1
|
Wen Y, Chen G, Li Y, Ning D, Sirimanapong W, Xia L. Evaluation of immunological effects of two DNA vaccines against Nocardia seriolae in hybrid snakehead. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110233. [PMID: 40058678 DOI: 10.1016/j.fsi.2025.110233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
Although DNA vaccines hold significant potential, their practical application in aquaculture remains limited. In both mammals and teleost fish, B cells, which recognize antigens and produce antibodies, play an important role in immunity. In this study, B-cell epitopes capable of inducing fish immunity from IS701 family transposase (IS701) and molybdopterin-dependent oxidoreductase (Mol) proteins of Nocardia seriolae were screened. PcDNA-IS701 and pcDNA-Mol recombinant plasmids were constructed. The results showed that two proteins possessed multiple B-cell epitopes, and both pcDNA-IS701 and pcDNA-Mol induced innate immunity and specific antibody responses, along with increased mRNA expression levels of genes encoding humoral (MHCIIα and CD4) and cell-mediated (MHCIα and CD8α) immunity. In addition, both pcDNA-IS701 and pcDNA-Mol strengthened the protection against N. seriolae infection, with immune protection rates of 45.06 % for IS701 and 61.04 % for Mol, respectively. In conclusion, pcDNA-IS701 and pcDNA-Mol are candidate DNA vaccines for nocardiosis in fish.
Collapse
Affiliation(s)
- Yiming Wen
- Shenzhen Institute of Guangdong Ocean University, Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Guangdong, China
| | - Guoquan Chen
- Shenzhen Institute of Guangdong Ocean University, Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Guangdong, China
| | - Yuhao Li
- Shenzhen Institute of Guangdong Ocean University, Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Guangdong, China
| | - Deyu Ning
- Shenzhen Institute of Guangdong Ocean University, Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Guangdong, China
| | - Wanna Sirimanapong
- Veterinary Aquatic Animal Research & Health Care Unit, Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon-pathom, Thailand
| | - Liqun Xia
- Shenzhen Institute of Guangdong Ocean University, Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Guangdong, China.
| |
Collapse
|
2
|
Grossman AS, Mucci NC, Kauffman SJ, Rafi J, Goodrich-Blair H. Bioinformatic discovery of type 11 secretion system (T11SS) cargo across the Proteobacteria. Microb Genom 2025; 11. [PMID: 40397007 DOI: 10.1099/mgen.0.001406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025] Open
Abstract
Type 11 secretion systems (T11SS) are broadly distributed amongst Proteobacteria, with more than 3,000 T11SS family outer membrane proteins (OMPs) comprising ten major sequence similarity network clusters. Of these, only seven, all from animal-associated cluster 1, have been experimentally verified as secretins of cargo, including adhesins, haemophores and metal-binding proteins. To identify novel cargo of a more diverse set of T11SS, we identified gene families co-occurring in gene neighbourhoods with either cluster 1 or marine microbe-associated cluster 3 T11SS OMP genes. We developed bioinformatic controls to ensure that perceived co-occurrences are specific to T11SS, and not general to OMPs. We found that both cluster 1 and cluster 3 T11SS OMPs frequently co-occur with single-carbon metabolism and nucleotide synthesis pathways, but that only cluster 1 T11SS OMPs had significant co-occurrence with metal and haem pathways, as well as with mobile genetic islands, potentially indicating the diversified function of this cluster. Cluster 1 T11SS co-occurrences included 2,556 predicted cargo proteins, unified by the presence of a C-terminal β-barrel domain, which fall into 141 predicted UniRef50 clusters and approximately ten different architectures: four similar to known cargo and six uncharacterized types. We experimentally demonstrate T11SS-dependent secretion of an uncharacterized cargo type with homology to plasmin-sensitive protein. Unexpectedly, genes encoding marine cluster 3 T11SS OMPs only rarely co-occurred with the C-terminal β-barrel domain and instead frequently co-occurred with DUF1194-containing genes. Overall, our results show that with sufficiently large-scale and controlled genomic data, T11SS-dependent cargo proteins can be accurately predicted.
Collapse
Affiliation(s)
- Alex S Grossman
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA
- Present address: The ADA Forsyth Institute, 100 Chestnut St, Somerville, MA 02143, USA
| | - Nicholas C Mucci
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA
| | - Sarah J Kauffman
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA
| | - Jahirul Rafi
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA
| | - Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA
| |
Collapse
|
3
|
Das U, Das A, Das AK. Relativistic effect behind the molybdenum vs. tungsten selectivity in enzymes. Dalton Trans 2025. [PMID: 40183367 DOI: 10.1039/d5dt00001g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Molybdenum and tungsten, being congeners of the 6th group of d-block elements, are similar in many respects in terms of their properties. In fact, both participate in similar types of oxotransferase activity in their enzymes. Molybdenum is regarded as the heaviest essential trace metal in all forms of life; however, its next heavier congener, tungsten, as the heaviest metal, is found only in some prokaryotic organisms. Tungstoenzymes are generally selected by nature for carrying out low-potential redox activities under anaerobic conditions in prokaryotic organisms. This nature's molybdenum vs. tungsten selectivity for their biological functions under different working conditions (surrounding temperature and aerobic/anaerobic environment) is determined mainly by the relativistic effect, which is experienced to different extents by these two congeners. Understanding the mechanistic aspects of the relativistic effect-controlled enzymatic activities of tungstoenzymes is of immense biotechnological interest to develop eco-friendly and cost-effective methods for the commercial synthesis of acetaldehyde through the hydration of acetylene and commercial production of hydrogen (H2, a green fuel) by producing tungsten-incorporated nitrogenase (W-N2-ase) in CA6 (mutant strain) and to develop a biomimetic method to replace the hazardous Birch reduction in organic synthesis.
Collapse
Affiliation(s)
- Udita Das
- Department of Chemistry, Visva Bharati University, Santiniketan 731235, India.
| | - Ankita Das
- School of Chemical Sciences, Indian Association of Cultivation for the Science, Kolkata 700032, India.
| | - Asim K Das
- Department of Chemistry, Visva Bharati University, Santiniketan 731235, India.
| |
Collapse
|
4
|
Villalobos EE, Olakunle IC, Tobias JD, Smith A. Perioperative Care of a Child With Molybdenum Cofactor Deficiency. J Med Cases 2025; 16:140-145. [PMID: 40322629 PMCID: PMC12045776 DOI: 10.14740/jmc5111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/17/2025] [Indexed: 05/08/2025] Open
Abstract
Molybdenum is a trace mineral that is a key component of several enzyme systems. In the human body, molybdenum is complexed with a pterin-based molybdenum cofactor (MOCO), to form the active center of molybdenum-based enzymes. MOCO is synthesized in a four-step process involving six proteins, iron, ATP, and copper. Defects in any of the individual genes involved in this biosynthesis can result in molybdenum cofactor deficiency (MoCD). MoCD is an autosomal recessive disorder with an estimated incidence of 1 in 100,000 - 200,000 live births. Although most patients appear normal at birth, intractable seizures typically develop within hours to days of life, along with feeding difficulties, and subsequent microcephaly, brain atrophy, and severe developmental delay. Mortality is high, with a reported median survival of 2.4 to 3 years. Given the associated end-organ involvement, anesthetic management may be required during radiologic imaging or surgery procedures. We present a 6-year-old child with MoCD type A, who required anesthetic care for a magnetic expansion control (MAGEC) rod insertion with posterior spinal instrumentation under general anesthesia. End-organ involvement of MoCD is presented, previous reports of anesthetic care reviewed, and options for perioperative management discussed.
Collapse
Affiliation(s)
- Edison E. Villalobos
- Department of Anesthesiology & Pain Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Ifeoluwa C. Olakunle
- Department of Anesthesiology & Pain Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Joseph D. Tobias
- Department of Anesthesiology & Pain Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Anesthesiology & Pain Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ashley Smith
- Department of Anesthesiology & Pain Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Anesthesiology & Pain Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
5
|
Satkanov M, Nurbekova Z, Bilyalov A, Tazhibay D, Zhaksylyk M, Kulatayeva M, Wang Z, Cui J, Alikulov Z. Biochemical properties of molybdenum cofactor isolated from fish liver. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:62. [PMID: 40053255 DOI: 10.1007/s10695-025-01473-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/23/2025] [Indexed: 05/01/2025]
Abstract
Recent studies have demonstrated that the fish liver protein fraction extract obtained by gel filtration exhibits nitric oxide synthase (NOS)-independent NO synthase from nitrates and nitrites. This activity was attributed to the molybdenum enzymes (Mo-enzymes) group which was already demonstrated in mammals. However, the evidence that NOS-independent NO synthase activity can be classified as a fish Mo-enzyme has been poorly demonstrated. In mammals, Mo-enzymes NOS-independent NO synthase activity occurs at the molybdenum center. We studied the ability of molybdenum cofactor (Mo-co) isolated from the protein fraction of fish liver extract to restore the NADPH-nitrate reductase (NADPH-NR) activity from Neurospora crassa nit-1. Our results demonstrated that Mo-co from the extract from fish liver was able to recover NADPH-NR activity in the extract of N. crassa nit-1, thereby possessing the ability to reduce nitrogen compounds. However, the oxidation of Mo-co from fish liver destabilizes molybdenum, leading to its inactivation. However, the results obtained under anaerobic conditions with dithionite indicate that Mo remains bound to Mo-co under highly reducing conditions. This may also indicate that the availability of Mo is not the sole factor affecting the activity of Mo-enzymes, also oxygen content after the synthesis of mature Mo-co may play a role in cofactor inactivation.
Collapse
Affiliation(s)
- Mereke Satkanov
- Department of Biotechnology and Microbiology, L.N. Gumilyov, Eurasian National University, Astana, 010000, Kazakhstan
- Higher School of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia
- Department of General Biology and Genomics, L.N. Gumilyov, Eurasian National University, Astana, 010000, Kazakhstan
| | - Zhadyrassyn Nurbekova
- Department of Biotechnology and Microbiology, L.N. Gumilyov, Eurasian National University, Astana, 010000, Kazakhstan
| | - Alikhan Bilyalov
- Department of Biotechnology and Microbiology, L.N. Gumilyov, Eurasian National University, Astana, 010000, Kazakhstan
| | - Diana Tazhibay
- Department of Biotechnology and Microbiology, L.N. Gumilyov, Eurasian National University, Astana, 010000, Kazakhstan
| | - Masalimov Zhaksylyk
- Department of Biotechnology and Microbiology, L.N. Gumilyov, Eurasian National University, Astana, 010000, Kazakhstan
| | - Maral Kulatayeva
- Department of Biotechnology and Microbiology, L.N. Gumilyov, Eurasian National University, Astana, 010000, Kazakhstan
| | - Zhaoqi Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology Chinese Academy of Sciences, Chengdu, 610041, China
| | - Junfang Cui
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China
| | - Zerekbay Alikulov
- Department of Biotechnology and Microbiology, L.N. Gumilyov, Eurasian National University, Astana, 010000, Kazakhstan.
- Department of General Biology and Genomics, L.N. Gumilyov, Eurasian National University, Astana, 010000, Kazakhstan.
| |
Collapse
|
6
|
Foteva V, Fisher JJ, Qiao Y, Smith R. Effects of Molybdenum Supplementation in the Form of Ammonium and Sodium Salts on Trophoblast Cell Physiology and Gene Expression In Vitro. J Dev Biol 2025; 13:8. [PMID: 40137014 PMCID: PMC11943026 DOI: 10.3390/jdb13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/11/2025] [Accepted: 02/23/2025] [Indexed: 03/27/2025] Open
Abstract
Molybdenum is an essential trace element sourced during pregnancy from the maternal diet. Studies regarding molybdenum have primarily focused on overexposure in animal and cell culture studies. The effects of molybdenum supplementation on placental function are unknown. An immortalised trophoblast cell line was used to examine the placental cellular response to molybdenum in its bioavailable form as molybdate. Cells of the extravillous trophoblast first-trimester cell line HTR8-SVneo were cultured in complete cell media in the presence of 10 nM to 1 mM of ammonium molybdate or sodium molybdate. Following the addition of the molybdate salts, cell growth, viability, and several gene pathways were monitored. Sodium molybdate salt in doses from 10 nM to 1 mM did not affect cell growth or viability. Exposure to ammonium molybdate at a 1 mM concentration significantly decreased cell growth and viability (p < 0.05). Gene pathways involving molybdoenzyme expression, molybdenum cofactor synthesis, antioxidant response, and angiogenesis were affected following supplementation, although these effects differed depending on the dose and molybdate salt utilised. Molybdoenzyme activity was not affected by supplementation in a dose-dependent manner. The results indicate sodium molybdate is a more appropriate salt to use in vitro, as ammonium molybdate exposure reduced cell viability and growth and downregulated the expression of antioxidant genes NFE2L2 (p < 0.01), SOD1 (p < 0.001) and SOD2 (p < 0.001), suggestive of an inflammatory response. Sodium molybdate affected gene, protein, and activity levels of molybdoenzyme, antioxidant, and angiogenic molecules in vitro. This work demonstrates that sodium molybdate supplementation has pleiotropic effects in vitro and is well tolerated by placental cells at a range of nanomolar and micromolar concentrations.
Collapse
Affiliation(s)
- Vladimira Foteva
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Joshua J. Fisher
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Yixue Qiao
- Wisdom Lake Academy of Pharmacy, Xi’an Jiao Tong Liverpool University, Suzhou 215123, China
| | - Roger Smith
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
- Wisdom Lake Academy of Pharmacy, Xi’an Jiao Tong Liverpool University, Suzhou 215123, China
| |
Collapse
|
7
|
Ye YQ, Ye MQ, Zhang XY, Huang YZ, Zhou ZY, Feng YJ, Du ZJ. Description of the first marine-isolated member of the under-represented phylum Gemmatimonadota, and the environmental distribution and ecogenomics of Gaopeijiales ord. nov. mSystems 2024; 9:e0053524. [PMID: 39560406 DOI: 10.1128/msystems.00535-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
The phylum Gemmatimonadota is widespread but rarely cultured and, in fact, there are only six described species isolated from soil, freshwater, and wastewater treatment. However, no isolates of Gemmatimonadota from marine environment have been described; thus, little is known about the physiology and metabolism of members of the marine lineages. In this study, four novel facultatively anaerobic bacterial strains belonging to Gemmatimonadota were isolated from marine sediments collected from Xiaoshi Island in Weihai, China, using an aerobic enrichment method. The integrated results of phylogenetic and phenotypic characteristics supported that these four strains represent one novel species in a novel genus, for which the name Gaopeijia maritima gen. nov., sp. nov. is proposed, as the first representative of novel taxa, Gaopeijiales ord. nov., Gaopeijiaceae fam. nov. in the class Longimicrobiia. Gaopeijiales was detected in 22,884 out of 95,549 amplicon data sets, mainly from soil. However, the highest mean relative abundances were in sponge (0.7%) and marine sediment (0.35%), showing salt-related character. Most of the Gaopeijiales subgroups potentially belong to the rare bacterial biosphere. The aerobic enrichment in this study could significantly increase the relative abundance of Gaopeijiales (from 0.37% to 2.6%). Furthermore, the metabolic capabilities inferred from high-quality representative Gaopeijiales genomes/MAGs suggest that this group primarily performs chemoorganoheterotrophic metabolism with facultatively anaerobic characteristics and possesses various secondary metabolite biosynthesis gene clusters (BGCs), mirroring those observed in the four novel strains.IMPORTANCEDespite rapid advances in molecular and sequencing technologies, obtaining pure cultures remains a crucial research goal in microbiology, as it is essential for a deeper understanding of microbial metabolism. Gemmatimonadota is a widespread but rarely cultured bacterial phylum. Currently, there are only six cultured strains of this interesting group, all isolated from non-marine environments. Little is known about the physiology and metabolism of members of the marine lineages. Here we isolated and characterized four novel marine strains, and proposed a new order Gaopeijiales within Gemmatimonadota. Furthermore, the global distribution, environmental preference, and metabolic potential of Gaopeijiales are analyzed using public data. Our work enriches the resources available for the under-represented phylum Gemmatimonadota and provides insights into the physiological and metabolic characteristics of the marine lineage (Gaopeijiales) through culturology and omics.
Collapse
Affiliation(s)
- Yu-Qi Ye
- Marine College, Shandong University, Weihai, Shandong, China
| | - Meng-Qi Ye
- Marine College, Shandong University, Weihai, Shandong, China
- Shandong University-Weihai Research Institute of Industrial Technology, Weihai, Shandong, China
| | - Xin-Yue Zhang
- SDU-ANU Joint Science College, Shandong University, Weihai, Shandong, China
| | - You-Zhi Huang
- Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zi-Yang Zhou
- Marine College, Shandong University, Weihai, Shandong, China
| | - Yan-Jun Feng
- SDU-ANU Joint Science College, Shandong University, Weihai, Shandong, China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, Shandong, China
- Shandong University-Weihai Research Institute of Industrial Technology, Weihai, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
8
|
Teh MR, Armitage AE, Drakesmith H. Why cells need iron: a compendium of iron utilisation. Trends Endocrinol Metab 2024; 35:1026-1049. [PMID: 38760200 PMCID: PMC11616622 DOI: 10.1016/j.tem.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
Iron deficiency is globally prevalent, causing an array of developmental, haematological, immunological, neurological, and cardiometabolic impairments, and is associated with symptoms ranging from chronic fatigue to hair loss. Within cells, iron is utilised in a variety of ways by hundreds of different proteins. Here, we review links between molecular activities regulated by iron and the pathophysiological effects of iron deficiency. We identify specific enzyme groups, biochemical pathways, cellular functions, and cell lineages that are particularly iron dependent. We provide examples of how iron deprivation influences multiple key systems and tissues, including immunity, hormone synthesis, and cholesterol metabolism. We propose that greater mechanistic understanding of how cellular iron influences physiological processes may lead to new therapeutic opportunities across a range of diseases.
Collapse
Affiliation(s)
- Megan R Teh
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew E Armitage
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hal Drakesmith
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Liu FJ, Zhang YL, Wang XS, Zhao YQ, Wang HW. Role of molybdenum in ameliorating busulfan-induced infertility in female mice. J Trace Elem Med Biol 2024; 86:127546. [PMID: 39418757 DOI: 10.1016/j.jtemb.2024.127546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Molybdenum (Mo) plays a crucial role in regulating normal physiological function. However, its potential effect on female infertility has received little attention. METHODS In this study, we explored the potential molecular mechanisms of Mo's action on mouse ovaries and oocytes by establishing a busulfan-induced infertility model. Adult female Kunming mice were randomly divided into three groups: control, +busulfan, and +busulfan+Mo. After 30 days of busulfan treatment [Myleran, 20 mg/kg body weight ip], mice in the busulfan+Mo group were provided with 7.5 mg/L Mo per day in drinking water for an additional 42 days. On day 72, we examined the morphology of the oocytes and ovarian tissue after H&E staining, measured the concentrations of serum hormones by ELISA, and detected Bax, Bcl-2, caspase-3 and caspase-9 by immunohistochemical staining and western immunoblotting. We also assessed the oxidative stress in cells by measuring the activity of the antioxidant enzyme, SOD, the concentrations of MDA and LDH, and the percentage of apoptotic cells using kits. The number of litters born was counted after mating with male mice, and the organ coefficients were calculated after weighing on an analytic balance. RESULTS Results showed that Mo treatment restored female reproductive hormone levels to near normal. Mo also significantly inhibited the mitochondrial stress-induced expression of apoptotic proteins. CONCLUSION Our findings demonstrate that Mo treatment at a dose of 7.5 mg/L can ameliorate busulfan-induced infertility in female mice. These data may provide a reference for the development of treatments for female infertility.
Collapse
Affiliation(s)
- Feng-Jun Liu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai 810016, China.
| | - Yu-Ling Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China.
| | - Xiao-Shan Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai 810016, China.
| | - Ya-Qin Zhao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai 810016, China.
| | - Hong-Wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China.
| |
Collapse
|
10
|
Rabenow M, Haar E, Schmidt K, Hänsch R, Mendel RR, Oliphant KD. Convergent evolution links molybdenum insertase domains with organism-specific sequences. Commun Biol 2024; 7:1352. [PMID: 39424966 PMCID: PMC11489736 DOI: 10.1038/s42003-024-07073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
In all domains of life, the biosynthesis of the pterin-based Molybdenum cofactor (Moco) is crucial. Molybdenum (Mo) becomes biologically active by integrating into a unique pyranopterin scaffold, forming Moco. The final two steps of Moco biosynthesis are catalyzed by the two-domain enzyme Mo insertase, linked by gene fusion in higher organisms. Despite well-understood Moco biosynthesis, the evolutionary significance of Mo insertase fusion remains unclear. Here, we present findings from Neurospora crassa that shed light on the critical role of Mo insertase fusion in eukaryotes. Substituting the linkage region with sequences from other species resulted in Moco deficiency, and separate expression of domains, as seen in lower organisms, failed to rescue deficient strains. Stepwise truncation and structural modeling revealed a crucial 20-amino acid sequence within the linkage region essential for fungal growth. Our findings highlight the evolutionary importance of gene fusion and specific sequence composition in eukaryotic Mo insertases.
Collapse
Affiliation(s)
- Miriam Rabenow
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Eduard Haar
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Katharina Schmidt
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Robert Hänsch
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ralf R Mendel
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kevin D Oliphant
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
11
|
Suganuma T, Hassan H, Gogol M, Workman JL. C G composition in transposon-derived genes is increased in FXD with perturbed immune system. NAR MOLECULAR MEDICINE 2024; 1:ugae015. [PMID: 39465205 PMCID: PMC11500580 DOI: 10.1093/narmme/ugae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Increasing incidence of Fragile X disorders (FXD) and of immune-mediated disorders in FXD suggests that additional factors besides FMR1 mutations contribute to the pathogenesis. Here, we discovered that the expression levels or splicing of specific transposon element (TE)-derived genes, regulating purine metabolism and immune responses against viral infections are altered in FXD. These genes include HLA genes clustered in chr6p21.3 and viral responsive genes in chr5q15. Remarkably, these TE-derived genes contain a low A T/C G suggesting base substitutions of A T to C G. The TE-derived genes with changed expression levels contained a higher content of 5'-CG-3' dinucleotides in FXD compared to healthy donors. This resembles the genomes of some RNA viruses, which maintain high contents of CG dinucleotides to sustain their latent infection exploiting antiviral responses. Thus, past viral infections may have persisted as TEs, provoking immune-mediated disorders in FXD.
Collapse
Affiliation(s)
- Tamaki Suganuma
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Huzaifa Hassan
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| |
Collapse
|
12
|
Tran TH, Escapa IF, Roberts AQ, Gao W, Obawemimo AC, Segre JA, Kong HH, Conlan S, Kelly MS, Lemon KP. Metabolic capabilities are highly conserved among human nasal-associated Corynebacterium species in pangenomic analyses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.05.543719. [PMID: 37333201 PMCID: PMC10274666 DOI: 10.1101/2023.06.05.543719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Corynebacterium species are globally ubiquitous in human nasal microbiota across the lifespan. Moreover, nasal microbiota profiles typified by higher relative abundances of Corynebacterium are often positively associated with health. Among the most common human nasal Corynebacterium species are C. propinquum, C. pseudodiphtheriticum, C. accolens, and C. tuberculostearicum. To gain insight into the functions of these four species, we identified genomic, phylogenomic, and pangenomic properties and estimated the metabolic capabilities of 87 distinct human nasal Corynebacterium strain genomes: 31 from Botswana and 56 from the USA. C. pseudodiphtheriticum had geographically distinct clades consistent with localized strain circulation, whereas some strains from the other species had wide geographic distribution spanning Africa and North America. All species had similar genomic and pangenomic structures. Gene clusters assigned to all COG metabolic categories were overrepresented in the persistent versus accessory genome of each species indicating limited strain-level variability in metabolic capacity. Based on prevalence data, at least two Corynebacterium species likely coexist in the nasal microbiota of 82% of adults. So, it was surprising that core metabolic capabilities were highly conserved among the four species indicating limited species-level metabolic variation. Strikingly, strains in the USA clade of C. pseudodiphtheriticum lacked genes for assimilatory sulfate reduction present in most of the strains in the Botswana clade and in the other studied species, indicating a recent, geographically related loss of assimilatory sulfate reduction. Overall, the minimal species and strain variability in metabolic capacity implies coexisting strains might have limited ability to occupy distinct metabolic niches.
Collapse
Affiliation(s)
- Tommy H. Tran
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Isabel F. Escapa
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ari Q. Roberts
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Gao
- The Forsyth Institute (Microbiology), Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Abiola C. Obawemimo
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Julia A. Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heidi H. Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sean Conlan
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew S. Kelly
- Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Katherine P. Lemon
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Division of Infectious Diseases, Texas Children’s Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
13
|
Adamus JP, Ruszczyńska A, Wyczałkowska-Tomasik A. Molybdenum's Role as an Essential Element in Enzymes Catabolizing Redox Reactions: A Review. Biomolecules 2024; 14:869. [PMID: 39062583 PMCID: PMC11275037 DOI: 10.3390/biom14070869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Molybdenum (Mo) is an essential element for human life, acting as a cofactor in various enzymes crucial for metabolic homeostasis. This review provides a comprehensive insight into the latest advances in research on molybdenum-containing enzymes and their clinical significance. One of these enzymes is xanthine oxidase (XO), which plays a pivotal role in purine catabolism, generating reactive oxygen species (ROS) capable of inducing oxidative stress and subsequent organ dysfunction. Elevated XO activity is associated with liver pathologies such as non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). Aldehyde oxidases (AOs) are also molybdenum-containing enzymes that, similar to XO, participate in drug metabolism, with notable roles in the oxidation of various substrates. However, beneath its apparent efficacy, AOs' inhibition may impact drug effectiveness and contribute to liver damage induced by hepatotoxins. Another notable molybdenum-enzyme is sulfite oxidase (SOX), which catalyzes the conversion of sulfite to sulfate, crucial for the degradation of sulfur-containing amino acids. Recent research highlights SOX's potential as a diagnostic marker for HCC, offering promising sensitivity and specificity in distinguishing cancerous lesions. The newest member of molybdenum-containing enzymes is mitochondrial amidoxime-reducing component (mARC), involved in drug metabolism and detoxification reactions. Emerging evidence suggests its involvement in liver pathologies such as HCC and NAFLD, indicating its potential as a therapeutic target. Overall, understanding the roles of molybdenum-containing enzymes in human physiology and disease pathology is essential for advancing diagnostic and therapeutic strategies for various health conditions, particularly those related to liver dysfunction. Further research into the molecular mechanisms underlying these enzymes' functions could lead to novel treatments and improved patient outcomes.
Collapse
Affiliation(s)
- Jakub Piotr Adamus
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Ruszczyńska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland
| | | |
Collapse
|
14
|
Padalko A, Nair G, Sousa FL. Fusion/fission protein family identification in Archaea. mSystems 2024; 9:e0094823. [PMID: 38700364 PMCID: PMC11237513 DOI: 10.1128/msystems.00948-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
The majority of newly discovered archaeal lineages remain without a cultivated representative, but scarce experimental data from the cultivated organisms show that they harbor distinct functional repertoires. To unveil the ecological as well as evolutionary impact of Archaea from metagenomics, new computational methods need to be developed, followed by in-depth analysis. Among them is the genome-wide protein fusion screening performed here. Natural fusions and fissions of genes not only contribute to microbial evolution but also complicate the correct identification and functional annotation of sequences. The products of these processes can be defined as fusion (or composite) proteins, the ones consisting of two or more domains originally encoded by different genes and split proteins, and the ones originating from the separation of a gene in two (fission). Fusion identifications are required for proper phylogenetic reconstructions and metabolic pathway completeness assessments, while mappings between fused and unfused proteins can fill some of the existing gaps in metabolic models. In the archaeal genome-wide screening, more than 1,900 fusion/fission protein clusters were identified, belonging to both newly sequenced and well-studied lineages. These protein families are mainly associated with different types of metabolism, genetic, and cellular processes. Moreover, 162 of the identified fusion/fission protein families are archaeal specific, having no identified fused homolog within the bacterial domain. Our approach was validated by the identification of experimentally characterized fusion/fission cases. However, around 25% of the identified fusion/fission families lack functional annotations for both composite and split states, showing the need for experimental characterization in Archaea.IMPORTANCEGenome-wide fusion screening has never been performed in Archaea on a broad taxonomic scale. The overlay of multiple computational techniques allows the detection of a fine-grained set of predicted fusion/fission families, instead of rough estimations based on conserved domain annotations only. The exhaustive mapping of fused proteins to bacterial organisms allows us to capture fusion/fission families that are specific to archaeal biology, as well as to identify links between bacterial and archaeal lineages based on cooccurrence of taxonomically restricted proteins and their sequence features. Furthermore, the identification of poorly characterized lineage-specific fusion proteins opens up possibilities for future experimental and computational investigations. This approach enhances our understanding of Archaea in general and provides potential candidates for in-depth studies in the future.
Collapse
Affiliation(s)
- Anastasiia Padalko
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Govind Nair
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Filipa L. Sousa
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Kirschning A. Why pyridoxal phosphate could be a functional predecessor of thiamine pyrophosphate and speculations on a primordial metabolism. RSC Chem Biol 2024; 5:508-517. [PMID: 38846080 PMCID: PMC11151856 DOI: 10.1039/d4cb00016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/15/2024] [Indexed: 06/09/2024] Open
Abstract
The account attempts to substantiate the hypothesis that, from an evolutionary perspective, the coenzyme couple pyridoxal phosphate and pyridoxamine phosphate preceded the coenzyme thiamine pyrophosphate and acted as its less efficient chemical analogue in some form of early metabolism. The analysis combines mechanism-based chemical reactivity with biosynthetic arguments and provides evidence that vestiges of "TPP-like reactivity" are still found for PLP today. From these thoughts, conclusions can be drawn about the key elements of a primordial form of metabolism, which includes the citric acid cycle, amino acid biosynthesis and the pentose phosphate pathway.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B 30167 Hannover Germany
- Uppsala Biomedical Center (BMC), University Uppsala, Husargatan 3 752 37 Uppsala Sweden
| |
Collapse
|
16
|
Kamel R, Aman R, Mahfouz MM. Viperin-like proteins interfere with RNA viruses in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1385169. [PMID: 38895613 PMCID: PMC11185175 DOI: 10.3389/fpls.2024.1385169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Plant viruses cause substantial losses in crop yield and quality; therefore, devising new, robust strategies to counter viral infections has important implications for agriculture. Virus inhibitory protein endoplasmic reticulum-associated interferon-inducible (Viperin) proteins are conserved antiviral proteins. Here, we identified a set of Viperin and Viperin-like proteins from multiple species and tested whether they could interfere with RNA viruses in planta. Our data from transient and stable overexpression of these proteins in Nicotiana benthamiana reveal varying levels of interference against the RNA viruses tobacco mosaic virus (TMV), turnip mosaic virus (TuMV), and potato virus x (PVX). Harnessing the potential of these proteins represents a novel avenue in plant antiviral approaches, offering a broader and more effective spectrum for application in plant biotechnology and agriculture. Identifying these proteins opens new avenues for engineering a broad range of resistance to protect crop plants against viral pathogens.
Collapse
Affiliation(s)
| | | | - Magdy M. Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
17
|
Napiórkowska-Baran K, Treichel P, Czarnowska M, Drozd M, Koperska K, Węglarz A, Schmidt O, Darwish S, Szymczak B, Bartuzi Z. Immunomodulation through Nutrition Should Be a Key Trend in Type 2 Diabetes Treatment. Int J Mol Sci 2024; 25:3769. [PMID: 38612580 PMCID: PMC11011461 DOI: 10.3390/ijms25073769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
An organism's ability to function properly depends not solely on its diet but also on the intake of nutrients and non-nutritive bioactive compounds that exert immunomodulatory effects. This principle applies both to healthy individuals and, in particular, to those with concomitant chronic conditions, such as type 2 diabetes. However, the current food industry and the widespread use of highly processed foods often lead to nutritional deficiencies. Numerous studies have confirmed the occurrence of immune system dysfunction in patients with type 2 diabetes. This article elucidates the impact of specific nutrients on the immune system function, which maintains homeostasis of the organism, with a particular emphasis on type 2 diabetes. The role of macronutrients, micronutrients, vitamins, and selected substances, such as omega-3 fatty acids, coenzyme Q10, and alpha-lipoic acid, was taken into consideration, which outlined the minimum range of tests that ought to be performed on patients in order to either directly or indirectly determine the severity of malnutrition in this group of patients.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Marta Czarnowska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Magdalena Drozd
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Kinga Koperska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Agata Węglarz
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Samira Darwish
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| |
Collapse
|
18
|
Ashey J, McKelvie H, Freeman J, Shpilker P, Zane LH, Becker DM, Cowen L, Richmond RH, Paul VJ, Seneca FO, Putnam HM. Characterizing transcriptomic responses to sediment stress across location and morphology in reef-building corals. PeerJ 2024; 12:e16654. [PMID: 38313033 PMCID: PMC10836209 DOI: 10.7717/peerj.16654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/20/2023] [Indexed: 02/06/2024] Open
Abstract
Anthropogenic activities increase sediment suspended in the water column and deposition on reefs can be largely dependent on colony morphology. Massive and plating corals have a high capacity to trap sediments, and active removal mechanisms can be energetically costly. Branching corals trap less sediment but are more susceptible to light limitation caused by suspended sediment. Despite deleterious effects of sediments on corals, few studies have examined the molecular response of corals with different morphological characteristics to sediment stress. To address this knowledge gap, this study assessed the transcriptomic responses of branching and massive corals in Florida and Hawai'i to varying levels of sediment exposure. Gene expression analysis revealed a molecular responsiveness to sediments across species and sites. Differential Gene Expression followed by Gene Ontology (GO) enrichment analysis identified that branching corals had the largest transcriptomic response to sediments, in developmental processes and metabolism, while significantly enriched GO terms were highly variable between massive corals, despite similar morphologies. Comparison of DEGs within orthogroups revealed that while all corals had DEGs in response to sediment, there was not a concerted gene set response by morphology or location. These findings illuminate the species specificity and genetic basis underlying coral susceptibility to sediments.
Collapse
Affiliation(s)
- Jill Ashey
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States
| | - Hailey McKelvie
- Department of Computer Science, Tufts University, Medford, Massachusetts, United States
| | - John Freeman
- Department of Computer Science, Tufts University, Medford, Massachusetts, United States
| | - Polina Shpilker
- Department of Computer Science, Tufts University, Medford, Massachusetts, United States
| | - Lauren H. Zane
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States
| | - Danielle M. Becker
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, Massachusetts, United States
| | - Robert H. Richmond
- Kewalo Marine Lab, University of Hawaii at Manoa, Honolulu, Hawaii, United States
| | - Valerie J. Paul
- Smithsonian Marine Station, Smithsonian, Fort Pierce, Florida, United States
| | | | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States
| |
Collapse
|
19
|
Weber JN, Minner-Meinen R, Kaufholdt D. The Mechanisms of Molybdate Distribution and Homeostasis with Special Focus on the Model Plant Arabidopsis thaliana. Molecules 2023; 29:40. [PMID: 38202623 PMCID: PMC10780190 DOI: 10.3390/molecules29010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
This review article deals with the pathways of cellular and global molybdate distribution in plants, especially with a full overview for the model plant Arabidopsis thaliana. In its oxidized state as bioavailable molybdate, molybdenum can be absorbed from the environment. Especially in higher plants, molybdenum is indispensable as part of the molybdenum cofactor (Moco), which is responsible for functionality as a prosthetic group in a variety of essential enzymes like nitrate reductase and sulfite oxidase. Therefore, plants need mechanisms for molybdate import and transport within the organism, which are accomplished via high-affinity molybdate transporter (MOT) localized in different cells and membranes. Two different MOT families were identified. Legumes like Glycine max or Medicago truncatula have an especially increased number of MOT1 family members for supplying their symbionts with molybdate for nitrogenase activity. In Arabidopsis thaliana especially, the complete pathway followed by molybdate through the plant is traceable. Not only the uptake from soil by MOT1.1 and its distribution to leaves, flowers, and seeds by MOT2-family members was identified, but also that inside the cell. the transport trough the cytoplasm and the vacuolar storage mechanisms depending on glutathione were described. Finally, supplying the Moco biosynthesis complex by MOT1.2 and MOT2.1 was demonstrated.
Collapse
Affiliation(s)
| | | | - David Kaufholdt
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106 Braunschweig, Germany
| |
Collapse
|
20
|
Oskarsson A, Kippler M. Molybdenum - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2023; 67:10326. [PMID: 38187804 PMCID: PMC10770642 DOI: 10.29219/fnr.v67.10326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 01/02/2023] [Accepted: 10/25/2023] [Indexed: 01/09/2024] Open
Abstract
Molybdenum is an essential element in the form of the molybdenum cofactor (Moco). In humans, Moco is required for four enzymes: xanthine oxidase (XO), aldehyde oxidase, sulfite oxidase (SO), and mitochondrial amidoxime-reducing component (mARC). The enzymes are involved in the oxidation of purines to uric acid, metabolism of aromatic aldehydes and heterocyclic compounds, and in the catabolism of sulfur amino acids. Molybdenum cofactor deficiency is a rare autosomal recessive syndrome due to a defective synthesis of Moco, resulting in a deficiency of all the molybdoenzymes. There are no reports on clinical signs of dietary molybdenum deficiency in otherwise healthy humans. Water-soluble molybdate is efficiently absorbed from the digestive tract. The body retention is regulated by urinary excretion. Plasma molybdenum reflects long-term intake and 24-h urinary excretion is related to recent intake. There are no biochemical markers of molybdenum status. Cereal products are the main contributors to molybdenum dietary intake, estimated to 100-170 μg/day in Nordic studies. Little data are available on molybdenum toxicity in humans. A tolerable upper intake level of molybdenum has been based on reproductive toxicity in rats, but the effects have not been reproduced in more recent studies. The U.S. Institute of Medicine (IOM, present National Academy of Sciences, Engineering, and Medicine; NASEM) established a Recommended Dietary Allowance of 45 μg/day in adult men and women in 2001, based on a small study reporting urinary excretion in balance with intake at 22 μg/day. The European Food Safety Authority (EFSA) considered in 2013 the evidence to be insufficient to derive an Average Requirement and a Population Reference Intake, but proposed an Adequate Intake of 65 μg/day for adults.
Collapse
Affiliation(s)
- Agneta Oskarsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
21
|
Wechselberger C, Messner B, Bernhard D. The Role of Trace Elements in Cardiovascular Diseases. TOXICS 2023; 11:956. [PMID: 38133357 PMCID: PMC10747024 DOI: 10.3390/toxics11120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Essential trace elements play an important role in human physiology and are associated with various functions regulating cellular metabolism. Non-essential trace elements, on the other hand, often have well-documented toxicities that are dangerous for the initiation and development of diseases due to their widespread occurrence in the environment and their accumulation in living organisms. Non-essential trace elements are therefore regarded as serious environmental hazards that are harmful to health even in low concentrations. Many representatives of these elements are present as pollutants in our environment, and many people may be exposed to significant amounts of these substances over the course of their lives. Among the most common non-essential trace elements are heavy metals, which are also associated with acute poisoning in humans. When these elements accumulate in the body over years of chronic exposure, they often cause severe health damage in a variety of tissues and organs. In this review article, the role of selected essential and non-essential trace elements and their role in the development of exemplary pathophysiological processes in the cardiovascular system will be examined in more detail.
Collapse
Affiliation(s)
- Christian Wechselberger
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - David Bernhard
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
- Clinical Research Institute for Cardiovascular and Metabolic Diseases, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
| |
Collapse
|
22
|
Zhao Q, Su X, Wang Y, Liu R, Bartlam M. Structural analysis of molybdate binding protein ModA from Klebsiella pneumoniae. Biochem Biophys Res Commun 2023; 681:41-46. [PMID: 37751633 DOI: 10.1016/j.bbrc.2023.09.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
Klebsiella pneumoniae, a facultative anaerobe, relies on acquiring molybdenum to sustain growth in anaerobic conditions, a crucial factor for the pathogen to establish infections within host environments. Molybdenum plays a critical role in pathogenesis as it forms an essential component of cofactors for molybdoenzymes. K. pneumoniae utilizes the ABC (ATP-Binding-Cassette) transporter encoded by the modABC operon for uptake of the group VI elements molybdenum and tungsten. In this study, we determined the X-ray crystal structures of both the molybdenum-free and molybdenum-bound substrate-binding protein (SBP) ModA from Klebsiella pneumoniae to 2.00 Å and 1.77 Å resolution respectively. ModA crystallizes in the space group P222 with a single monomer in one asymmetric unit. The purified protein remained soluble and specifically bound molybdate and tungstate with Kd values of 6.3 nM and 5.2 nM, respectively. Tungstate competes with molybdate by binding to ModA, resulting in enhanced antimicrobial activity. These data provide a starting point for structural and functional analyses of molybdate transport in K. pneumoniae.
Collapse
Affiliation(s)
- Qi Zhao
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xiaokang Su
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yanan Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Ruihua Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Mark Bartlam
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China; Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
23
|
Burgmayer SJN, Kirk ML. Advancing Our Understanding of Pyranopterin-Dithiolene Contributions to Moco Enzyme Catalysis. Molecules 2023; 28:7456. [PMID: 38005178 PMCID: PMC10673323 DOI: 10.3390/molecules28227456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The pyranopterin dithiolene ligand is remarkable in terms of its geometric and electronic structure and is uniquely found in mononuclear molybdenum and tungsten enzymes. The pyranopterin dithiolene is found coordinated to the metal ion, deeply buried within the protein, and non-covalently attached to the protein via an extensive hydrogen bonding network that is enzyme-specific. However, the function of pyranopterin dithiolene in enzymatic catalysis has been difficult to determine. This focused account aims to provide an overview of what has been learned from the study of pyranopterin dithiolene model complexes of molybdenum and how these results relate to the enzyme systems. This work begins with a summary of what is known about the pyranopterin dithiolene ligand in the enzymes. We then introduce the development of inorganic small molecule complexes that model aspects of a coordinated pyranopterin dithiolene and discuss the results of detailed physical studies of the models by electronic absorption, resonance Raman, X-ray absorption and NMR spectroscopies, cyclic voltammetry, X-ray crystallography, and chemical reactivity.
Collapse
Affiliation(s)
| | - Martin L. Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
24
|
Vasconcelos Sanches de Araújo A, Borin AC. Water Solvated Zn(II)-Guanine Complex: Structural Aspects and Luminescence Properties. J Phys Chem A 2023; 127:8297-8306. [PMID: 37772405 DOI: 10.1021/acs.jpca.3c04132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Understanding the role of metal ions in living organisms and their interactions with biological compounds is fundamental for our health and for developing technological devices for bioinorganic applications. In this work, structural aspects and photophysical mechanisms involved in the luminescence of the Zn(II)-guanine complex in water were studied by using computational quantum chemical methods, providing molecular-level explanations for reported experimental findings. Structural aspects were investigated with def2-SVP basis sets, Density Functional Theory, Resolution of Identity Algebraic Diagrammatic Construction in Second-Order (RI-ADC(2)), Polarizable Continuum Model (PCM), and Conductor-like Screening Model (COSMO) methods. Spectroscopic properties and photophysical deactivation mechanisms were explored with the atomic natural orbital basis sets including relativistic and semicore correlation (ANO-RCC-VDZP) basis sets, Multistate Complete-Active-Space Second-Order Perturbation Theory (MS-CASPT2), and Polarizable Continuum Model (PCM) methods. Our results indicate that Zn(II) ions bind preferentially to the N7 position, and three water molecules in its coordination sphere are sufficient for describing the photophysical properties. The complexation with Zn(II) ions and solvation effects favor fluorescence because the minimum energy region of the S1 (La) (1ππ*) ((La)min) potential energy hypersurface is stabilized, the (La/GS) crossing region is destabilized, and a high energetic barrier along the pathway from the (La)min and (La/GS) regions hampers fast nonradiative return of the electronic population to the ground state, as observed for isolated 9H-guanine.
Collapse
Affiliation(s)
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
25
|
Jamali ZH, Ali S, Qasim M, Song C, Anwar M, Du J, Wang Y. Assessment of molybdenum application on soybean physiological characteristics in maize-soybean intercropping. FRONTIERS IN PLANT SCIENCE 2023; 14:1240146. [PMID: 37841600 PMCID: PMC10570528 DOI: 10.3389/fpls.2023.1240146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/31/2023] [Indexed: 10/17/2023]
Abstract
Soybean is a leguminous crop known for its efficient nitrogen utilization and ease of cultivation. However, its intercropping with maize may lead to severe reduction in its growth and yield due to shading effect of maize. This issue can be resolved by the appropriate application of essential plant nutrient such as molybdenum (Mo). Aim of this study was to assess the effect of Mo application on the morphological and physiological characteristics of soybean intercropped with maize. A two-year field experiment was conducted for this purpose, and Mo was applied in the form of sodium molybdate (Na2MoO4), and four different levels were maintained i.e., 0, 60, 120 and 180 g ha-1. Soybean exhibited varying responses to different levels of molybdenum (Mo) application. Notably, in both sole and intercropped cropping systems, the application of Mo at a rate of 120 g ha-1 demonstrated the highest level of promise compared to other application levels. However, most significant outcomes were pragmatic in soybean-maize intercropping, as application of Mo @ 120 g ha-1 significantly improved soybean growth and yield attributes, including leaf area index (LAI; 434 and 441%), total plant biomass (430 and 461%), transpiration rate (15 and 18%), stomatal conductance (9 and 11%), and yield (15 and 20%) during year 2020 and 2021 respectively, as compared to control treatment. Similarly, Mo @ 120 g ha-1 application resulted in highest total grain yield (626.0 and 725.3 kg ha-1) during 2020 and 2021 respectively, which exceeded the grain yields of other Mo levels under intercropping. Moreover, under Mo application level (120 g ha-1), grain NPK and Mo contents during years 2020 and 2021 were found to be 1.15, 0.22, 0.83 and 68.94 mg kg-1, and 1.27, 0.25, 0.90 and 72.18 mg kg-1 under intercropping system increased the value as compared to control treatment. Findings of current study highlighted the significance of Mo in enhancing soybean growth, yield, and nutrient uptake efficiency in maize-soybean intercropping systems.
Collapse
Affiliation(s)
| | - Shahzaib Ali
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia Ceske Budejovice, Ceske Budejovice, Czechia
| | - Muhammad Qasim
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Chun Song
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Anwar
- School of Tropical Agriculture and forestry, Hainan University, Haikou, China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yu Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
26
|
Mujakić I, Cabello-Yeves PJ, Villena-Alemany C, Piwosz K, Rodriguez-Valera F, Picazo A, Camacho A, Koblížek M. Multi-environment ecogenomics analysis of the cosmopolitan phylum Gemmatimonadota. Microbiol Spectr 2023; 11:e0111223. [PMID: 37732776 PMCID: PMC10581226 DOI: 10.1128/spectrum.01112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/02/2023] [Indexed: 09/22/2023] Open
Abstract
Gemmatimonadota is a diverse bacterial phylum commonly found in environments such as soils, rhizospheres, fresh waters, and sediments. So far, the phylum contains just six cultured species (five of them sequenced), which limits our understanding of their diversity and metabolism. Therefore, we analyzed over 400 metagenome-assembled genomes (MAGs) and 5 culture-derived genomes representing Gemmatimonadota from various aquatic environments, hydrothermal vents, sediments, soils, and host-associated (with marine sponges and coral) species. The principal coordinate analysis based on the presence/absence of genes in Gemmatimonadota genomes and phylogenomic analysis documented that marine and host-associated Gemmatimonadota were the most distant from freshwater and wastewater species. A smaller genome size and coding sequences (CDS) number reduction were observed in marine MAGs, pointing to an oligotrophic environmental adaptation. Several metabolic pathways are restricted to specific environments. For example, genes for anoxygenic phototrophy were found only in freshwater, wastewater, and soda lake sediment genomes. There were several genomes from soda lake sediments and wastewater containing type IC/ID ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Various genomes from wastewater harbored bacterial type II RuBisCO, whereas RuBisCO-like protein was found in genomes from fresh waters, soil, host-associated, and marine sediments. Gemmatimonadota does not contain nitrogen fixation genes; however, the nosZ gene, involved in the reduction of N2O, was present in genomes from most environments, missing only in marine water and host-associated Gemmatimonadota. The presented data suggest that Gemmatimonadota evolved as an organotrophic species relying on aerobic respiration and then remodeled its genome inventory when adapting to particular environments. IMPORTANCE Gemmatimonadota is a rarely studied bacterial phylum consisting of a handful of cultured species. Recent culture-independent studies documented that these organisms are distributed in many environments, including soil, marine, fresh, and waste waters. However, due to the lack of cultured species, information about their metabolic potential and environmental role is scarce. Therefore, we collected Gemmatimonadota metagenome-assembled genomes (MAGs) from different habitats and performed a systematic analysis of their genomic characteristics and metabolic potential. Our results show how Gemmatimonadota have adapted their genomes to different environments.
Collapse
Affiliation(s)
- Izabela Mujakić
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Pedro J. Cabello-Yeves
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Cristian Villena-Alemany
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Kasia Piwosz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Antonio Picazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
27
|
Almudhry M, Prasad AN, Rupar CA, Tay KY, Ratko S, Jenkins ME, Prasad C. A milder form of molybdenum cofactor deficiency type A presenting as Leigh's syndrome-like phenotype highlighting the secondary mitochondrial dysfunction: a case report. Front Neurol 2023; 14:1214137. [PMID: 37789894 PMCID: PMC10542394 DOI: 10.3389/fneur.2023.1214137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/18/2023] [Indexed: 10/05/2023] Open
Abstract
Background Molybdenum cofactor deficiency (MoCD) (OMIM# 252150) is an autosomal-recessive disorder caused by mutations in four genes involved in the molybdenum cofactor (MOCO) biosynthesis pathway. Objectives We report a milder phenotype in a patient with MOCS1 gene mutation who presented with a Leigh-like presentation. Case report We present the case of a 10-year-old boy who was symptomatic at the age of 5 months with sudden onset of dyskinesia, nystagmus, and extrapyramidal signs following a febrile illness. Initial biochemical, radiological, and histopathological findings a Leigh syndrome-like phenotype; however, whole-exome sequencing detected compound heterozygous mutations in MOCS1 gene, c.1133 G>C and c.217C>T, confirming an underlying MoCD. This was biochemically supported by low uric acid level of 80 (110-282 mmol/L) and low cystine level of 0 (3-49), and a urine S-sulfocysteine at 116 (0-15) mmol/mol creatinine. The patient was administered methionine- and cystine-free formulas. The patient has remained stable, with residual intellectual, speech, and motor sequelae. Conclusion This presentation expands the phenotypic variability of late-onset MoCD A and highlights the role of secondary mitochondrial dysfunction in its pathogenesis.
Collapse
Affiliation(s)
- Montaha Almudhry
- London Health Sciences Centre, London, ON, Canada
- Department of Neuroscience, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Asuri N. Prasad
- London Health Sciences Centre, London, ON, Canada
- Department of Pediatrics, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | - C. Anthony Rupar
- London Health Sciences Centre, London, ON, Canada
- Department of Pediatrics, Western University, London, ON, Canada
- Department of Biochemistry, Western University, London, ON, Canada
| | - Keng Yeow Tay
- London Health Sciences Centre, London, ON, Canada
- Department of Medical Imaging, Western University, London, ON, Canada
| | | | - Mary E. Jenkins
- London Health Sciences Centre, London, ON, Canada
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Chitra Prasad
- London Health Sciences Centre, London, ON, Canada
- Department of Pediatrics, Western University, London, ON, Canada
| |
Collapse
|
28
|
Hassan AH, Ihling C, Iacobucci C, Kastritis PL, Sinz A, Kruse T. The structural principles underlying molybdenum insertase complex assembly. Protein Sci 2023; 32:e4753. [PMID: 37572332 PMCID: PMC10461460 DOI: 10.1002/pro.4753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/16/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Within the cell, the trace element molybdenum (Mo) is only biologically active when complexed either within the nitrogenase-specific FeMo cofactor or within the molybdenum cofactor (Moco). Moco consists of an organic part, called molybdopterin (MPT) and an inorganic part, that is, the Mo-center. The enzyme which catalyzes the Mo-center formation is the molybdenum insertase (Mo-insertase). Mo-insertases consist of two functional domains called G- and E-domain. The G-domain catalyzes the formation of adenylated MPT (MPT-AMP), which is the substrate for the E-domain, that catalyzes the actual molybdate insertion reaction. Though the functions of E- and G-domain have been elucidated to great structural and mechanistic detail, their combined function is poorly characterized. In this work, we describe a structural model of the eukaryotic Mo-insertase Cnx1 complex that was generated based on cross-linking mass spectrometry combined with computational modeling. We revealed Cnx1 to form an asymmetric hexameric complex which allows the E- and G-domain active sites to align in a catalytic productive orientation toward each other.
Collapse
Affiliation(s)
- Ahmed H. Hassan
- TU BraunschweigInstitute of Plant BiologyBraunschweigGermany
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Christian Ihling
- Department of Pharmaceutical Chemistry & BioanalyticsInstitute of PharmacyHalle (Saale)Germany
- Center for Structural Mass SpectrometryHalle (Saale)Germany
| | - Claudio Iacobucci
- Department of Pharmaceutical Chemistry & BioanalyticsInstitute of PharmacyHalle (Saale)Germany
- Center for Structural Mass SpectrometryHalle (Saale)Germany
- Department of Physical and Chemical SciencesUniversity of L'AquilaL'AquilaItaly
| | - Panagiotis L. Kastritis
- ZIK HALOmem and Institute of Biochemistry and BiotechnologyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & BioanalyticsInstitute of PharmacyHalle (Saale)Germany
- Center for Structural Mass SpectrometryHalle (Saale)Germany
| | - Tobias Kruse
- TU BraunschweigInstitute of Plant BiologyBraunschweigGermany
| |
Collapse
|
29
|
Weber JN, Minner-Meinen R, Behnecke M, Biedendieck R, Hänsch VG, Hercher TW, Hertweck C, van den Hout L, Knüppel L, Sivov S, Schulze J, Mendel RR, Hänsch R, Kaufholdt D. Moonlighting Arabidopsis molybdate transporter 2 family and GSH-complex formation facilitate molybdenum homeostasis. Commun Biol 2023; 6:801. [PMID: 37532778 PMCID: PMC10397214 DOI: 10.1038/s42003-023-05161-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023] Open
Abstract
Molybdenum (Mo) as essential micronutrient for plants, acts as active component of molybdenum cofactor (Moco). Core metabolic processes like nitrate assimilation or abscisic-acid biosynthesis rely on Moco-dependent enzymes. Although a family of molybdate transport proteins (MOT1) is known to date in Arabidopsis, molybdate homeostasis remained unclear. Here we report a second family of molybdate transporters (MOT2) playing key roles in molybdate distribution and usage. KO phenotype-analyses, cellular and organ-specific localization, and connection to Moco-biosynthesis enzymes via protein-protein interaction suggest involvement in cellular import of molybdate in leaves and reproductive organs. Furthermore, we detected a glutathione-molybdate complex, which reveals how vacuolar storage is maintained. A putative Golgi S-adenosyl-methionine transport function was reported recently for the MOT2-family. Here, we propose a moonlighting function, since clear evidence of molybdate transport was found in a yeast-system. Our characterization of the MOT2-family and the detection of a glutathione-molybdate complex unveil the plant-wide way of molybdate.
Collapse
Affiliation(s)
- Jan-Niklas Weber
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Rieke Minner-Meinen
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Maria Behnecke
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Rebekka Biedendieck
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology, Technische Universität Braunschweig, Rebenring 56, D-38106, Braunschweig, Germany
| | - Veit G Hänsch
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Research and Infection Biology (HKI), Beutenbergstrasse 11a, Faculty of Biological Sciences, Friedrich Schiller University Jena, D-07743, Jena, Germany
| | - Thomas W Hercher
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Research and Infection Biology (HKI), Beutenbergstrasse 11a, Faculty of Biological Sciences, Friedrich Schiller University Jena, D-07743, Jena, Germany
| | - Lena van den Hout
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Lars Knüppel
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Simon Sivov
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Jutta Schulze
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Ralf-R Mendel
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Robert Hänsch
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany.
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, , Southwest University, Tiansheng Road No. 2, 400715, Chongqing, Beibei District, PR China.
| | - David Kaufholdt
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| |
Collapse
|
30
|
Foteva V, Fisher JJ, Qiao Y, Smith R. Does the Micronutrient Molybdenum Have a Role in Gestational Complications and Placental Health? Nutrients 2023; 15:3348. [PMID: 37571285 PMCID: PMC10421405 DOI: 10.3390/nu15153348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Molybdenum is an essential trace element for human health and survival, with molybdenum-containing enzymes catalysing multiple reactions in the metabolism of purines, aldehydes, and sulfur-containing amino acids. Recommended daily intakes vary globally, with molybdenum primarily sourced through the diet, and supplementation is not common. Although the benefits of molybdenum as an anti-diabetic and antioxidant inducer have been reported in the literature, there are conflicting data on the benefits of molybdenum for chronic diseases. Overexposure and deficiency can result in adverse health outcomes and mortality, although physiological doses remain largely unexplored in relation to human health. The lack of knowledge surrounding molybdenum intake and the role it plays in physiology is compounded during pregnancy. As pregnancy progresses, micronutrient demand increases, and diet is an established factor in programming gestational outcomes and maternal health. This review summarises the current literature concerning varied recommendations on molybdenum intake, the role of molybdenum and molybdoenzymes in physiology, and the contribution these play in gestational outcomes.
Collapse
Affiliation(s)
- Vladimira Foteva
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Joshua J. Fisher
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Yixue Qiao
- Academy of Pharmacy, Xi’an Jiaotong Liverpool University, Suzhou 215000, China;
| | - Roger Smith
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| |
Collapse
|
31
|
Reich HG, Camp EF, Roger LM, Putnam HM. The trace metal economy of the coral holobiont: supplies, demands and exchanges. Biol Rev Camb Philos Soc 2023; 98:623-642. [PMID: 36897260 DOI: 10.1111/brv.12922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
The juxtaposition of highly productive coral reef ecosystems in oligotrophic waters has spurred substantial interest and progress in our understanding of macronutrient uptake, exchange, and recycling among coral holobiont partners (host coral, dinoflagellate endosymbiont, endolithic algae, fungi, viruses, bacterial communities). By contrast, the contribution of trace metals to the physiological performance of the coral holobiont and, in turn, the functional ecology of reef-building corals remains unclear. The coral holobiont's trace metal economy is a network of supply, demand, and exchanges upheld by cross-kingdom symbiotic partnerships. Each partner has unique trace metal requirements that are central to their biochemical functions and the metabolic stability of the holobiont. Organismal homeostasis and the exchanges among partners determine the ability of the coral holobiont to adjust to fluctuating trace metal supplies in heterogeneous reef environments. This review details the requirements for trace metals in core biological processes and describes how metal exchanges among holobiont partners are key to sustaining complex nutritional symbioses in oligotrophic environments. Specifically, we discuss how trace metals contribute to partner compatibility, ability to cope with stress, and thereby to organismal fitness and distribution. Beyond holobiont trace metal cycling, we outline how the dynamic nature of the availability of environmental trace metal supplies can be influenced by a variability of abiotic factors (e.g. temperature, light, pH, etc.). Climate change will have profound consequences on the availability of trace metals and further intensify the myriad stressors that influence coral survival. Lastly, we suggest future research directions necessary for understanding the impacts of trace metals on the coral holobiont symbioses spanning subcellular to organismal levels, which will inform nutrient cycling in coral ecosystems more broadly. Collectively, this cross-scale elucidation of the role of trace metals for the coral holobiont will allow us to improve forecasts of future coral reef function.
Collapse
Affiliation(s)
- Hannah G Reich
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI, 02881, USA
| | - Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Liza M Roger
- Chemical & Life Science Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA, 23284, USA
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI, 02881, USA
| |
Collapse
|
32
|
Vendrami DLJ, Hoffman JI, Wilding CS. Heterogeneous Genomic Divergence Landscape in Two Commercially Important European Scallop Species. Genes (Basel) 2022; 14:14. [PMID: 36672754 PMCID: PMC9858869 DOI: 10.3390/genes14010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Two commercially important scallop species of the genus Pecten are found in Europe: the north Atlantic Pecten maximus and the Mediterranean Pecten jacobaeus whose distributions abut at the Almeria-Orán front. Whilst previous studies have quantified genetic divergence between these species, the pattern of differentiation along the Pecten genome is unknown. Here, we mapped RADseq data from 235 P. maximus and 27 P. jacobaeus to a chromosome-level reference genome, finding a heterogeneous landscape of genomic differentiation. Highly divergent genomic regions were identified across 14 chromosomes, while the remaining five showed little differentiation. Demographic and comparative genomics analyses suggest that this pattern resulted from an initial extended period of isolation, which promoted divergence, followed by differential gene flow across the genome during secondary contact. Single nucleotide polymorphisms present within highly divergent genomic regions were located in areas of low recombination and contrasting patterns of LD decay were found between the two species, hinting at the presence of chromosomal inversions in P. jacobaeus. Functional annotations revealed that highly differentiated regions were enriched for immune-related processes and mRNA modification. While future work is necessary to characterize structural differences, this study provides new insights into the speciation genomics of P. maximus and P. jacobaeus.
Collapse
Affiliation(s)
- David L. J. Vendrami
- Department of Animal Behaviour, University of Bielefeld, Postfach 100131, 33615 Bielefeld, Germany
| | - Joseph I. Hoffman
- Department of Animal Behaviour, University of Bielefeld, Postfach 100131, 33615 Bielefeld, Germany
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Craig S. Wilding
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
33
|
Lee TW, Lai YH, Chen JL, Chen C. The role of transformation in the risks of chemically exfoliated molybdenum disulfide nanosheets to the aquatic environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116278. [PMID: 36174469 DOI: 10.1016/j.jenvman.2022.116278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
While the effects of environmental factors (e.g., coexisting organic macromolecules and solar irradiation) on the phase transformation and oxidative dissolution of chemically exfoliated molybdenum nanosheets (ceMoS2) have been recognized, the effects of environmental processes on the subsequent biological impacts of ceMoS2 are still poorly understood. In this study, the bioavailability and transitions in chemical speciation occurring during the aging process are demonstrated to be key factors causing ceMoS2 to affect aquatic organisms. The lower survival rate of embryonic zebrafish with aged (i.e., sunlight-irradiated and dark-ambient-aged) ceMoS2, compared to that with freshly prepared ceMoS2, was due to the release of ionic aging products (mainly acidic Mo species) throughout the oxidative dissolution of ceMoS2. The released soluble molybdenum interacted with natural organic matter (NOM) depending on their functionality, and this attenuated the toxicity caused by ceMoS2 to different degrees. Toxicity triggered by aged ceMoS2 under both dark and irradiated conditions was significantly reduced by Suwannee River NOM due to the formation of complexes with ionic Mo species, which was established by Mo K-edge X-ray absorption spectroscopy. The findings provide useful insights for comprehending the impacts of ceMoS2 on aquatic organisms and guidance for the prevention measures necessary in the applications of MoS2 nanosheets.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Department of Environmental Engineering, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei, 111, Taiwan
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chiaying Chen
- Department of Environmental Engineering, National Chung Hsing University, Taichung City, 402, Taiwan.
| |
Collapse
|
34
|
Molybdenum as a Potential Biocompatible and Resorbable Material for Osteosynthesis in Craniomaxillofacial Surgery-An In Vitro Study. Int J Mol Sci 2022; 23:ijms232415710. [PMID: 36555353 PMCID: PMC9779645 DOI: 10.3390/ijms232415710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Titanium and stainless steel are commonly known as osteosynthesis materials with high strength and good biocompatibility. However, they have the big disadvantage that a second operation for hardware removal is necessary. Although resorbable systems made of polymers or magnesium are increasingly used, they show some severe adverse foreign body reactions or unsatisfying degradation behavior. Therefore, we started to investigate molybdenum as a potential new biodegradable material for osteosynthesis in craniomaxillofacial surgery. To characterize molybdenum as a biocompatible material, we performed in vitro assays in accordance with ISO Norm 10993-5. In four different experimental setups, we showed that pure molybdenum and molybdenum rhenium alloys do not lead to cytotoxicity in human and mouse fibroblasts. We also examined the degradation behavior of molybdenum by carrying out long-term immersion tests (up to 6 months) with molybdenum sheet metal. We showed that molybdenum has sufficient mechanical stability over at least 6 months for implants on the one hand and is subject to very uniform degradation on the other. The results of our experiments are very promising for the development of new resorbable osteosynthesis materials for craniomaxillofacial surgery based on molybdenum.
Collapse
|
35
|
Insights into Molecular Structure of Pterins Suitable for Biomedical Applications. Int J Mol Sci 2022; 23:ijms232315222. [PMID: 36499560 PMCID: PMC9737128 DOI: 10.3390/ijms232315222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Pterins are an inseparable part of living organisms. Pterins participate in metabolic reactions mostly as tetrahydropterins. Dihydropterins are usually intermediates of these reactions, whereas oxidized pterins can be biomarkers of diseases. In this review, we analyze the available data on the quantum chemistry of unconjugated pterins as well as their photonics. This gives a comprehensive overview about the electronic structure of pterins and offers some benefits for biomedicine applications: (1) one can affect the enzymatic reactions of aromatic amino acid hydroxylases, NO synthases, and alkylglycerol monooxygenase through UV irradiation of H4pterins since UV provokes electron donor reactions of H4pterins; (2) the emission properties of H2pterins and oxidized pterins can be used in fluorescence diagnostics; (3) two-photon absorption (TPA) should be used in such pterin-related infrared therapy because single-photon absorption in the UV range is inefficient and scatters in vivo; (4) one can affect pathogen organisms through TPA excitation of H4pterin cofactors, such as the molybdenum cofactor, leading to its detachment from proteins and subsequent oxidation; (5) metal nanostructures can be used for the UV-vis, fluorescence, and Raman spectroscopy detection of pterin biomarkers. Therefore, we investigated both the biochemistry and physical chemistry of pterins and suggested some potential prospects for pterin-related biomedicine.
Collapse
|
36
|
Oliphant KD, Fettig RR, Snoozy J, Mendel RR, Warnhoff K. Obtaining the necessary molybdenum cofactor for sulfite oxidase activity in the nematode Caenorhabditis elegans surprisingly involves a dietary source. J Biol Chem 2022; 299:102736. [PMID: 36423681 PMCID: PMC9793310 DOI: 10.1016/j.jbc.2022.102736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Molybdenum cofactor (Moco) is a prosthetic group necessary for the activity of four unique enzymes, including the essential sulfite oxidase (SUOX-1). Moco is required for life; humans with inactivating mutations in the genes encoding Moco-biosynthetic enzymes display Moco deficiency, a rare and lethal inborn error of metabolism. Despite its importance to human health, little is known about how Moco moves among and between cells, tissues, and organisms. The prevailing view is that cells that require Moco must synthesize Moco de novo. Although, the nematode Caenorhabditis elegans appears to be an exception to this rule and has emerged as a valuable system for understanding fundamental Moco biology. C. elegans has the seemingly unique capacity to both synthesize its own Moco as well as acquire Moco from its microbial diet. However, the relative contribution of Moco from the diet or endogenous synthesis has not been rigorously evaluated or quantified biochemically. We genetically removed dietary or endogenous Moco sources in C. elegans and biochemically determined their impact on animal Moco content and SUOX-1 activity. We demonstrate that dietary Moco deficiency dramatically reduces both animal Moco content and SUOX-1 activity. Furthermore, these biochemical deficiencies have physiological consequences; we show that dietary Moco deficiency alone causes sensitivity to sulfite, the toxic substrate of SUOX-1. Altogether, this work establishes the biochemical consequences of depleting dietary Moco or endogenous Moco synthesis in C. elegans and quantifies the surprising contribution of the diet to maintaining Moco homeostasis in C. elegans.
Collapse
Affiliation(s)
- Kevin D. Oliphant
- Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany
| | - Robin R. Fettig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA,Department of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Jennifer Snoozy
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Ralf R. Mendel
- Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany
| | - Kurt Warnhoff
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA,For correspondence: Kurt Warnhoff
| |
Collapse
|
37
|
Fuse Y, Urakawa Y, Tsukada N, Ito Y, Yoshida M, Shishiba Y. Variability and Seasonal Change of Urinary Selenium, Molybdenum, and Iodine Excretion in Healthy Young Japanese Adults. Biol Trace Elem Res 2022:10.1007/s12011-022-03487-x. [PMID: 36394795 DOI: 10.1007/s12011-022-03487-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022]
Abstract
Selenium (Se), molybdenum (Mo), and iodine (I) are essential trace elements or nutrients and their adequate intake is essential for human health. These elements in foods are easily absorbed from the digestive tract and excreted predominantly into the urine, and their nutritional status is reflected in urinary excretion; however, information on the variability of urinary excretion is limited. To characterize the urinary Se, Mo, and I concentrations and their intra- and inter-individual coefficients of variation (CV), correlation, and seasonal change, spot urine samples were collected from 24 healthy university students, 10 males and 14 females, with the mean age of 20.6 years, for 10 consecutive days in each of the four seasons according to a defined schedule of an interval of 3 months throughout 1 year. The median Se, Mo, and I concentrations for all urine samples (n = 947) were 52.8, 127.0, and 223 μg/L, respectively. The Se and Mo intakes were highest in summer and lowest in spring, while the I intake was highest in autumn and lowest in summer. In all three elements, the intra-individual CVs were smaller than their inter-individual CVs. The log-transformed intra- and inter-individual CVs were 10.5 and 14.7% for Se, 12.3 and 15.1% for Mo, and 15.5 and 18.1% for I. There was no gender difference in Se and I concentrations, while Mo and Mo/Cr values in males were higher than those in females. Our results suggest adequate nutritional status of Se, Mo, and I with a relatively smaller variability of dietary intake except for I in this population.
Collapse
Affiliation(s)
- Yozen Fuse
- Research Committee On Iodine Related Health Problems, Foundation for Growth Science, 5-1-16 Hongo, Bunkyou-Ku, Tokyo, 1130033, Japan.
| | - Yumiko Urakawa
- Kamakura Women's University, 6-1-3 Ofuna, Kamakura, Kanagawa, 2470056, Japan
| | - Nobu Tsukada
- Kagawa Nutrition University, Institute of Nutrition Sciences, 3-9-21 Chiyoda, Sakado, Saitama, 3500288, Japan
| | - Yoshiya Ito
- Division of Clinical Medicine, The Japanese Red Cross Hokkaido College of Nursing, 664-1, Akebonochou, Kitami, Hokkaido, 0900011, Japan
| | - Munehiro Yoshida
- Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatechou, Suita, Osaka, 564-8680, Japan
| | - Yoshimasa Shishiba
- Research Committee On Iodine Related Health Problems, Foundation for Growth Science, 5-1-16 Hongo, Bunkyou-Ku, Tokyo, 1130033, Japan
| |
Collapse
|
38
|
Abstract
Covering: up to 2022The report provides a broad approach to deciphering the evolution of coenzyme biosynthetic pathways. Here, these various pathways are analyzed with respect to the coenzymes required for this purpose. Coenzymes whose biosynthesis relies on a large number of coenzyme-mediated reactions probably appeared on the scene at a later stage of biological evolution, whereas the biosyntheses of pyridoxal phosphate (PLP) and nicotinamide (NAD+) require little additional coenzymatic support and are therefore most likely very ancient biosynthetic pathways.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, D-30167 Hannover, Germany.
| |
Collapse
|
39
|
Oliphant KD, Rabenow M, Hohtanz L, Mendel RR. The Neurospora crassa molybdate transporter: Characterizing a novel transporter homologous to the plant MOT1 family. Fungal Genet Biol 2022; 163:103745. [PMID: 36240974 DOI: 10.1016/j.fgb.2022.103745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 01/06/2023]
Abstract
Molybdenum (Mo) is an essential element for animals, plants, and fungi. To achieve biological activity in eukaryotes, Mo must be complexed into the molybdenum cofactor (Moco). Cells are known to take up Mo in the form of the oxyanion molybdate. However, molybdate transporters are scarcely characterized in the fungal kingdom. In plants and algae, molybdate is imported into the cell via two families of molybdate transporters (MOT), MOT1 and MOT2. For the filamentous fungus Neurospora crassa, a sequence homologous to the MOT1 family was previously annotated. Here we report a characterization of this molybdate-related transporter, encoded by the ncmot-1 gene. We found that the deletion of ncmot-1 leads to an accumulation of total Mo within the mycelium and a roughly 51 % higher tolerance against high molybdate levels when grown on ammonium medium. The localization of a GFP tagged NcMOT-1 was identified among the vacuolar membrane. Thereby, we propose NcMOT-1 as an exporter, transporting molybdate out of the vacuole into the cytoplasm. Lastly, the heterologous expression of NcMOT-1 in Saccharomyces cerevisiae verifies the functionality of this protein as a MOT. Our results open the way towards understanding molybdate transport as part of Mo homeostasis and Moco-biosynthesis in fungi.
Collapse
Affiliation(s)
- Kevin D Oliphant
- Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany
| | - Miriam Rabenow
- Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany
| | - Lena Hohtanz
- Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany
| | - Ralf R Mendel
- Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany.
| |
Collapse
|
40
|
Moco Carrier and Binding Proteins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196571. [PMID: 36235107 PMCID: PMC9571131 DOI: 10.3390/molecules27196571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
The molybdenum cofactor (Moco) is the active site prosthetic group found in numerous vitally important enzymes (Mo-enzymes), which predominantly catalyze 2 electron transfer reactions. Moco is synthesized by an evolutionary old and highly conserved multi-step pathway, whereby the metal insertion reaction is the ultimate reaction step here. Moco and its intermediates are highly sensitive towards oxidative damage and considering this, they are believed to be permanently protein bound during synthesis and also after Moco maturation. In plants, a cellular Moco transfer and storage system was identified, which comprises proteins that are capable of Moco binding and release but do not possess a Moco-dependent enzymatic activity. The first protein described that exhibited these properties was the Moco carrier protein (MCP) from the green alga Chlamydomonas reinhardtii. However, MCPs and similar proteins have meanwhile been described in various plant species. This review will summarize the current knowledge of the cellular Moco distribution system.
Collapse
|
41
|
Abstract
α-Amino acids are essential molecular constituents of life, twenty of which are privileged because they are encoded by the ribosomal machinery. The question remains open as to why this number and why this 20 in particular, an almost philosophical question that cannot be conclusively resolved. They are closely related to the evolution of the genetic code and whether nucleic acids, amino acids, and peptides appeared simultaneously and were available under prebiotic conditions when the first self-sufficient complex molecular system emerged on Earth. This report focuses on prebiotic and metabolic aspects of amino acids and proteins starting with meteorites, followed by their formation, including peptides, under plausible prebiotic conditions, and the major biosynthetic pathways in the various kingdoms of life. Coenzymes play a key role in the present analysis in that amino acid metabolism is linked to glycolysis and different variants of the tricarboxylic acid cycle (TCA, rTCA, and the incomplete horseshoe version) as well as the biosynthesis of the most important coenzymes. Thus, the report opens additional perspectives and facets on the molecular evolution of primary metabolism.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic ChemistryLeibniz University HannoverSchneiderberg 1B30167HannoverGermany
| |
Collapse
|
42
|
Gates C, Varnum H, Getty C, Loui N, Chen J, Kirk ML, Yang J, Nieter Burgmayer SJ. Protonation and Non-Innocent Ligand Behavior in Pyranopterin Dithiolene Molybdenum Complexes. Inorg Chem 2022; 61:13728-13742. [PMID: 36000991 PMCID: PMC10544801 DOI: 10.1021/acs.inorgchem.2c01234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complex [TEA][Tp*MoIV(O)(S2BMOPP)] (1) [TEA = tetraethylammonium, Tp* = tris(3,5-dimethylpyrazolyl)hydroborate, and BMOPP = 6-(3-butynyl-2-methyl-2-ol)-2-pivaloyl pterin] is a structural analogue of the molybdenum cofactor common to all pyranopterin molybdenum enzymes because it possesses a pyranopterin-ene-1,2-dithiolate ligand (S2BMOPP) that exists primarily in the ring-closed pyrano structure as a resonance hybrid of ene-dithiolate and thione-thiolate forms. Compound 1, the protonated [Tp*MoIV(O)(S2BMOPP-H)] (1-H) and one-electron-oxidized [Tp*MoV(O)(S2BMOPP)] [1-Mo(5+)] species have been studied using a combination of electrochemistry, electronic absorption, and electron paramagnetic resonance (EPR) spectroscopy. Additional insight into the nature of these molecules has been derived from electronic structure computations. Differences in dithiolene C-S bond lengths correlate with relative contributions from both ene-dithiolate and thione-thiolate resonance structures. Upon protonation of 1 to form 1-H, large spectroscopic changes are observed with transitions assigned as Mo(xy) → pyranopterin metal-to-ligand charge transfer and dithiolene → pyranopterin intraligand charge transfer, respectively, and this underscores a dramatic change in electronic structure between 1 and 1-H. The changes in electronic structure that occur upon protonation of 1 are also reflected in a large >300 mV increase in the Mo(V/IV) redox potential for 1-H, resulting from the greater thione-thiolate resonance contribution and decreased charge donation that stabilize the Mo(IV) state in 1-H with respect to one-electron oxidation. EPR spin Hamiltonian parameters for one-electron-oxidized 1-Mo(5+) and uncyclized [Tp*MoV(O)(S2BDMPP)] [3-Mo(5+)] [BDMPP = 6-(3-butynyl-2,2-dimethyl)-2-pivaloyl pterin] are very similar to each other and to those of [Tp*MoVO(bdt)] (bdt = 1,2-ene-dithiolate). This indicates that the dithiolate form of the ligand dominates at the Mo(V) level, consistent with the demand for greater S → Mo charge donation and a corresponding increase in Mo-S covalency as the oxidation state of the metal is increased. Protonation of 1 represents a simple reaction that models how the transfer of a proton from neighboring acidic amino acid residues to the Mo cofactor at a nitrogen atom within the pyranopterin dithiolene (PDT) ligand in pyranopterin molybdenum enzymes can impact the electronic structure of the Mo-PDT unit. This work also illustrates how pyran ring-chain tautomerization drives changes in resonance contributions to the dithiolene chelate and may adjust the reduction potential of the Mo ion.
Collapse
Affiliation(s)
- Cassandra Gates
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Haley Varnum
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Catherine Getty
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Natalie Loui
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Ju Chen
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Jing Yang
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | | |
Collapse
|
43
|
Javaid S, Dey M, Matzke C, Gupta S. Synthesis and characterization of engineered
PEEK
‐based composites for enhanced tribological and mechanical performance. J Appl Polym Sci 2022. [DOI: 10.1002/app.52886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sabah Javaid
- Department of Mechanical Engineering University of North Dakota Grand Forks North Dakota USA
| | - Maharshi Dey
- Department of Mechanical Engineering University of North Dakota Grand Forks North Dakota USA
| | - Caleb Matzke
- Department of Mechanical Engineering University of North Dakota Grand Forks North Dakota USA
| | - Surojit Gupta
- Department of Mechanical Engineering University of North Dakota Grand Forks North Dakota USA
| |
Collapse
|
44
|
Sikora-Jasinska M, Morath LM, Kwesiga MP, Plank ME, Nelson AL, Oliver AA, Bocks ML, Guillory RJ, Goldman J. In-vivo evaluation of molybdenum as bioabsorbable stent candidate. Bioact Mater 2022; 14:262-271. [PMID: 35310360 PMCID: PMC8897701 DOI: 10.1016/j.bioactmat.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/13/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022] Open
Abstract
Biodegradable stents have tremendous theoretical potential as an alternative to bare metal stents and drug-eluting stents for the treatment of obstructive coronary artery disease. Any bioresorbable or biodegradable scaffold material needs to possess optimal mechanical properties and uniform degradation behavior that avoids local and systemic toxicity. Recently, molybdenum (Mo) has been investigated as a potential novel biodegradable material for this purpose. With its proven moderate degradation rate and excellent mechanical properties, Mo may represent an ideal source material for clinical cardiac and vascular applications. The present study was performed to evaluate the mechanical performance of metallic Mo in vitro and the biodegradation properties in vivo. The results demonstrated favorable mechanical behavior and a uniform degradation profile as desired for a new generation ultra-thin degradable endovascular stent material. Moreover, Mo implants in mouse arteries avoided the typical cellular response that contributes to restenosis. There was minimal neointimal hyperplasia over 6 months, an absence of excessive smooth muscle cell (SMC) proliferation or inflammation near the implant, and avoidance of significant harm to regenerating endothelial cells (EC). Qualitative inspection of kidney sections showed a potentially pathological remodeling of kidney Bowman's capsule and glomeruli, indicative of impaired filtering function and development of kidney disease, although quantifications of these morphological changes were not statistically significant. Together, the results suggest that the products of Mo corrosion may exert beneficial or inert effects on the activities of inflammatory and arterial cells, while exerting potentially toxic effects in the kidneys that warrant further investigation. Mo implants in mouse arteries avoided neointimal hyperplasia over 6 months. Quantification of CD31-labeled arterial sections showed an avoidance of significant harm to regenerating endothelial cells for the Mo implants. Qualitative inspection of kidney sections showed a potential pathological remodeling, indicative of possible impaired filtering function.
Collapse
|
45
|
Petronek MS, Allen BG, Luthe G, Stolwijk JM. Polyoxometalate Nanoparticles as a Potential Glioblastoma Therapeutic via Lipid-Mediated Cell Death. Int J Mol Sci 2022; 23:ijms23158263. [PMID: 35897839 PMCID: PMC9332768 DOI: 10.3390/ijms23158263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
Polyoxometalate nanoparticles (POMs) are a class of compounds made up of multiple transition metals linked together using oxygen atoms. POMs commonly include group 6 transition metals, with two of the most common forms using molybdenum and tungsten. POMs are suggested to exhibit antimicrobial effects. In this study, we developed two POM preparations to study anti-cancer activity. We found that Mo-POM (NH4)Mo7O24) and W-POM (H3PW12O40) have anti-cancer effects on glioblastoma cells. Both POMs induced morphological changes marked by membrane swelling and the presence of multinucleated cells that may indicate apoptosis induction along with impaired cell division. We also observed significant increases in lipid oxidation events, suggesting that POMs are redox-active and can catalyze detrimental oxidation events in glioblastoma cells. Here, we present preliminary indications that molybdenum polyoxometalate nanoparticles may act like ferrous iron to catalyze the oxidation of phospholipids. These preliminary results suggest that Mo-POMs (NH4)Mo7O24) and W-POMs (H3PW12O40) may warrant further investigation into their utility as adjunct cancer therapies.
Collapse
Affiliation(s)
- Michael S. Petronek
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, The University of Iowa, Iowa City, IA 52242-1181, USA
- Correspondence: (M.S.P.); (J.M.S.); Tel.: +1-(319)-356-8019 (M.S.P.)
| | - Bryan G. Allen
- Spheres4Life B.V., 7521 Enschede, The Netherlands; (B.G.A.); (G.L.)
| | - Gregor Luthe
- Spheres4Life B.V., 7521 Enschede, The Netherlands; (B.G.A.); (G.L.)
| | - Jeffrey M. Stolwijk
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, The University of Iowa, Iowa City, IA 52242-1181, USA
- Spheres4Life B.V., 7521 Enschede, The Netherlands; (B.G.A.); (G.L.)
- Correspondence: (M.S.P.); (J.M.S.); Tel.: +1-(319)-356-8019 (M.S.P.)
| |
Collapse
|
46
|
The effect of exposure to MoO 3-NP and common bean fertilized by MoO 3-NPs on biochemical, hematological, and histopathological parameters in rats. Sci Rep 2022; 12:12074. [PMID: 35840748 PMCID: PMC9287347 DOI: 10.1038/s41598-022-16022-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/04/2022] [Indexed: 01/22/2023] Open
Abstract
Nanotechnologies has been used to introduce several beneficial tools in the agricultural field. Herein, the effect of molybdenum oxide nanoparticles (MoO3-NPs) was investigated by evaluating the hematological, biochemical, and histopathological parameters in rats orally exposed to MoO3-NPs or fed common beans (CB) fertilized by MoO3-NPs. In the first study, 18 rats were randomly divided into 3 groups: G1 (control group) was given water orally, while G2 and G3 were administered 10 and 40 ppm MoO3-NPs by oral gavage tube, respectively. There was a significant increase in the levels of alanine aminotransferase (ALT), albumin, and total protein; however, there was a a significant decrease in body weight change (BWC), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), creatinine, creatine kinase–MB (CK-MB), thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), and testosterone levels in G3 compared to G1. In the second study, 24 rats were divided into 4 groups: the control (C) group was fed a balanced diet, and three groups were fed on a balanced diet plus 10% CB that was fertilized with 0, 10, and 40 ppm MoO3-NPs, resulting in nCB, CB10, and CB40 groups, respectively. This revealed a significant increase in BWC and total food intake (TFI) but a significant decrease in relative kidney weight in all the CB groups compared to the control group. In CB10 and CB40 groups ALT, LDH, TSH, FT3, and testosterone levels were significantly lower than the respective levels in the control group. We concluded that high doses of MoO3-NPs caused more side effects than low doses in both experiments.
Collapse
|
47
|
Complex regulation of Gephyrin splicing is a determinant of inhibitory postsynaptic diversity. Nat Commun 2022; 13:3507. [PMID: 35717442 PMCID: PMC9206673 DOI: 10.1038/s41467-022-31264-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/10/2022] [Indexed: 01/05/2023] Open
Abstract
Gephyrin (GPHN) regulates the clustering of postsynaptic components at inhibitory synapses and is involved in pathophysiology of neuropsychiatric disorders. Here, we uncover an extensive diversity of GPHN transcripts that are tightly controlled by splicing during mouse and human brain development. Proteomic analysis reveals at least a hundred isoforms of GPHN incorporated at inhibitory Glycine and gamma-aminobutyric acid A receptors containing synapses. They exhibit different localization and postsynaptic clustering properties, and altering the expression level of one isoform is sufficient to affect the number, size, and density of inhibitory synapses in cerebellar Purkinje cells. Furthermore, we discovered that splicing defects reported in neuropsychiatric disorders are carried by multiple alternative GPHN transcripts, demonstrating the need for a thorough analysis of the GPHN transcriptome in patients. Overall, we show that alternative splicing of GPHN is an important genetic variation to consider in neurological diseases and a determinant of the diversity of postsynaptic inhibitory synapses. The protein gephyrin is involved in organizing synapses. Here, the authors show how different transcripts of gephyrin form and regulate inhibitory synapses.
Collapse
|
48
|
Oliveira SL, Crusciol CAC, Rodrigues VA, Galeriani TM, Portugal JR, Bossolani JW, Moretti LG, Calonego JC, Cantarella H. Molybdenum Foliar Fertilization Improves Photosynthetic Metabolism and Grain Yields of Field-Grown Soybean and Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:887682. [PMID: 35720532 PMCID: PMC9199428 DOI: 10.3389/fpls.2022.887682] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/29/2022] [Indexed: 06/02/2023]
Abstract
Foliar fertilization has been used as a supplemental strategy to plant nutrition especially in crops with high yield potential. Applying nutrients in small doses stimulates photosynthesis and increases yield performance. The aim of this study was to evaluate the efficiency of foliar application of molybdenum (Mo) to soybean and maize. The treatments consisted of the presence (+Mo) and absence (-Mo) of supplementation. Plant nutritional status, nitrate reductase (NR) activity, gas exchange parameters, photosynthetic enzyme activity (Rubisco in soybean and maize and PEPcase in maize), total soluble sugar concentration, leaf protein content, shoot dry matter, shoot nitrogen accumulated, number of grains per plant, mass of 100 grains, and grain yield were evaluated. For soybean and maize, application of Mo increased leaf NR activity, nitrogen and protein content, Rubisco activity, net photosynthesis, and grain yield. These results indicate that foliar fertilization with Mo can efficiently enhance nitrogen metabolism and the plant’s response to carbon fixation, resulting in improved crop yields.
Collapse
Affiliation(s)
- Sirlene Lopes Oliveira
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | | | - Vitor Alves Rodrigues
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Tatiani Mayara Galeriani
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - José Roberto Portugal
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - João William Bossolani
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Luiz Gustavo Moretti
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Juliano Carlos Calonego
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Heitor Cantarella
- Soils and Environmental Resources Center, Agronomic Institute of Campinas (IAC), Campinas, Brazil
| |
Collapse
|
49
|
Colston KJ, Basu P. Synthesis, Redox and Spectroscopic Properties of Pterin of Molybdenum Cofactors. Molecules 2022; 27:3324. [PMID: 35630801 PMCID: PMC9146068 DOI: 10.3390/molecules27103324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
Pterins are bicyclic heterocycles that are found widely across Nature and are involved in a variety of biological functions. Notably, pterins are found at the core of molybdenum cofactor (Moco) containing enzymes in the molybdopterin (MPT) ligand that coordinates molybdenum and facilitates cofactor activity. Pterins are diverse and can be widely functionalized to tune their properties. Herein, the general methods of synthesis, redox and spectroscopic properties of pterin are discussed to provide more insight into pterin chemistry and their importance to biological systems.
Collapse
Affiliation(s)
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| |
Collapse
|
50
|
Medlock AE, Hixon JC, Bhuiyan T, Cobine PA. Prime Real Estate: Metals, Cofactors and MICOS. Front Cell Dev Biol 2022; 10:892325. [PMID: 35669513 PMCID: PMC9163361 DOI: 10.3389/fcell.2022.892325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/02/2022] [Indexed: 12/23/2022] Open
Abstract
Metals are key elements for the survival and normal development of humans but can also be toxic to cells when mishandled. In fact, even mild disruption of metal homeostasis causes a wide array of disorders. Many of the metals essential to normal physiology are required in mitochondria for enzymatic activities and for the formation of essential cofactors. Copper is required as a cofactor in the terminal electron transport chain complex cytochrome c oxidase, iron is required for the for the formation of iron-sulfur (Fe-S) clusters and heme, manganese is required for the prevention of oxidative stress production, and these are only a few examples of the critical roles that mitochondrial metals play. Even though the targets of these metals are known, we are still identifying transporters, investigating the roles of known transporters, and defining regulators of the transport process. Mitochondria are dynamic organelles whose content, structure and localization within the cell vary in different tissues and organisms. Our knowledge of the impact that alterations in mitochondrial physiology have on metal content and utilization in these organelles is very limited. The rates of fission and fusion, the ultrastructure of the organelle, and rates of mitophagy can all affect metal homeostasis and cofactor assembly. This review will focus of the emerging areas of overlap between metal homeostasis, cofactor assembly and the mitochondrial contact site and cristae organizing system (MICOS) that mediates multiple aspects of mitochondrial physiology. Importantly the MICOS complexes may allow for localization and organization of complexes not only involved in cristae formation and contact between the inner and outer mitochondrial membranes but also acts as hub for metal-related proteins to work in concert in cofactor assembly and homeostasis.
Collapse
Affiliation(s)
- Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, United States
| | - J. Catrice Hixon
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Tawhid Bhuiyan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Paul A. Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
- *Correspondence: Paul A. Cobine,
| |
Collapse
|