1
|
Benz PM, Frömel T, Laban H, Zink J, Ulrich L, Groneberg D, Boon RA, Poley P, Renne T, de Wit C, Fleming I. Cardiovascular Functions of Ena/VASP Proteins: Past, Present and Beyond. Cells 2023; 12:1740. [PMID: 37443774 PMCID: PMC10340426 DOI: 10.3390/cells12131740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Actin binding proteins are of crucial importance for the spatiotemporal regulation of actin cytoskeletal dynamics, thereby mediating a tremendous range of cellular processes. Since their initial discovery more than 30 years ago, the enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family has evolved as one of the most fascinating and versatile family of actin regulating proteins. The proteins directly enhance actin filament assembly, but they also organize higher order actin networks and link kinase signaling pathways to actin filament assembly. Thereby, Ena/VASP proteins regulate dynamic cellular processes ranging from membrane protrusions and trafficking, and cell-cell and cell-matrix adhesions, to the generation of mechanical tension and contractile force. Important insights have been gained into the physiological functions of Ena/VASP proteins in platelets, leukocytes, endothelial cells, smooth muscle cells and cardiomyocytes. In this review, we summarize the unique and redundant functions of Ena/VASP proteins in cardiovascular cells and discuss the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Peter M. Benz
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
| | - Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Hebatullah Laban
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Joana Zink
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Lea Ulrich
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Dieter Groneberg
- Institute of Physiology I, University of Würzburg, 97070 Würzburg, Germany
| | - Reinier A. Boon
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
- Cardiopulmonary Institute, 60596 Frankfurt am Main, Germany
- Centre of Molecular Medicine, Institute of Cardiovascular Regeneration, Goethe-University, 60596 Frankfurt am Main, Germany
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Centre, 1081 HZ Amsterdam, The Netherlands
| | - Philip Poley
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany
| | - Thomas Renne
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 VN51 Dublin, Ireland
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
- Cardiopulmonary Institute, 60596 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Han KA, Ko J. Orchestration of synaptic functions by WAVE regulatory complex-mediated actin reorganization. Exp Mol Med 2023; 55:1065-1075. [PMID: 37258575 PMCID: PMC10318009 DOI: 10.1038/s12276-023-01004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 06/02/2023] Open
Abstract
The WAVE regulatory complex (WRC), composed of five components-Cyfip1/Sra1, WAVE/Scar, Abi, Nap1/Nckap1, and Brk1/HSPC300-is essential for proper actin cytoskeletal dynamics and remodeling in eukaryotic cells, likely by matching various patterned signals to Arp2/3-mediated actin nucleation. Accumulating evidence from recent studies has revealed diverse functions of the WRC in neurons, demonstrating its crucial role in dictating the assembly of molecular complexes for the patterning of various trans-synaptic signals. In this review, we discuss recent exciting findings on the physiological role of the WRC in regulating synaptic properties and highlight the involvement of WRC dysfunction in various brain disorders.
Collapse
Affiliation(s)
- Kyung Ah Han
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, Korea
- Center for Synapse Diversity and Specificity, DGIST, Daegu, 42988, Korea
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, Korea.
- Center for Synapse Diversity and Specificity, DGIST, Daegu, 42988, Korea.
| |
Collapse
|
3
|
Wang X, Shao L, Richardson KK, Ling W, Warren A, Krager K, Aykin-Burns N, Hromas R, Zhou D, Almeida M, Kim HN. Hematopoietic cytoplasmic adaptor protein Hem1 promotes osteoclast fusion and bone resorption in mice. J Biol Chem 2023; 299:102841. [PMID: 36574841 PMCID: PMC9867982 DOI: 10.1016/j.jbc.2022.102841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
Hem1 (hematopoietic protein 1), a hematopoietic cell-specific member of the Hem family of cytoplasmic adaptor proteins, is essential for lymphopoiesis and innate immunity as well as for the transition of hematopoiesis from the fetal liver to the bone marrow. However, the role of Hem1 in bone cell differentiation and bone remodeling is unknown. Here, we show that deletion of Hem1 resulted in a markedly increase in bone mass because of defective bone resorption in mice of both sexes. Hem1-deficient osteoclast progenitors were able to differentiate into osteoclasts, but the osteoclasts exhibited impaired osteoclast fusion and decreased bone-resorption activity, potentially because of decreased mitogen-activated protein kinase and tyrosine kinase c-Abl activity. Transplantation of bone marrow hematopoietic stem and progenitor cells from wildtype into Hem1 knockout mice increased bone resorption and normalized bone mass. These findings indicate that Hem1 plays a pivotal role in the maintenance of normal bone mass.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Lijian Shao
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kimberly K Richardson
- Division of Endocrinology, Department of Internal Medicine, Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Wen Ling
- Division of Endocrinology, Department of Internal Medicine, Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Aaron Warren
- Division of Endocrinology, Department of Internal Medicine, Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| | - Kimberly Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Robert Hromas
- Department of Medicine, The Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Daohong Zhou
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Pharmacodynamics, University of Florida, Gainesville, Florida, USA
| | - Maria Almeida
- Division of Endocrinology, Department of Internal Medicine, Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA; Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | - Ha-Neui Kim
- Division of Endocrinology, Department of Internal Medicine, Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.
| |
Collapse
|
4
|
Pokrant T, Hein JI, Körber S, Disanza A, Pich A, Scita G, Rottner K, Faix J. Ena/VASP clustering at microspike tips involves lamellipodin but not I-BAR proteins, and absolutely requires unconventional myosin-X. Proc Natl Acad Sci U S A 2023. [PMID: 36598940 DOI: 10.1101/2022.05.12.491613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Sheet-like membrane protrusions at the leading edge, termed lamellipodia, drive 2D-cell migration using active actin polymerization. Microspikes comprise actin-filament bundles embedded within lamellipodia, but the molecular mechanisms driving their formation and their potential functional relevance have remained elusive. Microspike formation requires the specific activity of clustered Ena/VASP proteins at their tips to enable processive actin assembly in the presence of capping protein, but the factors and mechanisms mediating Ena/VASP clustering are poorly understood. Systematic analyses of B16-F1 melanoma mutants lacking potential candidate proteins revealed that neither inverse BAR-domain proteins, nor lamellipodin or Abi is essential for clustering, although they differentially contribute to lamellipodial VASP accumulation. In contrast, unconventional myosin-X (MyoX) identified here as proximal to VASP was obligatory for Ena/VASP clustering and microspike formation. Interestingly, and despite the invariable distribution of other relevant marker proteins, the width of lamellipodia in MyoX-KO mutants was significantly reduced as compared with B16-F1 control, suggesting that microspikes contribute to lamellipodium stability. Consistently, MyoX removal caused marked defects in protrusion and random 2D-cell migration. Strikingly, Ena/VASP-deficiency also uncoupled MyoX cluster dynamics from actin assembly in lamellipodia, establishing their tight functional association in microspike formation.
Collapse
Affiliation(s)
- Thomas Pokrant
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Jens Ingo Hein
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Sarah Körber
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Andrea Disanza
- IFOM ETS (Istituto Fondazione di Oncologia Molecolare ETS), - The AIRC (Italian Association for Cancer Research) Institute of Molecular Oncology, 20139 Milan, Italy
| | - Andreas Pich
- Research Core Unit Proteomics, Hannover Medical School, 30625 Hannover, Germany
| | - Giorgio Scita
- IFOM ETS (Istituto Fondazione di Oncologia Molecolare ETS), - The AIRC (Italian Association for Cancer Research) Institute of Molecular Oncology, 20139 Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, 20139 Milan, Italy
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
5
|
Hwang T, Parker SS, Hill SM, Grant RA, Ilunga MW, Sivaraman V, Mouneimne G, Keating AE. Native proline-rich motifs exploit sequence context to target actin-remodeling Ena/VASP protein ENAH. eLife 2022; 11:70680. [PMID: 35076015 PMCID: PMC8789275 DOI: 10.7554/elife.70680] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
The human proteome is replete with short linear motifs (SLiMs) of four to six residues that are critical for protein-protein interactions, yet the importance of the sequence surrounding such motifs is underexplored. We devised a proteomic screen to examine the influence of SLiM sequence context on protein-protein interactions. Focusing on the EVH1 domain of human ENAH, an actin regulator that is highly expressed in invasive cancers, we screened 36-residue proteome-derived peptides and discovered new interaction partners of ENAH and diverse mechanisms by which context influences binding. A pocket on the ENAH EVH1 domain that has diverged from other Ena/VASP paralogs recognizes extended SLiMs and favors motif-flanking proline residues. Many high-affinity ENAH binders that contain two proline-rich SLiMs use a noncanonical site on the EVH1 domain for binding and display a thermodynamic signature consistent with the two-motif chain engaging a single domain. We also found that photoreceptor cilium actin regulator (PCARE) uses an extended 23-residue region to obtain a higher affinity than any known ENAH EVH1-binding motif. Our screen provides a way to uncover the effects of proteomic context on motif-mediated binding, revealing diverse mechanisms of control over EVH1 interactions and establishing that SLiMs can’t be fully understood outside of their native context.
Collapse
Affiliation(s)
- Theresa Hwang
- Department of Biology, Massachusetts Institute of Technology
| | - Sara S Parker
- Department of Cellular & Molecular Medicine, University of Arizona
| | - Samantha M Hill
- Department of Cellular & Molecular Medicine, University of Arizona
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of Technology
| | - Meucci W Ilunga
- Department of Biology, Massachusetts Institute of Technology
| | | | | | - Amy E Keating
- Department of Biology, Massachusetts Institute of Technology
- Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| |
Collapse
|
6
|
Hwang T, Parker SS, Hill SM, Ilunga MW, Grant RA, Mouneimne G, Keating AE. A distributed residue network permits conformational binding specificity in a conserved family of actin remodelers. eLife 2021; 10:e70601. [PMID: 34854809 PMCID: PMC8639148 DOI: 10.7554/elife.70601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
Metazoan proteomes contain many paralogous proteins that have evolved distinct functions. The Ena/VASP family of actin regulators consists of three members that share an EVH1 interaction domain with a 100 % conserved binding site. A proteome-wide screen revealed photoreceptor cilium actin regulator (PCARE) as a high-affinity ligand for ENAH EVH1. Here, we report the surprising observation that PCARE is ~100-fold specific for ENAH over paralogs VASP and EVL and can selectively bind ENAH and inhibit ENAH-dependent adhesion in cells. Specificity arises from a mechanism whereby PCARE stabilizes a conformation of the ENAH EVH1 domain that is inaccessible to family members VASP and EVL. Structure-based modeling rapidly identified seven residues distributed throughout EVL that are sufficient to differentiate binding by ENAH vs. EVL. By exploiting the ENAH-specific conformation, we rationally designed the tightest and most selective ENAH binder to date. Our work uncovers a conformational mechanism of interaction specificity that distinguishes highly similar paralogs and establishes tools for dissecting specific Ena/VASP functions in processes including cancer cell invasion.
Collapse
Affiliation(s)
- Theresa Hwang
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Sara S Parker
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of ArizonaTucsonUnited States
| | - Samantha M Hill
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of ArizonaTucsonUnited States
| | - Meucci W Ilunga
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Ghassan Mouneimne
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of ArizonaTucsonUnited States
| | - Amy E Keating
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biological Engineering and Koch Institue for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
7
|
Qi Y, Liu J, Chao J, Scheuerman MP, Rahimi SA, Lee LY, Li S. PTEN suppresses epithelial-mesenchymal transition and cancer stem cell activity by downregulating Abi1. Sci Rep 2020; 10:12685. [PMID: 32728066 PMCID: PMC7391766 DOI: 10.1038/s41598-020-69698-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The epithelial–mesenchymal transition (EMT) is an embryonic program frequently reactivated during cancer progression and is implicated in cancer invasion and metastasis. Cancer cells can also acquire stem cell properties to self-renew and give rise to new tumors through the EMT. Inactivation of the tumor suppressor PTEN has been shown to induce the EMT, but the underlying molecular mechanisms are less understood. In this study, we reconstituted PTEN-deficient breast cancer cells with wild-type and mutant PTEN, demonstrating that restoration of PTEN expression converted cancer cells with mesenchymal traits to an epithelial phenotype and inhibited cancer stem cell (CSC) activity. The protein rather than the lipid phosphatase activity of PTEN accounts for the reversal of the EMT. PTEN dephosphorylates and downregulates Abi1 in breast cancer cells. Gain- and loss-of-function analysis indicates that upregulation of Abi1 mediates PTEN loss-induced EMT and CSC activity. These results suggest that PTEN may suppress breast cancer invasion and metastasis via dephosphorylating and downregulating Abi1.
Collapse
Affiliation(s)
- Yanmei Qi
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, 125 Paterson Street, MEB-687, New Brunswick, NJ, 08093, USA
| | - Jie Liu
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, 125 Paterson Street, MEB-687, New Brunswick, NJ, 08093, USA
| | - Joshua Chao
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, 125 Paterson Street, MEB-687, New Brunswick, NJ, 08093, USA
| | - Mark P Scheuerman
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, 125 Paterson Street, MEB-687, New Brunswick, NJ, 08093, USA
| | - Saum A Rahimi
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, 125 Paterson Street, MEB-687, New Brunswick, NJ, 08093, USA
| | - Leonard Y Lee
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, 125 Paterson Street, MEB-687, New Brunswick, NJ, 08093, USA
| | - Shaohua Li
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, 125 Paterson Street, MEB-687, New Brunswick, NJ, 08093, USA.
| |
Collapse
|
8
|
Yu X, Liang C, Zhang Y, Zhang W, Chen H. Inhibitory short peptides targeting EPS8/ABI1/SOS1 tri-complex suppress invasion and metastasis of ovarian cancer cells. BMC Cancer 2019; 19:878. [PMID: 31488087 PMCID: PMC6727365 DOI: 10.1186/s12885-019-6087-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/23/2019] [Indexed: 01/13/2023] Open
Abstract
Background We aimed to develop inhibitory short peptides that can prevent protein interactions of SOS1/EPS8/ABI1 tri-complex, a key component essential for ovarian cancer metastasis. Methods Plasmids containing various regions of HA-tagged ABI1 were co-transfected into ovarian cancer cells with Flag-tagged SOS1 or Myc-tagged EPS8. Co-immunoprecipitation and GST-pulldown assay were used to identify the regions of ABI1 responsible for SOS1 and EPS8 binding. Inhibitory short peptides of these binding regions were synthesized and modified with HIV-TAT sequence. The blocking effects of the peptides on ABI1-SOS1 or ABI1-EPS8 interactions in vitro and in vivo were determined by GST-pulldown assay. The capability of these short peptides in inhibiting invasion and metastasis of ovarian cancer cell was tested by Matrigel invasion assay and peritoneal metastatic colonization assay. Results The formation of endogenous SOS1/EPS8/ABI1 tri-complex was detected in the event of LPA-induced ovarian cancer cell invasion. In the tri-complex, ABI1 acted as a scaffold protein holding together SOS1 and EPS8. The SH3 and poly-proline+PxxDY regions of ABI1 were responsible for SOS1 and EPS8 binding, respectively. Inhibitory short peptides p + p-8 (ppppppppvdyedee) and SH3–3 (ekvvaiydytkdkddelsfmegaii) could block ABI1-SOS1 and ABI1-EPS8 interaction in vitro. TAT-p + p-8 peptide could disrupt ABI1-EPS8 interaction and suppress the invasion and metastasis of ovarian cancer cells in vivo. Conclusions TAT-p + p-8 peptide could efficiently disrupt the ABI1-EPS8 interaction, tri-complex formation, and block the invasion and metastasis of ovarian cancer cells.
Collapse
Affiliation(s)
- Xuechen Yu
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Chuan Liang
- Department of Cardiothoracic vascular surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yuanzhen Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Wei Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Huijun Chen
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
9
|
Role and Function of the Type IV Secretion System in Anaplasma and Ehrlichia Species. Curr Top Microbiol Immunol 2019; 413:297-321. [PMID: 29536364 DOI: 10.1007/978-3-319-75241-9_12] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The obligatory intracellular pathogens Anaplasma phagocytophilum and Ehrlichia chaffeensis proliferate within membrane-bound vacuoles of human leukocytes and cause potentially fatal emerging infectious diseases. Despite the reductive genome evolution in this group of bacteria, genes encoding the type IV secretion system (T4SS), which is homologous to the VirB/VirD4 system of the plant pathogen Agrobacterium tumefaciens, have been expanded and are highly expressed in A. phagocytophilum and E. chaffeensis in human cells. Of six T4SS effector proteins identified in them, roles and functions have been described so far only for ankyrin repeat domain-containing protein A (AnkA), Anaplasma translocated substrate 1 (Ats-1), and Ehrlichia translocated factor 1 (Etf-1, ECH0825). These effectors are abundantly produced and secreted into the host cytoplasm during infection, but not toxic to host cells. They contain eukaryotic protein motifs or organelle localization signals and have distinct subcellular localization, target to specific host cell molecules to promote infection. Ats-1 and Etf-1 are orthologous proteins, subvert two important innate immune mechanisms against intracellular infection, cellular apoptosis and autophagy, and manipulate autophagy to gain nutrients from host cells. Although Ats-1 and Etf-1 have similar functions and roles in obligatory intracellular infection, they are specifically adapted to the distinct membrane-bound intracellular niche of A. phagocytophilum and E. chaffeensis, respectively. Ectopic expression of these effectors enhances respective bacterial infection, whereas intracellular delivery of antibodies against these effectors or targeted knockdown of the effector with antisense peptide nucleic acid significantly impairs bacterial infection. Thus, both T4SSs have evolved as important survival and nutritional virulence mechanism in these obligatory intracellular bacteria. Future studies on the functions of Anaplasma and Ehrlichia T4SS effector molecules and signaling pathways will undoubtedly advance our understanding of the complex interplay between obligatory intracellular pathogens and their hosts. Such data can be applied toward the treatment and control of anaplasmosis and ehrlichiosis.
Collapse
|
10
|
Shao L, Chang J, Feng W, Wang X, Williamson EA, Li Y, Schajnovitz A, Scadden D, Mortensen LJ, Lin CP, Li L, Paulson A, Downing J, Zhou D, Hromas RA. The Wave2 scaffold Hem-1 is required for transition of fetal liver hematopoiesis to bone marrow. Nat Commun 2018; 9:2377. [PMID: 29915352 PMCID: PMC6006146 DOI: 10.1038/s41467-018-04716-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 05/16/2018] [Indexed: 01/08/2023] Open
Abstract
The transition of hematopoiesis from the fetal liver (FL) to the bone marrow (BM) is incompletely characterized. We demonstrate that the Wiskott–Aldrich syndrome verprolin-homologous protein (WAVE) complex 2 is required for this transition, as complex degradation via deletion of its scaffold Hem-1 causes the premature exhaustion of neonatal BM hematopoietic stem cells (HSCs). This exhaustion of BM HSC is due to the failure of BM engraftment of Hem-1−/− FL HSCs, causing early death. The Hem-1−/− FL HSC engraftment defect is not due to the lack of the canonical function of the WAVE2 complex, the regulation of actin polymerization, because FL HSCs from Hem-1−/− mice exhibit no defects in chemotaxis, BM homing, or adhesion. Rather, the failure of Hem-1−/− FL HSC engraftment in the marrow is due to the loss of c-Abl survival signaling from degradation of the WAVE2 complex. However, c-Abl activity is dispensable for the engraftment of adult BM HSCs into the BM. These findings reveal a novel function of the WAVE2 complex and define a mechanism for FL HSC fitness in the embryonic BM niche. Hematopoietic stem cells (HSCs) migrate from the fetal liver to the bone marrow (BM) during embryogenesis. Here the authors show that the WAVE2 complex scaffold Hem1 is required for engraftment of HSCs in BM, not through its canonical role regulating actin polymerization, but through c-Abl survival signaling.
Collapse
Affiliation(s)
- Lijian Shao
- Department of Pharmacology, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Jianhui Chang
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Wei Feng
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Xiaoyan Wang
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Elizabeth A Williamson
- Department of Medicine and Pathology, University of Florida, Gainesville, FL, 32610, USA
| | - Ying Li
- Department of Medicine and Pathology, University of Florida, Gainesville, FL, 32610, USA
| | - Amir Schajnovitz
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, 02138, MA, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, 02114, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - David Scadden
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, 02138, MA, USA
| | - Luke J Mortensen
- Regenerative Medicine Center, University of Georgia, Athens, GA, 30602, USA
| | - Charles P Lin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Linheng Li
- Department of Pathology and Laboratory, Medicine University of Kansas, Kansas City, 66160, KA, USA
| | - Ariel Paulson
- Department of Pathology and Laboratory, Medicine University of Kansas, Kansas City, 66160, KA, USA.,Stowers Institute for Medical Research, Kansas City, MO, 66160, USA
| | - James Downing
- Department of Pathology and Laboratory Medicine, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Daohong Zhou
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA. .,Department of Pharmacodynamics, University of Florida, Gainesville, FL, 32610, USA.
| | - Robert A Hromas
- Office of the Dean and the Cancer Center, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
| |
Collapse
|
11
|
Li W, Chan WWR, Ngo JCK, Lau KF. Emerging roles of the neural adaptor FE65 in neurite outgrowth. Neural Regen Res 2018; 13:2085-2086. [PMID: 30323128 PMCID: PMC6199926 DOI: 10.4103/1673-5374.241449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Wen Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Wai Wa Ray Chan
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kwok-Fai Lau
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
12
|
Pandey A, Yadav V, Sharma A, Khurana JP, Pandey GK. The unc-53 gene negatively regulates rac GTPases to inhibit unc-5 activity during Distal tip cell migrations in C. elegans. Cell Adh Migr 2017; 12:195-203. [PMID: 28678595 DOI: 10.1080/19336918.2017.1345413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The unc-53/NAV2 gene encodes for an adaptor protein required for cell migrations along the anteroposterior (AP) axes of C. elegans. This study identifies unc-53 as a novel component of signaling pathways regulating Distal tip cell (DTC) migrations along the AP and dorsoventral (DV) axes. unc-53 negatively regulates and functions downstream of ced-10/Rac pathway genes; ced-10/Rac and mig-2/RhoG, which are required for proper DTC migration. Moreover, unc-53 exhibits genetic interaction with abl-1 and unc-5, the 2 known negative regulators of ced-10/Rac signaling. Our genetic analysis supports the model, where abl-1 negatively regulates unc-53 during DTC migrations and requirement of unc-53 function during both AP and DV DTC migrations could be due to unc-53 mediated regulation of unc-5 activity.
Collapse
Affiliation(s)
- Amita Pandey
- a Department of Plant Molecular Biology , University of Delhi South Campus , New Delhi , India
| | - Vipul Yadav
- b Department of Genetics , University of Delhi South Campus , New Delhi , India
| | - Aditi Sharma
- a Department of Plant Molecular Biology , University of Delhi South Campus , New Delhi , India
| | - Jitendra P Khurana
- a Department of Plant Molecular Biology , University of Delhi South Campus , New Delhi , India
| | - Girdhar K Pandey
- a Department of Plant Molecular Biology , University of Delhi South Campus , New Delhi , India
| |
Collapse
|
13
|
EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression. Mol Cancer 2017; 16:8. [PMID: 28137272 PMCID: PMC5282733 DOI: 10.1186/s12943-016-0579-2] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/25/2016] [Indexed: 12/17/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is associated with metastasis formation as well as with generation and maintenance of cancer stem cells. In this way, EMT contributes to tumor invasion, heterogeneity and chemoresistance. Morphological and functional changes involved in these processes require robust reprogramming of gene expression, which is only partially accomplished at the transcriptional level. Alternative splicing is another essential layer of gene expression regulation that expands the cell proteome. This step in post-transcriptional regulation of gene expression tightly controls cell identity between epithelial and mesenchymal states and during stem cell differentiation. Importantly, dysregulation of splicing factor function and cancer-specific splicing isoform expression frequently occurs in human tumors, suggesting the importance of alternative splicing regulation for cancer biology. In this review, we briefly discuss the role of EMT programs in development, stem cell differentiation and cancer progression. Next, we focus on selected examples of key factors involved in EMT and stem cell differentiation that are regulated post-transcriptionally through alternative splicing mechanisms. Lastly, we describe relevant oncogenic splice-variants that directly orchestrate cancer stem cell biology and tumor EMT, which may be envisioned as novel targets for therapeutic intervention.
Collapse
|
14
|
Döppler H, Bastea L, Borges S, Geiger X, Storz P. The phosphorylation status of VASP at serine 322 can be predictive for aggressiveness of invasive ductal carcinoma. Oncotarget 2016; 6:29740-52. [PMID: 26336132 PMCID: PMC4745759 DOI: 10.18632/oncotarget.4965] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 07/31/2015] [Indexed: 11/25/2022] Open
Abstract
Vasodilator-stimulated phosphoprotein (VASP) signaling is critical for dynamic actin reorganization processes that define the motile phenotype of cells. Here we show that VASP is generally highly expressed in normal breast tissue and breast cancer. We also show that the phosphorylation status of VASP at S322 can be predictive for breast cancer progression to an aggressive phenotype. Our data indicate that phosphorylation at S322 is gradually decreased from normal breast to DCIS, luminal/ER+, HER2+ and basal-like/TN phenotypes. Similarly, the expression levels of PKD2, the kinase that phosphorylates VASP at this site, are decreased in invasive ductal carcinoma samples of all three groups. Overall, the phosphorylation status of this residue may serve as an indicator of aggressiveness of breast tumors.
Collapse
Affiliation(s)
- Heike Döppler
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ligia Bastea
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sahra Borges
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
15
|
Liu J, Sun L, Shen Q, Wu X, Xu H. New congenital anomalies of the kidney and urinary tract and outcomes in Robo2 mutant mice with the inserted piggyBac transposon. BMC Nephrol 2016; 17:98. [PMID: 27460642 PMCID: PMC4962383 DOI: 10.1186/s12882-016-0308-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 07/19/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Disruption of ROBO2 in humans causes vesicoureteral reflux (VUR)/congenital anomalies of the kidney and urinary tract (CAKUT). PiggyBac (PB) is a DNA transposon, and its insertion often reduces-but does not eliminate-gene expression. The Robo2 insertion mutant exhibited non-dilating VUR, ureteropelvic junction obstruction (UPJO) not found in reported models. We studied the incidence and outcomes of VUR/CAKUT in this mutant and explored the relationship between Robo2 gene expression and the occurrence and severity of VUR/CAKUT. METHODS The urinary systems of newborn mutants were evaluated via Vevo 770 micro-ultrasound. Some of the normal animals-and all of the abnormal animals-were followed to adulthood and tested for VUR. Urinary obstruction experiments were performed on mice with hydronephrosis. The histology of the kidney and ureter was examined by light microscopy and transmission electron microscopy. Robo2 (PB/PB) mice were crossed with Hoxb7/myr-Venus mice to visualize the location of the ureters relative to the bladder. RESULTS In Robo2 (PB/PB) mice, PB insertion led to an approximately 50 % decrease in Robo2 gene expression. The most common (27.07 %, 62/229) abnormality was non-dilating VUR, and no statistically significant differences were found between age groups. Approximately 6.97 % displayed ultrasound-detectable CAKUT, and these mice survived to adulthood without improvement. No severe CAKUT were found in Robo2 (PB/+) mice. The refluxing ureters showed disorganized smooth muscle fibers, reduced muscle cell populations, intercellular edema and intracytoplasmic vacuoles in smooth muscle cells. Both UPJ and UVJ muscle defects were noted in Robo2 (PB/PB) mice. CONCLUSIONS Robo2 (PB/PB) mice is the first Robo2-deficient mouse model to survive to adulthood while displaying non-dilating VUR, UPJO, and multiple ureters with blind endings. The genetic background of these mutants may influence the penetrance and severity of the CAKUT phenotypes. VUR and other CAKUT found in this mutant had little chance of spontaneous resolution, and this requires careful follow-up. We reported for the first time that the non-dilated refluxing ureters showed disorganized smooth muscle fibers and altered smooth muscle cell structure, more accurately mimicking the characteristics of human cases. Future studies are required to test the role of Robo2 in the ureteric smooth muscle.
Collapse
Affiliation(s)
- Jialu Liu
- Department of Nephrology and Rheumatism, Children's Hospital of Fudan University, 399 WanYuan Road, Shanghai, 201102, China
| | - Li Sun
- Department of Nephrology and Rheumatism, Children's Hospital of Fudan University, 399 WanYuan Road, Shanghai, 201102, China
| | - Qian Shen
- Department of Nephrology and Rheumatism, Children's Hospital of Fudan University, 399 WanYuan Road, Shanghai, 201102, China
| | - Xiaohui Wu
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Xu
- Department of Nephrology and Rheumatism, Children's Hospital of Fudan University, 399 WanYuan Road, Shanghai, 201102, China.
| |
Collapse
|
16
|
Sekino S, Kashiwagi Y, Kanazawa H, Takada K, Baba T, Sato S, Inoue H, Kojima M, Tani K. The NESH/Abi-3-based WAVE2 complex is functionally distinct from the Abi-1-based WAVE2 complex. Cell Commun Signal 2015; 13:41. [PMID: 26428302 PMCID: PMC4589964 DOI: 10.1186/s12964-015-0119-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 09/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Abl interactor (Abi) family proteins play significant roles in actin cytoskeleton organization through participation in the WAVE complex. Mammals possess three Abi proteins: Abi-1, Abi-2, and NESH/Abi-3. Abi-1 and Abi-2 were originally identified as Abl tyrosine kinase-binding proteins. It has been disclosed that Abi-1 acts as a bridge between c-Abl and WAVE2, and c-Abl-mediated WAVE2 phosphorylation promotes actin remodeling. We showed previously that NESH/Abi-3 is present in the WAVE2 complex, but neither binds to c-Abl nor promotes c-Abl-mediated phosphorylation of WAVE2. RESULTS In this study, we characterized NESH/Abi-3 in more detail, and compared its properties with those of Abi-1 and Abi-2. NESH/Abi-3 was ectopically expressed in NIH3T3 cells, in which Abi-1, but not NESH/Abi-3, is expressed. The expression of NESH/Abi-3 caused degradation of endogenous Abi-1, which led to the formation of a NESH/Abi-3-based WAVE2 complex. When these cells were plated on fibronectin-coated dishes, the translocation of WAVE2 to the plasma membrane was significantly reduced and the formation of peripheral lamellipodial structures was disturbed, suggesting that the NESH/Abi-3-based WAVE2 complex was unable to help produce lamellipodial protrusions. Next, Abi-1, Abi-2, or NESH/Abi-3 was expressed in v-src-transformed NIH3T3 cells. Only in NESH/Abi-3-expressed cells did treatment with an Abl kinase inhibitor, imatinib mesylate, or siRNA-mediated knockdown of c-Abl promote the formation of invadopodia, which are ventral membrane protrusions with extracellular matrix degradation activity. Structural studies showed that a linker region between the proline-rich regions and the Src homology 3 (SH3) domain of Abi-1 is crucial for its interaction with c-Abl and c-Abl-mediated phosphorylation of WAVE2. CONCLUSIONS The NESH/Abi-3-based WAVE2 complex is functionally distinct from the Abi-1-based one, and NESH/Abi-3 may be involved in the formation of ventral protrusions under certain conditions.
Collapse
Affiliation(s)
- Saki Sekino
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Yuriko Kashiwagi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Hitoshi Kanazawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Kazuki Takada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Takashi Baba
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Seiichi Sato
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Hiroki Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Masaki Kojima
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Katsuko Tani
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
17
|
Trono P, Di Modugno F, Circo R, Spada S, Di Benedetto A, Melchionna R, Palermo B, Matteoni S, Soddu S, Mottolese M, De Maria R, Nisticò P. hMENA(11a) contributes to HER3-mediated resistance to PI3K inhibitors in HER2-overexpressing breast cancer cells. Oncogene 2015; 35:887-96. [PMID: 25961924 DOI: 10.1038/onc.2015.143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/12/2015] [Accepted: 03/23/2015] [Indexed: 12/31/2022]
Abstract
Human Mena (hMENA), an actin regulatory protein of the ENA/VASP family, cooperates with ErbB receptor family signaling in breast cancer. It is overexpressed in high-risk preneoplastic lesions and in primary breast tumors where it correlates with HER2 overexpression and an activated status of AKT and MAPK. The concomitant overexpression of hMENA and HER2 in breast cancer patients is indicative of a worse prognosis. hMENA is expressed along with alternatively expressed isoforms, hMENA(11a) and hMENAΔv6 with opposite functions. A novel role for the epithelial-associated hMENA(11a) isoform in sustaining HER3 activation and pro-survival pathways in HER2-overexpressing breast cancer cells has been identified by reverse phase protein array and validated in vivo in a series of breast cancer tissues. As HER3 activation is crucial in mechanisms of cell resistance to PI3K inhibitors, we explored whether hMENA(11a) is involved in these resistance mechanisms. The specific hMENA(11a) depletion switched off the HER3-related pathway activated by PI3K inhibitors and impaired the nuclear accumulation of HER3 transcription factor FOXO3a induced by PI3K inhibitors, whereas PI3K inhibitors activated hMENA(11a) phosphorylation and affected its localization. At the functional level, we found that hMENA(11a) sustains cell proliferation and survival in response to PI3K inhibitor treatment, whereas hMENA(11a) silencing increases molecules involved in cancer cell apoptosis. As shown in three-dimensional cultures, hMENA(11a) contributes to resistance to PI3K inhibition because its depletion drastically reduced cell viability upon treatment with PI3K inhibitor BEZ235. Altogether, these results indicate that hMENA(11a) in HER2-overexpressing breast cancer cells sustains HER3/AKT axis activation and contributes to HER3-mediated resistance mechanisms to PI3K inhibitors. Thus, hMENA(11a) expression can be proposed as a marker of HER3 activation and resistance to PI3K inhibition therapies, to select patients who may benefit from these combined targeted treatments. hMENA(11a) activity could represent a new target for antiproliferative therapies in breast cancer.
Collapse
Affiliation(s)
- P Trono
- Laboratory of Immunology, Experimental Oncology, Regina Elena National Cancer Institute, Rome, Italy
| | - F Di Modugno
- Laboratory of Immunology, Experimental Oncology, Regina Elena National Cancer Institute, Rome, Italy
| | - R Circo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - S Spada
- Laboratory of Immunology, Experimental Oncology, Regina Elena National Cancer Institute, Rome, Italy.,Department of Molecular Medicine, Sapienza, University of Rome, Rome, Italy
| | - A Di Benedetto
- Department of Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | - R Melchionna
- Laboratory of Immunology, Experimental Oncology, Regina Elena National Cancer Institute, Rome, Italy
| | - B Palermo
- Laboratory of Immunology, Experimental Oncology, Regina Elena National Cancer Institute, Rome, Italy.,Department of Molecular Medicine, Sapienza, University of Rome, Rome, Italy
| | - S Matteoni
- Experimental Oncology, Regina Elena National Cancer Institute, Rome, Italy
| | - S Soddu
- Experimental Oncology, Regina Elena National Cancer Institute, Rome, Italy
| | - M Mottolese
- Department of Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | - R De Maria
- Scientific Direction, Regina Elena National Cancer Institute, Rome, Italy
| | - P Nisticò
- Laboratory of Immunology, Experimental Oncology, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
18
|
HCMV pUL135 remodels the actin cytoskeleton to impair immune recognition of infected cells. Cell Host Microbe 2015; 16:201-214. [PMID: 25121749 PMCID: PMC4150922 DOI: 10.1016/j.chom.2014.07.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/10/2013] [Accepted: 07/04/2014] [Indexed: 11/21/2022]
Abstract
Immune evasion genes help human cytomegalovirus (HCMV) establish lifelong persistence. Without immune pressure, laboratory-adapted HCMV strains have undergone genetic alterations. Among these, the deletion of the UL/b' domain is associated with loss of virulence. In a screen of UL/b', we identified pUL135 as a protein responsible for the characteristic cytopathic effect of clinical HCMV strains that also protected from natural killer (NK) and T cell attack. pUL135 interacted directly with abl interactor 1 (ABI1) and ABI2 to recruit the WAVE2 regulatory complex to the plasma membrane, remodel the actin cytoskeleton and dramatically reduce the efficiency of immune synapse (IS) formation. An intimate association between F-actin filaments in target cells and the IS was dispelled by pUL135 expression. Thus, F-actin in target cells plays a critical role in synaptogenesis, and this can be exploited by pathogens to protect against cytotoxic immune effector cells. An independent interaction between pUL135 and talin disrupted cell contacts with the extracellular matrix.
Collapse
|
19
|
Havrylenko S, Noguera P, Abou-Ghali M, Manzi J, Faqir F, Lamora A, Guérin C, Blanchoin L, Plastino J. WAVE binds Ena/VASP for enhanced Arp2/3 complex-based actin assembly. Mol Biol Cell 2014; 26:55-65. [PMID: 25355952 PMCID: PMC4279229 DOI: 10.1091/mbc.e14-07-1200] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A dual in vitro/in vivo approach is used to show that WAVE directly binds Ena/VASP, coordinating its activity with that of the Arp2/3 complex for enhanced actin assembly. The WAVE complex is the main activator of the Arp2/3 complex for actin filament nucleation and assembly in the lamellipodia of moving cells. Other important players in lamellipodial protrusion are Ena/VASP proteins, which enhance actin filament elongation. Here we examine the molecular coordination between the nucleating activity of the Arp2/3 complex and the elongating activity of Ena/VASP proteins for the formation of actin networks. Using an in vitro bead motility assay, we show that WAVE directly binds VASP, resulting in an increase in Arp2/3 complex–based actin assembly. We show that this interaction is important in vivo as well, for the formation of lamellipodia during the ventral enclosure event of Caenorhabditis elegans embryogenesis. Ena/VASP's ability to bind F-actin and profilin-complexed G-actin are important for its effect, whereas Ena/VASP tetramerization is not necessary. Our data are consistent with the idea that binding of Ena/VASP to WAVE potentiates Arp2/3 complex activity and lamellipodial actin assembly.
Collapse
Affiliation(s)
- Svitlana Havrylenko
- Institut Curie, Centre de Recherche Centre National de la Recherche Scientifique, Unité Mixte de Recherche 168 Université Pierre et Marie Curie, Paris F-75248, France
| | - Philippe Noguera
- Institut Curie, Centre de Recherche Centre National de la Recherche Scientifique, Unité Mixte de Recherche 168 Université Pierre et Marie Curie, Paris F-75248, France
| | - Majdouline Abou-Ghali
- Institut Curie, Centre de Recherche Centre National de la Recherche Scientifique, Unité Mixte de Recherche 168 Université Pierre et Marie Curie, Paris F-75248, France
| | - John Manzi
- Institut Curie, Centre de Recherche Centre National de la Recherche Scientifique, Unité Mixte de Recherche 168 Université Pierre et Marie Curie, Paris F-75248, France
| | - Fahima Faqir
- Institut Curie, Centre de Recherche Centre National de la Recherche Scientifique, Unité Mixte de Recherche 168 Université Pierre et Marie Curie, Paris F-75248, France
| | - Audrey Lamora
- Institut Curie, Centre de Recherche Centre National de la Recherche Scientifique, Unité Mixte de Recherche 168 Université Pierre et Marie Curie, Paris F-75248, France
| | - Christophe Guérin
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, CNRS/CEA/INRA/UJF, Grenoble 38054, France
| | - Laurent Blanchoin
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, CNRS/CEA/INRA/UJF, Grenoble 38054, France
| | - Julie Plastino
- Institut Curie, Centre de Recherche Centre National de la Recherche Scientifique, Unité Mixte de Recherche 168 Université Pierre et Marie Curie, Paris F-75248, France
| |
Collapse
|
20
|
Chen XJ, Squarr AJ, Stephan R, Chen B, Higgins TE, Barry DJ, Martin MC, Rosen MK, Bogdan S, Way M. Ena/VASP proteins cooperate with the WAVE complex to regulate the actin cytoskeleton. Dev Cell 2014; 30:569-84. [PMID: 25203209 PMCID: PMC4165403 DOI: 10.1016/j.devcel.2014.08.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 07/21/2014] [Accepted: 08/01/2014] [Indexed: 01/25/2023]
Abstract
Ena/VASP proteins and the WAVE regulatory complex (WRC) regulate cell motility by virtue of their ability to independently promote actin polymerization. We demonstrate that Ena/VASP and the WRC control actin polymerization in a cooperative manner through the interaction of the Ena/VASP EVH1 domain with an extended proline rich motif in Abi. This interaction increases cell migration and enables VASP to cooperatively enhance WRC stimulation of Arp2/3 complex-mediated actin assembly in vitro in the presence of Rac. Loss of this interaction in Drosophila macrophages results in defects in lamellipodia formation, cell spreading, and redistribution of Ena to the tips of filopodia-like extensions. Rescue experiments of abi mutants also reveals a physiological requirement for the Abi:Ena interaction in photoreceptor axon targeting and oogenesis. Our data demonstrate that the activities of Ena/VASP and the WRC are intimately linked to ensure optimal control of actin polymerization during cell migration and development.
Collapse
Affiliation(s)
- Xing Judy Chen
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Anna Julia Squarr
- Institute of Neurobiology, University of Muenster, Badestrasse 9, 48149 Muenster, Germany
| | - Raiko Stephan
- Institute of Neurobiology, University of Muenster, Badestrasse 9, 48149 Muenster, Germany
| | - Baoyu Chen
- Howard Hughes Medical Institute and Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Theresa E Higgins
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - David J Barry
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Morag C Martin
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Michael K Rosen
- Howard Hughes Medical Institute and Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sven Bogdan
- Institute of Neurobiology, University of Muenster, Badestrasse 9, 48149 Muenster, Germany.
| | - Michael Way
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|
21
|
Hai A, Kizilbash NA, Zaidi SHH, Alruwaili J, Shahzad K. Differences in structural elements of Bcr-Abl oncoprotein isoforms in Chronic Myelogenous Leukemia. Bioinformation 2014; 10:108-14. [PMID: 24748748 PMCID: PMC3974235 DOI: 10.6026/97320630010108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 01/11/2014] [Accepted: 01/12/2014] [Indexed: 11/24/2022] Open
Abstract
in silico modeling, using Psipred and ExPASy servers was employed to determine the structural elements of Bcr-Abl oncoprotein (p210(BCR-ABL)) isoforms, b2a2 and b3a2, expressed in Chronic Myelogenous Leukemia (CML). Both these proteins are tyrosine kinases having masses of 210-kDa and differing only by 25 amino acids coded by the b3 exonand an amino acidsubstitution (Glu903Asp). The secondary structure elements of the two proteins show differences in five α-helices and nine β-strands which relates to differences in the SH3, SH2, SH1 and DNA-binding domains. These differences can result in different roles played by the two isoforms in mediating signal transduction during the course of CML.
Collapse
Affiliation(s)
- Abdul Hai
- Department of Biochemistry, Faculty of Medicine & Applied Medical Sciences, Northern Border University
| | - Nadeem A Kizilbash
- Department of Biochemistry, Faculty of Medicine & Applied Medical Sciences, Northern Border University
| | - Syeda Huma H Zaidi
- Department of Chemistry, Faculty of Science, Northern Border University, P.O. Box 1321, Arar-91431, Saudi Arabia
| | - Jamal Alruwaili
- Department of Biochemistry, Faculty of Medicine & Applied Medical Sciences, Northern Border University
| | - Khuram Shahzad
- Illinois Informatics Institute, University of Illinois, Urbana-Champaign, Illinois, U.S.A
| |
Collapse
|
22
|
Döppler H, Storz P. Regulation of VASP by phosphorylation: consequences for cell migration. Cell Adh Migr 2013; 7:482-6. [PMID: 24401601 DOI: 10.4161/cam.27351] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phosphorylations control all aspects of vasodilator-stimulated phospho-protein (VASP) function. Mapped phosphorylation sites include Y39, S157, S239, T278, and S322, and multiple kinases have been shown to mediate their phosphorylation. Recently, Protein Kinase D1 (PKD1) as a direct kinase for S157 and S322 joined this group. While S157 phosphorylation generally seems to serve as a signal for membrane localization, phosphorylations at S322 or at S239 and T278 have opposite effects on F-actin accumulation. In migrating cells, S322 phosphorylation increases filopodia numbers and length, while S239/T278 phosphorylations decrease these and also disrupt formation of focal adhesions. Therefore, the kinases mediating these phosphorylations can be seen as switches needed to facilitate cell motility.
Collapse
Affiliation(s)
- Heike Döppler
- Department of Cancer Biology; Mayo Clinic Comprehensive Cancer Center; Mayo Clinic; Jacksonville, FL USA
| | - Peter Storz
- Department of Cancer Biology; Mayo Clinic Comprehensive Cancer Center; Mayo Clinic; Jacksonville, FL USA
| |
Collapse
|
23
|
Spracklen AJ, Kelpsch DJ, Chen X, Spracklen CN, Tootle TL. Prostaglandins temporally regulate cytoplasmic actin bundle formation during Drosophila oogenesis. Mol Biol Cell 2013; 25:397-411. [PMID: 24284900 PMCID: PMC3907279 DOI: 10.1091/mbc.e13-07-0366] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Tight regulation of actin remodeling is essential for development, and misregulation results in disease. Cytoskeletal dynamics are regulated by prostaglandins (PGs)—lipid signals. PGs temporally regulate actin remodeling during Drosophila oogenesis, at least in part, by modulating the activity of the actin elongation factor Enabled. Prostaglandins (PGs)—lipid signals produced downstream of cyclooxygenase (COX) enzymes—regulate actin dynamics in cell culture and platelets, but their roles during development are largely unknown. Here we define a new role for Pxt, the Drosophila COX-like enzyme, in regulating the actin cytoskeleton—temporal restriction of actin remodeling during oogenesis. PGs are required for actin filament bundle formation during stage 10B (S10B). In addition, loss of Pxt results in extensive early actin remodeling, including actin filaments and aggregates, within the posterior nurse cells of S9 follicles; wild-type follicles exhibit similar structures at a low frequency. Hu li tai shao (Hts-RC) and Villin (Quail), an actin bundler, localize to all early actin structures, whereas Enabled (Ena), an actin elongation factor, preferentially localizes to those in pxt mutants. Reduced Ena levels strongly suppress early actin remodeling in pxt mutants. Furthermore, loss of Pxt results in reduced Ena localization to the sites of bundle formation during S10B. Together these data lead to a model in which PGs temporally regulate actin remodeling during Drosophila oogenesis by controlling Ena localization/activity, such that in S9, PG signaling inhibits, whereas at S10B, it promotes Ena-dependent actin remodeling.
Collapse
Affiliation(s)
- Andrew J Spracklen
- Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242
| | | | | | | | | |
Collapse
|
24
|
Gurzu S, Ciortea D, Ember I, Jung I. The possible role of Mena protein and its splicing-derived variants in embryogenesis, carcinogenesis, and tumor invasion: a systematic review of the literature. BIOMED RESEARCH INTERNATIONAL 2013; 2013:365192. [PMID: 23956979 PMCID: PMC3728509 DOI: 10.1155/2013/365192] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/16/2013] [Accepted: 07/02/2013] [Indexed: 02/05/2023]
Abstract
The Ena/VASP (enabled/vasodilator stimulated phosphoprotein) family includes the binding actin proteins such as mammalian Ena (Mena), VASP, and Ena-VASP-like. It is known that the perturbation of actin cycle could determine alteration in the mobility of cells and in consequence of organogenesis. Few recent studies have revealed that Mena protein could play a role in breast or pancreatic carcinogenesis. Based on our researches, we observed that the intensity of Mena expression increased from premalignant to malignant lesions in some organs such as large bowel, stomach, cervix, and salivary glands. These findings prove that Mena could be a marker of premalignant epithelial lesions. In premalignant lesions, it could be helpful to define more accurately the risk for malignant transformation. In malignant tumors, correlation of expression of its splice variants could indicate metastatic behavior. In conclusion, we consider that it is necessary to analyze the expression of Mena splice variants in a higher number of cases, in different epithelial lesions, and also in experimental studies to define its exact role in carcinogenesis and also its possible prognostic and predictive values.
Collapse
Affiliation(s)
- Simona Gurzu
- Department of Pathology, University of Medicine and Pharmacy of Targu-Mures, 38 Ghe Marinescu Street, 540193 Targu Mures, Romania.
| | | | | | | |
Collapse
|
25
|
Singh A, Winterbottom EF, Ji YJ, Hwang YS, Daar IO. Abelson interactor 1 (ABI1) and its interaction with Wiskott-Aldrich syndrome protein (wasp) are critical for proper eye formation in Xenopus embryos. J Biol Chem 2013; 288:14135-14146. [PMID: 23558677 DOI: 10.1074/jbc.m112.445643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abl interactor 1 (Abi1) is a scaffold protein that plays a central role in the regulation of actin cytoskeleton dynamics as a constituent of several key protein complexes, and homozygous loss of this protein leads to embryonic lethality in mice. Because this scaffold protein has been shown in cultured cells to be a critical component of pathways controlling cell migration and actin regulation at cell-cell contacts, we were interested to investigate the in vivo role of Abi1 in morphogenesis during the development of Xenopus embryos. Using morpholino-mediated translation inhibition, we demonstrate that knockdown of Abi1 in the whole embryo, or specifically in eye field progenitor cells, leads to disruption of eye morphogenesis. Moreover, signaling through the Src homology 3 domain of Abi1 is critical for proper movement of retinal progenitor cells into the eye field and their appropriate differentiation, and this process is dependent upon an interaction with the nucleation-promoting factor Wasp (Wiskott-Aldrich syndrome protein). Collectively, our data demonstrate that the Abi1 scaffold protein is an essential regulator of cell movement processes required for normal eye development in Xenopus embryos and specifically requires an Src homology 3 domain-dependent interaction with Wasp to regulate this complex morphogenetic process.
Collapse
Affiliation(s)
- Arvinder Singh
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Emily F Winterbottom
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Yon Ju Ji
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Yoo-Seok Hwang
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Ira O Daar
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702.
| |
Collapse
|
26
|
Splicing program of human MENA produces a previously undescribed isoform associated with invasive, mesenchymal-like breast tumors. Proc Natl Acad Sci U S A 2012; 109:19280-5. [PMID: 23129656 DOI: 10.1073/pnas.1214394109] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human mena (hMENA), a member of the actin cytoskeleton regulators Ena/VASP, is overexpressed in high-risk preneoplastic lesions and in primary breast tumors and has been identified as playing a role in invasiveness and poor prognosis in breast cancers that express HER2. Here we identify a unique isoform, hMENAΔv6, derived from the hMENA alternative splicing program. In an isogenic model of human breast cancer progression, we show that hMENA(11a) is expressed in premalignant cells, whereas hMENAΔv6 expression is restricted to invasive cancer cells. "Reversion" of the malignant phenotype leads to concurrent down-regulation of all hMENA isoforms. In breast cancer cell lines, isoform-specific hMENA overexpression or knockdown revealed that in the absence of hMENA(11a), overexpression of hMENAΔv6 increased cell invasion, whereas overexpression of hMENA(11a) reduced the migratory and invasive ability of these cells. hMENA(11a) splicing was shown to be dependent on the epithelial regulator of splicing 1 (ESRP1), and forced expression of ESRP1 in invasive mesenchymal breast cancer cells caused a phenotypic switch reminiscent of a mesenchymal-to-epithelial transition (MET) characterized by changes in the cytoskeletal architecture, reexpression of hMENA(11a), and a reduction in cell invasion. hMENA-positive primary breast tumors, which are hMENA(11a)-negative, are more frequently E-cadherin low in comparison with tumors expressing hMENA(11a). These data suggest that polarized and growth-arrested cellular architecture correlates with absence of alternative hMENA isoform expression, and that the hMENA splicing program is relevant to malignant progression in invasive disease.
Collapse
|
27
|
McShea MA, Schmidt KL, Dubuke ML, Baldiga CE, Sullender ME, Reis AL, Zhang S, O'Toole SM, Jeffers MC, Warden RM, Kenney AH, Gosselin J, Kuhlwein M, Hashmi SK, Stringham EG, Ryder EF. Abelson interactor-1 (ABI-1) interacts with MRL adaptor protein MIG-10 and is required in guided cell migrations and process outgrowth in C. elegans. Dev Biol 2012; 373:1-13. [PMID: 23022657 DOI: 10.1016/j.ydbio.2012.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 09/12/2012] [Accepted: 09/21/2012] [Indexed: 11/19/2022]
Abstract
Directed cell migration and process outgrowth are vital to proper development of many metazoan tissues. These processes are dependent on reorganization of the actin cytoskeleton in response to external guidance cues. During development of the nervous system, the MIG-10/RIAM/Lamellipodin (MRL) signaling proteins are thought to transmit positional information from surface guidance cues to the actin polymerization machinery, and thus to promote polarized outgrowth of axons. In C. elegans, mutations in the MRL family member gene mig-10 result in animals that have defects in axon guidance, neuronal migration, and the outgrowth of the processes or 'canals' of the excretory cell, which is required for osmoregulation in the worm. In addition, mig-10 mutant animals have recently been shown to have defects in clustering of vesicles at the synapse. To determine additional molecular partners of MIG-10, we conducted a yeast two-hybrid screen using isoform MIG-10A as bait and isolated Abelson-interactor protein-1 (ABI-1). ABI-1, a downstream target of Abl non-receptor tyrosine kinase, is a member of the WAVE regulatory complex (WRC) involved in the initiation of actin polymerization. Further analysis using a co-immunoprecipitation system confirmed the interaction of MIG-10 and ABI-1 and showed that it requires the SH3 domain of ABI-1. Single mutants for mig-10 and abi-1 displayed similar phenotypes of incomplete migration of the ALM neurons and truncated outgrowth of the excretory cell canals, suggesting that the ABI-1/MIG-10 interaction is relevant in vivo. Cell autonomous expression of MIG-10 isoforms rescued both the neuronal migration and the canal outgrowth defects, showing that MIG-10 functions autonomously in the ALM neurons and the excretory cell. These results suggest that MIG-10 and ABI-1 interact physically to promote cell migration and process outgrowth in vivo. In the excretory canal, ABI-1 is thought to act downstream of UNC-53/NAV2, linking this large scaffolding protein to actin polymerization during excretory canal outgrowth. abi-1(RNAi) enhanced the excretory canal truncation observed in mig-10 mutants, while double mutant analysis between unc-53 and mig-10 showed no increased truncation of the posterior canal beyond that observed in mig-10 mutants. Morphological analysis of mig-10 and unc-53 mutants showed that these genes regulate canal diameter as well as its length, suggesting that defective lumen formation may be linked to the ability of the excretory canal to grow out longitudinally. Taken together, our results suggest that MIG-10, UNC-53, and ABI-1 act sequentially to mediate excretory cell process outgrowth.
Collapse
Affiliation(s)
- Molly A McShea
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Steinestel K, Brüderlein S, Steinestel J, Märkl B, Schwerer MJ, Arndt A, Kraft K, Pröpper C, Möller P. Expression of Abelson interactor 1 (Abi1) correlates with inflammation, KRAS mutation and adenomatous change during colonic carcinogenesis. PLoS One 2012; 7:e40671. [PMID: 22808230 PMCID: PMC3393686 DOI: 10.1371/journal.pone.0040671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 06/11/2012] [Indexed: 01/29/2023] Open
Abstract
Background Abelson interactor 1 (Abi1) is an important regulator of actin dynamics during cytoskeletal reorganization. In this study, our aim was to investigate the expression of Abi1 in colonic mucosa with and without inflammation, colonic polyps, colorectal carcinomas (CRC) and metastases as well as in CRC cell lines with respect to BRAF/KRAS mutation status and to find out whether introduction of KRAS mutation or stimulation with TNFalpha enhances Abi1 protein expression in CRC cells. Methodology/Principal Findings We immunohistochemically analyzed Abi1 protein expression in 126 tissue specimens from 95 patients and in 5 colorectal carcinoma cell lines with different mutation status by western immunoblotting. We found that Abi1 expression correlated positively with KRAS, but not BRAF mutation status in the examined tissue samples. Furthermore, Abi1 is overexpressed in inflammatory mucosa, sessile serrated polyps and adenomas, tubular adenomas, invasive CRC and CRC metastasis when compared to healthy mucosa and BRAF-mutated as well as KRAS wild-type hyperplastic polyps. Abi1 expression in carcinoma was independent of microsatellite stability of the tumor. Abi1 protein expression correlated with KRAS mutation in the analyzed CRC cell lines, and upregulation of Abi1 could be induced by TNFalpha treatment as well as transfection of wild-type CRC cells with mutant KRAS. The overexpression of Abi1 could be abolished by treatment with the PI3K-inhibitor Wortmannin after KRAS transfection. Conclusions/Significance Our results support a role for Abi1 as a downstream target of inflammatory response and adenomatous change as well as oncogenic KRAS mutation via PI3K, but not BRAF activation. Furthermore, they highlight a possible role for Abi1 as a marker for early KRAS mutation in hyperplastic polyps. Since the protein is a key player in actin dynamics, our data encourages further studies concerning the exact role of Abi1 in actin reorganization upon enhanced KRAS/PI3K signalling during colonic tumorigenesis.
Collapse
|
29
|
Functional mechanisms and roles of adaptor proteins in abl-regulated cytoskeletal actin dynamics. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:414913. [PMID: 22675626 PMCID: PMC3362954 DOI: 10.1155/2012/414913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/16/2012] [Indexed: 01/20/2023]
Abstract
Abl is a nonreceptor tyrosine kinase and plays an essential role in the modeling and remodeling of F-actin by transducing extracellular signals. Abl and its paralog, Arg, are unique among the tyrosine kinase family in that they contain an unusual extended C-terminal half consisting of multiple functional domains. This structural characteristic may underlie the role of Abl as a mediator of upstream signals to downstream signaling machineries involved in actin dynamics. Indeed, a group of SH3-containing accessory proteins, or adaptor proteins, have been identified that bind to a proline-rich domain of the C-terminal portion of Abl and modulate its kinase activity, substrate recognition, and intracellular localization. Moreover, the existence of signaling cascade and biological outcomes unique to each adaptor protein has been demonstrated. In this paper, we summarize functional roles and mechanisms of adaptor proteins in Abl-regulated actin dynamics, mainly focusing on a family of adaptor proteins, Abi. The mechanism of Abl's activation and downstream signaling mediated by Abi is described in comparison with those by another adaptor protein, Crk.
Collapse
|
30
|
Abl-1-bridged tyrosine phosphorylation of VASP by Abelson kinase impairs association of VASP to focal adhesions and regulates leukaemic cell adhesion. Biochem J 2012; 441:889-99. [PMID: 22014333 DOI: 10.1042/bj20110951] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mena [mammalian Ena (Enabled)]/VASP (vasodilator-stimulated phosphoprotein) proteins are the homologues of Drosophila Ena. In Drosophila, Ena is a substrate of the tyrosine kinase DAbl (Drosophila Abl). However, the link between Abl and the Mena/VASP family is not fully understood in mammals. We previously reported that Abi-1 (Abl interactor 1) promotes phosphorylation of Mena and BCAP (B-cell adaptor for phosphoinositide 3-kinase) by bridging the interaction between c-Abl and the substrate. In the present study we have identified VASP, another member of the Mena/VASP family, as an Abi-1-bridged substrate of Abl. VASP is phosphorylated by Abl when Abi-1 is co-expressed. We also found that VASP interacted with Abi-1 both in vitro and in vivo. VASP was tyrosine-phosphorylated in Bcr-Abl-positive leukaemic cells in an Abi-1-dependent manner. Co-expression of c-Abl and Abi-1 or the phosphomimetic Y39D mutation in VASP resulted in less accumulation of VASP at focal adhesions. VASP Y39D had a reduced affinity to the proline-rich region of zyxin. Interestingly, overexpression of both phosphomimetic and unphosphorylated forms of VASP, but not wild-type VASP, impaired adhesion of K562 cells to fibronectin. These results suggest that the phosphorylation and dephosphorylation cycle of VASP by the Abi-1-bridged mechanism regulates association of VASP with focal adhesions, which may regulate adhesion of Bcr-Abl-transformed leukaemic cells.
Collapse
|
31
|
Liebau S, Steinestel J, Linta L, Kleger A, Storch A, Schoen M, Steinestel K, Proepper C, Bockmann J, Schmeisser MJ, Boeckers TM. An SK3 channel/nWASP/Abi-1 complex is involved in early neurogenesis. PLoS One 2011; 6:e18148. [PMID: 21464958 PMCID: PMC3064656 DOI: 10.1371/journal.pone.0018148] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 02/27/2011] [Indexed: 12/12/2022] Open
Abstract
Background The stabilization or regulated reorganization of the actin cytoskeleton is essential for cellular structure and function. Recently, we could show that the activation of the SK3-channel that represents the predominant SK-channel in neural stem cells, leads to a rapid local outgrowth of long filopodial processes. This observation indicates that the rearrangement of the actin based cytoskeleton via membrane bound SK3-channels might selectively be controlled in defined micro compartments of the cell. Principal Findings We found two important proteins for cytoskeletal rearrangement, the Abelson interacting protein 1, Abi-1 and the neural Wiskott Aldrich Syndrome Protein, nWASP, to be in complex with SK3- channels in neural stem cells (NSCs). Moreover, this interaction is also found in spines and postsynaptic compartments of developing primary hippocampal neurons and regulates neurite outgrowth during early phases of differentiation. Overexpression of the proteins or pharmacological activation of SK3 channels induces obvious structural changes in NSCs and hippocampal neurons. In both neuronal cell systems SK3 channels and nWASP act synergistic by strongly inducing filopodial outgrowth while Abi-1 behaves antagonistic to its interaction partners. Conclusions Our results give good evidence for a functional interplay of a trimeric complex that transforms incoming signals via SK3-channel activation into the local rearrangement of the cytoskeleton in early steps of neuronal differentiation involving nWASP and Abi-1 actin binding proteins.
Collapse
Affiliation(s)
- Stefan Liebau
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Julie Steinestel
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Leonhard Linta
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University, Ulm, Germany
- Institute of Molecular Medicine and Max-Planck-Research Group on Stem Cell Aging, Ulm, Germany
| | - Alexander Storch
- Department of Neurology and Center for Regenerative Therapies Dresden (CRTD), Dresden University of Technology, Dresden, Germany
| | - Michael Schoen
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Konrad Steinestel
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | - Juergen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | - Tobias M. Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- * E-mail:
| |
Collapse
|
32
|
Sato M, Maruoka M, Yokota N, Kuwano M, Matsui A, Inada M, Ogawa T, Ishida-Kitagawa N, Takeya T. Identification and functional analysis of a new phosphorylation site (Y398) in the SH3 domain of Abi-1. FEBS Lett 2011; 585:834-40. [PMID: 21320496 DOI: 10.1016/j.febslet.2011.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/07/2011] [Accepted: 02/07/2011] [Indexed: 01/28/2023]
Abstract
Abi-1 is an adaptor protein for Abelson kinase (c-Abl), and Abi-1 promotes the Abl-mediated phosphorylation of Mammalian Enabled (Mena) by binding both c-Abl and Mena. Here, we identified a new phosphorylation site (Y398) in the SH3 domain of Abi-1, and disruption of Y398, combined with the previously identified phosphorylation site Y213, significantly weakens the binding of Abi-1 to c-Abl. The SH3 domain of Abi-1 and the proline-rich domain of c-Abl are involved in this interaction. Abi-1 phosphorylation at both sites stimulates the phosphorylation of Mena through the activation of c-Abl kinase. The phosphorylation of Abi-1 also plays a role in enhancing the adhesion of Bcr-Abl-transformed leukemic cells.
Collapse
Affiliation(s)
- Mizuho Sato
- Laboratory of Molecular Oncology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kanaan Z, Qadan M, Eichenberger MR, Galandiuk S. The actin-cytoskeleton pathway and its potential role in inflammatory bowel disease-associated human colorectal cancer. Genet Test Mol Biomarkers 2010; 14:347-53. [PMID: 20406101 DOI: 10.1089/gtmb.2009.0197] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION To improve our understanding of the various clinical phenotypes in inflammatory bowel disease (IBD)-associated colorectal cancer (CRC) and provide potential targets for early diagnosis and future therapy, we sought to identify new candidate genes and molecular pathways involved in the pathogenesis and progression of this disorder. Recent evidence has implicated the actin-cytoskeleton pathway in the development of metastatic sporadic CRC through cytoskeletal proteins such as fascin-1. We hereby propose that similar genetic polymorphisms and mutations among regulatory genes of the actin-cytoskeleton pathway may also be associated with increased dysplasia, carcinogenesis, and susceptibility for invasion and metastasis in IBD-associated CRC, as compared with sporadic CRC. MATERIALS AND METHODS To test this hypothesis, we identified three patients with IBD-associated CRC. We subsequently retrieved normal, dysplastic, and cancerous tissue from within the same surgical colonic specimen. Messenger RNA was subsequently isolated from fresh frozen tissue, and oligonucleotide arrays were carried out to identify genes that were differentially expressed between the three various tissue types (normal, dysplasia, and cancer). By utilizing the same specimen to obtain each of the three various tissue types, we excluded intersubject variability during the analysis. Finally, we performed bioinformatic interaction pathway analysis using the "Ingenuity Pathway Analysis" software. RESULTS Computerized pathway analysis revealed that the actin-cytoskeleton pathway was significantly dysregulated in the progression of normal cells, via dysplasia, to IBD-associated CRC (p < 0.05). Significantly up-regulated genes identified in the analysis included the fibroblast growth factor, Abelson interactor gene-2, profilin-2, and radixin genes. Conversely, the diaphanous homolog gene appeared to be significantly down-regulated. CONCLUSION Via the dysregulation of these five genes within the actin-cytoskeleton pathway, we propose that this molecular pathway provides a potential mechanism for the malignant transformation and progression of normal tissue, via dysplasia, to IBD-associated CRC.
Collapse
Affiliation(s)
- Ziad Kanaan
- Department of Surgery, Price Institute of Surgical Research, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | | | | | | |
Collapse
|
34
|
Abstract
ABL-family proteins comprise one of the best conserved branches of the tyrosine kinases. Each ABL protein contains an SH3-SH2-TK (Src homology 3-Src homology 2-tyrosine kinase) domain cassette, which confers autoregulated kinase activity and is common among nonreceptor tyrosine kinases. This cassette is coupled to an actin-binding and -bundling domain, which makes ABL proteins capable of connecting phosphoregulation with actin-filament reorganization. Two vertebrate paralogs, ABL1 and ABL2, have evolved to perform specialized functions. ABL1 includes nuclear localization signals and a DNA binding domain through which it mediates DNA damage-repair functions, whereas ABL2 has additional binding capacity for actin and for microtubules to enhance its cytoskeletal remodeling functions. Several types of posttranslational modifications control ABL catalytic activity, subcellular localization, and stability, with consequences for both cytoplasmic and nuclear ABL functions. Binding partners provide additional regulation of ABL catalytic activity, substrate specificity, and downstream signaling. Information on ABL regulatory mechanisms is being mined to provide new therapeutic strategies against hematopoietic malignancies caused by BCR-ABL1 and related leukemogenic proteins.
Collapse
Affiliation(s)
- John Colicelli
- Department of Biological Chemistry, Molecular Biology Institute and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
35
|
Rikihisa Y, Lin M, Niu H. Type IV secretion in the obligatory intracellular bacterium Anaplasma phagocytophilum. Cell Microbiol 2010; 12:1213-21. [PMID: 20670295 DOI: 10.1111/j.1462-5822.2010.01500.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Anaplasma phagocytophilum is an obligatory intracellular bacterium that infects neutrophils, the primary host defence cells. Consequent effects of infection on host cells result in a potentially fatal systemic disease called human granulocytic anaplasmosis. Despite ongoing reductive genome evolution and deletion of most genes for intermediary metabolism and amino acid biosynthesis, Anaplasma has also experienced expansion of genes encoding several components of the type IV secretion (T4S) apparatus. Two A. phagocytophilum T4S effector molecules are currently known; Anaplasma translocated substrate 1 (Ats-1) and ankyrin repeat domain-containing protein A (AnkA) have C-terminal positively charged amino acid residues that are recognized by the T4S coupling protein, VirD4. AnkA and Ats-1 contain eukaryotic protein motifs and are uniquely evolved in the family Anaplasmataceae; Ats-1 contains a mitochondria-targeting signal. They are abundantly produced and secreted into the host cytoplasm, are not toxic to host cells, and manipulate host cell processes to aid in the infection process. At the cellular level, the two effectors have distinct subcellular localization and signalling in host cells. Thus in this obligatory intracellular pathogen, the T4S system has evolved as a host-subversive survival factor.
Collapse
Affiliation(s)
- Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
36
|
Veniere S, Waterschoot D, Vandekerckhove J, Lambrechts A, Ampe C. Identification and expression analysis of splice variants of mouse enabled homologue during development and in adult tissues. BMC Mol Biol 2010; 11:45. [PMID: 20565797 PMCID: PMC2898656 DOI: 10.1186/1471-2199-11-45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 06/17/2010] [Indexed: 11/30/2022] Open
Abstract
Background The Enabled/Vasodilator stimulated phosphoprotein (Ena/VASP) gene family comprises three genes in vertebrates: Vasp, Enabled homologue (Enah) and Ena-VASP like (Evl). Enah has the most complex gene structure. It has extra alternatively included exons compared to Vasp and Evl, and possibly one alternatively excluded intron S. The aim of this mapping study was to probe the occurrence of combinations of exon usage in Enah thereby identifying possible vertebrate ENAH splice variants. We investigated this via an in silico analysis and by performing a reverse transcription-polymerase chain reaction (RT-PCR) screen on mouse samples. We further probed the expression pattern of mouse Enah splice variants during development and in a selection of mouse adult tissues and mouse cell lines. Results In silico analysis of the vertebrate Ena/VASP gene family reveals that birds do not have Vasp, while fish have two Evl genes. Analysis of expressed sequence tags of vertebrate Enah splice variants confirms that an Enah transcript without alternative exons is ubiquitously expressed, but yields only limited information about the existence of other possible alternatively spliced Enah transcripts. Via a RT-PCR screen, we provide evidence that during mouse development and in adult mice at least eight and maximally sixteen different Enah transcripts are expressed. We also show that tissues and cell lines display specific expression profiles of these different transcripts. Exons previously associated with neuronal expression of Enah splice variants are also present in other tissues, in particular in heart. Conclusions We propose a more uniform nomenclature for alternative exons in Enah. We provide an overview of distinct expression profiles of mouse Enah splice variants during mouse development, in adult mouse tissues and in a subset of mouse cell lines.
Collapse
Affiliation(s)
- Sylvie Veniere
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
37
|
Dittrich M, Strassberger V, Fackler M, Tas P, Lewandrowski U, Sickmann A, Walter U, Dandekar T, Birschmann I. Characterization of a novel interaction between vasodilator-stimulated phosphoprotein and Abelson interactor 1 in human platelets: a concerted computational and experimental approach. Arterioscler Thromb Vasc Biol 2010; 30:843-50. [PMID: 20110575 DOI: 10.1161/atvbaha.109.200683] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The goal of this study was systematic profiling of vasodilator-stimulated phosphoprotein (VASP)-Ena/VASP homology 1 (EVH1) interactors in human platelets using a combined in silico and in vitro approach. METHODS AND RESULTS Exploiting the information of the comprehensive proteome catalogue in the PlateletWeb database (http://plateletweb.bioapps.biozentrum.uni-wuerzburg.de/PlateletWeb.php), we performed a motif search of all sequences and identified potential target sites of class I EVH1 domains in human platelet proteins. Performing affinity purification with VASP-EVH1 domain and the lysates of platelets, we examined complex partners by mass spectrometry. Combining the results of both analyses, we identified Abelson interactor 1 (Abi-1) as a novel EVH1 domain-specific interaction partner of VASP in human platelets and investigated this interaction by yeast 2-hybrid mutational studies and immunoprecipitation. Immunofluorescence microscopy indicated colocalization of both proteins at the lamellipodia of spread human platelets, suggesting a role in reorganizing the cytoskeleton during spreading. CONCLUSIONS The combination of experimental and computational interactome research has emerged as a valuable tool for the analysis of protein-protein interaction networks and facilitates the discovery and characterization of novel interactions as detailed here for Abi-1 and VASP in human platelets. System biological approaches can be expected to play an important role in basic and clinical platelet research, as they offer the potential to analyze signal transduction beyond the scope of established pathways.
Collapse
Affiliation(s)
- Marcus Dittrich
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bradley WD, Koleske AJ. Regulation of cell migration and morphogenesis by Abl-family kinases: emerging mechanisms and physiological contexts. J Cell Sci 2009; 122:3441-54. [PMID: 19759284 DOI: 10.1242/jcs.039859] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Abl-family non-receptor tyrosine kinases are essential regulators of the cytoskeleton. They transduce diverse extracellular cues into cytoskeletal rearrangements that have dramatic effects on cell motility and morphogenesis. Recent biochemical and genetic studies have revealed several mechanisms that Abl-family kinases use to mediate these effects. Abl-family kinases stimulate actin polymerization through the activation of cortactin, hematopoietic lineage cell-specific protein (HS1), WASp- and WAVE-family proteins, and Rac1. They also attenuate cell contractility by inhibiting RhoA and altering adhesion dynamics. These pathways impinge on several physiological processes, including development and maintenance of the nervous and immune systems, and epithelial morphogenesis. Elucidating how Abl-family kinases are regulated, and where and when they coordinate cytoskeletal changes, is essential for garnering a better understanding of these complex processes.
Collapse
Affiliation(s)
- William D Bradley
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
39
|
Insall RH, Machesky LM. Actin dynamics at the leading edge: from simple machinery to complex networks. Dev Cell 2009; 17:310-22. [PMID: 19758556 DOI: 10.1016/j.devcel.2009.08.012] [Citation(s) in RCA: 319] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell migration is an essential feature of eukaryotic life, required for processes ranging from feeding and phagoctyosis to development, healing, and immunity. Migration requires the actin cytoskeleton, specifically the localized polymerization of actin filaments underneath the plasma membrane. Here we summarize recent developments in actin biology that particularly affect structures at the leading edge of the cell, including the structure of actin branches, the multiple pathways that lead to cytoskeleton assembly and disassembly, and the role of blebs. Future progress depends on connecting these processes and components to the dynamic behavior of the whole cell in three dimensions.
Collapse
Affiliation(s)
- Robert H Insall
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland.
| | | |
Collapse
|
40
|
Lin TY, Huang CH, Kao HH, Liou GG, Yeh SR, Cheng CM, Chen MH, Pan RL, Juang JL. Abi plays an opposing role to Abl in Drosophila axonogenesis and synaptogenesis. Development 2009; 136:3099-107. [PMID: 19675132 DOI: 10.1242/dev.033324] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abl tyrosine kinase (Abl) regulates axon guidance by modulating actin dynamics. Abelson interacting protein (Abi), originally identified as a kinase substrate of Abl, also plays a key role in actin dynamics, yet its role with respect to Abl in the developing nervous system remains unclear. Here we show that mutations in abi disrupt axonal patterning in the developing Drosophila central nervous system (CNS). However, reducing abi gene dosage by half substantially rescues Abl mutant phenotypes in pupal lethality, axonal guidance defects and locomotion deficits. Moreover, we show that mutations in Abl increase synaptic growth and spontaneous synaptic transmission frequency at the neuromuscular junction. Double heterozygosity for abi and enabled (ena) also suppresses the synaptic overgrowth phenotypes of Abl mutants, suggesting that Abi acts cooperatively with Ena to antagonize Abl function in synaptogenesis. Intriguingly, overexpressing Abi or Ena alone in cultured cells dramatically redistributed peripheral F-actin to the cytoplasm, with aggregates colocalizing with Abi and/or Ena, and resulted in a reduction in neurite extension. However, co-expressing Abl with Abi or Ena redistributed cytoplasmic F-actin back to the cell periphery and restored bipolar cell morphology. These data suggest that abi and Abl have an antagonistic interaction in Drosophila axonogenesis and synaptogenesis, which possibly occurs through the modulation of F-actin reorganization.
Collapse
Affiliation(s)
- Tzu-Yang Lin
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hurwitz ME, Vanderzalm PJ, Bloom L, Goldman J, Garriga G, Horvitz HR. Abl kinase inhibits the engulfment of apoptotic [corrected] cells in Caenorhabditis elegans. PLoS Biol 2009; 7:e99. [PMID: 19402756 PMCID: PMC2672617 DOI: 10.1371/journal.pbio.1000099] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 03/16/2009] [Indexed: 12/16/2022] Open
Abstract
The engulfment of apoptotic cells is required for normal metazoan development and tissue remodeling. In Caenorhabditis elegans, two parallel and partially redundant conserved pathways act in cell-corpse engulfment. One pathway includes the adaptor protein CED-2 CrkII and the small GTPase CED-10 Rac, and acts to rearrange the cytoskeleton of the engulfing cell. The other pathway includes the receptor tyrosine kinase CED-1 and might recruit membranes to extend the surface of the engulfing cell. Although many components required for engulfment have been identified, little is known about inhibition of engulfment. The tyrosine kinase Abl regulates the actin cytoskeleton in mammals and Drosophila in multiple ways. For example, Abl inhibits cell migration via phosphorylation of CrkII. We tested whether ABL-1, the C. elegans ortholog of Abl, inhibits the CED-2 CrkII-dependent engulfment of apoptotic cells. Our genetic studies indicate that ABL-1 inhibits apoptotic cell engulfment, but not through CED-2 CrkII, and instead acts in parallel to the two known engulfment pathways. The CED-10 Rac pathway is also required for proper migration of the distal tip cells (DTCs) during the development of the C. elegans gonad. The loss of ABL-1 function partially restores normal DTC migration in the CED-10 Rac pathway mutants. We found that ABI-1 the C. elegans homolog of mammalian Abi (Abl interactor) proteins, is required for engulfment of apoptotic cells and proper DTC migration. Like Abl, Abi proteins are cytoskeletal regulators. ABI-1 acts in parallel to the two known engulfment pathways, likely downstream of ABL-1. ABL-1 and ABI-1 interact physically in vitro. We propose that ABL-1 opposes the engulfment of apoptotic cells by inhibiting ABI-1 via a pathway that is distinct from the two known engulfment pathways. Cell death or apoptosis is a normal part of animal development, as is the engulfment and removal of dead cells by other cells. In the nematode Caenorhabditis elegans, ten highly conserved proteins have been characterized previously for their roles in engulfment and in cell migration, both of which involve the formation of cellular extensions. Little is known, however, about how engulfment is inhibited. In mammals, the tyrosine kinase Abl, which regulates the actin cytoskeleton and which when misexpressed causes two types of leukemia, prevents the CrkII protein from facilitating cell migration. CrkII functions in engulfment in C. elegans and mammals. We tested whether the C. elegans homolog of Abl, ABL-1, could inhibit engulfment. We found that ABL-1 functions as an inhibitor of apoptotic cell engulfment and cell migration. However, our analysis further showed that ABL-1 does not function by inhibiting other known engulfment proteins, including C. elegans CrkII. Our data indicate that ABL-1 blocks ABI-1, the C. elegans homolog of the mammalian and Drosophila Abl-interactor (Abi) cytoskeletal-regulatory proteins. We propose that ABL-1 acts via ABI-1 to inhibit a newly identified pathway during cell corpse engulfment and cell migration. We show thatC. elegans Abl (ABL-1) inhibits the engulfment of apoptotic cells via a newly defined pathway that includes theC. elegans homolog of the cytoskeletal regulator Abl-interactor.
Collapse
Affiliation(s)
- Michael E Hurwitz
- Howard Hughes Medical Institute (HHMI), Department of Biology, MIT, Cambridge, Massachusetts, United States of America
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, United States of America
| | - Pamela J Vanderzalm
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Laird Bloom
- Howard Hughes Medical Institute (HHMI), Department of Biology, MIT, Cambridge, Massachusetts, United States of America
| | - Julia Goldman
- Howard Hughes Medical Institute (HHMI), Department of Biology, MIT, Cambridge, Massachusetts, United States of America
| | - Gian Garriga
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - H. Robert Horvitz
- Howard Hughes Medical Institute (HHMI), Department of Biology, MIT, Cambridge, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Lapetina S, Mader CC, Machida K, Mayer BJ, Koleske AJ. Arg interacts with cortactin to promote adhesion-dependent cell edge protrusion. ACTA ACUST UNITED AC 2009; 185:503-19. [PMID: 19414610 PMCID: PMC2700396 DOI: 10.1083/jcb.200809085] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The molecular mechanisms by which the Abelson (Abl) or Abl-related gene (Arg) kinases interface with the actin polymerization machinery to promote cell edge protrusions during cell–matrix adhesion are unclear. In this study, we show that interactions between Arg and the Arp2/3 complex regulator cortactin are essential to mediate actin-based cell edge protrusion during fibroblast adhesion to fibronectin. Arg-deficient and cortactin knockdown fibroblasts exhibit similar defects in adhesion-dependent cell edge protrusion, which can be restored via reexpression of Arg and cortactin. Arg interacts with cortactin via both binding and catalytic events. The cortactin Src homology (SH) 3 domain binds to a Pro-rich motif in the Arg C terminus. Arg mediates adhesion-dependent phosphorylation of cortactin, creating an additional binding site for the Arg SH2 domain. Mutation of residues that mediate Arg–cortactin interactions abrogate the abilities of both proteins to support protrusions, and the Nck adapter, which binds phosphocortactin, is also required. These results demonstrate that interactions between Arg, cortactin, and Nck1 are critical to promote adhesion-dependent cell edge protrusions.
Collapse
Affiliation(s)
- Stefanie Lapetina
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
43
|
Schmidt KL, Marcus-Gueret N, Adeleye A, Webber J, Baillie D, Stringham EG. The cell migration molecule UNC-53/NAV2 is linked to the ARP2/3 complex by ABI-1. Development 2009; 136:563-74. [PMID: 19168673 DOI: 10.1242/dev.016816] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The shape changes that are required to position a cell to migrate or grow out in a particular direction involve a coordinated reorganization of the actin cytoskeleton. Although it is known that the ARP2/3 complex nucleates actin filament assembly, exactly how the information from guidance cues is integrated to elicit ARP2/3-mediated remodeling during outgrowth remains vague. Previous studies have shown that C. elegans UNC-53 and its vertebrate homolog NAV (Neuronal Navigators) are required for the migration of cells and neuronal processes. We have identified ABI-1 as a novel molecular partner of UNC-53/NAV2 and have found that a restricted calponin homology (CH) domain of UNC-53 is sufficient to bind ABI-1. ABI-1 and UNC-53 have an overlapping expression pattern, and display similar cell migration phenotypes in the excretory cell, and in mechanosensory and motoneurons. Migration defects were also observed after RNAi of proteins known to function with abi-1 in actin dynamics, including nck-1, wve-1 and arx-2. We propose that UNC-53/NAV2, through its CH domain, acts as a scaffold that links ABI-1 to the ARP2/3 complex to regulate actin cytoskeleton remodeling.
Collapse
|
44
|
Higashi M, Ishikawa C, Yu J, Toyoda A, Kawana H, Kurokawa K, Matsuda M, Kitagawa M, Harigaya K. Human Mena associates with Rac1 small GTPase in glioblastoma cell lines. PLoS One 2009; 4:e4765. [PMID: 19277120 PMCID: PMC2651628 DOI: 10.1371/journal.pone.0004765] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 02/06/2009] [Indexed: 11/18/2022] Open
Abstract
Mammarian enabled (Mena), a member of the Enabled (Ena)/Vasodilator-stimulated phosphoprotein (VASP) family of proteins, has been implicated in cell motility through regulation of the actin cytoskeleton assembly, including lamellipodial protrusion. Rac1, a member of the Rho family GTPases, also plays a pivotal role in the formation of lamellipodia. Here we report that human Mena (hMena) colocalizes with Rac1 in lamellipodia, and using an unmixing assisted acceptor depletion fluorescence resonance energy transfer (u-adFRET) analysis that hMena associates with Rac1 in vivo in the glioblastoma cell line U251MG. Depletion of hMena by siRNA causes cells to be highly spread with the formation of lamellipodia. This cellular phenotype is canceled by introduction of a dominant negative form of Rac1. A Rac activity assay and FRET analysis showed that hMena knock-down cells increased the activation of Rac1 at the lamellipodia. These results suggest that hMena possesses properties which help to regulate the formation of lamellipodia through the modulation of the activity of Rac1.
Collapse
Affiliation(s)
- Morihiro Higashi
- Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Chieko Ishikawa
- Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Jianyong Yu
- Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Akihiro Toyoda
- Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Hidetada Kawana
- Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Kazuo Kurokawa
- Molecular Membrane Biology Laboratory, RIKEN Discovery Research Institute, Wako, Saitama, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida Sakyo-ku, Kyoto, Japan
| | - Motoo Kitagawa
- Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Kenichi Harigaya
- Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| |
Collapse
|
45
|
Fujita A, Shishido T, Yuan Y, Inamoto E, Narumiya S, Watanabe N. Imatinib mesylate (STI571)-induced cell edge translocation of kinase-active and kinase-defective Abelson kinase: requirements of myristoylation and src homology 3 domain. Mol Pharmacol 2009; 75:75-84. [PMID: 18835981 DOI: 10.1124/mol.108.051706] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
4-[(4-Methyl-1-piperazinyl)methyl]-N-[4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-phenyl]benzamide methanesulfonate (STI571) is the first successful target-based drug with excellent potency against chronic myelogenous leukemia. Studies on this compound have illuminated potentials and problems of kinase inhibitors in the treatment of cancer. As found in crystal structures, STI571-bound Abelson kinase (abl) is believed to form closed conformation with N-terminal regulatory domains. Here we present evidence of distinct STI571-induced modulation of abl functions using high-resolution live-cell imaging approaches. Within lamellipodia of fibroblast cells, STI571 was found to induce rapid translocation of abl to the lamellipodium tip. Quantitative analysis yielded 0.81 and 1.8 microM for EC(50) values of STI571-induced cell edge translocation of abl-KD-green fluorescent protein (GFP) and wild-type abl-GFP, respectively. It also revealed adverse response of drug-resistant abl-T334I to STI571, suggesting that drug binding to abl-GFP triggers translocation. N-myristoylation and the src homology 3 (SH3) domain were required for this translocation, whereas disruption of intramolecular interactions of these motifs enhanced cell-edge association of abl. An intact C-terminal last exon region in abl, but not its F-actin binding, was required for efficient cell-edge translocation. Moreover, single-molecule observation revealed an STI571-induced rapid increase in slow diffusive species of abl in both the tip and the body region of lamellipodia. These results suggest that although activated abl translocates to the cell edge at its open state, STI571 can also bind and lock abl in the open and membrane-tethered conformation as long as the SH3 domain and the C-terminal region are intact. High-resolution imaging can be a powerful tool for elucidating inhibitor modulation of abl functions under intracellular environment.
Collapse
Affiliation(s)
- Akiko Fujita
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Yu W, Sun X, Clough N, Cobos E, Tao Y, Dai Z. Abi1 gene silencing by short hairpin RNA impairs Bcr-Abl-induced cell adhesion and migration in vitro and leukemogenesis in vivo. Carcinogenesis 2008; 29:1717-1724. [PMID: 18453543 PMCID: PMC2527646 DOI: 10.1093/carcin/bgn098] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 04/03/2008] [Accepted: 04/08/2008] [Indexed: 12/28/2022] Open
Abstract
Abl interactor (Abi) 1 was first identified as the downstream target of Abl tyrosine kinases and was found to be dysregulated in leukemic cells expressing oncogenic Bcr-Abl and v-Abl. Although the accumulating evidence supports a role of Abi1 in actin cytoskeleton remodeling and growth factor/receptor signaling, it is not clear how it contributes to Bcr-Abl-induced leukemogenesis. We show here that Abi1 gene silencing by short hairpin RNA attenuated the Bcr-Abl-induced abnormal actin remodeling, membrane-type 1 metalloproteinase clustering and inhibited cell adhesion and migration on fibronectin-coated surfaces. Although the knock down of Abi1 expression did not affect growth factor-independent growth of Bcr-Abl-transformed Ba/F3 cells in vitro, it impeded competitive expansion of these cells in non obese diabetic (NOD)/ severe combined immuno-deficiency (SCID) mice. Remarkably, the knock down of Abi1 expression in Bcr-Abl-transformed Ba/F3 cells impaired the leukemogenic potential of these cells in NOD/SCID mice. Abi1 contributes to Bcr-Abl-induced leukemogenesis in part through Src family kinases, as the knock down of Abi1 expression attenuates Bcr-Abl-stimulated activation of Lyn. Together, these data provide for the first time the direct evidence that supports a critical role of Abi1 pathway in the pathogenesis of Bcr-Abl-induced leukemia.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Blotting, Western
- Cell Adhesion/physiology
- Cell Movement/physiology
- Cell Transformation, Neoplastic
- Cytoskeletal Proteins/antagonists & inhibitors
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Female
- Flow Cytometry
- Fusion Proteins, bcr-abl/physiology
- Gene Silencing
- Immunoprecipitation
- Leukemia/genetics
- Leukemia/pathology
- Matrix Metalloproteinase 14/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Microscopy, Fluorescence
- Phosphorylation
- Precursor Cells, B-Lymphoid/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/pharmacology
- Retroviridae/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Tyrosine/metabolism
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Weidong Yu
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 1400 Wallace Boulevard, Amarillo, TX 79106, USA
- Institute of Clinical Molecular Biology, People's Hospital, Peking University, Beijing 100044, People's Republic of China
| | - Xiaolin Sun
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 1400 Wallace Boulevard, Amarillo, TX 79106, USA
| | - Nancy Clough
- Division of Medical Oncology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80010, USA
| | - Everardo Cobos
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 1400 Wallace Boulevard, Amarillo, TX 79106, USA
- Stem Cell Transplant Program, Texas Tech University Health Sciences Center, 1400 Wallace Boulevard, Amarillo, TX 79106, USA
| | - Yunxia Tao
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 1400 Wallace Boulevard, Amarillo, TX 79106, USA
| | - Zonghan Dai
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 1400 Wallace Boulevard, Amarillo, TX 79106, USA
- Stem Cell Transplant Program, Texas Tech University Health Sciences Center, 1400 Wallace Boulevard, Amarillo, TX 79106, USA
| |
Collapse
|
47
|
|
48
|
Lai FPL, Szczodrak M, Block J, Faix J, Breitsprecher D, Mannherz HG, Stradal TEB, Dunn GA, Small JV, Rottner K. Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J 2008; 27:982-92. [PMID: 18309290 PMCID: PMC2265112 DOI: 10.1038/emboj.2008.34] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 02/07/2008] [Indexed: 11/16/2022] Open
Abstract
Cell migration is initiated by lamellipodia-membrane-enclosed sheets of cytoplasm containing densely packed actin filament networks. Although the molecular details of network turnover remain obscure, recent work points towards key roles in filament nucleation for Arp2/3 complex and its activator WAVE complex. Here, we combine fluorescence recovery after photobleaching (FRAP) of different lamellipodial components with a new method of data analysis to shed light on the dynamics of actin assembly/disassembly. We show that Arp2/3 complex is incorporated into the network exclusively at the lamellipodium tip, like actin, at sites coincident with WAVE complex accumulation. Capping protein likewise showed a turnover similar to actin and Arp2/3 complex, but was confined to the tip. In contrast, cortactin-another prominent Arp2/3 complex regulator-and ADF/cofilin-previously implicated in driving both filament nucleation and disassembly-were rapidly exchanged throughout the lamellipodium. These results suggest that Arp2/3- and WAVE complex-driven actin filament nucleation at the lamellipodium tip is uncoupled from the activities of both cortactin and cofilin. Network turnover is additionally regulated by the spatially segregated activities of capping protein at the tip and cofilin throughout the mesh.
Collapse
Affiliation(s)
- Frank PL Lai
- Cytoskeleton Dynamics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Malgorzata Szczodrak
- Cytoskeleton Dynamics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jennifer Block
- Cytoskeleton Dynamics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Hans G Mannherz
- Department of Anatomy and Embryology, Ruhr University, Bochum, Germany
| | - Theresia EB Stradal
- Signalling and Motility Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Graham A Dunn
- King's College London, Randall Division, New Hunt's House, London, UK
| | - J Victor Small
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
| | - Klemens Rottner
- Cytoskeleton Dynamics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
49
|
Meng L, Michaud GA, Merkel JS, Zhou F, Huang J, Mattoon DR, Schweitzer B. Protein kinase substrate identification on functional protein arrays. BMC Biotechnol 2008; 8:22. [PMID: 18307815 PMCID: PMC2270825 DOI: 10.1186/1472-6750-8-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Accepted: 02/28/2008] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Over the last decade, kinases have emerged as attractive therapeutic targets for a number of different diseases, and numerous high throughput screening efforts in the pharmaceutical community are directed towards discovery of compounds that regulate kinase function. The emerging utility of systems biology approaches has necessitated the development of multiplex tools suitable for proteomic-scale experiments to replace lower throughput technologies such as mass spectroscopy for the study of protein phosphorylation. Recently, a new approach for identifying substrates of protein kinases has applied the miniaturized format of functional protein arrays to characterize phosphorylation for thousands of candidate protein substrates in a single experiment. This method involves the addition of protein kinases in solution to arrays of immobilized proteins to identify substrates using highly sensitive radioactive detection and hit identification algorithms. RESULTS To date, the factors required for optimal performance of protein array-based kinase substrate identification have not been described. In the current study, we have carried out a detailed characterization of the protein array-based method for kinase substrate identification, including an examination of the effects of time, buffer compositions, and protein concentration on the results. The protein array approach was compared to standard solution-based assays for assessing substrate phosphorylation, and a correlation of greater than 80% was observed. The results presented here demonstrate how novel substrates for protein kinases can be quickly identified from arrays containing thousands of human proteins to provide new clues to protein kinase function. In addition, a pooling-deconvolution strategy was developed and applied that enhances characterization of specific kinase-substrate relationships and decreases reagent consumption. CONCLUSION Functional protein microarrays are an important new tool that enables multiplex analysis of protein phosphorylation, and thus can be utilized to identify novel kinase substrates. Integrating this technology with a systems biology approach to cell signalling will help uncover new layers in our understanding of this essential class of enzymes.
Collapse
Affiliation(s)
- Lihao Meng
- Invitrogen Corp., Protein Array Center, 688 East Main Street, Branford, CT 06405, USA
| | - Gregory A Michaud
- Novartis Institutes for Biomedical Research, Inc., Developmental & Molecular Pathways, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Janie S Merkel
- Yale University, Department of Biology, Kline Biology Tower, PO BOX 208103, New Haven, CT 06520-8103, USA
| | - Fang Zhou
- Merck & Co., Inc., UG2C-24, 351 N. Sumneytown Pike, North Wales, PA 19454-2505, USA
| | - Jing Huang
- UCLA, Department of Molecular and Medical Pharmacology, 23-231 CHS, 10833 Le Conte Avenue, Los Angeles, CA 9009, USA
| | - Dawn R Mattoon
- Invitrogen Corp., Protein Array Center, 688 East Main Street, Branford, CT 06405, USA
| | - Barry Schweitzer
- Invitrogen Corp., Protein Array Center, 688 East Main Street, Branford, CT 06405, USA
| |
Collapse
|
50
|
Abstract
The actin cytoskeleton is required for many important processes during embryonic development. In later stages of life, important homeostatic processes depend on the actin cytoskeleton, such as immune response, haemostasis and blood vessel preservation. Therefore, the function of the actin cytoskeleton must be tightly regulated, and aberrant regulation may cause disease. A growing number of proteins have been described to bind and regulate the actin cytoskeleton. Amongst them, Ena/VASP proteins function as anti-capping proteins, thereby directly modulating the actin ultrastructure. Ena/VASP function is regulated by their recruitment into protein complexes downstream of plasma membrane receptors and by phosphorylation. As regulators of the actin ultrastructure, Ena/VASP proteins are involved in crucial cellular functions, such as shape change, adhesion, migration and cell-cell interaction and hence are important targets for therapeutic intervention. In this chapter, we will first describe the structure, function and regulation of Ena/VASP proteins. Then, we will review the involvement of Ena/VASP proteins in the development of human diseases. Growing evidence links Ena/VASP proteins to important human diseases, such as thrombosis, cancer, arteriosclerosis, cardiomyopathy and nephritis. Finally, present and future perspectives for the development of therapeutic molecules interfering with Ena/VASP-mediated protein-protein interactions are presented.
Collapse
Affiliation(s)
- G Pula
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
| | | |
Collapse
|