Care Medicine, Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Jan Voorberg
- Department of Plasma Proteins, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Peter L. Hordijk
- Department of Molecular Cell Biology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
31
|
Litvinov RI, Weisel JW. Role of red blood cells in haemostasis and thrombosis. ISBT SCIENCE SERIES 2017; 12:176-183. [PMID: 28458720 PMCID: PMC5404239 DOI: 10.1111/voxs.12331] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In contrast to an obsolete notion that erythrocytes, or red blood cells (RBCs), play a passive and minor role in hemostasis and thrombosis, over the past decades there has been increasing evidence that RBCs have biologically and clinically important functions in blood clotting and its disorders. This review summarizes the main mechanisms that underlie the involvement of RBCs in hemostasis and thrombosis in vivo, such as rheological effects on blood viscosity and platelet margination, aggregation and deformability of RBCs; direct adhesion and indirect biochemical interactions with endothelial cells and platelets, etc. The ability of stored and pathologically altered RBCs to generate thrombin through exposure of phosphatidylserine has been emphasized. The procoagulant and prothrombotic potential of RBC-derived microparticles transfused with stored RBCs or formed in various pathological conditions associated with hemolysis has been described along with prothrombotic effects of free hemoglobin and heme. Binding of fibrinogen or fibrin to RBCs may influence their effects on fibrin network structure, clot mechanical properties, and fibrinolytic resistance. Recent data on platelet-driven clot contraction show that RBCs compressed by platelets pulling on fibrin form a tightly packed array of polyhedral erythrocytes, or polyhedrocytes, which comprises a nearly impermeable barrier important for hemostasis and wound healing. RBCs may perform dual roles, both helping to stem bleeding but at the same time contributing to thrombosis in a variety of ways.
Collapse
Affiliation(s)
- Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
Watanabe T, Isobe K, Suzuki T, Kawabata H, Nakamura M, Tsukioka T, Okudera T, Okudera H, Uematsu K, Okuda K, Nakata K, Kawase T. An Evaluation of the Accuracy of the Subtraction Method Used for Determining Platelet Counts in Advanced Platelet-Rich Fibrin and Concentrated Growth Factor Preparations. Dent J (Basel) 2017; 5:dj5010007. [PMID: 29563413 PMCID: PMC5806990 DOI: 10.3390/dj5010007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/16/2016] [Accepted: 01/06/2017] [Indexed: 01/29/2023] Open
Abstract
Platelet concentrates should be quality-assured of purity and identity prior to clinical use. Unlike for the liquid form of platelet-rich plasma, platelet counts cannot be directly determined in solid fibrin clots and are instead calculated by subtracting the counts in other liquid or semi-clotted fractions from those in whole blood samples. Having long suspected the validity of this method, we herein examined the possible loss of platelets in the preparation process. Blood samples collected from healthy male donors were immediately centrifuged for advanced platelet-rich fibrin (A-PRF) and concentrated growth factors (CGF) according to recommended centrifugal protocols. Blood cells in liquid and semi-clotted fractions were directly counted. Platelets aggregated on clot surfaces were observed by scanning electron microscopy. A higher centrifugal force increased the numbers of platelets and platelet aggregates in the liquid red blood cell fraction and the semi-clotted red thrombus in the presence and absence of the anticoagulant, respectively. Nevertheless, the calculated platelet counts in A-PRF/CGF preparations were much higher than expected, rendering the currently accepted subtraction method inaccurate for determining platelet counts in fibrin clots. To ensure the quality of solid types of platelet concentrates chairside in a timely manner, a simple and accurate platelet-counting method should be developed immediately.
Collapse
Affiliation(s)
| | - Kazushige Isobe
- Tokyo Plastic Dental Society, Kita-ku, Tokyo 114-0002, Japan.
| | - Taiji Suzuki
- Tokyo Plastic Dental Society, Kita-ku, Tokyo 114-0002, Japan.
| | - Hideo Kawabata
- Tokyo Plastic Dental Society, Kita-ku, Tokyo 114-0002, Japan.
| | | | | | | | - Hajime Okudera
- Tokyo Plastic Dental Society, Kita-ku, Tokyo 114-0002, Japan.
| | - Kohya Uematsu
- Division of Implantology, Niigata University Medical and Dental Hospital, Niigata 951-8514, Japan.
| | - Kazuhiro Okuda
- Division of Periodontology, Institute of Medicine and Dentistry, Niigata University, Niigata 951-8514, Japan.
| | - Koh Nakata
- Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata 951-8520, Japan.
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Niigata 951-8514, Japan.
| |
Collapse
|
33
|
Plasmodium falciparum proteins involved in cytoadherence of infected erythrocytes to chemokine CX3CL1. Sci Rep 2016; 6:33786. [PMID: 27653778 PMCID: PMC5031962 DOI: 10.1038/srep33786] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/02/2016] [Indexed: 12/19/2022] Open
Abstract
Malaria caused by Plasmodium falciparum is associated with cytoadherence of infected red blood cells (iRBC) to endothelial cells. Numerous host molecules have been involved in cytoadherence, including the adhesive chemokine CX3CL1. Most of the identified parasite ligands are from the multigenic and hypervariable Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family which makes them poor targets for the development of a broadly protective vaccine. Using proteomics, we have identified two 25-kDa parasite proteins with adhesive properties for CX3CL1, called CBP for CX3CL1 Binding Proteins. CBPs are coded by single-copy genes with little polymorphic variation and no homology with other P. falciparum gene products. Specific antibodies raised against epitopes from the predicted extracellular domains of each CBP efficiently stain the surface of RBC infected with trophozoites or schizonts, which is a strong indication of CBP expression at the surface of iRBC. These anti-CBP antibodies partially neutralize iRBC adherence to CX3CL1. This adherence is similarly inhibited in the presence of peptides from the CBP extracellular domains, while irrelevant peptides had no such effect. CBP1 and CBP2 are new P. falciparum ligands for the human chemokine CX3CL1. The identification of this non-polymorphic P. falciparum factors provides a new avenue for innovative vaccination approaches.
Collapse
|
34
|
Villa CH, Muzykantov VR, Cines DB. The emerging role for red blood cells in haemostasis: opportunity for intervention. ACTA ACUST UNITED AC 2016. [DOI: 10.1111/voxs.12197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- C. H. Villa
- Department of Pathology and Laboratory Medicine; The Perelman School of Medicine, University of Pennsylvania; Philadelphia PA USA
| | - V. R. Muzykantov
- Department of Pharmacology and Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics; The Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - D. B. Cines
- Department of Pathology and Laboratory Medicine; The Perelman School of Medicine, University of Pennsylvania; Philadelphia PA USA
| |
Collapse
|
35
|
Affiliation(s)
- Daniel I Simon
- From Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH (D.I.S.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.).
| | - Roy L Silverstein
- From Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH (D.I.S.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| |
Collapse
|
36
|
Olumuyiwa-Akeredolu OOO, Pretorius E. Platelet and red blood cell interactions and their role in rheumatoid arthritis. Rheumatol Int 2015; 35:1955-64. [PMID: 26059943 DOI: 10.1007/s00296-015-3300-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/26/2015] [Indexed: 12/23/2022]
Abstract
Cytokines, lymphocytes, platelets and several biomolecules have long been implicated in the pathology of rheumatoid arthritis (RA), and the influences of antibody production and tagging, and cytokine, chemokine and enzyme production at specific rheumatoid joints were thought to be exclusive to the advancement of disease parameters. Another role player in RA is red blood cells (RBCs) which, of late, have been found to be involved in RA pathobiology, as there is a positive correlation between RBC counts and joint pathology, as well as with inflammatory biomarkers in the disease. There is also an association between RBC distribution width and the incidence of myocardial infarction amongst RA patients, and there is a change in the lipid distribution within RBC membranes. Of late, certain RBC-associated factors with previously obscure roles and cell-derived particles thought to be inconsequential to the other constituents of plasma were found to be active biomolecular players. Several of these have been discovered to be present in or originating from RBCs. Their influences have been shown to involve in membrane dynamics that cause structural and functional changes in both platelets and RBCs. RBC-derived microparticles are emerging entities found to play direct roles in immunomodulation via interactions with other plasma cells. These correlations highlight the direct influences of RBCs on exacerbating RA pathology. This review will attempt to shed more light on how RBCs, in the true inflammatory milieu of RA, are playing an even greater role than previously assumed.
Collapse
Affiliation(s)
- Oore-Ofe O Olumuyiwa-Akeredolu
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa.
| |
Collapse
|
37
|
Walton BL, Byrnes JR, Wolberg AS. Fibrinogen, red blood cells, and factor XIII in venous thrombosis. J Thromb Haemost 2015; 13 Suppl 1:S208-15. [PMID: 26149026 PMCID: PMC5975093 DOI: 10.1111/jth.12918] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease is the leading cause of death and disability worldwide. Among cardiovascular causes of death, venous thrombosis (VT) is ranked third most common in the world. Venous thrombi have high red blood cell and fibrin content; however, the pathophysiologic mechanisms that contribute to venous thrombus composition and stability are still poorly understood. This article reviews biological, biochemical, and biophysical contributions of fibrinogen, factor XIII, and red blood cells to VT, and new evidence suggesting interactions between these components mediate venous thrombus composition and size.
Collapse
Affiliation(s)
- B L Walton
- Department of Pathology and Laboratory Medicine and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J R Byrnes
- Department of Pathology and Laboratory Medicine and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - A S Wolberg
- Department of Pathology and Laboratory Medicine and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
38
|
Host ICAMs play a role in cell invasion by Mycobacterium tuberculosis and Plasmodium falciparum. Nat Commun 2015; 6:6049. [PMID: 25586702 DOI: 10.1038/ncomms7049] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/05/2014] [Indexed: 12/19/2022] Open
Abstract
Intercellular adhesion molecules (ICAMs) belong to the immunoglobulin superfamily and participate in diverse cellular processes including host-pathogen interactions. ICAM-1 is expressed on various cell types including macrophages, whereas ICAM-4 is restricted to red blood cells. Here we report the identification of an 11-kDa synthetic protein, M5, that binds to human ICAM-1 and ICAM-4, as shown by in vitro interaction studies, surface plasmon resonance and immunolocalization. M5 greatly inhibits the invasion of macrophages and erythrocytes by Mycobacterium tuberculosis and Plasmodium falciparum, respectively. Pharmacological and siRNA-mediated inhibition of ICAM-1 expression also results in reduced M. tuberculosis invasion of macrophages. ICAM-4 binds to P. falciparum merozoites, and the addition of recombinant ICAM-4 to parasite cultures blocks invasion of erythrocytes by newly released merozoites. Our results indicate that ICAM-1 and ICAM-4 play roles in host cell invasion by M. tuberculosis and P. falciparum, respectively, either as receptors or as crucial accessory molecules.
Collapse
|
39
|
Abstract
Deep vein thrombosis and pulmonary embolism, collectively termed venous thromboembolism (VTE), affect over 1 million Americans each year. VTE is triggered by inflammation and blood stasis leading to the formation of thrombi rich in fibrin and red blood cells (RBCs). However, little is known about mechanisms regulating fibrin and RBC incorporation into venous thrombi, or how these components mediate thrombus size or resolution. Both elevated circulating fibrinogen (hyperfibrinogenemia) and abnormal fibrin(ogen) structure and function, including increased fibrin network density and resistance to fibrinolysis, have been observed in plasmas from patients with VTE. Abnormalities in RBC number and/or function have also been associated with VTE risk. RBC contributions to VTE are thought to stem from their effects on blood viscosity and margination of platelets to the vessel wall. More recent studies suggest RBCs also express phosphatidylserine, support thrombin generation, and decrease fibrinolysis. RBC interactions with fibrin(ogen) and cells, including platelets and endothelial cells, may also promote thrombus formation. The contributions of fibrin(ogen) and RBCs to the pathophysiology of VTE warrants further investigation.
Collapse
|
40
|
Aleman MM, Byrnes JR, Wang JG, Tran R, Lam WA, Di Paola J, Mackman N, Degen JL, Flick MJ, Wolberg AS. Factor XIII activity mediates red blood cell retention in venous thrombi. J Clin Invest 2014; 124:3590-600. [PMID: 24983320 DOI: 10.1172/jci75386] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/21/2014] [Indexed: 11/17/2022] Open
Abstract
Venous thrombi, fibrin- and rbc-rich clots triggered by inflammation and blood stasis, underlie devastating, and sometimes fatal, occlusive events. During intravascular fibrin deposition, rbc are thought to become passively trapped in thrombi and therefore have not been considered a modifiable thrombus component. In the present study, we determined that activity of the transglutaminase factor XIII (FXIII) is critical for rbc retention within clots and directly affects thrombus size. Compared with WT mice, mice carrying a homozygous mutation in the fibrinogen γ chain (Fibγ390-396A) had a striking 50% reduction in thrombus weight due to reduced rbc content. Fibrinogen from mice harboring the Fibγ390-396A mutation exhibited reduced binding to FXIII, and plasma from these mice exhibited delayed FXIII activation and fibrin crosslinking, indicating these residues mediate FXIII binding and activation. FXIII-deficient mice phenocopied mice carrying Fibγ390-396A and produced smaller thrombi with fewer rbc than WT mice. Importantly, FXIII-deficient human clots also exhibited reduced rbc retention. The addition of FXIII to FXIII-deficient clots increased rbc retention, while inhibition of FXIII activity in normal blood reduced rbc retention and produced smaller clots. These findings establish the FXIII-fibrinogen axis as a central determinant in venous thrombogenesis and identify FXIII as a potential therapeutic target for limiting venous thrombosis.
Collapse
|
41
|
Walker B, Towhid ST, Schmid E, Hoffmann SM, Abed M, Münzer P, Vogel S, Neis F, Brucker S, Gawaz M, Borst O, Lang F. Dynamic adhesion of eryptotic erythrocytes to immobilized platelets via platelet phosphatidylserine receptors. Am J Physiol Cell Physiol 2013; 306:C291-7. [PMID: 24284794 DOI: 10.1152/ajpcell.00318.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glucose depletion of erythrocytes triggers suicidal erythrocyte death or eryptosis, which leads to cell membrane scrambling with phosphatidylserine exposure at the cell surface. Eryptotic erythrocytes adhere to endothelial cells by a mechanism involving phosphatidylserine at the erythrocyte surface and CXCL16 as well as CD36 at the endothelial cell membrane. Nothing has hitherto been known about an interaction between eryptotic erythrocytes and platelets, the decisive cells in primary hemostasis and major players in thrombotic vascular occlusion. The present study thus explored whether and how glucose-depleted erythrocytes adhere to platelets. To this end, adhesion of phosphatidylserine-exposing erythrocytes to platelets under flow conditions was examined in a flow chamber model at arterial shear rates. Platelets were immobilized on collagen and further stimulated with adenosine diphosphate (ADP, 10 μM) or thrombin (0.1 U/ml). As a result, a 48-h glucose depletion triggered phosphatidylserine translocation to the erythrocyte surface and augmented the adhesion of erythrocytes to immobilized platelets, an effect significantly increased upon platelet stimulation. Adherence of erythrocytes to platelets was blunted by coating of erythrocytic phosphatidylserine with annexin V or by neutralization of platelet phosphatidylserine receptors CXCL16 and CD36 with respective antibodies. In conclusion, glucose-depleted erythrocytes adhere to platelets. The adhesive properties of platelets are augmented by platelet activation. Erythrocyte adhesion to immobilized platelets requires phosphatidylserine at the erythrocyte surface and CXCL16 as well as CD36 expression on platelets. Thus platelet-mediated erythrocyte adhesion may foster thromboocclusive complications in diseases with stimulated phosphatidylserine exposure of erythrocytes.
Collapse
Affiliation(s)
- Britta Walker
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mruk DD, Xiao X, Lydka M, Li MWM, Bilinska B, Cheng CY. Intercellular adhesion molecule 1: recent findings and new concepts involved in mammalian spermatogenesis. Semin Cell Dev Biol 2013; 29:43-54. [PMID: 23942142 DOI: 10.1016/j.semcdb.2013.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 01/05/2023]
Abstract
Spermatogenesis, the process of spermatozoa production, is regulated by several endocrine factors, including testosterone, follicle stimulating hormone, luteinizing hormone and estradiol 17β. For spermatogenesis to reach completion, developing germ cells must traverse the seminiferous epithelium while remaining transiently attached to Sertoli cells. If germ cell adhesion were to be compromised for a period of time longer than usual, germ cells would slough from the seminiferous epithelium and infertility would result. Presently, Sertoli-germ cell adhesion is known to be mediated largely by classical and desmosomal cadherins. More recent studies, however, have begun to expand long-standing concepts and to examine the roles of other proteins such as intercellular adhesion molecules. In this review, we focus on the biology of intercellular adhesion molecules in the mammalian testis, hoping that this information is useful in the design of future studies.
Collapse
Affiliation(s)
- Dolores D Mruk
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, United States.
| | - Xiang Xiao
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, United States
| | - Marta Lydka
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, United States
| | - Michelle W M Li
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, United States
| | - Barbara Bilinska
- Institute of Zoology, Department of Endocrinology, The Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - C Yan Cheng
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, United States
| |
Collapse
|
43
|
Wang Z, Vogel O, Kuhn G, Gassmann M, Vogel J. Decreased stability of erythroblastic islands in integrin β3-deficient mice. Physiol Rep 2013; 1:e00018. [PMID: 24303107 PMCID: PMC3831914 DOI: 10.1002/phy2.18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 11/09/2022] Open
Abstract
Erythroblasts proliferate and differentiate in hematopoietic organs within erythroblastic islands (EI) composed of erythropoietic progenitor cells attached to a central macrophage. This cellular interaction crucially involves the erythroid intercellular adhesion molecule-4 (ICAM-4) and αv integrin. Because integrins are biologically active as α/β heterodimers, we asked whether β3 could be a heterodimerization partner of αv integrin in EIs. To this end we compared stress erythropoiesis driven by two different mechanisms, namely that of integrin β3-deficient (β3(-/-)) mice that exhibit impaired hemostasis due to platelet dysfunction with that of systemically erythropoietin-overexpressing (tg6) mice. While compared to the respective wild type (wt) controls β3(-/-) mice had much less erythropoietic stimulation than tg6 mice β3(-/-) blood contained more erythrocytes of a lower maturity stage. Unexpectedly, membranes of peripheral erythrocytes from β3(-/-) mice (but not those from either wt control or from tg6 mice) contained calnexin, a chaperone that is normally completely lost during terminal differentiation of reticulocytes prior to their release into the circulation. In contrast to erythropoietin-overexpressing mice, the erythropoietic subpopulations representing orthochromatic erythroblasts and premature reticulocytes as well as the number of cells per EI were reduced in β3(-/-) bone marrow. In conclusion, absence of integrin β3 impairs adhesion of the latest erythroid developmental stage to the central macrophage of EIs resulting in preterm release of abnormally immature erythrocytes into the circulation.
Collapse
Affiliation(s)
- Zhenghui Wang
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zürich and Zürich Center for Integrative Human Physiology (ZIHP) Zürich, Switzerland
| | | | | | | | | |
Collapse
|
44
|
Whelihan MF, Mann KG. The role of the red cell membrane in thrombin generation. Thromb Res 2013; 131:377-82. [DOI: 10.1016/j.thromres.2013.01.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/14/2013] [Accepted: 01/14/2013] [Indexed: 11/30/2022]
|
45
|
Abed M, Towhid ST, Pakladok T, Alesutan I, Götz F, Gulbins E, Lang F. Effect of bacterial peptidoglycan on erythrocyte death and adhesion to endothelial cells. Int J Med Microbiol 2013; 303:182-9. [PMID: 23537625 DOI: 10.1016/j.ijmm.2013.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/16/2013] [Accepted: 01/27/2013] [Indexed: 11/20/2022] Open
Abstract
Peptidoglycans, bacterial wall components, have previously been shown to trigger eryptosis, the suicidal erythrocyte death, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Phosphatidylserine exposing erythrocytes adhere to the vascular wall at least partially by interaction of erythrocytic phosphatidylserine with endothelial CXC chemokine ligand 16 (CXCL16). The present study explored whether peptidoglycan exposure fosters the adhesion of erythrocytes to human umbilical vein endothelial cells (HUVEC). To this end, HUVEC were treated for 48 h with peptidoglycan (10 μg/ml) and CXCL16 abundance determined by confocal microscopy and FACS analysis. Moreover, human erythrocytes were exposed for 48 h to peptidoglycan (10 μg/ml) and phosphatidylserine exposure estimated from binding of fluorescent annexin-V, cell volume from forward scatter in FACS analysis and erythrocyte adhesion to human umbilical vein endothelial cells (HUVEC) from trapping of labeled erythrocytes in a flow chamber. As a result, bacterial peptidoglycan exposure was followed by increased CXCL16 expression in HUVEC as well as erythrocyte shrinkage, phosphatidylserine exposure and adhesion to HUVEC under flow conditions at arterial shear rates. The adhesion was significantly attenuated but not abrogated in the presence of either, erythrocyte phosphatidylserine-coating annexin-V (5 μl/ml) or CXCL16 neutralizing antibody directed against endothelial CXCL16 (4 μg/ml). In conclusion, exposure to peptidoglycan increases endothelial CXCL16 expression and leads to eryptosis followed by phosphatidylserine- and CXCL16-mediated adhesion of eryptotic erythrocytes to vascular endothelial cells.
Collapse
Affiliation(s)
- Majed Abed
- Department of Physiology, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Abed M, Towhid ST, Feger M, Schmidt S, Kuro-o M, Gawaz M, Lang F. Adhesion of klotho-deficient eryptotic erythrocytes to endothelial cells. Acta Physiol (Oxf) 2013; 207:485-93. [PMID: 23216570 DOI: 10.1111/apha.12046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/16/2012] [Accepted: 11/29/2012] [Indexed: 12/13/2022]
Abstract
AIM Suicidal erythrocyte death or eryptosis is characterized by cell shrinkage and phosphatidylserine exposure at the cell surface. Eryptotic erythrocytes may adhere to the vascular wall by binding of phosphatidylserine to endothelial CXC chemokine ligand 16 (CXCL16). Triggers of eryptosis include osmotic shock or energy depletion. Susceptibility to eryptosis is modified by Klotho, a protein with profound effect on ageing and lifespan. Klotho deficiency leads to accelerated ageing and early death. The percentage of eryptotic erythrocytes is significantly larger in klotho-deficient mice (klotho(-/-) ) than in their wild-type littermates (klotho(+/+) ). The present study explored whether the accelerated eryptosis of klotho-deficient mice is paralleled by enhanced adhesion. METHODS Phosphatidylserine-exposing erythrocytes were identified by measurement of annexin V binding and adhesion to human umbilical vein endothelial cells (HUVEC) from trapping of labelled erythrocytes in a flow chamber. RESULTS Annexin V binding was higher in klotho(-/-) erythrocytes than in klotho(+/+) erythrocytes. Osmotic shock for 1 h (addition of 550 mm sucrose) and energy depletion (12-h glucose depletion) increased annexin V binding to values again significantly larger in klotho(-/-) erythrocytes than in klotho(+/+) erythrocytes. klotho(-/-) erythrocytes were particularly sensitive to osmotic shock. Both osmotic shock and energy depletion enhanced erythrocyte adhesion, an effect again more pronounced in klotho(-/-) erythrocytes than in klotho(+/+) erythrocytes. The adhesion was significantly decreased by coating of phospatidylserine with annexin V (5 μL mL(-1) ) or by coating of CXCL16 with neutralizing antibodies (4 μg mL(-1) ). CONCLUSIONS klotho(-/-) erythrocytes are particularly sensitive to osmotic shock, and enhanced eryptosis of klotho(-/-) erythrocytes is paralleled by enhanced adhesion to endothelial CXCL16.
Collapse
Affiliation(s)
| | - S. T. Towhid
- Department of Physiology; University of Tuebingen; Tuebingen; Germany
| | - M. Feger
- Department of Physiology; University of Tuebingen; Tuebingen; Germany
| | - S. Schmidt
- Department of Physiology; University of Tuebingen; Tuebingen; Germany
| | - M. Kuro-o
- Department of Pathology; The University of Texas Southwestern Medical Center; Dallas; TX; USA
| | - M. Gawaz
- Department of Cardiology and Cardiovascular Medicine; University of Tuebingen; Tuebingen; Germany
| | - F. Lang
- Department of Physiology; University of Tuebingen; Tuebingen; Germany
| |
Collapse
|
47
|
Xiao X, Mruk DD, Cheng CY. Intercellular adhesion molecules (ICAMs) and spermatogenesis. Hum Reprod Update 2013; 19:167-86. [PMID: 23287428 DOI: 10.1093/humupd/dms049] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND During the seminiferous epithelial cycle, restructuring takes places at the Sertoli-Sertoli and Sertoli-germ cell interface to accommodate spermatogonia/spermatogonial stem cell renewal via mitosis, cell cycle progression and meiosis, spermiogenesis and spermiation since developing germ cells, in particular spermatids, move 'up and down' the seminiferous epithelium. Furthermore, preleptotene spermatocytes differentiated from type B spermatogonia residing at the basal compartment must traverse the blood-testis barrier (BTB) to enter the adluminal compartment to prepare for meiosis at Stage VIII of the epithelial cycle, a process also accompanied by the release of sperm at spermiation. These cellular events that take place at the opposite ends of the epithelium are co-ordinated by a functional axis designated the apical ectoplasmic specialization (ES)-BTB-basement membrane. However, the regulatory molecules that co-ordinate cellular events in this axis are not known. METHODS Literature was searched at http://www.pubmed.org and http://scholar.google.com to identify published findings regarding intercellular adhesion molecules (ICAMs) and the regulation of this axis. RESULTS Members of the ICAM family, namely ICAM-1 and ICAM-2, and the biologically active soluble ICAM-1 (sICAM-1) are the likely regulatory molecules that co-ordinate these events. sICAM-1 and ICAM-1 have antagonistic effects on the Sertoli cell tight junction-permeability barrier, involved in Sertoli cell BTB restructuring, whereas ICAM-2 is restricted to the apical ES, regulating spermatid adhesion during the epithelial cycle. Studies in other epithelia/endothelia on the role of the ICAM family in regulating cell movement are discussed and this information has been evaluated and integrated into studies of these proteins in the testis to create a hypothetical model, depicting how ICAMs regulate junction restructuring events during spermatogenesis. CONCLUSIONS ICAMs are crucial regulatory molecules of spermatogenesis. The proposed hypothetical model serves as a framework in designing functional experiments for future studies.
Collapse
Affiliation(s)
- Xiang Xiao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
48
|
Abed M, Towhid ST, Mia S, Pakladok T, Alesutan I, Borst O, Gawaz M, Gulbins E, Lang F. Sphingomyelinase-induced adhesion of eryptotic erythrocytes to endothelial cells. Am J Physiol Cell Physiol 2012; 303:C991-9. [PMID: 22954799 DOI: 10.1152/ajpcell.00239.2012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eryptosis, the suicidal erythrocyte death, leads to cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Eryptotic erythrocytes adhere to the vascular wall by binding of phosphatidylserine to the CXC chemokine ligand 16 (CXCL16). Stimulators of eryptosis include increased cytosolic Ca(2+) activity, energy depletion, and activation of ceramide-producing sphingomyelinase. The present study explored whether sphingomyelinase triggers erythrocyte adhesion to endothelial cells. To this end, human erythrocytes were exposed for 6 h to bacterial sphingomyelinase (1-10 mU/ml) and phosphatidylserine exposure was estimated from fluorescent annexin-V-binding, cell volume from forward scatter in FACS-analysis, erythrocyte adhesion to human umbilical vein endothelial cells (HUVEC) from trapping of labeled erythrocytes in a flow chamber under flow conditions at arterial shear rates, and CXCL16 protein abundance utilizing Western blotting and FACS analysis of fluorescent antibody binding. As a result, sphingomyelinase (≥1 mU/ml) triggered cell shrinkage, phosphatidylserine exposure and erythrocyte adhesion to HUVEC, effects blunted by Ca(2+) removal. Adhesion was significantly blunted by phosphatidylserine-coating annexin-V (5 μl/ml), following addition of neutralizing antibodies against endothelial CXCL16 (4 μg/ml) and following silencing of the CXCL16 gene with small interfering RNA. Pretreatment of HUVEC with sphingomyelinase upregulated CXCL16 protein abundance. Six hours pretreatment of HUVEC with sphingomyelinase (10 mU/ml) or C6-ceramide (50 μM) augmented erythrocyte adhesion following a 30-min treatment with Ca(2+) ionophore ionomycin (1 μM) or following energy depletion by 48-h glucose removal. Thus exposure to sphingomyelinase or C6-ceramide triggers eryptosis followed by phosphatidylserine- and CXCL16-sensitive adhesion of eryptotic erythrocytes to HUVEC.
Collapse
Affiliation(s)
- Majed Abed
- Physiologisches Institut, Eberhard-Karls-Universität Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Borst O, Abed M, Alesutan I, Towhid ST, Qadri SM, Föller M, Gawaz M, Lang F. Dynamic adhesion of eryptotic erythrocytes to endothelial cells via CXCL16/SR-PSOX. Am J Physiol Cell Physiol 2012; 302:C644-51. [DOI: 10.1152/ajpcell.00340.2011] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Suicidal death of erythrocytes, or eryptosis, is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine exposure at the cell surface. Eryptosis is triggered by increase of cytosolic Ca2+activity, which may result from treatment with the Ca2+ionophore ionomycin or from energy depletion by removal of glucose. The present study tested the hypothesis that phosphatidylserine exposure at the erythrocyte surface fosters adherence to endothelial cells of the vascular wall under flow conditions at arterial shear rates and that binding of eryptotic cells to endothelial cells is mediated by the transmembrane CXC chemokine ligand 16 (CXCL16). To this end, human erythrocytes were exposed to energy depletion (for 48 h) or treated with the Ca2+ionophore ionomycin (1 μM for 30 min). Phosphatidylserine exposure was quantified utilizing annexin-V binding, cell volume was estimated from forward scatter in FACS analysis, and erythrocyte adhesion to human vascular endothelial cells (HUVEC) was determined in a flow chamber model. As a result, both, ionomycin and glucose depletion, triggered eryptosis and enhanced the percentage of erythrocytes adhering to HUVEC under flow conditions at arterial shear rates. The adhesion was significantly blunted in the presence of erythrocyte phosphatidylserine-coating annexin-V (5 μl/ml), of a neutralizing antibody against endothelial CXCL16 (4 μg/ml), and following silencing of endothelial CXCL16 with small interfering RNA. The present observations demonstrate that eryptotic erythrocytes adhere to endothelial cells of the vascular wall in part by interaction of phosphatidylserine exposed at the erythrocyte surface with endothelial CXCL16.
Collapse
Affiliation(s)
- Oliver Borst
- Department of Physiology and
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | - Meinrad Gawaz
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
50
|
|