1
|
Jarullah HH, Saleh ES. Influence of Fatty Acid Desaturase Enzyme-1 Gene (FADS-1) Polymorphism on Serum Polyunsaturated Fatty Acids Levels, Desaturase Enzymes, Lipid Profile, and Glycemic Control Parameters in Newly Diagnosed Diabetic Mellitus Patients. Int J Mol Sci 2025; 26:4015. [PMID: 40362254 PMCID: PMC12071304 DOI: 10.3390/ijms26094015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/09/2025] [Accepted: 04/20/2025] [Indexed: 05/15/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disorder caused by impaired insulin secretion from pancreatic β-cells and insulin resistance in target tissues. Genome-wide association studies have identified over 50 genetic variants linked to T2DM, including polymorphisms associated with the disease. This study investigates the impact of the FADS1 (rs174547) polymorphism in T2DM patients compared to healthy controls and examines serum levels of omega-3 and omega-6 fatty acids, as well as D5D and D6D enzyme levels and activity. This case-control study included 120 participants: 60 newly diagnosed T2DM patients and 60 apparently healthy controls matched for age, sex, and other sociodemographic factors. Polyunsaturated fatty acid (PUFA) levels and desaturase enzyme activities in the n-3 and n-6 pathways were assessed using ELISA and gas chromatography. FADS1 gene polymorphisms were analyzed via Sanger sequencing. Genotype and allele frequencies of FADS1 (rs174547) differed significantly between groups, with higher frequencies of C-containing alleles in T2DM patients. Multivariate analysis revealed a significant association between the C-allele genotype and increased T2DM risk, independent of sociodemographic variables, lipid profile, and inflammatory markers. In conclusion; reduced serum levels of omega-3 and omega-6 fatty acids in T2DM were associated with decreased desaturase enzyme activity. The FADS1 (rs174547) polymorphism is significantly associated with T2DM risk, with the minor allele linked to lower desaturase activity.
Collapse
Affiliation(s)
- Hayder Huwais Jarullah
- Department of Clinical Laboratory Science, College of Pharmacy, University of Baghdad, Baghdad 10047, Iraq;
| | | |
Collapse
|
2
|
Yazıcı D, Demir SÇ, Sezer H. Insulin Resistance, Obesity, and Lipotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:391-430. [PMID: 39287860 DOI: 10.1007/978-3-031-63657-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Lipotoxicity, originally used to describe the destructive effects of excess fat accumulation on glucose metabolism, causes functional impairments in several metabolic pathways, both in adipose tissue and peripheral organs, like liver, heart, pancreas, and muscle. Ectopic lipid accumulation in the kidneys, liver, and heart has important clinical counterparts like diabetic nephropathy in type 2 diabetes mellitus, obesity-related glomerulopathy, nonalcoholic fatty liver disease, and cardiomyopathy. Insulin resistance due to lipotoxicity indirectly lead to reproductive system disorders, like polycystic ovary syndrome. Lipotoxicity has roles in insulin resistance and pancreatic beta-cell dysfunction. Increased circulating levels of lipids and the metabolic alterations in fatty acid utilization and intracellular signaling have been related to insulin resistance in muscle and liver. Different pathways, like novel protein kinase c pathways and the JNK-1 pathway, are involved as the mechanisms of how lipotoxicity leads to insulin resistance in nonadipose tissue organs, such as liver and muscle. Mitochondrial dysfunction plays a role in the pathogenesis of insulin resistance. Endoplasmic reticulum stress, through mainly increased oxidative stress, also plays an important role in the etiology of insulin resistance, especially seen in non-alcoholic fatty liver disease. Visceral adiposity and insulin resistance both increase the cardiometabolic risk, and lipotoxicity seems to play a crucial role in the pathophysiology of these associations.
Collapse
Affiliation(s)
- Dilek Yazıcı
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey.
| | - Selin Çakmak Demir
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey
| | - Havva Sezer
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey
| |
Collapse
|
3
|
Janikiewicz J, Dobosz AM, Majzner K, Bernas T, Dobrzyn A. Stearoyl-CoA desaturase 1 deficiency exacerbates palmitate-induced lipotoxicity by the formation of small lipid droplets in pancreatic β-cells. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166711. [PMID: 37054998 DOI: 10.1016/j.bbadis.2023.166711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
The accelerating accumulation of surplus lipids in the pancreas triggers structural and functional changes in type 2 diabetes-affected islets. Pancreatic β-cells exhibit a restricted capacity to store fat reservoirs in lipid droplets (LDs), which act as transient buffers to prevent lipotoxic stress. With the increasing incidence of obesity, growing interest has been seen in the intracellular regulation of LD metabolism for β-cell function. Stearoyl-CoA desaturase 1 (SCD1) is critical for producing unsaturated fatty acyl moieties for fluent storage into and out of LDs, likely affecting the overall rate of β-cell survival. We explored LD-associated composition and remodeling in SCD1-deprived INS-1E cells and in pancreatic islets in wildtype and SCD1-/- mice in the lipotoxic milieu. Deficiency in the enzymatic activity of SCD1 led to decrease in the size and number of LDs and the lower accumulation of neutral lipids. This occurred in parallel with a higher compactness and lipid order inside LDs, followed by changes in the saturation status and composition of fatty acids within core lipids and the phospholipid coat. The lipidome of LDs was enriched in 18:2n-6 and 20:4n-6 in β-cells and pancreatic islets. These rearrangements markedly contributed to differences in protein association with the LD surface. Our findings highlight an unexpected molecular mechanism by which SCD1 activity affects the morphology, composition and metabolism of LDs. We demonstrate that SCD1-dependent disturbances in LD enrichment can impact proper pancreatic β-cells and islet functioning, which may have considerable therapeutic value for the management of type 2 diabetes.
Collapse
Affiliation(s)
- Justyna Janikiewicz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Aneta M Dobosz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Majzner
- Faculty of Chemistry, Jagiellonian University, Cracow, Poland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Cracow, Poland
| | - Tytus Bernas
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, USA
| | - Agnieszka Dobrzyn
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
4
|
Redox regulation of the insulin signalling pathway. Redox Biol 2021; 42:101964. [PMID: 33893069 PMCID: PMC8113030 DOI: 10.1016/j.redox.2021.101964] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
The peptide hormone insulin is a key regulator of energy metabolism, proliferation and survival. Binding of insulin to its receptor activates the PI3K/AKT signalling pathway, which mediates fundamental cellular responses. Oxidants, in particular H2O2, have been recognised as insulin-mimetics. Treatment of cells with insulin leads to increased intracellular H2O2 levels affecting the activity of downstream signalling components, thereby amplifying insulin-mediated signal transduction. Specific molecular targets of insulin-stimulated H2O2 include phosphatases and kinases, whose activity can be altered via redox modifications of critical cysteine residues. Over the past decades, several of these redox-sensitive cysteines have been identified and their impact on insulin signalling evaluated. The aim of this review is to summarise the current knowledge on the redox regulation of the insulin signalling pathway.
Collapse
|
5
|
Lee G, Jang H, Kim YY, Choe SS, Kong J, Hwang I, Park J, Im SS, Kim JB. SREBP1c-PAX4 Axis Mediates Pancreatic β-Cell Compensatory Responses Upon Metabolic Stress. Diabetes 2019; 68:81-94. [PMID: 30352876 DOI: 10.2337/db18-0556] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/03/2018] [Indexed: 11/13/2022]
Abstract
SREBP1c is a key transcription factor for de novo lipogenesis. Although SREBP1c is expressed in pancreatic islets, its physiological roles in pancreatic β-cells are largely unknown. In this study, we demonstrate that SREBP1c regulates β-cell compensation under metabolic stress. SREBP1c expression level was augmented in pancreatic islets from obese and diabetic animals. In pancreatic β-cells, SREBP1c activation promoted the expression of cell cycle genes and stimulated β-cell proliferation through its novel target gene, PAX4 Compared with SREBP1c+/+ mice, SREBP1c-/- mice showed glucose intolerance with low insulin levels. Moreover, β-cells from SREBP1c-/- mice exhibited reduced capacity to proliferate and secrete insulin. Conversely, transplantation of SREBP1c-overexpressing islets restored insulin levels and relieved hyperglycemia in streptozotocin-induced diabetic animals. Collectively, these data suggest that pancreatic SREBP1c is a key player in mediating β-cell compensatory responses in obesity.
Collapse
Affiliation(s)
- Gung Lee
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Hagoon Jang
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Young Kim
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sung Sik Choe
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jinuk Kong
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Injae Hwang
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jeu Park
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Seung-Soon Im
- Department of Physiology and Medical Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jae Bum Kim
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
6
|
Kim YS, Kim M, Choi MY, Lee DH, Roh GS, Kim HJ, Kang SS, Cho GJ, Park KH, Kim SJ, Yoo JM, Choi WS. Aralia elata (Miq) Seem Extract Decreases O-GlcNAc Transferase Expression and Retinal Cell Death in Diabetic Mice. J Med Food 2017; 20:989-1001. [DOI: 10.1089/jmf.2016.3891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yoon Sook Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Minjun Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Mee Young Choi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Dong Hoon Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Gyeong Jae Cho
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Ki Hun Park
- Division of Applied Life Science, Institute of Agriculture Life Science, Graduate School of Gyeongsang National University, Jinju, South Korea
| | - Seong-Jae Kim
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Ji-Myong Yoo
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Wan Sung Choi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| |
Collapse
|
7
|
Zhang JJ, Hao JJ, Zhang YR, Wang YL, Li MY, Miao HL, Zou XJ, Liang B. Zinc mediates the SREBP-SCD axis to regulate lipid metabolism in Caenorhabditis elegans. J Lipid Res 2017; 58:1845-1854. [PMID: 28710073 DOI: 10.1194/jlr.m077198] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/12/2017] [Indexed: 12/15/2022] Open
Abstract
Maintenance of lipid homeostasis is crucial for cells in response to lipid requirements or surplus. The SREBP transcription factors play essential roles in regulating lipid metabolism and are associated with many metabolic diseases. However, SREBP regulation of lipid metabolism is still not completely understood. Here, we showed that reduction of SBP-1, the only homolog of SREBPs in Caenorhabditis elegans, surprisingly led to a high level of zinc. On the contrary, zinc reduction by mutation of sur-7, encoding a member of the cation diffusion facilitator (CDF) family, restored the fat accumulation and fatty acid profile of the sbp-1(ep79) mutant. Zinc reduction resulted in iron overload, which thereby directly activated the conversion activity of stearoyl-CoA desaturase (SCD), a main target of SREBP, to promote lipid biosynthesis and accumulation. However, zinc reduction reversely repressed SBP-1 nuclear translocation and further downregulated the transcription expression of SCD for compensation. Collectively, we revealed zinc-mediated regulation of the SREBP-SCD axis in lipid metabolism, distinct from the negative regulation of SREBP-1 or SREBP-2 by phosphatidylcholine or cholesterol, respectively, thereby providing novel insights into the regulation of lipid homeostasis.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jun-Jun Hao
- State Key Laboratory of Genetic Resources and Evolutionary and Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yu-Ru Zhang
- College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yan-Li Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ming-Yi Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Hui-Lai Miao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xiao-Ju Zou
- Department of Life Science and Biotechnology, Key Laboratory of Special Biological Resource Development and Utilization of University in Yunnan Province, Kunming University, Kunming 650214, China
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China .,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| |
Collapse
|
8
|
Natalicchio A, Biondi G, Marrano N, Labarbuta R, Tortosa F, Spagnuolo R, D'Oria R, Carchia E, Leonardini A, Cignarelli A, Perrini S, Laviola L, Giorgino F. Long-Term Exposure of Pancreatic β-Cells to Palmitate Results in SREBP-1C-Dependent Decreases in GLP-1 Receptor Signaling via CREB and AKT and Insulin Secretory Response. Endocrinology 2016; 157:2243-58. [PMID: 27035653 DOI: 10.1210/en.2015-2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effects of prolonged exposure of pancreatic β-cells to high saturated fatty acids on glucagon-like peptide-1 (GLP-1) action were investigated. Murine islets, human pancreatic 1.1B4 cells, and rat INS-1E cells were exposed to palmitate for 24 hours. mRNA and protein expression/phosphorylation were measured by real-time RT-PCR and immunoblotting, respectively. Specific short interfering RNAs were used to knockdown expression of the GLP-1 receptor (Glp1r) and Srebf1. Insulin release was assessed with a specific ELISA. Exposure of murine islets, as well as of human and INS-1E β-cells, to palmitate reduced the ability of exendin-4 to augment insulin mRNA levels, protein content, and release. In addition, palmitate blocked exendin-4-stimulated cAMP-response element-binding protein and v-akt murine thymoma viral oncogene homolog phosphorylation, whereas phosphorylation of MAPK-ERK kinase-1/2 and ERK-1/2 was not altered. Similarly, RNA interference-mediated suppression of Glp1r expression prevented exendin-4-induced cAMP-response element-binding protein and v-akt murine thymoma viral oncogene homolog phosphorylation, but did not impair exendin-4 stimulation of MAPK-ERK kinase-1/2 and ERK-1/2. Both islets from mice fed a high fat diet and human and INS-1E β-cells exposed to palmitate showed reduced GLP-1 receptor and pancreatic duodenal homeobox-1 (PDX-1) and increased sterol regulatory element-binding protein (SREBP-1C) mRNA and protein levels. Furthermore, suppression of SREBP-1C protein expression prevented the reduction of PDX-1 and GLP-1 receptor levels and restored exendin-4 signaling and action. Finally, treatment of INS-1E cells with metformin for 24 h resulted in inhibition of SREBP-1C expression, increased PDX-1 and GLP-1 receptor levels, consequently, enhancement of exendin-4-induced insulin release. Palmitate impairs exendin-4 effects on β-cells by reducing PDX-1 and GLP-1 receptor expression and signaling in a SREBP-1C-dependent manner. Metformin counteracts the impairment of GLP-1 receptor signaling induced by palmitate.
Collapse
Affiliation(s)
- Annalisa Natalicchio
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Giuseppina Biondi
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Nicola Marrano
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Rossella Labarbuta
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Federica Tortosa
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Rosaria Spagnuolo
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Rossella D'Oria
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Emanuele Carchia
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Anna Leonardini
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Angelo Cignarelli
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Sebastio Perrini
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Luigi Laviola
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| |
Collapse
|
9
|
Once and for all, LXRα and LXRβ are gatekeepers of the endocrine system. Mol Aspects Med 2016; 49:31-46. [DOI: 10.1016/j.mam.2016.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/08/2016] [Accepted: 04/10/2016] [Indexed: 01/08/2023]
|
10
|
Gray JP, Burgos DZ, Yuan T, Seeram N, Rebar R, Follmer R, Heart EA. Thymoquinone, a bioactive component of Nigella sativa, normalizes insulin secretion from pancreatic β-cells under glucose overload via regulation of malonyl-CoA. Am J Physiol Endocrinol Metab 2016; 310:E394-404. [PMID: 26786775 PMCID: PMC4796268 DOI: 10.1152/ajpendo.00250.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/11/2016] [Indexed: 12/18/2022]
Abstract
Thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone) is a major bioactive component of Nigella sativa, a plant used in traditional medicine to treat a variety of symptoms, including elevated blood glucose levels in type 2 diabetic patients. Normalization of elevated blood glucose depends on both glucose disposal by peripheral tissues and glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. We employed clonal β-cells and rodent islets to investigate the effects of thymoquinone (TQ) and Nigella sativa extracts (NSEs) on GSIS and cataplerotic metabolic pathways implicated in the regulation of GSIS. TQ and NSE regulated NAD(P)H/NAD(P)(+) ratios via a quinone-dependent redox cycling mechanism. TQ content was positively correlated with the degree of redox cycling activity of NSE extracts, suggesting that TQ is a major component engaged in mediating NSE-dependent redox cycling. Both acute and chronic exposure to TQ and NSE enhanced GSIS and were associated with the ability of TQ and NSE to increase the ATP/ADP ratio. Furthermore, TQ ameliorated the impairment of GSIS following chronic exposure of β-cells to glucose overload. This protective action was associated with the TQ-dependent normalization of chronic accumulation of malonyl-CoA, elevation of acetyl-CoA carboxylase (ACC), fatty acid synthase, and fatty acid-binding proteins following chronic glucose overload. Together, these data suggest that TQ modulates the β-cell redox circuitry and enhances the sensitivity of β-cell metabolic pathways to glucose and GSIS under normal conditions as well as under hyperglycemia. This action is associated with the ability of TQ to regulate carbohydrate-to-lipid flux via downregulation of ACC and malonyl-CoA.
Collapse
Affiliation(s)
- Joshua P Gray
- Department of Science, United States Coast Guard Academy, New London, Connecticut
| | | | - Tao Yuan
- Department of Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island
| | - Navindra Seeram
- Department of Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island
| | - Rebecca Rebar
- Department of Science, United States Coast Guard Academy, New London, Connecticut
| | - Rebecca Follmer
- Department of Science, United States Coast Guard Academy, New London, Connecticut
| | - Emma A Heart
- Department of Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island; Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida; and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts
| |
Collapse
|
11
|
Kim C, Lee H, Kang H, Shin JJ, Tak H, Kim W, Gorospe M, Lee EK. RNA-binding protein HuD reduces triglyceride production in pancreatic β cells by enhancing the expression of insulin-induced gene 1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:675-85. [PMID: 26945853 DOI: 10.1016/j.bbagrm.2016.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 01/12/2023]
Abstract
Although triglyceride (TG) accumulation in the pancreas leads to β-cell dysfunction and raises the chance to develop metabolic disorders such as type 2 diabetes (T2DM), the molecular mechanisms whereby intracellular TG levels are regulated in pancreatic β cells have not been fully elucidated. Here, we present evidence that the RNA-binding protein HuD regulates TG production in pancreatic β cells. Mouse insulinoma βTC6 cells stably expressing a small hairpin RNA targeting HuD (shHuD) (βTC6-shHuD) contained higher TG levels compared to control cells. Moreover, downregulation of HuD resulted in a decrease in insulin-induced gene 1 (INSIG1) levels but not in the levels of sterol regulatory element-binding protein 1c (SREBP1c), a key transcription factor for lipid production. We identified Insig1 mRNA as a direct target of HuD by using ribonucleoprotein immunoprecipitation (RIP) and biotin pulldown analyses. By associating with the 3'-untranslated region (3'UTR) of Insig1 mRNA, HuD promoted INSIG1 translation; accordingly, HuD downregulation reduced while ectopic HuD expression increased INSIG1 levels. We further observed that HuD downregulation facilitated the nuclear localization of SREBP1c, thereby increasing the transcriptional activity of SREBP1c and the expression of target genes involved in lipogenesis; likewise, we observed lower INSIG1 levels in the pancreatic islets of HuD-null mice. Taken together, our results indicate that HuD functions as a novel repressor of lipid synthesis in pancreatic β cells.
Collapse
Affiliation(s)
- Chongtae Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Heejin Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Hoin Kang
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Jung Jae Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Hyosun Tak
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea.
| |
Collapse
|
12
|
Sae-Lee C, Moolsuwan K, Chan L, Poungvarin N. ChREBP Regulates Itself and Metabolic Genes Implicated in Lipid Accumulation in β-Cell Line. PLoS One 2016; 11:e0147411. [PMID: 26808438 PMCID: PMC4725739 DOI: 10.1371/journal.pone.0147411] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
Carbohydrate response element binding protein (ChREBP) is an important transcription factor that regulates a variety of glucose-responsive genes in hepatocytes. To date, only two natural isoforms, Chrebpα and Chrebpβ, have been identified. Although ChREBP is known to be expressed in pancreatic β cells, most of the glucose-responsive genes have never been verified as ChREBP targets in this organ. We aimed to explore the impact of ChREBP expression on regulating genes linked to accumulation of lipid droplets, a typical feature of β-cell glucotoxicity. We assessed gene expression in 832/13 cells overexpressing constitutively active ChREBP (caChREBP), truncated ChREBP with nearly identical amino acid sequence to Chrebpβ, or dominant negative ChREBP (dnChREBP). Among multiple ChREBP-controlled genes, ChREBP was sufficient and necessary for regulation of Eno1, Pklr, Mdh1, Me1, Pdha1, Acly, Acaca, Fasn, Elovl6, Gpd1, Cpt1a, Rgs16, Mid1ip1,Txnip, and Chrebpβ. Expression of Chrebpα and Srebp1c were not changed by caChREBP or dnChREBP. We identified functional ChREBP binding sequences that were located on the promoters of Chrebpβ and Rgs16. We also showed that Rgs16 overexpression lead to increased considerable amounts of lipids in 832/13 cells. This phenotype was accompanied by reduction of Cpt1a expression and slight induction of Fasn and Pklr gene in these cells. In summary, we conclude that Chrebpβ modulates its own expression, not that of Chrebpα; it also regulates the expression of several metabolic genes in β-cells without affecting SREBP-1c dependent regulation. We also demonstrate that Rgs16 is one of the ChREBP-controlled genes that potentiate accumulation of lipid droplets in β-cells.
Collapse
Affiliation(s)
- Chanachai Sae-Lee
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanya Moolsuwan
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Medicine Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Lawrence Chan
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Naravat Poungvarin
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
13
|
Lee D, Jeong DE, Son HG, Yamaoka Y, Kim H, Seo K, Khan AA, Roh TY, Moon DW, Lee Y, Lee SJV. SREBP and MDT-15 protect C. elegans from glucose-induced accelerated aging by preventing accumulation of saturated fat. Genes Dev 2015; 29:2490-503. [PMID: 26637528 PMCID: PMC4691952 DOI: 10.1101/gad.266304.115] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/05/2015] [Indexed: 11/25/2022]
Abstract
Glucose-rich diets shorten the life spans of various organisms. However, the metabolic processes involved in this phenomenon remain unknown. Here, we show that sterol regulatory element-binding protein (SREBP) and mediator-15 (MDT-15) prevent the life-shortening effects of a glucose-rich diet by regulating fat-converting processes in Caenorhabditis elegans. Up-regulation of the SREBP/MDT-15 transcription factor complex was necessary and sufficient for alleviating the life-shortening effect of a glucose-rich diet. Glucose feeding induced key enzymes that convert saturated fatty acids (SFAs) to unsaturated fatty acids (UFAs), which are regulated by SREBP and MDT-15. Furthermore, SREBP/MDT-15 reduced the levels of SFAs and moderated glucose toxicity on life span. Our study may help to develop strategies against elevated blood glucose and free fatty acids, which cause glucolipotoxicity in diabetic patients.
Collapse
Affiliation(s)
- Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Dae-Eun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Heehwa G Son
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Yasuyo Yamaoka
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Hyunmin Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Keunhee Seo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Abdul Aziz Khan
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Tae-Young Roh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Dae Won Moon
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Youngsook Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Seung-Jae V Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea; Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
14
|
Wang J, Song MY, Bae UJ, Lim JM, Kwon KS, Park BH. n-3 Polyunsaturated fatty acids protect against pancreatic β-cell damage due to ER stress and prevent diabetes development. Mol Nutr Food Res 2015; 59:1791-802. [PMID: 26080997 DOI: 10.1002/mnfr.201500299] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/07/2015] [Accepted: 06/09/2015] [Indexed: 12/11/2022]
Abstract
SCOPE In this study, we focus on the effects of n-3 polyunsaturated fatty acids (PUFAs) on tunicamycin-, streptozotocin-, or high fat diet (HFD)-induced β-cell damage and dysfunction. MATERIALS AND METHODS Pretreatment with n-3 PUFAs protected RINm5F cells and mouse islets against tunicamycin-induced β-cell damage through suppression of ER stress and apoptosis induction. This protective effect of n-3 PUFAs on β-cells was further demonstrated by the normalization of insulin secretion in response to glucose in tunicamycin-treated islets. In multiple low-dose streptozotocin-induced diabetes models, fat-1 mice, which endogenously synthesize n-3 PUFAs from n-6 PUFAs, were fully resistant to the development of diabetes, with normal islet morphology, high insulin immunoreactivity, and decreased apoptotic cells. In HFD-induced diabetes models, fat-1 mice also exhibited improved glucose tolerance and functional β-cell mass. In both diabetes models, we observed an attenuation of ER stress in fat-1 mice. Interestingly, n-3 PUFAs attenuated the nuclear translocation of lipogenic transcription factors sterol regulatory element-binding protein-1 (SREBP-1) and C/EBPβ, induced by tunicamycin or HFD, suggesting that n-3 PUFAs suppress ER stress via modulation of SREBP-1 and C/EBPβ. CONCLUSION Together, these results suggest that n-3 PUFAs block ER stress, thus protecting β cells against diabetogenic insult; therefore, dietary supplementation of n-3 PUFAs has therapeutic potential for the preservation of functional β-cell mass.
Collapse
Affiliation(s)
- Jie Wang
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Mi-Young Song
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Ui-Jin Bae
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jung Min Lim
- Department of Anatomy, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Keun Sang Kwon
- Department of Preventive Medicine, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
15
|
Soyal SM, Nofziger C, Dossena S, Paulmichl M, Patsch W. Targeting SREBPs for treatment of the metabolic syndrome. Trends Pharmacol Sci 2015; 36:406-16. [PMID: 26005080 DOI: 10.1016/j.tips.2015.04.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 12/11/2022]
Abstract
Over the past few decades, mortality resulting from cardiovascular disease (CVD) steadily decreased in western countries; however, in recent years, the decline has become offset by the increase in obesity. Obesity is strongly associated with the metabolic syndrome and its atherogenic dyslipidemia resulting from insulin resistance. While lifestyle treatment would be effective, drugs targeting individual risk factors are often required. Such treatment may result in polypharmacy. Novel approaches are directed towards the treatment of several risk factors with one drug. Studies in animal models and humans suggest a central role for sterol regulatory-element binding proteins (SREBPs) in the pathophysiology of the metabolic syndrome. Four recent studies targeting the maturation or transcriptional activities of SREBPs provide proof of concept for the efficacy of SREBP inhibition in this syndrome.
Collapse
Affiliation(s)
- Selma M Soyal
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Charity Nofziger
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Markus Paulmichl
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Patsch
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
16
|
Roy D, Mondal S, Wang C, He X, Khurana A, Giri S, Hoffmann R, Jung DB, Kim SH, Chini EN, Periera JC, Folmes CD, Mariani A, Dowdy SC, Bakkum-Gamez JN, Riska SM, Oberg AL, Karoly ED, Bell LN, Chien J, Shridhar V. Loss of HSulf-1 promotes altered lipid metabolism in ovarian cancer. Cancer Metab 2014; 2:13. [PMID: 25225614 PMCID: PMC4164348 DOI: 10.1186/2049-3002-2-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 07/21/2014] [Indexed: 01/12/2023] Open
Abstract
Background Loss of the endosulfatase HSulf-1 is common in ovarian cancer, upregulates heparin binding growth factor signaling and potentiates tumorigenesis and angiogenesis. However, metabolic differences between isogenic cells with and without HSulf-1 have not been characterized upon HSulf-1 suppression in vitro. Since growth factor signaling is closely tied to metabolic alterations, we determined the extent to which HSulf-1 loss affects cancer cell metabolism. Results Ingenuity pathway analysis of gene expression in HSulf-1 shRNA-silenced cells (Sh1 and Sh2 cells) compared to non-targeted control shRNA cells (NTC cells) and subsequent Kyoto Encyclopedia of Genes and Genomics (KEGG) database analysis showed altered metabolic pathways with changes in the lipid metabolism as one of the major pathways altered inSh1 and 2 cells. Untargeted global metabolomic profiling in these isogenic cell lines identified approximately 338 metabolites using GC/MS and LC/MS/MS platforms. Knockdown of HSulf-1 in OV202 cells induced significant changes in 156 metabolites associated with several metabolic pathways including amino acid, lipids, and nucleotides. Loss of HSulf-1 promoted overall fatty acid synthesis leading to enhance the metabolite levels of long chain, branched, and essential fatty acids along with sphingolipids. Furthermore, HSulf-1 loss induced the expression of lipogenic genes including FASN, SREBF1, PPARγ, and PLA2G3 stimulated lipid droplet accumulation. Conversely, re-expression of HSulf-1 in Sh1 cells reduced the lipid droplet formation. Additionally, HSulf-1 also enhanced CPT1A and fatty acid oxidation and augmented the protein expression of key lipolytic enzymes such as MAGL, DAGLA, HSL, and ASCL1. Overall, these findings suggest that loss of HSulf-1 by concomitantly enhancing fatty acid synthesis and oxidation confers a lipogenic phenotype leading to the metabolic alterations associated with the progression of ovarian cancer. Conclusions Taken together, these findings demonstrate that loss of HSulf-1 potentially contributes to the metabolic alterations associated with the progression of ovarian pathogenesis, specifically impacting the lipogenic phenotype of ovarian cancer cells that can be therapeutically targeted.
Collapse
Affiliation(s)
- Debarshi Roy
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Susmita Mondal
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Chen Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaoping He
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Ashwani Khurana
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | - Robert Hoffmann
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Deok-Beom Jung
- Cancer Preventive Material Development Research Center (CPMRC), College of Oriental Medicine, Kyunghee University, Seoul 130-701, Republic of Korea
| | - Sung H Kim
- Cancer Preventive Material Development Research Center (CPMRC), College of Oriental Medicine, Kyunghee University, Seoul 130-701, Republic of Korea
| | - Eduardo N Chini
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | - Clifford D Folmes
- Department of Cardiovascular Disease, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Andrea Mariani
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Sean C Dowdy
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Jamie N Bakkum-Gamez
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Shaun M Riska
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Ann L Oberg
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Jeremy Chien
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KN 66160, USA
| | - Viji Shridhar
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
17
|
Bridges JP, Schehr A, Wang Y, Huo L, Besnard V, Ikegami M, Whitsett JA, Xu Y. Epithelial SCAP/INSIG/SREBP signaling regulates multiple biological processes during perinatal lung maturation. PLoS One 2014; 9:e91376. [PMID: 24806461 PMCID: PMC4012993 DOI: 10.1371/journal.pone.0091376] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/10/2014] [Indexed: 11/19/2022] Open
Abstract
Pulmonary surfactant is required for lung function at birth and throughout postnatal life. Defects in the surfactant system are associated with common pulmonary disorders including neonatal respiratory distress syndrome and acute respiratory distress syndrome in children and adults. Lipogenesis is essential for the synthesis of pulmonary surfactant by type II epithelial cells lining the alveoli. This study sought to identify the role of pulmonary epithelial SREBP, a transcriptional regulator of cellular lipid homeostasis, during a critical time period of perinatal lung maturation in the mouse. Genome wide mRNA expression profiling of lung tissue from transgenic mice with epithelial-specific deletions of Scap (ScapΔ/Δ, resulting in inactivation of SREBP signaling) or Insig1 and Insig2 (Insig1/2Δ/Δ, resulting in activation of SREBP signaling) was assessed. Differentially expressed genes responding to SREBP perturbations were identified and subjected to functional enrichment analysis, pathway mapping and literature mining to predict upstream regulators and transcriptional networks regulating surfactant lipid homeostasis. Through comprehensive data analysis and integration, time dependent effects of epithelial SCAP/INSIG/SREBP deletion and defined SCAP/INSIG/SREBP-associated genes, bioprocesses and downstream pathways were identified. SREBP signaling influences epithelial development, cell death and cell proliferation at E17.5, while primarily influencing surfactant physiology, lipid/sterol synthesis, and phospholipid transport after birth. SREBP signaling integrated with the Wnt/β-catenin and glucocorticoid receptor signaling pathways during perinatal lung maturation. SREBP regulates perinatal lung lipogenesis and maturation through multiple mechanisms by interactions with distinct sets of regulatory partners.
Collapse
Affiliation(s)
- James P. Bridges
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Angelica Schehr
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yanhua Wang
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Liya Huo
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | | | - Machiko Ikegami
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jeffrey A. Whitsett
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yan Xu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
18
|
Yonejima Y, Ushida K, Mori Y. Effect of Lactic Acid Bacteria on Lipid Metabolism and Fat Synthesis in Mice Fed a High-fat Diet. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2013; 32:51-8. [PMID: 24936362 PMCID: PMC4034319 DOI: 10.12938/bmfh.32.51] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/01/2013] [Indexed: 01/30/2023]
Abstract
Visceral fat accumulation is a major risk factor for the development of obesity-related
diseases, including diabetes, hyperlipidemia, hypertension, and arteriosclerosis.
Stimulation of lipolytic activity in adipose tissue or inhibition of fat synthesis is one
way to prevent these serious diseases. Lactic acid bacteria have an anti-obesity effect,
but the mechanisms are unclear. Therefore, we evaluated the effect of the administration
of lactic acid bacteria (Lactobacillus gasseri NT) on lipid metabolism
and fat synthesis in a mouse high-fat-diet model, focusing on visceral fat. Balb/c mice
were fed a 45 kcal% fat diet for 13 weeks with and without a freeze-dried preparation of
L. gasseri NT (109 CFU/g). An ex vivo
glycerol assay with periovarian fat revealed that L. gasseri NT did not
stimulate lipolytic activity. However, L. gasseri NT decreased the mRNA
expression of sterol regulatory element-binding protein (SREBP) and its target gene fatty
acid synthase (FAS) in the liver and decreased free fatty acid (FFA) in the blood. In
conclusion, these findings indicated that administration of L. gasseri NT
did not enhance lipid mobilization but can reduce fat synthesis, suggesting its potential
for improving obesity-related diseases.
Collapse
Affiliation(s)
- Yasunori Yonejima
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto 606-8522, Japan ; Research and Development Department, Nitto Pharmaceutical Industries, Ltd., 35-3 Minamibiraki, Kamiueno-cho, Muko 617-0006, Japan
| | - Kazunari Ushida
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto 606-8522, Japan
| | - Yoshiro Mori
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto 606-8522, Japan
| |
Collapse
|
19
|
Prabhu AV, Krycer JR, Brown AJ. Overexpression of a key regulator of lipid homeostasis, Scap, promotes respiration in prostate cancer cells. FEBS Lett 2013; 587:983-8. [PMID: 23454642 DOI: 10.1016/j.febslet.2013.02.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 02/19/2013] [Indexed: 01/01/2023]
Abstract
Prostate metabolism is unique, characterised by cholesterol accumulation and reduced respiration. Are these related? We modulated cholesterol levels and despite changes in mitochondrial cholesterol content, we saw no effects on lactate production or respiration. Instead, these features may be related via sterol regulatory element-binding protein 2 (SREBP-2), the master transcriptional regulator of cholesterol synthesis. SREBP-2 diverts acetyl-CoA into cholesterol synthesis and may thus reduce respiration. We examined LNCaP cells overexpressing the SREBP-2 regulator, Scap: although having higher SREBP-2 activity, these cells displayed higher respiration. This striking observation warrants further investigation. Given that SREBP-2 and Scap are regulated by factors driving prostate growth, exploring this observation further could shed light on prostate carcinogenesis.
Collapse
Affiliation(s)
- Anika Vinayak Prabhu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia
| | | | | |
Collapse
|
20
|
|
21
|
Han D, Moon S, Kim Y, Ho WK, Kim K, Kang Y, Jun H, Kim Y. Comprehensive phosphoproteome analysis of INS-1 pancreatic β-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry. J Proteome Res 2012; 11:2206-23. [PMID: 22276854 DOI: 10.1021/pr200990b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type 2 diabetes results from aberrant regulation of the phosphorylation cascade in beta-cells. Phosphorylation in pancreatic beta-cells has not been examined extensively, except with regard to subcellular phosphoproteomes using mitochondria. Thus, robust, comprehensive analytical strategies are needed to characterize the many phosphorylated proteins that exist, because of their low abundance, the low stoichiometry of phosphorylation, and the dynamic regulation of phosphoproteins. In this study, we attempted to generate data on a large-scale phosphoproteome from the INS-1 rat pancreatic beta-cell line using linear ion trap MS/MS. To profile the phosphoproteome in-depth, we used comprehensive phosphoproteomic strategies, including detergent-based protein extraction (SDS and SDC), differential sample preparation (in-gel, in-solution digestion, and FASP), TiO2 enrichment, and MS replicate analyses (MS2-only and multiple-stage activation). All spectra were processed and validated by stringent multiple filtering using target and decoy databases. We identified 2467 distinct phosphorylation sites on 1419 phosphoproteins using 4 mg of INS-1 cell lysate in 24 LC-MS/MS runs, of which 683 (27.7%) were considered novel phosphorylation sites that have not been characterized in human, mouse, or rat homologues. Our informatics data constitute a rich bioinformatics resource for investigating the function of reversible phosphorylation in pancreatic beta-cells. In particular, novel phosphorylation sites on proteins that mediate the pathology of type 2 diabetes, such as Pdx-1, Nkx.2, and Srebf1, will be valuable targets in ongoing phosphoproteomics studies.
Collapse
Affiliation(s)
- Dohyun Han
- Department of Biomedical Engineering, Institute of Medical & Biological Engineering, Medical Research Center, College of Medicine, Yongon-Dong, Seoul, 110-799 Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Mediation of glucolipotoxicity in INS-1 rat insulinoma cells by small heterodimer partner interacting leucine zipper protein (SMILE). Biochem Biophys Res Commun 2012; 419:768-73. [PMID: 22387546 DOI: 10.1016/j.bbrc.2012.02.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/16/2012] [Indexed: 12/25/2022]
Abstract
Sustained elevations of glucose and free fatty acid concentration have deleterious effects on pancreatic beta cell function. One of the hallmarks of such glucolipotoxicity is a reduction in insulin gene expression, resulting from decreased insulin promoter activity. Sterol regulatory element binding protein-1c (SREBP-1c), a lipogenic transcription factor, is related to the development of beta cell dysfunction caused by elevated concentrations of glucose and free fatty acid. Small heterodimer partner (SHP) interacting leucine zipper protein (SMILE), also known as Zhangfei, is a novel protein which interacts with SHP that mediates glucotoxicity in INS-1 rat insulinoma cells. Treatment of INS-1 cells with high concentrations of glucose and palmitate increased SREBP-1c and SMILE expression, and decreased insulin gene expression. Adenovirus-mediated overexpression of SREBP-1c in INS-1 cells induced SMILE expression. Moreover, adenovirus-mediated overexpression of SMILE (Ad-SMILE) in INS-1 cells impaired glucose-stimulated insulin secretion as well as insulin gene expression. Ad-SMILE overexpression also inhibited the expression of beta-cell enriched transcription factors including pancreatic duodenal homeobox factor-1, beta cell E box transactivator 2 and RIPE3b1/MafA, in INS-1 cells. Finally, in COS-1 cells, expression of SMILE inhibited the insulin promoter activity induced by these same beta-cell enriched transcription factors. These results collectively suggest that SMILE plays an important role in the development of beta cell dysfunction induced by glucolipotoxicity.
Collapse
|
23
|
Chen K, jin P, He HH, Xie YH, Xie XY, Mo ZH. Overexpression of Insig-1 protects β cell against glucolipotoxicity via SREBP-1c. J Biomed Sci 2011; 18:57. [PMID: 21843373 PMCID: PMC3166905 DOI: 10.1186/1423-0127-18-57] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 08/16/2011] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND High glucose induced lipid synthesis leads to β cell glucolipotoxicity. Sterol regulatory element binding protein-1c (SREBP-1c) is reported to be partially involved in this process. Insulin induced gene-1 (Insig-1) is an important upstream regulator of Insig-1-SREBPs cleavage activating protein (SCAP)-SREBP-1c pathway. Insig-1 effectively blocks the transcription of SREBP-1c, preventing the activation of the genes for lipid biosynthesis. In this study, we aimed to investigate whether Insig-1 protects β cells against glucolipotoxicity. METHODS An Insig-1 stable cell line was generated by overexpression of Insig-1 in INS-1 cells. The expression of Insig-1 was evaluated by RT-PCR and Western blotting, then, cells were then treated with standard (11.2 mM) or high (25.0 mM) glucose for 0 h, 24 h and 72 h. Cell viability, apoptosis, glucose stimulated insulin secretion (GSIS), lipid metabolism and mRNA expression of insulin secretion relevant genes such as IRS-2, PDX-1, GLUT-2, Insulin and UCP-2 were evaluated. RESULTS We found that Insig-1 suppressed the high glucose induced SREBP-1c mRNA and protein expression. Our results also showed that Insig-1 overexpression protected β cells from ER stress-induced apoptosis by regulating the proteins expressed in the IRE1α pathway, such as p-IRE1α, p-JNK, CHOP and BCL-2. In addition, Insig-1 up-regulated the expression of IRS-2, PDX-1, GLUT-2 and Insulin, down-regulated the expression of UCP-2 and improved glucose stimulated insulin secretion (GSIS). Finally, we found that Insig-1 inhibited the lipid accumulation and free fatty acid (FFA) synthesis in a time-dependent manner. CONCLUSIONS There results suggest that Insig-1 may play a critical role in protecting β cells against glucolipotoxicity by regulating the expression of SREBP-1c.
Collapse
Affiliation(s)
- Ke Chen
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, China
| | - ping jin
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Hong-hui He
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Yan-hong Xie
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiao-yun Xie
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhao-hui Mo
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
24
|
Amemiya-Kudo M, Oka J, Takeuchi Y, Okazaki H, Yamamoto T, Yahagi N, Matsuzaka K, Okazaki S, Osuga JI, Yamada N, Murase T, Shimano H. Suppression of the pancreatic duodenal homeodomain transcription factor-1 (Pdx-1) promoter by sterol regulatory element-binding protein-1c (SREBP-1c). J Biol Chem 2011; 286:27902-14. [PMID: 21652712 DOI: 10.1074/jbc.m110.186221] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Overexpression of sterol regulatory element-binding protein-1c (SREBP-1c) in β cells causes impaired insulin secretion and β cell dysfunction associated with diminished pancreatic duodenal homeodomain transcription factor-1 (PDX-1) expression in vitro and in vivo. To identify the molecular mechanism responsible for this effect, the mouse Pdx-1 gene promoter (2.7 kb) was analyzed in β cell and non-β cell lines. Despite no apparent sterol regulatory element-binding protein-binding sites, the Pdx-1 promoter was suppressed by SREBP-1c in β cells in a dose-dependent manner. PDX-1 activated its own promoter. The E-box (-104/-99 bp) in the proximal region, occupied by ubiquitously expressed upstream stimulatory factors (USFs), was crucial for the PDX-1-positive autoregulatory loop through direct PDX-1·USF binding. This positive feedback activation was a prerequisite for SREBP-1c suppression of the promoter in non-β cells. SREBP-1c and PDX-1 directly interact through basic helix-loop-helix and homeobox domains, respectively. This robust SREBP-1c·PDX-1 complex interferes with PDX-1·USF formation and inhibits the recruitment of PDX-1 coactivators. SREBP-1c also inhibits PDX-1 binding to the previously described PDX-1-binding site (-2721/-2646 bp) in the distal enhancer region of the Pdx-1 promoter. Endogenous up-regulation of SREBP-1c in INS-1 cells through the activation of liver X receptor and retinoid X receptor by 9-cis-retinoic acid and 22-hydroxycholesterol inhibited PDX-1 mRNA and protein expression. Conversely, SREBP-1c RNAi restored Pdx-1 mRNA and protein levels. Through these multiple mechanisms, SREBP-1c, when induced in a lipotoxic state, repressed PDX-1 expression contributing to the inhibition of insulin expression and β cell dysfunction.
Collapse
Affiliation(s)
- Michiyo Amemiya-Kudo
- Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo 105-8470, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Choi SE, Jung IR, Lee YJ, Lee SJ, Lee JH, Kim Y, Jun HS, Lee KW, Park CB, Kang Y. Stimulation of lipogenesis as well as fatty acid oxidation protects against palmitate-induced INS-1 beta-cell death. Endocrinology 2011; 152:816-27. [PMID: 21209018 DOI: 10.1210/en.2010-0924] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Saturated fatty acids are generally cytotoxic to β-cells. Accumulation of lipid intermediates and subsequent activation of lipid-mediated signals has been suggested to play a role in fatty acid-induced toxicity. To determine the effects of lipid metabolism in fatty acid-induced toxicity, lipid metabolism was modulated by up- and down-regulation of a lipogenic or fatty acid oxidation pathway, and the effects of various modulators on palmitate (PA)-induced INS-1 β-cell death were then evaluated. Treatment with the liver X receptor agonist T0901317 reduced PA-induced INS-1 cell death, regardless of its enhanced lipogenic activity. Furthermore, transient expression of a lipogenic transcription factor sterol regulatory element binding protein-1c (SREBP-1c) was also protective against PA-induced cytotoxicity. In contrast, knockdown of SREBP-1c or glycerol-3-phosphate acyltransferase 1 significantly augmented PA-induced cell death and reduced T0901317-induced protective effects. Conversely, T0901317 increased carnitine PA transferease-1 (CPT-1) expression and augmented PA oxidation. CPT-1 inhibitor etomoxir or CPT-1 knockdown augmented PA-induced cell death and reduced T0901317-induced protective effects, whereas the peroxisome proliferator-activated receptor (PPAR)-α agonist bezafibrate reduced PA-induced toxicity. In particular, T0901317 reduced the levels of PA-induced endoplasmic reticulum (ER) stress markers, including phospho-eukaryotic initiation factor-2α, phospho-C-Jun N terminal kinase, and CCAAT/enhancer-binding protein homologous protein. In contrast, knockdown of SREBP-1c or glycerol-3-phosphate acyltransferase 1 augmented PA-induced ER stress responses. Results of these experiments suggested that stimulation of lipid metabolism, including lipogenesis and fatty acid oxidation, protected β-cells from PA-induced lipotoxicity and that protection through enhanced lipogenesis was likely due to reduced ER stress.
Collapse
Affiliation(s)
- Sung-E Choi
- Institute for Medical Science, Ajou University School of Medicine, Wonchon-dong san 5, Yeongtong-gu, Suwon, Gyeonggi-do 442-749, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Guan M, Fousek K, Jiang C, Guo S, Synold T, Xi B, Shih CC, Chow WA. Nelfinavir induces liposarcoma apoptosis through inhibition of regulated intramembrane proteolysis of SREBP-1 and ATF6. Clin Cancer Res 2011; 17:1796-806. [PMID: 21355074 DOI: 10.1158/1078-0432.ccr-10-3216] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We previously reported that nelfinavir (NFV) induces G(1) cell-cycle block and apoptosis selectively in liposarcoma cell lines due to increased SREBP-1 (sterol regulatory element binding protein-1) expression in the absence of increased transcription. We postulate that NFV interferes with regulated intramembrane proteolysis of SREBP-1 and ATF6 (activating transcription factor 6). EXPERIMENTAL DESIGN Time-lapse, confocal microscopic studies show that NFV inhibits the nuclear translocation of full-length SREBP-1-EGFP and ATF6-EGFP fusion proteins. siRNA-mediated knockdown of site-1 protease (S1P) and/or site-2 protease (S2P) leads to inhibition of SREBP-1 intracellular trafficking to the nucleus and reduces liposarcoma cell proliferation. Treatment of LiSa-2 liposarcoma cells with 3,4-dichloroisocoumarin, a serine protease inhibitor of S1P, did not affect SREBP-1 processing. In contrast, 1,10-phenanthroline, an S2P-specific inhibitor, reproduces the molecular and biological phenotypes observed in NFV-treated cells, which implicates S2P as a target of NFV. In vivo evaluation of NFV in a murine liposarcoma xenograft model leads to inhibition of tumor growth without significant toxicity. RESULTS NFV-induced upregulation of SREBP-1 and ATF6 results from inhibition of S2P, which together with S1P mediates regulated intramembrane proteolysis from their precursor to their transcriptionally active forms. The resulting endoplasmic reticulum (ER) stress and concurrent inhibition of the unfolded protein response induce caspase-mediated apoptosis. CONCLUSIONS These results provide new insight into the mechanism of NFV-mediated induction of ER stress and cell death in liposarcomas and are the first to report targeting S2P for cancer therapy.
Collapse
Affiliation(s)
- Min Guan
- Department of Molecular Pharmacology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Thörn K, Bergsten P. Fatty acid-induced oxidation and triglyceride formation is higher in insulin-producing MIN6 cells exposed to oleate compared to palmitate. J Cell Biochem 2011; 111:497-507. [PMID: 20524206 DOI: 10.1002/jcb.22734] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Palmitate negatively affects insulin secretion and apoptosis in the pancreatic β-cell. The detrimental effects are abolished by elongating and desaturating the fatty acid into oleate. To investigate mechanisms of how the two fatty acids differently affect β-cell function and apoptosis, lipid handling was determined in MIN6 cells cultured in the presence of the fatty acids palmitate (16:0) and oleate (18:1) and also corresponding monounsaturated fatty acid palmitoleate (16:1) and saturated fatty acid stearate (18:0). Insulin secretion was impaired and apoptosis accentuated in palmitate-, and to some extent, stearate-treated cells. Small or no changes in secretion or apoptosis were observed in cells exposed to palmitoleate or oleate. Expressions of genes associated with fatty acid esterification (SCD1, DGAT1, DGAT2, and FAS) were augmented in cells exposed to palmitate or stearate but only partially (DGAT2) in palmitoleate- or oleate-treated cells. Nevertheless, levels of triglycerides were highest in cells exposed to oleate. Similarly, fatty acid oxidation was most pronounced in oleate-treated cells despite comparable up-regulation of CPT1 after treatment of cells with the four different fatty acids. The difference in apoptosis between palmitate and stearate was paralleled by similar differences in levels of markers of endoplasmic reticulum (ER) stress in cells exposed to the two fatty acids. Palmitate-induced ER stress was not accounted for by ceramide de novo synthesis. In conclusion, although palmitate initiated stronger expression changes consistent with lipid accumulation and combustion in MIN6 cells, rise in triglyceride levels and fatty acid oxidation was favored specifically in cells exposed to oleate.
Collapse
Affiliation(s)
- Kristofer Thörn
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
28
|
Lim S, Rashid MA, Jang M, Kim Y, Won H, Lee J, Woo JT, Kim YS, Murphy MP, Ali L, Ha J, Kim SS. Mitochondria-targeted Antioxidants Protect Pancreatic β-cells against Oxidative Stress and Improve Insulin Secretion in Glucotoxicity and Glucolipotoxicity. Cell Physiol Biochem 2011; 28:873-86. [DOI: 10.1159/000335802] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2011] [Indexed: 01/11/2023] Open
|
29
|
da Silva Xavier G, Sun G, Qian Q, Rutter GA, Leclerc I. ChREBP regulates Pdx-1 and other glucose-sensitive genes in pancreatic β-cells. Biochem Biophys Res Commun 2010; 402:252-7. [PMID: 20934404 PMCID: PMC2989445 DOI: 10.1016/j.bbrc.2010.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 10/04/2010] [Indexed: 11/20/2022]
Abstract
Carbohydrate responsive element-binding protein (ChREBP) is a transcription factor whose expression and activity are increased in pancreatic β-cells maintained at elevated glucose concentrations. We show here that ChREBP inactivation in clonal pancreatic MIN6 β-cells results in an increase in Pdx-1 expression at low glucose and to a small, but significant, increase in Ins2, GcK and MafA gene expression at high glucose concentrations. Conversely, adenovirus-mediated over-expression of ChREBP in mouse pancreatic islets results in decreases in Pdx-1, MafA, Ins1, Ins2 and GcK mRNA levels. These data suggest that strategies to reduce ChREBP activity might protect against β-cell dysfunction in type 2 diabetes.
Collapse
Key Words
- arnt, aryl hydrocarbon receptor nuclear translocator
- chrebp, carbohydrate responsive element-binding protein
- chip, chromatin immunoprecipitation
- chore, carbohydrate-responsive element
- fas, fatty acid synthase
- gck, glucokinase
- gfp, green fluorescent protein
- hif, hypoxia inducible factor
- l-pk, l-type pyruvate kinase
- pdx-1, pancreatic and duodenum homeobox-1
- sirna, small interfering rna
- srebp-1c, sterol regulatory response-element-binding protein-1c
- usf, upstream stimulatory factor
- chrebp
- pdx-1
- mafa
- insulin
- glucokinase
- gene expression
- pancreatic β-cells
- min6
- islets of langerhans
Collapse
Affiliation(s)
| | | | | | | | - Isabelle Leclerc
- Section of Cell Biology, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
30
|
Faleck DM, Ali K, Roat R, Graham MJ, Crooke RM, Battisti R, Garcia E, Ahima RS, Imai Y. Adipose differentiation-related protein regulates lipids and insulin in pancreatic islets. Am J Physiol Endocrinol Metab 2010; 299:E249-57. [PMID: 20484013 PMCID: PMC2928510 DOI: 10.1152/ajpendo.00646.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The excess accumulation of lipids in islets is thought to contribute to the development of diabetes in obesity by impairing beta-cell function. However, lipids also serve a nutrient function in islets, and fatty acids acutely increase insulin secretion. A better understanding of lipid metabolism in islets will shed light on complex effects of lipids on beta-cells. Adipose differentiation-related protein (ADFP) is localized on the surface of lipid droplets in a wide range of cells and plays an important role in intracellular lipid metabolism. We found that ADFP was highly expressed in murine beta-cells. Moreover, islet ADFP was increased in mice on a high-fat diet (3.5-fold of control) and after fasting (2.5-fold of control), revealing dynamic changes in ADFP in response to metabolic cues. ADFP expression was also increased by addition of fatty acids in human islets. The downregulation of ADFP in MIN6 cells by antisense oligonucleotide (ASO) suppressed the accumulation of triglycerides upon fatty acid loading (56% of control) along with a reduction in the mRNA levels of lipogenic genes such as diacylglycerol O-acyltransferase-2 and fatty acid synthase. Fatty acid uptake, oxidation, and lipolysis were also reduced by downregulation of ADFP. Moreover, the reduction of ADFP impaired the ability of palmitate to increase insulin secretion. These findings demonstrate that ADFP is important in regulation of lipid metabolism and insulin secretion in beta-cells.
Collapse
Affiliation(s)
- D. M. Faleck
- 1Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania;
| | - K. Ali
- 1Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania;
| | - R. Roat
- 1Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania;
| | - M. J. Graham
- 2Isis Pharmaceuticals, Carlsbad, California; and
| | - R. M. Crooke
- 2Isis Pharmaceuticals, Carlsbad, California; and
| | - R. Battisti
- 3Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - E. Garcia
- 3Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - R. S. Ahima
- 1Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania;
| | - Y. Imai
- 1Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania;
- 3Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia
| |
Collapse
|
31
|
El-Assaad W, Joly E, Barbeau A, Sladek R, Buteau J, Maestre I, Pepin E, Zhao S, Iglesias J, Roche E, Prentki M. Glucolipotoxicity alters lipid partitioning and causes mitochondrial dysfunction, cholesterol, and ceramide deposition and reactive oxygen species production in INS832/13 ss-cells. Endocrinology 2010; 151:3061-73. [PMID: 20444946 DOI: 10.1210/en.2009-1238] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Elevated glucose and saturated fatty acids synergize in inducing apoptosis in INS832/13 cells and in human islet cells. In order to gain insight into the molecular mechanism(s) of glucolipotoxicity (Gltox), gene profiling and metabolic analyses were performed in INS832/13 cells cultured at 5 or 20 mm glucose in the absence or presence of palmitate. Expression changes were observed for transcripts involved in mitochondrial, lipid, and glucose metabolism. At 24 h after Gltox, increased expression of lipid partitioning genes suggested a promotion of fatty acid esterification and reduced lipid oxidation/detoxification, whereas changes in the expression of energy metabolism genes suggested mitochondrial dysfunction. These changes were associated with decreased glucose-induced insulin secretion, total insulin content, ATP levels, AMP-kinase activity, mitochondrial membrane potential and fat oxidation, unchanged de novo fatty acid synthesis, and increased reactive oxygen species, cholesterol, ceramide, and triglyceride levels. However, the synergy between elevated glucose and palmitate to cause ss-cell toxicity in term of apoptosis and reduced glucose-induced insulin secretion only correlated with triglyceride and ceramide depositions. Overexpression of endoplasmic reticulum glycerol-3-phosphate acyl transferase to enhance lipid esterification amplified Gltox at intermediate glucose (11 mm), whereas reducing acetyl-coenzyme A carboxylase 1 expression by small interfering RNA to shift lipid partitioning to fat oxidation reduced Gltox. The results suggest that Gltox entails alterations in lipid partitioning, sterol and ceramide accumulation, mitochondrial dysfunction, and reactive oxygen species production, all contributing to altering ss-cell function. The data also suggest that the early promotion of lipid esterification processes is instrumental in the Gltox process.
Collapse
Affiliation(s)
- Wissal El-Assaad
- Molecular Nutrition Unit and the Montreal Diabetes Research Center, the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada H1W 4A4
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yue T, Yin J, Li F, Li D, Du M. High glucose induces differentiation and adipogenesis in porcine muscle satellite cells via mTOR. BMB Rep 2010; 43:140-5. [DOI: 10.5483/bmbrep.2010.43.2.140] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
33
|
Role of NMDA receptor-dependent activation of SREBP1 in excitotoxic and ischemic neuronal injuries. Nat Med 2009; 15:1399-406. [PMID: 19966780 DOI: 10.1038/nm.2064] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 10/28/2009] [Indexed: 02/07/2023]
Abstract
Excitotoxic neuronal damage caused by overactivation of N-methyl-D-aspartate glutamate receptors (NMDARs) is thought to be a principal cause of neuronal loss after stroke and brain trauma. Here we report that activation of sterol regulatory element binding protein-1 (SREBP-1) transcription factor in affected neurons is an essential step in NMDAR-mediated excitotoxic neuronal death in both in vitro and in vivo models of stroke. The NMDAR-mediated activation of SREBP-1 is a result of increased insulin-induced gene-1 (Insig-1) degradation, which can be inhibited with an Insig-1-derived interference peptide (Indip) that we have developed. Using a focal ischemia model of stroke, we show that systemic administration of Indip not only prevents SREBP-1 activation but also substantially reduces neuronal damage and improves behavioral outcome. Our study suggests that agents that reduce SREBP-1 activation such as Indip may represent a new class of neuroprotective therapeutics against stroke.
Collapse
|
34
|
Scholz H, Lund T, Dahle MK, Collins JL, Korsgren O, Wang JE, Foss A. The synthetic liver X receptor agonist GW3965 reduces tissue factor production and inflammatory responses in human islets in vitro. Diabetologia 2009; 52:1352-62. [PMID: 19415233 DOI: 10.1007/s00125-009-1366-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 03/16/2009] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS Optimising islet culture conditions may be one strategy for reducing islet loss prior to, and immediately after, islet transplantation. Liver X receptor (LXR) agonism has previously been shown to increase insulin release from pancreatic islets and reduce inflammation in leucocytes. Our aim was to investigate whether the synthetic LXR agonist GW3965 could modulate the inflammatory status of human pancreatic islets. METHODS Levels of pro-inflammatory cytokines and tissue factor in isolated human islets were determined by TaqMan low density array and/or real-time quantitative RT-PCR (mRNA levels) and enzyme immunoassay (EIA) (protein levels). Islet viability was measured using intracellular ATP content, ADP/ATP ratio, mitochondrial dehydrogenase activity (XTT assay) and insulin secretion in a dynamic glucose-challenge model. Apoptosis was determined by EIA measurement of histone-DNA complexes present in cytoplasm and by assaying caspase-3/-7 activity. RESULTS Treatment of LPS-stimulated human islets with the synthetic LXR agonist GW3965 (1 micromol/l) for 24 h reduced mRNA and protein levels of selected pro-inflammatory cytokines (IL-8, monocyte chemotactic protein-1 and tissue factor). Moreover, GW3965 had no adverse effect on insulin secretion, islet viability or apoptosis. No excess of lipid accumulation could be detected with the dosage and exposure time used. CONCLUSIONS/INTERPRETATION LXR activation suppresses inflammation in human islets in vitro without adverse effects on islet viability. Short-term moderate activation of LXR prior to islet transplantation may represent a possible strategy for improving post-transplant islet survival.
Collapse
Affiliation(s)
- H Scholz
- Institute for Surgical Research, Oslo University Hospital, Sognsvannsveien 20, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
35
|
Green CD, Jump DB, Olson LK. Elevated insulin secretion from liver X receptor-activated pancreatic beta-cells involves increased de novo lipid synthesis and triacylglyceride turnover. Endocrinology 2009; 150:2637-45. [PMID: 19228891 PMCID: PMC2689804 DOI: 10.1210/en.2008-1039] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Increased basal and loss of glucose-stimulated insulin secretion (GSIS) are hallmarks of beta-cell dysfunction associated with type 2 diabetes. It has been proposed that elevated glucose promotes insulin secretory defects by activating sterol regulatory element binding protein (SREBP)-1c, lipogenic gene expression, and neutral lipid storage. Activation of liver X receptors (LXRs) also activates SREBP-1c and increases lipogenic gene expression and neutral lipid storage but increases basal and GSIS. This study was designed to characterize the changes in de novo fatty acid and triacylglyceride (TAG) synthesis in LXR-activated beta-cells and determine how these changes contribute to elevated basal and GSIS. Treatment of INS-1 beta-cells with LXR agonist T0901317 and elevated glucose led to markedly increased nuclear localization of SREBP-1, lipogenic gene expression, de novo synthesis of monounsaturated fatty acids and TAG, and basal and GSIS. LXR-activated cells had increased fatty acid oxidation and expression of genes involved in mitochondrial beta-oxidation, particularly carnitine palmitoyltransferase-1. Increased basal insulin release from LXR-activated cells coincided with rapid turnover of newly synthesized TAG and required acyl-coenzyme A synthesis and mitochondrial beta-oxidation. GSIS from LXR-activated INS-1 cells required influx of extracellular calcium and lipolysis, suggesting production of lipid-signaling molecules from TAG. Inhibition of diacylglyceride (DAG)-binding proteins, but not classic isoforms of protein kinase C, attenuated GSIS from LXR-activated INS-1 cells. In conclusion, LXR activation in beta-cells exposed to elevated glucose concentrations increases de novo TAG synthesis; subsequent lipolysis produces free fatty acids and DAG, which are oxidized to increase basal insulin release and activate DAG-binding proteins to enhance GSIS, respectively.
Collapse
Affiliation(s)
- Christopher D Green
- Departments of Physiology, Michigan State University, East Lansing, Michigan 48824-3320, USA
| | | | | |
Collapse
|
36
|
Chow WA, Jiang C, Guan M. Anti-HIV drugs for cancer therapeutics: back to the future? Lancet Oncol 2009; 10:61-71. [PMID: 19111246 DOI: 10.1016/s1470-2045(08)70334-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The use of anti-HIV drugs as cancer treatments is not new. Azidothymidine was studied as an antineoplastic in the 1990s, but despite promising in vitro data, clinical trials showed little antitumour activity. HIV protease inhibitors were developed in the early 1990s, and their subsequent incorporation into highly active antiretroviral therapy (HAART) has profoundly changed the natural history of HIV infection. The potential antitumour properties of these drugs have been investigated because of their success in treating HIV-related Kaposi's sarcoma. HAART's effects on Kaposi's sarcoma did not always correlate with immune reconstitution, and activity against other solid and haematological malignancies has been established. Inhibition of tumour-cell invasion and angiogenesis were properties first ascribed to inhibition of HIV protease; however, they have pleiotropic antitumour effects, including inhibition of inflammatory cytokine production, proteasome activity, cell proliferation and survival, and induction of apoptosis. HIV protease inhibitors are thus a new class of anticancer drugs with multiple effects, and other anti-HIV drugs might hold similar promise.
Collapse
Affiliation(s)
- Warren A Chow
- Beckman Research Institute of the City of Hope, Division of Medical Oncology, Department of Clinical and Molecular Pharmacology, Duarte, CA USA
| | | | | |
Collapse
|
37
|
Liu JX, Liu J, Li PQ, Xie XD, Guo Q, Tian LM, Ma XQ, Zhang JP, Liu J, Gao JY. Association of sterol regulatory element-binding protein-1c gene polymorphism with type 2 diabetes mellitus, insulin resistance and blood lipid levels in Chinese population. Diabetes Res Clin Pract 2008; 82:42-7. [PMID: 18692268 DOI: 10.1016/j.diabres.2008.06.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 03/04/2008] [Accepted: 06/30/2008] [Indexed: 11/23/2022]
Abstract
AIMS The sterol regulatory element-binding protein (SREBP)-1c gene has been identified as a susceptibility gene in metabolic diseases such as type 2 diabetes mellitus (T2DM), obesity, dyslipidemia and insulin resistance. Previous studies suggest that SNP17 (rs2297508, exon18c and G952G) of SREBP-1c gene and a common SREBP-1c SNP6 (rs11868035) are associated with an increased risk of T2DM. The present study aimed to confirm the previously reported association in a Chinese population and to examine the two SREBP-1c SNPs for their associations with insulin resistance and blood lipid. METHODS We genotyped two SREBP-1c SNPs in a case-control study (n=327) from Chinese, including 156 patients with T2DM and 171 healthy controls, using polymerase chain reaction-denaturing high-performance liquid chromatography (PCR-DHPLC) and tested for association with type 2 diabetes, insulin resistance and blood lipid, respectively. Genotype and allele distributions and haplotype construction were analysed. RESULTS The genotype and allele distributions of rs2297508 and rs11868035 polymorphisms were significantly different in type 2 diabetic patients compared to controls (P=0.002 and P=0.013; 0.00 and 0.001, respectively). Haplotype analyses showed significant association with diabetes risk and confirmed the results of the single SNP analyses. The plasma levels of LDL-c of the minor allele-C carriers of the two SNPs were both significantly higher than the noncarriers in the control group (P<0.05). Furthermore, insulin resistance index (HOMA-IRI) of the rare homozygotes C/C of rs11868035 was significantly lower than that of T/T in the T2DM group (P<0.05). CONCLUSIONS These findings indicate that the SREBP-1c SNPs rs2297508 and rs11868035 are associated with a significantly increased risk of T2DM and dyslipidemia in the Chinese population. Moreover, the SNP (rs11868035) is closely related to insulin resistance (IR) in diabetic patients.
Collapse
Affiliation(s)
- Ju-Xiang Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, 222 South Tianshui Road, Lanzhou University, Lanzhou City, Gansu Province 730000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nino-Fong R, Collins T, Chan C. Nutrigenomics, beta-cell function and type 2 diabetes. Curr Genomics 2008; 8:1-29. [PMID: 18645625 PMCID: PMC2474685 DOI: 10.2174/138920207780076947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 08/12/2006] [Accepted: 10/13/2006] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION The present investigation was designed to investigate the accuracy and precision of lactate measurement obtained with contemporary biosensors (Chiron Diagnostics, Nova Biomedical) and standard enzymatic photometric procedures (Sigma Diagnostics, Abbott Laboratories, Analyticon). MATERIALS AND METHODS Measurements were performed in vitro before and after the stepwise addition of 1 molar sodium lactate solution to samples of fresh frozen plasma to systematically achieve lactate concentrations of up to 20 mmol/l. RESULTS Precision of the methods investigated varied between 1% and 7%, accuracy ranged between 2% and -33% with the variability being lowest in the Sigma photometric procedure (6%) and more than 13% in both biosensor methods. CONCLUSION Biosensors for lactate measurement provide adequate accuracy in mean with the limitation of highly variable results. A true lactate value of 6 mmol/l was found to be presented between 4.4 and 7.6 mmol/l or even with higher difference. Biosensors and standard enzymatic photometric procedures are only limited comparable because the differences between paired determinations presented to be several mmol. The advantage of biosensors is the complete lack of preanalytical sample preparation which appeared to be the major limitation of standard photometry methods.
Collapse
Affiliation(s)
- R Nino-Fong
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE C1A 4P3 Canada
| | | | | |
Collapse
|
39
|
Nyblom HK, Nord LI, Andersson R, Kenne L, Bergsten P. Glucose-induced de novo synthesis of fatty acyls causes proportional increases in INS-1E cellular lipids. NMR IN BIOMEDICINE 2008; 21:357-65. [PMID: 17691080 DOI: 10.1002/nbm.1197] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Raised concentrations of glucose for extended periods of time have detrimental effects on the insulin-producing beta-cell. As de novo synthesis of lipids has been observed under such conditions, it was hypothesized that newly formed lipids may preferentially contain saturated fatty acids, which in particular have been associated with impaired beta-cell function. Glucose-induced de novo synthesis of fatty acids in INS-1E cells cultured in 5.5, 11, 20 or 27 mM glucose for 5 days was assessed by high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy and gas chromatography-mass spectrometry (GC-MS). The glucose origin of the increase in fatty acyls was verified by replacing glucose with [1-13C]glucose during culture followed by analysis with two-dimensional 1H-13C NMR spectroscopy. The composition of the fatty acyls was determined by GC-MS. Fatty acyls determined by HR-MAS (1)H NMR spectroscopy were increased fivefold in INS-1E cells cultured in 20 or 27 mM glucose compared with cells cultured in 5.5 mM glucose. The five most abundant fatty acids with their relative percentages in INS-1E cells cultured in 5.5 mM glucose were oleate (33%), palmitate (25%), stearate (19%), octadecenoate (13%) and palmitoleate (4.4%). These proportions were not affected by glucose- induced de novo synthesis in INS-1E cells cultured in 11, 20 or 27 mM glucose. It is concluded that glucose-induced de novo lipid synthesis results in accumulation of both saturated and unsaturated fatty acids in specific proportions that are identical with those present under control conditions.
Collapse
Affiliation(s)
- H K Nyblom
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
40
|
Allagnat F, Alonso F, Martin D, Abderrahmani A, Waeber G, Haefliger JA. ICER-1gamma overexpression drives palmitate-mediated connexin36 down-regulation in insulin-secreting cells. J Biol Chem 2008; 283:5226-34. [PMID: 18073214 DOI: 10.1074/jbc.m708181200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Channels formed by the gap junction protein connexin36 (Cx36) contribute to the proper control of insulin secretion. We investigated the impact of chronic hyperlipidemia on Cx36 expression in pancreatic beta-cells. Prolonged exposure to the saturated free fatty acid palmitate reduced the expression of Cx36 in several insulin-secreting cell lines and isolated mouse islets. The effect of palmitate was fully blocked upon protein kinase A (PKA) inhibition by H89 and (Rp)-cAMP, indicating that the cAMP/PKA pathway is involved in the control of Cx36 expression. Palmitate treatment led to overexpression of the inducible cAMP early repressor (ICER-1gamma), which bound to a functional cAMP-response element located in the promoter of the CX36 gene. Inhibition of ICER-1gamma overexpression prevented the Cx36 decrease, as well as the palmitate-induced beta-cell secretory dysfunction. Finally, freshly isolated islets from mice undergoing a long term high fat diet expressed reduced Cx36 levels and increased ICER-1gamma levels. Taken together, these data demonstrate that chronic exposure to palmitate inhibits the Cx36 expression through PKA-mediated ICER-1gamma overexpression. This Cx36 down-regulation may contribute to the reduced glucose sensitivity and altered insulin secretion observed during the pre-diabetic stage and in the metabolic syndrome.
Collapse
Affiliation(s)
- Florent Allagnat
- Department of Medicine, University Hospital, CHUV-1011 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Diraison F, Ravier MA, Richards SK, Smith RM, Shimano H, Rutter GA. SREBP1 is required for the induction by glucose of pancreatic beta-cell genes involved in glucose sensing. J Lipid Res 2008; 49:814-22. [PMID: 18178930 DOI: 10.1194/jlr.m700533-jlr200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have reported both positive and negative effects of culture of islets at high glucose concentrations on regulated insulin secretion. Here, we have reexamined this question in mouse islets and determined the role of changes in lipid synthesis in the effects of glucose. Glucose-stimulated insulin secretion (GSIS) and gene expression were examined in islets from C57BL/6 mice or littermates deleted for sterol-regulatory element binding protein-1 (SREBP1) after 4 days of culture at high glucose concentrations. Culture of control islets at 30 versus 8 mmol/l glucose led to enhanced secretion at both basal (3 mmol/l) and stimulatory (17 mmol/l) glucose concentrations and to enhanced triacylglycerol accumulation. These changes were associated with increases in the expression of genes involved in glucose sensing (glucose transporter 2, glucokinase, sulfonylurea receptor 1, inwardly rectifying K(+) channel 6.2), differentiation (pancreatic duodenal homeobox 1), and lipogenesis (Srebp1, fatty acid synthase, acetyl-coenzyme A carboxylase 1, stearoyl-coenzyme A desaturase 1). When cultured at either 8 or 30 mmol/l glucose, SREBP1-deficient (SREBP1(-/-)) islets displayed reduced GSIS and triacylglycerol content compared with normal islets. Correspondingly, glucose induction of the above genes in control islets was no longer observed in SREBP1(-/-) mouse islets. We conclude that enhanced lipid synthesis mediated by SREBP1c-dependent genes is required for the adaptive changes in islet gene expression and insulin secretion at high glucose concentrations.
Collapse
Affiliation(s)
- Frederique Diraison
- Department of Cell Biology, Division of Medicine, Faculty of Medicine, Imperial College, London SW72A2, UK
| | | | | | | | | | | |
Collapse
|
42
|
Le Gall M, Tobin V, Stolarczyk E, Dalet V, Leturque A, Brot-Laroche E. Sugar sensing by enterocytes combines polarity, membrane bound detectors and sugar metabolism. J Cell Physiol 2007; 213:834-43. [PMID: 17786952 DOI: 10.1002/jcp.21245] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sugar consumption and subsequent sugar metabolism are known to regulate the expression of genes involved in intestinal sugar absorption and delivery. Here we investigate the hypothesis that sugar-sensing detectors in membranes facing the intestinal lumen or the bloodstream can also modulate intestinal sugar absorption. We used wild-type and GLUT2-null mice, to show that dietary sugars stimulate the expression of sucrase-isomaltase (SI) and L-pyruvate kinase (L-PK) by GLUT2-dependent mechanisms, whereas the expression of GLUT5 and SGLT1, did not rely on the presence of GLUT2. By providing sugar metabolites, sugar transporters, including GLUT2, fuelled a sensing pathway. In Caco2/TC7 enterocytes, we could disconnect the sensing triggered by detector from that produced by metabolism, and found that GLUT2 generated a metabolism-independent pathway to stimulate the expression of SI and L-PK. In cultured enterocytes, both apical and basolateral fructose could increase the expression of GLUT5, conversely, basolateral sugar administration could stimulate the expression of GLUT2. Finally, we located the sweet-taste receptors T1R3 and T1R2 in plasma membranes, and we measured their cognate G alpha Gustducin mRNA levels. Furthermore, we showed that a T1R3 inhibitor altered the fructose-induced expression of SGLT1, GLUT5, and L-PK. Intestinal gene expression is thus controlled by a combination of at least three sugar-signaling pathways triggered by sugar metabolites and membrane sugar receptors that, according to membrane location, determine sugar-sensing polarity. This provides a rationale for how intestine adapts sugar delivery to blood and dietary sugar provision.
Collapse
Affiliation(s)
- Maude Le Gall
- INSERM, UMR S 872, Centre de Recherche des Cordeliers, Paris, France.
| | | | | | | | | | | |
Collapse
|
43
|
Shimano H, Amemiya-Kudo M, Takahashi A, Kato T, Ishikawa M, Yamada N. Sterol regulatory element-binding protein-1c and pancreatic beta-cell dysfunction. Diabetes Obes Metab 2007; 9 Suppl 2:133-9. [PMID: 17919187 DOI: 10.1111/j.1463-1326.2007.00779.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It has long been known that excess intracellular fatty acids cause impaired insulin secretion, referred to as beta-cell lipotoxicity. Sterol regulatory element-binding protein (SREBP)-1c is a transcription factor that controls hepatic fatty acid synthesis. Activation of SREBP-1c by overnutrition also inhibits insulin receptor substrate-2 (IRS-2) and induces insulin resistance in the liver. As SREBP-1c is also expressed in beta cells, we hypothesized that activation of SREBP-1c could be a part of the mechanism by which saturated fatty acids induce beta-cell lipotoxicity. We found that nuclear SREBP-1c has a negative impact on both glucose- and potassium-stimulated insulin secretion as determined in islets from beta-cell-specific SREBP-1c transgenic mice as well as SREBP-1c knockout mice. This effect of SREBP-1c involves multiple functional pathways required for insulin secretion from beta cells: (i) decreased ATP caused by energy consumption through lipogenesis and uncoupling protein-2 (UCP-2) activation; (ii) repressed IRS-2 and pancreas duodenum homeobox 1 (PDX1) expression, leading to impaired beta-cell mass; and (iii) impaired post-ATP membrane voltage-dependent steps of the insulin secretion pathway caused by upregulated granuphilin and other ion channel proteins. Saturated fatty acids, such as palmitic acid (PA), impair insulin secretion through SREBP-1c activation, whereas polyunsaturated fatty acids including eicosapentaenoic acid (EPA) restore PA-suppressed insulin secretion through suppression of SREBP-1c. These data implicate a therapeutic potential of EPA against insulin secretion defects caused by lipotoxicity.
Collapse
Affiliation(s)
- H Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Zhou L, Li Y, Nie T, Feng S, Yuan J, Chen H, Yang Z. Clenbuterol inhibits SREBP-1c expression by activating CREB1. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 40:525-531. [PMID: 17669268 DOI: 10.5483/bmbrep.2007.40.4.525] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As a beta(2)-adrenergic agonist, clenbuterol decreases body fat, but the molecular mechanism underlying this process is unclear. In the present study, we treated 293T and L-02 cells with clenbuterol and found that clenbuterol downregulates SREBP-1c expression and upregulates CREB1 expression. Considering SREBP-1c has the function of regulating the transcription of several lipogenic enzymes, we considered that the downregulation of SREBP-1c is responsible for body fat reduction by clenbuterol. Many previous studies have found that clenbuterol markedly increases intracellular cAMP levels, therefore, we also investigated whether CREB1 is involved in this process. The data from our experiments indicate that CREB1 overexpression inhibits SREBP-1c transcription, and that this action is antagonized by CREB2, a competitive inhibitor of CREB1. Furthermore, since PPARs are able to repress SREBP-1c transcription, we investigated whether clenbuterol and CREB1 function via a pathway involving PPAR activation. However, our results showed that clenbuterol or CREB1 overexpression suppressed PPARs transcription in 293T and L-02 cells, which suggested that they impair SREBP-1c expression in other ways.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | | | | | | | | | | | | |
Collapse
|
45
|
Choe SS, Choi AH, Lee JW, Kim KH, Chung JJ, Park J, Lee KM, Park KG, Lee IK, Kim JB. Chronic activation of liver X receptor induces beta-cell apoptosis through hyperactivation of lipogenesis: liver X receptor-mediated lipotoxicity in pancreatic beta-cells. Diabetes 2007; 56:1534-43. [PMID: 17369526 DOI: 10.2337/db06-1059] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Liver X receptor (LXR)alpha and LXRbeta play important roles in fatty acid metabolism and cholesterol homeostasis. Although the functional roles of LXR in the liver, intestine, fat, and macrophages are well established, its role in pancreatic beta-cells has not been clearly defined. In this study, we revealed that chronic activation of LXR contributes to lipotoxicity-induced beta-cell dysfunction. We observed significantly elevated expression of LXR in the islets of diabetic rodent models, including fa/fa ZDF rats, OLETF rats, and db/db mice. In primary pancreatic islets and INS-1 insulinoma cells, activation of LXR with a synthetic ligand, T0901317, stimulated expression of the lipogenic genes ADD1/SREBP1c, FAS, and ACC and resulted in increased intracellular lipid accumulation. Moreover, chronic LXR activation induced apoptosis in pancreatic islets and INS-1 cells, which was synergistically promoted by high glucose conditions. Taken together, we suggest lipid accumulation caused by chronic activation of LXR in beta-cells as a possible cause of beta-cell lipotoxicity, a key step in the development of type 2 diabetes.
Collapse
Affiliation(s)
- Sung Sik Choe
- Department of Biological Sciences, Research Center for Functional Cellulomics, Seoul National University, Sillim-Dong, Kwanak-Gu, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Parton LE, McMillen PJ, Shen Y, Docherty E, Sharpe E, Diraison F, Briscoe CP, Rutter GA. Limited role for SREBP-1c in defective glucose-induced insulin secretion from Zucker diabetic fatty rat islets: a functional and gene profiling analysis. Am J Physiol Endocrinol Metab 2006; 291:E982-94. [PMID: 16772326 DOI: 10.1152/ajpendo.00067.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Accumulation of intracellular lipid may contribute to defective insulin secretion in type 2 diabetes. Although Zucker diabetic fatty (ZDF; fa/fa) rat islets are fat-laden and overexpress the lipogenic master gene, sterol regulatory element binding protein 1c (SREBP-1c), the contribution of SREBP-1c to the secretory defects observed in this model remains unclear. Here we compare the gene expression profile of lean control (fa/+) and ZDF rat islets in the absence or presence of dominant-negative SREBP-1c (SREBP-1c DN). ZDF islets displayed elevated basal insulin secretion at 3 mmol/l glucose but a severely depressed response to 17 mmol/l glucose. While SREBP-1c DN reduced basal insulin secretion from ZDF islets, glucose-stimulated insulin secretion was not improved. Of 57 genes differentially regulated in ZDF islets and implicated in glucose metabolism, vesicle trafficking, ion fluxes, and/or exocytosis, 21 were upregulated and 5 were suppressed by SREBP-1c DN. Genes underrepresented in ZDF islets were either unaffected (Glut-2, Kir6.2, Rab3), stimulated (voltage-dependent Ca(2+) channel subunit alpha1D, CPT2, SUR2, rab9, syt13), or inhibited (syntaxin 7, secretogranin-2) by SREBP-1c inhibition. Correspondingly, SREBP-1c DN largely corrected decreases in the expression of the transcription factors Pdx-1 and MafA but did not affect the abnormalities in Pax6, Arx, hepatic nuclear factor-1alpha (HNF1alpha), HNF3beta/Forkhead box-a2 (Foxa2), inducible cyclic AMP early repressor (ICER), or transcription factor 7-like 2 (TCF7L2) expression observed in ZDF islets. We conclude that upregulation of SREBP-1c and mild increases in triglyceride content do not explain defective glucose-stimulated insulin secretion from ZDF rats. However, overexpression of SREBP-1c may contribute to enhanced basal insulin secretion in this model.
Collapse
Affiliation(s)
- Laura E Parton
- Henry Wellcome Signaling Laboratories and Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Excess fatty acids accompanied by triglyceride accumulation in parenchymal cells of multiple tissues including skeletal and cardiac myocytes, hepatocytes, and pancreatic beta cells results in chronic cellular dysfunction and injury. The process, now termed lipotoxicity, can account for many manifestations of the 'metabolic syndrome'. Most data suggest that the triglycerides serve primarily a storage function with toxicity deriving mainly from long-chain nonesterified fatty acids (NEFA) and their products such as ceramides and diacylglycerols. In the kidney, filtered NEFA carried on albumin can aggravate the chronic tubule damage and inflammatory phenotype that develop during proteinuric states and lipid loading of both glomerular and tubular cells is a common response to renal injury that contributes to progression of nephropathy. NEFA-induced mitochondrial dysfunction is the primary mechanism for energetic failure of proximal tubules during hypoxia/reoxygenation and persistent increases of tubule cell NEFA and triglycerides occur during acute renal failure in vivo in association with downregulation of mitochondrial and peroxisomal enzymes of beta oxidation. In acute renal failure models, peroxisome proliferator-activated receptor alpha ligand treatment can ameliorate the NEFA and triglyceride accumulation and limits tissue injury likely via both direct tubule actions and anti-inflammatory effects. Both acute and chronic kidney disease are associated with systemic manifestations of the metabolic syndrome.
Collapse
Affiliation(s)
- J M Weinberg
- Division of Nephrology, Department of Internal Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
48
|
Zitzer H, Wente W, Brenner MB, Sewing S, Buschard K, Gromada J, Efanov AM. Sterol regulatory element-binding protein 1 mediates liver X receptor-beta-induced increases in insulin secretion and insulin messenger ribonucleic acid levels. Endocrinology 2006; 147:3898-905. [PMID: 16644917 DOI: 10.1210/en.2005-1483] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Liver X receptors (LXRalpha and LXRbeta) regulate glucose and lipid metabolism. Pancreatic beta-cells and INS-1E insulinoma cells express only the LXRbeta isoform. Activation of LXRbeta with the synthetic agonist T0901317 increased glucose-induced insulin secretion and insulin content, whereas deletion of the receptor in LXRbeta knockout mice severely blunted insulin secretion. Analysis of gene expression in LXR agonist-treated INS-1E cells and islets from LXRbeta-deficient mice revealed that LXRbeta positively regulated expression of ATP-binding cassette transporter A1 (ABCA1), sterol regulatory element-binding protein 1 (SREBP-1), insulin, PDX-1, glucokinase, and glucose transporter 2 (Glut2). Down-regulation of SREBP-1 expression with the specific small interfering RNA blocked basal and LXRbeta-induced expression of pancreatic duodenal homeobox 1 (PDX-1), insulin, and Glut2 genes. SREBP-1 small interfering RNA also prevented an increase in insulin secretion and insulin content induced by T0901317. Moreover, 5-(tetradecyloxy)-2-furoic acid, an inhibitor of the SREBP-1 target gene acetyl-coenzyme A carboxylase, blocked T0901317-induced stimulation of insulin secretion. In conclusion, activation of LXRbeta in pancreatic beta-cells increases insulin secretion and insulin mRNA expression via SREBP-1-regulated pathway. These data support the role of LXRbeta, SREBP-1, and cataplerosis/anaplerosis pathways in the control of insulin secretion in pancreatic beta-cells.
Collapse
Affiliation(s)
- Heike Zitzer
- Lilly Research Laboratories, Essener Bogen 7, D-22419 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Our understanding of metabolism is undergoing a dramatic shift. Indeed, the efforts made towards elucidating the mechanisms controlling the major regulatory pathways are now being rewarded. At the molecular level, the crucial role of transcription factors is particularly well-illustrated by the link between alterations of their functions and the occurrence of major metabolic diseases. In addition, the possibility of manipulating the ligand-dependent activity of some of these transcription factors makes them attractive as therapeutic targets. The aim of this review is to summarize recent knowledge on the transcriptional control of metabolic homeostasis. We first review data on the transcriptional regulation of the intermediary metabolism, i.e., glucose, amino acid, lipid, and cholesterol metabolism. Then, we analyze how transcription factors integrate signals from various pathways to ensure homeostasis. One example of this coordination is the daily adaptation to the circadian fasting and feeding rhythm. This section also discusses the dysregulations causing the metabolic syndrome, which reveals the intricate nature of glucose and lipid metabolism and the role of the transcription factor PPARgamma in orchestrating this association. Finally, we discuss the molecular mechanisms underlying metabolic regulations, which provide new opportunities for treating complex metabolic disorders.
Collapse
Affiliation(s)
- Béatrice Desvergne
- Center for Integrative Genomics, National Centre of Competence in Research Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
50
|
Abstract
The uncoupling proteins (UCPs) are attracting an increased interest as potential therapeutic targets in a number of important diseases. UCP2 is expressed in several tissues, but its physiological functions as well as potential therapeutic applications are still unclear. Unlike UCP1, UCP2 does not seem to be important to thermogenesis or weight control, but appears to have an important role in the regulation of production of reactive oxygen species, inhibition of inflammation, and inhibition of cell death. These are central features in, for example, neurodegenerative and cardiovascular disease, and experimental evidence suggests that an increased expression and activity of UCP2 in models of these diseases has a beneficial effect on disease progression, implicating a potential therapeutic role for UCP2. UCP2 has an important role in the pathogenesis of type 2 diabetes by inhibiting insulin secretion in islet beta cells. At the same time, type 2 diabetes is associated with increased risk of cardiovascular disease and atherosclerosis where an increased expression of UCP2 appears to be beneficial. This illustrates that therapeutic applications involving UCP2 likely will have to regulate expression and activity in a tissue-specific manner.
Collapse
Affiliation(s)
- Gustav Mattiasson
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund, Sweden.
| | | |
Collapse
|