1
|
Chuang HJ, Chiu L, Liao BJ, Chang CY, Wu GC, Tseng YC, Chou MY, Hwang PP. Environmental acidification drives inter-organ energy mobilization to enhance reproductive performance in medaka (Oryzias latipes). JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136197. [PMID: 39442299 DOI: 10.1016/j.jhazmat.2024.136197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Anthropogenically environmental acidification impacts aquatic organisms, including teleosts, the largest group of vertebrates. Despite its significance, how teleosts allocate nutrient and energy among their organs to cope with acidic stress remains unclear. Our integrated analysis of physiological, metabolic, and gene expression data reveals that Japanese medaka (Oryzias latipes) mobilize energy resources among organs in response to acidic conditions. We found that the muscles lost carbohydrates and proteins and the liver accumulates all macronutrients in both sexes. Notably, female-specific energy mobilization between the liver and ovary were triggered by estrogen signaling, resulting in improved oocyte maturation and ovulation. Female produced more offspring under acidic stress. Furthermore, the offspring embryos exhibited smaller diameters and earlier hatching but demonstrated growth rates and acid tolerance. These metabolic changes suggest a trade-off in energy allocation by suppressing basal maintenance (33 % decrease in oxygen consumption) and growth (25 % decrease in muscle mass) but enhancing energy storage (159 % increase in liver mass in males and 127 % in females) and reproduction (165 % increase in ovary mass). This reallocation may improve medaka fitness and population sustainability in acidic environments. Further investigation into more species is needed to project the survival of aquatic animals in an acidified future.
Collapse
Affiliation(s)
- Hsin-Ju Chuang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ling Chiu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan
| | - Bo-Jun Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Yung Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yung-Che Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
2
|
Oliver JI, Davies AN, Dinsdale R. Quantifying the extended energy metabolome of industrially important microorganisms (Saccharomyces cerevisiae) using ultra-performance liquid chromatography with mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1248:124342. [PMID: 39486264 DOI: 10.1016/j.jchromb.2024.124342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/11/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
This study has developed a new targeted methodology for the separation, detection, and quantification of metabolites from the wider energy metabolome of industrially important microorganisms such as Saccharomyces cerevisiae in a single analytical sample. This has been achieved using UHPLC-MS technology in HILIC mode. Absolute concentrations of metabolites nicotinamide adenine dinucleotide (NAD), nicotinamide adenine dinucleotide reduced (NADH), nicotinamide adenine dinucleotide phosphate (NADP), nicotinamide adenine dinucleotide phosphate reduced (NADPH), flavin adenine dinucleotide (FAD), adenosine-monophosphate (AMP), adenosine-diphosphate (ADP), and adenosine-triphosphate (ATP) were determined in a single extraction and analytical methodology. This study demonstrated the development of a rapid, statistically robust, and reproducible methodology through regression calibrations of standard samples from 0.1 to 100 µMol providing a correlation value of r2 = >0.98 for all metabolites. Sample preparation, extraction and analytical methodologies used showed high accuracy, sensitivity, and recovery. With an LOD and LOQ for the targeted analysis of metabolites from the wider energy metabolism in a single sample and analytical run with the lowest LOD of 0.055 nMol (±0.002) and lowest LOQ of 0.167 nMol (±0.006). This method was then applied to Saccharomyces cerevisiae cell culture to evaluate the methodology in industrially used microbial cultures. Results obtained have been statistically determined to be robust and reproducible through recovery analysis using deuterated and isotopically labelled internal standards AMP-15N, ADP-15N and ATP-d14.
Collapse
Affiliation(s)
- Jordan I Oliver
- Sustainable Environment Research Centre, University of South Wales, Pontypridd, Wales, United Kingdom.
| | - Antony N Davies
- Sustainable Environment Research Centre, University of South Wales, Pontypridd, Wales, United Kingdom
| | - Richard Dinsdale
- Sustainable Environment Research Centre, University of South Wales, Pontypridd, Wales, United Kingdom
| |
Collapse
|
3
|
Guo Y, Chen S, Guan W, Xu N, Zhu L, Du W, Liu Z, Fong HKW, Huang L, Zhao M. Retinal G-protein-coupled receptor deletion exacerbates AMD-like changes via the PINK1-parkin pathway under oxidative stress. FASEB J 2024; 38:e70135. [PMID: 39467145 PMCID: PMC11580724 DOI: 10.1096/fj.202401160rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/18/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
The intake of high dietary fat has been correlated with the progression of age-related macular degeneration (AMD), affecting the function of the retinal pigment epithelium through oxidative stress. A high-fat diet (HFD) can lead to lipid metabolism disorders, excessive production of circulating free fatty acids, and systemic inflammation by aggravating the degree of oxidative stress. Deletion of the retinal G-protein-coupled receptor (RGR-d) has been identified in drusen. In this study, we investigated how the RGR-d exacerbates AMD-like changes under oxidative stress, both in vivo and in vitro. Fundus atrophy became evident, at 12 months old, particularly in the RGR-d + HFD group, and fluorescence angiography revealed narrower retinal vessels and a reduced perfusion area in the peripheral retina. Although rod electroretinography revealed decreasing trends in the a- and b-wave amplitudes in the RGR-d + HFD group at 12 months, the changes were not statistically significant. Mice in the RGR-d + HFD group showed a significantly thinner and more fragile retinal morphology than those in the WT + HFD group, with disordered and discontinuous pigment distribution in the RGR-d + HFD mice. Transmission electron microscopy revealed a thickened Bruch's membrane along the choriocapillaris endothelial cell wall in the RGR-d + HFD mice, and the outer nuclear layer structure appeared disorganized, with reduced nuclear density. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated significantly lower levels of 25(OH)-vitamin D3 metabolites in the RGR-d + HFD group. Under oxidative stress, RGR-d localized to the mitochondria and reduced the levels of the PINK1-parkin pathway. RGR-d mice fed an HFD were used as a new animal model of dry AMD. Under high-fat-induced oxidative stress, RGR-d accumulated in the mitochondria, disrupting normal mitophagy and causing cellular damage, thus exacerbating AMD-like changes both in vivo and in vitro.
Collapse
Affiliation(s)
- Yue Guo
- Department of OphthalmologyPeking University People's HospitalBeijingChina
- Eye Diseases and Optometry InstituteBeijingChina
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid DiseasesBeijingChina
- College of OptometryPeking University Health Science CenterBeijingChina
| | - Sitong Chen
- Department of OphthalmologyPeking University People's HospitalBeijingChina
- Eye Diseases and Optometry InstituteBeijingChina
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid DiseasesBeijingChina
- College of OptometryPeking University Health Science CenterBeijingChina
| | - Wenxue Guan
- Department of OphthalmologyPeking University People's HospitalBeijingChina
- Eye Diseases and Optometry InstituteBeijingChina
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid DiseasesBeijingChina
- College of OptometryPeking University Health Science CenterBeijingChina
| | - Ningda Xu
- Department of OphthalmologyPeking University People's HospitalBeijingChina
- Eye Diseases and Optometry InstituteBeijingChina
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid DiseasesBeijingChina
- College of OptometryPeking University Health Science CenterBeijingChina
| | - Li Zhu
- Department of OphthalmologyPeking University People's HospitalBeijingChina
- Eye Diseases and Optometry InstituteBeijingChina
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid DiseasesBeijingChina
- College of OptometryPeking University Health Science CenterBeijingChina
| | - Wei Du
- Department of OphthalmologyPeking University People's HospitalBeijingChina
- Eye Diseases and Optometry InstituteBeijingChina
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid DiseasesBeijingChina
- College of OptometryPeking University Health Science CenterBeijingChina
| | - Zhiming Liu
- Department of OphthalmologyPeking University People's HospitalBeijingChina
- Eye Diseases and Optometry InstituteBeijingChina
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid DiseasesBeijingChina
- College of OptometryPeking University Health Science CenterBeijingChina
| | - Henry K. W. Fong
- Department of Ophthalmology, USC Roski Eye InstituteKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Lvzhen Huang
- Department of OphthalmologyPeking University People's HospitalBeijingChina
- Eye Diseases and Optometry InstituteBeijingChina
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid DiseasesBeijingChina
- College of OptometryPeking University Health Science CenterBeijingChina
| | - Mingwei Zhao
- Department of OphthalmologyPeking University People's HospitalBeijingChina
- Eye Diseases and Optometry InstituteBeijingChina
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid DiseasesBeijingChina
- College of OptometryPeking University Health Science CenterBeijingChina
| |
Collapse
|
4
|
Lane AN, Higashi RM, Fan TWM. Challenges of Spatially Resolved Metabolism in Cancer Research. Metabolites 2024; 14:383. [PMID: 39057706 PMCID: PMC11278851 DOI: 10.3390/metabo14070383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Stable isotope-resolved metabolomics comprises a critical set of technologies that can be applied to a wide variety of systems, from isolated cells to whole organisms, to define metabolic pathway usage and responses to perturbations such as drugs or mutations, as well as providing the basis for flux analysis. As the diversity of stable isotope-enriched compounds is very high, and with newer approaches to multiplexing, the coverage of metabolism is now very extensive. However, as the complexity of the model increases, including more kinds of interacting cell types and interorgan communication, the analytical complexity also increases. Further, as studies move further into spatially resolved biology, new technical problems have to be overcome owing to the small number of analytes present in the confines of a single cell or cell compartment. Here, we review the overall goals and solutions made possible by stable isotope tracing and their applications to models of increasing complexity. Finally, we discuss progress and outstanding difficulties in high-resolution spatially resolved tracer-based metabolic studies.
Collapse
Affiliation(s)
- Andrew N. Lane
- Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, USA; (R.M.H.); (T.W.-M.F.)
| | | | | |
Collapse
|
5
|
Gonzalez-Covarrubias V, Martínez-Martínez E, del Bosque-Plata L. The Potential of Metabolomics in Biomedical Applications. Metabolites 2022; 12:metabo12020194. [PMID: 35208267 PMCID: PMC8880031 DOI: 10.3390/metabo12020194] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022] Open
Abstract
The metabolome offers a dynamic, comprehensive, and precise picture of the phenotype. Current high-throughput technologies have allowed the discovery of relevant metabolites that characterize a wide variety of human phenotypes with respect to health, disease, drug monitoring, and even aging. Metabolomics, parallel to genomics, has led to the discovery of biomarkers and has aided in the understanding of a diversity of molecular mechanisms, highlighting its application in precision medicine. This review focuses on the metabolomics that can be applied to improve human health, as well as its trends and impacts in metabolic and neurodegenerative diseases, cancer, longevity, the exposome, liquid biopsy development, and pharmacometabolomics. The identification of distinct metabolomic profiles will help in the discovery and improvement of clinical strategies to treat human disease. In the years to come, metabolomics will become a tool routinely applied to diagnose and monitor health and disease, aging, or drug development. Biomedical applications of metabolomics can already be foreseen to monitor the progression of metabolic diseases, such as obesity and diabetes, using branched-chain amino acids, acylcarnitines, certain phospholipids, and genomics; these can assess disease severity and predict a potential treatment. Future endeavors should focus on determining the applicability and clinical utility of metabolomic-derived markers and their appropriate implementation in large-scale clinical settings.
Collapse
Affiliation(s)
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication and Extracellular Vesicles, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Laura del Bosque-Plata
- Laboratory of Nutrigenetics and Nutrigenomics, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
- Correspondence: ; Tel.: +52-55-53-50-1974
| |
Collapse
|
6
|
Comparison of bacteria disintegration methods and their influence on data analysis in metabolomics. Sci Rep 2021; 11:20859. [PMID: 34675363 PMCID: PMC8531443 DOI: 10.1038/s41598-021-99873-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Metabolomic experiments usually contain many different steps, each of which can strongly influence the obtained results. In this work, metabolic analyses of six bacterial strains were performed in light of three different bacterial cell disintegration methods. Three strains were gram-negative (Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae), and three were gram-positive (Corynebacterium glutamicum, Bacillus cereus, and Enterococcus faecalis). For extraction, the methanol–water extraction method (1:1) was chosen. To compare the efficiency of different cell disintegration methods, sonication, sand mill, and tissue lyser were used. For bacterial extract metabolite analysis, 1H NMR together with univariate and multivariate analyses were applied. The obtained results showed that metabolite concentrations are strongly dependent on the cell lysing methodology used and are different for various bacterial strains. The results clearly show that one of the disruption methods gives the highest concentration for most identified compounds (e. g. sand mill for E. faecalis and tissue lyser for B. cereus). This study indicated that the comparison of samples prepared by different procedures can lead to false or imprecise results, leaving an imprint of the disintegration method. Furthermore, the presented results showed that NMR might be a useful bacterial strain identification and differentiation method. In addition to disintegration method comparison, the metabolic profiles of each elaborated strain were analyzed, and each exhibited its metabolic profile. Some metabolites were identified by the 1H NMR method in only one strain. The results of multivariate data analyses (PCA) show that regardless of the disintegration method used, the strain group can be identified. Presented results can be significant for all types of microbial studies containing the metabolomic targeted and non-targeted analysis.
Collapse
|
7
|
Di Poto C, Tian X, Peng X, Heyman HM, Szesny M, Hess S, Cazares LH. Metabolomic Profiling of Human Urine Samples Using LC-TIMS-QTOF Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2072-2080. [PMID: 34107214 DOI: 10.1021/jasms.0c00467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The identification of metabolites in biological samples is challenging due to their chemical and structural diversity. Ion mobility spectrometry (IMS) separates ionized molecules based on their mobility in a carrier buffer gas giving information about the ionic shape by measuring the rotationally averaged collision cross-section (CCS) value. This orthogonal descriptor, in combination with the m/z, isotopic pattern distribution, and MS/MS spectrum, has the potential to improve the identification of molecular molecules in complex mixtures. Urine metabolomics can reveal metabolic differences, which arise as a result of a specific disease or in response to therapeutic intervention. It is, however, complicated by the presence of metabolic breakdown products derived from a wide range of lifestyle and diet-related byproducts, many of which are poorly characterized. In this study, we explore the use of trapped ion mobility spectrometry (TIMS) via LC parallel accumulation with serial fragmentation (PASEF) for urine metabolomics. A total of 362 urine metabolites were characterized from 80 urine samples collected from healthy volunteers using untargeted metabolomics employing HILIC and RP chromatography. Additionally, three analytes (Trp, Phe, and Tyr) were selected for targeted quantification. Both the untargeted and targeted data was highly reproducible and reported CCS measurements for identified metabolites were robust in the presence of the urine matrix. A comparison of CCS values among different laboratories was also conducted, showing less than 1.3% ΔCCS values across different platforms. This is the first report of a human urine metabolite database compiled with CCS values experimentally acquired using an LC-PASEF TIMS-qTOF platform.
Collapse
Affiliation(s)
- Cristina Di Poto
- Dynamic Omics, Antibody Discovery, and Protein Engineering (ADPE), R&D, AstraZeneca, Gaithersburg, Maryland 20850, United States
| | - Xiang Tian
- Dynamic Omics, Antibody Discovery, and Protein Engineering (ADPE), R&D, AstraZeneca, Gaithersburg, Maryland 20850, United States
| | - Xuejun Peng
- Bruker Scientific LLC, San Jose, California 95134, United States
| | - Heino M Heyman
- Bruker Scientific LLC, Billerica, Massachusetts 01821, United States
| | | | - Sonja Hess
- Dynamic Omics, Antibody Discovery, and Protein Engineering (ADPE), R&D, AstraZeneca, Gaithersburg, Maryland 20850, United States
| | - Lisa H Cazares
- Dynamic Omics, Antibody Discovery, and Protein Engineering (ADPE), R&D, AstraZeneca, Gaithersburg, Maryland 20850, United States
| |
Collapse
|
8
|
Cong W, Schwartz E, Peterson DG. Identification of inhibitors of pinellic acid generation in whole wheat bread. Food Chem 2021; 351:129291. [PMID: 33639427 DOI: 10.1016/j.foodchem.2021.129291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Bitterness is a common aversive flavor attribute of foods associated with low consumer acceptance. Untargeted LC-MS flavoromic profiling was utilized to identify endogenous compounds that influence the generation of the bitter compound 9,12,13-trihydroxy-trans-10-octadecenoic acid (pinellic acid) during bread making. A diverse sample set of wheat germplasm was chemically profiled. The corresponding pinellic acid concentrations after dough formation were modeled by orthogonal partial least squares (OPLS) with good fit (R2Y = 0.8) and predictive ability (Q2 = 0.6). The most predictive feature (negatively correlated), postulated to interfere with the biosynthetic pathway, was identified as schaftoside, an apigenin di-C-glycoside. Recombination experiments involving the addition of schaftoside to flour prior to breadmaking resulted in a 26% decrease in pinellic acid formation and significantly lower perceived bitterness intensity in whole wheat bread. This work provides novel understanding of bitter generation pathways in wheat products and new strategies to improve flavor profiles and consumer acceptability.
Collapse
Affiliation(s)
- Wen Cong
- Department of Food Science and Technology, 317 Parker Food Science & Technology Building, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210, United States
| | - Eric Schwartz
- Department of Food Science and Technology, 317 Parker Food Science & Technology Building, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210, United States
| | - Devin G Peterson
- Department of Food Science and Technology, 317 Parker Food Science & Technology Building, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210, United States.
| |
Collapse
|
9
|
Yan J, Zhu W, Wang D, Teng M, Yan S, Zhou Z. Different effects of α-endosulfan, β-endosulfan, and endosulfan sulfate on sex hormone levels, metabolic profile and oxidative stress in adult mice testes. ENVIRONMENTAL RESEARCH 2019; 169:315-325. [PMID: 30502743 DOI: 10.1016/j.envres.2018.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
In the environment, endosulfan persists in forms of two isomers (α and β) and a toxic metabolite, endosulfan sulfate. The toxicity of endosulfan on various mammalian tissues has been investigated, but whether the different isomers and metabolites of endosulfans affect mammalian reproductive function remains unclear. This study is aimed to elucidate the different toxicological effects of α-endosulfan, β-endosulfan, and endosulfan sulfate on adult mice testes. We found that the three endosulfans (α endosulfan, β endosulfan and endosulfan sulfate) altered serum sex steroid hormone levels, and changed expression of steroidogenesis genes. By comparing results of 1H-NMR and LC-MS/MS metabolomics between samples treated with different endosulfans, we found that endosulfans changed levels of metabolites involved in energy metabolism and oxidative stress, and these were associated with the imbalance of sex sterol hormone synthesis. Moreover, endosulfan isomers and sulfate metabolite treatment disrupted the mice testicular antioxidant systems and caused an increase in lipid peroxidation. Interestingly, the three endosulfans tested in this study each yielded different effects on serum sex hormone levels and testicular metabolic profiles in the adult mice. Beta-endosulfan exposure caused the strongest disturbance in the testes compared to the other endosulfans, with significantly higher testosterone levels and more pronounced changes to endogenous metabolites. Taken together, we identified the different effects of endosulfans on the testis by exposing mice to α endosulfan, β endosulfan and endosulfan sulfate, and we found that changes in sex sterol hormone levels induced by treatment with endosulfans were correlated to changes in endogenous metabolites. These findings provide new insight into mechanism of endosulfan-induced testicular toxicity.
Collapse
Affiliation(s)
- Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Sen Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Relationship between Malignant Brain Tumors and Values of Homocysteine, Folic Acid and Vitamin B12. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [DOI: 10.2478/sjecr-2018-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. Homocysteine (Hcy) has a detrimental influence on human neurons, considering that human GBM cells undergo cell death already at D,L-Hcy concentrations in culture medium of 50 μM. Th is data demonstrate that Hcy is a potent gliotoxic agent capable of inducing the death of human glial cells already at concentrations reached in brain during hyperhomocysteinemia. The one retrospective study found that the serum vitamin B12 level can be used to predict survival time in metastatic cancer patients including neurological cancer. Cancer risk increases with elevated vitamin B12 level, mostly within the first year of the follow-up period, suggesting that vitamin B12 level could be used as a cancer diagnostic marker. In addition, the relationship between elevated vitamin B12 level and poor cancer survival time has been reported. Previous investigation suggests that the folate supplementation could be used as an adjuvant in antiglioma therapy to limit the low DNA methylation level because this confers a poor prognosis in glioblastoma multiforme patients. Taking into account all presented data, it can be concluded that effect of homocystein, folic acid and vitamin B12 on formation, development and outcome of treatment in patients with carcinoma is very intriguing question, whose response requires additional both experimental and clinical research. There lack of data in the literature on the incidence of elevated levels of Hcy in the blood, as well as the disorders of folic acid and vitamin B12, at malignant tumors of the brain.
Collapse
|
11
|
Crooks DR, Fan TWM, Linehan WM. Metabolic Labeling of Cultured Mammalian Cells for Stable Isotope-Resolved Metabolomics: Practical Aspects of Tissue Culture and Sample Extraction. Methods Mol Biol 2019; 1928:1-27. [PMID: 30725447 PMCID: PMC8195444 DOI: 10.1007/978-1-4939-9027-6_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Stable isotope-resolved metabolomics (SIRM) methods are used increasingly by cancer researchers to probe metabolic pathways and identify vulnerabilities in cancer cells. Analytical and computational advances are being made constantly, but tissue culture and sample extraction procedures are often variable and not elaborated in the literature. This chapter discusses basic aspects of tissue culture practices as they relate to the use of stable isotope tracers and provides a detailed metabolic labeling and metabolite extraction procedure designed to maximize the amount of information that can be obtained from a single tracer experiment.
Collapse
Affiliation(s)
- Daniel R Crooks
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Teresa W-M Fan
- Department of Toxicology and Cancer Biology, Center for Environmental and Systems Biochemistry, Markey Cancer Center, and University of Kentucky, Lexington, KY, USA.
| | - W Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Lewis KN, Rubinstein ND, Buffenstein R. A window into extreme longevity; the circulating metabolomic signature of the naked mole-rat, a mammal that shows negligible senescence. GeroScience 2018; 40:105-121. [PMID: 29679203 PMCID: PMC5964061 DOI: 10.1007/s11357-018-0014-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/15/2018] [Indexed: 12/23/2022] Open
Abstract
Mouse-sized naked mole-rats (Heterocephalus glaber), unlike other mammals, do not conform to Gompertzian laws of age-related mortality; adults show no age-related change in mortality risk. Moreover, we observe negligible hallmarks of aging with well-maintained physiological and molecular functions, commonly altered with age in other species. We questioned whether naked mole-rats, living an order of magnitude longer than laboratory mice, exhibit different plasma metabolite profiles, which could then highlight novel mechanisms or targets involved in disease and longevity. Using a comprehensive, unbiased metabolomics screen, we observe striking inter-species differences in amino acid, peptide, and lipid metabolites. Low circulating levels of specific amino acids, particularly those linked to the methionine pathway, resemble those observed during the fasting period at late torpor in hibernating ground squirrels and those seen in longer-lived methionine-restricted rats. These data also concur with metabolome reports on long-lived mutant mice, including the Ames dwarf mice and calorically restricted mice, as well as fruit flies, and even show similarities to circulating metabolite differences observed in young human adults when compared to older humans. During evolution, some of these beneficial nutrient/stress response pathways may have been positively selected in the naked mole-rat. These observations suggest that interventions that modify the aging metabolomic profile to a more youthful one may enable people to lead healthier and longer lives.
Collapse
Affiliation(s)
- Kaitlyn N Lewis
- Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, 94080, USA
| | - Nimrod D Rubinstein
- Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, 94080, USA
| | | |
Collapse
|
13
|
Sims C, Salliant N, Worth AJ, Parry R, Mesaros C, Blair IA, Snyder NW. Metabolic tracing analysis reveals substrate-specific metabolic deficits in platelet storage lesion. Transfusion 2017; 57:2683-2689. [PMID: 28836286 DOI: 10.1111/trf.14292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/09/2017] [Accepted: 06/13/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Storage of platelets (PLTs) results in a progressive defect termed PLT storage lesion (PSL). The PSL is characterized by poor PLT quality on a variety of assays. Metabolic defects are thought to underlie the PSL; thus this study was designed to quantitatively probe specific metabolic pathways over PLT storage. STUDY DESIGN AND METHODS Relative incorporation of stable isotope-labeled substrates was quantified by isotopologue analysis of key acyl-coenzyme A (CoA) thioester products for fresh, viable (after collection, Days 2-5), and expired PLTs (after Day 5). We examined the incorporation of acetate, glucose, and palmitate into acetyl- and succinyl-CoA via liquid chromatography-tandem mass spectrometry. RESULTS Storage-related defects in the incorporation of acetyl-CoA derived from acetate and palmitate were observed. Carbon derived from palmitate and acetate in succinyl-CoA was reduced over storage time. Glucose incorporation into succinyl-CoA increased in viable PLTs and then decreased in expired PLTs. Carbon derived from octanoate and pyruvate remained partially able to incorporate into acetyl- and succinyl-CoA in expired PLTs, with high variability in pyruvate incorporation. CONCLUSION Isotopologue analysis is useful in probing substrate specific defects in the PSL.
Collapse
Affiliation(s)
- Carrie Sims
- Division of Traumatology, Surgical Critical Care and Emergency Surgery
| | - Noelle Salliant
- Division of Traumatology, Surgical Critical Care and Emergency Surgery
| | - Andrew J Worth
- Department of Systems Pharmacology and Translational Therapeutics
| | - Robert Parry
- Department of Systems Pharmacology and Translational Therapeutics
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics.,Penn SRP Center and Center of Excellence in Environmental Toxicology, University of Pennsylvania Perelman School of Medicine
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics.,Penn SRP Center and Center of Excellence in Environmental Toxicology, University of Pennsylvania Perelman School of Medicine
| | - Nathaniel W Snyder
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Duft RG, Castro A, Chacon-Mikahil MPT, Cavaglieri CR. Metabolomics and Exercise: possibilities and perspectives. MOTRIZ: REVISTA DE EDUCACAO FISICA 2017. [DOI: 10.1590/s1980-6574201700020010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Sun H, Wang B, Wang J, Liu H, Liu J. Biomarker and pathway analyses of urine metabolomics in dairy cows when corn stover replaces alfalfa hay. J Anim Sci Biotechnol 2016; 7:49. [PMID: 27583137 PMCID: PMC5006375 DOI: 10.1186/s40104-016-0107-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 08/10/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Alfalfa hay and corn stover are different type of forages which can significantly impact a cow's lactation performance, but the underlying metabolic mechanism has been poorly studied. We used biomarker and pathway analyses to characterize related biomarkers and pathways based on urine metabolomics data from different forage treatments. Urine was collected from 16 multiparous Holstein dairy cows fed alfalfa hay (AH, high-quality forage, n = 8) and corn stover (CS, low-quality forage, n = 8) respectively. Gas chromatography-time of flight/mass spectrometry (GC-TOF/MS) was performed to identify metabolites in urine and the metaboanalyst online platform was used to do biomarker and pathway analysis. RESULTS Hippuric acid (HUA) and N-methyl-glutamic (NML-Glu) indicated the most significant difference between the two diets, when statistically validated by biomarker analysis. HUA was also validated by standard compound quantitative method and showed significant higher concentration in CS group than AH group (2.8282 vs. 0.0005 mg/mL; P < 0.01). The significant negative correlation between milk yield and HUA (R(2) = 0.459; P < 0.01) and significant positive correlation between milk yield and NML-Glu (R(2) = 0.652; P < 0.01) were characterized. The pathway analysis revealed that these different metabolites were involved in 17 pathways including 7 influential pathways (pathway impact value > 0): Tyr metabolism, starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism, galactose metabolism, Phe, Tyr and Try biosynthesis, purine metabolism, and glycerolipid metabolism. Based on the metabolome view map, the Phe, Tyr and Try biosynthesis pathway exhibited the highest impact value (0.50), and the Holm-Bonferroni multiple testing-based analysis revealed the most significant difference in the Tyr metabolism pathway (Holm P = 0.048). CONCLUSIONS The identified HUA and NML-Glu may serve as potential biomarkers for discriminating CS and AH diets and could be used as candidates for milk yield related mechanistic investigations. Integrated network pathways associated with related metabolites provide a helpful perspective for discovering the effectiveness of forage quality in lactation performance and provides novel insights into developing strategies for better utilization of CS and other low-quality forage in China.
Collapse
Affiliation(s)
- Huizeng Sun
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China
| | - Bing Wang
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China
| | - Jiakun Wang
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China
| | - Hongyun Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China
| | - Jianxin Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China
| |
Collapse
|
16
|
Corbin LJ, Timpson NJ. Body mass index: Has epidemiology started to break down causal contributions to health and disease? Obesity (Silver Spring) 2016; 24:1630-8. [PMID: 27460712 PMCID: PMC5972005 DOI: 10.1002/oby.21554] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To review progress in understanding the methods and results concerning the causal contribution of body mass index (BMI) to health and disease. METHODS In the context of conventional evidence focused on the relationship between BMI and health, this review considers current literature on the common, population-based, genetic contribution to BMI and how this has fed into the developing field of applied epidemiology. RESULTS Technological and analytical developments have driven considerable success in identifying genetic variants relevant to BMI. This has enabled the implementation of Mendelian randomization to address questions of causality. The product of this work has been the implication of BMI as a causal agent in a host of health outcomes. Further breakdown of causal pathways by integration with other "omics" technologies promises to deliver additional benefit. CONCLUSIONS Gaps remain in our understanding of BMI as a risk factor for health and disease, and while promising, applied genetic epidemiology should be considered alongside alternative methods for assessing the impact of BMI on health. Potential limitations, relating to inappropriate or nonspecific measures of obesity and the improper use of genetic instruments, will need to be explored and incorporated into future research aiming to dissect BMI as a risk factor.
Collapse
Affiliation(s)
| | - Nicholas J. Timpson
- corresponding author: CONTACT INFO: MRC Integrative Epidemiology Unit, Oakfield House, Oakfield Grove, Bristol, BS8 2BN. .
| |
Collapse
|
17
|
Guo R, Tang Q, Ye Y, Lu X, Chen F, Dai X, Yan Y, Liao L. Effects of gender on ketamine-induced conditioned placed preference and urine metabonomics. Regul Toxicol Pharmacol 2016; 77:263-74. [DOI: 10.1016/j.yrtph.2016.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/10/2016] [Accepted: 03/12/2016] [Indexed: 10/22/2022]
|
18
|
Stable isotopes and LC-MS for monitoring metabolic disturbances in Friedreich's ataxia platelets. Bioanalysis 2016; 7:1843-55. [PMID: 26295986 DOI: 10.4155/bio.15.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Friedreich's ataxia (FRDA) is an autosomal recessive disease with metabolic abnormalities that have been proposed to play an important role in the resulting neurodegeneration and cardiomyopathy. The inability to access the highly affected neuronal and cardiac tissues has hampered metabolic evaluation and biomarker development. METHODS Employment of a LC-MS-based method to determine whether platelets isolated from patients with FRDA exhibit differentiable metabolism compared with healthy controls. RESULTS Isotopologue analysis showed a marked decrease in glucose incorporation with a concomitant increase in palmitate-derived acyl-CoA thioesters in FRDA platelets compared with controls. CONCLUSION Our findings demonstrate that platelets can be used as a surrogate tissue for in vivo biomarker studies to monitor new therapeutic approaches for the treatment of FRDA.
Collapse
|
19
|
Palanichamy K, Thirumoorthy K, Kanji S, Gordon N, Singh R, Jacob JR, Sebastian N, Litzenberg KT, Patel D, Bassett E, Ramasubramanian B, Lautenschlaeger T, Fischer SM, Ray-Chaudhury A, Chakravarti A. Methionine and Kynurenine Activate Oncogenic Kinases in Glioblastoma, and Methionine Deprivation Compromises Proliferation. Clin Cancer Res 2016; 22:3513-23. [PMID: 26936918 DOI: 10.1158/1078-0432.ccr-15-2308] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/16/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE We employed a metabolomics-based approach with the goal to better understand the molecular signatures of glioblastoma cells and tissues, with an aim toward identifying potential targetable biomarkers for developing more effective and novel therapies. EXPERIMENTAL DESIGN We used liquid chromatography coupled with mass spectrometry (LC-MS/Q-TOF and LC-MS/QQQ) for the discovery and validation of metabolites from primary and established glioblastoma cells, glioblastoma tissues, and normal human astrocytes. RESULTS We identified tryptophan, methionine, kynurenine, and 5-methylthioadenosine as differentially regulated metabolites (DRM) in glioblastoma cells compared with normal human astrocytes (NHAs). Unlike NHAs, glioblastoma cells depend on dietary methionine for proliferation, colony formation, survival, and to maintain a deregulated methylome (SAM:SAH ratio). In methylthioadenosine phosphorylase (MTAP)-deficient glioblastoma cells, expression of MTAP transgene did not alter methionine dependency, but compromised tumor growth in vivo We discovered that a lack of the kynurenine-metabolizing enzymes kynurenine monooxygenase and/or kynureninase promotes the accumulation of kynurenine, which triggers immune evasion in glioblastoma cells. In silico analysis of the identified DRMs mapped the activation of key oncogenic kinases that promotes tumorigenesis in glioblastoma. We validated this result by demonstrating that the exogenous addition of DRMs to glioblastoma cells in vitro results in oncogene activation as well as the simultaneous downregulation of Ser/Thr phosphatase PP2A. CONCLUSIONS We have connected a four-metabolite signature, implicated in the methionine and kynurenine pathways, to the promotion and maintenance of glioblastoma. Together, our data suggest that these metabolites and their respective metabolic pathways serve as potential therapeutic targets for glioblastoma. Clin Cancer Res; 22(14); 3513-23. ©2016 AACR.
Collapse
Affiliation(s)
- Kamalakannan Palanichamy
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio.
| | - Krishnan Thirumoorthy
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio. Environmental Analytical Chemistry Division, School of Advanced Sciences, VIT University, Vellore, India
| | - Suman Kanji
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio
| | - Nicolaus Gordon
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio
| | - Rajbir Singh
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio
| | - John R Jacob
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio
| | - Nikhil Sebastian
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio
| | - Kevin T Litzenberg
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio
| | - Disha Patel
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio
| | - Emily Bassett
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio
| | - Brinda Ramasubramanian
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio
| | - Tim Lautenschlaeger
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio
| | - Steven M Fischer
- Segment Marketing/Life Science Research, Agilent Technologies, Santa Clara, California
| | - Abhik Ray-Chaudhury
- Neuropathology Unit, Surgical Neurology Branch/NINDS, NIH, Bethesda, Maryland
| | - Arnab Chakravarti
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
20
|
Voge NV, Perera R, Mahapatra S, Gresh L, Balmaseda A, Loroño-Pino MA, Hopf-Jannasch AS, Belisle JT, Harris E, Blair CD, Beaty BJ. Metabolomics-Based Discovery of Small Molecule Biomarkers in Serum Associated with Dengue Virus Infections and Disease Outcomes. PLoS Negl Trop Dis 2016; 10:e0004449. [PMID: 26913918 PMCID: PMC4768770 DOI: 10.1371/journal.pntd.0004449] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/20/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Epidemic dengue fever (DF) and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) are overwhelming public health capacity for diagnosis and clinical care of dengue patients throughout the tropical and subtropical world. The ability to predict severe dengue disease outcomes (DHF/DSS) using acute phase clinical specimens would be of enormous value to physicians and health care workers for appropriate triaging of patients for clinical management. Advances in the field of metabolomics and analytic software provide new opportunities to identify host small molecule biomarkers (SMBs) in acute phase clinical specimens that differentiate dengue disease outcomes. METHODOLOGY/PRINCIPAL FINDINGS Exploratory metabolomic studies were conducted to characterize the serum metabolome of patients who experienced different dengue disease outcomes. Serum samples from dengue patients from Nicaragua and Mexico were retrospectively obtained, and hydrophilic interaction liquid chromatography (HILIC)-mass spectrometry (MS) identified small molecule metabolites that were associated with and statistically differentiated DHF/DSS, DF, and non-dengue (ND) diagnosis groups. In the Nicaraguan samples, 191 metabolites differentiated DF from ND outcomes and 83 differentiated DHF/DSS and DF outcomes. In the Mexican samples, 306 metabolites differentiated DF from ND and 37 differentiated DHF/DSS and DF outcomes. The structural identities of 13 metabolites were confirmed using tandem mass spectrometry (MS/MS). Metabolomic analysis of serum samples from patients diagnosed as DF who progressed to DHF/DSS identified 65 metabolites that predicted dengue disease outcomes. Differential perturbation of the serum metabolome was demonstrated following infection with different DENV serotypes and following primary and secondary DENV infections. CONCLUSIONS/SIGNIFICANCE These results provide proof-of-concept that a metabolomics approach can be used to identify metabolites or SMBs in serum specimens that are associated with distinct DENV infections and disease outcomes. The differentiating metabolites also provide insights into metabolic pathways and pathogenic and immunologic mechanisms associated with dengue disease severity.
Collapse
Affiliation(s)
- Natalia V. Voge
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Rushika Perera
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sebabrata Mahapatra
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Lionel Gresh
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Angel Balmaseda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - María A. Loroño-Pino
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Amber S. Hopf-Jannasch
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - John T. Belisle
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Carol D. Blair
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Barry J. Beaty
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
21
|
Kalinina EA, Malushko AV, Zubareva TM, Sitkin SI, Dedul AG, Sheveleva TS, Gamzatova ZH, Bejenar VF, Komlichenko EV. Metabolomics: the perspective search of methods to overcome infertility. Gynecol Endocrinol 2015; 31:79-82. [DOI: 10.3109/09513590.2015.1086515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Burgess S, Timpson NJ, Ebrahim S, Davey Smith G. Mendelian randomization: where are we now and where are we going? Int J Epidemiol 2015; 44:379-88. [DOI: 10.1093/ije/dyv108] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
23
|
Jin Z, Bian F, Tomcik K, Kelleher JK, Zhang GF, Brunengraber H. Compartmentation of Metabolism of the C12-, C9-, and C5-n-dicarboxylates in Rat Liver, Investigated by Mass Isotopomer Analysis: ANAPLEROSIS FROM DODECANEDIOATE. J Biol Chem 2015; 290:18671-7. [PMID: 26070565 DOI: 10.1074/jbc.m115.651737] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Indexed: 12/14/2022] Open
Abstract
We investigated the compartmentation of the catabolism of dodecanedioate (DODA), azelate, and glutarate in perfused rat livers, using a combination of metabolomics and mass isotopomer analyses. Livers were perfused with recirculating or nonrecirculating buffer containing one fully (13)C-labeled dicarboxylate. Information on the peroxisomal versus mitochondrial catabolism was gathered from the labeling patterns of acetyl-CoA proxies, i.e. total acetyl-CoA, the acetyl moiety of citrate, C-1 + 2 of β-hydroxybutyrate, malonyl-CoA, and acetylcarnitine. Additional information was obtained from the labeling patterns of citric acid cycle intermediates and related compounds. The data characterize the partial oxidation of DODA and azelate in peroxisomes, with terminal oxidation in mitochondria. We did not find evidence of peroxisomal oxidation of glutarate. Unexpectedly, DODA contributes a substantial fraction to anaplerosis of the citric acid cycle. This opens the possibility to use water-soluble DODA in nutritional or pharmacological anaplerotic therapy when other anaplerotic substrates are impractical or contraindicated, e.g. in propionic acidemia and methylmalonic acidemia.
Collapse
Affiliation(s)
- Zhicheng Jin
- From the Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106 and
| | - Fang Bian
- From the Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106 and
| | - Kristyen Tomcik
- From the Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106 and
| | - Joanne K Kelleher
- the Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Guo-Fang Zhang
- From the Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106 and
| | - Henri Brunengraber
- From the Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106 and
| |
Collapse
|
24
|
Rofiee MS, Yusof MIM, Abdul Hisam EE, Bannur Z, Zakaria ZA, Somchit MN, Teh LK, Salleh MZ. Isolating the metabolic pathways involved in the hepatoprotective effect of Muntingia calabura against CCl4-induced liver injury using LC/MS Q-TOF. JOURNAL OF ETHNOPHARMACOLOGY 2015; 166:109-18. [PMID: 25792013 DOI: 10.1016/j.jep.2015.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/05/2015] [Accepted: 03/08/2015] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Muntingia calabura L. has been used in Southeast Asia and tropical America as antipyretic, antiseptic, analgesic, antispasmodic and liver tonic. This study aims to determine the acute toxicity and the metabolic pathways involved in the hepatoprotective mechanism of M. calabura. MATERIALS AND METHODS CCl4-induced hepatotoxic rat model was developed and a dose dependent effect of M. calabura was conducted. Body weight, food and water consumption were measured every day and rats were sacrificed to collect the serum samples at the end of the 10-days treatment. Liquid chromatography-mass spectrometry quadrapole time of flight (LC/MS-QTOF) combined with principal component analysis (PCA) were used to determine differentially expressed metabolites due to treatment with CCl4 and M. calabura extracts. Metabolomics Pathway Analysis (MetPA) was used for analysis and visualization of pathways involved. RESULTS Body weight, food and water consumption were significantly decreased and histopathological study revealed steatosis in CCl4-induced rats. PCA score plots show distinct separation in the metabolite profiles of the normal group, CCl4-treated group and extract of M. calabura (MCME) pre-treated groups. Biomarkers network reconstruction using MetPA had identified 2 major pathways which were involved in the protective mechanism of MCME. These include the (i) biosynthesis of the primary bile acid, (ii) metabolism of arachidonic acid. CONCLUSION This study has successfully isolated 2 major pathways involved in the hepatoprotecive effect of MCME against CCl4-induced liver injury using the LC/MS Q-TOF metabolomics approach. The involvement of archidonic acid and purine metabolism in hepatoprotection has not been reported previously and may provide new therapeutic targets and/or options for the treatment of liver injury.
Collapse
Affiliation(s)
- M S Rofiee
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, 42300 Selangor, Malaysia
| | - M I M Yusof
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, 42300 Selangor, Malaysia
| | - E E Abdul Hisam
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, 42300 Selangor, Malaysia
| | - Z Bannur
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, 42300 Selangor, Malaysia
| | - Z A Zakaria
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, 42300 Selangor, Malaysia; Department of Biomedical Science, Faculty of Medicine and Health Sciences,Universiti Putra Malaysia UPM, 43400 Serdang, Selangor, Malaysia
| | - M N Somchit
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, 42300 Selangor, Malaysia; Department of Biomedical Science, Faculty of Medicine and Health Sciences,Universiti Putra Malaysia UPM, 43400 Serdang, Selangor, Malaysia
| | - L K Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, 42300 Selangor, Malaysia; Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, 42300 Selangor, Malaysia.
| | - M Z Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, 42300 Selangor, Malaysia; Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, 42300 Selangor, Malaysia.
| |
Collapse
|
25
|
Wei F, Ito K, Sakata K, Date Y, Kikuchi J. Pretreatment and Integrated Analysis of Spectral Data Reveal Seaweed Similarities Based on Chemical Diversity. Anal Chem 2015; 87:2819-26. [DOI: 10.1021/ac504211n] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Feifei Wei
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 235-0045, Japan
| | - Kengo Ito
- Graduate
School of Medical Life Science, Yokohama City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kenji Sakata
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 235-0045, Japan
| | - Yasuhiro Date
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 235-0045, Japan
- Graduate
School of Medical Life Science, Yokohama City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 235-0045, Japan
- Graduate
School of Medical Life Science, Yokohama City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Biomass
Engineering Research Program, RIKEN Research Cluster for Innovation, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate
School of Bioagricultural Sciences and School of Agricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
26
|
Phosphoryl transfer from α-d-glucose 1-phosphate catalyzed by Escherichia coli sugar-phosphate phosphatases of two protein superfamily types. Appl Environ Microbiol 2014; 81:1559-72. [PMID: 25527541 DOI: 10.1128/aem.03314-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Cori ester α-d-glucose 1-phosphate (αGlc 1-P) is a high-energy intermediate of cellular carbohydrate metabolism. Its glycosidic phosphomonoester moiety primes αGlc 1-P for flexible exploitation in glucosyl and phosphoryl transfer reactions. Two structurally and mechanistically distinct sugar-phosphate phosphatases from Escherichia coli were characterized in this study for utilization of αGlc 1-P as a phosphoryl donor substrate. The agp gene encodes a periplasmic αGlc 1-P phosphatase (Agp) belonging to the histidine acid phosphatase family. Had13 is from the haloacid dehydrogenase-like phosphatase family. Cytoplasmic expression of Agp (in E. coli Origami B) gave a functional enzyme preparation (kcat for phosphoryl transfer from αGlc 1-P to water, 40 s(-1)) that was shown by mass spectrometry to exhibit no free cysteines and the native intramolecular disulfide bond between Cys(189) and Cys(195). Enzymatic phosphoryl transfer from αGlc 1-P to water in H2 (18)O solvent proceeded with complete (18)O label incorporation into the phosphate released, consistent with catalytic reaction through O-1-P, but not C-1-O, bond cleavage. Hydrolase activity of both enzymes was not restricted to a glycosidic phosphomonoester substrate, and d-glucose 6-phosphate was converted with a kcat similar to that of αGlc 1-P. By examining phosphoryl transfer from αGlc 1-P to an acceptor substrate other than water (d-fructose or d-glucose), we discovered that Agp exhibited pronounced synthetic activity, unlike Had13, which utilized αGlc 1-P mainly for phosphoryl transfer to water. By applying d-fructose in 10-fold molar excess over αGlc 1-P (20 mM), enzymatic conversion furnished d-fructose 1-phosphate as the main product in a 55% overall yield. Agp is a promising biocatalyst for use in transphosphorylation from αGlc 1-P.
Collapse
|
27
|
Snyder NW, Basu SS, Worth AJ, Mesaros C, Blair IA. Metabolism of propionic acid to a novel acyl-coenzyme A thioester by mammalian cell lines and platelets. J Lipid Res 2014; 56:142-50. [PMID: 25424005 DOI: 10.1194/jlr.m055384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Metabolism of propionate involves the activated acyl-thioester propionyl-CoA intermediate. We employed LC-MS/MS, LC-selected reaction monitoring/MS, and LC-high-resolution MS to investigate metabolism of propionate to acyl-CoA intermediates. We discovered that propionyl-CoA can serve as a precursor to the direct formation of a new six-carbon mono-unsaturated acyl-CoA. Time course and dose-response studies in human hepatocellular carcinoma HepG2 cells demonstrated that the six-carbon mono-unsaturated acyl-CoA was propionate-dependent and underwent further metabolism over time. Studies utilizing [(13)C1]propionate and [(13)C3]propionate suggested a mechanism of fatty acid synthesis, which maintained all six-carbon atoms from two propionate molecules. Metabolism of 2,2-[(2)H2]propionate to the new six-carbon mono-unsaturated acyl-CoA resulted in the complete loss of two deuterium atoms, indicating modification at C2 of the propionyl moiety. Coelution experiments and isotopic tracer studies confirmed that the new acyl-CoA was trans-2-methyl-2-pentenoyl-CoA. Acyl-CoA profiles following treatment of HepG2 cells with mono-unsaturated six-carbon fatty acids also supported this conclusion. Similar results were obtained with human platelets, mouse hepatocellular carcinoma Hepa1c1c7 cells, human bronchoalveolar carcinoma H358 cells, and human colon adenocarcinoma LoVo cells. Interestingly, trans-2-methyl-2-pentenoyl-CoA corresponds to a previously described acylcarnitine tentatively described in patients with propionic and methylmalonic acidemia. We have proposed a mechanism for this metabolic route consistent with all of the above findings.
Collapse
Affiliation(s)
- Nathaniel W Snyder
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104 A. J. Drexel Autism Institute, Drexel University, Philadelphia, PA 19104
| | - Sankha S Basu
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| | - Andrew J Worth
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
28
|
Worth AJ, Basu SS, Snyder NW, Mesaros C, Blair IA. Inhibition of neuronal cell mitochondrial complex I with rotenone increases lipid β-oxidation, supporting acetyl-coenzyme A levels. J Biol Chem 2014; 289:26895-26903. [PMID: 25122772 DOI: 10.1074/jbc.m114.591354] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rotenone is a naturally occurring mitochondrial complex I inhibitor with a known association with parkinsonian phenotypes in both human populations and rodent models. Despite these findings, a clear mechanistic link between rotenone exposure and neuronal damage remains to be determined. Here, we report alterations to lipid metabolism in SH-SY5Y neuroblastoma cells exposed to rotenone. The absolute levels of acetyl-CoA were found to be maintained despite a significant decrease in glucose-derived acetyl-CoA. Furthermore, palmitoyl-CoA levels were maintained, whereas the levels of many of the medium-chain acyl-CoA species were significantly reduced. Additionally, using isotopologue analysis, we found that β-oxidation of fatty acids with varying chain lengths helped maintain acetyl-CoA levels. Rotenone also induced increased glutamine utilization for lipogenesis, in part through reductive carboxylation, as has been found previously in other cell types. Finally, palmitoylcarnitine levels were increased in response to rotenone, indicating an increase in fatty acid import. Taken together, these findings show that alterations to lipid and glutamine metabolism play an important compensatory role in response to complex I inhibition by rotenone.
Collapse
Affiliation(s)
- Andrew J Worth
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160
| | - Sankha S Basu
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160
| | - Nathaniel W Snyder
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160
| | - Clementina Mesaros
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160
| | - Ian A Blair
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160.
| |
Collapse
|
29
|
Prosser GA, Larrouy-Maumus G, de Carvalho LPS. Metabolomic strategies for the identification of new enzyme functions and metabolic pathways. EMBO Rep 2014; 15:657-69. [PMID: 24829223 PMCID: PMC4197876 DOI: 10.15252/embr.201338283] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recent technological advances in accurate mass spectrometry and data analysis have revolutionized
metabolomics experimentation. Activity-based and global metabolomic profiling methods allow
simultaneous and rapid screening of hundreds of metabolites from a variety of chemical classes,
making them useful tools for the discovery of novel enzymatic activities and metabolic pathways. By
using the metabolome of the relevant organism or close species, these methods capitalize on
biological relevance, avoiding the assignment of artificial and non-physiological functions. This
review discusses state-of-the-art metabolomic approaches and highlights recent examples of their use
for enzyme annotation, discovery of new metabolic pathways, and gene assignment of orphan metabolic
activities across diverse biological sources.
Collapse
Affiliation(s)
- Gareth A Prosser
- Mycobacterial Research Division, MRC National Institute for Medical Research, London, UK
| | - Gerald Larrouy-Maumus
- Mycobacterial Research Division, MRC National Institute for Medical Research, London, UK
| | | |
Collapse
|
30
|
Asakura T, Date Y, Kikuchi J. Comparative Analysis of Chemical and Microbial Profiles in Estuarine Sediments Sampled from Kanto and Tohoku Regions in Japan. Anal Chem 2014; 86:5425-32. [DOI: 10.1021/ac5005037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Taiga Asakura
- Graduate School
of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Date
- Graduate School
of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jun Kikuchi
- Graduate School
of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Biomass Engineering Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate School
of Bioagricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-0810, Japan
| |
Collapse
|
31
|
Peng J, Zeng J, Cai B, Yang H, Cohen MJ, Chen W, Sun MW, Lu CD, Jiang H. Establishment of quantitative severity evaluation model for spinal cord injury by metabolomic fingerprinting. PLoS One 2014; 9:e93736. [PMID: 24727691 PMCID: PMC3984092 DOI: 10.1371/journal.pone.0093736] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/06/2014] [Indexed: 11/18/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating event with a limited hope for recovery and represents an enormous public health issue. It is crucial to understand the disturbances in the metabolic network after SCI to identify injury mechanisms and opportunities for treatment intervention. Through plasma 1H-nuclear magnetic resonance (NMR) screening, we identified 15 metabolites that made up an "Eigen-metabolome" capable of distinguishing rats with severe SCI from healthy control rats. Forty enzymes regulated these 15 metabolites in the metabolic network. We also found that 16 metabolites regulated by 130 enzymes in the metabolic network impacted neurobehavioral recovery. Using the Eigen-metabolome, we established a linear discrimination model to cluster rats with severe and mild SCI and control rats into separate groups and identify the interactive relationships between metabolic biomarkers in the global metabolic network. We identified 10 clusters in the global metabolic network and defined them as distinct metabolic disturbance domains of SCI. Metabolic paths such as retinal, glycerophospholipid, arachidonic acid metabolism; NAD-NADPH conversion process, tyrosine metabolism, and cadaverine and putrescine metabolism were included. In summary, we presented a novel interdisciplinary method that integrates metabolomics and global metabolic network analysis to visualize metabolic network disturbances after SCI. Our study demonstrated the systems biological study paradigm that integration of 1H-NMR, metabolomics, and global metabolic network analysis is useful to visualize complex metabolic disturbances after severe SCI. Furthermore, our findings may provide a new quantitative injury severity evaluation model for clinical use.
Collapse
Affiliation(s)
- Jin Peng
- Program for Computational Biology, Systems Biology, and Translational Research, Metabolomics and Multidisciplinary Laboratory for Trauma Research, Institute for Disaster and Emergency Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan Province, China
- Department of Surgery, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| | - Jun Zeng
- Program for Computational Biology, Systems Biology, and Translational Research, Metabolomics and Multidisciplinary Laboratory for Trauma Research, Institute for Disaster and Emergency Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan Province, China
- Department of Trauma Surgery, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan Province, China
| | - Bin Cai
- Program for Computational Biology, Systems Biology, and Translational Research, Metabolomics and Multidisciplinary Laboratory for Trauma Research, Institute for Disaster and Emergency Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan Province, China
- Department of Trauma Surgery, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan Province, China
| | - Hao Yang
- Program for Computational Biology, Systems Biology, and Translational Research, Metabolomics and Multidisciplinary Laboratory for Trauma Research, Institute for Disaster and Emergency Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan Province, China
- Department of Computational Mathematics and Biostatistics, Metabolomics and Multidisciplinary Laboratory for Trauma Research, Institute for Disaster and Emergency Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan Province, China
| | - Mitchell Jay Cohen
- Program for Computational Biology, Systems Biology, and Translational Research, Metabolomics and Multidisciplinary Laboratory for Trauma Research, Institute for Disaster and Emergency Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan Province, China
- Department of Surgery, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| | - Wei Chen
- Program for Computational Biology, Systems Biology, and Translational Research, Metabolomics and Multidisciplinary Laboratory for Trauma Research, Institute for Disaster and Emergency Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan Province, China
- Department of Parenteral and Enteral Nutrition, Peking Union Medical College Hospital, Beijing, China
| | - Ming-Wei Sun
- Department of Trauma Surgery, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan Province, China
| | - Charles Damien Lu
- Program for Computational Biology, Systems Biology, and Translational Research, Metabolomics and Multidisciplinary Laboratory for Trauma Research, Institute for Disaster and Emergency Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan Province, China
| | - Hua Jiang
- Program for Computational Biology, Systems Biology, and Translational Research, Metabolomics and Multidisciplinary Laboratory for Trauma Research, Institute for Disaster and Emergency Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan Province, China
- Department of Trauma Surgery, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan Province, China
- Department of Computational Mathematics and Biostatistics, Metabolomics and Multidisciplinary Laboratory for Trauma Research, Institute for Disaster and Emergency Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan Province, China
| |
Collapse
|
32
|
Ito K, Sakata K, Date Y, Kikuchi J. Integrated analysis of seaweed components during seasonal fluctuation by data mining across heterogeneous chemical measurements with network visualization. Anal Chem 2014; 86:1098-105. [PMID: 24401131 DOI: 10.1021/ac402869b] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biological information is intricately intertwined with several factors. Therefore, comprehensive analytical methods such as integrated data analysis, combining several data measurements, are required. In this study, we describe a method of data preprocessing that can perform comprehensively integrated analysis based on a variety of multimeasurement of organic and inorganic chemical data from Sargassum fusiforme and explore the concealed biological information by statistical analyses with integrated data. Chemical components including polar and semipolar metabolites, minerals, major elemental and isotopic ratio, and thermal decompositional data were measured as environmentally responsive biological data in the seasonal variation. The obtained spectral data of complex chemical components were preprocessed to isolate pure peaks by removing noise and separating overlapping signals using the multivariate curve resolution alternating least-squares method before integrated analyses. By the input of these preprocessed multimeasurement chemical data, principal component analysis and self-organizing maps of integrated data showed changes in the chemical compositions during the mature stage and identified trends in seasonal variation. Correlation network analysis revealed multiple relationships between organic and inorganic components. Moreover, in terms of the relationship between metal group and metabolites, the results of structural equation modeling suggest that the structure of alginic acid changes during the growth of S. fusiforme, which affects its metal binding ability. This integrated analytical approach using a variety of chemical data can be developed for practical applications to obtain new biochemical knowledge including genetic and environmental information.
Collapse
Affiliation(s)
- Kengo Ito
- Graduate School of Medical Life Science, Yokohama City University , 1-7-29 Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
33
|
Li Q, Zhang S, Berthiaume JM, Simons B, Zhang GF. Novel approach in LC-MS/MS using MRM to generate a full profile of acyl-CoAs: discovery of acyl-dephospho-CoAs. J Lipid Res 2013; 55:592-602. [PMID: 24367045 DOI: 10.1194/jlr.d045112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A metabolomic approach to selectively profile all acyl-CoAs was developed using a programmed multiple reaction monitoring (MRM) method in LC-MS/MS and was employed in the analysis of various rat organs. The programmed MRM method possessed 300 mass ion transitions with the mass difference of 507 between precursor ion (Q1) and product ion (Q3), and the precursor ion started from m/z 768 and progressively increased one mass unit at each step. Acyl-dephospho-CoAs resulting from the dephosphorylation of acyl-CoAs were identified by accurate MS and fragmentation. Acyl-dephospho-CoAs were also quantitatively scanned by the MRM method with the mass difference of 427 between Q1 and Q3 mass ions. Acyl-CoAs and dephospho-CoAs were assayed with limits of detection ranging from 2 to 133 nM. The accuracy of the method was demonstrated by assaying a range of concentrations of spiked acyl-CoAs with the results of 80-114%. The distribution of acyl-CoAs reflects the metabolic status of each organ. The physiological role of dephosphorylation of acyl-CoAs remains to be further characterized. The methodology described herein provides a novel strategy in metabolomic studies to quantitatively and qualitatively profile all potential acyl-CoAs and acyl-dephospho-CoAs.
Collapse
Affiliation(s)
- Qingling Li
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106
| | | | | | | | | |
Collapse
|
34
|
The application of high-throughput analyses to cancer diagnosis and prognosis. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
35
|
von Stechow L, Ruiz-Aracama A, van de Water B, Peijnenburg A, Danen E, Lommen A. Identification of cisplatin-regulated metabolic pathways in pluripotent stem cells. PLoS One 2013; 8:e76476. [PMID: 24146875 PMCID: PMC3797786 DOI: 10.1371/journal.pone.0076476] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/29/2013] [Indexed: 11/19/2022] Open
Abstract
The chemotherapeutic compound, cisplatin causes various kinds of DNA lesions but also triggers other pertubations, such as ER and oxidative stress. We and others have shown that treatment of pluripotent stem cells with cisplatin causes a plethora of transcriptional and post-translational alterations that, to a major extent, point to DNA damage response (DDR) signaling. The orchestrated DDR signaling network is important to arrest the cell cycle and repair the lesions or, in case of damage beyond repair, eliminate affected cells. Failure to properly balance the various aspects of the DDR in stem cells contributes to ageing and cancer. Here, we performed metabolic profiling by mass spectrometry of embryonic stem (ES) cells treated for different time periods with cisplatin. We then integrated metabolomics with transcriptomics analyses and connected cisplatin-regulated metabolites with regulated metabolic enzymes to identify enriched metabolic pathways. These included nucleotide metabolism, urea cycle and arginine and proline metabolism. Silencing of identified proline metabolic and catabolic enzymes indicated that altered proline metabolism serves as an adaptive, rather than a toxic response. A group of enriched metabolic pathways clustered around the metabolite S-adenosylmethionine, which is a hub for methylation and transsulfuration reactions and polyamine metabolism. Enzymes and metabolites with pro- or anti-oxidant functions were also enriched but enhanced levels of reactive oxygen species were not measured in cisplatin-treated ES cells. Lastly, a number of the differentially regulated metabolic enzymes were identified as target genes of the transcription factor p53, pointing to p53-mediated alterations in metabolism in response to genotoxic stress. Altogether, our findings reveal interconnecting metabolic pathways that are responsive to cisplatin and may serve as signaling modules in the DDR in pluripotent stem cells.
Collapse
Affiliation(s)
- Louise von Stechow
- Department of Toxicology, LACDR, Leiden University, Leiden, The Netherlands
- Netherlands Toxicogenomics Center, Maastricht, The Netherlands
| | - Ainhoa Ruiz-Aracama
- RIKILT - Institute of Food Safety, Wageningen, The Netherlands
- Netherlands Toxicogenomics Center, Maastricht, The Netherlands
| | - Bob van de Water
- Department of Toxicology, LACDR, Leiden University, Leiden, The Netherlands
| | - Ad Peijnenburg
- RIKILT - Institute of Food Safety, Wageningen, The Netherlands
| | - Erik Danen
- Department of Toxicology, LACDR, Leiden University, Leiden, The Netherlands
- * E-mail: (AL); (ED)
| | - Arjen Lommen
- RIKILT - Institute of Food Safety, Wageningen, The Netherlands
- * E-mail: (AL); (ED)
| |
Collapse
|
36
|
Chalcraft KR, McCarry BE. Tandem LC columns for the simultaneous retention of polar and nonpolar molecules in comprehensive metabolomics analysis. J Sep Sci 2013; 36:3478-85. [DOI: 10.1002/jssc.201300779] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Kenneth R. Chalcraft
- Department of Chemistry and Chemical Biology; McMaster University; Hamilton Ontario Canada
| | - Brian E. McCarry
- Department of Chemistry and Chemical Biology; McMaster University; Hamilton Ontario Canada
| |
Collapse
|
37
|
Beger RD. A review of applications of metabolomics in cancer. Metabolites 2013; 3:552-74. [PMID: 24958139 PMCID: PMC3901293 DOI: 10.3390/metabo3030552] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/17/2013] [Accepted: 06/24/2013] [Indexed: 12/17/2022] Open
Abstract
Cancer is a devastating disease that alters the metabolism of a cell and the surrounding milieu. Metabolomics is a growing and powerful technology capable of detecting hundreds to thousands of metabolites in tissues and biofluids. The recent advances in metabolomics technologies have enabled a deeper investigation into the metabolism of cancer and a better understanding of how cancer cells use glycolysis, known as the “Warburg effect,” advantageously to produce the amino acids, nucleotides and lipids necessary for tumor proliferation and vascularization. Currently, metabolomics research is being used to discover diagnostic cancer biomarkers in the clinic, to better understand its complex heterogeneous nature, to discover pathways involved in cancer that could be used for new targets and to monitor metabolic biomarkers during therapeutic intervention. These metabolomics approaches may also provide clues to personalized cancer treatments by providing useful information to the clinician about the cancer patient’s response to medical interventions.
Collapse
Affiliation(s)
- Richard D Beger
- National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| |
Collapse
|
38
|
Kuehnbaum NL, Britz-McKibbin P. New Advances in Separation Science for Metabolomics: Resolving Chemical Diversity in a Post-Genomic Era. Chem Rev 2013; 113:2437-68. [DOI: 10.1021/cr300484s] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Naomi L. Kuehnbaum
- Department of Chemistry
and Chemical Biology, McMaster University, Hamilton, Canada
| | | |
Collapse
|
39
|
Spégel P, Ekholm E, Tuomi T, Groop L, Mulder H, Filipsson K. Metabolite profiling reveals normal metabolic control in carriers of mutations in the glucokinase gene (MODY2). Diabetes 2013; 62:653-61. [PMID: 23139355 PMCID: PMC3554352 DOI: 10.2337/db12-0827] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mutations in the gene encoding glucokinase (GCK) cause a mild hereditary form of diabetes termed maturity-onset diabetes of the young (MODY)2 or GCK-MODY. The disease does not progress over time, and diabetes complications rarely develop. It has therefore been suggested that GCK-MODY represents a metabolically compensated condition, but experimental support for this notion is lacking. Here, we profiled metabolites in serum from patients with MODY1 (HNF4A), MODY2 (GCK), MODY3 (HNF1A), and type 2 diabetes and from healthy individuals to characterize metabolic perturbations caused by specific mutations. Analysis of four GCK-MODY patients revealed a metabolite pattern similar to that of healthy individuals, while other forms of diabetes differed markedly in their metabolite profiles. Furthermore, despite elevated glucose concentrations, carriers of GCK mutations showed lower levels of free fatty acids and triglycerides than healthy control subjects. The metabolite profiling was confirmed by enzymatic assays and replicated in a cohort of 11 GCK-MODY patients. Elevated levels of fatty acids are known to associate with β-cell dysfunction, insulin resistance, and increased incidence of late complications. Our results show that GCK-MODY represents a metabolically normal condition, which may contribute to the lack of late complications and the nonprogressive nature of the disease.
Collapse
Affiliation(s)
- Peter Spégel
- Unit of Molecular Metabolism, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Malmö, Sweden.
| | | | | | | | | | | |
Collapse
|
40
|
Gebregiworgis T, Powers R. Application of NMR metabolomics to search for human disease biomarkers. Comb Chem High Throughput Screen 2012; 15:595-610. [PMID: 22480238 PMCID: PMC6625354 DOI: 10.2174/138620712802650522] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/07/2012] [Accepted: 04/03/2012] [Indexed: 11/22/2022]
Abstract
Since antiquity, humans have used body fluids like saliva, urine and sweat for the diagnosis of diseases. The amount, color and smell of body fluids are still used in many traditional medical practices to evaluate an illness and make a diagnosis. The development and application of analytical methods for the detailed analysis of body fluids has led to the discovery of numerous disease biomarkers. Recently, mass spectrometry (MS), nuclear magnetic resonance spectroscopy (NMR), and multivariate statistical techniques have been incorporated into a multidisciplinary approach to profile changes in small molecules associated with the onset and progression of human diseases. The goal of these efforts is to identify metabolites that are uniquely correlated with a specific human disease in order to accurately diagnose and treat the malady. In this review we will discuss recent developments in sample preparation, experimental techniques, the identification and quantification of metabolites, and the chemometric tools used to search for biomarkers of human diseases using NMR.
Collapse
Affiliation(s)
- Teklab Gebregiworgis
- Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln, NE 68588- 0304, USA
| | | |
Collapse
|
41
|
Ghosh S, Sengupta A, Sharma S, Sonawat HM. Metabolic fingerprints of serum, brain, and liver are distinct for mice with cerebral and noncerebral malaria: a ¹H NMR spectroscopy-based metabonomic study. J Proteome Res 2012; 11:4992-5004. [PMID: 22838963 DOI: 10.1021/pr300562m] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cerebral malaria (CM) is a life-threatening disease in humans caused by Plasmodium falciparum, leading to high mortality. Plasmodium berghei ANKA (PbA) infection in C57Bl/6 mice induces pathologic symptoms similar to that in human CM. However, experimental CM incidence in mice is variable, and there are no known metabolic correlates/fingerprints for the animals that develop CM. Here, we have used (1)H NMR-based metabonomics to investigate the metabolic changes in the mice with CM with respect to the mice that have noncerebral malaria (NCM) of the same batchmates with identical genetic backgrounds and infected simultaneously. The metabolic profile of the infected mice (both CM and NCM) was separately compared with the metabolite profile of uninfected control mice of same genetic background. The objective of this study was to search for metabolic changes/fingerprints of CM and identify the pathways that might be differentially altered in mice that succumbed to CM. The results show that brain, liver, and sera exhibit unique metabolic fingerprints for CM over NCM mice. Some of the major fingerprints are increased level of triglycerides, VLDL-cholesterol in sera of CM mice, and decreased levels of glutamine in the sera concomitant with increased levels of glutamine in the brain of the mice with CM. Moreover, glycerophosphocholine is decreased in both the brain and the liver of animals with CM, and myo-inositol and histamine are increased in the liver of CM mice. The metabolic fingerprints in brain, sera, and liver of mice with CM point toward perturbation in the ammonia detoxification pathway and perturbation in lipid and choline metabolism in CM specifically. The study helps us to understand the severity of CM over NCM and in unrevealing the specific metabolic pathways that are compromised in CM.
Collapse
Affiliation(s)
- Soumita Ghosh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | | | | | | |
Collapse
|
42
|
Chen Q, Park HC, Goligorsky MS, Chander P, Fischer SM, Gross SS. Untargeted plasma metabolite profiling reveals the broad systemic consequences of xanthine oxidoreductase inactivation in mice. PLoS One 2012; 7:e37149. [PMID: 22723833 PMCID: PMC3377762 DOI: 10.1371/journal.pone.0037149] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/13/2012] [Indexed: 02/07/2023] Open
Abstract
A major challenge in systems biology is integration of molecular findings for individual enzyme activities into a cohesive high-level understanding of cellular metabolism and physiology/pathophysiology. However, meaningful prediction for how a perturbed enzyme activity will globally impact metabolism in a cell, tissue or intact organisms is precluded by multiple unknowns, including in vivo enzymatic rates, subcellular distribution and pathway interactions. To address this challenge, metabolomics offers the potential to simultaneously survey changes in thousands of structurally diverse metabolites within complex biological matrices. The present study assessed the capability of untargeted plasma metabolite profiling to discover systemic changes arising from inactivation of xanthine oxidoreductase (XOR), an enzyme that catalyzes the final steps in purine degradation. Using LC-MS coupled with a multivariate statistical data analysis platform, we confidently surveyed >3,700 plasma metabolites (50-1,000 Da) for differential expression in XOR wildtype vs. mice with inactivated XOR, arising from gene deletion or pharmacological inhibition. Results confirmed the predicted derangements in purine metabolism, but also revealed unanticipated perturbations in metabolism of pyrimidines, nicotinamides, tryptophan, phospholipids, Krebs and urea cycles, and revealed kidney dysfunction biomarkers. Histochemical studies confirmed and characterized kidney failure in xor-nullizygous mice. These findings provide new insight into XOR functions and demonstrate the power of untargeted metabolite profiling for systemic discovery of direct and indirect consequences of gene mutations and drug treatments.
Collapse
Affiliation(s)
- Qiuying Chen
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, United States of America
| | - Hyeong-Cheon Park
- Departments of Medicine, Pathology and Pharmacology, Renal Research Institute, New York Medical College, Valhalla, New York, United States of America
| | - Michael S. Goligorsky
- Departments of Medicine, Pathology and Pharmacology, Renal Research Institute, New York Medical College, Valhalla, New York, United States of America
| | - Praveen Chander
- Departments of Medicine, Pathology and Pharmacology, Renal Research Institute, New York Medical College, Valhalla, New York, United States of America
| | - Steven M. Fischer
- Metabolomics Laboratory, Agilent Technologies, Santa Clara, California, United States of America
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
43
|
Li Q, Zhang GF. Identification of n-hydroxy acid metabolites in electron impact ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1355-62. [PMID: 22555929 DOI: 10.1002/rcm.6233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
RATIONALE The catabolism of 4-hydroxy acid (drugs of abuse and lipid peroxidation products) generates a series of hydroxy acids with different carbon chain lengths and hydroxyl group at different locations. The identification of these hydroxy acid metabolites is important to uncover the catabolic pathways of drugs of abuse and lipid peroxidation products. METHODS We characterized the fragmentation of trimethylsilyl (TMS) derivatives of hydroxy acids by electron impact ionization (EI) mass spectrometry (MS) with the aid of an isotope-labeled compound. The metabolites (hydroxy acids) of 4-hydroxy acid in isolated rat livers were identified by their characterized fragmentation patterns in gas chromatography (GC)/EI-MS. RESULTS TMS migration to both ester and ether groups was found in the fragmentation of 2-hydroxy acid- and 3-hydroxy acid-TMS derivatives, but only migration to the ester group was observed in the fragmentation of n-hydroxy acid-TMS (n ≥4) derivatives. TMS migration to the ester group generates the following fragments from different hydroxy acids: (i) the characteristic fragment at m/z 190 from 2-hydroxy acid; (ii) the fragment at m/z 204 from both 3-hydroxy acid and 4-hydroxy acid; and (iii) a characteristic fragment at m/z 218 from 4-hydroxy acid containing more than four carbons in the carbon skeleton. TMS migration to the ether group in 2-hydroxy acid and 3-hydroxy acid yields variant fragments depending on the carbon skeleton length. The identified metabolites of 4-hydroxy acid confirmed the catabolic pathways of 4-hydroxy acid in the isolated rat livers. CONCLUSIONS With the characterized fragmentation patterns of each hydroxy acid in EI-MS, we successfully identified the various hydroxy acid metabolites of 4-hydroxyoctanoic acid (and other 4-hydroxy acids from C(5) to C(11)) in the rat livers.
Collapse
Affiliation(s)
- Qingling Li
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
44
|
Abstract
The exposome concept promotes use of omic tools for discovering biomarkers of exposure and biomarkers of disease in studies of diseased and healthy populations. A two-stage scheme is presented for profiling omic features in serum to discover molecular biomarkers and then for applying these biomarkers in follow-up studies. The initial component, referred to as an exposome-wide-association study (EWAS), employs metabolomics and proteomics to interrogate the serum exposome and, ultimately, to identify, validate and differentiate biomarkers of exposure and biomarkers of disease. Follow-up studies employ knowledge-driven designs to explore disease causality, prevention, diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Stephen M Rappaport
- Center for Exposure Biology, School of Public Health, University of California, Berkeley, CA 94720-7356, USA.
| |
Collapse
|
45
|
Sogno I, Conti M, Consonni P, Noonan DM, Albini A. Surface-activated chemical ionization-electrospray ionization source improves biomarker discovery with mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1213-1218. [PMID: 22499197 DOI: 10.1002/rcm.6208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
RATIONALE Mass spectrometry (MS) is increasingly employed for the discovery of clinical biomarkers. However, due to sensitivity limitations related to in-source ionization yield, many potential biomarkers are not detected by standard mass spectrometers. Therefore, more efficient ion-source technologies are needed to improve MS applications in biomarker discovery. METHODS Among novel ion-source technologies, Surface-Activated Chemical Ionization (SACI), although endowed with high sensitivity linked to its ability to reduce chemical noise in mass spectra, has seen limited application in biomarker discovery to date, due to its selectivity for highly polar compounds. However, in combination with an Electrospray Ionization (ESI) source, SACI selectivity can be enlarged in the range of less polar compounds. To validate the new SACI-ESI approach in biomarker discovery, we applied it to a translational setting in oncology. We performed MS profiles of 101 human serum samples from a male population, aged 40 or older, coming to the clinic for prostate cancer evaluation based on multiple PSA exams, digital rectal examination and echography. The SACI-ESI MS spectra were analyzed and classified with an innovative bioinformatic approach based on the MS-search freeware developed in house. RESULTS Here we demonstrate that the SACI-ESI combination can produce MS spectra with greater sensitivity and lower noise than those obtained with the common ESI alone. We found that the SACI-ESI combination increased the number of detectable compounds and produced better quality of profiles in liquid chromatography (LC) coupled with MS (LC/MS) analysis of human serum samples, improving disease prediction potential. CONCLUSIONS SACI-ESI can facilitate MS-based discovery of potential biomarkers in human serum. Combined with the proposed bioinformatic approach (based on XCMS and NIST data elaboration) for the analysis of the MS spectra obtained, the potential for developing biomarkers with diagnostic capabilities are demonstrated in a prostate cancer diagnosis clinical setting.
Collapse
Affiliation(s)
- Ilaria Sogno
- Science and Technology Pole, IRCCS MultiMedica, Milan, Italy
| | | | | | | | | |
Collapse
|
46
|
Abstract
Microorganisms depend on their ability to modulate their metabolic composition according to specific circumstances, such as different phases of the growth cycle and circadian rhythms, fluctuations in environmental conditions, as well as experimental perturbations. A thorough understanding of these metabolic adaptations requires the ability to comprehensively identify and quantify the metabolome of bacterial cells in different states. In this review, we present an overview of the diverse metabolomics approaches recently adopted to explore the metabolism of a wide variety of microorganisms. Focusing on a selection of illustrative case studies, we assess the different experimental designs used and explore the major achievements and remaining challenges in the field. We conclude by discussing the important complementary information provided by computational methods such as genome-scale metabolic modeling, which enable an integrated analysis of metabolic state changes in the context of overall cellular physiology.
Collapse
|
47
|
Fan TWM, Lorkiewicz PK, Sellers K, Moseley HNB, Higashi RM, Lane AN. Stable isotope-resolved metabolomics and applications for drug development. Pharmacol Ther 2012; 133:366-91. [PMID: 22212615 PMCID: PMC3471671 DOI: 10.1016/j.pharmthera.2011.12.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 12/14/2022]
Abstract
Advances in analytical methodologies, principally nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), during the last decade have made large-scale analysis of the human metabolome a reality. This is leading to the reawakening of the importance of metabolism in human diseases, particularly cancer. The metabolome is the functional readout of the genome, functional genome, and proteome; it is also an integral partner in molecular regulations for homeostasis. The interrogation of the metabolome, or metabolomics, is now being applied to numerous diseases, largely by metabolite profiling for biomarker discovery, but also in pharmacology and therapeutics. Recent advances in stable isotope tracer-based metabolomic approaches enable unambiguous tracking of individual atoms through compartmentalized metabolic networks directly in human subjects, which promises to decipher the complexity of the human metabolome at an unprecedented pace. This knowledge will revolutionize our understanding of complex human diseases, clinical diagnostics, as well as individualized therapeutics and drug response. In this review, we focus on the use of stable isotope tracers with metabolomics technologies for understanding metabolic network dynamics in both model systems and in clinical applications. Atom-resolved isotope tracing via the two major analytical platforms, NMR and MS, has the power to determine novel metabolic reprogramming in diseases, discover new drug targets, and facilitates ADME studies. We also illustrate new metabolic tracer-based imaging technologies, which enable direct visualization of metabolic processes in vivo. We further outline current practices and future requirements for biochemoinformatics development, which is an integral part of translating stable isotope-resolved metabolomics into clinical reality.
Collapse
Affiliation(s)
- Teresa W-M Fan
- Department of Chemistry, University of Louisville, KY 40292, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Kim IK, Roldão A, Siewers V, Nielsen J. A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res 2012; 12:228-48. [DOI: 10.1111/j.1567-1364.2011.00779.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/05/2011] [Accepted: 12/09/2011] [Indexed: 12/01/2022] Open
Affiliation(s)
- Il-Kwon Kim
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg; Sweden
| | - António Roldão
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg; Sweden
| | - Verena Siewers
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg; Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg; Sweden
| |
Collapse
|
49
|
Jungnickel H, Luch A. A personalized life: biomarker monitoring from cradle to grave. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 101:471-98. [PMID: 22945580 DOI: 10.1007/978-3-7643-8340-4_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Considering the holy grail of future medical treatment being personalized medicines, biomarker research will become more and more the focus for attention not only to develop new medical treatment regimes, based on changes in biomarker patterns, but also for nutritional advice to guarantee a lifelong optimized health condition. The current review gives an outline of how personalized medicine can become established for actual medical treatment using new biomarker concepts. Starting from the development of biomarker research using mainly immunological techniques, the review gives an overview about biomarkers of prediction evolved and focuses on new methodology for the identification of biomarkers using hyphenated analytical techniques like metabolomics and lipidomics. The actual use of multivariate statistical methods in combination with metabolomics and lipidomics is discussed not only for medical treatment but also for precautionary risk identification in human biomonitoring studies.
Collapse
Affiliation(s)
- Harald Jungnickel
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Gemany,
| | | |
Collapse
|
50
|
Harris SR, Zhang GF, Sadhukhan S, Murphy AM, Tomcik KA, Vazquez EJ, Anderson VE, Tochtrop GP, Brunengraber H. Metabolism of levulinate in perfused rat livers and live rats: conversion to the drug of abuse 4-hydroxypentanoate. J Biol Chem 2010; 286:5895-904. [PMID: 21126961 DOI: 10.1074/jbc.m110.196808] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium levulinate (4-ketopentanoate) is used as an oral and parenteral source of calcium. We hypothesized that levulinate is converted in the liver to 4-hydroxypentanoate, a new drug of abuse, and that this conversion is accelerated by ethanol oxidation. We confirmed these hypotheses in live rats, perfused rat livers, and liver subcellular preparations. Levulinate is reduced to (R)-4-hydroxypentanoate by a cytosolic and a mitochondrial dehydrogenase, which are NADPH- and NADH-dependent, respectively. A mitochondrial dehydrogenase or racemase system also forms (S)-4-hydroxypentanoate. In livers perfused with [(13)C(5)]levulinate, there was substantial CoA trapping in levulinyl-CoA, 4-hydroxypentanoyl-CoA, and 4-phosphopentanoyl-CoA. This CoA trapping was increased by ethanol, with a 6-fold increase in the concentration of 4-phosphopentanoyl-CoA. Levulinate is catabolized by 3 parallel pathways to propionyl-CoA, acetyl-CoA, and lactate. Most intermediates of the 3 pathways were identified by mass isotopomer analysis and metabolomics. The production of 4-hydroxypentanoate from levulinate and its stimulation by ethanol is a potential public health concern.
Collapse
Affiliation(s)
- Stephanie R Harris
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|