1
|
Yang C, Du H, Lee GB, Uematsu M, He W, Doré E, Yu W, Sanford EJ, Smolka MB, Boilard E, Baskin JM, Hao L, Hu F. sPLA2-IIA modifies progranulin deficiency phenotypes in mouse models. Mol Neurodegener 2025; 20:72. [PMID: 40528203 DOI: 10.1186/s13024-025-00863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 06/06/2025] [Indexed: 06/20/2025] Open
Abstract
BACKGROUND Haploinsufficiency of the progranulin (PGRN) protein is a leading cause of frontotemporal lobar degeneration (FTLD). Mouse models have been developed to study PGRN functions. However, PGRN deficiency in the commonly used C57BL/6 mouse strain background leads to very mild phenotypes, and pathways regulating PGRN deficiency phenotypes remain to be elucidated. METHODS We generated PGRN-deficient mice in the FVB/N background and compared PGRN deficiency phenotypes between C57BL/6 and FVB/N backgrounds via immunostaining, western blot, RNA-seq, and proteomics approaches. We demonstrated a novel pathway in modifying PGRN deficiency phenotypes using inhibitor treatment and AAV-mediated overexpression in mouse models. RESULTS We report that PGRN loss in the FVB/N mouse strain results in earlier onset and stronger FTLD-related and lysosome-related phenotypes. We found that PGRN interacts with sPLA2-IIA, a member of the secreted phospholipase A2 (sPLA2) family member and a key regulator of inflammation, that is expressed in FVB/N but not C57BL/6 background. sPLA2-IIA inhibition rescues PGRN deficiency phenotypes, while sPLA2-IIA overexpression drives enhanced gliosis and lipofuscin accumulation in PGRN-deficient mice. Additionally, RNA-seq and proteomics analysis revealed that mitochondrial pathways are upregulated in the PGRN-deficient C57BL/6 mice but not in the FVB/N mice. CONCLUSIONS Our studies establish a better mouse model for FTLD-GRN and uncover novel pathways modifying PGRN deficiency phenotypes.
Collapse
Affiliation(s)
- Cha Yang
- Department of Molecular Biology and Genetics, 345 Weill Hall, Ithaca, NY, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Huan Du
- Department of Molecular Biology and Genetics, 345 Weill Hall, Ithaca, NY, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Gwang Bin Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Masaaki Uematsu
- Department of Chemistry and Chemical Biology, Ithaca, NY, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Weiguo He
- Department of Molecular Biology and Genetics, 345 Weill Hall, Ithaca, NY, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Etienne Doré
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Centre de Recherche ARThrite - Arthrite, Recherche, Traitements, Université Laval, Québec, QC, Canada
| | - Weizhi Yu
- Department of Chemistry and Chemical Biology, Ithaca, NY, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ethan J Sanford
- Department of Molecular Biology and Genetics, 345 Weill Hall, Ithaca, NY, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, 345 Weill Hall, Ithaca, NY, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Centre de Recherche ARThrite - Arthrite, Recherche, Traitements, Université Laval, Québec, QC, Canada
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Ithaca, NY, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ling Hao
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, 345 Weill Hall, Ithaca, NY, 14853, USA.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
2
|
Kusakari S, Suzuki H, Nawa M, Sudo K, Yamazaki R, Miyagi T, Ohara T, Matsuoka M, Kanekura K. Excessive expression of progranulin leads to neurotoxicity rather than neuroprotection. Neurobiol Dis 2025; 209:106895. [PMID: 40180225 DOI: 10.1016/j.nbd.2025.106895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025] Open
Abstract
Frontotemporal dementia (FTD) is an early onset form of dementia characterized by frontotemporal lobar atrophy accompanied by behavioral, personality, language, and motor deficits. Heterozygous mutations in GRN gene encoding progranulin (PGRN) are the genetic causes of FTD. Since PGRN is a neurotrophic and anti-inflammatory factor, most FTD-related PGRN mutations are thought to cause FTD due to haploinsufficiency. Therefore, therapies that increase PGRN levels by the administration of recombinant PGRN or viral vectors are attracting attention as an approach to the treatment of FTD. However, the mechanisms underlying the neuroprotective effects of PGRN remain unclear. To investigate the neuroprotective mechanisms of PGRN in vivo, we generated human PGRN transgenic (Tg) mice using the CAG promoter. Unexpectedly, mice overexpressing wild-type human PGRN showed a shortened lifespan and cerebellar dysfunction, including the loss of Purkinje cells. Furthermore, PGRN Tg mice developed cognitive impairment, gliosis, and lysosomal abnormalities. FTD-causative R432C-PGRN mutant Tg mice also showed FTD-like phenotypes, such as neuronal loss, gliosis, and behavioral deficits. In cultured cells, overexpression of PGRN induced endoplasmic reticulum (ER) stress and apoptotic cell death, suggesting that continuous increases in PGRN expression through viral vectors or genetic manipulation are neurotoxic and that PGRN-replacement therapy may be required to maintain optimal PGRN levels for each neuron type and brain region.
Collapse
Affiliation(s)
- Shinya Kusakari
- Department of Pharmacology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan.
| | - Hiroaki Suzuki
- Department of Pharmacology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Mikiro Nawa
- Department of Pharmacology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Katsuko Sudo
- Pre-Clinical Research Center, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Rio Yamazaki
- Department of Pharmacology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Tamami Miyagi
- Department of Pharmacology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Tomoko Ohara
- Department of Pharmacology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Masaaki Matsuoka
- Department of Pharmacology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Kohsuke Kanekura
- Department of Pharmacology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
3
|
Gaweda-Walerych K, Aragona V, Lodato S, Sitek EJ, Narożańska E, Buratti E. Progranulin deficiency in the brain: the interplay between neuronal and non-neuronal cells. Transl Neurodegener 2025; 14:18. [PMID: 40234992 PMCID: PMC12001433 DOI: 10.1186/s40035-025-00475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/21/2025] [Indexed: 04/17/2025] Open
Abstract
Heterozygous mutations in GRN gene lead to insufficient levels of the progranulin (PGRN) protein, resulting in frontotemporal dementia (FTD) with TAR DNA-binding protein 43 (TDP-43) inclusions, classified pathologically as frontotemporal lobar degeneration (FTLD-TDP). Homozygous GRN mutations are exceedingly rare and cause neuronal ceroid lipofuscinosis 11, a lysosomal storage disease with onset in young adulthood, or an FTD syndrome with late-onset manifestations. In this review, we highlight the broad spectrum of clinical phenotypes associated with PGRN deficiency, including primary progressive aphasia and behavioral variant of frontotemporal dementia. We explore these phenotypes alongside relevant rodent and in vitro human models, ranging from the induced pluripotent stem cell-derived neural progenitors, neurons, microglia, and astrocytes to genetically engineered heterotypic organoids containing both neurons and astrocytes. We summarize advantages and limitations of these models in recapitulating the main FTLD-GRN hallmarks, highlighting the role of non-cell-autonomous mechanisms in the formation of TDP-43 pathology, neuroinflammation, and neurodegeneration. Data obtained from patients' brain tissues and biofluids, in parallel with single-cell transcriptomics, demonstrate the complexity of interactions among the highly heterogeneous cellular clusters present in the brain, including neurons, astrocytes, microglia, oligodendroglia, endothelial cells, and pericytes. Emerging evidence has revealed that PGRN deficiency is associated with cell cluster-specific, often conserved, genetic and molecular phenotypes in the central nervous system. In this review, we focus on how these distinct cellular populations and their dysfunctional crosstalk contribute to neurodegeneration and neuroinflammation in FTD-GRN. Specifically, we characterize the phenotypes of lipid droplet-accumulating microglia and alterations of myelin lipid content resulting from lysosomal dysfunction caused by PGRN deficiency. Additionally, we consider how the deregulation of glia-neuron communication affects the exchange of organelles such as mitochondria, and the removal of excess toxic products such as protein aggregates, in PGRN-related neurodegeneration.
Collapse
Affiliation(s)
- Katarzyna Gaweda-Walerych
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| | - Vanessa Aragona
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Emilia J Sitek
- Division of Neurological and Psychiatric Nursing, Laboratory of Clinical Neuropsychology, Neurolinguistics, and Neuropsychotherapy, Faculty of Health Sciences, Medical University of Gdansk, 80-210, Gdansk, Poland.
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland.
| | - Ewa Narożańska
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149, Trieste, Italy
| |
Collapse
|
4
|
Park CB, Lee CH, Kang GM, Min SH, Kim MS. Microglial progranulin differently regulates hypothalamic lysosomal function in lean and obese conditions via cleavage-dependent mechanisms. J Neuroinflammation 2025; 22:68. [PMID: 40055725 PMCID: PMC11887206 DOI: 10.1186/s12974-025-03370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/06/2025] [Indexed: 05/13/2025] Open
Abstract
Progranulin (PGRN) is a secretory precursor protein composed of 7.5 granulins (GRNs). Mutations in the PGRN-encoding gene Grn have been associated with neurodegenerative diseases. In our previous study, we found that Grn depletion in microglia disrupted glucose metabolism in mice fed a normal chow diet (NCD) but prevented the development of obesity in mice on a high-fat diet (HFD). Given that PGRN regulates lysosomal functions, we investigated lysosomal changes in the hypothalamus of mice with microglia-specific Grn depletion. Here we report that microglia-specific Grn depletion affects the lysosomes of hypothalamic proopiomelanocortin (POMC) neurons and microglia in diet-dependent fashion. Under NCD conditions, microglial Grn depletion led to increased lysosome mass, reduced lysosomal degradative capacity, and accumulation of lipofuscin and cytoplasmic TDP-43 in hypothalamic cells, indicative of lysosomal stress and dysfunction. In contrast, under HFD conditions, the absence of microglial Grn suppressed HFD-induced hypothalamic lysosomal stress. In cultured hypothalamic neurons and microglia, PGRN treatment enhanced lysosomal function, an effect inhibited by PGRN cleavage but restored when its cleavage was blocked. Since HFD feeding promotes the cleavage of hypothalamic PGRN into multi-GRNs and GRNs, the diet-dependent lysosomal changes observed in microglial Grn-depleted mice may be linked to PGRN cleavage. We also demonstrated that intracerebroventricular injection of bafilomycin, which induces lysosomal stress, resulted in microglial activation, inflammation, disrupted POMC neuronal circuitry, and impaired leptin signaling in the hypothalamus-common features of obesity. Our results indicate that microglial PGRN plays an important role in maintaining hypothalamic lysosomal function under healthy diet conditions, whereas increased cleavage of microglial PGRN in states of overnutrition disrupts hypothalamic lysosomal function, thereby fostering hypothalamic inflammation and obesity.
Collapse
Affiliation(s)
- Chae Beom Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Chan Hee Lee
- Department of Biomedical Sciences, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Gil Myoung Kang
- Asan Institute for Life Science, Asan Medical Center , Seoul, 05505, Republic of Korea
| | - Se Hee Min
- Diabetes Center, Asan Medical Center, Seoul, 05505, Republic of Korea
- Division of Endocrinology and Metabolism, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Min-Seon Kim
- Diabetes Center, Asan Medical Center, Seoul, 05505, Republic of Korea.
- Division of Endocrinology and Metabolism, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
5
|
Wang Y, Shan J, Zhang L, Wang R, Wu MY, Li HM, Xu HM. The role of FAM171A2-GRN-NF-κB pathway in TBBPA induced oxidative stress and inflammatory response in mouse-derived hippocampal neuronal HT22 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117445. [PMID: 39616664 DOI: 10.1016/j.ecoenv.2024.117445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/17/2024] [Accepted: 11/28/2024] [Indexed: 01/26/2025]
Abstract
Tetrabromobisphenol A (TBBPA) is one of the brominated flame retardants (BFRs) widely used in industry, which has a broad toxic effect on organisms. However, there is still limited research on the neurotoxic mechanism of TBBPA. Using mouse hippocampal neurons (HT22) cells, the toxicity of TBBPA was evaluated, especially focusing on its alteration on the key molecules in FAM171A2-GRN-NF-κB signaling pathway. The results showed that TBBPA exposure could lead to an increase in the production of inflammation-related genes IL-6, iNOS, TGF-β1, COX2, and TNF-α in both HT22 cells and HT22-AD-model, intensifying the inflammatory response; it inhibits the mRNA expression of antioxidative enzymes genes Sod1, Cat, Gpx1, and Gsta1, resulting in reduced antioxidant enzyme activities of SOD, CAT, and GSH-Px/GPX. Mechanistically, TBBPA caused the upregulation of FAM171A2 expression level, alongside increased GRN, IκBα and p65 levels; whereas the expression of GRN, IκBα and p65 was decreased after FAM171A2 knockdown, demonstrating TBBPA-induced upregulation of FAM171A2 should be responsible for the increased GRN, IκBα and p65 expression. Therefore, for the first time, our data indicate that TBBPA-induced oxidative stress and inflammatory response is closely related to the FAM171A2-GRN-NF-κB pathway.
Collapse
Affiliation(s)
- Yi Wang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Department of Experimental Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Shan
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Xi'an GEM Flowers Changqing Hospital, Xi'an, Shanxi 710000, China
| | - Ling Zhang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Rui Wang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Meng-Yu Wu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Xi'an GEM Flowers Changqing Hospital, Xi'an, Shanxi 710000, China
| | - Hong-Mei Li
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Hai-Ming Xu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
6
|
Menéndez-González M, García-Martínez A, Fernández-Vega I, Pitiot A, Álvarez V. A variant in GRN of Spanish origin presenting with heterogeneous phenotypes. Neurologia 2025; 40:57-65. [PMID: 36216226 DOI: 10.1016/j.nrleng.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023] Open
Abstract
INTRODUCTION The variant c.1414-1G>T in the GRN gene has previously been reported as probably pathogenic in subjects of Hispanic origin in the American continent. METHODS We report 5 families of Spanish origin carrying this variant, including the clinical, neuroimaging, and laboratory findings. RESULTS Phenotypes were strikingly different, including cases presenting with behavioral variant frontotemporal dementia, semantic variant primary progressive aphasia, rapidly progressive motor neuron disease (pathologically documented), and tremor-dominant parkinsonism. Retinal degeneration has been found in homozygous carriers only. Ex vivo splicing assays confirmed that the mutation c.1414-1G>T affects the splicing of the exon, causing a loss of 20 amino acids in exon 11. CONCLUSIONS We conclude that variant c.1414-1G>T of the GRN gene is pathogenic, can lead to a variety of clinical presentations and to gene dosage effect, and probably has a Spanish founder effect.
Collapse
Affiliation(s)
- M Menéndez-González
- Department of Neurology, Hospital Universitario Central de Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain; Department of Medicine, Universidad de Oviedo, Spain.
| | - A García-Martínez
- Department of Neurology, Hospital Universitario Central de Asturias, Spain
| | - I Fernández-Vega
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain; Department of Pathology Anatomy, Hospital Universitario Central de Asturias, Spain; Department of Surgery, Universidad de Oviedo, Spain
| | - A Pitiot
- Laboratory of Molecular Oncology, Hospital Universitario Central de Asturias, Spain
| | - V Álvarez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain; Laboratory of Genetics, Hospital Universitario Central de Asturias, Spain
| |
Collapse
|
7
|
De Houwer JFH, Dopper EGP, Rajicic A, van Buuren R, Arcaro M, Galimberti D, Breedveld GJ, Wilke M, van Minkelen R, Jiskoot LC, van Swieten JC, Donker Kaat L, Seelaar H. Two novel variants in GRN: the relevance of CNV analysis and genetic screening in FTLD patients with a negative family history. J Neurol 2024; 272:64. [PMID: 39680222 PMCID: PMC11649753 DOI: 10.1007/s00415-024-12758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Frontotemporal lobar degeneration (FTLD) is one of the leading causes of early onset dementia. Pathogenic variants in GRN have been reported to cause 5-25% of familial and 5% of sporadic FTLD. Here, we present two novel, likely pathogenic variants in GRN. METHODS Four patients from four different families underwent whole exome sequencing (WES) with additional copy-number variance (CNV) analysis in a clinical setting. TMEM106B rs1990622 and rs3173615 SNPs and 3'UTR insertion were tested in one presymptomatic carrier. In three probands and one presymptomatic carrier, plasma progranulin (PGRN) levels were measured using a specific ELISA kit. In two probands, neuropathological diagnosis was established using current neuropathological criteria. RESULTS Through CNV analysis on WES data, we identified a partial deletion, NM_002087.2 (GRN):c.1179 + 104_1536delinsCTGA, p.(?), in three patients with primary progressive aphasia and/or corticobasal syndrome. Haplotype analysis revealed a shared haplotype block, suggesting that the deletion represents a founder mutation. Additionally, we found a novel, missense variant, NM_002087.2 (GRN):c.23 T > A, p.(Val8Glu), in one proband with a negative family history. The proband's unaffected parent-in their 80 s-carried the same variant, yet was homozygous for the TMEM106B risk haplotype. The pathogenicity of both GRN variants was supported by typical neuropathological features and reduced PGRN levels. CONCLUSION We recommend a thorough genetic screening, including CNV analysis, for both familial and apparent sporadic FTLD patients. Furthermore, the presymptomatic carrier homozygous for the TMEM106B risk haplotype exemplifies the presence of other protective factors that modify disease onset and urges caution in genetic counselling based on the TMEM106B haplotype.
Collapse
Affiliation(s)
- Julie F H De Houwer
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre (Erasmus MC), Dr. Molenwaterplein 40, 3015 CE, Rotterdam, The Netherlands
| | - Elise G P Dopper
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre (Erasmus MC), Dr. Molenwaterplein 40, 3015 CE, Rotterdam, The Netherlands
| | - Ana Rajicic
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre (Erasmus MC), Dr. Molenwaterplein 40, 3015 CE, Rotterdam, The Netherlands
| | - Renee van Buuren
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre (Erasmus MC), Dr. Molenwaterplein 40, 3015 CE, Rotterdam, The Netherlands
| | - Marina Arcaro
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Rick van Minkelen
- Department of Clinical Genetics, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Lize C Jiskoot
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre (Erasmus MC), Dr. Molenwaterplein 40, 3015 CE, Rotterdam, The Netherlands
| | - John C van Swieten
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre (Erasmus MC), Dr. Molenwaterplein 40, 3015 CE, Rotterdam, The Netherlands
| | - Laura Donker Kaat
- Department of Clinical Genetics, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre (Erasmus MC), Dr. Molenwaterplein 40, 3015 CE, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Du H, Yang C, Nana AL, Seeley WW, Smolka M, Hu F. WITHDRAWN: Progranulin inhibits phospholipase sPLA2-IIA to control neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.06.535844. [PMID: 37066328 PMCID: PMC10104136 DOI: 10.1101/2023.04.06.535844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The authors have withdrawn this manuscript because more work is needed to fully define the role of sPLA2-IIA. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.
Collapse
|
9
|
Park CB, Lee CH, Cho KW, Shin S, Jang WH, Byeon J, Oh YR, Kim SJ, Park JW, Kang GM, Min SH, Kim S, Yu R, Kim MS. Extracellular Cleavage of Microglia-Derived Progranulin Promotes Diet-Induced Obesity. Diabetes 2024; 73:2009-2021. [PMID: 39302854 DOI: 10.2337/db24-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Hypothalamic innate immune responses to dietary fats underpin the pathogenesis of obesity, in which microglia play a critical role. Progranulin (PGRN) is an evolutionarily conserved secretory protein containing seven and a half granulin (GRN) motifs. It is cleaved into GRNs by multiple proteases. In the central nervous system, PGRN is highly expressed in microglia. To investigate the role of microglia-derived PGRN in metabolism regulation, we established a mouse model with a microglia-specific deletion of the Grn gene, which encodes PGRN. Mice with microglia-specific Grn depletion displayed diet-dependent metabolic phenotypes. Under normal diet-fed conditions, microglial Grn depletion produced adverse outcomes, such as fasting hyperglycemia and aberrant activation of hypothalamic microglia. However, when fed a high-fat diet (HFD), these mice exhibited beneficial effects, including less obesity, glucose dysregulation, and hypothalamic inflammation. These differing phenotypes appeared to be linked to increased extracellular cleavage of anti-inflammatory PGRN into proinflammatory GRNs in the hypothalamus during overnutrition. In support of this, inhibiting PGRN cleavage attenuated HFD-induced hypothalamic inflammation and obesity progression. Our results suggest that the extracellular cleavage of microglia-derived PGRN plays a significant role in promoting hypothalamic inflammation and obesity during periods of overnutrition. Therefore, therapies that inhibit PGRN cleavage may be beneficial for combating diet-induced obesity. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Chae Beom Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Kae Won Cho
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Sunghun Shin
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Won Hee Jang
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Junyeong Byeon
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yu Rim Oh
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Jun Kim
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Woo Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gil Myoung Kang
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Se Hee Min
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, Republic of Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Smith DM, Aggarwal G, Niehoff ML, Jones SA, Banerjee S, Farr SA, Nguyen AD. Biochemical, Biomarker, and Behavioral Characterization of the Grn R493X Mouse Model of Frontotemporal Dementia. Mol Neurobiol 2024; 61:9708-9722. [PMID: 38696065 PMCID: PMC11496013 DOI: 10.1007/s12035-024-04190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
Heterozygous loss-of-function mutations in the progranulin gene (GRN) are a major cause of frontotemporal dementia due to progranulin haploinsufficiency; complete deficiency of progranulin causes neuronal ceroid lipofuscinosis. Several progranulin-deficient mouse models have been generated, including both knockout mice and knockin mice harboring a common patient mutation (R493X). However, the GrnR493X mouse model has not been characterized completely. Additionally, while homozygous GrnR493X and Grn knockout mice have been extensively studied, data from heterozygous mice is still limited. Here, we performed more in-depth characterization of heterozygous and homozygous GrnR493X knockin mice, which includes biochemical assessments, behavioral studies, and analysis of fluid biomarkers. In the brains of homozygous GrnR493X mice, we found increased phosphorylated TDP-43 along with increased expression of lysosomal genes, markers of microgliosis and astrogliosis, pro-inflammatory cytokines, and complement factors. Heterozygous GrnR493X mice did not have increased TDP-43 phosphorylation but did exhibit limited increases in lysosomal and inflammatory gene expression. Behavioral studies found social and emotional deficits in GrnR493X mice that mirror those observed in Grn knockout mouse models, as well as impairment in memory and executive function. Overall, the GrnR493X knockin mouse model closely phenocopies Grn knockout models. Lastly, in contrast to homozygous knockin mice, heterozygous GrnR493X mice do not have elevated levels of fluid biomarkers previously identified in humans, including neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in both plasma and CSF. These results may help to inform pre-clinical studies that use this Grn knockin mouse model and other Grn knockout models.
Collapse
Affiliation(s)
- Denise M Smith
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
| | - Geetika Aggarwal
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
| | - Michael L Niehoff
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Veterans Affairs Medical Center, St. Louis, USA
| | - Spencer A Jones
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
| | - Subhashis Banerjee
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
| | - Susan A Farr
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
- Veterans Affairs Medical Center, St. Louis, USA
| | - Andrew D Nguyen
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA.
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA.
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA.
| |
Collapse
|
11
|
Wei Q, Xu Y, Cui G, Sun J, Su Z, Kou X, Zhao Y, Cao S, Li W, Xu Y, Gao S. Male-pronuclei-specific granulin facilitates somatic cells reprogramming via mitigating excessive cell proliferation and enhancing lysosomal function. J Cell Physiol 2024; 239:e31295. [PMID: 38747637 DOI: 10.1002/jcp.31295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 08/15/2024]
Abstract
Critical reprogramming factors resided predominantly in the oocyte or male pronucleus can enhance the efficiency or the quality of induced pluripotent stem cells (iPSCs) induction. However, few reprogramming factors exist in the male pronucleus had been verified. Here, we demonstrated that granulin (Grn), a factor enriched specifically in male pronucleus, can significantly improve the generation of iPSCs from mouse fibroblasts. Grn is highly expressed on Day 1, Day 3, Day 14 of reprogramming induced by four Yamanaka factors and functions at the initial stage of reprogramming. Transcriptome analysis indicates that Grn can promote the expression of lysosome-related genes, while inhibit the expression of genes involved in DNA replication and cell cycle at the early reprogramming stage. Further verification determined that Grn suppressed cell proliferation due to the arrest of cell cycle at G2/M phase. Moreover, ectopic Grn can enhance the lysosomes abundance and rescue the efficiency reduction of reprogramming resulted from lysosomal protease inhibition. Taken together, we conclude that Grn serves as an activator for somatic cell reprogramming through mitigating cell hyperproliferation and promoting the function of lysosomes.
Collapse
Affiliation(s)
- Qingqing Wei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yanwen Xu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Guina Cui
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Jiatong Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Zhongqu Su
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Xiaochen Kou
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanhong Zhao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Suyuan Cao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Wenhui Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yiliang Xu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Shaorong Gao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
12
|
Tesla R, Guhl C, Werthmann GC, Dixon D, Cenik B, Addepalli Y, Liang J, Fass DM, Rosenthal Z, Haggarty SJ, Williams NS, Posner BA, Ready JM, Herz J. Benzoxazole-derivatives enhance progranulin expression and reverse the aberrant lysosomal proteome caused by GRN haploinsufficiency. Nat Commun 2024; 15:6125. [PMID: 39033178 PMCID: PMC11271458 DOI: 10.1038/s41467-024-50076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/01/2024] [Indexed: 07/23/2024] Open
Abstract
Heterozygous loss-of-function mutations in the GRN gene are a major cause of hereditary frontotemporal dementia. The mechanisms linking frontotemporal dementia pathogenesis to progranulin deficiency are not well understood, and there is currently no treatment. Our strategy to prevent the onset and progression of frontotemporal dementia in patients with GRN mutations is to utilize small molecule positive regulators of GRN expression to boost progranulin levels from the remaining functional GRN allele, thus restoring progranulin levels back to normal within the brain. This work describes a series of blood-brain-barrier-penetrant small molecules which significantly increase progranulin protein levels in human cellular models, correct progranulin protein deficiency in Grn+/- mouse brains, and reverse lysosomal proteome aberrations, a phenotypic hallmark of frontotemporal dementia, more efficiently than the previously described small molecule suberoylanilide hydroxamic acid. These molecules will allow further elucidation of the cellular functions of progranulin and its role in frontotemporal dementia and will also serve as lead structures for further drug development.
Collapse
Affiliation(s)
- Rachel Tesla
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, Dallas, TX, USA
| | - Charlotte Guhl
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Gordon C Werthmann
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, Dallas, TX, USA
| | - Danielle Dixon
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, Dallas, TX, USA
| | - Basar Cenik
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, Dallas, TX, USA
| | - Yesu Addepalli
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jue Liang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel M Fass
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zachary Rosenthal
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce A Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Center for Translational Neurodegeneration Research, Dallas, TX, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
13
|
Adachi E, Murakoshi M, Shibata T, Shimozawa K, Sakuma H, Kishida C, Gohda T, Suzuki Y. Progranulin deficiency attenuates tubulointerstitial injury in a mouse unilateral ureteral obstruction model. Exp Anim 2024; 73:293-301. [PMID: 38369347 PMCID: PMC11254487 DOI: 10.1538/expanim.23-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/02/2024] [Indexed: 02/20/2024] Open
Abstract
Progranulin (PGRN) may have two opposing effects-inflammation and anti-inflammation-in different diseases. Although previous studies have reported that PGRN is involved in liver fibrosis, its involvement in tubulointerstitial fibrosis remains to be fully elucidated. Herein, we investigated these issues using PGRN-knockout (KO) mice treated with unilateral ureteral obstruction (UUO). Eight-week-old male PGRN-KO and wild-type (WT) mice were euthanized 3 and 7 days following UUO, and their kidneys were harvested for histopathological analysis. The renal expression of PGRN was evaluated by immunohistochemical and/or western blot analyses. The renal mRNA levels of markers related to inflammation (Il1b, Tnf, Il6, Ccl2, and Adgre1) and fibrosis (Tgfb1, Acta2, Fn1, and Col1a2) were evaluated using quantitative PCR. Histological changes such as renal tubular atrophy, urinary casts, and tubulointerstitial fibrosis were significantly improved in UUO-KO mice compared with UUO-WT mice. Quantitative PCR revealed that the mRNA expression levels of all inflammation- and fibrosis-related markers were lower in UUO-KO mice than in UUO-WT mice at 3 and/or 7 days after UUO. Moreover, PGRN and GRN protein levels were higher in the kidneys of UUO-WT mice than in mice that did not undergo UUO. Elevated GRN levels associated with excess PGRN levels may be involved in the occurrence of renal inflammation and fibrosis in UUO mice.
Collapse
Affiliation(s)
- Eri Adachi
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Maki Murakoshi
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Terumi Shibata
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenta Shimozawa
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hiroko Sakuma
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Chiaki Kishida
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomohito Gohda
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
14
|
Wu X, Song J, Zhang Y, Kuai L, Liu C, Ma X, Li B, Zhang Z, Luo Y. Exploring the role of autophagy in psoriasis pathogenesis: Insights into sustained inflammation and dysfunctional keratinocyte differentiation. Int Immunopharmacol 2024; 135:112244. [PMID: 38776847 DOI: 10.1016/j.intimp.2024.112244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Psoriasis is a common and prevalent chronic papulosquamous cutaneous disorder characterized by sustained inflammation, uncontrolled keratinocyte proliferation, dysfunctional differentiation, and angiogenesis. Autophagy, an intracellular catabolic process, can be induced in response to nutrient stress. It entails the degradation of cellular constituents through the lysosomal machinery, and its association with psoriasis has been well-documented. Nevertheless, there remains a notable dearth of research concerning the involvement of autophagy in the pathogenesis of psoriasis within human skin. This review provides a comprehensive overview of autophagy in psoriasis pathogenesis, focusing on its involvement in two key pathological manifestations: sustained inflammation and uncontrolled keratinocyte proliferation and differentiation. Additionally, it discusses potential avenues for disease management.
Collapse
Affiliation(s)
- Xinxin Wu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Ying Zhang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Changya Liu
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Xin Ma
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Bin Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhan Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
15
|
Yang Z, Chen H, Yin S, Mo H, Chai F, Luo P, Li Y, Ma L, Yi Z, Sun Y, Chen Y, Wu J, Wang W, Yin T, Zhu J, Shi C, Zhang F. PGR-KITLG signaling drives a tumor-mast cell regulatory feedback to modulate apoptosis of breast cancer cells. Cancer Lett 2024; 589:216795. [PMID: 38556106 DOI: 10.1016/j.canlet.2024.216795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
The immune microenvironment constructed by tumor-infiltrating immune cells and the molecular phenotype defined by hormone receptors (HRs) have been implicated as decisive factors in the regulation of breast cancer (BC) progression. Here, we found that the infiltration of mast cells (MCs) informed impaired prognoses in HR(+) BC but predicted improved prognoses in HR(-) BC. However, molecular features of MCs in different BC remain unclear. We next discovered that HR(-) BC cells were prone to apoptosis under the stimulation of MCs, whereas HR(+) BC cells exerted anti-apoptotic effects. Mechanistically, in HR(+) BC, the KIT ligand (KITLG), a major mast cell growth factor in recruiting and activating MCs, could be transcriptionally upregulated by the progesterone receptor (PGR), and elevate the production of MC-derived granulin (GRN). GRN attenuates TNFα-induced apoptosis in BC cells by competitively binding to TNFR1. Furthermore, disruption of PGR-KITLG signaling by knocking down PGR or using the specific KITLG-cKIT inhibitor iSCK03 potently enhanced the sensitivity of HR(+) BC cells to MC-induced apoptosis and exerted anti-tumor activity. Collectively, these results demonstrate that PGR-KITLG signaling in BC cells preferentially induces GRN expression in MCs to exert anti-apoptotic effects, with potential value in developing precision medicine approaches for diagnosis and treatment.
Collapse
Affiliation(s)
- Zeyu Yang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China; Graduate School of Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hongdan Chen
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Supeng Yin
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Hongbiao Mo
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Fan Chai
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yao Li
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ziying Yi
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Yizeng Sun
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Yan Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jie Wu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Weihua Wang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Tingjie Yin
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Junping Zhu
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Fan Zhang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China; Graduate School of Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
16
|
Bowhay CR, Hanington PC. Animal granulins: In the GRN scheme of things. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 152:105115. [PMID: 38101714 DOI: 10.1016/j.dci.2023.105115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Granulins are conserved in nearly all metazoans, with an intriguing loss in insects. These pleiotropic peptides are involved in numerous physiological and pathological processes yet have been overwhelmingly examined in mammalian systems. While work in other animal models has been informative, a richer understanding of the proteins should be obtained by integrating knowledge from all available contexts. The main bodies of work described here include 1) the structure-function relationships of progranulin and its cleavage products, 2) the role of expanded granulin gene families and different isoforms in fish immunology, 3) the release of granulin peptides to promote host angiogenesis by parasitic worms, 4) a diversity of molluscan uses for granulins, including immune activation in intermediate hosts to trematodes, 5) knowledge gained on lysosomal functions from C. elegans and the stress-related activities of granulins. We provide an overview of functional reports across the Metazoa to inform much-needed future research.
Collapse
Affiliation(s)
- Christina R Bowhay
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Patrick C Hanington
- School of Public Health, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
17
|
Sung W, Noh MY, Nahm M, Kim YS, Ki CS, Kim YE, Kim HJ, Kim SH. Progranulin haploinsufficiency mediates cytoplasmic TDP-43 aggregation with lysosomal abnormalities in human microglia. J Neuroinflammation 2024; 21:47. [PMID: 38347588 PMCID: PMC10863104 DOI: 10.1186/s12974-024-03039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Progranulin (PGRN) haploinsufficiency due to progranulin gene (GRN) variants can cause frontotemporal dementia (FTD) with aberrant TAR DNA-binding protein 43 (TDP-43) accumulation. Despite microglial burden with TDP-43-related pathophysiology, direct microglial TDP-43 pathology has not been clarified yet, only emphasized in neuronal pathology. Thus, the objective of this study was to investigate TDP-43 pathology in microglia of patients with PGRN haploinsufficiency. METHODS To design a human microglial cell model with PGRN haploinsufficiency, monocyte-derived microglia (iMGs) were generated from FTD-GRN patients carrying pathogenic or likely pathogenic variants (p.M1? and p.W147*) and three healthy controls. RESULTS iMGs from FTD-GRN patients with PGRN deficiency exhibited severe neuroinflammation phenotype and failure to maintain their homeostatic molecular signatures, along with impaired phagocytosis. In FTD-GRN patients-derived iMGs, significant cytoplasmic TDP-43 aggregation and accumulation of lipid droplets with profound lysosomal abnormalities were observed. These pathomechanisms were mediated by complement C1q activation and upregulation of pro-inflammatory cytokines. CONCLUSIONS Our study provides considerable cellular and molecular evidence that loss-of-function variants of GRN in human microglia can cause microglial dysfunction with abnormal TDP-43 aggregation induced by inflammatory milieu as well as the impaired lysosome. Elucidating the role of microglial TDP-43 pathology in intensifying neuroinflammation in individuals with FTD due to PGRN deficiency and examining consequential effects on microglial dysfunction might yield novel insights into the mechanisms underlying FTD and neurodegenerative disorders.
Collapse
Affiliation(s)
- Wonjae Sung
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Min-Young Noh
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Yong Sung Kim
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | | | - Young-Eun Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hee-Jin Kim
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
18
|
Smith DM, Aggarwal G, Niehoff ML, Jones SA, Banerjee S, Farr SA, Nguyen AD. Biochemical, biomarker, and behavioral characterization of the GrnR493X mouse model of frontotemporal dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.27.542495. [PMID: 37398305 PMCID: PMC10312473 DOI: 10.1101/2023.05.27.542495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Heterozygous loss-of-function mutations in the progranulin gene (GRN) are a major cause of frontotemporal dementia due to progranulin haploinsufficiency; complete deficiency of progranulin causes neuronal ceroid lipofuscinosis. Several progranulin-deficient mouse models have been generated, including both knockout mice and knockin mice harboring a common patient mutation (R493X). However, the GrnR493X mouse model has not been characterized completely. Additionally, while homozygous GrnR493X and Grn knockout mice have been extensively studied, data from heterozygous mice is still limited. Here, we performed more in-depth characterization of heterozygous and homozygous GrnR493X knockin mice, which includes biochemical assessments, behavioral studies, and analysis of fluid biomarkers. In the brains of homozygous GrnR493X mice, we found increased phosphorylated TDP-43 along with increased expression of lysosomal genes, markers of microgliosis and astrogliosis, pro-inflammatory cytokines, and complement factors. Heterozygous GrnR493X mice did not have increased TDP-43 phosphorylation but did exhibit limited increases in lysosomal and inflammatory gene expression. Behavioral studies found social and emotional deficits in GrnR493X mice that mirror those observed in Grn knockout mouse models, as well as impairment in memory and executive function. Overall, the GrnR493X knockin mouse model closely phenocopies Grn knockout models. Lastly, in contrast to homozygous knockin mice, heterozygous GrnR493X mice do not have elevated levels of fluid biomarkers previously identified in humans, including neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in both plasma and CSF. These results may help to inform pre-clinical studies that use this Grn knockin mouse model and other Grn knockout models.
Collapse
Affiliation(s)
- Denise M. Smith
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
| | - Geetika Aggarwal
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
| | - Michael L. Niehoff
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Veterans Affairs Medical Center, United States of America
| | - Spencer A. Jones
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
| | - Subhashis Banerjee
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
| | - Susan A. Farr
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
- Veterans Affairs Medical Center, United States of America
| | - Andrew D. Nguyen
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
| |
Collapse
|
19
|
Wang AL, Mambou EA, Kao AW. The progranulin cleavage product granulin 3 exerts a dominant negative effect on animal fitness. Hum Mol Genet 2024; 33:245-253. [PMID: 37903062 PMCID: PMC10800025 DOI: 10.1093/hmg/ddad184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023] Open
Abstract
Progranulin is an evolutionarily conserved protein that has been implicated in human neurodevelopmental and neurodegenerative diseases. Human progranulin is comprised of multiple cysteine-rich, biologically active granulin peptides. Granulin peptides accumulate with age and stress, however their functional contributions relative to full-length progranulin remain unclear. To address this, we generated C. elegans strains that produced quantifiable levels of both full-length progranulin/PGRN-1 protein and cleaved granulin peptide. Using these strains, we demonstrated that even in the presence of intact PGRN-1, granulin peptides suppressed the activity of the lysosomal aspartyl protease activity, ASP-3/CTSD. Granulin peptides were also dominant over PGRN-1 in compromising animal fitness as measured by progress through development and stress response. Finally, the degradation of human TDP-43 was impaired when the granulin to PGRN-1 ratio was increased, representing a disease-relevant downstream impact of impaired lysosomal function. In summary, these studies suggest that not only absolute progranulin levels, but also the balance between full-length progranulin and its cleavage products, is important in regulating lysosomal biology. Given its relevance in human disease, this suggests that the processing of progranulin into granulins should be considered as part of disease pathobiology and may represent a site of therapeutic intervention.
Collapse
Affiliation(s)
- Austin L Wang
- Memory and Aging Center, Weill Institute for Neuroscience, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Edwina A Mambou
- Memory and Aging Center, Weill Institute for Neuroscience, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Aimee W Kao
- Memory and Aging Center, Weill Institute for Neuroscience, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
20
|
Bai Y, Camargo CM, Glasauer SMK, Gifford R, Tian X, Longhini AP, Kosik KS. Single-cell mapping of lipid metabolites using an infrared probe in human-derived model systems. Nat Commun 2024; 15:350. [PMID: 38191490 PMCID: PMC10774263 DOI: 10.1038/s41467-023-44675-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Understanding metabolic heterogeneity is the key to uncovering the underlying mechanisms of metabolic-related diseases. Current metabolic imaging studies suffer from limitations including low resolution and specificity, and the model systems utilized often lack human relevance. Here, we present a single-cell metabolic imaging platform to enable direct imaging of lipid metabolism with high specificity in various human-derived 2D and 3D culture systems. Through the incorporation of an azide-tagged infrared probe, selective detection of newly synthesized lipids in cells and tissue became possible, while simultaneous fluorescence imaging enabled cell-type identification in complex tissues. In proof-of-concept experiments, newly synthesized lipids were directly visualized in human-relevant model systems among different cell types, mutation status, differentiation stages, and over time. We identified upregulated lipid metabolism in progranulin-knockdown human induced pluripotent stem cells and in their differentiated microglia cells. Furthermore, we observed that neurons in brain organoids exhibited a significantly lower lipid metabolism compared to astrocytes.
Collapse
Affiliation(s)
- Yeran Bai
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
- Photothermal Spectroscopy Corp., Santa Barbara, CA, USA.
| | - Carolina M Camargo
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Stella M K Glasauer
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Raymond Gifford
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Xinran Tian
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Andrew P Longhini
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
21
|
Verwaerde P, Estrella C, Burlet S, Barrier M, Marotte AA, Clincke G. First-In-Human Safety, Tolerability, and Pharmacokinetics of Single and Multiple Doses of AZP2006, A Synthetic Compound for the Treatment of Alzheimer's Disease and Related Diseases. J Alzheimers Dis 2024; 98:715-727. [PMID: 38427472 DOI: 10.3233/jad-220883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Alzheimer's disease (AD) and progressive supranuclear palsy (PSP) are major neurodegenerative conditions with tau pathology in common but distinct symptoms-AD involves cognitive decline while PSP affects balance and eye movement. Progranulin (PGRN) is a growth factor implicated in neurodegenerative diseases, including AD and PSP. AZP2006, a synthetic compound, targets tauopathies by stabilizing PGRN levels and reducing tau aggregation and neuroinflammation. Objective Evaluate the safety, tolerability, and pharmacokinetics of AZP2006. Methods A first-in-Human phase 1 study comprised a single ascending dose (SAD) and a multiple ascending dose study (MAD). The SAD study included 64 healthy male volunteers and tested singles oral doses of 3 to 500 mg of AZP2006 free base equivalent or placebo. In the MAD study, 24 healthy male volunteers were administered oral doses of 30, 60, and 120 mg per day of AZP2006 or placebo for 10 days. Results No serious adverse events were observed. Clinical, biological, and electrocardiogram findings were non-relevant. Nineteen minor adverse events resolved before study completion. The safety profile indicated no specific risks. The multiple ascending dose study was halted, and the optional dose level of 180 mg was not performed due to high levels of M2 metabolite in plasma that necessitated additional preclinical evaluation of M2. Both AZP2006 and its M2 metabolite were quickly absorbed and widely distributed in tissues. Exposure increased more than proportionally with dose. Conclusions AZP2006 had a favorable safety profile and was rapidly absorbed. Elevated M2 metabolite levels necessitated further studies to clarify excretion and metabolism mechanisms.
Collapse
|
22
|
McElhanon KE, Huff TC, Hirenallur-Shanthappa D, Miller RA, Christoforou N. Increased circulating progranulin is not sufficient to induce cardiac dysfunction or supraventricular arrhythmia. Sci Rep 2023; 13:21541. [PMID: 38057339 PMCID: PMC10700350 DOI: 10.1038/s41598-023-47311-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023] Open
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, and the incidence of new-onset AF has been increasing over the past two decades. Several factors contribute to the risk of developing AF including age, preexisting cardiovascular disease, chronic kidney disease, and obesity. Concurrent with the rise in AF, obesity has followed the same two-decade trend. The contribution of circulating proteins to obesity-related AF is of particular interest in the field. In this study, we investigated the effects of increased circulating levels of the glycoprotein progranulin on the development of supraventricular arrhythmias and changes to cardiac function. AAV8-mediated overexpression of full-length mouse progranulin was used to increase plasma protein levels and determine susceptibility to supraventricular arrhythmias and changes in cardiac structure and function. C57Bl/6N mice were subjected to increased circulating levels of progranulin for 20 weeks. Cardiac conduction was evaluated by surface ECG with and without isoproterenol challenge, and cardiac structure and function were measured by echocardiography after 20 weeks of circulating progranulin overexpression. Increased circulating levels of progranulin were maintained throughout the 20-week study. The cardiac structure and function remained unchanged in mice with increased circulating progranulin. ECG indices (P wave duration, P amplitude, QRS interval) were unaffected by increased progranulin levels and no arrhythmogenic events were observed following the isoproterenol challenge. In our model, increased levels of circulating progranulin were not sufficient to induce changes in cardiac structure and function or elicit ECG abnormalities suggestive of susceptibility to supraventricular arrhythmias.
Collapse
Affiliation(s)
- Kevin E McElhanon
- Rare Disease Research Unit, Worldwide Research, Development, and Medical, Pfizer, Inc., Cambridge, MA, USA
| | - Tyler C Huff
- Rare Disease Research Unit, Worldwide Research, Development, and Medical, Pfizer, Inc., Cambridge, MA, USA
| | | | - Russell A Miller
- Rare Disease Research Unit, Worldwide Research, Development, and Medical, Pfizer, Inc., Cambridge, MA, USA
| | - Nicolas Christoforou
- Rare Disease Research Unit, Worldwide Research, Development, and Medical, Pfizer, Inc., Cambridge, MA, USA.
| |
Collapse
|
23
|
Todd TW, Shao W, Zhang YJ, Petrucelli L. The endolysosomal pathway and ALS/FTD. Trends Neurosci 2023; 46:1025-1041. [PMID: 37827960 PMCID: PMC10841821 DOI: 10.1016/j.tins.2023.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are considered to be part of a disease spectrum that is associated with causative mutations and risk variants in a wide range of genes. Mounting evidence indicates that several of these genes are linked to the endolysosomal system, highlighting the importance of this pathway in ALS/FTD. Although many studies have focused on how disruption of this pathway impacts on autophagy, recent findings reveal that this may not be the whole picture: specifically, disrupting autophagy may not be sufficient to induce disease, whereas disrupting the endolysosomal system could represent a crucial pathogenic driver. In this review we discuss the connections between ALS/FTD and the endolysosomal system, including a breakdown of how disease-associated genes are implicated in this pathway. We also explore the potential downstream consequences of disrupting endolysosomal activity in the brain, outside of an effect on autophagy.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Wei Shao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
24
|
Meda F, Simrén J, Borroni B, Cantoni V, Archetti S, Biasiotto G, Andreasson U, Blennow K, Kvartsberg H, Zetterberg H. Analytical and clinical validation of a blood progranulin ELISA in frontotemporal dementias. Clin Chem Lab Med 2023; 61:2195-2204. [PMID: 37476993 PMCID: PMC10598571 DOI: 10.1515/cclm-2023-0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVES Heterozygous mutations in the granulin (GRN) gene may result in haploinsufficiency of progranulin (PGRN), which might lead to frontotemporal dementia (FTD). In this study, we aimed to perform analytical and clinical validation of a commercial progranulin kit for clinical use. METHODS Analytical validation parameters including assay precision, selectivity, measurement range, dilution linearity, interferences and sample stability were tested according to previously described procedures. For clinical validation, PGRN levels were measured in plasma from 32 cognitively healthy individuals, 52 confirmed GRN mutation carriers, 25 C9orf72 mutation carriers and 216 patients with different neurodegenerative diseases of which 70 were confirmed as non-mutation carriers. RESULTS Among the analytical validation parameters, assay precision and repeatability were very stable (coefficients of variation <7 %). Spike recovery was 96 %, the measurement range was 6.25-400 μg/L and dilution linearity ranged from 1:50-1:200. Hemolysis did not interfere with progranulin levels, and these were resistant to freeze/thaw cycles and storage at different temperatures. For the clinical validation, the assay was capable of distinguishing GRN mutation carriers from controls and non-GRN mutation carriers with very good sensitivity and specificity at a cut-off of 57 μg/L (97 %, 100 %, respectively). CONCLUSIONS In this study, we demonstrate robust analytical and diagnostic performance of this commercial progranulin kit for implementation in clinical laboratory practice. This easy-to-use test allows identification of potential GRN mutation carriers, which may guide further evaluation of the patient. This assay might also be used to evaluate the effect of novel PGRN-targeting drugs and therapies.
Collapse
Affiliation(s)
- Francisco Meda
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Valentina Cantoni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Silvana Archetti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giorgio Biasiotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Hlin Kvartsberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, HKCeND, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
25
|
Boylan MA, Pincetic A, Romano G, Tatton N, Kenkare-Mitra S, Rosenthal A. Targeting Progranulin as an Immuno-Neurology Therapeutic Approach. Int J Mol Sci 2023; 24:15946. [PMID: 37958929 PMCID: PMC10647331 DOI: 10.3390/ijms242115946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Immuno-neurology is an emerging therapeutic strategy for dementia and neurodegeneration designed to address immune surveillance failure in the brain. Microglia, as central nervous system (CNS)-resident myeloid cells, routinely perform surveillance of the brain and support neuronal function. Loss-of-function (LOF) mutations causing decreased levels of progranulin (PGRN), an immune regulatory protein, lead to dysfunctional microglia and are associated with multiple neurodegenerative diseases, including frontotemporal dementia caused by the progranulin gene (GRN) mutation (FTD-GRN), Alzheimer's disease (AD), Parkinson's disease (PD), limbic-predominant age-related transactivation response deoxyribonucleic acid binding protein 43 (TDP-43) encephalopathy (LATE), and amyotrophic lateral sclerosis (ALS). Immuno-neurology targets immune checkpoint-like proteins, offering the potential to convert aging and dysfunctional microglia into disease-fighting cells that counteract multiple disease pathologies, clear misfolded proteins and debris, promote myelin and synapse repair, optimize neuronal function, support astrocytes and oligodendrocytes, and maintain brain vasculature. Several clinical trials are underway to elevate PGRN levels as one strategy to modulate the function of microglia and counteract neurodegenerative changes associated with various disease states. If successful, these and other immuno-neurology drugs have the potential to revolutionize the treatment of neurodegenerative disorders by harnessing the brain's immune system and shifting it from an inflammatory/pathological state to an enhanced physiological/homeostatic state.
Collapse
Affiliation(s)
| | | | | | | | | | - Arnon Rosenthal
- Alector, Inc., 131 Oyster Point Blvd, Suite 600, South San Francisco, CA 94080, USA
| |
Collapse
|
26
|
Yoshioka Y, Chiu YL, Uchida T, Yamashita H, Suzuki G, Shinzato C. Genes possibly related to symbiosis in early life stages of Acropora tenuis inoculated with Symbiodinium microadriaticum. Commun Biol 2023; 6:1027. [PMID: 37853100 PMCID: PMC10584924 DOI: 10.1038/s42003-023-05350-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
Due to the ecological importance of mutualism between reef-building corals and symbiotic algae (Family Symbiodiniaceae), various transcriptomic studies on coral-algal symbiosis have been performed; however, molecular mechanisms, especially genes essential to initiate and maintain these symbioses remain unknown. We investigated transcriptomic responses of Acropora tenuis to inoculation with the native algal symbiont, Symbiodinium microadriaticum, during early life stages, and identified possible symbiosis-related genes. Genes involved in immune regulation, protection against oxidative stress, and metabolic interactions between partners are particularly important for symbiosis during Acropora early life stages. In addition, molecular phylogenetic analysis revealed that some possible symbiosis-related genes originated by gene duplication in the Acropora lineage, suggesting that gene duplication may have been the driving force to establish stable mutualism in Acropora, and that symbiotic molecular mechanisms may vary among coral lineages.
Collapse
Affiliation(s)
- Yuki Yoshioka
- Atmosphere and Ocean Research Institute (AORI), The University of Tokyo, Kashiwa, Chiba, Japan.
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.
| | - Yi-Ling Chiu
- Atmosphere and Ocean Research Institute (AORI), The University of Tokyo, Kashiwa, Chiba, Japan
| | - Taiga Uchida
- Atmosphere and Ocean Research Institute (AORI), The University of Tokyo, Kashiwa, Chiba, Japan
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa, Japan
| | - Go Suzuki
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute (AORI), The University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
27
|
Feng T, Minevich G, Liu P, Qin HX, Wozniak G, Pham J, Pham K, Korgaonkar A, Kurnellas M, Defranoux NA, Long H, Mitra A, Hu F. AAV- GRN partially corrects motor deficits and ALS/FTLD-related pathology in Tmem106b-/-Grn-/- mice. iScience 2023; 26:107247. [PMID: 37519899 PMCID: PMC10371829 DOI: 10.1016/j.isci.2023.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Loss of function of progranulin (PGRN), encoded by the granulin (GRN) gene, is implicated in several neurodegenerative diseases. Several therapeutics to boost PGRN levels are currently in clinical trials. However, it is difficult to test the efficacy of PGRN-enhancing drugs in mouse models due to the mild phenotypes of Grn-/- mice. Recently, mice deficient in both PGRN and TMEM106B were shown to develop severe motor deficits and pathology. Here, we show that intracerebral ventricle injection of PGRN-expressing AAV1/9 viruses partially rescues motor deficits, neuronal loss, glial activation, and lysosomal abnormalities in Tmem106b-/-Grn-/- mice. Widespread expression of PGRN is detected in both the brain and spinal cord for both AAV subtypes. However, AAV9 but not AAV1-mediated expression of PGRN results in high levels of PGRN in the serum. Together, these data support using the Tmem106b-/-Grn-/- mouse strain as a robust mouse model to determine the efficacy of PGRN-elevating therapeutics.
Collapse
Affiliation(s)
- Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Pengan Liu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Henry Xin Qin
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Jenny Pham
- Alector Inc, South San Francisco, CA 94080, USA
| | - Khanh Pham
- Alector Inc, South San Francisco, CA 94080, USA
| | | | | | | | - Hua Long
- Alector Inc, South San Francisco, CA 94080, USA
| | | | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
28
|
Asken BM, Ljubenkov PA, Staffaroni AM, Casaletto KB, Vandevrede L, Cobigo Y, Rojas-Rodriguez JC, Rankin KP, Kornak J, Heuer H, Shigenaga J, Appleby BS, Bozoki AC, Domoto-Reilly K, Ghoshal N, Huey E, Litvan I, Masdeu JC, Mendez MF, Pascual B, Pressman P, Tartaglia MC, Kremers W, Forsberg LK, Boeve BF, Boxer AL, Rosen HJ, Kramer JH. Plasma inflammation for predicting phenotypic conversion and clinical progression of autosomal dominant frontotemporal lobar degeneration. J Neurol Neurosurg Psychiatry 2023; 94:541-549. [PMID: 36977552 PMCID: PMC10313977 DOI: 10.1136/jnnp-2022-330866] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Measuring systemic inflammatory markers may improve clinical prognosis and help identify targetable pathways for treatment in patients with autosomal dominant forms of frontotemporal lobar degeneration (FTLD). METHODS We measured plasma concentrations of IL-6, TNFα and YKL-40 in pathogenic variant carriers (MAPT, C9orf72, GRN) and non-carrier family members enrolled in the ARTFL-LEFFTDS Longitudinal Frontotemporal Lobar Degeneration consortium. We evaluated associations between baseline plasma inflammation and rate of clinical and neuroimaging changes (linear mixed effects models with standardised (z) outcomes). We compared inflammation between asymptomatic carriers who remained clinically normal ('asymptomatic non-converters') and those who became symptomatic ('asymptomatic converters') using area under the curve analyses. Discrimination accuracy was compared with that of plasma neurofilament light chain (NfL). RESULTS We studied 394 participants (non-carriers=143, C9orf72=117, GRN=62, MAPT=72). In MAPT, higher TNFα was associated with faster functional decline (B=0.12 (0.02, 0.22), p=0.02) and temporal lobe atrophy. In C9orf72, higher TNFα was associated with faster functional decline (B=0.09 (0.03, 0.16), p=0.006) and cognitive decline (B=-0.16 (-0.22, -0.10), p<0.001), while higher IL-6 was associated with faster functional decline (B=0.12 (0.03, 0.21), p=0.01). TNFα was higher in asymptomatic converters than non-converters (β=0.29 (0.09, 0.48), p=0.004) and improved discriminability compared with plasma NfL alone (ΔR2=0.16, p=0.007; NfL: OR=1.4 (1.03, 1.9), p=0.03; TNFα: OR=7.7 (1.7, 31.7), p=0.007). CONCLUSIONS Systemic proinflammatory protein measurement, particularly TNFα, may improve clinical prognosis in autosomal dominant FTLD pathogenic variant carriers who are not yet exhibiting severe impairment. Integrating TNFα with markers of neuronal dysfunction like NfL could optimise detection of impending symptom conversion in asymptomatic pathogenic variant carriers and may help personalise therapeutic approaches.
Collapse
Affiliation(s)
- Breton M Asken
- Department of Clinical and Health Psychology, 1Florida Alzheimer's Disease Research Center, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Peter A Ljubenkov
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Adam M Staffaroni
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Kaitlin B Casaletto
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Lawren Vandevrede
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Yann Cobigo
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Julio C Rojas-Rodriguez
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Katherine P Rankin
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - John Kornak
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Hilary Heuer
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Judy Shigenaga
- Department of Medicine, Veterans Affairs Health Care System, San Francisco, California, USA
| | - Brian S Appleby
- Departments of Neurology, Psychiatry, and Pathology, Case Western Reserve, Cleveland, Ohio, USA
| | - Andrea C Bozoki
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kimiko Domoto-Reilly
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Nupur Ghoshal
- Department of Neurology, Washington University, St. Louis, Missouri, USA
| | - Edward Huey
- Departments of Psychiatry and Neurology, Columbia University, New York, New York, USA
| | - Irene Litvan
- Department of Neurology, University of California, San Diego, La Jolla, California, USA
| | - Joseph C Masdeu
- Department of Neurology, Nantz National Alzheimer Center, Houston Methodist, Houston, Texas, USA
| | - Mario F Mendez
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | - Belen Pascual
- Department of Neurology, Nantz National Alzheimer Center, Houston Methodist, Houston, Texas, USA
| | - Peter Pressman
- Department of Neurology, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
- Canadian Sports Concussion Project, Toronto, Ontario, Canada
| | - Walter Kremers
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota, USA
| | - Leah K Forsberg
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Brad F Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Adam L Boxer
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Howie J Rosen
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Joel H Kramer
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
29
|
Chakraborty S, Tabrizi Z, Bhatt NN, Franciosa SA, Bracko O. A Brief Overview of Neutrophils in Neurological Diseases. Biomolecules 2023; 13:biom13050743. [PMID: 37238612 DOI: 10.3390/biom13050743] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Neutrophils are the most abundant leukocyte in circulation and are the first line of defense after an infection or injury. Neutrophils have a broad spectrum of functions, including phagocytosis of microorganisms, the release of pro-inflammatory cytokines and chemokines, oxidative burst, and the formation of neutrophil extracellular traps. Traditionally, neutrophils were thought to be most important for acute inflammatory responses, with a short half-life and a more static response to infections and injury. However, this view has changed in recent years showing neutrophil heterogeneity and dynamics, indicating a much more regulated and flexible response. Here we will discuss the role of neutrophils in aging and neurological disorders; specifically, we focus on recent data indicating the impact of neutrophils in chronic inflammatory processes and their contribution to neurological diseases. Lastly, we aim to conclude that reactive neutrophils directly contribute to increased vascular inflammation and age-related diseases.
Collapse
Affiliation(s)
| | - Zeynab Tabrizi
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | | | | | - Oliver Bracko
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
- Department of Neurology, University of Miami-Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
30
|
Xu SM, Xiao HY, Hu ZX, Zhong XF, Zeng YJ, Wu YX, Li D, Song T. GRN is a prognostic biomarker and correlated with immune infiltration in glioma: A study based on TCGA data. Front Oncol 2023; 13:1162983. [PMID: 37091137 PMCID: PMC10117795 DOI: 10.3389/fonc.2023.1162983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
BackgroundAmong primary brain tumors, gliomas are associated with a poor prognosis and a median survival that varies depending on the tumor grade and subtype. As the most malignant form of glioma, glioblastoma (GBM) constitutes a significant health concern. Alteration in granulin(GRN) has been proved to be accountable for several diseases. However, the relationship between GRN and GBM remains unclear. We evaluated the role of GRN in GBM through The Cancer Genome Atlas (TCGA) databaseMethodsFirst, we assessed the relationship between GRN and GBM through the GEPIA database. Next, the relationship between GRN and GBM prognosis was analyzed by logistic regression and multivariate cox methods. Using CIBERSORT and the GEPIA correlation module, we also investigated the link between GRN and immune infiltrates in cancer. Using the TCGA data, a gene set enrichment analysis (GSEA) was performed. We also employed Tumor Immune Estimation Resource (TIMER) to examine the data set of GRN expression and immune infiltration level in GBM and investigate the cumulative survival in GBM. We also validated tissues from GBM patients by Western blotting, RT-qPCR, and immunohistochemistry.ResultsIncreased GRN expression was shown to have a significant relationship to tumor grade in a univariate study utilizing logistic regression. Furthermore, multivariate analysis disclosed that GRN expression down-regulation is an independent predictive factor for a favorable outcome. GRN expression level positively correlates with the number of CD4+ T cells, neutrophils, macrophages, and dendritic cells (DCs) that infiltrate a GBM. The GSEA also found that the high GRN expression phenotype pathway was enriched for genes involved in immune response molecular mediator production, lymphocyte-mediated immunity, cytokine-mediated signaling pathway, leukocyte proliferation, cell chemotaxis, and CD4+ alpha beta T cell activation. Differentially enriched pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) include lysosome, apoptosis, primary immunodeficiency, chemokine signaling pathway, natural killer cell-mediated cytotoxicity, and B cell receptor signaling pathway. Validated result showed that GRN was upregulated in GBM tissues. These results suggested that GRN was a potential indicator for the status of GBM.ConclusionGRN is a prognostic biomarker and correlated with immune infiltrates in GBM.
Collapse
Affiliation(s)
- Su-Mei Xu
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hai-Yan Xiao
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhong-Xu Hu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Feng Zhong
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, China
| | - You-Jie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - You-Xuan Wu
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, China
| | - Dai Li
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Dai Li, ; Tao Song,
| | - Tao Song
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Dai Li, ; Tao Song,
| |
Collapse
|
31
|
TDP-43 Proteinopathy Specific Biomarker Development. Cells 2023; 12:cells12040597. [PMID: 36831264 PMCID: PMC9954136 DOI: 10.3390/cells12040597] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
TDP-43 is the primary or secondary pathological hallmark of neurodegenerative diseases, such as amyotrophic lateral sclerosis, half of frontotemporal dementia cases, and limbic age-related TDP-43 encephalopathy, which clinically resembles Alzheimer's dementia. In such diseases, a biomarker that can detect TDP-43 proteinopathy in life would help to stratify patients according to their definite diagnosis of pathology, rather than in clinical subgroups of uncertain pathology. For therapies developed to target pathological proteins that cause the disease a biomarker to detect and track the underlying pathology would greatly enhance such undertakings. This article reviews the latest developments and outlooks of deriving TDP-43-specific biomarkers from the pathophysiological processes involved in the development of TDP-43 proteinopathy and studies using biosamples from clinical entities associated with TDP-43 pathology to investigate biomarker candidates.
Collapse
|
32
|
Ingannato A, Bessi V, Chiari A, Salvatori D, Bagnoli S, Bedin R, Ferrari C, Sorbi S, Nacmias B. GRN Missense Variants and Familial Alzheimer's Disease: Two Case Reports. J Alzheimers Dis 2023; 96:767-775. [PMID: 37899057 DOI: 10.3233/jad-230689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
BACKGROUND Progranulin protein (GRN) is a growth factor, encoded by the GRN (Granulin precursor) gene, involved in several functions including inflammation, wound repair, signal transduction, proliferation, and tumorigenesis. Mutations in GRN gene are usually the genetic etiology of frontotemporal dementia (FTD), but different studies reported GRN mutations in Alzheimer 's disease (AD) patients. OBJECTIVE Here, we analyzed FTD linked gene GRN in 23 patients with a clinical diagnosis of AD and a family history of AD (FAD), not carrying mutations in AD candidate genes (PSEN 1, PSEN 2, and APP). In addition, Microtubule-associated protein tau (MAPT) gene was studied too. All patients underwent an extensive neuropsychological battery. METHODS Genetic analyses were performed thought PCR assay and sequencing. Variants were annotated with ANNOVAR and allele frequency was checked on population databases. In silico prediction tools were consulted to check nonsynonymous variants and their effect on protein function and structure. The clinical data were retrospectively collected from medical records. RESULTS Genetic screening of MAPT and GRN in 23 FAD patients highlighted two rare different variants in two probands (2/23 = 8,7%) located in GRN gene: R433W (p.Arg433Trp) and C521Y (p.Cys521Tyr). The R433W and C521Y are variants with uncertain significant, that are predicted to affect GRN protein structure and function, with a possible damaging effect. CONCLUSIONS Our data provide evidence of the importance of GRN genetic analysis also in the study of familial AD.
Collapse
Affiliation(s)
- Assunta Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Valentina Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Annalisa Chiari
- U.O. Neurologia, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Davide Salvatori
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Roberta Bedin
- U.O. Neurologia, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| |
Collapse
|
33
|
Amanollahi M, Jameie M, Rezaei N. Neuroinflammation as a potential therapeutic target in neuroimmunological diseases. TRANSLATIONAL NEUROIMMUNOLOGY, VOLUME 7 2023:475-504. [DOI: 10.1016/b978-0-323-85841-0.00021-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
34
|
Ventura E, Xie C, Buraschi S, Belfiore A, Iozzo RV, Giordano A, Morrione A. Complexity of progranulin mechanisms of action in mesothelioma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:333. [PMID: 36471440 PMCID: PMC9720952 DOI: 10.1186/s13046-022-02546-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mesothelioma is an aggressive disease with limited therapeutic options. The growth factor progranulin plays a critical role in several cancer models, where it regulates tumor initiation and progression. Recent data from our laboratories have demonstrated that progranulin and its receptor, EphA2, constitute an oncogenic pathway in bladder cancer by promoting motility, invasion and in vivo tumor formation. Progranulin and EphA2 are expressed in mesothelioma cells but their mechanisms of action are not well defined. In addition, there are no data establishing whether the progranulin/EphA2 axis is tumorigenic for mesothelioma cells. METHODS The expression of progranulin in various mesothelioma cell lines derived from all major mesothelioma subtypes was examined by western blots on cell lysates, conditioned media and ELISA assays. The biological roles of progranulin, EphA2, EGFR, RYK and FAK were assessed in vitro by immunoblots, human phospho-RTK antibody arrays, pharmacological (specific inhibitors) and genetic (siRNAs, shRNAs, CRISPR/Cas9) approaches, motility, invasion and adhesion assays. In vivo tumorigenesis was determined by xenograft models. Focal adhesion turnover was evaluated biochemically using focal adhesion assembly/disassembly assays and immunofluorescence analysis with focal adhesion-specific markers. RESULTS In the present study we show that progranulin is upregulated in various mesothelioma cell lines covering all mesothelioma subtypes and is an important regulator of motility, invasion, adhesion and in vivo tumor formation. However, our results indicate that EphA2 is not the major functional receptor for progranulin in mesothelioma cells, where progranulin activates a complex signaling network including EGFR and RYK. We further characterized progranulin mechanisms of action and demonstrated that progranulin, by modulating FAK activity, regulates the kinetic of focal adhesion disassembly, a critical step for cell motility. CONCLUSION Collectively, our results highlight the complexity of progranulin oncogenic signaling in mesothelioma, where progranulin modulate functional cross-talks between multiple RTKs, thereby suggesting the need for combinatorial therapeutic approaches to improve treatments of this aggressive disease.
Collapse
Affiliation(s)
- Elisa Ventura
- grid.264727.20000 0001 2248 3398Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122 USA
| | - Christopher Xie
- grid.412726.40000 0004 0442 8581Department of Pathology, Anatomy and Cell Biology, Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Simone Buraschi
- grid.412726.40000 0004 0442 8581Department of Pathology, Anatomy and Cell Biology, Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Antonino Belfiore
- grid.8158.40000 0004 1757 1969Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Renato V. Iozzo
- grid.412726.40000 0004 0442 8581Department of Pathology, Anatomy and Cell Biology, Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Antonio Giordano
- grid.264727.20000 0001 2248 3398Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122 USA ,grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Andrea Morrione
- grid.264727.20000 0001 2248 3398Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122 USA
| |
Collapse
|
35
|
Ai X, He W, Wang X, Wang Z, Wang G, Lu H, Qin S, Li Z, Guan J, Zhao K, Song D, Gao F, Lan Y. Antiviral effect of lysosomotropic disaccharide trehalose on porcine hemagglutinating encephalomyelitis virus, a highly neurotropic betacoronavirus. Virology 2022; 577:131-137. [PMID: 36368235 DOI: 10.1016/j.virol.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Many members of the genus Betacoronavirus are neurotropic viruses that frequently cause serious harm to humans or animals, including highly neurotropic porcine hemagglutinating encephalomyelitis virus (PHEV). Nevertheless, very few approved treatments exist to combat these viruses. Lysosomotropic trehalose, a widely used, nontoxic, natural disaccharide that can traverse the blood-brain barrier, has been proposed as a potential antiviral agent for use in prevention or treatment of betacoronavirus-associated infections. The purpose of this study was to determine if trehalose could inhibit PHEV infection of cells of a mouse central nervous system-derived neuroblastoma cell line in vitro or brain cells in vivo. Our results demonstrated that treatment of PHEV-infected mouse neuroblastoma cells and mice with trehalose reduced viral replication and that these trehalose antiviral effects were dependent on expression of lysosomal protein progranulin. Collectively, these results indicated that trehalose holds promise as a new antiviral agent for use in controlling neurotropic betacoronavirus infections.
Collapse
Affiliation(s)
- Xiaomin Ai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenqi He
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinran Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhenzhen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Gaili Wang
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, Jilin, China
| | - Hujun Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Siyuan Qin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China; General Monitoring Station for Wildlife-Borne Infectious Diseases, State Forestry and Grass Administration, Shenyang, China
| | - Zi Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kui Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Deguang Song
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Feng Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yungang Lan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
36
|
Tran LH, Graulus GJ, Vincke C, Smiejkowska N, Kindt A, Devoogdt N, Muyldermans S, Adriaensens P, Guedens W. Nanobodies for the Early Detection of Ovarian Cancer. Int J Mol Sci 2022; 23:ijms232213687. [PMID: 36430166 PMCID: PMC9691119 DOI: 10.3390/ijms232213687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Ovarian cancer ranks fifth in cancer-related deaths among women. Since ovarian cancer patients are often asymptomatic, most patients are diagnosed only at an advanced stage of disease. This results in a 5-year survival rate below 50%, which is in strong contrast to a survival rate as high as 94% if detected and treated at an early stage. Monitoring serum biomarkers offers new possibilities to diagnose ovarian cancer at an early stage. In this study, nanobodies targeting the ovarian cancer biomarkers human epididymis protein 4 (HE4), secretory leukocyte protease inhibitor (SLPI), and progranulin (PGRN) were evaluated regarding their expression levels in bacterial systems, epitope binning, and antigen-binding affinity by enzyme-linked immunosorbent assay and surface plasmon resonance. The selected nanobodies possess strong binding affinities for their cognate antigens (KD~0.1-10 nM) and therefore have a pronounced potential to detect ovarian cancer at an early stage. Moreover, it is of utmost importance that the limits of detection (LOD) for these biomarkers are in the pM range, implying high specificity and sensitivity, as demonstrated by values in human serum of 37 pM for HE4, 163 pM for SLPI, and 195 pM for PGRN. These nanobody candidates could thus pave the way towards multiplexed biosensors.
Collapse
Affiliation(s)
- Lan-Huong Tran
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, BE-3590 Diepenbeek, Belgium
| | - Geert-Jan Graulus
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, BE-3590 Diepenbeek, Belgium
| | - Cécile Vincke
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, BE-1050 Brussels, Belgium
| | - Natalia Smiejkowska
- Laboratory of Medical Biochemistry, University of Antwerp, Prinsstraat 13, BE-2000 Antwerpen, Belgium
| | - Anne Kindt
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, BE-1050 Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Pleinlaan 2, BE-1050 Brussels, Belgium
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, BE-1050 Brussels, Belgium
| | - Peter Adriaensens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, BE-3590 Diepenbeek, Belgium
- Analytical and Circular Chemistry, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, BE-3590 Diepenbeek, Belgium
- Correspondence:
| | - Wanda Guedens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, BE-3590 Diepenbeek, Belgium
| |
Collapse
|
37
|
Santos MN, Paushter DH, Zhang T, Wu X, Feng T, Lou J, Du H, Becker SM, Fragoza R, Yu H, Hu F. Progranulin-derived granulin E and lysosome membrane protein CD68 interact to reciprocally regulate their protein homeostasis. J Biol Chem 2022; 298:102348. [PMID: 35933009 PMCID: PMC9450144 DOI: 10.1016/j.jbc.2022.102348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Progranulin (PGRN) is a glycoprotein implicated in several neurodegenerative diseases. It is highly expressed in microglia and macrophages and can be secreted or delivered to the lysosome compartment. PGRN comprises 7.5 granulin repeats and is processed into individual granulin peptides within the lysosome, but the functions of these peptides are largely unknown. Here, we identify CD68, a lysosome membrane protein mainly expressed in hematopoietic cells, as a binding partner of PGRN and PGRN-derived granulin E. Deletion analysis of CD68 showed that this interaction is mediated by the mucin–proline-rich domain of CD68. While CD68 deficiency does not affect the lysosomal localization of PGRN, it results in a specific decrease in the levels of granulin E but no other granulin peptides. On the other hand, the deficiency of PGRN, and its derivative granulin peptides, leads to a significant shift in the molecular weight of CD68, without altering CD68 localization within the cell. Our results support that granulin E and CD68 reciprocally regulate each other’s protein homeostasis.
Collapse
Affiliation(s)
- Mariela Nunez Santos
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Daniel H Paushter
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Tingting Zhang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Xiaochun Wu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Jiaoying Lou
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA; Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Huan Du
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Stephanie M Becker
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Robert Fragoza
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Haiyuan Yu
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
38
|
Zhang S, Mao C, Li X, Miao W, Teng J. Advances in Potential Cerebrospinal Fluid Biomarkers for Autoimmune Encephalitis: A Review. Front Neurol 2022; 13:746653. [PMID: 35937071 PMCID: PMC9355282 DOI: 10.3389/fneur.2022.746653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Autoimmune encephalitis (AE) is a severe inflammatory disease of the brain. Patients with AE demonstrate amnesia, seizures, and psychosis. Recent studies have identified numerous associated autoantibodies (e.g., against NMDA receptors (NMDARs), LGI1, etc.) involved in the pathogenesis of AE, and the levels of diagnosis and treatment are thus improved dramatically. However, there are drawbacks of clinical diagnosis and treatment based solely on antibody levels, and thus the application of additional biomarkers is urgently needed. Considering the important role of immune mechanisms in AE development, we summarize the relevant research progress in identifying cerebrospinal fluid (CSF) biomarkers with a focus on cytokines/chemokines, demyelination, and nerve damage.
Collapse
|
39
|
Ondaro J, Hernandez-Eguiazu H, Garciandia-Arcelus M, Loera-Valencia R, Rodriguez-Gómez L, Jiménez-Zúñiga A, Goikolea J, Rodriguez-Rodriguez P, Ruiz-Martinez J, Moreno F, Lopez de Munain A, Holt IJ, Gil-Bea FJ, Gereñu G. Defects of Nutrient Signaling and Autophagy in Neurodegeneration. Front Cell Dev Biol 2022; 10:836196. [PMID: 35419363 PMCID: PMC8996160 DOI: 10.3389/fcell.2022.836196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
Neurons are post-mitotic cells that allocate huge amounts of energy to the synthesis of new organelles and molecules, neurotransmission and to the maintenance of redox homeostasis. In neurons, autophagy is not only crucial to ensure organelle renewal but it is also essential to balance nutritional needs through the mobilization of internal energy stores. A delicate crosstalk between the pathways that sense nutritional status of the cell and the autophagic processes to recycle organelles and macronutrients is fundamental to guarantee the proper functioning of the neuron in times of energy scarcity. This review provides a detailed overview of the pathways and processes involved in the balance of cellular energy mediated by autophagy, which when defective, precipitate the neurodegenerative cascade of Parkinson's disease, frontotemporal dementia, amyotrophic lateral sclerosis or Alzheimer's disease.
Collapse
Affiliation(s)
- Jon Ondaro
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Haizea Hernandez-Eguiazu
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maddi Garciandia-Arcelus
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Raúl Loera-Valencia
- Department of Neurology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (KI), Stockholm, Sweden
| | - Laura Rodriguez-Gómez
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Andrés Jiménez-Zúñiga
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Julen Goikolea
- Department of Neurology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (KI), Stockholm, Sweden
| | - Patricia Rodriguez-Rodriguez
- Department of Neurology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (KI), Stockholm, Sweden
| | - Javier Ruiz-Martinez
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Donostia University Hospital, San Sebastian, Spain
| | - Fermín Moreno
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Donostia University Hospital, San Sebastian, Spain
| | - Adolfo Lopez de Munain
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Donostia University Hospital, San Sebastian, Spain
| | - Ian James Holt
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Francisco Javier Gil-Bea
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Gorka Gereñu
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country (UPV-EHU), Leioa, Spain
| |
Collapse
|
40
|
Vest RT, Chou CC, Zhang H, Haney MS, Li L, Laqtom NN, Chang B, Shuken S, Nguyen A, Yerra L, Yang AC, Green C, Tanga M, Abu-Remaileh M, Bassik MC, Frydman J, Luo J, Wyss-Coray T. Small molecule C381 targets the lysosome to reduce inflammation and ameliorate disease in models of neurodegeneration. Proc Natl Acad Sci U S A 2022; 119:e2121609119. [PMID: 35259016 PMCID: PMC8931323 DOI: 10.1073/pnas.2121609119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
SignificanceNeurodegenerative diseases are poorly understood and difficult to treat. One common hallmark is lysosomal dysfunction leading to the accumulation of aggregates and other undegradable materials, which cause damage to brain resident cells. Lysosomes are acidic organelles responsible for breaking down biomolecules and recycling their constitutive parts. In this work, we find that the antiinflammatory and neuroprotective compound, discovered via a phenotypic screen, imparts its beneficial effects by targeting the lysosome and restoring its function. This is established using a genome-wide CRISPRi target identification screen and then confirmed using a variety of lysosome-targeted studies. The resulting small molecule from this study represents a potential treatment for neurodegenerative diseases as well as a research tool for the study of lysosomes in disease.
Collapse
Affiliation(s)
- Ryan T. Vest
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
| | | | - Hui Zhang
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
| | - Michael S. Haney
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Lulin Li
- Palo Alto Veterans Institute for Research, Palo Alto, CA 94304
| | - Nouf N. Laqtom
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Institute for Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA 94305
| | - Betty Chang
- Palo Alto Veterans Institute for Research, Palo Alto, CA 94304
| | - Steven Shuken
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Andy Nguyen
- Palo Alto Veterans Institute for Research, Palo Alto, CA 94304
| | - Lakshmi Yerra
- Palo Alto Veterans Institute for Research, Palo Alto, CA 94304
| | - Andrew C. Yang
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
| | | | | | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Institute for Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA 94305
| | - Michael C. Bassik
- Institute for Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA 94305
- Department of Genetics, Stanford University, Stanford, CA 94305
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Genetics, Stanford University, Stanford, CA 94305
| | - Jian Luo
- Palo Alto Veterans Institute for Research, Palo Alto, CA 94304
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
41
|
Devireddy S, Ferguson SM. Efficient progranulin exit from the ER requires its interaction with prosaposin, a Surf4 cargo. J Cell Biol 2022; 221:e202104044. [PMID: 34919127 PMCID: PMC8689666 DOI: 10.1083/jcb.202104044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022] Open
Abstract
Progranulin is a lysosomal protein whose haploinsufficiency causes frontotemporal dementia, while homozygous loss of progranulin causes neuronal ceroid lipofuscinosis, a lysosomal storage disease. The sensitivity of cells to progranulin deficiency raises important questions about how cells coordinate intracellular trafficking of progranulin to ensure its efficient delivery to lysosomes. In this study, we discover that progranulin interactions with prosaposin, another lysosomal protein, first occur within the lumen of the endoplasmic reticulum (ER) and are required for the efficient ER exit of progranulin. Mechanistically, we identify an interaction between prosaposin and Surf4, a receptor that promotes loading of lumenal cargos into COPII-coated vesicles, and establish that Surf4 is critical for the efficient export of progranulin and prosaposin from the ER. Collectively, this work demonstrates that a network of interactions occurring early in the secretory pathway promote the ER exit and subsequent lysosomal delivery of newly translated progranulin and prosaposin.
Collapse
Affiliation(s)
| | - Shawn M. Ferguson
- Departments of Cell Biology and Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
42
|
Zhang T, Du H, Santos MN, Wu X, Pagan MD, Trigiani LJ, Nishimura N, Reinheckel T, Hu F. Differential regulation of progranulin derived granulin peptides. Mol Neurodegener 2022; 17:15. [PMID: 35120524 PMCID: PMC8815130 DOI: 10.1186/s13024-021-00513-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/22/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Haploinsufficiency of progranulin (PGRN) is a leading cause of frontotemporal lobar degeneration (FTLD). PGRN is comprised of 7.5 granulin repeats and is processed into individual granulin peptides in the lysosome. However, very little is known about the levels and regulations of individual granulin peptides due to the lack of specific antibodies. RESULTS Here we report the generation and characterization of antibodies specific to each granulin peptide. We found that the levels of granulins C, E and F are regulated differently compared to granulins A and B in various tissues. The levels of PGRN and granulin peptides vary in different brain regions and the ratio between granulins and PGRN is highest in the cortical region in the adult male mouse brain. Granulin-A is localized in the lysosome in both neurons and microglia and its levels in microglia increase under pathological conditions. Interestingly, the levels of granulin A in microglia change correspondingly with PGRN in response to stroke but not demyelination. Furthermore, deficiency of lysosomal proteases and the PGRN binding partner prosaposin leads to alterations in the ratios between individual granulin peptides. Granulins B, C and E are heavily glycosylated and the glycosylation patterns can be regulated. CONCLUSION Our results support that the levels of individual granulin peptides are differentially regulated under physiological and pathological conditions and provide novel insights into how granulin peptides function in the lysosome.
Collapse
Affiliation(s)
- Tingting Zhang
- grid.5386.8000000041936877XDepartment of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY 14853 USA
| | - Huan Du
- grid.5386.8000000041936877XDepartment of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY 14853 USA
| | - Mariela Nunez Santos
- grid.5386.8000000041936877XDepartment of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY 14853 USA
| | - Xiaochun Wu
- grid.5386.8000000041936877XDepartment of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY 14853 USA
| | - Mitchell D. Pagan
- grid.5386.8000000041936877XDepartment of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY 14853 USA
| | - Lianne Jillian Trigiani
- grid.5386.8000000041936877XNancy E. and Peter C. Meining School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Nozomi Nishimura
- grid.5386.8000000041936877XNancy E. and Peter C. Meining School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Thomas Reinheckel
- grid.5963.9Institute of Molecular Medicine and Cell Research, Medical Faculty and BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Fenghua Hu
- grid.5386.8000000041936877XDepartment of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY 14853 USA
| |
Collapse
|
43
|
Cheung PF, Yang J, Fang R, Borgers A, Krengel K, Stoffel A, Althoff K, Yip CW, Siu EHL, Ng LWC, Lang KS, Cham LB, Engel DR, Soun C, Cima I, Scheffler B, Striefler JK, Sinn M, Bahra M, Pelzer U, Oettle H, Markus P, Smeets EMM, Aarntzen EHJG, Savvatakis K, Liffers ST, Lueong SS, Neander C, Bazarna A, Zhang X, Paschen A, Crawford HC, Chan AWH, Cheung ST, Siveke JT. Progranulin mediates immune evasion of pancreatic ductal adenocarcinoma through regulation of MHCI expression. Nat Commun 2022; 13:156. [PMID: 35013174 PMCID: PMC8748938 DOI: 10.1038/s41467-021-27088-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
Immune evasion is indispensable for cancer initiation and progression, although its underlying mechanisms in pancreatic ductal adenocarcinoma (PDAC) are not fully known. Here, we characterize the function of tumor-derived PGRN in promoting immune evasion in primary PDAC. Tumor- but not macrophage-derived PGRN is associated with poor overall survival in PDAC. Multiplex immunohistochemistry shows low MHC class I (MHCI) expression and lack of CD8+ T cell infiltration in PGRN-high tumors. Inhibition of PGRN abrogates autophagy-dependent MHCI degradation and restores MHCI expression on PDAC cells. Antibody-based blockade of PGRN in a PDAC mouse model remarkably decelerates tumor initiation and progression. Notably, tumors expressing LCMV-gp33 as a model antigen are sensitized to gp33-TCR transgenic T cell-mediated cytotoxicity upon PGRN blockade. Overall, our study shows a crucial function of tumor-derived PGRN in regulating immunogenicity of primary PDAC. Immune responses to pancreatic ductal adenocarcinoma can be inhibited by cancer cells. Here the authors show that high levels of progranulin in PDAC inhibits immune responses by reducing MHC class I antigen presentation through enhanced degradation of MHC class I via autophagy.
Collapse
Affiliation(s)
- Phyllis F Cheung
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - JiaJin Yang
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Rui Fang
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Arianna Borgers
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Kirsten Krengel
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Anne Stoffel
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Kristina Althoff
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Chi Wai Yip
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Elaine H L Siu
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Linda W C Ng
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Lamin B Cham
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Daniel R Engel
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Camille Soun
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Igor Cima
- DKFZ-Division Translational Neurooncology at the WTZ, German Cancer Consortium (DKTK partner site Essen/Düsseldorf), Essen, Germany
| | - Björn Scheffler
- DKFZ-Division Translational Neurooncology at the WTZ, German Cancer Consortium (DKTK partner site Essen/Düsseldorf), Essen, Germany
| | - Jana K Striefler
- Universitätsmedizin Charité Berlin, CONKO Study Group, Department of Medical Oncology, Haematology and Tumorimmunology, Berlin, Germany
| | - Marianne Sinn
- Universitätsmedizin Charité Berlin, CONKO Study Group, Department of Medical Oncology, Haematology and Tumorimmunology, Berlin, Germany
| | - Marcus Bahra
- Department of Surgical Oncology and Robotics, Krankenhaus Waldfriede, Berlin, Germany
| | - Uwe Pelzer
- Medical Department, Division of Hematology, Oncology and Tumor Immunology, Charité University Hospital, Berlin, Germany
| | | | - Peter Markus
- Department of General, Visceral and Trauma Surgery, Elisabeth Hospital Essen, Essen, Germany
| | - Esther M M Smeets
- Department of Medical Imaging, Radboud university medical Center, Nijmegen, The Netherlands
| | - Erik H J G Aarntzen
- Department of Medical Imaging, Radboud university medical Center, Nijmegen, The Netherlands
| | - Konstantinos Savvatakis
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Sven-Thorsten Liffers
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Smiths S Lueong
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Christian Neander
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Anna Bazarna
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Xin Zhang
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Howard C Crawford
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Anthony W H Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Siu Tim Cheung
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China. .,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany. .,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.
| |
Collapse
|
44
|
Dong T, Tejwani L, Jung Y, Kokubu H, Luttik K, Driessen TM, Lim J. Microglia regulate brain progranulin levels through the endocytosis/lysosomal pathway. JCI Insight 2021; 6:e136147. [PMID: 34618685 PMCID: PMC8663778 DOI: 10.1172/jci.insight.136147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 10/06/2021] [Indexed: 01/01/2023] Open
Abstract
Genetic variants in Granulin (GRN), which encodes the secreted glycoprotein progranulin (PGRN), are associated with several neurodegenerative diseases, including frontotemporal lobar degeneration, neuronal ceroid lipofuscinosis, and Alzheimer's disease. These genetic alterations manifest in pathological changes due to a reduction of PGRN expression; therefore, identifying factors that can modulate PGRN levels in vivo would enhance our understanding of PGRN in neurodegeneration and could reveal novel potential therapeutic targets. Here, we report that modulation of the endocytosis/lysosomal pathway via reduction of Nemo-like kinase (Nlk) in microglia, but not in neurons, can alter total brain Pgrn levels in mice. We demonstrate that Nlk reduction promotes Pgrn degradation by enhancing its trafficking through the endocytosis/lysosomal pathway, specifically in microglia. Furthermore, genetic interaction studies in mice showed that Nlk heterozygosity in Grn haploinsufficient mice further reduces Pgrn levels and induces neuropathological phenotypes associated with PGRN deficiency. Our results reveal a mechanism for Pgrn level regulation in the brain through the active catabolism by microglia and provide insights into the pathophysiology of PGRN-associated diseases.
Collapse
Affiliation(s)
- Tingting Dong
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Leon Tejwani
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience
| | - Youngseob Jung
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hiroshi Kokubu
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kimberly Luttik
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience
| | - Terri M. Driessen
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Janghoo Lim
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience
- Program in Cellular Neuroscience, Neurodegeneration and Repair, and
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
45
|
Zhou T, Zhang S, Zhou Y, Lai S, Chen Y, Geng Y, Wang J. Curcumin alleviates imiquimod-induced psoriasis in progranulin-knockout mice. Eur J Pharmacol 2021; 909:174431. [PMID: 34428436 DOI: 10.1016/j.ejphar.2021.174431] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
Recent advances have revealed that progranulin (PGRN) is related to the aetiology of psoriasis. Moreover, curcumin, a compound derived from turmeric, has been proposed as a potential therapeutic approach in psoriasis-like dermatitis, but it is still unclear whether curcumin affects the development of psoriasis-like skin lesions under PGRN-deficient conditions. Therefore, in this study, we developed a mouse model of psoriatic skin lesions using topical application of imiquimod (IMQ) in both wild type and PGRN-knockout mice to test this possibility. We observed that PGRN deficiency not only increased proinflammatory cytokine IL-17A levels and aggravated psoriasis-like damaged appearance and epidermal thickening but also directly mediated changes in keratinocyte proliferation (Krt 14, cyclinD1 and c-Myc) and differentiation (Krt 10 and Filaggrin) associated gene expression following IMQ challenge, compared to those in the control group. Furthermore, curcumin treatment (50 mg/kg and 200 mg/kg, intragastrically) for 21 consecutive days suppressed the IMQ exposure-induced increase in PGRN expression. Importantly, curcumin treatment significantly alleviated the PGRN deficiency-induced exacerbation of psoriatic appearance, histological features and keratinocyte proliferation after IMQ exposure. In summary, these results demonstrate the direct regulation of PGRN in keratinocyte proliferation and differentiation in psoriatic lesions and demonstrate the protective effect of curcumin on PGRN deficiency-induced psoriatic skin lesion exacerbation.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Laboratory Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Shihan Zhang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China.
| | - Yingli Zhou
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Simin Lai
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Centre, Xi'an, People's Republic of China.
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Centre, Xi'an, People's Republic of China.
| | - Yan Geng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Jing Wang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Centre, Xi'an, People's Republic of China.
| |
Collapse
|
46
|
Zin EA, Han D, Tran J, Morisson-Welch N, Visel M, Kuronen M, Flannery JG. Outcomes of progranulin gene therapy in the retina are dependent on time and route of delivery. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:40-51. [PMID: 34485593 PMCID: PMC8390452 DOI: 10.1016/j.omtm.2021.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/19/2021] [Indexed: 11/25/2022]
Abstract
Neuronal ceroid lipofuscinosis (NCL) is a family of neurodegenerative diseases caused by mutations to genes related to lysosomal function. One variant, CNL11, is caused by mutations to the gene encoding the protein progranulin, which regulates neuronal lysosomal function. Absence of progranulin causes cerebellar atrophy, seizures, dementia, and vision loss. As progranulin gene therapies targeting the brain are developed, it is advantageous to focus on the retina, as its characteristics are beneficial for gene therapy development: the retina is easily visible through direct imaging, can be assessed through quantitative methods in vivo, and requires smaller amounts of adeno-associated virus (AAV). In this study we characterize the retinal degeneration in a progranulin knockout mouse model of CLN11 and study the effects of gene replacement at different time points. Mice heterologously expressing progranulin showed a reduction in lipofuscin deposits and microglia infiltration. While mice that receive systemic AAV92YF-scCAG-PGRN at post-natal day 3 or 4 show a reduction in retina thinning, mice injected intravitreally at months 1 and 6 with AAV2.7m8-scCAG-PGRN exhibit no improvement, and mice injected at 12 months of age have thinner retinas than do their controls. Thus, delivery of progranulin proves to be time sensitive and dependent on route of administration, requiring early delivery for optimal therapeutic benefit.
Collapse
Affiliation(s)
- Emilia A Zin
- Vision Science Group, School of Optometry, UC Berkeley, Berkeley, CA 94720, USA
| | - Daisy Han
- Department of Integrative Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - Jennifer Tran
- School of Optometry, UC Berkeley, Berkeley, CA 94720, USA
| | | | - Meike Visel
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720, USA
| | - Mervi Kuronen
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720, USA
| | - John G Flannery
- Vision Science Group, School of Optometry, UC Berkeley, Berkeley, CA 94720, USA.,School of Optometry, UC Berkeley, Berkeley, CA 94720, USA.,Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
47
|
Davis SE, Roth JR, Aljabi Q, Hakim AR, Savell KE, Day JJ, Arrant AE. Delivering progranulin to neuronal lysosomes protects against excitotoxicity. J Biol Chem 2021; 297:100993. [PMID: 34298019 PMCID: PMC8379502 DOI: 10.1016/j.jbc.2021.100993] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 01/18/2023] Open
Abstract
Loss-of-function mutations in progranulin (GRN) are a major genetic cause of frontotemporal dementia (FTD), possibly due to loss of progranulin's neurotrophic and anti-inflammatory effects. Progranulin promotes neuronal growth and protects against excitotoxicity and other forms of injury. It is unclear if these neurotrophic effects are mediated through cellular signaling or through promotion of lysosomal function. Progranulin is a secreted proprotein that may activate neurotrophic signaling through cell-surface receptors. However, progranulin is efficiently trafficked to lysosomes and is necessary for maintaining lysosomal function. To determine which of these mechanisms mediates progranulin's protection against excitotoxicity, we generated lentiviral vectors expressing progranulin (PGRN) or lysosome-targeted progranulin (L-PGRN). L-PGRN was generated by fusing the LAMP-1 transmembrane and cytosolic domains to the C-terminus of progranulin. L-PGRN exhibited no detectable secretion, but was delivered to lysosomes and processed into granulins. PGRN and L-PGRN protected against NMDA excitotoxicity in rat primary cortical neurons, but L-PGRN had more consistent protective effects than PGRN. L-PGRN's protective effects were likely mediated through the autophagy-lysosomal pathway. In control neurons, an excitotoxic dose of NMDA stimulated autophagy, and inhibiting autophagy with 3-methyladenine reduced excitotoxic cell death. L-PGRN blunted the autophagic response to NMDA and occluded the protective effect of 3-methyladenine. This was not due to a general impairment of autophagy, as L-PGRN increased basal autophagy and did not alter autophagy after nutrient starvation. These data show that progranulin's protection against excitotoxicity does not require extracellular progranulin, but is mediated through lysosomes, providing a mechanistic link between progranulin's lysosomal and neurotrophic effects.
Collapse
Affiliation(s)
- Skylar E Davis
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jonathan R Roth
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qays Aljabi
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ahmad R Hakim
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Katherine E Savell
- Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy J Day
- Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrew E Arrant
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
48
|
Schrader JM, Xu F, Van Nostrand WE. Distinct brain regional proteome changes in the rTg-DI rat model of cerebral amyloid angiopathy. J Neurochem 2021; 159:273-291. [PMID: 34218440 DOI: 10.1111/jnc.15463] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/02/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022]
Abstract
Cerebral amyloid angiopathy (CAA), a prevalent cerebral small vessel disease in the elderly and a common comorbidity of Alzheimer's disease, is characterized by cerebral vascular amyloid accumulation, cerebral infarction, microbleeds, and intracerebral hemorrhages and is a prominent contributor to vascular cognitive impairment and dementia. Here, we investigate proteome changes associated with specific pathological features in several brain regions of rTg-DI rats, a preclinical model of CAA. Whereas varying degrees of microvascular amyloid and associated neuroinflammation are found in several brain regions, the presence of microbleeds and occluded small vessels is largely restricted to the thalamic region of rTg-DI rats, indicating different levels of CAA and associated pathologies occur in distinct brain regions in this model. Here, using SWATHLC-MS/MS, we report specific proteomic analysis of isolated brain regions and employ pathway analysis to correlate regionally specific proteomic changes with uniquely implicated molecular pathways. Pathway analysis suggested common activation of tumor necrosis factor α (TNFα), abnormal nervous system morphology, and neutrophil degranulation in all three regions. Activation of transforming growth factor-β1 (TGF-β1) was common to the hippocampus and thalamus, which share high CAA loads, while the thalamus, which uniquely exhibits thrombotic events, additionally displayed activation of thrombin and aggregation of blood cells. Thus, we present significant and new insight into the cerebral proteome changes found in distinct brain regions with differential CAA-related pathologies of rTg-DI rats and provide new information on potential pathogenic mechanisms associated with these regional disease processes.
Collapse
Affiliation(s)
- Joseph M Schrader
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Feng Xu
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - William E Van Nostrand
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
49
|
Chen S, Bie M, Wang X, Fan M, Chen B, Shi Q, Jiang Y. PGRN exacerbates the progression of non-small cell lung cancer via PI3K/AKT/Bcl-2 antiapoptotic signaling. Genes Dis 2021; 9:1650-1661. [PMID: 36157487 PMCID: PMC9485207 DOI: 10.1016/j.gendis.2021.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Progranulin (PGRN) is a growth factor that is involved in the progression of multiple tumors. However, the effects and molecular mechanisms by which PGRN induces lung cancer remain unclear. The expression level of PGRN was analyzed by conducting immunohistochemistry of the histological sections of lung tissues from non-small-cell lung carcinoma (NSCLC) patients. The proliferation, apoptosis, migration, and invasion of NSCLC cells were assessed by the MTT assay, Western blot, degree of wound healing, and Transwell assays. A nude mouse xenograft model was used to validate the role of PGRN in vivo. The expression level of PGRN was higher in male patients with lung adenocarcinoma than in those with lung squamous cell carcinoma; by contrast, no difference was observed in female patients. The overexpression of PGRN promoted the proliferation and anti-apoptosis of H520 (derived from lung squamous cell carcinoma) cells, whereas knockdown of PGRN inhibited the proliferation and anti-apoptosis of A549 (derived from lung adenocarcinoma) cells. Copanlisib (targeting PI3K) inhibited the increase in the expression of cell anti-apoptosis marker Bcl-2 induced by rhPGRN protein; the PI3K agonist 740 Y–P partially reversed the decrease in Bcl-2 expression induced by PGRN deficiency in both A549 and H520 cells. PGRN increased the expression of Ki-67, PCNA, and Bcl-2 in vivo. PGRN inhibited cell apoptosis depending on the PI3K/Akt/Bcl-2 signaling axis; PGRN positivity correlated with lung adenocarcinoma. PGRN is a potential biomarker for the treatment and diagnosis of NSCLC, especially in lung adenocarcinoma.
Collapse
Affiliation(s)
- Sicheng Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Mengjun Bie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Mengtian Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Bin Chen
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Qiong Shi
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yingjiu Jiang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
- Corresponding author. Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, PR China. Fax: +86 023 63310999.
| |
Collapse
|
50
|
Granulin: An Invasive and Survival-Determining Marker in Colorectal Cancer Patients. Int J Mol Sci 2021; 22:ijms22126436. [PMID: 34208547 PMCID: PMC8235441 DOI: 10.3390/ijms22126436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Granulin is a secreted, glycosylated peptide—originated by cleavage from a precursor protein—which is involved in cell growth, tumor invasion and angiogenesis. However, the specific prognostic impact of granulin in human colorectal cancer has only been studied to a limited extent. Thus, we wanted to assess the expression of granulin in colorectal cancer patients to evaluate its potential as a prognostic biomarker. Methods: Expressional differences of granulin in colorectal carcinoma tissue (n = 94) and corresponding healthy colon mucosa were assessed using qRT-PCR. Immunohistochemistry was performed in colorectal cancer specimens (n = 97), corresponding healthy mucosa (n = 47) and colorectal adenomas (n = 19). Subsequently, the results were correlated with histopathological and clinical patients’ data. HCT-116 cells were transfected with siRNA for invasion and migration assays. Results: Immunohistochemistry and qRT-PCR revealed tumoral over expression of granulin in colorectal cancer specimens compared to corresponding healthy colon mucosa and adenomas. Tumoral overexpression of granulin was associated with a significantly impaired overall survival. Moreover, downregulation of granulin by siRNA significantly diminished the invasive capacities of HCT-116 cells in vitro. Conclusion: Expression of granulin differs in colorectal cancer tissue, adenomas and healthy colon mucosa. Furthermore, granulin features invasive and migrative capabilities and overexpression of granulin correlates with a dismal prognosis. This reveals its potential as a prognostic biomarker and granulin could be a worthwhile molecular target for individualized anticancer therapy.
Collapse
|