1
|
Gao Y, Wei M, Xiong J, Zhang M, Wu X. Sequence characteristics, evolutionary history and expression pattern of BCO2 in Chinese mitten crab Eriocheir sinensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 56:101524. [PMID: 40393191 DOI: 10.1016/j.cbd.2025.101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/26/2025] [Accepted: 04/27/2025] [Indexed: 05/22/2025]
Abstract
β-carotene 9', 10'-oxygenase (BCO2) is a pivotal enzyme in the carotenoid cleavage. To fill the research gap of BCO2 in Chinese mitten crab Eriocheir sinensis, we first investigated ESIN_BCO2 gene from its genome, revealing its evolutionary history, gene structure, and expression patterns. The results showed that ESIN_BCO2 gene has a full-length open reading frame (ORF) of 1572 bp, encoding a protein of 523 amino acids. BCO2 was characterized by ten conserved motifs and an RPE65 domain, belonging to carotenoid cleavage oxygenase (CCO) family. Phylogenetic analysis revealed that BCO1 was the ancestral gene, from which BCO2 and NinaB diverged during evolution. Notably, the Ka/Ks ratios for BCO2 in Decapoda were approximately lower than BCO2 from other crustaceans (0.014 to 0.045 vs 0.112 to 0.185). ESIN_BCO2 was predominantly expressed in the hindgut, with significantly higher expression levels in females than in males. It was predominantly localized near the nuclei (N) of epithelial cells (epi) and basal cells (bc) in the hindgut. Moreover, dietary β-carotene supplementation significantly upregulated BCO2 expression in the female hindgut. These findings provide valuable insights into the evolution and function of BCO2 in E. sinensis as well as the other crustaceans, potentially shedding light on the conservation and divergence of carotenoid metabolism mechanisms across diverse crustaceans.
Collapse
Affiliation(s)
- Yanan Gao
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Maolei Wei
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Jingyi Xiong
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Min Zhang
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.
| | - Xugan Wu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources Certified by the Ministry of Agriculture and Rural Affairs of China, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Liu L, Li Y, Jian C, Guo R, Wang Q. Regulation of apocarotenoids for quality improvement and biofortification of horticultural crops. J Adv Res 2025:S2090-1232(25)00281-4. [PMID: 40320168 DOI: 10.1016/j.jare.2025.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Agro-food production and consumption impact climate change and human health. Bioactive secondary metabolites in horticulture crops make them an indispensable part of environmentally sustainable and healthy diet. Among them, apocarotenoids from carotenoid degradation are promising in promoting a preference for plant-based foods over other metabolites. AIM OF REVIEW In horticulture crops, carotenoids are vital for photosynthesis and antioxidant defense, but their enzymatic or oxidative metabolites, apocarotenoids, offer greater structural diversity and biological functions. They serve as pigments, scents, signaling molecules, and growth regulators in crop growth and development and provide antioxidant, nutraceutical, and pharmaceutical benefits to human health. The carotenoids as bioactive compounds are well understood. By contrast, much less is explored and reviewed about apocarotenoids. KEY SCIENTIFIC CONCEPTS OF REVIEW Recently identified metabolic pathways and components of apocarotenoids are reviewed. Their significance for quality formation in horticulture crops, including the regulation of pigmentation, aroma, flavor, architecture, nutrition value, and broader ecological interactions is discussed. Additionally, this review specifically highlights two representative apocarotenoids, retinal and abscisic acid (ABA), that exhibit conserved yet distinct regulatory functions across plant and animal kingdoms. Comprehensive dissection of apocarotenoid metabolism and their regulatory mechanisms will enhance apocarotenoid biofortification and subsequent biotechnological exploitation in horticultural commodities. We put forward the perspective that apocarotenoids could enhance horticultural crop quality and then promote sensory- and health-driven dietary choices which will in turn increase consumption and production of horticultural plants and promote both human and ecosystem health.
Collapse
Affiliation(s)
- Lihong Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Yuening Li
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Chunxia Jian
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Rongfang Guo
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Institute of Horticultural Biotechnology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
3
|
Manabe Y, Sugawara T. Potential of siphonaxanthin, a green algal carotenoid, to prevent obesity and related diseases. J Nat Med 2025:10.1007/s11418-025-01897-4. [PMID: 40220069 DOI: 10.1007/s11418-025-01897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/13/2025] [Indexed: 04/14/2025]
Abstract
The increasing prevalence of obesity and its related diseases, including diabetes mellitus and metabolic dysfunction-associated fatty liver disease, has become a significant social problem. These diseases are believed to be preventable through healthy diet and exercise habits, and the investigation of food ingredients that are useful for prevention of these diseases is actively ongoing. Carotenoids are the major lipophilic pigments responsible for yellow-to-red colors in our diet, and the ingestion of certain carotenoids has been reported to prevent obesity. For example, β-carotene suppresses adipogenic differentiation of mouse preadipocyte line 3T3-L1 through its provitamin A activity. Fucoxanthin, a carotenoid found in brown algae, also has the similar effect via a different mechanism and is used as an active ingredient in foods with functional claims in Japan. In contrast, siphonaxanthin, a carotenoid found in some green algae such as Caulerpa lentillifera (commonly known as sea grape), exhibited stronger biological activities than other carotenoids in cell-based studies; it significantly suppressed adipogenic differentiation of 3T3-L1 cells even at low concentrations where β-carotene and fucoxanthin did not show inhibitory effects. However, its practical applications have not yet been realized. This review summarizes the studies on the anti-obesity effects of carotenoids and discusses the potential of siphonaxanthin as a novel functional food ingredient.
Collapse
Affiliation(s)
- Yuki Manabe
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
4
|
Arathi BP, Bound DJ, Ambedkar R, Venkateshappa S, Manjunath T, Paul B, Lakshminarayana R. Chemical Implications of apo-8, 6' Carotendial versus Intact Lycopene on Mechanism of Enhanced Cell-cell Communication and Apoptosis Induction in Breast Cancer Cells. Cell Biochem Biophys 2024; 82:3517-3533. [PMID: 39085671 DOI: 10.1007/s12013-024-01440-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 08/02/2024]
Abstract
Investigation on carotenoids and its cleavage products is crucial to combat the development of chronic diseases, including cancer. Therefore, this study aimed to explore the effect of lycopene oxidative products versus equivalent concentration of lycopene (LYC) on major molecular events of cancer cells (MCF-7). Primarily, LYC-oxidized products were generated chemically, then collected its rich fraction. Based on cell-based assays, the antiproliferation potency of rich fraction of chemically-oxidized lycopene (COL) identified as apo-8, 6' carotendial was compared with LYC. Interestingly, the inhibition of cell migration by COL strongly demonstrated anti-metastatic activity. Further, the increased connexin-43 expression confirms enhanced gap-junctional communication activity of COL than LYC and control. Fortunately, apo-8, 6' carotendial did not affect normal breast epithelial cells. We anticipated that, the chemical properties of apo-8, 6'-carotendial is similar and mimic a model compound acrolein (α, β-conjugated aldehyde) which is involved in Michael addition/Schiff base formation with specific amino acids and regulates redox signaling, reactive oxygen species sensing and cellular buffering. The chemistry of apo-8, 6' carotendial reveals a greater insight into the mechanism of selective inhibition of cancer cells proliferation. In this context, speculations of putative action of lycopeneoids through chemical biology approach facilitate greater insights in tandem with synthetic chemistry.
Collapse
Affiliation(s)
- Bangalore Prabhashankar Arathi
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, India
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560 012, India
| | - D James Bound
- Post-Graduate Department of Chemistry and Research Centre, NMKRV College, Jayanagar, Bengaluru, 560 011, India
- Department of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Moran Eye Center, Salt Lake City, UT, 84132, USA
| | - Rudrappa Ambedkar
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, India
| | - Sowmya Venkateshappa
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, India
| | - Tejaswini Manjunath
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, India
| | - Bishwajit Paul
- Department of Chemistry, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, India
| | - Rangaswamy Lakshminarayana
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, India.
| |
Collapse
|
5
|
Bohn T, de Lera AR, Landrier JF, Rühl R. Carotenoid metabolites, their tissue and blood concentrations in humans and further bioactivity via retinoid receptor-mediated signalling. Nutr Res Rev 2023; 36:498-511. [PMID: 36380523 DOI: 10.1017/s095442242200021x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many epidemiological studies have emphasised the relation between carotenoid dietary intake and their circulating concentrations and beneficial health effects, such as lower risk of cardiometabolic diseases and cancer. However, there is dispute as to whether the attributed health benefits are due to native carotenoids or whether they are instead induced by their metabolites. Several categories of metabolites have been reported, most notably involving (a) modifications at the cyclohexenyl ring or the polyene chain, such as epoxides and geometric isomers, (b) excentric cleavage metabolites with alcohol-, aldehyde- or carboxylic acid-functional groups or (c) centric cleaved metabolites with additional hydroxyl, aldehyde or carboxyl functionalities, not counting their potential phase-II glucuronidated / sulphated derivatives. Of special interest are the apo-carotenoids, which originate in the intestine and other tissues from carotenoid cleavage by β-carotene oxygenases 1/2 in a symmetrical / non-symmetrical fashion. These are more water soluble and more electrophilic and, therefore, putative candidates for interactions with transcription factors such as NF-kB and Nrf2, as well as ligands for RAR-RXR nuclear receptor interactions. In this review, we discuss in vivo detected apo-carotenoids, their reported tissue concentrations, and potential associated health effects, focusing exclusively on the human situation and based on quantified / semi-quantified carotenoid metabolites proven to be present in humans.
Collapse
Affiliation(s)
- Torsten Bohn
- Nutrition and Health Research Group, Precision Health Department, Luxembourg Institute of Health, 1 A-B, rue Thomas Edison, L-1445, Strassen, Luxembourg
| | - Angel R de Lera
- Departmento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, 36310 Vigo, Spain
| | | | - Ralph Rühl
- CISCAREX UG, Berlin, Germany
- Paprika Bioanalytics BT, Debrecen, Hungary
| |
Collapse
|
6
|
Moran NE, Wade J, Stroh R, Stoll B, Guthrie G, Hair AB, Burrin DG. Preterm Pigs Fed Donor Human Milk Have Greater Liver β-Carotene Concentrations than Pigs Fed Infant Formula. J Nutr 2023; 153:3185-3192. [PMID: 37666415 PMCID: PMC10687614 DOI: 10.1016/j.tjnut.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/20/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Milk carotenoids may support preterm infant health and neurodevelopment. Infants fed human milk often have higher blood and tissue carotenoid concentrations than infants fed carotenoid-containing infant formula (IF). Donor human milk (DHM) is a supplement to mother's own milk, used to support preterm infant nutrition. OBJECTIVES We tested whether tissue and plasma β-carotene concentrations would be higher in preterm pigs fed pasteurized DHM versus premature IF. METHODS This is a secondary analysis of samples collected from a study of the effects of enteral diet composition on necrotizing enterocolitis incidence. Preterm pigs received partial enteral feeding of either DHM (n = 7) or premature IF (n = 7) from 2 to 7 d of age. The diets provided similar β-carotene (32 nM), but DHM had higher lutein, zeaxanthin, and lycopene, whereas IF had higher total vitamin A. Plasma, liver, and jejunum carotenoid and vitamin A concentrations were measured by HPLC-PDA. Jejunal expression of 12 genes associated with carotenoid and lipid metabolism were measured. RESULTS Liver β-carotene concentrations were higher in DHM- than IF-fed piglets (23 ± 4 compared with 16 ± 2 μg/g, respectively, P = 0.0024), whereas plasma and jejunal β-carotene concentrations were similar between diets. Liver vitamin A stores were higher in piglets fed IF than DHM (50.6 ± 10.1 compared with 30.9 ± 7.2 μg/g, respectively, P=0.0013); however, plasma vitamin A was similar between groups. Plasma, liver, and jejunum concentrations of lutein, zeaxanthin, and lycopene were higher with DHM than IF feeding. Relative to piglets fed DHM, jejunal low density lipoprotein receptor (Ldlr) expression was higher (61%, P = 0.018) and cluster determinant 36 (Cd36) expression (-27%, P = 0.034) was lower in IF-fed piglets. CONCLUSIONS Preterm pigs fed DHM accumulate more liver β-carotene than IF-fed pigs. Future studies should further investigate infant carotenoid bioactivity and bioavailability.
Collapse
Affiliation(s)
- Nancy E Moran
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States.
| | - Joshua Wade
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Rachel Stroh
- School of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Barbara Stoll
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Gregory Guthrie
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Amy B Hair
- Division of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Texas Children's Hospital, Houston, TX, United States
| | - Douglas G Burrin
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
7
|
Muthuraman A, Sayem ASM, Meenakshisundaram S, Ali N, Ahmad SF, AlAsmari AF, Nishat S, Lim KG, Paramaswaran Y. Preventive Action of Beta-Carotene against the Indoxyl Sulfate-Induced Renal Dysfunction in Male Adult Zebrafish via Regulations of Mitochondrial Inflammatory and β-Carotene Oxygenase-2 Actions. Biomedicines 2023; 11:2654. [PMID: 37893028 PMCID: PMC10603961 DOI: 10.3390/biomedicines11102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Indoxyl sulfate (IS) is a metabolic byproduct of indole metabolism. IS readily interacts with the mitochondrial redox metabolism, leading to altered renal function. The β-carotene oxygenase-2 (BCO2) enzyme converts carotenoids to intermediate products. However, the role of β-carotene (BC) in IS-induced renal dysfunction in zebrafish and their modulatory action on BCO2 and mitochondrial inflammations have not been explored yet. Hence, the present study is designed to investigate the role of BC in the attenuation of IS-induced renal dysfunction via regulations of mitochondrial redox balance by BCO2 actions. Renal dysfunction was induced by exposure to IS (10 mg/L/hour/day) for 4 weeks. BC (50 and 100 mg/L/hour/day) and coenzyme Q10 (CoQ10; 20 mg/L/hour/day) were added before IS exposure. BC attenuated the IS-induced increase in blood urea nitrogen (BUN) and creatinine concentrations, adenosine triphosphate (ATP), and complex I activity levels, and the reduction of renal mitochondrial biomarkers, i.e., BCO2, superoxide dismutase-2 (SOD2), glutathione peroxidase-1 (GPX1), reduced and oxidized glutathione (GSH/GSSG) ratio, and carbonylated proteins. Moreover, renal histopathological changes were analyzed by the eosin and hematoxylin staining method. As a result, the administration of BC attenuated the IS-induced renal damage via the regulation of mitochondrial function.
Collapse
Affiliation(s)
- Arunachalam Muthuraman
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Abu Sadat Md. Sayem
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | | | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Shamama Nishat
- Comprehensive Cancer Center, Wexner Medical Centre, Ohio State University, Columbus, OH 43210, USA
| | - Khian Giap Lim
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Yamunna Paramaswaran
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| |
Collapse
|
8
|
Terao J. Revisiting carotenoids as dietary antioxidants for human health and disease prevention. Food Funct 2023; 14:7799-7824. [PMID: 37593767 DOI: 10.1039/d3fo02330c] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Humans are unique indiscriminate carotenoid accumulators, so the human body accumulates a wide range of dietary carotenoids of different types and to varying concentrations. Carotenoids were once recognized as physiological antioxidants because of their ability to quench singlet molecular oxygen (1O2). In the 1990s, large-scale intervention studies failed to demonstrate that supplementary β-carotene intake reduces the incidence of lung cancer, although its antioxidant activity was supposed to contribute to the prevention of oxidative stress-induced carcinogenesis. Nevertheless, the antioxidant activity of carotenoids has attracted renewed attention as the pathophysiological role of 1O2 has emerged, and as the ability of dietary carotenoids to induce antioxidant enzymes has been revealed. This review focuses on six major carotenoids from fruit and vegetables and revisits their physiological functions as biological antioxidants from the standpoint of health promotion and disease prevention. β-Carotene 9',10'-oxygenase-derived oxidative metabolites trigger increases in the activities of antioxidant enzymes. Lutein and zeaxanthin selectively accumulate in human macular cells to protect against light-induced macular impairment by acting as antioxidants. Lycopene accumulates exclusively and to high concentrations in the testis, where its antioxidant activity may help to eliminate oxidative damage. Dietary carotenoids appear to exert their antioxidant activity in photo-irradiated skin after their persistent deposition in the skin. An acceptable level of dietary carotenoids for disease prevention should be established because they can have deleterious effects as prooxidants if they accumulate to excess levels. Finally, it is expected that the reason why humans are indiscriminate carotenoid accumulators will be understood soon.
Collapse
Affiliation(s)
- Junji Terao
- Faculty of Medicine, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| |
Collapse
|
9
|
Bradley MJ, Black M, Arballo JR, Amengual J, Erdman JW. Lycopene Accumulation in Transgenic Mice Lacking One or Both Carotenoid Cleaving Enzymes. J Nutr 2023; 153:2216-2227. [PMID: 37269907 PMCID: PMC10447616 DOI: 10.1016/j.tjnut.2023.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/05/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND β-carotene oxygenase 1 (BCO1) and β-carotene oxygenase 2 (BCO2) are responsible for the cleavage of carotenoids in mammals. OBJECTIVE The goals of this study were to (1) establish the relative contribution of each enzyme on lycopene accumulation in mice and (2) examine the role of lycopene on gene expression in the gut of wild type (WT) mice. METHODS We utilized male and female WT, Bco1-/-, Bco2-/-, and Bco1-/-Bco2-/- double knockout (DKO) mice. We gavaged the mice with either 1 mg of lycopene resuspended in cottonseed oil or vehicle as a control group daily for 2 wk. In a second study, we evaluated the effect of dietary vitamin A on lycopene absorption and intestinal gene expression by RT-PCR. We also quantified lycopene concentration isomer distribution by high performance liquid chromatography. RESULTS Of the 11 tissues measured, the liver accounted for 94 to 98% of the lycopene content across genotypes. We did not observe sex differences between genotypes, although hepatic lycopene levels in Bco1-/- mice were approximately half in comparison to the other genotypes; Bco1-/- verses Bco2-/- (P < 0.0001), DKO mice (P < 0.001), WT (ns). Analyses of mitochondrial lycopene content revealed a 3- to 5-fold enrichment compared with total hepatic content (P < 0.05) in all genotypes and sexes. In our second study, WT mice fed a vitamin A-deficient diet (VAD) accumulated greater amounts of lycopene in the liver than those fed a vitamin A-sufficient diet (VAS) (P < 0.01). These changes were accompanied by an upregulation of the vitamin A-responsive transcription factor intestine specific homeobox (ISX) in mice fed VAD + lycopene and VAS + lycopene diets compared with VAD control-fed mice (P < 0.05). CONCLUSIONS Our data suggest that BCO2 is the primary lycopene cleavage enzyme in mice. Lycopene concentration was enriched in the mitochondria of hepatocytes independently of genotype, and lycopene stimulated vitamin A signaling in WT mice.
Collapse
Affiliation(s)
- Madelyn J Bradley
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL
| | - Molly Black
- Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801
| | - Joseph R Arballo
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL
| | - Jaume Amengual
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL; Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801.
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL; Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801.
| |
Collapse
|
10
|
β-Cryptoxanthin Attenuates Cigarette-Smoke-Induced Lung Lesions in the Absence of Carotenoid Cleavage Enzymes (BCO1/BCO2) in Mice. Molecules 2023; 28:molecules28031383. [PMID: 36771049 PMCID: PMC9920649 DOI: 10.3390/molecules28031383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
High dietary intake of β-cryptoxanthin (BCX, an oxygenated provitamin A carotenoid) is associated with a lower risk of lung disease in smokers. BCX can be cleaved by β-carotene-15,15'-oxygenase (BCO1) and β-carotene-9',10'-oxygenase (BCO2) to produce retinol and apo-10'-carotenoids. We investigated whether BCX has protective effects against cigarette smoke (CS)-induced lung injury, dependent or independent of BCO1/BCO2 and their metabolites. Both BCO1-/-/BCO2-/- double knockout mice (DKO) and wild type (WT) littermates were supplemented with BCX 14 days and then exposed to CS for an additional 14 days. CS exposure significantly induced macrophage and neutrophil infiltration in the lung tissues of mice, regardless of genotypes, compared to the non-exposed littermates. BCX treatment significantly inhibited CS-induced inflammatory cell infiltration, hyperplasia in the bronchial epithelium, and enlarged alveolar airspaces in both WT and DKO mice, regardless of sex. The protective effects of BCX were associated with lower expression of IL-6, TNF-α, and matrix metalloproteinases-2 and -9. BCX treatment led to a significant increase in hepatic BCX levels in DKO mice, but not in WT mice, which had significant increase in hepatic retinol concentration. No apo-10'-carotenoids were detected in any of the groups. In vitro BCX, at comparable doses of 3-OH-β-apo-10'-carotenal, was effective at inhibiting the lipopolysaccharide-induced inflammatory response in a human bronchial epithelial cell line. These data indicate that BCX can serve as an effective protective agent against CS-induced lung lesions in the absence of carotenoid cleavage enzymes.
Collapse
|
11
|
Varela ELP, Gomes ARQ, da Silva Barbosa dos Santos A, de Carvalho EP, Vale VV, Percário S. Potential Benefits of Lycopene Consumption: Rationale for Using It as an Adjuvant Treatment for Malaria Patients and in Several Diseases. Nutrients 2022; 14:5303. [PMID: 36558462 PMCID: PMC9787606 DOI: 10.3390/nu14245303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Malaria is a disease that affects thousands of people around the world every year. Its pathogenesis is associated with the production of reactive oxygen and nitrogen species (RONS) and lower levels of micronutrients and antioxidants. Patients under drug treatment have high levels of oxidative stress biomarkers in the body tissues, which limits the use of these drugs. Therefore, several studies have suggested that RONS inhibition may represent an adjuvant therapeutic strategy in the treatment of these patients by increasing the antioxidant capacity of the host. In this sense, supplementation with antioxidant compounds such as zinc, selenium, and vitamins A, C, and E has been suggested as part of the treatment. Among dietary antioxidants, lycopene is the most powerful antioxidant among the main carotenoids. This review aimed to describe the main mechanisms inducing oxidative stress during malaria, highlighting the production of RONS as a defense mechanism against the infection induced by the ischemia-reperfusion syndrome, the metabolism of the parasite, and the metabolism of antimalarial drugs. Furthermore, the effects of lycopene on several diseases in which oxidative stress is implicated as a cause are outlined, providing information about its mechanism of action, and providing an evidence-based justification for its supplementation in malaria.
Collapse
Affiliation(s)
- Everton Luiz Pompeu Varela
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Antônio Rafael Quadros Gomes
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, Brazil
| | - Aline da Silva Barbosa dos Santos
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Eliete Pereira de Carvalho
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Valdicley Vieira Vale
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, Brazil
| | - Sandro Percário
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
12
|
Shin KC, Seo MJ, Kim YS, Yeom SJ. Molecular Properties of β-Carotene Oxygenases and Their Potential in Industrial Production of Vitamin A and Its Derivatives. Antioxidants (Basel) 2022; 11:1180. [PMID: 35740077 PMCID: PMC9227343 DOI: 10.3390/antiox11061180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
β-Carotene 15,15'-oxygenase (BCO1) and β-carotene 9',10'-oxygenase (BCO2) are potential producers of vitamin A derivatives, since they can catalyze the oxidative cleavage of dietary provitamin A carotenoids to retinoids and derivative such as apocarotenal. Retinoids are a class of chemical compounds that are vitamers of vitamin A or are chemically related to it, and are essential nutrients for humans and highly valuable in the food and cosmetics industries. β-carotene oxygenases (BCOs) from various organisms have been overexpressed in heterogeneous bacteria, such as Escherichia coli, and their biochemical properties have been studied. For the industrial production of retinal, there is a need for increased production of a retinal producer and biosynthesis of retinal using biocatalyst systems improved by enzyme engineering. The current review aims to discuss BCOs from animal, plants, and bacteria, and to elaborate on the recent progress in our understanding of their functions, biochemical properties, substrate specificity, and enzyme activities with respect to the production of retinoids in whole-cell conditions. Moreover, we specifically propose ways to integrate BCOs into retinal biosynthetic bacterial systems to improve the performance of retinal production.
Collapse
Affiliation(s)
- Kyung-Chul Shin
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Min-Ju Seo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Yeong-Su Kim
- Wild Plants Industrialization Research Division, Baekdudaegan National Arboretum, Bonghwa 36209, Korea
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
13
|
Moran NE, Thomas-Ahner JM, Wan L, Zuniga KE, Erdman JW, Clinton SK. Tomatoes, Lycopene, and Prostate Cancer: What Have We Learned from Experimental Models? J Nutr 2022; 152:1381-1403. [PMID: 35278075 PMCID: PMC9178968 DOI: 10.1093/jn/nxac066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/04/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Human epidemiology suggests a protective effect of tomatoes or tomato phytochemicals, such as lycopene, on prostate cancer risk. However, human epidemiology alone cannot reveal causal relations. Laboratory animal models of prostate cancer provide opportunities to investigate hypotheses regarding dietary components in precisely controlled, experimental systems, contributing to our understanding of diet and cancer risk relations. We review the published studies evaluating the impact of tomatoes and/or lycopene in preclinical models of prostate carcinogenesis and tumorigenesis. The feeding of tomatoes or tomato components demonstrates anti-prostate cancer activity in both transplantable xenograft models of tumorigenesis and models of chemically- and genetically-driven carcinogenesis. Feeding pure lycopene shows anticancer activity in most studies, although outcomes vary by model system, suggesting that the impact of pure lycopene can depend on dose, duration, and specific carcinogenic processes represented in different models. Nonetheless, studies with the transgenic adenocarcinoma of the mouse prostate (TRAMP) model of carcinogenesis typically demonstrate similar bioactivity to that of tomato feeding. In general, interventions that commence earlier in carcinogenesis and are sustained tend to be more efficacious. Accumulated data suggest that lycopene is one, but perhaps not the only, anticancer bioactive compound in tomatoes. Although it is clear that tomatoes and lycopene have anti-prostate cancer activity in rodent models, major knowledge gaps remain in understanding dose-response relations and molecular mechanisms of action. Published and future findings from rodent studies can provide guidance for translational scientists to design and execute informative human clinical trials of prostate cancer prevention or in support of therapy.
Collapse
Affiliation(s)
- Nancy E Moran
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jennifer M Thomas-Ahner
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Lei Wan
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Interdisciplinary Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Krystle E Zuniga
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA.,Livestrong Cancer Institutes, Dell Medical School, University of Texas, Austin, TX, USA
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Steven K Clinton
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| |
Collapse
|
14
|
Falsafi SR, Rostamabadi H, Babazadeh A, Tarhan Ö, Rashidinejad A, Boostani S, Khoshnoudi-Nia S, Akbari-Alavijeh S, Shaddel R, Jafari SM. Lycopene nanodelivery systems; recent advances. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Moran NE, Thomas-Ahner JM, Smith JW, Silva C, Hason NA, Erdman JW, Clinton SK. β-Carotene Oxygenase 2 Genotype Modulates the Impact of Dietary Lycopene on Gene Expression during Early TRAMP Prostate Carcinogenesis. J Nutr 2021; 152:950-960. [PMID: 34964896 PMCID: PMC8971008 DOI: 10.1093/jn/nxab445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/22/2021] [Accepted: 12/24/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Epidemiologic studies suggest lycopene and tomato intake are inversely associated with human prostate cancer incidence. In the genetically driven murine prostate carcinogenesis model transgenic adenocarcinoma of the mouse prostate (TRAMP), prostate cancer is inhibited by feeding of lycopene or tomatoes, and these effects are modulated by the β-carotene oxygenase 2 (Bco2) genotype. OBJECTIVE We sought insight into this interaction through evaluation of prostate gene expression patterns during early TRAMP carcinogenesis. METHODS Three-week-old TRAMP/+ or TRAMP/- × Bco2+/+ or Bco2-/- mice were fed a control, lycopene beadlet, or 10% tomato powder-containing semipurified diet (providing 0, 384 and 462 mg lycopene/kg diet, respectively) for 5 wk. Gene expression patterns were evaluated by prostate cancer- and cholesterol and lipoprotein metabolism-focused arrays at age 8 wk. RESULTS The TRAMP genotype profoundly alters gene expression patterns, specifically inducing pathways associated with cell survival [z-score = 2.09, -log(P value) = 29.2, p53 signaling (z-score 1.13, -log(P value) = 13.5], and phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT) signaling [z-score = 0.302, -log(P value) = 12.1], while repressing phosphatase and tensin homolog (PTEN) signaling [(z-score = -0.905, -log(P value) = 12.3], cholesterol synthesis [z-score = -1.941, -log(P-value) = 26.2], and LXR/RXR pathway activation [z-score = -1.941, -log(P value) = 23.1]. In comparison, lycopene- and tomato-feeding modestly modulate strong procarcinogenic TRAMP signaling. Lycopene decreased gene expression related to carcinogenesis [ Nkx3-1(NK3 homeobox 1)], tomato feeding increased expression of a gene involved in circadian regulation [Arntl (aryl hydrocarbon receptor nuclear translocator like)], and tomato and/or lycopene increased expression of genes involved in lipid metabolism [Fasn (fatty acid synthase), Acaca(acetyl-CoA carboxylase alpha), Srebf1 (sterol regulatory element binding transcription factor 1), Hmgcr (3-hydroxy-3-methylglutaryl-coA reductase), and Ptgs1 (prostaglandin-endoperoxide synthase 1)] (all P < 0.05). The impact of Bco2 genotype was limited to a subset of lycopene-impacted genes [Apc (adenomatous polyposis coli), Mto1 (mitochondrial TRNA translation optimization 1), Nfkb1 (nuclear factor kappa B subunit 1), andRbm39 (RNA binding motif protein 39)]. CONCLUSIONS The TRAMP genotype strongly impacts procarcinogenic gene expression prior to emergence of histopathologic disease. Dietary tomato and lycopene modestly temper these processes, while Bco2 genotype has a limited impact at this early stage. These observed patterns provide insight into the complex interactions between a dietary variable, here tomatoes and lycopene, genes impacting nutrient metabolism, and their modulating influences on oncogene-driven prostate carcinogenesis. These findings provide further mechanistic support, consistent with cancer outcomes in rodents experiments and human epidemiologic studies.
Collapse
Affiliation(s)
| | - Jennifer M Thomas-Ahner
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Joshua W Smith
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Ceasar Silva
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Noor A Hason
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Steven K Clinton
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
16
|
Song X, Luo Y, Ma L, Hu X, Simal-Gandara J, Wang LS, Bajpai VK, Xiao J, Chen F. Recent trends and advances in the epidemiology, synergism, and delivery system of lycopene as an anti-cancer agent. Semin Cancer Biol 2021; 73:331-346. [PMID: 33794344 DOI: 10.1016/j.semcancer.2021.03.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
Dietary interventions are key nutritional strategies to prevent, improve, and prolong the survival of cancer patients. Lycopene, one of the strongest natural antioxidants, and its biologically active metabolites, have shown significant potential to prevent a variety of cancers, including prostate, breast, and stomach cancers, making it a promising anti-cancer agent. We review the potential regulatory mechanisms and epidemiological evidences of lycopene and its metabolites to delay the progression of cancers at different developmental stages. Recent studies have revealed that lycopene and its metabolites mediate multiple molecular mechanisms in cancer treatment such as redox homeostasis, selective anti-proliferation, apoptosis, anti-angiogenesis, tumour microenvironment regulation, and anti-metastasis and anti-invasion. Gut microbes and cholesterol metabolism are also the potential regulation targets of lycopene and its metabolites. As a dietary supplement, the synergistic interaction of lycopene with other drugs and nutrients is highlighted especially due to its binding activity with other nutrients in the diet found central to the fight against cancer. Furthermore, the application of several of novel lycopene delivery carriers are on the rise including nanoemulsions, nanostructured liposomes, and polymer nanoparticles for cancer prevention as discussed in this review with future needed development. Moreover, the synergistic mechanism between lycopene and other nutrients or drugs and novel delivery systems of lycopene should now be deeply investigated to improve its clinical application in cancer intervention in the future.
Collapse
Affiliation(s)
- Xunyu Song
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yinghua Luo
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Li-Shu Wang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
17
|
Bandara S, Thomas LD, Ramkumar S, Khadka N, Kiser PD, Golczak M, von Lintig J. The Structural and Biochemical Basis of Apocarotenoid Processing by β-Carotene Oxygenase-2. ACS Chem Biol 2021; 16:480-490. [PMID: 33600157 DOI: 10.1021/acschembio.0c00832] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In mammals, carotenoids are converted by two carotenoid cleavage oxygenases into apocarotenoids, including vitamin A. Although knowledge about β-carotene oxygenase-1 (BCO1) and vitamin A metabolism has tremendously increased, the function of β-carotene oxygenase-2 (BCO2) remains less well-defined. We here studied the role of BCO2 in the metabolism of long chain β-apocarotenoids, which recently emerged as putative regulatory molecules in mammalian biology. We showed that recombinant murine BCO2 converted the alcohol, aldehyde, and carboxylic acid of a β-apocarotenoid substrate by oxidative cleavage at position C9,C10 into a β-ionone and a diapocarotenoid product. Chain length variation (C20 to C40) and ionone ring site modifications of the apocarotenoid substrate did not impede catalytic activity or alter the regioselectivity of the double bond cleavage by BCO2. Isotope labeling experiments revealed that the double bond cleavage of an apocarotenoid followed a dioxygenase reaction mechanism. Structural modeling and site directed mutagenesis identified amino acid residues in the substrate tunnel of BCO2 that are critical for apocarotenoid binding and catalytic processing. Mice deficient for BCO2 accumulated apocarotenoids in their livers, indicating that the enzyme engages in apocarotenoid metabolism. Together, our study provides novel structural and functional insights into BCO2 catalysis and establishes the enzyme as a key component of apocarotenoid homeostasis in mice.
Collapse
Affiliation(s)
| | | | | | | | - Philip D. Kiser
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, United States
- Research Service, Veterans Affairs Long Beach Healthcare System, Long Beach, California 90822, United States
| | | | | |
Collapse
|
18
|
Arballo J, Amengual J, Erdman JW. Lycopene: A Critical Review of Digestion, Absorption, Metabolism, and Excretion. Antioxidants (Basel) 2021; 10:antiox10030342. [PMID: 33668703 PMCID: PMC7996133 DOI: 10.3390/antiox10030342] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Lycopene is a non-provitamin A carotenoid that exhibits several health benefits. Epidemiological data support a correlation between lycopene intake and the attenuation of several chronic diseases, including certain types of cancers and cardiovascular diseases. It is currently unknown whether the beneficial effects are from the native structure of lycopene or its metabolic derivatives: lycopenals, lycopenols, and lycopenoic acids. This literature review focuses on the current research on lycopene digestion, absorption, metabolism, and excretion. This review primarily focuses on in vivo studies because of the labile nature and difficulty of studying carotenoids within in vitro experimental models. The studies presented address tissue accumulation of lycopene, the modification of bioavailability due to genetic and dietary factors, and lycopene cleavage by the enzymes ß-carotene oxygenase 1 (BCO1) and ß-carotene oxygenase 2 (BCO2). The current literature suggests that the majority of lycopene is cleaved eccentrically by BCO2, yet further research is needed to probe the enzymatic cleavage activity at the tissue level. Additionally, results indicate that single nucleotide polymorphisms and dietary fat influence lycopene absorption and thus modify its health effects. Further research exploring the metabolism of lycopene, the mechanisms related to its health benefits, and optimal diet composition to increase the bioavailability is required.
Collapse
Affiliation(s)
- Joseph Arballo
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA; (J.A.); (J.A.)
| | - Jaume Amengual
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA; (J.A.); (J.A.)
- Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - John W. Erdman
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA; (J.A.); (J.A.)
- Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
19
|
Wu L, Lu P, Guo X, Song K, Lyu Y, Bothwell J, Wu J, Hawkins O, Clarke SL, Lucas EA, Smith BJ, Chowanadisai W, Hartson SD, Ritchey JW, Wang W, Medeiros DM, Li S, Lin D. β-carotene oxygenase 2 deficiency-triggered mitochondrial oxidative stress promotes low-grade inflammation and metabolic dysfunction. Free Radic Biol Med 2021; 164:271-284. [PMID: 33453359 PMCID: PMC7946548 DOI: 10.1016/j.freeradbiomed.2021.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Low-grade inflammation is a critical pathological factor contributing to the development of metabolic disorders. β-carotene oxygenase 2 (BCO2) was initially identified as an enzyme catalyzing carotenoids in the inner mitochondrial membrane. Mutations in BCO2 are associated with inflammation and metabolic disorders in humans, yet the underlying mechanisms remain unknown. Here, we used loss-of-function approaches in mice and cell culture models to investigate the role of BCO2 in inflammation and metabolic dysfunction. We demonstrated decreases in BCO2 mRNA and protein levels and suppression of mitochondrial respiratory complex I proteins and mitochondrial superoxide dismutase levels in the liver of type 2 diabetic human subjects. Deficiency of BCO2 caused disruption of assembly of the mitochondrial respiratory supercomplexes, such as supercomplex III2+IV in mice, and overproduction of superoxide radicals in primary mouse embryonic fibroblasts. Further, deficiency of BCO2 increased protein carbonylation and populations of natural killer cells and M1 macrophages, and decreased populations of T cells, including CD4+ and/or CD8+ in the bone marrow and white adipose tissues. Elevation of plasma inflammatory cytokines and adipose tissue hypertrophy and inflammation were also characterized in BCO2 deficient mice. Moreover, BCO2 deficient mice were more susceptible to high-fat diet-induced obesity and hyperglycemia. Double knockout of BCO2 and leptin receptor genes caused a significantly greater elevation of the fasting blood glucose level in mice at 4 weeks of age, compared to the age- and sex-matched leptin receptor knockout. Finally, administration of Mito-TEMPO, a mitochondrial specific antioxidant attenuated systemic low-grade inflammation induced by BCO2 deficiency. Collectively, these findings suggest that BCO2 is essential for mitochondrial respiration and metabolic homeostasis in mammals. Loss or decreased expression of BCO2 leads to mitochondrial oxidative stress, low-grade inflammation, and the subsequent development of metabolic disorders.
Collapse
Affiliation(s)
- Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Peiran Lu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xin Guo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Kun Song
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
| | - Yi Lyu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - James Bothwell
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jinglong Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Olivia Hawkins
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Winyoo Chowanadisai
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Steve D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jerry W Ritchey
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Weiqun Wang
- Department of Food, Nutrition, Dietetics, and Health, Kansas State University, Manhattan, KS, 66506, USA
| | - Denis M Medeiros
- Department of Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
20
|
Dietary lycopene attenuates cigarette smoke-promoted nonalcoholic steatohepatitis by preventing suppression of antioxidant enzymes in ferrets. J Nutr Biochem 2021; 91:108596. [PMID: 33548472 DOI: 10.1016/j.jnutbio.2021.108596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/01/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022]
Abstract
Cigarette smoke (CS) is an independent risk factor in development of nonalcoholic steatohepatitis (NASH) and fibrosis. Lycopene, a carotenoid naturally occurring in tomatoes, has been shown to be a protective agent against tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced NASH. In the present study using a ferret model we investigated whether CS promotes NASH and whether dietary lycopene can inhibit CS-promoted NASH development, and if so, what potential mechanisms were involved. Ferrets were divided into 4 groups (n=12-16/group): control, NNK/CS exposed, NNK/CS plus low-dose lycopene (2.2 mg/kg BW/day), and NNK/CS plus high-dose lycopene (6.6 mg/kg BW/day) groups, for 26 weeks. Results showed that hepatic steatosis, infiltrates of inflammatory cells, and the number and size of inflammatory foci in liver, together with key genes involved in hepatic fibrogenesis were higher in the NNK/CS group compared to the control group; a lycopene diet reversed these changes to the levels of the control group. Interestingly, a major lycopene cleavage enzyme, beta-carotene 9',10'-oxygenase (BCO2), which recently has been recognized to play metabolic roles beyond cleavage function, was down-regulated by NNK/CS exposure, but this decrease was prevented by lycopene feeding. NNK/CS exposure also downregulated liver expression of antioxidant enzymes and upregulated oxidative stress marker, which were all prevented by lycopene. In conclusion, our results suggest that CS can promote development of NASH and liver fibrosis in ferrets, which is associated with downregulation of BCO2 and impairment of antioxidant system in liver; dietary lycopene may inhibit CS-promoted NASH by preventing suppression of BCO2 and decline in antioxidant network.
Collapse
|
21
|
Widjaja-Adhi MAK, Golczak M. The molecular aspects of absorption and metabolism of carotenoids and retinoids in vertebrates. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158571. [PMID: 31770587 PMCID: PMC7244374 DOI: 10.1016/j.bbalip.2019.158571] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Vitamin A is an essential nutrient necessary for numerous basic physiological functions, including reproduction and development, immune cell differentiation and communication, as well as the perception of light. To evade the dire consequences of vitamin A deficiency, vertebrates have evolved specialized metabolic pathways that enable the absorption, transport, and storage of vitamin A acquired from dietary sources as preformed retinoids or provitamin A carotenoids. This evolutionary advantage requires a complex interplay between numerous specialized retinoid-transport proteins, receptors, and enzymes. Recent advances in molecular and structural biology resulted in a rapid expansion of our understanding of these processes at the molecular level. This progress opened new avenues for the therapeutic manipulation of retinoid homeostasis. In this review, we summarize current research related to the biochemistry of carotenoid and retinoid-processing proteins with special emphasis on the structural aspects of their physiological actions. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Made Airanthi K Widjaja-Adhi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| |
Collapse
|
22
|
von Lintig J, Moon J, Lee J, Ramkumar S. Carotenoid metabolism at the intestinal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158580. [PMID: 31794861 PMCID: PMC7987234 DOI: 10.1016/j.bbalip.2019.158580] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Carotenoids exert a rich variety of physiological functions in mammals and are beneficial for human health. These lipids are acquired from the diet and metabolized to apocarotenoids, including retinoids (vitamin A and its metabolites). The small intestine is a major site for their absorption and bioconversion. From here, carotenoids and their metabolites are distributed within the body in triacylglycerol-rich lipoproteins to support retinoid signaling in peripheral tissues and photoreceptor function in the eyes. In recent years, much progress has been made in identifying carotenoid metabolizing enzymes, transporters, and binding proteins. A diet-responsive regulatory network controls the activity of these components and adapts carotenoid absorption and bioconversion to the bodily requirements of these lipids. Genetic variability in the genes encoding these components alters carotenoid homeostasis and is associated with pathologies. We here summarize the advanced state of knowledge about intestinal carotenoid metabolism and its impact on carotenoid and retinoid homeostasis of other organ systems, including the eyes, liver, and immune system. The implication of the findings for science-based intake recommendations for these essential dietary lipids is discussed. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Joan Lee
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| |
Collapse
|
23
|
Poliakov E, Uppal S, Rogozin IB, Gentleman S, Redmond TM. Evolutionary aspects and enzymology of metazoan carotenoid cleavage oxygenases. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158665. [PMID: 32061750 PMCID: PMC7423639 DOI: 10.1016/j.bbalip.2020.158665] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/25/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
Abstract
The carotenoids are terpenoid fat-soluble pigments produced by plants, algae, and several bacteria and fungi. They are ubiquitous components of animal diets. Carotenoid cleavage oxygenase (CCO) superfamily members are involved in carotenoid metabolism and are present in all kingdoms of life. Throughout the animal kingdom, carotenoid oxygenases are widely distributed and they are completely absent only in two unicellular organisms, Monosiga and Leishmania. Mammals have three paralogs 15,15'-β-carotene oxygenase (BCO1), 9',10'-β-carotene oxygenase (BCO2) and RPE65. The first two enzymes are classical carotenoid oxygenases: they cleave carbon‑carbon double bonds and incorporate two atoms of oxygen in the substrate at the site of cleavage. The third, RPE65, is an unusual family member, it is the retinoid isomerohydrolase in the visual cycle that converts all-trans-retinyl ester into 11-cis-retinol. Here we discuss evolutionary aspects of the carotenoid cleavage oxygenase superfamily and their enzymology to deduce what insight we can obtain from their evolutionary conservation.
Collapse
Affiliation(s)
- Eugenia Poliakov
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Sheetal Uppal
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Susan Gentleman
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - T Michael Redmond
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Harrison EH, Kopec RE. Enzymology of vertebrate carotenoid oxygenases. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158653. [PMID: 32035229 PMCID: PMC10655466 DOI: 10.1016/j.bbalip.2020.158653] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 02/09/2023]
Abstract
Mammals and higher vertebrates including humans have only three members of the carotenoid cleavage dioxygenase family of enzymes. This review focuses on the two that function as carotenoid oxygenases. β-Carotene 15,15'-dioxygenase (BCO1) catalyzes the oxidative cleavage of the central 15,15' carbon-carbon double of β-carotene bond by addition of molecular oxygen. The product of the reaction is retinaldehyde (retinal or β-apo-15-carotenal). Thus, BCO1 is the enzyme responsible for the conversion of provitamin A carotenoids to vitamin A. It also cleaves the 15,15' bond of β-apocarotenals to yield retinal and of lycopene to yield apo-15-lycopenal. β-Carotene 9',10'-dioxygenase (BCO2) catalyzes the cleavage of the 9,10 and 9',10' double bonds of a wider variety of carotenoids, including both provitamin A and non-provitamin A carotenoids, as well as the xanthophylls, lutein and zeaxanthin. Indeed, the enzyme shows a marked preference for utilization of these xanthophylls and other substrates with hydroxylated terminal rings. Studies of the phenotypes of BCO1 null, BCO2 null, and BCO1/2 double knockout mice and of humans with polymorphisms in the enzymes, has clarified the role of these enzymes in whole body carotenoid and vitamin A homeostasis. These studies also demonstrate the relationship between enzyme expression and whole body lipid and energy metabolism and oxidative stress. In addition, relationships between BCO1 and BCO2 and the development or risk of metabolic diseases, eye diseases and cancer have been observed. While the precise roles of the enzymes in the pathophysiology of most of these diseases is not presently clear, these gaps in knowledge provide fertile ground for rigorous future investigations. This article is part of a Special Issue entitled Carotenoids: Recent Advances in Cell and Molecular Biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Earl H Harrison
- Program in Human Nutrition, Department of Human Sciences, Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, USA.
| | - Rachel E Kopec
- Program in Human Nutrition, Department of Human Sciences, Ohio State University, Columbus, OH 43210, USA; Foods for Health Discovery Theme, Ohio State University, USA
| |
Collapse
|
25
|
Thomas LD, Bandara S, Parmar VM, Srinivasagan R, Khadka N, Golczak M, Kiser PD, von Lintig J. The human mitochondrial enzyme BCO2 exhibits catalytic activity toward carotenoids and apocarotenoids. J Biol Chem 2020; 295:15553-15565. [PMID: 32873706 DOI: 10.1074/jbc.ra120.015515] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
The enzyme β-carotene oxygenase 2 (BCO2) converts carotenoids into more polar metabolites. Studies in mammals, fish, and birds revealed that BCO2 controls carotenoid homeostasis and is involved in the pathway for vitamin A production. However, it is controversial whether BCO2 function is conserved in humans, because of a 4-amino acid long insertion caused by a splice acceptor site polymorphism. We here show that human BCO2 splice variants, BCO2a and BCO2b, are expressed as pre-proteins with mitochondrial targeting sequence (MTS). The MTS of BCO2a directed a green fluorescent reporter protein to the mitochondria when expressed in ARPE-19 cells. Removal of the MTS increased solubility of BCO2a when expressed in Escherichia coli and rendered the recombinant protein enzymatically active. The expression of the enzymatically active recombinant human BCO2a was further improved by codon optimization and its fusion with maltose-binding protein. Introduction of the 4-amino acid insertion into mouse Bco2 did not impede the chimeric enzyme's catalytic proficiency. We further showed that the chimeric BCO2 displayed broad substrate specificity and converted carotenoids into two ionones and a central C14-apocarotendial by oxidative cleavage reactions at C9,C10 and C9',C10'. Thus, our study demonstrates that human BCO2 is a catalytically competent enzyme. Consequently, information on BCO2 becomes broadly applicable in human biology with important implications for the physiology of the eyes and other tissues.
Collapse
Affiliation(s)
- Linda D Thomas
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sepalika Bandara
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vipulkumar M Parmar
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ramkumar Srinivasagan
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nimesh Khadka
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Marcin Golczak
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Philip D Kiser
- Department of Physiology and Biophysics, University of California, Irvine, California, USA; Research Service, Veterans Affairs Long Beach Healthcare System, Long Beach, California, USA
| | - Johannes von Lintig
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
26
|
Wu L, Lyu Y, Srinivasagan R, Wu J, Ojo B, Tang M, El-Rassi GD, Metzinger K, Smith BJ, Lucas EA, Clarke SL, Chowanadisai W, Shen X, He H, Conway T, von Lintig J, Lin D. Astaxanthin-Shifted Gut Microbiota Is Associated with Inflammation and Metabolic Homeostasis in Mice. J Nutr 2020; 150:2687-2698. [PMID: 32810865 PMCID: PMC8023541 DOI: 10.1093/jn/nxaa222] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/06/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Astaxanthin is a red lipophilic carotenoid that is often undetectable in human plasma due to the limited supply in typical Western diets. Despite its presence at lower than detectable concentrations, previous clinical feeding studies have reported that astaxanthin exhibits potent antioxidant properties. OBJECTIVE We examined astaxanthin accumulation and its effects on gut microbiota, inflammation, and whole-body metabolic homeostasis in wild-type C57BL/6 J (WT) and β-carotene oxygenase 2 (BCO2) knockout (KO) mice. METHODS Six-wk-old male and female BCO2 KO and WT mice were provided with either nonpurified AIN93M (e.g., control diet) or the control diet supplemented with 0.04% astaxanthin (wt/wt) ad libitum for 8 wk. Whole-body energy expenditure was measured by indirect calorimetry. Feces were collected from individual mice for short-chain fatty acid assessment. Hepatic astaxanthin concentrations and liver metabolic markers, cecal gut microbiota profiling, inflammation markers in colonic lamina propria, and plasma samples were assessed. Data were analyzed by 3-way ANOVA followed by Tukey's post hoc analysis. RESULTS BCO2 KO but not WT mice fed astaxanthin had ∼10-fold more of this compound in liver than controls (P < 0.05). In terms of the microbiota composition, deletion of BCO2 was associated with a significantly increased abundance of Mucispirillum schaedleri in mice regardless of gender. In addition to more liver astaxanthin in male KO compared with WT mice fed astaxanthin, the abundance of gut Akkermansia muciniphila was 385% greater, plasma glucagon-like peptide 1 was 27% greater, plasma glucagon and IL-1β were 53% and 30% lower, respectively, and colon NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation was 23% lower (all P < 0.05) in male KO mice than the WT mice. CONCLUSIONS Astaxanthin affects the gut microbiota composition in both genders, but the association with reductions in local and systemic inflammation, oxidative stress, and improvement of metabolic homeostasis only occurs in male mice.
Collapse
Affiliation(s)
- Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Yi Lyu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Ramkumar Srinivasagan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jinlong Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Babajide Ojo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Minghua Tang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Katherine Metzinger
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Winyoo Chowanadisai
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | | | - Hui He
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | |
Collapse
|
27
|
Jin Y, Yu Y, Zhang C, Li S, Zhang X, Li F. Characterization and Function Analysis of the Beta-Carotene Oxygenase-like Genes in Carotenoids Metabolism of the Ridgetail White Prawn Exopalaemon carinicauda. Front Physiol 2020; 11:745. [PMID: 32733270 PMCID: PMC7363964 DOI: 10.3389/fphys.2020.00745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
Carotenoids are almost universally distributed in living organisms. The oxidative metabolism by carotene oxygenase contributes to the metabolic processes of carotenoids. 15,15'-beta-carotene oxygenase (BCO1) and 9',10'-beta-carotene oxygenase (BCO2) are two important carotenoid oxygenases. In order to understand the function of carotenoid oxygenases in crustaceans, seven genes encoding carotenoid oxygenases (named EcBCO-like) were isolated from the transcriptome database of Exopalaemon carinicauda. After phylogenetic analysis with carotenoid oxygenases reported in other species, EcBCO-like1, EcBCO-like3, and EcBCO-like6 were chosen for further functional study. The prawns after EcBCO-like1 knockdown suffered continuous death, which suggested its important role for the survival of the animals. For the prawns after EcBCO-like3 knockdown, no phenotype change was observed. The prawns after EcBCO-like6 knockdown showed color changes in their hepatopancreas when they were fed with carotenoids-containing diet, and the content of carotenoid in their hepatopancreas was much higher than that in the control prawns. The present study will pave the way for further understanding the carotenoids metabolism in the prawns.
Collapse
Affiliation(s)
- Yue Jin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chengsong Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
28
|
Mustra Rakic J, Wang XD. Role of lycopene in smoke-promoted chronic obstructive pulmonary disease and lung carcinogenesis. Arch Biochem Biophys 2020; 689:108439. [PMID: 32504553 DOI: 10.1016/j.abb.2020.108439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/30/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are a major cause of morbidity and mortality worldwide, with cigarette smoking being the single most important risk factor for both. Emerging evidence indicates alterations in reverse cholesterol transport-mediated removal of excess cholesterol from lung, and intracellular cholesterol overload to be involved in smoke-promoted COPD and lung cancer development. Since there are currently few effective treatments for COPD and lung cancer, it is important to identify food-derived, biologically active compounds, which can protect against COPD and lung cancer development. High intake of the carotenoid lycopene, as one of phytochemicals, is associated with a decreased risk of chronic lung lesions. This review article summarizes and discusses epidemiologic evidence, in vitro and in vivo studies regarding the prevention of smoke-promoted COPD and lung carcinogenesis through dietary lycopene as an effective intervention strategy. We focus on the recent research implying that lycopene preventive effect is through targeting the main genes involved in reverse cholesterol transport. This review also indicates gaps in knowledge about the function of lycopene against COPD and lung cancer, offering directions for further research.
Collapse
Affiliation(s)
- Jelena Mustra Rakic
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA; Biochemical and Molecular Nutrition Program, Friedman School of Nutrition and Policy, Tufts University, Boston, MA, USA
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA; Biochemical and Molecular Nutrition Program, Friedman School of Nutrition and Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
29
|
Nutraceutical Effects of Lycopene in Experimental Varicocele: An "In Vivo" Model to Study Male Infertility. Nutrients 2020; 12:nu12051536. [PMID: 32466161 PMCID: PMC7284888 DOI: 10.3390/nu12051536] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/09/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Varicocele is one of the main causes of infertility in men. Oxidative stress and consequently apoptosis activation contribute to varicocele pathogenesis, worsening its prognosis. Natural products, such as lycopene, showed antioxidant and anti-inflammatory effects in several experimental models, also in testes. In this study we investigated lycopene effects in an experimental model of varicocele. Male rats (n = 14) underwent sham operations and were administered with vehicle (n = 7) or with lycopene (n = 7; 1 mg/kg i.p., daily). Another group of animals (n = 14) underwent surgical varicocele. After 28 days, the sham and 7 varicocele animals were euthanized, and both operated and contralateral testes were weighted and processed. The remaining rats were treated with lycopene (1 mg/kg i.p., daily) for 30 days. Varicocele rats showed reduced testosterone levels, testes weight, Bcl-2 mRNA expression, changes in testes structure and increased malondialdehyde levels and BAX gene expression. TUNEL (Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling) assay showed an increased number of apoptotic cells. Treatment with lycopene significantly increased testosterone levels, testes weight, and Bcl-2 mRNA expression, improved tubular structure and decreased malondialdehyde levels, BAX mRNA expression and TUNEL-positive cells. The present results show that lycopene exerts beneficial effects in testes, and suggest that supplementation with the tomato-derived carotenoid might be considered a novel nutraceutical strategy for the treatment of varicocele and male infertility.
Collapse
|
30
|
von Lintig J, Moon J, Babino D. Molecular components affecting ocular carotenoid and retinoid homeostasis. Prog Retin Eye Res 2020; 80:100864. [PMID: 32339666 DOI: 10.1016/j.preteyeres.2020.100864] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
The photochemistry of vision employs opsins and geometric isomerization of their covalently bound retinylidine chromophores. In different animal classes, these light receptors associate with distinct G proteins that either hyperpolarize or depolarize photoreceptor membranes. Vertebrates also use the acidic form of chromophore, retinoic acid, as the ligand of nuclear hormone receptors that orchestrate eye development. To establish and sustain these processes, animals must acquire carotenoids from the diet, transport them, and metabolize them to chromophore and retinoic acid. The understanding of carotenoid metabolism, however, lagged behind our knowledge about the biology of their receptor molecules. In the past decades, much progress has been made in identifying the genes encoding proteins that mediate the transport and enzymatic transformations of carotenoids and their retinoid metabolites. Comparative analysis in different animal classes revealed how evolutionary tinkering with a limited number of genes evolved different biochemical strategies to supply photoreceptors with chromophore. Mutations in these genes impair carotenoid metabolism and induce various ocular pathologies. This review summarizes this advancement and introduces the involved proteins, including the homeostatic regulation of their activities.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Darwin Babino
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
31
|
Saini RK, Rengasamy KRR, Mahomoodally FM, Keum YS. Protective effects of lycopene in cancer, cardiovascular, and neurodegenerative diseases: An update on epidemiological and mechanistic perspectives. Pharmacol Res 2020; 155:104730. [PMID: 32126272 DOI: 10.1016/j.phrs.2020.104730] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022]
Abstract
Recent mechanistic and epidemiological studies have provided insights into health benefits of dietary lycopene to decrease the risk and complications associated with several chronic diseases such as cardiovascular diseases (CVD), obesity, type 2 diabetes, cancer, and neurodegenerative disorders. These chronic diseases are primarily associated with oxidative stress-induced systemic and low-grade chronic inflammation. Owing to its potent antioxidant properties, lycopene can potentially alleviate enhanced levels of proinflammatory mediators (e.g., proinflammatory cytokines IL-8, -6, and -1, and oxidized phospholipids) and prevent NF-κB activation by modulating oxidative stress. Moreover, lycopene serves as a precursor for various oxidative cleavage products and metabolites including Apo-8'-, apo-10'-, and apo-12'-lycopenals that can interact with multiple transcription factors (e.g., Nrf2, RARs, RXRs, and PPARs) to overexpress antioxidant and cytoprotective Phase II enzymes and other growth-stimulating proteins (e.g., brain-derived neurotrophic factor (BDNF) for enhanced neuroprotection. These events altogether can protect the body from chronic inflammatory disorders. In the present review, the latest mechanistic development from cell and animal models and results of case-control, cohort, and randomized trials are discussed to support the protective part of lycopene in cancer, CVD, and neurodegenerative disorders. This review focuses on cellular and molecular events involved in protective effects of lycopene. Although molecular and cellular mechanisms involved in health-promoting activities of lycopene have been reported, no detailed mechanistic studies have been published. Hence, future studies should be conducted to elucidate the mechanistic role(s) of lycopene-derived oxidation products in modulating cellular signaling.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Bioresources and Food Science, Konkuk University, Seoul 143-701, Republic of Korea; Institute of Natural Science and Agriculture, Konkuk University, Seoul 143-701, Republic of Korea; Department of Crop Science, Konkuk University, Seoul 143-701, Republic of Korea
| | - Kannan R R Rengasamy
- Department of Bioresources and Food Science, Konkuk University, Seoul 143-701, Republic of Korea.
| | - Fawzi M Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
32
|
Mechanistic understanding of β-cryptoxanthin and lycopene in cancer prevention in animal models. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158652. [PMID: 32035228 DOI: 10.1016/j.bbalip.2020.158652] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
To better understand the potential function of carotenoids in the chemoprevention of cancers, mechanistic understanding of carotenoid action on genetic and epigenetic signaling pathways is critically needed for human studies. The use of appropriate animal models is the most justifiable approach to resolve mechanistic issues regarding protective effects of carotenoids at specific organs and tissue sites. While the initial impetus for studying the benefits of carotenoids in cancer prevention was their antioxidant capacity and pro-vitamin A activity, significant advances have been made in the understanding of the action of carotenoids with regards to other mechanisms. This review will focus on two common carotenoids, provitamin A carotenoid β-cryptoxanthin and non-provitamin A carotenoid lycopene, as promising chemopreventive agents or chemotherapeutic compounds against cancer development and progression. We reviewed animal studies demonstrating that β-cryptoxanthin and lycopene effectively prevent the development or progression of various cancers and the potential mechanisms involved. We highlight recent research that the biological functions of β-cryptoxanthin and lycopene are mediated, partially via their oxidative metabolites, through their effects on key molecular targeting events, such as NF-κB signaling pathway, RAR/PPARs signaling, SIRT1 signaling pathway, and p53 tumor suppressor pathways. The molecular targets by β-cryptoxanthin and lycopene, offer new opportunities to further our understanding of common and distinct mechanisms that involve carotenoids in cancer prevention. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
|
33
|
Saini RK, A Bekhit AED, Roohinejad S, Rengasamy KRR, Keum YS. Chemical Stability of Lycopene in Processed Products: A Review of the Effects of Processing Methods and Modern Preservation Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:712-726. [PMID: 31891495 DOI: 10.1021/acs.jafc.9b06669] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lycopene, one of the most dominant carotenoids in a person's diet, is a well-known natural compound that has protective effects against chronic diseases. Industrial and domestic processing and storage conditions significantly influence retention and isomerization of lycopene; thus, in recent years, great attention has been given for their preservative effects of lycopene. This review highlights recent strategies that have been developed to preserve lycopene in processed products, especially in tomato pulp, puree, paste, and juice. The key factors influencing lycopene degradation and isomerization, such as ingredients and intensity of thermal treatments, are also discussed. Special attention was paid to the crystalline structures of lycopene which facilitate its resistance to degradation and isomerization. Emerging non-thermal processing methods, such as ultrasound and high-pressure processing (HPP), are critically evaluated for their preservation of thermo-labile compounds. Novel trends to improve lycopene stability by micro- and nanoencapsulation and addition of antioxidants are also included to examine their efficacy to protect against light, heat, oxygen, and other oxidative processes. Finally, recommended processing and storage conditions are discussed to provide strategies to retain the highest possible amount of bioactive lycopene until consumption.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Bioresources and Food Science , Konkuk University , Seoul 143-701 , Republic of Korea
- Institute of Natural Science and Agriculture , Konkuk University , Seoul 143-701 , Republic of Korea
- Department of Crop Science , Konkuk University , Seoul 143-701 , Republic of Korea
| | | | - Shahin Roohinejad
- Burn and Wound Healing Research Center, Division of Food and Nutrition , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Kannan R R Rengasamy
- Department of Bioresources and Food Science , Konkuk University , Seoul 143-701 , Republic of Korea
| | - Young-Soo Keum
- Department of Crop Science , Konkuk University , Seoul 143-701 , Republic of Korea
| |
Collapse
|
34
|
Zoccali M, Giuffrida D, Granese R, Salafia F, Dugo P, Mondello L. Determination of free apocarotenoids and apocarotenoid esters in human colostrum. Anal Bioanal Chem 2020; 412:1335-1342. [PMID: 31900534 DOI: 10.1007/s00216-019-02359-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 02/03/2023]
Abstract
The presence of carotenoids in human colostrum has been reported in the literature, and xanthophyll esters in human colostrum were recently detected for the first time. However, no published studies have reported whether apocarotenoids, which are metabolites derived from carotenoid enzymatic or nonenzymatic oxidative cleavage, are present in human colostrum. Therefore, the purpose of the present study was to search for the possible occurrence of apocarotenoids, including apocarotenoid esters, in human colostrum for the first time by applying an online supercritical fluid extraction-supercritical fluid chromatography-tandem mass spectrometry methodology. Recent evidence related to apocarotenoid transcriptional activity has suggested that they may have beneficial health properties superior to those of their parent carotenoids. Three different apocarotenoids, namely apo-8'-β-carotenal, apo-8'-lycopenal, and β-citraurin, were identified in intact human colostrum samples, with average concentrations of 85 nmol L-1, 54.6 nmol L-1, and 75.4 nmol L-1, respectively. The overall detection of 16 different free apocarotenoids and 10 different apocarotenoid fatty acid esters in human colostrum was achieved here for the first time. Their occurrence in human colostrum certainly has implications for newborn health status, since colostrum is the only form of food for the newborn during the very first days of life. Graphical abstract.
Collapse
Affiliation(s)
- Mariosimone Zoccali
- Department of Mathematical and Computer Science, Physical Sciences and Earth Sciences, University of Messina, 98122, Messina, Italy
| | - Daniele Giuffrida
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, Via Consolare Valeria, 98125, Messina, Italy.
| | - Roberta Granese
- Department of Human Pathology in Adult and Childhood "G. Barresi", University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| | - Fabio Salafia
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Polo Annunziata - Viale Annunziata, 98168, Messina, Italy
| | - Paola Dugo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Polo Annunziata - Viale Annunziata, 98168, Messina, Italy.,Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy.,BeSep s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy.,Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, 00128, Rome, Italy
| | - Luigi Mondello
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Polo Annunziata - Viale Annunziata, 98168, Messina, Italy.,Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy.,BeSep s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy.,Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, 00128, Rome, Italy
| |
Collapse
|
35
|
Daruwalla A, Kiser PD. Structural and mechanistic aspects of carotenoid cleavage dioxygenases (CCDs). Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158590. [PMID: 31874225 DOI: 10.1016/j.bbalip.2019.158590] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/03/2023]
Abstract
Carotenoid cleavage dioxygenases (CCDs) comprise a superfamily of mononuclear non-heme iron proteins that catalyze the oxygenolytic fission of alkene bonds in carotenoids to generate apocarotenoid products. Some of these enzymes exhibit additional activities such as carbon skeleton rearrangement and trans-cis isomerization. The group also includes a subfamily of enzymes that split the interphenyl alkene bond in molecules such as resveratrol and lignostilbene. CCDs are involved in numerous biological processes ranging from production of light-sensing chromophores to degradation of lignin derivatives in pulping waste sludge. These enzymes exhibit unique features that distinguish them from other families of non-heme iron enzymes. The distinctive properties and biological importance of CCDs have stimulated interest in their modes of catalysis. Recent structural, spectroscopic, and computational studies have helped clarify mechanistic aspects of CCD catalysis. Here, we review these findings emphasizing common and unique properties of CCDs that enable their variable substrate specificity and regioselectivity. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Anahita Daruwalla
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States of America; Department of Physiology & Biophysics, University of California, Irvine, CA 92697, United States of America
| | - Philip D Kiser
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697, United States of America; Research Service, VA Long Beach Healthcare System, Long Beach, CA 90822, United States of America.
| |
Collapse
|
36
|
Liang X, Ma C, Yan X, Liu X, Liu F. Advances in research on bioactivity, metabolism, stability and delivery systems of lycopene. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Rühl R, Krezel W, de Lera AR. 9-Cis-13,14-dihydroretinoic acid, a new endogenous mammalian ligand of retinoid X receptor and the active ligand of a potential new vitamin A category: vitamin A5. Nutr Rev 2019; 76:929-941. [PMID: 30358857 DOI: 10.1093/nutrit/nuy057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The identity of the endogenous RXR ligand has not been conclusively determined, even though several compounds of natural origin, including retinoids and fatty acids, have been postulated to fulfill this role. Filling this gap, 9-cis-13,14-dihydroretinoic acid (9CDHRA) was identified as an endogenous RXR ligand in mice. This review examines the physiological relevance of various potential endogenous RXR ligands, especially 9CDHRA. The elusive steps in the metabolic synthesis of 9CDHRA, as well as the nutritional/nutrimetabolic origin of 9CDHRA, are also explored, along with the suitability of the ligand to be the representative member of a novel vitamin A class (vitamin A5).
Collapse
Affiliation(s)
- Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Inserm, Centre National Recherche Scientifique (CNRS), Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultad de Química, Centro De Investigaciones Biomédicasand Instituto de Investigación Biomédica de Vigo, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, Spain
| |
Collapse
|
38
|
Kopec RE, Caris‐Veyrat C, Nowicki M, Bernard J, Morange S, Chitchumroonchokchai C, Gleize B, Borel P. The Effect of an Iron Supplement on Lycopene Metabolism and Absorption During Digestion in Healthy Humans. Mol Nutr Food Res 2019; 63:e1900644. [DOI: 10.1002/mnfr.201900644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/07/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Rachel E. Kopec
- INRA UMR408University of Avignon Avignon France
- Human Nutrition ProgramThe Ohio State University Columbus Ohio USA
| | | | | | | | | | | | | | - Patrick Borel
- INRA, INSERM, Aix Marseille Univ, C2VN Marseille France
| |
Collapse
|
39
|
Tripathy PS, Devi NC, Parhi J, Priyadarshi H, Patel AB, Pandey PK, Mandal SC. Molecular Mechanisms of Natural Carotenoid-based Pigmentation of Queen Loach, Botia dario (Hamilton, 1822) Under Captive Condition. Sci Rep 2019; 9:12585. [PMID: 31467347 PMCID: PMC6715654 DOI: 10.1038/s41598-019-48982-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/31/2019] [Indexed: 11/09/2022] Open
Abstract
The genetic basis and expression patterns of key genes are important aspects of study to understand the colouration. This trait differs between wild and domesticated fish which is a matter of research. Botia dario is an indigenous fish, having ornamental and aesthetic value, which shows faded appearance in terms of colour in domesticated condition than wild. In the present study the carotenoid-fed B. dario were examined through incorporation of marigold petal meal in the diets at the rate of 5, 10 and 15% w/w along with wild fish. The carotenoid content of tissues that is skin, muscle and intestine along with intensity of colouration increased in a dose dependant manner of carotenoid in the diet. Important carotenoid-based colouration genes that is csf1r, BCDO2, SR-B1, MLN64, STAR5, GSTA2 and PLIN2 were characterized in the fish, to find out their role in fish pigmentation. The significant difference (p < 0.05) in the expression of these genes in different tissues, when compared among carotenoid-fed domesticated and wild fish, revealed the mechanism responsible for faded colouration and also revealed the means to enhance colour in the fish.
Collapse
Affiliation(s)
- Partha Sarathi Tripathy
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Pin- 799210, Tripura, India
| | - Ningthoujam Chaoba Devi
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Pin- 799210, Tripura, India
| | - Janmejay Parhi
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Pin- 799210, Tripura, India
| | - Himanshu Priyadarshi
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Pin- 799210, Tripura, India
| | - Arun Bhai Patel
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Pin- 799210, Tripura, India
| | - Pramod Kumar Pandey
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Pin- 799210, Tripura, India
| | - Sagar Chandra Mandal
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Pin- 799210, Tripura, India.
| |
Collapse
|
40
|
Mustra Rakic J, Liu C, Veeramachaneni S, Wu D, Paul L, Chen CYO, Ausman LM, Wang XD. Lycopene Inhibits Smoke-Induced Chronic Obstructive Pulmonary Disease and Lung Carcinogenesis by Modulating Reverse Cholesterol Transport in Ferrets. Cancer Prev Res (Phila) 2019; 12:421-432. [PMID: 31177203 DOI: 10.1158/1940-6207.capr-19-0063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/01/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer share the same etiologic factor, cigarette smoking. Higher consumption of dietary lycopene has been associated with lower risks of COPD and lung cancer in smokers. We investigated whether lycopene feeding protects against COPD and lung cancer in ferrets, a nonrodent model that closely mimics cigarette smoke (CS)-induced chronic bronchitis, emphysema, and lung tumorigenesis in human. We also explored whether the protective effect of lycopene is associated with restoring reverse cholesterol transport (RCT), a key driver in persistent inflammation with CS exposure. Ferrets (4 groups, n = 12-16/group) were exposed to a combination of tobacco carcinogen (NNK) and CS with or without consuming lycopene at low and high doses (equivalent to ∼30 and ∼90 mg lycopene/day in human, respectively) for 22 weeks. Results showed that dietary lycopene at a high dose significantly inhibited NNK/CS-induced chronic bronchitis, emphysema, and preneoplastic lesions, including squamous metaplasia and atypical adenomatous hyperplasia, as compared with the NNK/CS alone (P < 0.05). Lycopene feeding also tended to decrease the lung neoplastic lesions. Furthermore, lycopene feeding significantly inhibited NNK/CS-induced accumulation of total cholesterol, and increased mRNA expression of critical genes related to the RCT (PPARα, LXRα, and ATP-binding cassette transporters ABCA1 and ABCG1) in the lungs, which were downregulated by the NNK/CS exposure. The present study has provided the first evidence linking a protective role of dietary lycopene against COPD and preneoplastic lesions to RCT-mediated cholesterol accumulation in lungs.
Collapse
Affiliation(s)
- Jelena Mustra Rakic
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts.,Biochemical and Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts
| | - Chun Liu
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts
| | - Sudipta Veeramachaneni
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts
| | - Dayong Wu
- Biochemical and Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts.,Nutritional Immunology Lab, JM USDA-HNRCA at Tufts University, Boston, Massachusetts
| | - Ligi Paul
- Biochemical and Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - C-Y Oliver Chen
- Biochemical and Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts
| | - Lynne M Ausman
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts.,Biochemical and Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts. .,Biochemical and Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts
| |
Collapse
|
41
|
Moran NE, Thomas-Ahner JM, Fleming JL, McElroy JP, Mehl R, Grainger EM, Riedl KM, Toland AE, Schwartz SJ, Clinton SK. Single Nucleotide Polymorphisms in β-Carotene Oxygenase 1 are Associated with Plasma Lycopene Responses to a Tomato-Soy Juice Intervention in Men with Prostate Cancer. J Nutr 2019; 149:381-397. [PMID: 30801647 PMCID: PMC6398392 DOI: 10.1093/jn/nxy304] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/12/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Human plasma and tissue lycopene concentrations are heterogeneous even when consuming controlled amounts of tomato or lycopene. OBJECTIVES Our objective is to determine whether single nucleotide polymorphisms (SNPs) in or near known or putative carotenoid metabolism genes [β-carotene 15,15' monooxygenase 1 (BCO1), scavenger receptor class B type 1 (SCARB1), ATP-binding cassette transporter subfamily A member 1 (ABCA1), microsomal triglyceride transfer protein (MTTP), apolipoprotein B-48, elongation of very long chain fatty acids protein 2 (ELOVL2), and ATP-binding cassette subfamily B member 1 (ABCB1), and an intergenic superoxide dismutase 2, mitochondrial-associated SNP] are predictive of plasma lycopene responses to steady state tomato juice consumption. METHODS Secondary linear regression analyses of data from a dose-escalation study of prostate cancer patients [n = 47; mean ± SEM age: 60 ± 1 y; BMI (in kg/m2): 32 ± 1] consuming 0, 1, or 2 cans of tomato-soy juice/d (163 mL/can; 20.6 mg lycopene 1.2 mg β-carotene/can) for 24 ± 0.7 d before prostatectomy were conducted to explore 11 SNP genotype effects on the change in plasma lycopene and plasma and prostate tissue concentrations of lycopene, β-carotene, phytoene, and phytofluene. RESULTS Two BCO1 SNP genotypes were significant predictors of the change in plasma lycopene, with SNP effects differing in magnitude and direction, depending on the level of juice intake (rs12934922 × diet group P = 0.02; rs6564851 × diet group P = 0.046). Further analyses suggested that plasma β-carotene changes were predicted by BCO1 rs12934922 (P < 0.01), prostate lycopene by trending interaction and main effects of BCO1 SNPs (rs12934922 × diet group P = 0.09; rs12934922 P = 0.02; rs6564851 P = 0.053), and prostate β-carotene by BCO1 SNP interaction and main effects (rs12934922 × diet group P = 0.01; rs12934922 P < 0.01; rs7501331 P = 0.02). CONCLUSIONS In conclusion, SNPs in BCO1 and other genes may modulate human plasma and prostate tissue responses to dietary lycopene intake and warrant validation in larger, human controlled feeding intervention and cohort studies. Genetic variants related to carotenoid metabolism may partially explain heterogeneous human blood and tissue responses and may be critical covariates for population studies and clinical trials. This trial was registered at clinicaltrials.gov as NCT01009736.
Collapse
Affiliation(s)
- Nancy E Moran
- Comprehensive Cancer Center
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | | | | | - Joseph P McElroy
- Comprehensive Cancer Center
- Center for Biostatistics, Department of Biomedical Informatics, College of Medicine
| | | | | | - Ken M Riedl
- Comprehensive Cancer Center
- College of Food, Agriculture, and Environmental Sciences, Department of Food Science and Technology
| | - Amanda E Toland
- Comprehensive Cancer Center
- Department of Cancer Biology and Genetics, College of Medicine
| | - Steven J Schwartz
- Comprehensive Cancer Center
- College of Food, Agriculture, and Environmental Sciences, Department of Food Science and Technology
| | - Steven K Clinton
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
42
|
Autenrieth C, Ghosh R. The Methoxylated, Highly Conjugated C 40 Carotenoids, Spirilloxanthin and Anhydrorhodovibrin, Can Be Separated Using High Performance Liquid Chromatography with Safe and Environmentally Friendly Solvents. Metabolites 2019; 9:metabo9020020. [PMID: 30682824 PMCID: PMC6410002 DOI: 10.3390/metabo9020020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 11/21/2022] Open
Abstract
High performance liquid chromatography (HPLC) is a frequently used technique in carotenoid research. So far, however, little attention has been paid to the fact that many of the organic solvents used in HPLC separation of highly apolar C40 carotenoids impose a significant threat to both health (especially for women) and the general laboratory environment. Here, we developed a solvent combination capable of allowing high-resolution HPLC separation of the C40 carotenoid, spirilloxanthin, and all of its biosynthetic precursors beginning with phytoene, using relatively safe, environmentally friendly solvents. We show that separation of spirilloxanthin and its precursors anhydrorhodovibrin and lycopene using modern ultra-high performance chromatography (UHPLC) poses particular problems for apolar carotenoid separation, due to the long residence times in the sample delivery system, which facilitates carotenoid aggregation. We resolved these problems by developing the solvent delivery combination acetone/acetonitrile/isopropanol/methanol (65/30/5/2 (v/v/v/v)), which allows excellent column separation using the safe isocratic solvent system methanol/tetrahydrofuran (98/2 (v/v)). We also demonstrate that the development strategy for optimizing a solvent system for carotenoid separation can be well-described by the use of the average dielectric constant of the total sample delivery solvent, and present a formal method for analysis of the efficiency of separation.
Collapse
Affiliation(s)
- Caroline Autenrieth
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany.
| | - Robin Ghosh
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany.
| |
Collapse
|
43
|
Fenni S, Astier J, Bonnet L, Karkeni E, Gouranton E, Mounien L, Couturier C, Tourniaire F, Böhm V, Hammou H, Landrier JF. (all-E)- and (5Z)-Lycopene Display Similar Biological Effects on Adipocytes. Mol Nutr Food Res 2018; 63:e1800788. [DOI: 10.1002/mnfr.201800788] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/21/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Soumia Fenni
- Aix-Marseille Université; INSERM, INRA, C2VN 13385 Marseille France
- Laboratoire de Physiologie de la Nutrition et Sécurité Alimentaire Département de Biologie, Faculté des Sciences de la Nature et de la Vie; Université Oran 1 Ahmed Ben Bella; 31000 Oran Algérie
| | - Julien Astier
- Aix-Marseille Université; INSERM, INRA, C2VN 13385 Marseille France
| | - Lauriane Bonnet
- Aix-Marseille Université; INSERM, INRA, C2VN 13385 Marseille France
| | - Esma Karkeni
- Aix-Marseille Université; INSERM, INRA, C2VN 13385 Marseille France
| | - Erwan Gouranton
- Aix-Marseille Université; INSERM, INRA, C2VN 13385 Marseille France
| | - Lourdes Mounien
- Aix-Marseille Université; INSERM, INRA, C2VN 13385 Marseille France
| | | | - Franck Tourniaire
- Aix-Marseille Université; INSERM, INRA, C2VN 13385 Marseille France
- CriBioM, Criblage Biologique Marseille; Faculté de Médecine de la Timone; 13385 Marseille France
| | - Volker Böhm
- Institute of Nutritional Sciences; Friedrich-Schiller-Universität Jena; 07743 Jena Germany
| | - Habib Hammou
- Laboratoire de Physiologie de la Nutrition et Sécurité Alimentaire Département de Biologie, Faculté des Sciences de la Nature et de la Vie; Université Oran 1 Ahmed Ben Bella; 31000 Oran Algérie
| | - Jean-François Landrier
- Aix-Marseille Université; INSERM, INRA, C2VN 13385 Marseille France
- CriBioM, Criblage Biologique Marseille; Faculté de Médecine de la Timone; 13385 Marseille France
| |
Collapse
|
44
|
Takahashi S, Waki N, Mohri S, Takahashi H, Ara T, Aizawa K, Suganuma H, Kawada T, Goto T. Apo-12'-lycopenal, a Lycopene Metabolite, Promotes Adipocyte Differentiation via Peroxisome Proliferator-Activated Receptor γ Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13152-13161. [PMID: 30449105 DOI: 10.1021/acs.jafc.8b04736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Apo-lycopenals, lycopene metabolites produced by an initial cleavage by β,β-carotene-9',10'-oxygenase, exhibit diverse biologically active effects. In this study, we investigated the effect of apo-lycopenals on the activation of nuclear receptors involved in glucose and lipid metabolism. Only apo-12'-lycopenal exhibited selective and dose-dependent transactivation activity for peroxisome proliferator-activated receptor γ (PPARγ), whereas neither apo-6'- nor apo-8'-lycopenals displayed this activity ((7.83 ± 0.66)-, (1.32 ± 0.10)-, and (1.31 ± 0.37)-fold higher activity relative to control, respectively). Additionally, apo-12'-lycopenal promoted adipocyte differentiation of 3T3-L1 cells and subsequently increased the mRNA levels of PPARγ (a (2.36 ± 0.07)-fold increase relative to control; p < 0.01) and its target genes, as well as enhanced adiponectin secretion (a (3.25 ± 0.27)-fold increase relative to control; p < 0.01) and insulin-stimulated glucose uptake (1486 ± 85 pmol/well; p < 0.001) in 3T3-L1 cells. Our results indicated that apo-12'-lycopenal promoted adipocyte differentiation by direct binding and activation of PPARγ.
Collapse
Affiliation(s)
- Shingo Takahashi
- Nature & Wellness Department, Innovation Division , Kagome Co., Ltd. , Nasushiobara , Tochigi 329-2762 , Japan
| | - Naoko Waki
- Nature & Wellness Department, Innovation Division , Kagome Co., Ltd. , Nasushiobara , Tochigi 329-2762 , Japan
| | - Shinsuke Mohri
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Takeshi Ara
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Koichi Aizawa
- Nature & Wellness Department, Innovation Division , Kagome Co., Ltd. , Nasushiobara , Tochigi 329-2762 , Japan
| | - Hiroyuki Suganuma
- Nature & Wellness Department, Innovation Division , Kagome Co., Ltd. , Nasushiobara , Tochigi 329-2762 , Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Uji , Kyoto 611-0011 , Japan
| |
Collapse
|
45
|
Wang W, Yang W, Shen Z, Wen S, Hu M. The Dose-Response Effect of Lycopene on Cerebral Vessel and Neuron Impairment Induced by Hyperlipidemia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13173-13182. [PMID: 30474364 DOI: 10.1021/acs.jafc.8b05232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To study the dose-response effect of lycopene on vessel and neuron damage in the brain against hyperlipidemia, rats were fed with hypercholesterolemic feed and treated with lycopene orally by gavage at the dose of 5, 25, 45, 65, 85, and 105, 125 mg/kg/bw-1/d-1. At the end of the fourth week, lycopene doses and serum lycopene concentration showed an inverse U-shape curve. Serum lycopene concentration was negatively correlated with the levels of serum TC, TG, LDL-C, as well as the cerebral LDL-C, VEGF, and VCAM-1. Serum lycopene concentration was positively correlated with the expression of Claudin-5 and the number of neurons in hippocampal CA1 and CA3. Lycopene could also reduce the pathologic change of these areas. These results suggested an inverse U-shape relation between dose and serum concentration of lycopene, and intermediate doses were most effective to protect cerebral vessels and neurons from being damaged by hyperlipidemia.
Collapse
Affiliation(s)
- Wei Wang
- Department of Nutrition and Food Hygiene, Xiang Ya School of Public Health , Central South University , Changsha 410078 , China
| | - Weichun Yang
- Department of Nutrition and Food Hygiene, Xiang Ya School of Public Health , Central South University , Changsha 410078 , China
| | - Ziyi Shen
- Second Xiangya Hospital , Central South University , Changsha 410013 , China
| | - Sixian Wen
- Department of Nutrition and Food Hygiene, Xiang Ya School of Public Health , Central South University , Changsha 410078 , China
| | - Minyu Hu
- Department of Nutrition and Food Hygiene, Xiang Ya School of Public Health , Central South University , Changsha 410078 , China
| |
Collapse
|
46
|
Tomato lycopene prevention of alcoholic fatty liver disease and hepatocellular carcinoma development. Chronic Dis Transl Med 2018; 4:211-224. [PMID: 30603740 PMCID: PMC6308920 DOI: 10.1016/j.cdtm.2018.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Alcoholic liver disease (ALD) is a major cause of morbidity and mortality worldwide. The incidence of hepatocellular carcinoma (HCC) is increasing in the United States, and chronic, excessive alcohol consumption is responsible for 32%–45% of all the liver cancer cases in the United States. Avoidance of chronic or excessive alcohol intake is the best protection against alcohol-related liver injury; however, the social presence and addictive power of alcohol are strong. Induction of the cytochrome P450 2E1 (CYP2E1) enzyme by chronic and excessive alcohol intake is known to play a role in the pathogenesis of ALD. High intake of tomatoes, rich in the carotenoid lycopene, is associated with a decreased risk of chronic disease. The review will overview the prevention of ALD and HCC through dietary tomato rich in lycopene as an effective intervention strategy and the crucial role of CYP2E1 induction as a molecular target. The review also indicates a need for caution among individuals consuming both alcohol and high dose lycopene as a dietary supplement.
Collapse
|
47
|
Muzhingi T, Yeum KJ, H Siwela A, Bermudez O, Tang G. Identification of Enzymatic Cleavage Products of β-Carotene-Rich Extracts of Kale and Biofortified Maize. INT J VITAM NUTR RES 2018; 87:279-286. [PMID: 30499754 DOI: 10.1024/0300-9831/a000437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Provitamin A carotenoids in plant foods provide more than 80% of vitamin A intake for people in developing countries. Therefore, the conversion efficiency of β-carotene to vitamin A is important, as it determines the effectiveness of plant foods as sources of vitamin A in humans. The objective of this study was to determine the effect of plant food antioxidants such as α-tocopherol, γ-tocopherol, α-tocotrienol, γ-tocotrienol and total γ-oryzanol on the cleavage of β-carotene in vitro. Rat intestinal mucosa post mitochondrial fractions were incubated with β-carotene-rich extracts of kale and biofortified maize for an hour at 37°C. Rat intestinal mucosa post mitochondrial fractions were also incubated with β-carotene in the presence of either α-tocopherol, γ-tocopherol, α-tocotrienol, γ-tocotrienol or γ-oryzanol for 60 min at 37°C. The β-carotene cleavage products were extracted and analyzed by an HPLC equipped with a C18 column at 340nm and 450nm. When β-carotene alone was incubated without intestinal mucosa homogenate (control), no cleavage products were detected. When β-carotene alone was incubated with intestinal mucosa homogenate, β-apo-13-carotenone, β-apo-14-carotenal, retinal, retinol and retinoic acid were formed. However, incubation of β-carotene with either α-tocopherol, γ-tocopherol or α-tocotrienol resulted in a 10 fold inhibition of β-apo-14-carotenal and β-apo-13-carotenone formation. Antioxidant rich biofortified maize extract incubated with postmitochondrial fraction produced less β-apo-13-carotenone compared to the kale extract. These results suggest that antioxidants inhibit the cleavage of β-carotene and the formation of excentric cleavage products (β-apo-13-carotenone, β-apo-14-carotenal).
Collapse
Affiliation(s)
- Tawanda Muzhingi
- 1 Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA.,2 Carotenoids and Health Laboratory, Jean Mayer USDA ARS Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Kyung-Jin Yeum
- 3 Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Glocal Campus, Chungju-Si, Chungcheongbuk-do, South Korea
| | - Andrew H Siwela
- 4 Department of Applied Biology and Biochemistry, National University of Science and Technology, Zimbabwe
| | - Odilia Bermudez
- 1 Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA.,5 Department of Public Health and Community Medicine, Tufts Medical School, Boston, MA
| | - Guangwen Tang
- 2 Carotenoids and Health Laboratory, Jean Mayer USDA ARS Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| |
Collapse
|
48
|
Xia H, Liu C, Li CC, Fu M, Takahashi S, Hu KQ, Aizawa K, Hiroyuki S, Wu G, Zhao L, Wang XD. Dietary Tomato Powder Inhibits High-Fat Diet-Promoted Hepatocellular Carcinoma with Alteration of Gut Microbiota in Mice Lacking Carotenoid Cleavage Enzymes. Cancer Prev Res (Phila) 2018; 11:797-810. [PMID: 30446518 DOI: 10.1158/1940-6207.capr-18-0188] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/28/2018] [Accepted: 10/02/2018] [Indexed: 11/16/2022]
Abstract
Both incidence and death rate due to liver cancer have increased in the United States. Higher consumption of lycopene-rich tomato and tomato products is associated with a decreased risk of cancers. β-Carotene-15, 15'-oxygenase (BCO1), and β-carotene-9', 10'-oxygenase (BCO2) cleave lycopene to produce bioactive apo-lycopenoids. Although BCO1/BCO2 polymorphisms affect human and animal lycopene levels, whether dietary tomato consumption can inhibit high-fat diet (HFD)-promoted hepatocellular carcinoma (HCC) development and affect gut microbiota in the absence of BCO1/BCO2 is unclear. BCO1/BCO2 double knockout mice were initiated with a hepatic carcinogen (diethylnitrosamine) at 2 weeks of age. At 6 weeks of age, the mice were randomly assigned to an HFD (60% of energy as fat) with or without tomato powder (TP) feeding for 24 weeks. Results showed that TP feeding significantly decreased HCC development (67%, 83%, and 95% reduction in incidence, multiplicity, and tumor volume, respectively, P < 0.05). Protective effects of TP feeding were associated with (1) decreased hepatic inflammatory foci development and mRNA expression of proinflammatory biomarkers (IL1β, IL6, IL12α, monocyte chemoattractant protein-1, and inducible NO synthase); (2) increased mRNA expression of deacetylase sirtuin 1 and nicotinamide phosphoribosyltransferase involving NAD+ production; and (3) increased hepatic circadian clock genes (circadian locomotor output cycles kaput, period 2, and cryptochrome-2, Wee1). Furthermore, TP feeding increased gut microbial richness and diversity, and significantly decreased the relative abundance of the genus Clostridium and Mucispirillum, respectively. The present study demonstrates that dietary tomato feeding independent of carotenoid cleavage enzymes prevents HFD-induced inflammation with potential modulating gut microbiota and inhibits HFD-promoted HCC development.
Collapse
Affiliation(s)
- Hui Xia
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Chun Liu
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Cheng-Chung Li
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Maobin Fu
- Nature and Wellness Research Department, Research and Development Division, Kagome Co., Ltd., Tochigi, Japan
| | - Shingo Takahashi
- Nature and Wellness Research Department, Research and Development Division, Kagome Co., Ltd., Tochigi, Japan
| | - Kang-Quan Hu
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Koichi Aizawa
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts.,Nature and Wellness Research Department, Research and Development Division, Kagome Co., Ltd., Tochigi, Japan
| | - Suganuma Hiroyuki
- Nature and Wellness Research Department, Research and Development Division, Kagome Co., Ltd., Tochigi, Japan
| | - Guojun Wu
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts.
| |
Collapse
|
49
|
Desmarchelier C, Landrier JF, Borel P. Genetic factors involved in the bioavailability of tomato carotenoids. Curr Opin Clin Nutr Metab Care 2018; 21:489-497. [PMID: 30277929 DOI: 10.1097/mco.0000000000000515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW To provide an update on the genetic factors recently associated with the interindividual variability of tomato carotenoid bioavailability. RECENT FINDINGS Several clinical studies have demonstrated that the main carotenoids found in tomatoes (lycopene, phytoene, phytofluene, β-carotene, lutein) all display relatively large interindividual variabilities of their bioavailability, with coefficients of variations more than 70%. The bioavailability of the parent molecules, and the blood/tissue appearance of their metabolites, is modulated by numerous proteins, involved in intestinal absorption and metabolism, blood lipoprotein transport or tissue uptake. Several single nucleotide polymorphisms (SNPs) have been associated with the interindividual variability of lycopene, lutein and β-carotene bioavailability, with six genes consistently shared between the three carotenoids, and in particular one SNP in ELOVL fatty acid elongase 2. The effects of the genetic variants taken separately are relatively low, that is each variant is usually associated with only a few percentage of the variability but multivariate analyses suggest that the additive effect of several genetic variants can explain a significant fraction of tomato carotenoid bioavailability. SUMMARY Additional studies are needed to improve our knowledge of the genetic determinants of tomato carotenoid bioavailability but progress in this field could one day allow nutritionists to provide more personalized dietary recommendations.
Collapse
|
50
|
Arathi BP, Raghavendra-Rao Sowmya P, Kuriakose GC, Shilpa S, Shwetha HJ, Kumar S, Raju M, Baskaran V, Lakshminarayana R. Fractionation and Characterization of Lycopene-Oxidation Products by LC-MS/MS (ESI) +: Elucidation of the Chemopreventative Potency of Oxidized Lycopene in Breast-Cancer Cell Lines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11362-11371. [PMID: 30259736 DOI: 10.1021/acs.jafc.8b04850] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lycopene (LYC) has been correlated with the reduction of certain cancers and chronic diseases. However, the existence and biofunctionality of degraded, oxidized, and biotransformed LYC products in vivo have not been revealed. Therefore, this study aimed to screen and elucidate the potential bioactive lycopene-derived products in breast-cancer and non-cancerous cells. LYC-oxidation or -cleavage products were generated using KMnO4. These oxidation products were separated as fractions I-III by silica column chromatography using gradient solvent systems. Further, LC-MS/MS (ESI)+ was used to elucidate their possible fragmentation patterns and structures. Fraction II showed higher cytotoxicity (IC50 value of 64.5 μM), cellular uptake, and apoptosis-inducing activity in MCF-7 cells. This fraction consists of major peak m/ z 323, identified as apo-8,6'-carotendial. The cytotoxicity-inducing activity may be due to partial ROS generation with mitochondrial dysfunction. Further, the role of apo-8,6'-carotendial in the induction of apoptosis is demonstrated for the first time. These results illustrated that LYC-oxidation derivatives or metabolites are involved in growth inhibition of cancer cells. Exploration of specific oxidized-carotenoid products will give further insight into the field of nutritional biochemistry.
Collapse
Affiliation(s)
| | | | | | - Shivaprasad Shilpa
- Department of Biotechnology , Bangalore University , Jnana Bharathi Campus, Bengaluru 560 056 , India
| | - Hulikere Jagdish Shwetha
- Department of Biotechnology , Bangalore University , Jnana Bharathi Campus, Bengaluru 560 056 , India
| | - Sharath Kumar
- Himalaya Drug Company , Makali, Bengaluru 562 162 , India
| | - Marisiddaiah Raju
- Department of Botany , St. Joseph's College Autonomous , PB 27094, 36 Lalbagh Main Road , Bengaluru 560 027 , Karnataka , India
| | - Vallikannan Baskaran
- Department of Biochemistry , CSIR-Central Food Technological Research Institute , Mysuru 570 020 , India
| | | |
Collapse
|