1
|
Gil-Martins E, Cagide F, Borer A, Barbosa DJ, Fernandes C, Chavarria D, Remião F, Borges F, Silva R. The role of mitochondrial dysfunction and calcium dysregulation in 2C-I and 25I-NBOMe-induced neurotoxicity. Chem Biol Interact 2025; 411:111425. [PMID: 39956257 DOI: 10.1016/j.cbi.2025.111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
New psychoactive substances (NPS) are designed to evade legal regulation while mimicking the effects of classic illicit drugs such as 3,4-methylenedioxymethamphetamine (MDMA). This category includes phenethylamine derivatives, such as the psychedelic 2C and NBOMe drugs. Given the lack of data regarding the toxicological profile of these substances, the goal of this study was to evaluate the neurotoxicity of 2C-I and 25I-NBOMe and explore their neurotoxic pathways. Lower EC50 values, in both NR uptake and MTT reduction assays in differentiated SH-SY5Y cells and primary rat cortical cultures, revealed that 25I-NBOMe is significantly more cytotoxic than 2C-I, likely due to its higher lipophilicity. Both drugs triggered severe mitochondrial dysfunction, characterized by decreased intracellular ATP levels and mitochondrial membrane depolarization, although no significant changes in intracellular ROS/RNS levels were observed. Additionally, 25I-NBOMe increased the intracellular Ca2⁺ levels. Apoptosis was an observed mechanism of cell death for both drugs, as demonstrated by a significant increase in the number of cells undergoing early apoptosis (AnV+/PI-) and late apoptosis/necrosis (AnV+/PI+). However, only 2C-I induced autophagy and strongly triggered caspase-3 activation. This suggests that 2C-I induces caspase-3-dependent apoptosis, whereas 25I-NBOMe may also induce apoptosis through a caspase-3-independent pathway, possibly involving increased intracellular Ca2⁺ levels and direct mitochondrial damage. These findings underscore the complex interplay between mitochondrial dysfunction, calcium dysregulation, and cell death pathways, highlighting the central role of mitochondria in the cytotoxicity of 2C-I and 25I-NBOMe.
Collapse
Affiliation(s)
- Eva Gil-Martins
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Fernando Cagide
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal.
| | - Ana Borer
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, 4585-116, Gandra, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU, 4585-116, Gandra, Portugal; i3S-Instituto de Investigação e Inovação Em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Carlos Fernandes
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
2
|
Jiang KC, Zhu YH, Jiang ZL, Liu Y, Hussain W, Luo HY, Sun WH, Ji XY, Li DX. Regulation of PEST-containing nuclear proteins in cancer cells: implications for cancer biology and therapy. Front Oncol 2025; 15:1548886. [PMID: 40330830 PMCID: PMC12052563 DOI: 10.3389/fonc.2025.1548886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
The PEST-containing nuclear protein (PCNP) is a nuclear protein involved in the regulation of cell cycle progression, protein degradation, and tumorigenesis. PCNP contains a PEST sequence, a polypeptide structural motif rich in proline (P), glutamic acid (E), serine (S), and threonine (T), which serves as a proteolytic recognition signal. The degradation of specific proteins via the PEST sequence plays a crucial role in modulating signaling pathways that control cell growth, differentiation, apoptosis, and stress responses. PCNP is primarily degraded through the ubiquitin-proteasome system (UPS) and the calpain pathway, with phosphorylation of threonine and serine residues further accelerating its degradation. The ubiquitination of PCNP by the ring finger protein NIRF in an E3 ligase-dependent manner is well documented, along with its involvement in the MAPK and PI3K/AKT/mTOR signaling pathways. Additionally, PCNP is implicated in p53-mediated cell cycle arrest and apoptosis, which are essential for inhibiting tumor growth. To explore the role of PCNP in cancer, this review examines its effects on cell growth, differentiation, proliferation, and apoptosis in lung adenocarcinoma, thyroid cancer, ovarian cancer, and other malignancies derived from glandular epithelial cells. By focusing on PCNP and its regulatory mechanisms, this study provides a scientific basis for further research on the biological functions of the PEST sequence in tumor development and cancer progression.
Collapse
Affiliation(s)
- Kai-Chun Jiang
- Department of Traditional Chinese Medicine, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China
| | - Yong-Hao Zhu
- School of Stomatology, Henan University, Kaifeng, Henan, China
| | - Zhi-Liang Jiang
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- Department of Urology, Institute of Urology, Sichuan University, Chengdu, China
| | - Yi Liu
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wahab Hussain
- School of Stomatology, Henan University, Kaifeng, Henan, China
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
| | - Huang-Yin Luo
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- Department of Urology, Institute of Urology, Sichuan University, Chengdu, China
| | - Wei-Hang Sun
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- Department of Urology, Institute of Urology, Sichuan University, Chengdu, China
| | - Xin-Ying Ji
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- Department of Oncology, Huaxian County Hospital, Anyang, Henan, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China
| | - Ding-Xi Li
- The Affiliated Cancer Hospital, Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
3
|
Patel K, Bora V, Patel B. Sodium orthovanadate exhibits anti-angiogenic, antiapoptotic and blood glucose-lowering effect on colon cancer associated with diabetes. Cancer Chemother Pharmacol 2024; 93:55-70. [PMID: 37755518 DOI: 10.1007/s00280-023-04596-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND The presence of type 2 diabetes mellitus increases the risk of developing the colon cancer. The main objective of this study was to determine the role of sodium orthovanadate (SOV) in colon cancer associated with diabetes mellitus by targeting the competitive inhibition of PTP1B. METHODS For in vivo study, high fat diet with low dose streptozotocin model was used for inducing the diabetes mellitus. Colon cancer was induced by injecting 1,2-dimethylhydrazine (25 mg/kg, sc) twice a week. TNM staging and immunohistochemistry (IHC) was carried out for colon cancer tissues. In vitro studies like MTT assay, clonogenic assay, rhodamine-123 dye assay and annexin V-FITC assay using flow cytometry were performed on HCT-116 cell line. CAM assay was performed to examine the anti-angiogenic effect of the drug. RESULTS Sodium orthovanadate reduces the blood glucose level and tumor parameters in the animals. In vitro studies revealed that SOV decreased cell proliferation dose dependently. In addition, SOV induced apoptosis as depicted from rhodamine-123 dye assay and annexin V-FITC assay using flow cytometry as well as p53 IHC staining. SOV showed reduced angiogenesis effect on eggs which was depicted from CAM assay and also from CD34 and E-cadherin IHC staining. CONCLUSIONS Our data suggest that SOV exhibits protective role in colon cancer associated with diabetes mellitus. SOV exhibits anti-proliferative, anti-angiogenic and apoptotic inducing effects hence can be considered for therapeutic switching in diabetic colon cancer.
Collapse
Affiliation(s)
- Kruti Patel
- Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Vivek Bora
- Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Bhoomika Patel
- National Forensic Sciences University, Sector 9, Gandhinagar, 382007, Gujarat, India.
| |
Collapse
|
4
|
García-Trevijano ER, Ortiz-Zapater E, Gimeno A, Viña JR, Zaragozá R. Calpains, the proteases of two faces controlling the epithelial homeostasis in mammary gland. Front Cell Dev Biol 2023; 11:1249317. [PMID: 37795261 PMCID: PMC10546029 DOI: 10.3389/fcell.2023.1249317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023] Open
Abstract
Calpain-1 and calpain-2 are calcium-dependent Cys-proteases ubiquitously expressed in mammalian tissues with a processive, rather than degradative activity. They are crucial for physiological mammary gland homeostasis as well as for breast cancer progression. A growing number of evidences indicate that their pleiotropic functions depend on the cell type, tissue and biological context where they are expressed or dysregulated. This review considers these standpoints to cover the paradoxical role of calpain-1 and -2 in the mammary tissue either, under the physiological conditions of the postlactational mammary gland regression or the pathological context of breast cancer. The role of both calpains will be examined and discussed in both conditions, followed by a brief snapshot on the present and future challenges for calpains, the two-gateway proteases towards tissue homeostasis or tumor development.
Collapse
Affiliation(s)
- Elena R. García-Trevijano
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- INLIVA Biomedical Research Institute, Valencia, Spain
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- INLIVA Biomedical Research Institute, Valencia, Spain
| | - Amparo Gimeno
- Department of Anatomy and Human Embryology, Universitat de Valencia, Valencia, Spain
| | - Juan R. Viña
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- INLIVA Biomedical Research Institute, Valencia, Spain
| | - Rosa Zaragozá
- INLIVA Biomedical Research Institute, Valencia, Spain
- Department of Anatomy and Human Embryology, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
5
|
Hamidi R, Ataei F, Hosseinkhani S. Inhibition of noncaspase proteases, calpain and proteasome, via ALLN and Bortezomib contributes to cell death through low degradation of pro-/anti-apoptotic proteins and apoptosis induction. Med Oncol 2022; 39:125. [PMID: 35716322 DOI: 10.1007/s12032-022-01716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
Dysfunction at any regulatory point along the apoptotic signaling pathway is closely related to many diseases including cancers. The apoptotic protein expression level is an important cause of cancer-related death, and the correct degradation of apoptotic proteins is involved in tumor development. Therefore, understanding of a regulatory point that underlying cancer-related death may help the development of new strategies to overcome the clinical challenges. Here, proteasome inhibitor Bortezomib and calpain inhibitor ALLN were examined on protein levels of caspase-3, caspase-9, XIAP, and E3-ligase PARC in HEK293T cells overexpressing XIAP and caspase-9. ATP depletion and caspase-3 activation were as a consequence of Bortezomib and ALLN function. Higher numbers of PI-stained cells provided evidence of cell death by both inhibitors. Western blotting analysis showed that both ALLN and Bortezomib equally inhibited degradation of XIAP, but only ALLN was effective at inhibiting caspase proteolytic degradation. Moreover, treatment of cells with both types of inhibitors significantly increased the level of E3-ligase PARC. Our findings showed that inhibition of proteasome and calpains enhanced the level of anti-apoptotic, XIAP and PARC, and pro-apoptotic, caspase-9 and 3 proteins, which totally promote cell death significantly.
Collapse
Affiliation(s)
- Roghaye Hamidi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Abstract
INTRODUCTION Calpain-1 and calpain-2 are prototypical classical isoforms of the calpain family of calcium-activated cysteine proteases. Their substrate proteins participate in a wide range of cellular processes, including transcription, survival, proliferation, apoptosis, migration, and invasion. Dysregulated calpain activity has been implicated in tumorigenesis, suggesting that calpains may be promising therapeutic targets. AREAS COVERED This review covers clinical and basic research studies implicating calpain-1 and calpain-2 expression and activity in tumorigenesis and metastasis. We highlight isoform specific functions and provide an overview of substrates and cancer-related signalling pathways affected by calpain-mediated proteolytic cleavage. We also discuss efforts to develop clinically relevant calpain specific inhibitors and spotlight the challenges facing inhibitor development. EXPERT OPINION Rationale for targeting calpain-1 and calpain-2 in cancer is supported by pre-clinical and clinical studies demonstrating that calpain inhibition has the potential to attenuate carcinogenesis and block metastasis of aggressive tumors. The wide range of substrates and cleavage products, paired with inconsistencies in model systems, underscores the need for more complete understanding of physiological substrates and how calpain cleavage alters their function in cellular processes. The development of isoform specific calpain inhibitors remains an important goal with therapeutic potential in cancer and other diseases.
Collapse
Affiliation(s)
- Ivan Shapovalov
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| | - Danielle Harper
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| |
Collapse
|
7
|
Sperl LE, Rührnößl F, Schiller A, Haslbeck M, Hagn F. High-resolution analysis of the conformational transition of pro-apoptotic Bak at the lipid membrane. EMBO J 2021; 40:e107159. [PMID: 34523144 PMCID: PMC8521305 DOI: 10.15252/embj.2020107159] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 12/21/2022] Open
Abstract
Permeabilization of the outer mitochondrial membrane by pore-forming Bcl2 proteins is a crucial step for the induction of apoptosis. Despite a large set of data suggesting global conformational changes within pro-apoptotic Bak during pore formation, high-resolution structural details in a membrane environment remain sparse. Here, we used NMR and HDX-MS (Hydrogen deuterium exchange mass spectrometry) in lipid nanodiscs to gain important high-resolution structural insights into the conformational changes of Bak at the membrane that are dependent on a direct activation by BH3-only proteins. Furthermore, we determined the first high-resolution structure of the Bak transmembrane helix. Upon activation, α-helix 1 in the soluble domain of Bak dissociates from the protein and adopts an unfolded and dynamic potentially membrane-bound state. In line with this finding, comparative protein folding experiments with Bak and anti-apoptotic BclxL suggest that α-helix 1 in Bak is a metastable structural element contributing to its pro-apoptotic features. Consequently, mutagenesis experiments aimed at stabilizing α-helix 1 yielded Bak variants with delayed pore-forming activity. These insights will contribute to a better mechanistic understanding of Bak-mediated membrane permeabilization.
Collapse
Affiliation(s)
- Laura E Sperl
- Bavarian NMR Center at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Florian Rührnößl
- Center for Functional Protein Assemblies and Department of ChemistryTechnical University of MunichGarchingGermany
| | - Anita Schiller
- Bavarian NMR Center at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Martin Haslbeck
- Center for Functional Protein Assemblies and Department of ChemistryTechnical University of MunichGarchingGermany
| | - Franz Hagn
- Bavarian NMR Center at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| |
Collapse
|
8
|
Nian H, Ma B. Calpain-calpastatin system and cancer progression. Biol Rev Camb Philos Soc 2021; 96:961-975. [PMID: 33470511 DOI: 10.1111/brv.12686] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/26/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022]
Abstract
The calpain system is required by many important physiological processes, including the cell cycle, cytoskeleton remodelling, cellular proliferation, migration, cancer cell invasion, metastasis, survival, autophagy, apoptosis and signalling, as well as the pathogenesis of a wide range of disorders, in which it may function to promote tumorigenesis. Calpains are intracellular conserved calcium-activated neutral cysteine proteinases that are involved in mediating cancer progression via catalysing and regulating the proteolysis of their specific substrates, which are important signalling molecules during cancer progression. μ-calpain, m-calpain, and their specific inhibitor calpastatin are the three molecules originally identified as comprising the calpain system and they contain several crucial domains, specific motifs, and functional sites. A large amount of data supports the roles of the calpain-calpastatin system in cancer progression via regulation of cellular adhesion, proliferation, invasion, metastasis, and cellular survival and death, as well as inflammation and angiogenesis during tumorigenesis, implying that the inhibition of calpain activity may be a potential anti-cancer intervention strategy targeting cancer cell survival, invasion and chemotherapy resistance.
Collapse
Affiliation(s)
- Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, U.S.A
| |
Collapse
|
9
|
Jiao L, Dai T, Cao T, Jin M, Sun P, Zhou Q. New insight into the molecular basis of chromium exposure of Litopenaeus vannamei by transcriptome analysis. MARINE POLLUTION BULLETIN 2020; 160:111673. [PMID: 33181946 DOI: 10.1016/j.marpolbul.2020.111673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/05/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal pollution arising from agricultural and industrial activities poses a significant threat to the aquatic environment, especially the increasing levels of chromium (Cr) that is exacerbating marine pollution. Given the economic importance of the Pacific white shrimp Litopenaeus vannamei (L. vannamei), understanding the impact of marine Cr pollution is deemed to be significant. In this study, we used the transcriptome sequencing (RNA-seq) technique to characterize the molecular mechanism of Cr exposure in L. vannamei. Gene ontology enrichment analysis showed substrate-specific and ion transport-related functions were mainly influenced by Cr exposure. We further identified genes involved in protein digestion and absorption (PEPT1, BAT1, MDU1), chemical carcinogenesis (GST and UGTs), ABC transporters (ABCC2), apoptosis (CAPN1, CASP10, PARP), implying the potentially Cr disintoxication mechanisms in L. vannamei. Genes within pancreatic secretion (ALT, LDH), lysosome (CTSL and HEXB), and peroxisome (ACOX1, ECI2, NUDT12) pathways implied the potentially Cr toxicity mechanisms in L. vannamei.
Collapse
Affiliation(s)
- Lefei Jiao
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Tianmeng Dai
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Tinglan Cao
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Min Jin
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Peng Sun
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Qicun Zhou
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, People's Republic of China.
| |
Collapse
|
10
|
Hyatt HW, Powers SK. The Role of Calpains in Skeletal Muscle Remodeling with Exercise and Inactivity-induced Atrophy. Int J Sports Med 2020; 41:994-1008. [PMID: 32679598 DOI: 10.1055/a-1199-7662] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calpains are cysteine proteases expressed in skeletal muscle fibers and other cells. Although calpain was first reported to act as a kinase activating factor in skeletal muscle, the consensus is now that calpains play a canonical role in protein turnover. However, recent evidence reveals new and exciting roles for calpains in skeletal muscle. This review will discuss the functions of calpains in skeletal muscle remodeling in response to both exercise and inactivity-induced muscle atrophy. Calpains participate in protein turnover and muscle remodeling by selectively cleaving target proteins and creating fragmented proteins that can be further degraded by other proteolytic systems. Nonetheless, an often overlooked function of calpains is that calpain-mediated cleavage of proteins can result in fragmented proteins that are biologically active and have the potential to actively influence cell signaling. In this manner, calpains function beyond their roles in protein turnover and influence downstream signaling effects. This review will highlight both the canonical and noncanonical roles that calpains play in skeletal muscle remodeling including sarcomere transformation, membrane repair, triad junction formation, regulation of excitation-contraction coupling, protein turnover, cell signaling, and mitochondrial function. We conclude with a discussion of key unanswered questions regarding the roles that calpains play in skeletal muscle.
Collapse
Affiliation(s)
- Hayden W Hyatt
- Applied Physiology and Kinesiology, University of Florida, Gainesville, United States
| | - Scott K Powers
- Applied Physiology, University of Florida, Gainesville, United States
| |
Collapse
|
11
|
Li M, Ruan B, Wei J, Yang Q, Chen M, Ji M, Hou P. ACYP2 contributes to malignant progression of glioma through promoting Ca 2+ efflux and subsequently activating c-Myc and STAT3 signals. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:106. [PMID: 32517717 PMCID: PMC7285537 DOI: 10.1186/s13046-020-01607-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Background Acylphosphatase 2 (ACYP2) is involved in cell differentiation, energy metabolism and hydrolysis of intracellular ion pump. It has been reported as a negative regulator in leukemia and a positive regulator in colon cancer, respectively. However, its biological role in glioma remains totally unclear. Methods We performed quantitative RT-PCR (qRT-PCR), immunohistochemistry (IHC) and western blot assays to evaluate ACYP2 expression. The functions of ACYP2 in glioma cells were determined by a series of in vitro and in vivo experiments, including cell proliferation, colony formation, cell cycle, apoptosis, migration, invasion and nude mouse tumorigenicity assays. In addition, western blot and co-immunoprecipitation (Co-IP) assays were used to identify its downstream targets. Results Knocking down ACYP2 in glioma cells significantly inhibited cell proliferation, colony formation, migration, invasion and tumorigenic potential in nude mice, and induced cell cycle arrest and apoptosis. Conversely, ectopic expression of ACYP2 in glioma cells dramatically promoted malignant phenotypes of glioma cells. Mechanistically, ACYP2 promoted malignant progression of glioma cells through regulating intracellular Ca2+ homeostasis via its interaction with PMCA4, thereby activating c-Myc and PTP1B/STAT3 signals. This could be effectively reversed by Ca2+ chelator BAPTA-AM or calpain inhibitor calpeptin. Conclusions Our data demonstrate that ACYP2 functions as an oncogene in glioma through activating c-Myc and STAT3 signals via the regulation of intracellular Ca2+ homeostasis, and indicate that ACYP2 may be a potential therapeutic target and prognostic biomarker in gliomas.
Collapse
Affiliation(s)
- Mengdan Li
- Key Laboratory for tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Banjun Ruan
- Key Laboratory for tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Jing Wei
- Key Laboratory for tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Qi Yang
- Key Laboratory for tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| | - Peng Hou
- Key Laboratory for tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China. .,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| |
Collapse
|
12
|
Protective role of endothelial calpain knockout in lipopolysaccharide-induced acute kidney injury via attenuation of the p38-iNOS pathway and NO/ROS production. Exp Mol Med 2020; 52:702-712. [PMID: 32346126 PMCID: PMC7210976 DOI: 10.1038/s12276-020-0426-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
To explore the role of calpain and its signaling pathway in lipopolysaccharide (LPS)-induced acute kidney injury (AKI), animal models of endotoxemia were established by administration of LPS to mice with endothelial-specific Capn4 knockout (TEK/Capn4−/−), mice with calpastatin (an endogenous calpain inhibitor) overexpression (Tg-CAST) and mice with myeloid-specific Capn4 knockout (LYZ/Capn4−/−). Mouse pulmonary microvascular endothelial cells (PMECs) were used as a model of the microvascular endothelium and were stimulated with LPS. Renal function, renal inducible nitric oxide synthase (iNOS) and endothelial NOS (eNOS) expression, cellular apoptosis, plasma and renal levels of NO and reactive oxygen species (ROS), and phosphorylation of mitogen-activated protein kinase (MAPK) family members (p38, ERK1/2, and JNK1/2) were examined. Moreover, a calpain inhibitor, calpastatin overexpression adenoviruses and MAPK inhibitors were used. Significant renal dysfunction was induced by LPS stimulation, and recovery was observed in TEK/Capn4−/− and Tg-CAST mice but not in LYZ/Capn4−/− mice. Endothelial Capn4 knockout also abrogated the LPS-induced increases in renal iNOS expression, caspase-3 activity and apoptosis and plasma and renal NO and ROS levels but did not obviously affect renal eNOS expression. Moreover, LPS increased both calpain and caspase-3 activity, and only the expression of iNOS in PMECs was accompanied by increased phosphorylation of p38 and JNK. Inhibiting calpain activity or p38 phosphorylation alleviated the increased iNOS expression, NO/ROS production, and cellular apoptosis induced by LPS. These results suggest that endothelial calpain plays a protective role in LPS-induced AKI by inhibiting p38 phosphorylation, thus attenuating iNOS expression and further decreasing NO and ROS overproduction-induced endothelial apoptosis. Therapies that inhibit the enzyme calpain could alleviate the effects of acute kidney injury according to researchers in China and Canada. Acute kidney injury is induced by endotoxemia, in which changes in the permeability of the intestine allow lipopolysaccharides (LPS) to pass from gut bacteria into the bloodstream. Calpain is known to be active during this process. Zhifeng Liu at the General Hospital of Guangzhou Military Command and co-workers induced endotoxemia in various mouse models by injecting them with LPS. The LPS induced significant kidney dysfunction and cell death, but these were alleviated in mice that were genetically modified to block calpain activity in the blood vessel lining, and in mice that overexpressed calpastatin, a calpain inhibitor. Blocking calpain reduces the expression of nitric oxide synthases that damage endothelial cells.
Collapse
|
13
|
Calpain cleaves phospholipid flippase ATP8A1 during apoptosis in platelets. Blood Adv 2020; 3:219-229. [PMID: 30674456 DOI: 10.1182/bloodadvances.2018023473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/16/2018] [Indexed: 01/01/2023] Open
Abstract
The asymmetric distribution of phospholipids in the plasma/organellar membranes is generated and maintained through phospholipid flippases in resting cells, but becomes disrupted in apoptotic cells and activated platelets, resulting in phosphatidylserine (PS) exposure on the cell surface. Stable PS exposure during apoptosis requires inactivation of flippases to prevent PS from being reinternalized. Here we show that flippase ATP8A1 is highly expressed in both murine and human platelets, but is not present in the plasma membrane. ATP8A1 is cleaved by the cysteine protease calpain during apoptosis, and the cleavage is prevented indirectly by caspase inhibition, involving blockage of calcium influx into platelets and subsequent calpain activation. In contrast, in platelets activated with thrombin and collagen and exposing PS, ATP8A1 remains intact. These data reveal a novel mechanism of flippase cleavage and suggest that flippase activity in intracellular membranes differs between platelets undergoing apoptosis and activation.
Collapse
|
14
|
Calpain Small Subunit 1 Protein in the Prognosis of Cancer Survivors and Its Clinicopathological Correlation. BIOMED RESEARCH INTERNATIONAL 2020; 2019:8053706. [PMID: 32083121 PMCID: PMC7012277 DOI: 10.1155/2019/8053706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/07/2019] [Indexed: 12/03/2022]
Abstract
Background/Aims. Calpain small subunit 1 (Capn4) is implicated in tumorigenesis and plays a key role in multiple tumors. This study aimed to fully illustrate the prognostic value of Capn4 protein in cancer patients.
Collapse
|
15
|
Dókus LE, Yousef M, Bánóczi Z. Modulators of calpain activity: inhibitors and activators as potential drugs. Expert Opin Drug Discov 2020; 15:471-486. [DOI: 10.1080/17460441.2020.1722638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Levente Endre Dókus
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Mo’ath Yousef
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
16
|
Gößwein S, Lindemann A, Mahajan A, Maueröder C, Martini E, Patankar J, Schett G, Becker C, Wirtz S, Naumann-Bartsch N, Bianchi ME, Greer PA, Lochnit G, Herrmann M, Neurath MF, Leppkes M. Citrullination Licenses Calpain to Decondense Nuclei in Neutrophil Extracellular Trap Formation. Front Immunol 2019; 10:2481. [PMID: 31695698 PMCID: PMC6817590 DOI: 10.3389/fimmu.2019.02481] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/04/2019] [Indexed: 12/23/2022] Open
Abstract
Neutrophils respond to various stimuli by decondensing and releasing nuclear chromatin characterized by citrullinated histones as neutrophil extracellular traps (NETs). This achieves pathogen immobilization or initiation of thrombosis, yet the molecular mechanisms of NET formation remain elusive. Peptidyl arginine deiminase-4 (PAD4) achieves protein citrullination and has been intricately linked to NET formation. Here we show that citrullination represents a major regulator of proteolysis in the course of NET formation. Elevated cytosolic calcium levels trigger both peptidylarginine deiminase-4 (PAD4) and calpain activity in neutrophils resulting in nuclear decondensation typical of NETs. Interestingly, PAD4 relies on proteolysis by calpain to achieve efficient nuclear lamina breakdown and chromatin decondensation. Pharmacological or genetic inhibition of PAD4 and calpain strongly inhibit chromatin decondensation of human and murine neutrophils in response to calcium ionophores as well as the proteolysis of nuclear proteins like lamin B1 and high mobility group box protein 1 (HMGB1). Taken together, the concerted action of PAD4 and calpain induces nuclear decondensation in the course of calcium-mediated NET formation.
Collapse
Affiliation(s)
- Stefanie Gößwein
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Deutsches Zentrum Immuntherapie, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Aylin Lindemann
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Deutsches Zentrum Immuntherapie, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Aparna Mahajan
- Department of Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Maueröder
- Department of Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Eva Martini
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Deutsches Zentrum Immuntherapie, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Jay Patankar
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Deutsches Zentrum Immuntherapie, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Georg Schett
- Department of Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Deutsches Zentrum Immuntherapie, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Deutsches Zentrum Immuntherapie, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Nora Naumann-Bartsch
- Department of Pediatrics, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Marco E Bianchi
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Günter Lochnit
- Institute of Biochemistry, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Martin Herrmann
- Department of Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Deutsches Zentrum Immuntherapie, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Moritz Leppkes
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Deutsches Zentrum Immuntherapie, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| |
Collapse
|
17
|
Liu ZX, Yu K, Dong J, Zhao L, Liu Z, Zhang Q, Li S, Du Y, Cheng H. Precise Prediction of Calpain Cleavage Sites and Their Aberrance Caused by Mutations in Cancer. Front Genet 2019; 10:715. [PMID: 31440276 PMCID: PMC6694742 DOI: 10.3389/fgene.2019.00715] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/05/2019] [Indexed: 02/05/2023] Open
Abstract
As a widespread post-translational modification of proteins, calpain-mediated cleavage regulates a broad range of cellular processes, including proliferation, differentiation, cytoskeletal reorganization, and apoptosis. The identification of proteins that undergo calpain cleavage in a site-specific manner is the necessary foundation for understanding the exact molecular mechanisms and regulatory roles of calpain-mediated cleavage. In contrast with time-consuming and labor-intensive experimental methods, computational approaches for detecting calpain cleavage sites have attracted wide attention due to their efficiency and convenience. In this study, we established a novel computational tool named DeepCalpain (http://deepcalpain.cancerbio.info/) for predicting the potential calpain cleavage sites by adopting deep neural network and the particle swarm optimization algorithm. Through critical evaluation and comparison, DeepCalpain exhibited superior performance against other existing tools. Meanwhile, we found that protein interactions could enrich the calpain-substrate regulatory relationship. Since calpain-mediated cleavage was critical for cancer development and progression, we comprehensively analyzed the calpain cleavage associated mutations across 11 cancers with the help of DeepCalpain, which demonstrated that the calpain-mediated cleavage events were affected by mutations and heavily implicated in the regulation of cancer cells. These prediction and analysis results might provide helpful information to reveal the regulatory mechanism of calpain cleavage in biological pathways and different cancer types, which might open new avenues for the diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Ze-Xian Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kai Yu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jingsi Dong
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Linhong Zhao
- Institute of Life Sciences, Southeast University, Nanjing, China
| | - Zekun Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qingfeng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shihua Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yimeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Han Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
A novel homozygous nonsense mutation in CAST associated with PLACK syndrome. Cell Tissue Res 2019; 378:267-277. [DOI: 10.1007/s00441-019-03077-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 07/08/2019] [Indexed: 12/30/2022]
|
19
|
Capn4 expression is modulated by microRNA-520b and exerts an oncogenic role in prostate cancer cells by promoting Wnt/β-catenin signaling. Biomed Pharmacother 2018; 108:467-475. [DOI: 10.1016/j.biopha.2018.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
|
20
|
Liu ZF, Ji JJ, Zheng D, Su L, Peng T. Calpain-2 protects against heat stress-induced cardiomyocyte apoptosis and heart dysfunction by blocking p38 mitogen-activated protein kinase activation. J Cell Physiol 2018; 234:10761-10770. [PMID: 30417356 DOI: 10.1002/jcp.27750] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/22/2018] [Indexed: 12/25/2022]
Abstract
Cardiovascular dysfunction is a common complication among heatstroke patients, but its underlying mechanism is unclear. This study was designed to investigate the role of calpain-2 and its downstream signal pathway in heat stress-induced cardiomyocyte apoptosis and heart dysfunction. In cultured primary mouse neonatal cardiomyocytes (MNCs), heat stress (43°C for 2 hr) induced a heat-shock response, as indicated by upregulated heat-shock protein 27 (HSP27) expression and cellular apoptosis, as indicated by increased caspase-3 activity, DNA fragmentation and decreased cell viability. Meanwhile, heat stress decreased calpain activity, which was accompanied by downregulated calpain-2 expression and increased phosphorylation of p38, extraceIIuIar signaI-reguIated protein kinase (ERK1/2) and c-Jun N-terminaI kinase (JNK). Calpain-2 overexpression abrogated heat stress-induced apoptosis and phosphorylation of p38 and JNK, but not of ERK1/2. Blocking only p38 prevented heat stress-induced apoptosis in MNCs. In cardiac-specific calpain-2 overexpressing transgenic mice, p38 phosphorylation and cardiomyocyte apoptosis were decreased in the heart tissue of heatstroke mice, as revealed by western blot and terminal deoxynucleotidyl transferase dUTP nick end labelling assays, respectively. M-mode echocardiography also demonstrated that calpain-2 overexpression significantly improved heatstroke-induced decreases in ventricular end-diastolic volume and cardiac output. In conclusion, our study suggests that heat stress reduces calpain-2 expression, which then activates p38, leading to cardiomyocyte apoptosis and heart dysfunction.
Collapse
Affiliation(s)
- Zhi-Feng Liu
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, China.,Department of Medicine, Critical Illness Research Center, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Pathology, Critical Illness Research Center, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Jing-Jing Ji
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, China.,Departement of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Dong Zheng
- Department of Medicine, Critical Illness Research Center, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Pathology, Critical Illness Research Center, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Lei Su
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, China.,Key Laboratory of Hot Zone Trauma Care and Tissue Repair of PLA, General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Tianqing Peng
- Department of Medicine, Critical Illness Research Center, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Pathology, Critical Illness Research Center, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
21
|
MacLeod JA, Gao Y, Hall C, Muller WJ, Gujral TS, Greer PA. Genetic disruption of calpain-1 and calpain-2 attenuates tumorigenesis in mouse models of HER2+ breast cancer and sensitizes cancer cells to doxorubicin and lapatinib. Oncotarget 2018; 9:33382-33395. [PMID: 30279968 PMCID: PMC6161787 DOI: 10.18632/oncotarget.26078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/23/2018] [Indexed: 12/03/2022] Open
Abstract
Calpains are a family of calcium activated cysteine proteases which participate in a wide range of cellular functions including migration, invasion, autophagy, programmed cell death, and gene expression. Calpain-1 and calpain-2 isoforms are ubiquitously expressed heterodimers composed of isoform specific catalytic subunits coupled with an obligate common regulatory subunit encoded by capns1. Here, we report that conditional deletion of capns1 disrupted calpain-1 and calpain-2 expression and activity, and this was associated with delayed tumorigenesis and altered signaling in a transgenic mouse model of spontaneous HER2+ breast cancer and effectively blocked tumorigenesis in an orthotopic engraftment model. Furthermore, capns1 knockout in a tumor derived cell line correlated with enhanced sensitivity to the chemotherapeutic doxorubicin and the HER2/EGFR tyrosine kinase inhibitor lapatinib. Collectively, these results indicate pro-tumorigenic roles for calpains-1/2 in HER2+ breast cancer and provide evidence that calpain-1/2 inhibitors could have anti-tumor effects if used either alone or in combination with chemotherapeutics and targeted agents.
Collapse
Affiliation(s)
- James A MacLeod
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.,Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| | - Yan Gao
- Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| | - Christine Hall
- Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Taranjit S Gujral
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.,Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| |
Collapse
|
22
|
Li S, Ma J, Li JB, Lacefield JC, Jones DL, Peng TQ, Wei M. Over-expression of calpastatin attenuates myocardial injury following myocardial infarction by inhibiting endoplasmic reticulum stress. J Thorac Dis 2018; 10:5283-5297. [PMID: 30416776 DOI: 10.21037/jtd.2018.08.133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Ischemic heart injury activates calpains and endoplasmic reticulum (ER) stress in cardiomyocytes. This study investigated whether over-expression of calpastatin, an endogenous calpain inhibitor, protects the heart against myocardial infarction (MI) by inhibiting ER stress. Methods Mice over-expressing calpastatin (Tg-CAST) and littermate wild type (WT) mice were divided into four groups: WT-sham, Tg-CAST-sham, WT-MI, and Tg-CAST-MI, respectively. WT-sham and Tg-CAST-sham mice showed similar cardiac function at baseline. MI for 7 days impaired cardiac function in WT-MI mice, which was ameliorated in Tg-CAST-MI mice. Results Tg-CAST-MI mice exhibited significantly decreased diameter of the left ventricular cavity, scar area, and cardiac cell death compared to WT-MI mice. WT-MI mice had higher cardiac expression of C/EBP homologous protein (CHOP) and BIP, indicators of ER stress, compared to WT-sham mice, indicative of MI-induced ER stress. This increase was abolished in Tg-CAST-MI hearts. Furthermore, administration of tauroursodeoxycholic acid, an inhibitor of ER stress, reduced MI-induced expression of CHOP and BIP, scar area, and myocardial dysfunction. In an in vitro model of oxidative stress, H2O2 stimulation of H9c2 cardiomyoblasts induced calpain activation, CHOP expression, and cell death, all of which were prevented by the calpain inhibitor PD150606, as well as CHOP silencing. Conclusions Over-expression of calpastatin ameliorates MI-induced myocardial injury in mice. These protective effects of calpastatin are partially achieved through suppression of the ER stress/CHOP pathway.
Collapse
Affiliation(s)
- Shuai Li
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada.,Department of Medicine, Western University, London, Ontario, Canada.,Department of Pathology, Western University, London, Ontario, Canada
| | - Jian Ma
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jing-Bo Li
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - James C Lacefield
- Department of Electrical & Computer Engineering, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada
| | - Douglas L Jones
- Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada.,Department of Medicine, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Physiology & Pharmacology, Western University, London, Ontario, Canada
| | - Tian-Qing Peng
- Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada.,Department of Medicine, Western University, London, Ontario, Canada.,Department of Pathology, Western University, London, Ontario, Canada
| | - Meng Wei
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
23
|
Coomer CE, Morris AC. Capn5 Expression in the Healthy and Regenerating Zebrafish Retina. Invest Ophthalmol Vis Sci 2018; 59:3643-3654. [PMID: 30029251 PMCID: PMC6054427 DOI: 10.1167/iovs.18-24278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/01/2018] [Indexed: 12/21/2022] Open
Abstract
Purpose Autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV) is a devastating inherited autoimmune disease of the eye that displays features commonly seen in other eye diseases, such as retinitis pigmentosa and diabetic retinopathy. ADNIV is caused by a gain-of-function mutation in Calpain-5 (CAPN5), a calcium-dependent cysteine protease. Very little is known about the normal function of CAPN5 in the adult retina, and there are conflicting results regarding its role during mammalian embryonic development. The zebrafish (Danio rerio) is an excellent animal model for studying vertebrate development and tissue regeneration, and represents a novel model to explore the function of Capn5 in the eye. Methods We characterized the expression of Capn5 in the developing zebrafish central nervous system (CNS) and retina, in the adult zebrafish retina, and in response to photoreceptor degeneration and regeneration using whole-mount in situ hybridization, FISH, and immunohistochemistry. Results In zebrafish, capn5 is strongly expressed in the developing embryonic brain, early optic vesicles, and in newly differentiated retinal photoreceptors. We found that expression of capn5 colocalized with cone-specific markers in the adult zebrafish retina. We observed an increase in expression of Capn5 in a zebrafish model of chronic rod photoreceptor degeneration and regeneration. Acute light damage to the zebrafish retina was accompanied by an increase in expression of Capn5 in the surviving cones and in a subset of Müller glia. Conclusions These studies suggest that Capn5 may play a role in CNS development, photoreceptor maintenance, and photoreceptor regeneration.
Collapse
Affiliation(s)
- Cagney E. Coomer
- Department of Biology, University of Kentucky, Lexington, Kentucky, United States
| | - Ann C. Morris
- Department of Biology, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
24
|
Cheng SY, Wang SC, Lei M, Wang Z, Xiong K. Regulatory role of calpain in neuronal death. Neural Regen Res 2018; 13:556-562. [PMID: 29623944 PMCID: PMC5900522 DOI: 10.4103/1673-5374.228762] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2017] [Indexed: 12/19/2022] Open
Abstract
Calpains are a group of calcium-dependent proteases that are over activated by increased intracellular calcium levels under pathological conditions. A wide range of substrates that regulate necrotic, apoptotic and autophagic pathways are affected by calpain. Calpain plays a very important role in neuronal death and various neurological disorders. This review introduces recent research progress related to the regulatory mechanisms of calpain in neuronal death. Various neuronal programmed death pathways including apoptosis, autophagy and regulated necrosis can be divided into receptor interacting protein-dependent necroptosis, mitochondrial permeability transition-dependent necrosis, pyroptosis and poly (ADP-ribose) polymerase 1-mediated parthanatos. Calpains cleave series of key substrates that may lead to cell death or participate in cell death. Regarding the investigation of calpain-mediated programed cell death, it is necessary to identify specific inhibitors that inhibit calpain mediated neuronal death and nervous system diseases.
Collapse
Affiliation(s)
- Si-ying Cheng
- Xiangya Medical School, Central South University, Changsha, Hunan Province, China
| | - Shu-chao Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Ming Lei
- Xiangya Medical School, Central South University, Changsha, Hunan Province, China
| | - Zhen Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
25
|
Su CM, Chen CY, Lu T, Sun Y, Li W, Huang YL, Tsai CH, Chang CS, Tang CH. A novel benzofuran derivative, ACDB, induces apoptosis of human chondrosarcoma cells through mitochondrial dysfunction and endoplasmic reticulum stress. Oncotarget 2018; 7:83530-83543. [PMID: 27835579 PMCID: PMC5347786 DOI: 10.18632/oncotarget.13171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022] Open
Abstract
Chondrosarcoma is one of the bone tumor with high mortality in respond to poor radiation and chemotherapy treatment. Here, we analyze the antitumor activity of a novel benzofuran derivative, 2-amino-3-(2-chlorophenyl)-6-(4-dimethylaminophenyl)benzofuran-4-yl acetate (ACDB), in human chondrosarcoma cells. ACDB increased the cell apoptosis of human chondrosarcomas without harm in chondrocytes. ACDB also enhanced endoplasmic reticulum (ER) stress, which was characterized by varieties in the cytosolic calcium levels and induced the expression of glucose-regulated protein (GRP) and calpain. Furthermore, the ACDB-induced chondrosarcoma apoptosis was associated with the upregulation of the B cell lymphoma-2 (Bcl-2) family members including pro- and anti-apoptotic proteins, downregulation of dysfunctional mitochondria that released cytochrome C, and subsequent activation of caspases-3. In addition, the ACDB-mediated cellular apoptosis was suppressed by transfecting cells with glucose-regulated protein (GRP) and calpain siRNA or treating cells with ER stress chelators and caspase inhibitors. Interestingly, animal experiments illustrated a reduction in the tumor volume following ACDB treatment. Together, these results suggest that ACDB may be a novel tumor suppressor of chondrosarcoma, and this study demonstrates that the novel antitumor agent, ACDB, induced apoptosis by mitochondrial dysfunction and ER stress in human chondrosarcoma cells in vitro and in vivo.
Collapse
Affiliation(s)
- Chen-Ming Su
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China.,Graduate Institute of Basic Medical Science, China Medical University, Taichung Taiwan
| | - Chien-Yu Chen
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan
| | - Tingting Lu
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yi Sun
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Weimin Li
- Department of Cardiology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Chun-Hao Tsai
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Shiang Chang
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
26
|
Yang MF, Lou YL, Liu SS, Wang SS, Yin CH, Cheng XH, Huang OP. Capn4 overexpression indicates poor prognosis of ovarian cancer patients. J Cancer 2018; 9:304-309. [PMID: 29344277 PMCID: PMC5771338 DOI: 10.7150/jca.22004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022] Open
Abstract
Recent studies have shown a close correlation between Capn4 expression and the prognosis of patients with solid tumors. This study aimed to investigate clinical role of Capn4 in ovarian cancer. The expression of Capn4 in 113 ovarian cancer and 35 non-tumor tissue samples were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Capn4 expression was significantly upregulated in ovarian cancer tissues compared with non-tumor tissues (p < 0.01), and was positively correlated to FIGO stage, tumor grade and distant metastasis of ovarian cancer. Kaplan-Meier analysis indicated that patients with high Capn4 expression had shorter overall survival (HR = 1.929, 95%CI: 1.210-3.077, P= 0.006) and progress-free survival (PFS) (HR = 2.043, 95%CI: 1.276-3.271, P= 0.003). Moreover, univariate Cox regression analysis demonstrated that Capn4 overexpression was an unfavorable prognostic factor for ovarian cancer (HR = 2.819, 95%CI: 1.365-3.645, P = 0.003). After the adjustment with age, histological type and tumor size, multivariate Cox regression analysis showed that Capn4 expression level (HR = 2.157,95%CI: 1.091-3.138, P = 0.014), distant metastasis (HR = 1.576, 95%CI: 1.025-3.012, P = 0.028), tumor grade (HR = 1.408, 95%CI: 0.687-2.884, P = 0.037), and FIGO stage (HR = 1.791, 95%CI: 1.016-3.158, P=0.036) were independent poor prognostic indicators for ovarian cancer. In conclusion, Capn4 has the potential as a new prognostic marker for patients with ovarian cancer.
Collapse
Affiliation(s)
- Ming-Fang Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yuan-Lei Lou
- Institute of Urology, Nanchang University, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Si-Sun Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shan-Shan Wang
- Department of Pathology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Chun-Hua Yin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiao-Hua Cheng
- Department of Pharmacy, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ou-Ping Huang
- Department of Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang 330006, China
| |
Collapse
|
27
|
Messer JS. The cellular autophagy/apoptosis checkpoint during inflammation. Cell Mol Life Sci 2017; 74:1281-1296. [PMID: 27837217 PMCID: PMC11107496 DOI: 10.1007/s00018-016-2403-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/17/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022]
Abstract
Cell death is a major determinant of inflammatory disease severity. Whether cells live or die during inflammation largely depends on the relative success of the pro-survival process of autophagy versus the pro-death process of apoptosis. These processes interact and influence each other during inflammation and there is a checkpoint at which cells irrevocably commit to either one pathway or another. This review will discuss the concept of the autophagy/apoptosis checkpoint and its importance during inflammation, the mechanisms of inflammation leading up to the checkpoint, and how the checkpoint is regulated. Understanding these concepts is important since manipulation of the autophagy/apoptosis checkpoint represents a novel opportunity for treatment of inflammatory diseases caused by too much or too little cell death.
Collapse
Affiliation(s)
- Jeannette S Messer
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, 900 E. 57th Street, 9th Floor, Chicago, IL, 60637, USA.
| |
Collapse
|
28
|
Differential role of calpain-dependent protein cleavage in intermediate and long-term operant memory in Aplysia. Neurobiol Learn Mem 2016; 137:134-141. [PMID: 27913293 DOI: 10.1016/j.nlm.2016.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 01/06/2023]
Abstract
In addition to protein synthesis, protein degradation or protein cleavage may be necessary for intermediate (ITM) and long-term memory (LTM) to remove molecular constraints, facilitate persistent kinase activity and modulate synaptic plasticity. Calpains, a family of conserved calcium dependent cysteine proteases, modulate synaptic function through protein cleavage. We used the marine mollusk Aplysia californica to investigate the in vivo role of calpains during intermediate and long-term operant memory formation using the learning that food is inedible (LFI) paradigm. A single LFI training session, in which the animal associates a specific netted seaweed with the failure to swallow, generates short (30min), intermediate (4-6h) and long-term (24h) memory. Using the calpain inhibitors calpeptin and MDL-28170, we found that ITM requires calpain activity for induction and consolidation similar to the previously reported requirements for persistent protein kinase C activity in intermediate-term LFI memory. The induction of LTM also required calpain activity. In contrast to ITM, calpain activity was not necessary for the molecular consolidation of LTM. Surprisingly, six hours after LFI training we found that calpain activity was necessary for LTM, although this is a time at which neither persistent PKC activity nor protein synthesis is required for the maintenance of long-term LFI memory. These results demonstrate that calpains function in multiple roles in vivo during associative memory formation.
Collapse
|
29
|
Zhang Y, Xu W, Ni P, Li A, Zhou J, Xu S. MiR-99a and MiR-491 Regulate Cisplatin Resistance in Human Gastric Cancer Cells by Targeting CAPNS1. Int J Biol Sci 2016; 12:1437-1447. [PMID: 27994509 PMCID: PMC5166486 DOI: 10.7150/ijbs.16529] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/24/2016] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is the first-line agent utilized for the clinical treatment of a wide variety of solid tumors including gastric cancer. However, the intrinsic or acquired cisplatin resistance is often occurred in patients with gastric cancer and resulted in failure of cisplatin therapy. In order to investigate if miRNA involves in cisplatin resistance of human gastric cancer, we first screened and compared the expression of miRNAs between cisplatin resistant gastric cancer cell lines SGC-7901/DDP and BGC-823/DDP and their sensitive parental cells by miRNAs microarray and followed by analysis of 2D-GE/MS to identify their target proteins. We found both miR-99a and miR-491 were upregulated while their target gene calpain small subunit 1 (CAPNS1) was downregulated in resistant gastric cancer cells. Dual-luciferase- reporter assays with wild-type and mutated CAPNS1 3'-UTR confirmed their specificity of targeting. Inhibition of miR-99a and miR-491, or overexpress CAPNS1 can enhance cisplatin sensitivity of the resistant cells while transfection of two miRNAs' mimics or si-CAPNS1 in the sensitive cells can induce their resistance. Moreover, our results demonstrated CAPNS1 positively regulated calpain1 and calpain2, the catalytic subunits of CAPNS1, and cleaved caspase3 which further cleaved PARP1 and directly induced apoptosis. Therefore, miR-99a and miR-491 might be work as novel molecules regulate cisplatin resistance by directly targeting CAPNS1 associated pathway in human gastric cancer cells.
Collapse
Affiliation(s)
- Yajie Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University
| | - Wenxia Xu
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University; Laboratory of Cancer Biology, Biomedical Research Center, Sir Runrun Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Pan Ni
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University
| | - Aiping Li
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University
| | - Shan Xu
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University
| |
Collapse
|
30
|
Rao SS, Mu Q, Zeng Y, Cai PC, Liu F, Yang J, Xia Y, Zhang Q, Song LJ, Zhou LL, Li FZ, Lin YX, Fang J, Greer PA, Shi HZ, Ma WL, Su Y, Ye H. Calpain-activated mTORC2/Akt pathway mediates airway smooth muscle remodelling in asthma. Clin Exp Allergy 2016; 47:176-189. [PMID: 27649066 DOI: 10.1111/cea.12805] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/20/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Allergic asthma is characterized by inflammation and airway remodelling. Airway remodelling with excessive deposition of extracellular matrix (ECM) and larger smooth muscle mass are correlated with increased airway responsiveness and asthma severity. Calpain is a family of calcium-dependent endopeptidases, which plays an important role in ECM remodelling. However, the role of calpain in airway smooth muscle remodelling remains unknown. OBJECTIVE To investigate the role of calpain in asthmatic airway remodelling as well as the underlying mechanism. METHODS The mouse asthma model was made by ovalbumin sensitization and challenge. Calpain conditional knockout mice were studied in the model. Airway smooth muscle cells (ASMCs) were isolated from smooth muscle bundles in airway of rats. Cytokines IL-4, IL-5, TNF-α, and TGF-β1, and serum from patients with asthma were selected to treated ASMCs. Collagen-I synthesis, cell proliferation, and phosphorylation of Akt in ASMCs were analysed. RESULTS Inhibition of calpain using calpain knockout mice attenuated airway smooth muscle remodelling in mouse asthma models. Cytokines IL-4, IL-5, TNF-α, and TGF-β1, and serum from patients with asthma increased collagen-I synthesis, cell proliferation, and phosphorylation of Akt in ASMCs, which were blocked by the calpain inhibitor MDL28170. Moreover, MDL28170 reduced cytokine-induced increases in Rictor protein, which is the most important component of mammalian target of rapamycin complex 2 (mTORC2). Blockage of the mTORC2 signal pathway prevented cytokine-induced phosphorylation of Akt, collagen-I synthesis, and cell proliferation of ASMCs and attenuated airway smooth muscle remodelling in mouse asthma models. CONCLUSIONS AND CLINICAL RELEVANCE Our results indicate that calpain mediates cytokine-induced collagen-I synthesis and proliferation of ASMCs via the mTORC2/Akt signalling pathway, thereby regulating airway smooth muscle remodelling in asthma.
Collapse
Affiliation(s)
- S-S Rao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Q Mu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Y Zeng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - P-C Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - F Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - J Yang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Y Xia
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Q Zhang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - L-J Song
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - L-L Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - F-Z Li
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Y-X Lin
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - J Fang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - P A Greer
- Queen's University Cancer Research Institute, Kingston, ON, Canada
| | - H-Z Shi
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - W-L Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases, Ministry of Health of China, Wuhan, Hubei, China
| | - Y Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - H Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases, Ministry of Health of China, Wuhan, Hubei, China
| |
Collapse
|
31
|
Calpain Genetic Disruption and HSP90 Inhibition Combine To Attenuate Mammary Tumorigenesis. Mol Cell Biol 2016; 36:2078-88. [PMID: 27215381 DOI: 10.1128/mcb.01062-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/26/2016] [Indexed: 12/17/2022] Open
Abstract
Calpain is an intracellular Ca(2+)-regulated protease system whose substrates include proteins involved in proliferation, survival, migration, invasion, and sensitivity to therapeutic drugs. Genetic disruption of calpain attenuated the tumorigenic potential of breast cancer cells and hypersensitized cells to 17AAG, an inhibitor of the molecular chaperone HSP90. Calpain-1 or -2 overexpression rendered cells resistant to 17AAG, whereas downregulation or inhibition of calpain-1/2 led to increased cell death in multiple breast cancer cell lines, including models of HER2(+) (SKBR3) and triple-negative basal-cell-like (MDA-MB-231) breast cancer. In an MDA-MB-231 orthotopic xenograft model, calpain knockdown or 17AAG treatment independently attenuated tumor growth and metastasis, while the combination was most effective. Calpain knockdown was associated with increased 17AAG-induced degradation of the HSP90 clients cyclin D1 and AKT and multidrug resistance protein 2, which correlated with increased expression of antimitogenic p27(KIP1) and proapoptotic BIM proteins. Like other therapeutics, 17AAG can be effluxed by specific ABC transporters. Calpain expression positively correlated with the expression of P glycoprotein in mouse embryonic fibroblasts. Importantly, we show that calpain affects ABC transporter function and efflux of clinically relevant doxorubicin. These observations provide a compelling rationale for exploring the combination of calpain inhibition with new or existing cancer therapeutics.
Collapse
|
32
|
Howe CL, LaFrance-Corey RG, Mirchia K, Sauer BM, McGovern RM, Reid JM, Buenz EJ. Neuroprotection mediated by inhibition of calpain during acute viral encephalitis. Sci Rep 2016; 6:28699. [PMID: 27345730 PMCID: PMC4921808 DOI: 10.1038/srep28699] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/08/2016] [Indexed: 12/13/2022] Open
Abstract
Neurologic complications associated with viral encephalitis, including seizures and cognitive impairment, are a global health issue, especially in children. We previously showed that hippocampal injury during acute picornavirus infection in mice is associated with calpain activation and is the result of neuronal death triggered by brain-infiltrating inflammatory monocytes. We therefore hypothesized that treatment with a calpain inhibitor would protect neurons from immune-mediated bystander injury. C57BL/6J mice infected with the Daniel's strain of Theiler's murine encephalomyelitis virus were treated with the FDA-approved drug ritonavir using a dosing regimen that resulted in plasma concentrations within the therapeutic range for calpain inhibition. Ritonavir treatment significantly reduced calpain activity in the hippocampus, protected hippocampal neurons from death, preserved cognitive performance, and suppressed seizure escalation, even when therapy was initiated 36 hours after disease onset. Calpain inhibition by ritonavir may be a powerful tool for preserving neurons and cognitive function and preventing neural circuit dysregulation in humans with neuroinflammatory disorders.
Collapse
Affiliation(s)
- Charles L Howe
- Departments of Neurology, Mayo Clinic, Rochester, Minnesota, 55905 USA.,Departments of Neuroscience, Mayo Clinic, Rochester, Minnesota, 55905 USA.,Departments of Immunology, Mayo Clinic, Rochester, Minnesota, 55905 USA
| | | | - Kanish Mirchia
- Departments of Neurology, Mayo Clinic, Rochester, Minnesota, 55905 USA
| | - Brian M Sauer
- Neurobiology of Disease PhD program, Mayo Graduate School, Mayo Clinic, Rochester, Minnesota, 55905 USA
| | - Renee M McGovern
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, 55905 USA
| | - Joel M Reid
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, 55905 USA
| | - Eric J Buenz
- Departments of Neurology, Mayo Clinic, Rochester, Minnesota, 55905 USA
| |
Collapse
|
33
|
Storr SJ, Thompson N, Pu X, Zhang Y, Martin SG. Calpain in Breast Cancer: Role in Disease Progression and Treatment Response. Pathobiology 2015; 82:133-41. [PMID: 26330354 DOI: 10.1159/000430464] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The calpains are a family of intracellular cysteine proteases that function in a wide array of cellular activities, including cytoskeletal remodelling, survival and apoptosis. The ubiquitously expressed micro (µ)-calpain and milli (m)-calpain are archetypal family members that require calcium for function and can be inhibited by their endogenous inhibitor calpastatin. This review describes the role of the calpain system in the prognosis of breast cancer and disease progression, in addition to the role of the calpain system in the response to breast cancer treatments, including chemotherapeutic, endocrine and targeted therapies.
Collapse
Affiliation(s)
- Sarah J Storr
- Academic Clinical Oncology, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham City Hospital Campus, Nottingham, UK
| | | | | | | | | |
Collapse
|
34
|
Lei HY, Zhou XL, Ruan ZR, Sun WC, Eriani G, Wang ED. Calpain Cleaves Most Components in the Multiple Aminoacyl-tRNA Synthetase Complex and Affects Their Functions. J Biol Chem 2015; 290:26314-27. [PMID: 26324710 PMCID: PMC4646279 DOI: 10.1074/jbc.m115.681999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 12/13/2022] Open
Abstract
Nine aminoacyl-tRNA synthetases (aaRSs) and three scaffold proteins form a super multiple aminoacyl-tRNA synthetase complex (MSC) in the human cytoplasm. Domains that have been added progressively to MSC components during evolution are linked by unstructured flexible peptides, producing an elongated and multiarmed MSC structure that is easily attacked by proteases in vivo. A yeast two-hybrid screen for proteins interacting with LeuRS, a representative MSC member, identified calpain 2, a calcium-activated neutral cysteine protease. Calpain 2 and calpain 1 could partially hydrolyze most MSC components to generate specific fragments that resembled those reported previously. The cleavage sites of calpain in ArgRS, GlnRS, and p43 were precisely mapped. After cleavage, their N-terminal regions were removed. Sixty-three amino acid residues were removed from the N terminus of ArgRS to form ArgRSΔN63; GlnRS formed GlnRSΔN198, and p43 formed p43ΔN106. GlnRSΔN198 had a much weaker affinity for its substrates, tRNA(Gln) and glutamine. p43ΔN106 was the same as the previously reported p43-derived apoptosis-released factor. The formation of p43ΔN106 by calpain depended on Ca(2+) and could be specifically inhibited by calpeptin and by RNAi of the regulatory subunit of calpain in vivo. These results showed, for the first time, that calpain plays an essential role in dissociating the MSC and might regulate the canonical and non-canonical functions of certain components of the MSC.
Collapse
Affiliation(s)
- Hui-Yan Lei
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiao-Long Zhou
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhi-Rong Ruan
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei-Cheng Sun
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, University of Chinese Academy of Sciences, Beijing 100039, China, The School of Life Science and Technology, ShanghaiTech University, 319 Yue Yang Road, Shanghai 200031, China, and
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARN, Université de Strasbourg, UPR9002 CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | - En-Duo Wang
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, University of Chinese Academy of Sciences, Beijing 100039, China, The School of Life Science and Technology, ShanghaiTech University, 319 Yue Yang Road, Shanghai 200031, China, and
| |
Collapse
|
35
|
Mikosik A, Henc I, Ruckemann-Dziurdzińska K, Frąckowiak JE, Płoszyńska A, Balcerska A, Bryl E, Witkowski JM. Increased μ-Calpain Activity in Blasts of Common B-Precursor Childhood Acute Lymphoblastic Leukemia Correlates with Their Lower Susceptibility to Apoptosis. PLoS One 2015; 10:e0136615. [PMID: 26317226 PMCID: PMC4552652 DOI: 10.1371/journal.pone.0136615] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 07/23/2015] [Indexed: 12/11/2022] Open
Abstract
Childhood acute lymphoblastic leukemia (ALL) blasts are characterized by inhibited apoptosis promoting fast disease progress. It is known that in chronic lymphocytic and acute myeloid leukemias the reduced apoptosis is strongly related with the activity of calpain-calpastatin system (CCS) composed of cytoplasmic proteases--calpains--performing the modulatory proteolysis of key proteins involved in cell proliferation and apoptosis, and of their endogenous inhibitor--calpastatin. Here, the CCS protein abundance and activity was for the first time studied in childhood ALL blasts and in control bone marrow CD19+ B cells by semi-quantitative flow cytometry and western blotting of calpastatin fragments resulting from endogenous calpain activity. Significantly higher μ-calpain (CAPN1) gene transcription, protein amounts and activity (but not those of m-calpain), with calpastatin amount and transcription of its gene (CAST) greatly varying were observed in CD19(+) ALL blasts compared to control cells. Significant inverse relation between the amount/activity of calpain and spontaneous apoptosis was noted. Patients older than 10 years (considered at higher risk) displayed increased amounts and activities of blast calpain. Finally, treatment of blasts with the tripeptide calpain inhibitors II and IV significantly and in dose-dependent fashion increased the percentage of blasts entering apoptosis. Together, these findings make the CCS a potential new predictive tool and therapeutic target in childhood ALL.
Collapse
Affiliation(s)
- Anna Mikosik
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Izabella Henc
- Department of Pathology and Experimental Rheumatology, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | - Anna Płoszyńska
- Clinic of Pediatrics, Hematology and Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Balcerska
- Clinic of Pediatrics, Hematology and Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdańsk, Gdańsk, Poland
| | - Jacek M. Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
36
|
Disruption of cellular homeostasis induces organelle stress and triggers apoptosis like cell-death pathways in malaria parasite. Cell Death Dis 2015; 6:e1803. [PMID: 26136076 PMCID: PMC4650714 DOI: 10.1038/cddis.2015.142] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 01/29/2023]
Abstract
A regulated protein turnover machinery in the cell is essential for effective cellular homeostasis; any interference with this system induces cellular stress and alters the normal functioning of proteins important for cell survival. In this study, we show that persistent cellular stress and organelle dysfunction because of disruption of cellular homeostasis in human malaria parasite Plasmodium falciparum, leads to apoptosis-like cell death. Quantitative global proteomic analysis of the stressed parasites before onset of cell death, showed upregulation of a number of proteins involved in cellular homeostasis; protein network analyses identified upregulated metabolic pathways that may be associated with stress tolerance and pro-survival mechanism. However, persistent stress on parasites cause structural abnormalities in endoplasmic reticulum and mitochondria, subsequently a cascade of reactions are initiated in parasites including rise in cytosolic calcium levels, loss of mitochondrial membrane potential and activation of VAD-FMK-binding proteases. We further show that activation of VAD-FMK-binding proteases in the parasites leads to degradation of phylogenetically conserved protein, TSN (Tudor staphylococcal nuclease), a known target of metacaspases, as well as degradation of other components of spliceosomal complex. Loss of spliceosomal machinery impairs the mRNA splicing, leading to accumulation of unprocessed RNAs in the parasite and thus dysregulate vital cellular functions, which in turn leads to execution of apoptosis-like cell death. Our results establish one of the possible mechanisms of instigation of cell death by organelle stress in Plasmodium.
Collapse
|
37
|
Moretti D, Del Bello B, Allavena G, Maellaro E. Calpains and cancer: Friends or enemies? Arch Biochem Biophys 2014; 564:26-36. [DOI: 10.1016/j.abb.2014.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 02/07/2023]
|
38
|
A calcium-dependent protease as a potential therapeutic target for Wolfram syndrome. Proc Natl Acad Sci U S A 2014; 111:E5292-301. [PMID: 25422446 DOI: 10.1073/pnas.1421055111] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Wolfram syndrome is a genetic disorder characterized by diabetes and neurodegeneration and considered as an endoplasmic reticulum (ER) disease. Despite the underlying importance of ER dysfunction in Wolfram syndrome and the identification of two causative genes, Wolfram syndrome 1 (WFS1) and Wolfram syndrome 2 (WFS2), a molecular mechanism linking the ER to death of neurons and β cells has not been elucidated. Here we implicate calpain 2 in the mechanism of cell death in Wolfram syndrome. Calpain 2 is negatively regulated by WFS2, and elevated activation of calpain 2 by WFS2-knockdown correlates with cell death. Calpain activation is also induced by high cytosolic calcium mediated by the loss of function of WFS1. Calpain hyperactivation is observed in the WFS1 knockout mouse as well as in neural progenitor cells derived from induced pluripotent stem (iPS) cells of Wolfram syndrome patients. A small-scale small-molecule screen targeting ER calcium homeostasis reveals that dantrolene can prevent cell death in neural progenitor cells derived from Wolfram syndrome iPS cells. Our results demonstrate that calpain and the pathway leading its activation provides potential therapeutic targets for Wolfram syndrome and other ER diseases.
Collapse
|
39
|
Garcia-Gil M, Tozzi MG, Varani S, Della Verde L, Petrotto E, Balestri F, Colombaioni L, Camici M. The combination of adenosine deaminase inhibition and deoxyadenosine induces apoptosis in a human astrocytoma cell line. Neurochem Int 2014; 80:14-22. [PMID: 25447764 DOI: 10.1016/j.neuint.2014.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 11/06/2014] [Accepted: 11/17/2014] [Indexed: 12/16/2022]
Abstract
Alterations in the functions of astrocytes contribute to the appearance of a variety of neurological pathologies. Gliomas, especially those of astrocytic origin, are particularly resistant to chemotherapy and are often characterized by a poor prognosis. Neuroblastoma is the tumour with the higher incidence in infants. Anticancer drugs can induce apoptosis and their cytotoxic effect is often mediated by this process. We have previously demonstrated that the combination of deoxycoformycin, a strong adenosine deaminase inhibitor, and deoxyadenosine is toxic for a human astrocytoma cell line. In fact, after 15 h of treatment, this combination increases both mitochondrial reactive oxygen species and mitochondrial mass, induces apoptosis as indicated by cytochrome c release from mitochondria and activation of caspase-3. These events are preceded by reduction in lactate release in the medium. In this work we demonstrate that after 8 h of incubation with deoxyadenosine and deoxycoformycin, caspase-8 is activated, mitochondrial mass increases and mitochondrial reactive oxygen species decrease. The addition of baicalein to the incubation medium reduces cell death and caspase-3 activity induced by deoxycoformycin and deoxyadenosine in combination. This protective effect is correlated to an increase of lactate released in the medium, a decrease in the intracellular levels of dATP, and an increase in ATP levels, as compared with the cells subjected to the treatment with deoxycoformycin and deoxyadenosine without any further addition. The effect of baicalein appears to be related to an inhibition of deoxyadenosine phosphorylation, rather than or in addition to the well known antioxidant activity of the compound. This work indicates that an astrocytoma cell line, reported to be resistant to mitochondria-dependent pathways of apoptosis, is indeed very sensitive to a manipulation affecting the balance of cellular purine metabolite concentrations. The same treatment is also cytotoxic on a neuroblastoma cell line, thus suggesting long term implications for cancer therapy.
Collapse
Affiliation(s)
- Mercedes Garcia-Gil
- Dipartimento di Biologia, Unità Fisiologia Generale, Via S. Zeno 31, Pisa, Italy
| | | | - Stefano Varani
- Dipartimento di Biologia, Unità Fisiologia Generale, Via S. Zeno 31, Pisa, Italy
| | - Lorenza Della Verde
- Dipartimento di Biologia, Unità Fisiologia Generale, Via S. Zeno 31, Pisa, Italy
| | - Edoardo Petrotto
- Dipartimento di Biologia, Unità Fisiologia Generale, Via S. Zeno 31, Pisa, Italy
| | | | | | - Marcella Camici
- Dipartimento di Biologia, Unità Biochimica, Via S. Zeno 51, Pisa, Italy.
| |
Collapse
|
40
|
Bernardini G, Laschi M, Serchi T, Spreafico A, Botta M, Schenone S, Arena S, Geminiani M, Scaloni A, Collodel G, Orlandini M, Niccolai N, Santucci A. Proteomics and phosphoproteomics provide insights into the mechanism of action of a novel pyrazolo[3,4-d]pyrimidine Src inhibitor in human osteosarcoma. MOLECULAR BIOSYSTEMS 2014; 10:1305-12. [PMID: 24615350 DOI: 10.1039/c3mb70328b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is a highly malignant bone tumour, affecting mainly children and young adults between 10 and 20 years of age. It represents the most frequent primitive malignant tumour of the skeletal system and is characterized by an extremely aggressive clinical course, with rapid development of lung metastases. In the last few years, targeting Src in the treatment of OS has become one of the major challenges in the development of new drugs, since an elevated Src kinase activity has been associated with the development and the maintenance of the OS malignant phenotype. Recently, SI-83, a novel pyrazolo[3,4-d]pyrimidine derivate Src inhibitor, was selected as a promising OS therapeutic drug because of its elevated anti-tumour effects toward human OS. In the present study, gel-based proteomics and phosphoproteomics revealed significant changes in proteins involved in many cancer related processes. We got insight into SI-83 proapoptotic and antiproliferative properties (overrepresentation of GRIA1, GRP78, and CALR and underrepresentation of NPM1, RCN, and P4HB). Nevertheless, the most significant findings of our work are the SI-83 induced dephosphorylation of ARPC5L, a subunit of the actin related Arp2/3 complex, and the decrease of other cytoskeleton proteins. These data, together with a dramatic impairment of SaOS-2 cell migration and adhesion, suggest that SI-83 may have antimetastatic features that enhance its use as a potent OS chemotherapeutic drug.
Collapse
Affiliation(s)
- Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Fiorentina 1, 53100 Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hara T, Mahadevan J, Kanekura K, Hara M, Lu S, Urano F. Calcium efflux from the endoplasmic reticulum leads to β-cell death. Endocrinology 2014; 155:758-68. [PMID: 24424032 PMCID: PMC3929724 DOI: 10.1210/en.2013-1519] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has been established that intracellular calcium homeostasis is critical for survival and function of pancreatic β-cells. However, the role of endoplasmic reticulum (ER) calcium homeostasis in β-cell survival and death is not clear. Here we show that ER calcium depletion plays a critical role in β-cell death. Various pathological conditions associated with β-cell death, including ER stress, oxidative stress, palmitate, and chronic high glucose, decreased ER calcium levels and sarcoendoplasmic reticulum Ca(2+)-ATPase 2b expression, leading to β-cell death. Ectopic expression of mutant insulin and genetic ablation of WFS1, a causative gene for Wolfram syndrome, also decreased ER calcium levels and induced β-cell death. Hyperactivation of calpain-2, a calcium-dependent proapoptotic protease, was detected in β-cells undergoing ER calcium depletion. Ectopic expression of sarcoendoplasmic reticulum Ca(2+)-ATPase 2b, as well as pioglitazone and rapamycin treatment, could prevent calcium efflux from the ER and mitigate β-cell death under various stress conditions. Our results reveal a critical role of ER calcium depletion in β-cell death and indicate that identification of pathways and chemical compounds restoring ER calcium levels will lead to novel therapeutic modalities and pharmacological interventions for type 1 and type 2 diabetes and other ER-related diseases including Wolfram syndrome.
Collapse
Affiliation(s)
- Takashi Hara
- Department of Medicine (T.H., J.M., K.K., M.H., S.L., F.U.), Division of Endocrinology, Metabolism, and Lipid Research, and Department of Pathology and Immunology (F.U.), Washington University School of Medicine, St Louis, Missouri 63110; and Cardiovascular-Metabolics Research Laboratories (T.H.), Daiichi Sankyo Co, Ltd, Tokyo 103-8426, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Zhuang Q, Qian X, Cao Y, Fan M, Xu X, He X. Capn4 mRNA level is correlated with tumour progression and clinical outcome in clear cell renal cell carcinoma. J Int Med Res 2014; 42:282-91. [PMID: 24514433 DOI: 10.1177/0300060513505524] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To investigate the mRNA and protein levels of calpain small subunit-1 (Capn4) in human clear cell renal cell carcinoma (ccRCC), to analyse the relationship between Capn4 mRNA level and pathological stage of ccRCC, and to examine the potential of Capn4 as a prognostic factor in ccRCC. METHODS mRNA and protein levels of Capn4 were measured in pairs of tumour tissues and matched adjacent nontumour tissue obtained from patients with ccRCC by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting, respectively. Associations of the mRNA level of Capn4 with pathological tumour stage and the overall survival of ccRCC patients were also analysed. RESULTS Capn4 mRNA and protein level were significantly higher in ccRCC tumour tissues compared with adjacent nontumour tissues as assessed by qRT-PCR and Western blotting, respectively. Higher Capn4 mRNA levels were observed in patients with more advanced pathological stage of ccRCC and were also associated with decreased overall survival of patients with ccRCC. CONCLUSIONS The findings from this study indicate that Capn4 has the potential to be an independent prognostic indicator for ccRCC.
Collapse
Affiliation(s)
- Qianfeng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
43
|
Goldberg JM, Chen X, Meinhardt N, Greenbaum DC, Petersson EJ. Thioamide-based fluorescent protease sensors. J Am Chem Soc 2014; 136:2086-93. [PMID: 24472041 PMCID: PMC3985465 DOI: 10.1021/ja412297x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Thioamide
quenchers can be paired with compact fluorophores to
design “turn-on” fluorescent protease substrates. We
have used this method to study a variety of serine-, cysteine-, carboxyl-,
and metallo-proteases, including trypsin, chymotrypsin, pepsin, thermolysin,
papain, and calpain. Since thioamides quench some fluorophores red-shifted
from those naturally occurring in proteins, this technique can be
used for real time monitoring of protease activity in crude preparations
of virtually any protease. We demonstrate the value of this method
in three model applications: (1) characterization of papain enzyme
kinetics using rapid-mixing experiments, (2) selective monitoring
of cleavage at a single site in a peptide with multiple proteolytic
sites, and (3) analysis of the specificity of an inhibitor of calpain
in cell lysates.
Collapse
Affiliation(s)
- Jacob M Goldberg
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | | | | | | | | |
Collapse
|
44
|
Villalpando Rodriguez GE, Torriglia A. Calpain 1 induce lysosomal permeabilization by cleavage of lysosomal associated membrane protein 2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2244-53. [DOI: 10.1016/j.bbamcr.2013.05.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 12/17/2022]
|
45
|
Aan GJ, Hairi HA, Makpol S, Rahman MA, Karsani SA. Differences in protein changes between stress-induced premature senescence and replicative senescence states. Electrophoresis 2013; 34:2209-17. [DOI: 10.1002/elps.201300086] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Goon Jo Aan
- Department of Biochemistry; Faculty of Medicine; Universiti Kebangsaan Malaysia; Kuala Lumpur; Malaysia
| | - Haryati Ahmad Hairi
- Department of Biochemistry; Faculty of Medicine; Universiti Kebangsaan Malaysia; Kuala Lumpur; Malaysia
| | - Suzana Makpol
- Department of Biochemistry; Faculty of Medicine; Universiti Kebangsaan Malaysia; Kuala Lumpur; Malaysia
| | - Mariati Abdul Rahman
- Department of Clinical Oral Biology; Faculty of Dentistry; Universiti Kebangsaan Malaysia; Kuala Lumpur; Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science and University of Malaya Centre for Proteomics Research (UMCPR); University of Malaya; Kuala Lumpur; Malaysia
| |
Collapse
|
46
|
Mikosik A, Foerster J, Jasiulewicz A, Frąckowiak J, Colonna-Romano G, Bulati M, Buffa S, Martorana A, Caruso C, Bryl E, Witkowski JM. Expression of calpain-calpastatin system (CCS) member proteins in human lymphocytes of young and elderly individuals; pilot baseline data for the CALPACENT project. Immun Ageing 2013; 10:27. [PMID: 23835405 PMCID: PMC3707750 DOI: 10.1186/1742-4933-10-27] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 07/02/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Ubiquitous system of regulatory, calcium-dependent, cytoplasmic proteases - calpains - and their endogenous inhibitor - calpastatin - is implicated in the proteolytic regulation of activation, proliferation, and apoptosis of many cell types. However, it has not been thoroughly studied in resting and activated human lymphocytes yet, especially in relation to the subjects' ageing process. The CALPACENT project is an international (Polish-Italian) project aiming at verifying the hypothesis of the role of calpains in the function of peripheral blood immune cells of Polish (Pomeranian) and Italian (Sicilian) centenarians, apparently relatively preserved in comparison to the general elderly population. In this preliminary report we aimed at establishing and comparing the baseline levels of expression of μ- and m-calpain and calpastatin in various, phenotypically defined, populations of human peripheral blood lymphocytes for healthy elderly Sicilians and Poles, as compared to these values observed in young cohort. RESULTS We have found significant differences in the expression of both μ- and m-calpain as well as calpastatin between various populations of peripheral blood lymphocytes (CD4+, CD8+ and CD19+), both between the age groups compared and within them. Interestingly, significantly higher amounts of μ- and m-calpains but not of calpastatin could be demonstrated in the CD4+CD28- and CD8+CD28- lymphocytes of old subjects (but not in the cells of young individuals), as compared to their CD28+ counterparts. Finally, decreased expression of both calpains in the elderly T cells is not related to the accumulation of effector/memory (CD45RO+) cells in the latter, as the expression of both calpains does not differ significantly between the naïve and memory T cells, while is significantly lower for elderly lymphocytes if both populations are taken separately. CONCLUSIONS Observed differences in the amounts of CCS member proteins between various populations of lymphocytes of young and elderly subjects may participate in the impaired proliferative activity of these cells in the elderly.
Collapse
Affiliation(s)
- Anna Mikosik
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Jerzy Foerster
- Department of Social and Clinical Gerontology, Medical University of Gdańsk, Gdańsk 7, Poland
| | | | - Joanna Frąckowiak
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Giuseppina Colonna-Romano
- Department of Biopathology and Medical and Forensic Biotechnologies (DIBIMEF), University of Palermo, Palermo, Italy
| | - Matteo Bulati
- Department of Biopathology and Medical and Forensic Biotechnologies (DIBIMEF), University of Palermo, Palermo, Italy
| | - Silvio Buffa
- Department of Biopathology and Medical and Forensic Biotechnologies (DIBIMEF), University of Palermo, Palermo, Italy
| | - Adriana Martorana
- Department of Biopathology and Medical and Forensic Biotechnologies (DIBIMEF), University of Palermo, Palermo, Italy
| | - Calogero Caruso
- Department of Biopathology and Medical and Forensic Biotechnologies (DIBIMEF), University of Palermo, Palermo, Italy
| | - Ewa Bryl
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
47
|
Dho SH, Deverman BE, Lapid C, Manson SR, Gan L, Riehm JJ, Aurora R, Kwon KS, Weintraub SJ. Control of cellular Bcl-xL levels by deamidation-regulated degradation. PLoS Biol 2013; 11:e1001588. [PMID: 23823868 PMCID: PMC3692414 DOI: 10.1371/journal.pbio.1001588] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 05/07/2013] [Indexed: 02/07/2023] Open
Abstract
Deamidation of two asparagines activates a conditional PEST sequence to target Bcl-xL for degradation. The cellular concentration of Bcl-xL is among the most important determinants of treatment response and overall prognosis in a broad range of tumors as well as an important determinant of the cellular response to several forms of tissue injury. We and others have previously shown that human Bcl-xL undergoes deamidation at two asparaginyl residues and that DNA-damaging antineoplastic agents as well as other stimuli can increase the rate of deamidation. Deamidation results in the replacement of asparginyl residues with aspartyl or isoaspartyl residues. Thus deamidation, like phosphorylation, introduces a negative charge into proteins. Here we show that the level of human Bcl-xL is constantly modulated by deamidation because deamidation, like phosphorylation in other proteins, activates a conditional PEST sequence to target Bcl-xL for degradation. Additionally, we show that degradation of deamidated Bcl-xL is mediated at least in part by calpain. Notably, we present sequence and biochemical data that suggest that deamidation has been conserved from the simplest extant metazoans through the human form of Bcl-xL, underscoring its importance in Bcl-xL regulation. Our findings strongly suggest that deamidation-regulated Bcl-xL degradation is an important component of the cellular rheostat that determines susceptibility to DNA-damaging agents and other death stimuli. Cellular levels of the pro-survival protein Bcl-xL are an important determinant of cellular susceptibility to many death stimuli, including most cancer therapies. We previously showed that human Bcl-xL undergoes deamidation – the conversion of two neutral asparaginyl side-chains into negatively charged aspartyl side-chains – a process that occurs spontaneously but is accelerated by the treatment of tumor cells with DNA-damaging agents. Here, we show that deamidation activates a hitherto undetected signal sequence within Bcl-xL that targets it for degradation by a pathway involving the proteolytic enzyme calpain. This increased degradation of Bcl-xL, and the consequent enhanced cellular susceptibility to programmed cell death, may contribute to the ability of DNA-damaging agents to kill tumors. We also demonstrate that deamidation of Bcl-xL has likely been conserved from the simplest metazoans to humans, underscoring the importance of deamidation in the regulation of Bcl-xL.
Collapse
Affiliation(s)
- So Hee Dho
- Division of Urology and The Alvin J. Siteman Cancer Center, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Yusong, Daejeon, Korea
| | - Benjamin E. Deverman
- Division of Urology and The Alvin J. Siteman Cancer Center, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Carlo Lapid
- Department of Biology, Washington University, Saint Louis, Missouri, United States of America
| | - Scott R. Manson
- Division of Urology and The Alvin J. Siteman Cancer Center, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Lu Gan
- Division of Urology and The Alvin J. Siteman Cancer Center, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Jacob J. Riehm
- Division of Urology and The Alvin J. Siteman Cancer Center, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ki-Sun Kwon
- Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Yusong, Daejeon, Korea
- * E-mail: (K-SK); (SJW)
| | - Steven J. Weintraub
- Division of Urology and The Alvin J. Siteman Cancer Center, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Internal Medicine, St. Louis VA Medical Center–John Cochran Division, Saint Louis, Missouri, United States of America
- * E-mail: (K-SK); (SJW)
| |
Collapse
|
48
|
Escalante AM, McGrath RT, Karolak MR, Dorr RT, Lynch RM, Landowski TH. Preventing the autophagic survival response by inhibition of calpain enhances the cytotoxic activity of bortezomib in vitro and in vivo. Cancer Chemother Pharmacol 2013; 71:1567-76. [PMID: 23572175 PMCID: PMC3669633 DOI: 10.1007/s00280-013-2156-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/21/2013] [Indexed: 02/07/2023]
Abstract
PURPOSE Bortezomib, a first-generation proteasome inhibitor, induces an endoplasmic reticulum (ER) stress response, which ultimately leads to dysregulation of intracellular Ca(2+) and apoptotic cell death. This study investigated the role of the Ca(2+)-dependent enzyme, calpain, in bortezomib cytotoxicity. A novel therapeutic combination was evaluated in which HIV protease inhibitors were used to block calpain activity and enhance bortezomib cytotoxicity in myeloma cells in vitro and in vivo. METHODS Bortezomib-mediated cell death was examined using assays for apoptosis (Annexin V staining), total cell death (trypan blue exclusion), and growth inhibition (MTT). The effects of calpain on bortezomib-induced cytotoxicity were investigated using siRNA knockdown or pharmaceutical inhibitors. Enzyme activity assays and immunofluorescence analysis were used to identify mechanistic effects. RESULTS Inhibition of the Ca(2+)-dependent cysteine protease calpain, either by pharmacologic or genetic means, enhances or accelerates bortezomib-induced myeloma cell death. The increase in cell death is not associated with an increase in caspase activity, nor is there evidence of greater inhibition of proteasome activity, suggesting an alternate, calpain-regulated mechanism of bortezomib-induced cell death. Bortezomib initiates an autophagic response in myeloma cells associated with cell survival. Inhibition of calpain subverts the cytoprotective function of autophagy leading to increased bortezomib-mediated cell death. Combination therapy with bortezomib and the calpain-blocking HIV protease inhibitor, nelfinavir, reversed bortezomib resistance and induced near-complete tumor regressions in an SCID mouse xenograft model of myeloma.
Collapse
Affiliation(s)
- Aluvia M Escalante
- Department of Medicine, University of Arizona Cancer Center, University of Arizona, 1515 North Campbell Avenue, Room 4963B, Tucson, AZ 85724, USA
| | | | | | | | | | | |
Collapse
|
49
|
Wang Y, Zheng D, Wei M, Ma J, Yu Y, Chen R, Lacefield JC, Xu H, Peng T. Over-expression of calpastatin aggravates cardiotoxicity induced by doxorubicin. Cardiovasc Res 2013; 98:381-90. [PMID: 23455548 DOI: 10.1093/cvr/cvt048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIMS Doxorubicin causes damage to the heart, which may present as cardiomyopathy. However, the mechanisms by which doxorubicin induces cardiotoxicity remain not fully understood and no effective prevention for doxorubicin cardiomyopathy is available. Calpains, a family of calcium-dependent thiol-proteases, have been implicated in cardiovascular diseases. Their activities are tightly controlled by calpastatin. This study employed transgenic mice over-expressing calpastatin to investigate the role of calpain in doxorubicin-induced cardiotoxicity. METHODS AND RESULTS Doxorubicin treatment decreased calpain activities in cultured neonatal mouse cardiomyocytes and in vivo mouse hearts, which correlated with down-regulation of calpain-1 and calpain-2 proteins. Over-expression of calpastatin or incubation with pharmacological calpain inhibitors enhanced apoptosis in neonatal and adult cardiomyocytes induced by doxorubicin. In contrast, over-expression of calpain-2 but not calpain-1 attenuated doxorubicin-induced apoptosis in cardiomyocytes. The pro-apoptotic effects of calpain inhibition were associated with down-regulation of protein kinase B (AKT) protein and mRNA expression, and a concomitant reduction in glycogen synthase kinase-3beta (GSK-3β) phosphorylation (Ser9) in doxorubicin-treated cardiomyocytes. Blocking AKT further increased doxorubicin-induced cardiac injuries, suggesting the effects of calpain inhibition may be mediated by inactivating the AKT signalling. In an in vivo model of doxorubicin-induced cardiotoxicity, over-expression of calpastatin exacerbated myocardial dysfunction as assessed by echocardiography and haemodynamic measurement in transgenic mice 5 days after doxorubicin injection. The 5-day mortality was higher in transgenic mice (29.16%) compared with their wild-type littermates (8%) after doxorubicin treatment. CONCLUSION Over-expression of calpastatin enhances doxorubicin-induced cardiac injuries through calpain inhibition and thus, calpains may protect cardiomyocytes against doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yanpeng Wang
- Department of Cardiology, Shanghai 6th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
The role of the Hsp90/Akt pathway in myocardial calpain-induced caspase-3 activation and apoptosis during sepsis. BMC Cardiovasc Disord 2013; 13:8. [PMID: 23425388 PMCID: PMC3598447 DOI: 10.1186/1471-2261-13-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/18/2013] [Indexed: 12/31/2022] Open
Abstract
Background Recent studies have demonstrated that myocardial calpain triggers caspase-3 activation and myocardial apoptosis in models of sepsis, whereas the inhibition of calpain activity down-regulates myocardial caspase-3 activation and apoptosis. However, the mechanism underlying this pathological process is unclear. Therefore, in this study, our aim was to explore whether the Hsp90/Akt signaling pathway plays a role in the induction of myocardial calpain activity, caspase-3 activation and apoptosis in the septic mice. Methods Adult male C57 mice were injected with lipopolysaccharide (LPS, 4 mg/kg, i.p.) to induce sepsis. Next, myocardial caspase-3 activity and the levels of Hsp90/p-Akt (phospho-Akt) proteins were detected, and apoptotic cells were assessed by performing the TUNEL assay. Results In the septic mice, there was an increase in myocardial calpain and caspase-3 activity in addition to an increase in the number of apoptotic cells; however, there was a time-dependent decrease in myocardial Hsp90/p-Akt protein levels. The administration of calpain inhibitors (calpain inhibitor-Ш or PD150606) prevented the LPS-induced degradation of myocardial Hsp90/p-Akt protein and its expression in cardiomyocytes in addition to inhibiting myocardial caspase-3 activation and apoptosis. The inhibition of Hsp90 by pretreatment with 17-AAG induced p-Akt degradation, and the inhibition of Akt activity by pretreatment with wortmannin resulted in caspase-3 activation in wildtype C57 murine heart tissues. Conclusions Myocardial calpain induces myocardial caspase-3 activation and apoptosis in septic mice via the activation of the Hsp90/Akt pathway.
Collapse
|