1
|
Kciuk M, Kruczkowska W, Wanke K, Gałęziewska J, Kołat D, Mujwar S, Kontek R. The Role of Genistein in Type 2 Diabetes and Beyond: Mechanisms and Therapeutic Potential. Molecules 2025; 30:1068. [PMID: 40076293 PMCID: PMC11901726 DOI: 10.3390/molecules30051068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
The global prevalence of type 2 diabetes mellitus (T2DM) necessitates the exploration of novel therapeutic approaches to mitigate its complex molecular pathogenesis. This review investigates the potential role of genistein, a prominent isoflavone derived from soybeans, in the management of T2DM. Recognized for its selective estrogen receptor modulator (SERM) activity, genistein exerts a multifaceted influence on key intracellular signaling pathways, which are crucial in regulating cell proliferation, apoptosis, and insulin signaling. Genistein's anti-inflammatory, anti-oxidant, and metabolic regulatory properties position it as a promising candidate for T2DM intervention. This review synthesizes current research spanning preclinical studies and clinical trials, emphasizing genistein's impact on insulin sensitivity, glucose metabolism, and inflammatory markers. Additionally, this review addresses genistein's bioavailability, safety, and potential influence on gut microbiota composition. By consolidating these findings, this review aims to provide a comprehensive understanding of genistein's therapeutic potential in T2DM management, offering valuable insights for future research and clinical practice.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Univeristy of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| | - Weronika Kruczkowska
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (D.K.)
| | - Katarzyna Wanke
- Department of Molecular Biotechnology and Genetics, Univeristy of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| | - Julia Gałęziewska
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (D.K.)
| | - Damian Kołat
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (D.K.)
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Univeristy of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| |
Collapse
|
2
|
Jiang T, Dong Y, Zhu W, Wu T, Chen L, Cao Y, Yu X, Peng Y, Wang L, Xiao Y, Zhong T. Underlying mechanisms and molecular targets of genistein in the management of type 2 diabetes mellitus and related complications. Crit Rev Food Sci Nutr 2024; 64:11543-11555. [PMID: 37497995 DOI: 10.1080/10408398.2023.2240886] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease caused by a complex interaction of genetic and environmental factors and is characterized by persistent hyperglycemia. Long-term hyperglycemia can cause macrovascular and microvascular damage, and compromise the heart, brain, kidney, peripheral nerves, eyes and other organs, leading to serious complications. Genistein, a phytoestrogen derived from soybean, is known for its various biological activities and therapeutic properties. Recent studies found that genistein not only has hypoglycemic activity but can also decrease insulin resistance. In addition, genistein has particular activity in the prevention and treatment of diabetic complications, such as nephropathy, cardiovascular disease, osteoarthrosis, encephalopathy and retinopathy. Therefore, the purpose of this review is to summarize the latest medical research and progress of genistein in DM and related complications and highlights its potential molecular mechanisms and therapeutic targets. Meanwhile, evidence is provided for the development and application of genistein as a potential drug or functional food in the prevention and treatment of diabetes and its related complications.
Collapse
Affiliation(s)
- Tao Jiang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| | - Yuhe Dong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Wanying Zhu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Tong Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Linyan Chen
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Yuantong Cao
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| |
Collapse
|
3
|
Goleij P, Sanaye PM, Alam W, Zhang J, Tabari MAK, Filosa R, Jeandet P, Cheang WS, Efferth T, Khan H. Unlocking daidzein's healing power: Present applications and future possibilities in phytomedicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155949. [PMID: 39217652 DOI: 10.1016/j.phymed.2024.155949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cancer is one of the leading causes of death and a great threat to people around the world. Cancer treatment modalities include surgery, radiotherapy, chemotherapy, radiochemotherapy, hormone therapy, and immunotherapy. The best approach is to use a combination of several types. Among the treatment methods mentioned above, chemotherapy is frequently used, but its activity is hampered by the development of drug resistance and many side effects. In this regard, the use of medicinal plants has been discussed, and in recent decades, the use of isolated phytochemicals came into the focus of interest. By critically evaluating the available evidence and emphasizing the unique perspective offered by this review, we provide insights into the potential of daidzein as a promising therapeutic agent, as well as outline future research directions to optimize its efficacy in clinical settings. PURPOSE To summarized the therapeutic potential of daidzein, an isoflavone phytoestrogen in the management of several human diseases with the focuses on the current status and future prospects as a therapeutic agent. METHODS Several search engines, including PubMed, GoogleScholar, and ScienceDirect, were used, with the search terms "daidzein", "daidzein therapeutic potential", or individual effects. The study included all peer-reviewed articles. However, the most recent publications were given priority. RESULTS Daidzein showed protective effects against malignant diseases such as breast cancer, prostate cancer but also non-malignant diseases such as diabetes, osteoporosis, and cardiovascular diseases. Daidzein activates multiple signaling pathways leading to cell cycle arrest and apoptosis as well as antioxidant and anti-metastatic effects in malignant cells. Moreover, the anticancer effects against different cancer cells were more prominent and discussed in detail. CONCLUSIONS In short, daidzein represents a promising compound for drug development. The comprehensive potential anticancer activities of daidzein through various molecular mechanisms and its therapeutic/clinical status required further detail studies.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran.
| | - Pantea Majma Sanaye
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Waqas Alam
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mohammad Amin Khazeei Tabari
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| | - Philippe Jeandet
- Département de Biologie et Biochimie Faculté des Sciences Exactes et Naturelles Université de Reims BP 1039 51687, Reims CEDEX 02, France
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
4
|
Kiriyama Y, Tokumaru H, Sadamoto H, Kobayashi S, Nochi H. Effects of Phenolic Acids Produced from Food-Derived Flavonoids and Amino Acids by the Gut Microbiota on Health and Disease. Molecules 2024; 29:5102. [PMID: 39519743 PMCID: PMC11548037 DOI: 10.3390/molecules29215102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The gut microbiota metabolizes flavonoids, amino acids, dietary fiber, and other components of foods to produce a variety of gut microbiota-derived metabolites. Flavonoids are the largest group of polyphenols, and approximately 7000 flavonoids have been identified. A variety of phenolic acids are produced from flavonoids and amino acids through metabolic processes by the gut microbiota. Furthermore, these phenolic acids are easily absorbed. Phenolic acids generally represent phenolic compounds with one carboxylic acid group. Gut microbiota-derived phenolic acids have antiviral effects against several viruses, such as SARS-CoV-2 and influenza. Furthermore, phenolic acids influence the immune system by inhibiting the secretion of proinflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α. In the nervous systems, phenolic acids may have protective effects against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Moreover, phenolic acids can improve levels of blood glucose, cholesterols, and triglycerides. Phenolic acids also improve cardiovascular functions, such as blood pressure and atherosclerotic lesions. This review focuses on the current knowledge of the effects of phenolic acids produced from food-derived flavonoids and amino acids by the gut microbiota on health and disease.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan (H.S.); (S.K.); (H.N.)
- Institute of Neuroscience, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan
| | - Hiroshi Tokumaru
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan (H.S.); (S.K.); (H.N.)
| | - Hisayo Sadamoto
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan (H.S.); (S.K.); (H.N.)
| | - Suguru Kobayashi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan (H.S.); (S.K.); (H.N.)
- Institute of Neuroscience, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan (H.S.); (S.K.); (H.N.)
| |
Collapse
|
5
|
Williamson G, Clifford MN. A critical examination of human data for the biological activity of phenolic acids and their phase-2 conjugates derived from dietary (poly)phenols, phenylalanine, tyrosine and catecholamines. Crit Rev Food Sci Nutr 2024:1-60. [PMID: 39383187 DOI: 10.1080/10408398.2024.2410874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Free or conjugated aromatic/phenolic acids arise from the diet, endogenous metabolism of catecholamines (adrenaline, noradrenaline, dopamine), protein (phenylalanine, tyrosine), pharmaceuticals (aspirin, metaprolol) plus gut microbiota metabolism of dietary (poly)phenols and undigested protein. Quantitative data obtained with authentic calibrants for 112 aromatic/phenolic acids including phase-2 conjugates in human plasma, urine, ileal fluid, feces and tissues have been collated and mean/median values compared with in vitro bioactivity data in cultured cells. Ca 30% of publications report bioactivity at ≤1 μmol/L. With support from clinical studies, it appears that the greatest benefit might be produced in vascular tissues by C6-C3 metabolites, including some of gut microbiota origin and some phase-2 conjugates, 15 of which are 3',4'-disubstituted with multiple sources including caffeic acid and hesperetin, plus one unsubstituted and two mono-substituted examples which can originate from protein. There is an unexamined potential for synergy. Free-living and washout plasma data are scarce. Some metabolites have been overlooked, notably phenyl-lactic, phenyl-hydracrylic and phenyl-propanoic acids, especially those from amino acids plus glycine, hydroxy-glycine and glutamine conjugates. Phenolic acids and conjugates from multiple sources exhibit biological activities, some of which are likely relevant in vivo and link to biomarkers of health. Further targeted studies are justified.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics and Food, Victorian Heart Institute, Faculty of Medicine Nursing and Health Sciences, Monash University, Victoria Heart Hospital, Clayton, Australia
| | - Michael N Clifford
- Department of Nutrition, Dietetics and Food, Victorian Heart Institute, Faculty of Medicine Nursing and Health Sciences, Monash University, Victoria Heart Hospital, Clayton, Australia
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| |
Collapse
|
6
|
Hammer AJ, Gaulke CA, Garcia-Jaramillo M, Leong C, Morre J, Sieler MJ, Stevens JF, Jiang Y, Maier CS, Kent ML, Sharpton TJ. Gut microbiota metabolically mediate intestinal helminth infection in zebrafish. mSystems 2024; 9:e0054524. [PMID: 39191377 PMCID: PMC11406965 DOI: 10.1128/msystems.00545-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Intestinal helminth parasite (IHP) infection induces alterations in the composition of microbial communities across vertebrates, although how gut microbiota may facilitate or hinder parasite infection remains poorly defined. In this work, we utilized a zebrafish model to investigate the relationship between gut microbiota, gut metabolites, and IHP infection. We found that extreme disparity in zebrafish parasite infection burden is linked to the composition of the gut microbiome and that changes in the gut microbiome are associated with variation in a class of endogenously produced signaling compounds, N-acylethanolamines, that are known to be involved in parasite infection. Using a statistical mediation analysis, we uncovered a set of gut microbes whose relative abundance explains the association between gut metabolites and infection outcomes. Experimental investigation of one of the compounds in this analysis reveals salicylaldehyde, which is putatively produced by the gut microbe Pelomonas, as a potent anthelmintic with activity against Pseudocapillaria tomentosa egg hatching, both in vitro and in vivo. Collectively, our findings underscore the importance of the gut microbiome as a mediating agent in parasitic infection and highlight specific gut metabolites as tools for the advancement of novel therapeutic interventions against IHP infection. IMPORTANCE Intestinal helminth parasites (IHPs) impact human health globally and interfere with animal health and agricultural productivity. While anthelmintics are critical to controlling parasite infections, their efficacy is increasingly compromised by drug resistance. Recent investigations suggest the gut microbiome might mediate helminth infection dynamics. So, identifying how gut microbes interact with parasites could yield new therapeutic targets for infection prevention and management. We conducted a study using a zebrafish model of parasitic infection to identify routes by which gut microbes might impact helminth infection outcomes. Our research linked the gut microbiome to both parasite infection and to metabolites in the gut to understand how microbes could alter parasite infection. We identified a metabolite in the gut, salicylaldehyde, that is putatively produced by a gut microbe and that inhibits parasitic egg growth. Our results also point to a class of compounds, N-acyl-ethanolamines, which are affected by changes in the gut microbiome and are linked to parasite infection. Collectively, our results indicate the gut microbiome may be a source of novel anthelmintics that can be harnessed to control IHPs.
Collapse
Affiliation(s)
- Austin J Hammer
- Department of Microbiology, Oregon State University, Oregon, USA
| | - Christopher A Gaulke
- Department of Pathobiology, University of Illinois Urbana Champaign, Illinois, USA
| | | | - Connor Leong
- Department of Microbiology, Oregon State University, Oregon, USA
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Jeffrey Morre
- Department of Chemistry, Oregon State University, Oregon, USA
| | - Michael J Sieler
- Department of Microbiology, Oregon State University, Oregon, USA
| | - Jan F Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Oregon, USA
- Linus Pauling Institute, Oregon State University, Oregon, USA
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Oregon, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Oregon, USA
| | - Michael L Kent
- Department of Microbiology, Oregon State University, Oregon, USA
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, Oregon, USA
- Department of Statistics, Oregon State University, Oregon, USA
| |
Collapse
|
7
|
Insights on Dietary Polyphenols as Agents against Metabolic Disorders: Obesity as a Target Disease. Antioxidants (Basel) 2023; 12:antiox12020416. [PMID: 36829976 PMCID: PMC9952395 DOI: 10.3390/antiox12020416] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Obesity is a condition that leads to increased health problems associated with metabolic disorders. Synthetic drugs are available for obesity treatment, but some of these compounds have demonstrated considerable side effects that limit their use. Polyphenols are vital phytonutrients of plant origin that can be incorporated as functional food ingredients. This review presents recent developments in dietary polyphenols as anti-obesity agents. Evidence supporting the potential application of food-derived polyphenols as agents against obesity has been summarized. Literature evidence supports the effectiveness of plant polyphenols against obesity. The anti-obesity mechanisms of polyphenols have been explained by their potential to inhibit obesity-related digestive enzymes, modulate neurohormones/peptides involved in food intake, and their ability to improve the growth of beneficial gut microbes while inhibiting the proliferation of pathogenic ones. Metabolism of polyphenols by gut microbes produces different metabolites with enhanced biological properties. Thus, research demonstrates that dietary polyphenols can offer a novel path to developing functional foods for treating obesity. Upcoming investigations need to explore novel techniques, such as nanocarriers, to improve the content of polyphenols in foods and their delivery and bioavailability at the target sites in the body.
Collapse
|
8
|
Qiu ZC, Zhang FX, Hu XL, Zhang YY, Tang ZL, Zhang J, Yang L, Wong MS, Chen JX, Xiao HH. Genistein Modified with 8-Prenyl Group Suppresses Osteoclast Activity Directly via Its Prototype but Not Metabolite by Gut Microbiota. Molecules 2022; 27:7811. [PMID: 36431913 PMCID: PMC9694937 DOI: 10.3390/molecules27227811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Postmenopausal osteoporosis is a significant threat to human health globally. Genistein, a soy-derived isoflavone, is regarded as a promising anti-osteoporosis drug with the effects of promoting osteoblastogenesis and suppressing osteoclastogenesis. However, its oral bioavailability (6.8%) is limited by water solubility, intestinal permeability, and biotransformation. Fortunately, 8-prenelylated genistein (8PG), a derivative of genistein found in Erythrina Variegate, presented excellent predicted oral bioavailability (51.64%) with an improved osteoblastogenesis effect, although its effects on osteoclastogenesis and intestinal biotransformation were still unclear. In this study, an in vitro microbial transformation platform and UPLC-QTOF/MS analysis method were developed to explore the functional metabolites of 8PG. RANKL-induced RAW264.7 cells were utilized to evaluate the effects of 8PG on osteoclastogenesis. Our results showed that genistein was transformed into dihydrogenistein and 5-hydroxy equol, while 8PG metabolites were undetectable under the same conditions. The 8PG (10-6 M) was more potent in inhibiting osteoclastogenesis than genistein (10-5 M) and it down-regulated NFATC1, cSRC, MMP-9 and Cathepsin K. It was concluded that 8-prenyl plays an important role in influencing the osteoclast activity and intestinal biotransformation of 8PG, which provides evidence supporting the further development of 8PG as a good anti-osteoporosis agent.
Collapse
Affiliation(s)
- Zuo-Cheng Qiu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou 510632, China
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Xue-Ling Hu
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou 510632, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yang-Yang Zhang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Zi-Ling Tang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Jie Zhang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Li Yang
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou 510632, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Man-Sau Wong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of the Hong Kong Polytechnic University, Shenzhen 518057, China
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of the Hong Kong Polytechnic University, Shenzhen 518057, China
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
9
|
Clifford MN, King LJ, Kerimi A, Pereira-Caro MG, Williamson G. Metabolism of phenolics in coffee and plant-based foods by canonical pathways: an assessment of the role of fatty acid β-oxidation to generate biologically-active and -inactive intermediates. Crit Rev Food Sci Nutr 2022; 64:3326-3383. [PMID: 36226718 DOI: 10.1080/10408398.2022.2131730] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
ω-Phenyl-alkenoic acids are abundant in coffee, fruits, and vegetables. Along with ω-phenyl-alkanoic acids, they are produced from numerous dietary (poly)phenols and aromatic amino acids in vivo. This review addresses how phenyl-ring substitution and flux modulates their gut microbiota and endogenous β-oxidation. 3',5'-Dihydroxy-derivatives (from alkyl-resorcinols, flavanols, proanthocyanidins), and 4'-hydroxy-phenolic acids (from tyrosine, p-coumaric acid, naringenin) are β-oxidation substrates yielding benzoic acids. In contrast, 3',4',5'-tri-substituted-derivatives, 3',4'-dihydroxy-derivatives and 3'-methoxy-4'-hydroxy-derivatives (from coffee, tea, cereals, many fruits and vegetables) are poor β-oxidation substrates with metabolism diverted via gut microbiota dehydroxylation, phenylvalerolactone formation and phase-2 conjugation, possibly a strategy to conserve limited pools of coenzyme A. 4'-Methoxy-derivatives (citrus fruits) or 3',4'-dimethoxy-derivatives (coffee) are susceptible to hepatic "reverse" hydrogenation suggesting incompatibility with enoyl-CoA-hydratase. Gut microbiota-produced 3'-hydroxy-4'-methoxy-derivatives (citrus fruits) and 3'-hydroxy-derivatives (numerous (poly)phenols) are excreted as the phenyl-hydracrylic acid β-oxidation intermediate suggesting incompatibility with hydroxy-acyl-CoA dehydrogenase, albeit with considerable inter-individual variation. Further investigation is required to explain inter-individual variation, factors determining the amino acid to which C6-C3 and C6-C1 metabolites are conjugated, the precise role(s) of l-carnitine, whether glycine might be limiting, and whether phenolic acid-modulation of β-oxidation explains how phenolic acids affect key metabolic conditions, such as fatty liver, carbohydrate metabolism and insulin resistance.
Collapse
Affiliation(s)
- Michael N Clifford
- School of Bioscience and Medicine, University of Surrey, Guildford, UK
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| | - Laurence J King
- School of Bioscience and Medicine, University of Surrey, Guildford, UK
| | - Asimina Kerimi
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| | - Maria Gema Pereira-Caro
- Department of Food Science and Health, Instituto Andaluz de Investigacion y Formacion Agraria Pesquera Alimentaria y de la Produccion Ecologica, Sevilla, Spain
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| |
Collapse
|
10
|
Ivashkevich A. The role of isoflavones in augmenting the effects of radiotherapy. Front Oncol 2022; 12:800562. [PMID: 36936272 PMCID: PMC10016616 DOI: 10.3389/fonc.2022.800562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 08/31/2022] [Indexed: 03/05/2023] Open
Abstract
Cancer is one of the major health problems and the second cause of death worldwide behind heart disease. The traditional soy diet containing isoflavones, consumed by the Asian population in China and Japan has been identified as a protective factor from hormone-related cancers. Over the years the research focus has shifted from emphasizing the preventive effect of isoflavones from cancer initiation and promotion to their efficacy against established tumors along with chemo- and radiopotentiating effects. Studies performed in mouse models and results of clinical trials emphasize that genistein or a mixture of isoflavones, containing in traditional soy diet, could be utilized to both potentiate the response of cancer cells to radiotherapy and reduce radiation-induced toxicity in normal tissues. Currently ongoing clinical research explores a potential of another significant isoflavone, idronoxil, also known as phenoxodiol, as radiation enhancing agent. In the light of the recent clinical findings, this article reviews the accumulated evidence which support the clinically desirable interactions of soy isoflavones with radiation therapy resulting in improved tumor treatment. This review discusses important aspects of the development of isoflavones as anticancer agents, and mechanisms potentially relevant to their activity in combination with radiation therapy of cancer. It gives a critical overview of studies characterizing isoflavone targets such as topoisomerases, ENOX2/PMET, tyrosine kinases and ER receptor signaling, and cellular effects on the cell cycle, DNA damage, cell death, and immune responses.
Collapse
Affiliation(s)
- Alesia Ivashkevich
- Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, Australia
- Noxopharm, Gordon, NSW, Australia
- *Correspondence: Alesia Ivashkevich,
| |
Collapse
|
11
|
Grgic D, Varga E, Novak B, Müller A, Marko D. Isoflavones in Animals: Metabolism and Effects in Livestock and Occurrence in Feed. Toxins (Basel) 2021; 13:836. [PMID: 34941674 PMCID: PMC8705642 DOI: 10.3390/toxins13120836] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022] Open
Abstract
Soybeans are a common ingredient of animal feed. They contain isoflavones, which are known to act as phytoestrogens in animals. Isoflavones were described to have beneficial effects on farm animals. However, there are also reports of negative outcomes after the consumption of isoflavones. This review summarizes the current knowledge of metabolization of isoflavones (including the influence of the microbiome, phase I and phase II metabolism), as well as the distribution of isoflavones and their metabolites in tissues. Furthermore, published studies on effects of isoflavones in livestock species (pigs, poultry, ruminants, fish) are reviewed. Moreover, published studies on occurrence of isoflavones in feed materials and co-occurrence with zearalenone are presented and are supplemented with our own survey data.
Collapse
Affiliation(s)
- Dino Grgic
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; (D.G.); (E.V.)
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; (D.G.); (E.V.)
| | - Barbara Novak
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (B.N.); (A.M.)
| | - Anneliese Müller
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (B.N.); (A.M.)
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; (D.G.); (E.V.)
| |
Collapse
|
12
|
Xia H. Extensive metabolism of flavonoids relevant to their potential efficacy on Alzheimer's disease. Drug Metab Rev 2021; 53:563-591. [PMID: 34491868 DOI: 10.1080/03602532.2021.1977316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder, the incidence of which is climbing with ever-growing aged population, but no cure is hitherto available. The epidemiological studies unveiled that chronic intake of flavonoids was negatively associated with AD risk. Flavonoids, a family of natural polyphenols widely distributed in human daily diets, were readily conjugated by phase II drug metabolizing enzymes after absorption in vivo, and glucuronidation could occur in 1 min following intravenous administration. Recently, as many as 191 metabolites were obtained after intragastric administration of a single flavonoid, indicating that other bioactive metabolites, besides conjugates, might be formed and account for the contradiction between efficacy of flavonoids in human or animal models and low systematic exposure of flavonoid glycosides or aglycones. In this review, metabolism of complete 68 flavonoid monomers potential for AD treatment, grouped in flavonoid O-glycosides, flavonoid aglycones, flavonoid C-glycosides, flavonoid dimers, flavonolignans and prenylated flavonoids according to their common structural elements, respectively, has been systematically retrospected, summarized and discussed, including their unequivocally identified metabolites, metabolic interconversions, metabolic locations, metabolic sites (regio- or stereo-selectivity), primarily involved metabolic enzymes or intestinal bacteria, and interspecies correlations or differences in metabolism, and their bioactive metabolites and the underlying mechanism to reverse AD pathology were also reviewed, providing whole perspective about advances on extensive metabolism of diverse potent flavonoids in vivo and in vitro up to date and aiming at elucidation of mechanism of actions of flavonoids on AD or other central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Hongjun Xia
- Medical College, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
13
|
Aboushanab SA, Khedr SM, Gette IF, Danilova IG, Kolberg NA, Ravishankar GA, Ambati RR, Kovaleva EG. Isoflavones derived from plant raw materials: bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation. Crit Rev Food Sci Nutr 2021; 63:261-287. [PMID: 34251921 DOI: 10.1080/10408398.2021.1946006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Isoflavones are secondary metabolites that represent the most abundant category of plant polyphenols. Dietary soy, kudzu, and red clover contain primarily genistein, daidzein, glycitein, puerarin, formononetin, and biochanin A. The structural similarity of these compounds to β-estradiol has demonstrated protection against age-related and hormone-dependent diseases in both genders. Demonstrative shreds of evidence confirmed the fundamental health benefits of the consumption of these isoflavones. These relevant activities are complex and largely driven by the source, active ingredients, dose, and administration period of the bioactive compounds. However, the preclinical and clinical studies of these compounds are greatly variable, controversial, and still with no consensus due to the non-standardized research protocols. In addition, absorption, distribution, metabolism, and excretion studies, and the safety profile of isoflavones have been far limited. This highlights a major gap in understanding the potentially critical role of these isoflavones as prospective replacement therapy. Our general review exclusively focuses attention on the crucial role of isoflavones derived from these plant materials and critically highlights their bioavailability, possible anticancer, antiaging potentials, and microbiome modulation. Despite their fundamental health benefits, plant isoflavones reveal prospective therapeutic effects that worth further standardized analysis.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| | - Shaimaa M Khedr
- Pharmaceutical and Fermentation Industries Development Center (PFIDC), City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Irina F Gette
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Irina G Danilova
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Natalia A Kolberg
- Integrated Laboratory Complex, Ural State University of Economics, Yekaterinburg, Russia
| | - Gokare A Ravishankar
- C. D. Sagar Centre for Life Sciences, Dayananda Sagar College of Engineering, Dayananda Sagar Institutions, Bangalore, Karnataka, India
| | - Ranga Rao Ambati
- Department of Biotechnology, Vignan's Foundation of Science, Technology and Research, Guntur, Andhra Pradesh, India
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
14
|
Glucuronides Hydrolysis by Intestinal Microbial β-Glucuronidases (GUS) Is Affected by Sampling, Enzyme Preparation, Buffer pH, and Species. Pharmaceutics 2021; 13:pharmaceutics13071043. [PMID: 34371734 PMCID: PMC8309147 DOI: 10.3390/pharmaceutics13071043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/02/2023] Open
Abstract
Glucuronides hydrolysis by intestinal microbial β-Glucuronidases (GUS) is an important procedure for many endogenous and exogenous compounds. The purpose of this study is to determine the impact of experimental conditions on glucuronide hydrolysis by intestinal microbial GUS. Standard probe 4-Nitrophenyl β-D-glucopyranoside (pNPG) and a natural glucuronide wogonoside were used as the model compounds. Feces collection time, buffer conditions, interindividual, and species variations were evaluated by incubating the substrates with enzymes. The relative reaction activity of pNPG, reaction rates, and reaction kinetics for wogonoside were calculated. Fresh feces showed the highest hydrolysis activities. Sonication increased total protein yield during enzyme preparation. The pH of the reaction system increased the activity in 0.69–1.32-fold, 2.9–12.9-fold, and 0.28–1.56-fold for mouse, rat, and human at three different concentrations of wogonoside, respectively. The Vmax for wogonoside hydrolysis was 2.37 ± 0.06, 4.48 ± 0.11, and 5.17 ± 0.16 μmol/min/mg and Km was 6.51 ± 0.71, 3.04 ± 0.34, and 0.34 ± 0.047 μM for mouse, rat, and human, respectively. The inter-individual difference was significant (4–6-fold) using inbred rats as the model animal. Fresh feces should be used to avoid activity loss and sonication should be utilized in enzyme preparation to increase hydrolysis activity. The buffer pH should be appropriate according to the species. Inter-individual and species variations were significant.
Collapse
|
15
|
Wang Y, Xie T, Wu Y, Liu Y, Zou Z, Bai J. Impacts of Maternal Diet and Alcohol Consumption during Pregnancy on Maternal and Infant Gut Microbiota. Biomolecules 2021; 11:369. [PMID: 33804345 PMCID: PMC8001387 DOI: 10.3390/biom11030369] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 01/08/2023] Open
Abstract
(1) Background: Maternal diet and alcohol consumption can influence both maternal and infant's gut microbiota. These relationships are still not examined in the Chinese population. The purpose of this study was to explore the effect of alcohol consumption and maternal diet during pregnancy on maternal and infant's gut microbiota. (2) Methods: Twenty-nine mother-child dyads were enrolled in central China. Fecal samples of mothers during late pregnancy and of newborns within 48 h were collected. The V3-V4 regions of 16S rRNA sequences were analyzed. A self-administrated questionnaire about simple diet frequency in the past week was completed by mothers before childbirth. The demographic information was finished by mothers at 24 h after childbirth. (3) Results: Among these 29 mothers, 10 mothers reported alcohol consumption during pregnancy. The PCoA (β-diversity) showed significant difference in maternal gut microbiota between the alcohol consumption group vs. the non-alcohol consumption group (abund-Jaccard, r = 0.2, p = 0.006). The same phenomenon was observed in newborns (unweighted-UniFrac full tree, r = 0.174, p = 0.031). Maternal alcohol consumption frequency showed positive associations with maternal Phascolarctobacterium (p = 0.032) and Blautia (p = 0.019); maternal Faecalibacterium (p = 0.013) was negatively correlated with frequency of alcohol consumption. As for newborns, a positive relationship showed between Megamonas (p = 0.035) and newborns with maternal alcohol consumption. The diet was not associated with both maternal and infant's gut microbiota. (4) Conclusions: Maternal alcohol consumption during pregnancy influenced the gut microbiota on both mothers and the newborns. Future research is needed to explore these relationships in a lager birth cohort. Understanding the long-term effect of alcohol consumption on maternal and newborns' gut microbiota is needed.
Collapse
Affiliation(s)
- Ying Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China;
| | - Tianqu Xie
- Wuhan University School of Health Sciences, Wuhan University, 169 Donghu Road, Wuhan 430071, China; (T.X.); (Y.W.); (Z.Z.)
| | - Yinyin Wu
- Wuhan University School of Health Sciences, Wuhan University, 169 Donghu Road, Wuhan 430071, China; (T.X.); (Y.W.); (Z.Z.)
| | - Yanqun Liu
- Wuhan University School of Health Sciences, Wuhan University, 169 Donghu Road, Wuhan 430071, China; (T.X.); (Y.W.); (Z.Z.)
| | - Zhijie Zou
- Wuhan University School of Health Sciences, Wuhan University, 169 Donghu Road, Wuhan 430071, China; (T.X.); (Y.W.); (Z.Z.)
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road, Atlanta, GA 30322, USA;
| |
Collapse
|
16
|
Silva H. The Vascular Effects of Isolated Isoflavones-A Focus on the Determinants of Blood Pressure Regulation. BIOLOGY 2021; 10:49. [PMID: 33445531 PMCID: PMC7827317 DOI: 10.3390/biology10010049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/27/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Isoflavones are phytoestrogen compounds with important biological activities, including improvement of cardiovascular health. This activity is most evident in populations with a high isoflavone dietary intake, essentially from soybean-based products. The major isoflavones known to display the most important cardiovascular effects are genistein, daidzein, glycitein, formononetin, and biochanin A, although the closely related metabolite equol is also relevant. Most clinical studies have been focused on the impact of dietary intake or supplementation with mixtures of compounds, with only a few addressing the effect of isolated compounds. This paper reviews the main actions of isolated isoflavones on the vasculature, with particular focus given to their effect on the determinants of blood pressure regulation. Isoflavones exert vasorelaxation due to a multitude of pathways in different vascular beds. They can act in the endothelium to potentiate the release of NO and endothelium-derived hyperpolarization factors. In the vascular smooth muscle, isoflavones modulate calcium and potassium channels, leading to hyperpolarization and relaxation. Some of these effects are influenced by the binding of isoflavones to estrogen receptors and to the inhibition of specific kinase enzymes. The vasorelaxation effects of isoflavones are mostly obtained with plasma concentrations in the micromolar range, which are only attained through supplementation. This paper highlights isolated isoflavones as potentially suitable alternatives to soy-based foodstuffs and supplements and which could enlarge the current therapeutic arsenal. Nonetheless, more studies are needed to better establish their safety profile and elect the most useful applications.
Collapse
Affiliation(s)
- Henrique Silva
- Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam;
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
| |
Collapse
|
17
|
Verduci E, Carbone MT, Borghi E, Ottaviano E, Burlina A, Biasucci G. Nutrition, Microbiota and Role of Gut-Brain Axis in Subjects with Phenylketonuria (PKU): A Review. Nutrients 2020; 12:3319. [PMID: 33138040 PMCID: PMC7692600 DOI: 10.3390/nu12113319] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
The composition and functioning of the gut microbiota, the complex population of microorganisms residing in the intestine, is strongly affected by endogenous and exogenous factors, among which diet is key. Important perturbations of the microbiota have been observed to contribute to disease risk, as in the case of neurological disorders, inflammatory bowel disease, obesity, diabetes, cardiovascular disease, among others. Although mechanisms are not fully clarified, nutrients interacting with the microbiota are thought to affect host metabolism, immune response or disrupt the protective functions of the intestinal barrier. Similarly, key intermediaries, whose presence may be strongly influenced by dietary habits, sustain the communication along the gut-brain-axis, influencing brain functions in the same way as the brain influences gut activity. Due to the role of diet in the modulation of the microbiota, its composition is of high interest in inherited errors of metabolism (IEMs) and may reveal an appealing therapeutic target. In IEMs, for example in phenylketonuria (PKU), since part of the therapeutic intervention is based on chronic or life-long tailored dietetic regimens, important variations of the microbial diversity or relative abundance have been observed. A holistic approach, including a healthy composition of the microbiota, is recommended to modulate host metabolism and affected neurological functions.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Paediatrics, Vittore Buzzi Children’s Hospital-University of Milan, Via Lodovico Castelvetro, 32, 20154 Milan, Italy
- Department of Health Science, University of Milan, via di Rudinì 8, 20142 Milan, Italy; (E.B.); (E.O.)
| | - Maria Teresa Carbone
- UOS Metabolic and Rare Diseases, AORN Santobono, Via Mario Fiore 6, 80122 Naples, Italy;
| | - Elisa Borghi
- Department of Health Science, University of Milan, via di Rudinì 8, 20142 Milan, Italy; (E.B.); (E.O.)
| | - Emerenziana Ottaviano
- Department of Health Science, University of Milan, via di Rudinì 8, 20142 Milan, Italy; (E.B.); (E.O.)
| | - Alberto Burlina
- Division of Inborn Metabolic Diseases, Department of Diagnostic Services, University Hospital of Padua, Via Orus 2B, 35129 Padua, Italy;
| | - Giacomo Biasucci
- Department of Paediatrics & Neonatology, Guglielmo da Saliceto Hospital, Via Taverna Giuseppe, 49, 29121 Piacenza, Italy;
| |
Collapse
|
18
|
Migkos T, Applová L, Horký P, Tvrdý V, Karlíčková J, Macáková K, Hrubša M, Catapano MC, Tomanek M, Pour M, Mladěnka P. The influence of microbial isoflavonoid specific metabolites on platelets and transition metals iron and copper. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152974. [PMID: 31181402 DOI: 10.1016/j.phymed.2019.152974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Isoflavonoids seem to possess positive cardiovascular and other beneficial effects in humans. HYPOTHESIS Their low bioavailability, however, indicates that small isoflavonoid metabolites formed by human microflora can significantly contribute to these activities. STUDY DESIGN Testing antiplatelet activity ex vivo in human blood and interaction with transition metals in vitro. METHODS The effect on platelet aggregation induced by different triggers (arachidonic acid, collagen, ADP, TRAP-6), and interactions with transition metals (iron and copper chelation/reduction) were evaluated against four isoflavonoid-specific metabolites: S-equol; O-desmethylangolensin; 2-(4-hydroxyphenyl) propionic acid (HPPA); and 4-ethylphenol. RESULTS S-equol, 4-ethylphenol and O-desmethylangolensin blocked platelet aggregation induced by arachidonic acid and collagen. S-equol even matched the potency of acetylsalicylic acid in the case of collagen, which is the most physiological inducer of aggregation. Moreover, their effects in general seemed to be biologically relevant and attainable at achievable plasma concentrations, with the exception of HPPA which was ineffective. While only O-desmethylangolensin mildly chelated iron and copper, all four compounds markedly reduced cupric ions. Their direct free radical scavenging effects seem to have little clinical relevance. CONCLUSION This study has shown that S-equol, O-desmethylangolensin and 4-ethylphenol, arising from isoflavonoid intake, can have biologically relevant effects on platelet aggregation.
Collapse
Affiliation(s)
- Thomas Migkos
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec Králové 500 05, Czech Republic
| | - Lenka Applová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec Králové 500 05, Czech Republic
| | - Pavel Horký
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec Králové 500 05, Czech Republic; Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Králové, Charles University, Zborovská 2089, Hradec Králové 500 05, Czech Republic
| | - Václav Tvrdý
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec Králové 500 05, Czech Republic
| | - Jana Karlíčková
- Department of Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles, Akademika Heyrovského 1203, Hradec Králové 500 05, Czech Republic
| | - Kateřina Macáková
- Department of Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles, Akademika Heyrovského 1203, Hradec Králové 500 05, Czech Republic
| | - Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec Králové 500 05, Czech Republic
| | - Maria Carmen Catapano
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec Králové 500 05, Czech Republic
| | - Magdalena Tomanek
- Institute of Chemistry, Department of Theoretical Chemistry, University of Silesia in Katowice, Faculty of Mathematics, Physics and Chemistry, Bankowa 14, Katowice 40-007, Poland
| | - Milan Pour
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec Králové 500 05, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec Králové 500 05, Czech Republic.
| |
Collapse
|
19
|
Afrin S, Giampieri F, Gasparrini M, Forbes-Hernández TY, Cianciosi D, Reboredo-Rodriguez P, Zhang J, Manna PP, Daglia M, Atanasov AG, Battino M. Dietary phytochemicals in colorectal cancer prevention and treatment: A focus on the molecular mechanisms involved. Biotechnol Adv 2018; 38:107322. [PMID: 30476540 DOI: 10.1016/j.biotechadv.2018.11.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Worldwide, colorectal cancer (CRC) remains a major cancer type and leading cause of death. Unfortunately, current medical treatments are not sufficient due to lack of effective therapy, adverse side effects, chemoresistance and disease recurrence. In recent decades, epidemiologic observations have highlighted the association between the ingestion of several phytochemical-enriched foods and nutrients and the lower risk of CRC. According to preclinical studies, dietary phytochemicals exert chemopreventive effects on CRC by regulating different markers and signaling pathways; additionally, the gut microbiota plays a role as vital effector in CRC onset and progression, therefore, any dietary alterations in it may affect CRC occurrence. A high number of studies have displayed a key role of growth factors and their signaling pathways in the pathogenesis of CRC. Indeed, the efficiency of dietary phytochemicals to modulate carcinogenic processes through the alteration of different molecular targets, such as Wnt/β-catenin, PI3K/Akt/mTOR, MAPK (p38, JNK and Erk1/2), EGFR/Kras/Braf, TGF-β/Smad2/3, STAT1-STAT3, NF-кB, Nrf2 and cyclin-CDK complexes, has been proven, whereby many of these targets also represent the backbone of modern drug discovery programs. Furthermore, epigenetic analysis showed modified or reversed aberrant epigenetic changes exerted by dietary phytochemicals that led to possible CRC prevention or treatment. Therefore, our aim is to discuss the effects of some common dietary phytochemicals that might be useful in CRC as preventive or therapeutic agents. This review will provide new guidance for research, in order to identify the most studied phytochemicals, their occurrence in foods and to evaluate the therapeutic potential of dietary phytochemicals for the prevention or treatment of CRC by targeting several genes and signaling pathways, as well as epigenetic modifications. In addition, the results obtained by recent investigations aimed at improving the production of these phytochemicals in genetically modified plants have been reported. Overall, clinical data on phytochemicals against CRC are still not sufficient and therefore the preventive impacts of dietary phytochemicals on CRC development deserve further research so as to provide additional insights for human prospective studies.
Collapse
Affiliation(s)
- Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Francesca Giampieri
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Tamara Y Forbes-Hernández
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Patricia Reboredo-Rodriguez
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Jiaojiao Zhang
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Piera Pia Manna
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia 27100, Italy
| | - Atanas Georgiev Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A Street, Jastrzebiec 05-552, Poland.
| | - Maurizio Battino
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| |
Collapse
|
20
|
Murota K, Nakamura Y, Uehara M. Flavonoid metabolism: the interaction of metabolites and gut microbiota. Biosci Biotechnol Biochem 2018; 82:600-610. [DOI: 10.1080/09168451.2018.1444467] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Several dietary flavonoids exhibit anti-oxidative, anti-inflammatory, and anti-osteoporotic activities relevant to prevention of chronic diseases, including lifestyle-related diseases. Dietary flavonoids (glycoside forms) are enzymatically hydrolyzed and absorbed in the intestine, and are conjugated to their glucuronide/sulfate forms by phase II enzymes in epithelial cells and the liver. The intestinal microbiota plays an important role in the metabolism of flavonoids found in foods. Some specific products of bacterial transformation, such as ring-fission products and reduced metabolites, exhibit enhanced properties. Studies on the metabolism of flavonoids by the intestinal microbiota are crucial for understanding the role of these compounds and their impact on our health. This review focused on the metabolic pathways, bioavailability, and physiological role of flavonoids, especially metabolites of quercetin and isoflavone produced by the intestinal microbiota.
Collapse
Affiliation(s)
- Kaeko Murota
- Faculty of Science and Technology, Department of Life Science, Kindai University, Osaka, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Mariko Uehara
- Faculty of Applied Bioscience, Department of Nutritional Science and Food Safety, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
21
|
Simintiras CA, Sturmey RG. Genistein crosses the bioartificial oviduct and alters secretion composition. Reprod Toxicol 2017; 71:63-70. [DOI: 10.1016/j.reprotox.2017.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/27/2017] [Indexed: 12/11/2022]
|
22
|
Vázquez L, Flórez AB, Guadamuro L, Mayo B. Effect of Soy Isoflavones on Growth of Representative Bacterial Species from the Human Gut. Nutrients 2017; 9:E727. [PMID: 28698467 PMCID: PMC5537841 DOI: 10.3390/nu9070727] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 12/23/2022] Open
Abstract
The present work aimed to assess the susceptibility of dominant and representative bacterial populations from the human gut to isoflavones and their metabolites. To do so, the minimum inhibitory concentration (MIC) of isoflavone glycosides, isoflavone aglycones, and equol to 37 bacterial strains was determined by broth microdilution. Additionally, for 10 representative strains, growth curves, growth rate (μ), and optical density (OD600 nm) of the cultures at 24 h were also determined. MICs of daidzin, genistin, daidzein, and genistein were >2048 μg mL-1 for all strains assayed, while that of equol ranged from 16 μg mL-1 for Bifidobacterium animalis subsp. animalis to >2048 μg mL-1 for Enterobacteriaceae strains. Changes in growth curves, μ, and final OD were observed among the species in the presence of all tested compounds. Genistein reduced μ of Bacteroides fragilis, Lactococcus lactis subsp. lactis, and Slackia equolifaciens, while both genistein and equol increased that of Lactobacillus rhamnosus and Faecalibacterium prausnitzii. Compared to controls, lower final OD in the presence of aglycones and equol were recorded for some strains but were higher for others. Altogether, the results suggest that isoflavone-derived compounds could modify numbers of key bacterial species in the gut, which might be associated with their beneficial properties.
Collapse
Affiliation(s)
- Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain.
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain.
| | - Lucía Guadamuro
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain.
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain.
| |
Collapse
|
23
|
Lustgarten MS, Price LL, Phillips EM, Kirn DR, Mills J, Fielding RA. Serum Predictors of Percent Lean Mass in Young Adults. J Strength Cond Res 2016; 30:2194-201. [PMID: 23774283 DOI: 10.1519/jsc.0b013e31829eef24] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lustgarten, MS, Price, LL, Phillips, EM, Kirn, DR, Mills, J, and Fielding, RA. Serum predictors of percent lean mass in young adults. J Strength Cond Res 30(8): 2194-2201, 2016-Elevated lean (skeletal muscle) mass is associated with increased muscle strength and anaerobic exercise performance, whereas low levels of lean mass are associated with insulin resistance and sarcopenia. Therefore, studies aimed at obtaining an improved understanding of mechanisms related to the quantity of lean mass are of interest. Percent lean mass (total lean mass/body weight × 100) in 77 young subjects (18-35 years) was measured with dual-energy x-ray absorptiometry. Twenty analytes and 296 metabolites were evaluated with the use of the standard chemistry screen and mass spectrometry-based metabolomic profiling, respectively. Sex-adjusted multivariable linear regression was used to determine serum analytes and metabolites significantly (p ≤ 0.05 and q ≤ 0.30) associated with the percent lean mass. Two enzymes (alkaline phosphatase and serum glutamate oxaloacetate aminotransferase) and 29 metabolites were found to be significantly associated with the percent lean mass, including metabolites related to microbial metabolism, uremia, inflammation, oxidative stress, branched-chain amino acid metabolism, insulin sensitivity, glycerolipid metabolism, and xenobiotics. Use of sex-adjusted stepwise regression to obtain a final covariate predictor model identified the combination of 5 analytes and metabolites as overall predictors of the percent lean mass (model R = 82.5%). Collectively, these data suggest that a complex interplay of various metabolic processes underlies the maintenance of lean mass in young healthy adults.
Collapse
Affiliation(s)
- Michael S Lustgarten
- 1Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; and 2Biostatistics Research Center, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts
| | | | | | | | | | | |
Collapse
|
24
|
Pharmacokinetics of isoflavones from soy infant formula in neonatal and adult rhesus monkeys. Food Chem Toxicol 2016; 92:165-76. [PMID: 27084109 DOI: 10.1016/j.fct.2016.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 12/11/2022]
Abstract
Consumption of soy infant formula represents a unique exposure scenario in which developing children ingest a mixture of endocrine-active isoflavones along with a substantial portion of daily nutrition. Genistein and daidzein were administered as glucoside conjugates to neonatal rhesus monkeys in a fortified commercial soy formula at 5, 35, and 70 days after birth. A single gavage dosing with 10 mg/kg bw genistein and 6 mg/kg bw daidzein was chosen to represent the upper range of typical daily consumption and to facilitate complete pharmacokinetic measurements for aglycone and total isoflavones and equol. Adult monkeys were also gavaged with the same formula solution at 2.8 and 1.6 mg/kg bw genistein and daidzein, respectively, and by IV injection with isoflavone aglycones (5.2 and 3.2 mg/kg bw, respectively) to determine absolute bioavailability. Significant differences in internal exposure were observed between neonatal and adult monkeys, with higher values for dose-adjusted AUC and Cmax of the active aglycone isoflavones in neonates. The magnitude and frequency of equol production by the gut microbiome were also significantly greater in adults. These findings are consistent with immaturity of metabolic and/or physiological systems in developing non-human primates that reduces total clearance of soy isoflavones from the body.
Collapse
|
25
|
Guadamuro L, Jiménez-Girón AM, Delgado S, Flórez AB, Suárez A, Martín-Álvarez PJ, Bartolomé B, Moreno-Arribas MV, Mayo B. Profiling of Phenolic Metabolites in Feces from Menopausal Women after Long-Term Isoflavone Supplementation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:210-216. [PMID: 26690567 DOI: 10.1021/acs.jafc.5b05102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Phenolic compounds were screened by UPLC-ESI-MS/MS in the feces of 15 menopausal women before and after long-term isoflavone treatment. In total, 44 compounds were detected. Large intertreatment, interindividual, and intersample variations were observed in terms of the number of compounds and their concentration. Four compounds, the aglycones daidzein and genistein and the daidzein derivatives dihydrodaidzein and O-desmethylangolensin, were associated with isoflavone metabolism; these were identified only after the isoflavone treatment. In addition, 4-ethylcatechol, 3-hydroxyphenylacetic acid, and 3-phenylpropionic acid differed significantly in pre- and postintervention samples, whereas the concentration of 4-hydroxy-5-phenylvaleric acid showed a trend toward increasing over the treatment. The phenolic profiles of equol-producing and -non-producing groups were similar, with the exceptions of 3-hydroxyphenylacetic acid and 3-phenylpropionic acid, which showed higher concentrations in equol-non-producing women. These findings may help to trace isoflavone-derived metabolites in feces during isoflavone interventions and to design new studies to address their biological effects.
Collapse
Affiliation(s)
- Lucía Guadamuro
- Departamento de Microbiología y Bioquı́mica de Productos Lácteos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Paseo Rı́o Linares s/n, 33300 Villaviciosa, Asturias, Spain
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI UAM+CSIC , c/Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Ana M Jiménez-Girón
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI UAM+CSIC , c/Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Susana Delgado
- Departamento de Microbiología y Bioquı́mica de Productos Lácteos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Paseo Rı́o Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquı́mica de Productos Lácteos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Paseo Rı́o Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Adolfo Suárez
- Servicio de Digestivo, Hospital de Cabueñes , Calle Los Prados 395, 33394 Gijón, Spain
| | - Pedro J Martín-Álvarez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI UAM+CSIC , c/Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Begoña Bartolomé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI UAM+CSIC , c/Nicolás Cabrera 9, 28049 Madrid, Spain
| | - M Victoria Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI UAM+CSIC , c/Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquı́mica de Productos Lácteos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Paseo Rı́o Linares s/n, 33300 Villaviciosa, Asturias, Spain
| |
Collapse
|
26
|
Mosele JI, Macià A, Motilva MJ. Metabolic and Microbial Modulation of the Large Intestine Ecosystem by Non-Absorbed Diet Phenolic Compounds: A Review. Molecules 2015; 20:17429-68. [PMID: 26393570 PMCID: PMC6331829 DOI: 10.3390/molecules200917429] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 08/31/2015] [Accepted: 09/11/2015] [Indexed: 12/11/2022] Open
Abstract
Phenolic compounds represent a diverse group of phytochemicals whose intake is associated with a wide spectrum of health benefits. As consequence of their low bioavailability, most of them reach the large intestine where, mediated by the action of local microbiota, a series of related microbial metabolites are accumulated. In the present review, gut microbial transformations of non-absorbed phenolic compounds are summarized. Several studies have reached a general consensus that unbalanced diets are associated with undesirable changes in gut metabolism that could be detrimental to intestinal health. In terms of explaining the possible effects of non-absorbed phenolic compounds, we have also gathered information regarded their influence on the local metabolism. For this purpose, a number of issues are discussed. Firstly, we consider the possible implications of phenolic compounds in the metabolism of colonic products, such as short chain fatty acids (SCFA), sterols (cholesterol and bile acids), and microbial products of non-absorbed proteins. Due to their being recognized as affective antioxidant and anti-inflammatory agents, the ability of phenolic compounds to counteract or suppress pro-oxidant and/or pro-inflammatory responses, triggered by bowel diseases, is also presented. The modulation of gut microbiota through dietetic maneuvers including phenolic compounds is also commented on. Although the available data seems to assume positive effects in terms of gut health protection, it is still insufficient for solid conclusions to be extracted, basically due to the lack of human trials to confirm the results obtained by the in vitro and animal studies. We consider that more emphasis should be focused on the study of phenolic compounds, particularly in their microbial metabolites, and their power to influence different aspects of gut health.
Collapse
Affiliation(s)
- Juana I Mosele
- Food Technology Department, Agrotecnio Research Center, University of Lleida, Av/Alcalde Rovira Roure 191, 25198-Lleida, Spain.
| | - Alba Macià
- Food Technology Department, Agrotecnio Research Center, University of Lleida, Av/Alcalde Rovira Roure 191, 25198-Lleida, Spain.
| | - Maria-José Motilva
- Food Technology Department, Agrotecnio Research Center, University of Lleida, Av/Alcalde Rovira Roure 191, 25198-Lleida, Spain.
| |
Collapse
|
27
|
Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. BIOMED RESEARCH INTERNATIONAL 2015; 2015:905215. [PMID: 25802870 PMCID: PMC4352739 DOI: 10.1155/2015/905215] [Citation(s) in RCA: 492] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/13/2014] [Accepted: 10/19/2014] [Indexed: 02/07/2023]
Abstract
Polyphenolic compounds are plant nutraceuticals showing a huge structural diversity, including chlorogenic acids, hydrolyzable tannins, and flavonoids (flavonols, flavanones, flavan-3-ols, anthocyanidins, isoflavones, and flavones). Most of them occur as glycosylated derivatives in plants and foods. In order to become bioactive at human body, these polyphenols must undergo diverse intestinal transformations, due to the action of digestive enzymes, but also by the action of microbiota metabolism. After elimination of sugar tailoring (generating the corresponding aglycons) and diverse hydroxyl moieties, as well as further backbone reorganizations, the final absorbed compounds enter the portal vein circulation towards liver (where other enzymatic transformations take place) and from there to other organs, including behind the digestive tract or via blood towards urine excretion. During this transit along diverse tissues and organs, they are able to carry out strong antiviral, antibacterial, and antiparasitic activities. This paper revises and discusses these antimicrobial activities of dietary polyphenols and their relevance for human health, shedding light on the importance of polyphenols structure recognition by specific enzymes produced by intestinal microbial taxa.
Collapse
|
28
|
Islam MA, Hooiveld GJEJ, van den Berg JHJ, Boekschoten MV, van der Velpen V, Murk AJ, Rietjens IMCM, van Leeuwen FXR. Plasma bioavailability and changes in PBMC gene expression after treatment of ovariectomized rats with a commercial soy supplement. Toxicol Rep 2015; 2:308-321. [PMID: 28962364 PMCID: PMC5598277 DOI: 10.1016/j.toxrep.2014.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/18/2014] [Accepted: 12/18/2014] [Indexed: 11/02/2022] Open
Abstract
The health effects of soy supplementation in (post)menopausal women are still a controversial issue. The aim of the present study was to establish the effect of the soy isoflavones (SIF) present in a commercially available supplement on ovariectomized rats and to investigate whether these rats would provide an adequate model to predict effects of SIF in (post)menopausal women. Two dose levels (i.e. 2 and 20 mg/kg b.w.) were used to characterize plasma bioavailability, urinary and fecal concentrations of SIF and changes in gene expression in peripheral blood mononuclear cells (PBMC). Animals were dosed at 0 and 48 h and sacrificed 4 h after the last dose. A clear dose dependent increase of SIF concentrations in plasma, urine and feces was observed, together with a strong correlation in changes in gene expression between the two dose groups. All estrogen responsive genes and related biological pathways (BPs) that were affected by the SIF treatment were regulated in both dose groups in the same direction and indicate beneficial effects. However, in general no correlation was found between the changes in gene expression in rat PBMC with those in PBMC of (post)menopausal women exposed to a comparable dose of the same supplement. The outcome of this short-term study in rats indicates that the rat might not be a suitable model to predict effects of SIF in humans. Although the relative exposure period in this rat study is comparable with that of the human study, longer repetitive administration of rats to SIF may be required to draw a final conclusion on the suitability of the rat a model to predict effects of SIF in humans.
Collapse
Key Words
- BPs, biological pathways
- Bioavailability
- DMSO, dimethyl sulfoxide
- Dose effect
- E2, estradiol
- ECM, extracellular matrix
- EREs, estrogen-responsive elements
- ERs, estrogen receptors
- GSEA, gene set enrichment analysis
- Gene expression
- HD, high dose
- HPLC, high performance liquid chromatography
- KEGG, kyoto encyclopedia of genes and genomes
- LD, low dose
- MDS, multidimensional scaling
- NCBI, National Center for Biotechnology Information
- PBMC, peripheral blood mononuclear cells
- SIF, soy isoflavones
- Soy supplementation
- Species differences
- UPC, universal expression code
Collapse
Affiliation(s)
- Mohammed A Islam
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Guido J E J Hooiveld
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HE Wageningen, The Netherlands
| | | | - Mark V Boekschoten
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HE Wageningen, The Netherlands
| | - Vera van der Velpen
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HE Wageningen, The Netherlands.,Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Albertinka J Murk
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - F X Rolaf van Leeuwen
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| |
Collapse
|
29
|
Smit S, Szymańska E, Kunz I, Gomez Roldan V, van Tilborg MWEM, Weber P, Prudence K, van der Kloet FM, van Duynhoven JPM, Smilde AK, de Vos RCH, Bendik I. Nutrikinetic modeling reveals order of genistein phase II metabolites appearance in human plasma. Mol Nutr Food Res 2014; 58:2111-21. [PMID: 25045152 DOI: 10.1002/mnfr.201400325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 05/14/2014] [Accepted: 07/03/2014] [Indexed: 11/10/2022]
Abstract
SCOPE Genistein from foods or supplements is metabolized by the gut microbiota and the human body, thereby releasing many different metabolites into systemic circulation. The order of their appearance in plasma and the possible influence of food format are still unknown. This study compared the nutrikinetic profiles of genistein metabolites. METHODS AND RESULTS In a randomized cross-over trial, 12 healthy young volunteers were administered a single dose of 30 mg genistein provided as a genistein tablet, a genistein tablet in low fat milk, and soy milk containing genistein glycosides. A high mass resolution LC-LTQ-Orbitrap FTMS platform detected and quantified in human plasma: free genistein, seven of its phase-II metabolites and 15 gut-derived metabolites. Interestingly, a novel metabolite, genistein-4'-glucuronide-7-sulfate (G-4'G-7S) was identified. Nutrikinetic analysis using population-based modeling revealed the order of appearance of five genistein phase II metabolites in plasma: (1) genistein-4',7-diglucuronide, (2) genistein-7-sulfate, (3) genistein-4'-sulfate-7-glucuronide, (4) genistein-4'-glucuronide, and (5) genistein-7-glucuronide, independent of the food matrix. CONCLUSION The conjugated genistein metabolites appear in a distinct order in human plasma. The specific early appearance of G-4',7-diG suggests a multistep formation process for the mono and hetero genistein conjugates, involving one or two deglucuronidation steps.
Collapse
Affiliation(s)
- Suzanne Smit
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands; Netherlands Metabolomics Centre, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kim M, Han J. Absolute Configuration of (-)-2-(4-Hydroxyphenyl)propionic acid: Stereochemistry of Soy Isoflavone Metabolism. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.6.1883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Chiou YS, Wu JC, Huang Q, Shahidi F, Wang YJ, Ho CT, Pan MH. Metabolic and colonic microbiota transformation may enhance the bioactivities of dietary polyphenols. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.08.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
32
|
Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 2013; 18:1818-92. [PMID: 22794138 PMCID: PMC3619154 DOI: 10.1089/ars.2012.4581] [Citation(s) in RCA: 1658] [Impact Index Per Article: 138.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human intervention trials have provided evidence for protective effects of various (poly)phenol-rich foods against chronic disease, including cardiovascular disease, neurodegeneration, and cancer. While there are considerable data suggesting benefits of (poly)phenol intake, conclusions regarding their preventive potential remain unresolved due to several limitations in existing studies. Bioactivity investigations using cell lines have made an extensive use of both (poly)phenolic aglycones and sugar conjugates, these being the typical forms that exist in planta, at concentrations in the low-μM-to-mM range. However, after ingestion, dietary (poly)phenolics appear in the circulatory system not as the parent compounds, but as phase II metabolites, and their presence in plasma after dietary intake rarely exceeds nM concentrations. Substantial quantities of both the parent compounds and their metabolites pass to the colon where they are degraded by the action of the local microbiota, giving rise principally to small phenolic acid and aromatic catabolites that are absorbed into the circulatory system. This comprehensive review describes the different groups of compounds that have been reported to be involved in human nutrition, their fate in the body as they pass through the gastrointestinal tract and are absorbed into the circulatory system, the evidence of their impact on human chronic diseases, and the possible mechanisms of action through which (poly)phenol metabolites and catabolites may exert these protective actions. It is concluded that better performed in vivo intervention and in vitro mechanistic studies are needed to fully understand how these molecules interact with human physiological and pathological processes.
Collapse
Affiliation(s)
- Daniele Del Rio
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food Science, University of Parma, Parma, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Uehara M. Isoflavone metabolism and bone-sparing effects of daidzein-metabolites. J Clin Biochem Nutr 2013; 52:193-201. [PMID: 23704808 PMCID: PMC3652301 DOI: 10.3164/jcbn.13-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 02/21/2013] [Indexed: 12/20/2022] Open
Abstract
Several dietary phytochemicals exhibit anti-oxidative, anti-inflammatory and anti-osteoporotic activities relevant to prevention of chronic diseases, including lifestyle-related diseases. Soybean isoflavones are similar in structure to estrogen and have received considerable attention as potential alternatives to hormone replacement therapy. Daidzein, a major isoflavone found in soybean, is metabolized to equol by intestinal microflora; this metabolite exhibits stronger estrogenic activity than daidzein. Recent studies suggest that the clinical effectiveness of isoflavones might be due to their ability to produce equol in the gut. This review focused on the metabolic pathway of equol and possible bioactivities of equol and O-desmethylangolensin, another metabolite of daidzein, with regard to bone metabolism and the status of intestinal microflora. Furthermore, we considered risk-benefit analyses of isoflavones and their metabolites.
Collapse
Affiliation(s)
- Mariko Uehara
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku. Tokyo 156-8502, Japan
| |
Collapse
|
34
|
Cheng CP, Tsai SW, Chiu CP, Pan TM, Tsai TY. The effect of probiotic-fermented soy milk on enhancing the NO-mediated vascular relaxation factors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:1219-1225. [PMID: 22996620 DOI: 10.1002/jsfa.5880] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 07/19/2012] [Accepted: 08/21/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Soy milk is one of the common soy-based foods in Asia. In this study the effects of soy milk fermented with selected probiotics on nitric oxide (NO)-mediated vascular relaxation factors in cell model systems were investigated. RESULTS Soy milk fermented with Lactobacillus plantarum TWK10 or Streptococcus thermophilus BCRC 14085 for 48 h showed a greater transformation of glucoside isoflavones to aglycone isoflavones (P < 0.05). An increase in aglycone isoflavones in ethanol extracts from fermented soy milk stimulated NO production and endothelial NO synthase (eNOS) activity in human umbilical vein endothelial cells. It also had a stimulating effect on superoxide anion scavenging and prostaglandin E₂ production. In addition, it enhanced mRNA expression of the E-prostanoid 4 receptor in rat thoracic aorta smooth muscle cells. Moreover, a small amount of O₂⁻ induced by water extracts from fermented soy milk at low concentration (1 mg mL⁻¹) increased the content of calcium ions and activated eNOS, thereby promoting NO production and the coupling state of eNOS. CONCLUSION Soy milk fermented with selected probiotics promotes the relaxation factors of vascular endothelial cells and can be applied in the development of functional foods.
Collapse
MESH Headings
- Animals
- Cell Line
- Cells, Cultured
- Dinoprostone/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/metabolism
- Fermentation
- Glucosides/metabolism
- Human Umbilical Vein Endothelial Cells/cytology
- Human Umbilical Vein Endothelial Cells/enzymology
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Isoflavones/metabolism
- Lactobacillus plantarum/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/chemistry
- Nitric Oxide Synthase Type III/metabolism
- Probiotics/metabolism
- Rats
- Receptors, Prostaglandin E, EP4 Subtype/biosynthesis
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Soy Milk/metabolism
- Streptococcus thermophilus/metabolism
- Taiwan
- Up-Regulation
- Vasodilation
Collapse
Affiliation(s)
- Chein-Pang Cheng
- Department of Food Science, Fu Jen Catholic University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
35
|
Chen YM, Shih TW, Chiu CP, Pan TM, Tsai TY. Effects of lactic acid bacteria-fermented soy milk on melanogenesis in B16F0 melanocytes. J Funct Foods 2013. [DOI: 10.1016/j.jff.2012.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
36
|
Association of multidrug resistance-associated protein 2 single nucleotide polymorphism rs12762549 with the basal plasma levels of phase II metabolites of isoflavonoids in healthy Japanese individuals. Pharmacogenet Genomics 2012; 22:344-54. [DOI: 10.1097/fpc.0b013e3283517012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
37
|
Martin FPJ, Collino S, Rezzi S. 1H NMR-based metabonomic applications to decipher gut microbial metabolic influence on mammalian health. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2011; 49 Suppl 1:S47-S54. [PMID: 22290709 DOI: 10.1002/mrc.2810] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Recent advances in molecular biology and microbiology have increased awareness on the importance of the gut microbiota to the overall mammalian host's health status. There is therefore increasing interest in nutrition research to characterise the molecular foundations of the gut microbial mammalian crosstalk at both physiological and biochemical pathway levels. Tackling these challenges can be achieved through systems biology strategies based on the measurement of metabolites to assess the highly complex metabolic exchanges between diverse biological compartments, including organs, biofluids and microbial symbionts. By opening a direct biochemical window into the metabolome, metabonomics is uniquely suited for the identification of biomarkers providing better understanding of these complex metabolic processes. Recent applications of top-down system biology based on (1)H NMR spectroscopy coupled to advanced chemometric modelling approaches provided compelling evidence that system-wide and organ-specific changes in biochemical processes may be finely tuned by gut microbial activities. This review aims at describing current advances in NMR-based metabonomics where the main objective is to discern the molecular pathways and biochemical mechanisms under the influence of the gut microbiota. Furthermore, emphasis is given on nutritional approaches, where the quest for homeostatic balance is dependent not only on the host but also on the nutritional modulation of the gut microbiota-host metabolic interactions, using, for instance, probiotics and prebiotics.
Collapse
Affiliation(s)
- François-Pierre J Martin
- BioAnalytical Science, Metabonomics & Biomarkers, Nestlé Research Center, Lausanne, Switzerland.
| | | | | |
Collapse
|
38
|
Effects of blackcurrant-based juice on atherosclerosis-related biomarkers in cultured macrophages and in human subjects after consumption of a high-energy meal. Br J Nutr 2011; 108:234-44. [DOI: 10.1017/s0007114511005642] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Regular consumption of fruit and vegetables may be associated with decreased CVD risk. In the present study, we investigated the effects of blackcurrant (BC) juice, rich in polyphenols and ascorbic acid, on oxidative and inflammatory biomarkers in cultured macrophages in vitro and in human subjects with an atherosclerosis-prone phenotype (after consumption of a high-energy meal). In cultured macrophages (RAW264.7), BC treatment significantly inhibited lipopolysaccharide-induced inflammation as indicated by lower mRNA levels of TNF-α, IL-1β and inducible NO synthase (iNOS) and lower nuclear p65 levels indicating decreased NF-κB activity. iNOS protein levels were lower and haem oxygenase 1 levels higher in BC-treated cells when compared with untreated controls. Subjects given a high-energy meal had elevated serum glucose and insulin levels with no significant difference between the BC-based juice and placebo treatment groups. TAG following meal ingestion tended to be attenuated after the BC treatment. Plasma ascorbic acid and radical-scavenging capacity were decreased following placebo meal consumption; however, BC significantly elevated both parameters compared with baseline and placebo ingestion. Plasma oxidised LDL, α-tocopherol and paraoxonase activity were unchanged in both treatment groups. Furthermore, production of TNF-α and IL-1β was not significantly changed by BC meal consumption. The present results suggest potential antioxidative and anti-inflammatory properties of BC in vitro in cultured macrophages. Although the observations were not directly transferable to a postprandial in vivo situation, the present results show that BC juice consumption may improve postprandial antioxidant status as indicated by higher ascorbic acid levels and free radical-scavenging capacity in plasma.
Collapse
|
39
|
KOH EUNMI, MITCHELL ALYSONE. CHARACTERIZATION OF URINARY ISOFLAVONE METABOLITES EXCRETED AFTER THE CONSUMPTION OF SOY FLOUR OR SOYBEAN PASTE USING LC-(ESI)MS/MS. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2010.00469.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Comparative study of isoflavones in wild and cultivated soybeans as well as bean products by high-performance liquid chromatography coupled with mass spectrometry and chemometric techniques. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1564-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
41
|
Cohen R, Schwartz B, Peri I, Shimoni E. Improving bioavailability and stability of genistein by complexation with high-amylose corn starch. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7932-7938. [PMID: 21688810 DOI: 10.1021/jf2013277] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Genistein, like other phytochemicals, has beneficial health effects, but its bioavailability is limited. This research studied the effect of complexation of genistein with starch on genistein bioavailability. Genistein release from these complexes was tested in vitro under simulated intestinal conditions and in vivo in rats fed high-amylose corn starch (HACS)-genistein complexes (experimental group) as compared to those fed a physical mixture of HACS and genistein (controls). In vitro results showed that genistein release is sustained and fits the normal transit time of food in the intestine. The genistein concentration in the plasma was twice as high in the experimental group versus controls; the genistein concentration in the urine was also higher in the experimental group but lower in the feces. These results indicate that starch-genistein complexes increase genistein bioavailability and suggest that starch can affect the bioavailability of additional food components.
Collapse
Affiliation(s)
- Revital Cohen
- Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | |
Collapse
|
42
|
Tamura M, Hori S, Nakagawa H. Lactobacillus rhamnosus JCM 2771: Impact on Metabolism of Isoflavonoids in the Fecal Flora from a Male Equol Producer. Curr Microbiol 2011; 62:1632-7. [DOI: 10.1007/s00284-011-9904-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 02/17/2011] [Indexed: 11/25/2022]
|
43
|
Synthetic conjugates of genistein affecting proliferation and mitosis of cancer cells. Bioorg Med Chem 2011; 19:295-305. [DOI: 10.1016/j.bmc.2010.11.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/04/2010] [Accepted: 11/08/2010] [Indexed: 12/30/2022]
|
44
|
Braune A, Maul R, Schebb NH, Kulling SE, Blaut M. The red clover isoflavone irilone is largely resistant to degradation by the human gut microbiota. Mol Nutr Food Res 2010; 54:929-38. [PMID: 19998384 DOI: 10.1002/mnfr.200900233] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intestinal bacteria may influence bioavailability and physiological activity of dietary isoflavones. We therefore investigated the ability of human intestinal microbiota to convert irilone and genistein in vitro. In contrast to genistein, irilone was largely resistant to transformation by fecal slurries of ten human subjects. The fecal microbiota converted genistein to dihydrogenistein, 6'-hydroxy-O-desmethylangolensin, and 2-(4-hydroxyphenyl)-propionic acid. However, considerable interindividual differences in the rate of genistein degradation and the pattern of metabolites formed from genistein were observed. Only one metabolite, namely dihydroirilone, was formed from irilone in minor amounts. In further experiments, Eubacterium ramulus, a prevalent flavonoid-degrading species of the human gut, was tested for transformation of irilone. In contrast to genistein, irilone was not converted by E. ramulus. Irilone only differs from genistein by a methylenedioxy group attached to the A-ring of the isoflavone skeleton. This substitution obviously restricts the degradability of irilone by human intestinal bacteria.
Collapse
Affiliation(s)
- Annett Braune
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany.
| | | | | | | | | |
Collapse
|
45
|
Martin FPJ, Sprenger N, Montoliu I, Rezzi S, Kochhar S, Nicholson JK. Dietary modulation of gut functional ecology studied by fecal metabonomics. J Proteome Res 2010; 9:5284-95. [PMID: 20806900 DOI: 10.1021/pr100554m] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A major source of intestinal metabolites results from both host and microbial processing of dietary nutrients. (1)H NMR-based metabolic profiling of mouse feces was carried out over time in different microbiome mouse models, including conventional (n = 9), conventionalized (n = 10), and "humanized" gnotobiotic mice inoculated with a model of human baby microbiota (HBM, n = 17). HBM mice were supplemented with Lactobacillus paracasei with (n = 10) and without (n = 7) prebiotics. Animals not supplemented with prebiotics received a diet enriched in glucose and lactose as placebo. In conventionalized animals, microbial populations and activities converged in term of multivariate mapping toward conventional mice. Both groups decreased bacterial processing of dietary proteins when switching to a diet enriched in glucose and lactose, as described with low levels of 5-aminovalerate, acetate, and propionate and high levels of lysine and arginine. The HBM model differs from conventional and conventionalized microbiota in terms of type, proportion, and metabolic activity of gut bacteria (lower short chain fatty acids (SCFAs), lactate, 5-aminovalerate, and oligosaccharides, higher bile acids and choline). The probiotics supplementation of HBM mice was associated with a specific amino acid pattern that can be linked to L. paracasei proteolytic activities. The combination of L. paracasei with the galactosyl-oligosaccharide prebiotics was related to the enhanced growth of bifidobacteria and lactobacilli, and a specific metabolism of carbohydrates, proteins, and SCFAs. The present study describes how the assessment of metabolic changes in feces may provide information for studying nutrient-microbiota relationships in different microbiome mouse models.
Collapse
|
46
|
Colonic metabolites of berry polyphenols: the missing link to biological activity? Br J Nutr 2010; 104 Suppl 3:S48-66. [DOI: 10.1017/s0007114510003946] [Citation(s) in RCA: 332] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
47
|
Stoupi S, Williamson G, Drynan JW, Barron D, Clifford MN. Procyanidin B2 catabolism by human fecal microflora: Partial characterization of ‘dimeric’ intermediates. Arch Biochem Biophys 2010; 501:73-8. [DOI: 10.1016/j.abb.2010.02.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 11/27/2022]
|
48
|
Overnight urinary excretion of isoflavones as an indicator for dietary isoflavone intake in Korean girls of pubertal age. Br J Nutr 2010; 104:709-15. [DOI: 10.1017/s0007114510000978] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Little is known about the bioavailability of isoflavones in children. Previous studies have shown that children excrete more isoflavone in urine compared with adults. Thus we examined the relationship between usual dietary isoflavone intake and the urinary excretion of isoflavonoids in Korean girls of pubertal age. Twelve girls each were selected from the lowest and the highest quartiles of isoflavone intake among 252 Korean girls aged 8–11 years. Age, BMI and sexual maturation stage were matched between the two groups. Dietary intakes for 3 d by diet record and overnight urine samples were collected at baseline and at 6 and 12 months. Total and individual isoflavone (daidzein, genistein and glycitein) intakes were calculated from diet records. The parent isoflavone compounds (daidzein, genistein and glycitein) and their metabolites (equol,O-desmethylangolensin (O-DMA), dihydrodaidzein and dihydrogenistein) present in the urine samples were analysed using liquid chromatography–MS. Intake levels of total and individual isoflavone compounds were significantly higher in the high isoflavone (HI) group than the levels in the low isoflavone (LI) group (P < 0·05). Urinary excretion of all isoflavone parent compounds was significantly higher in the HI group than in the LI group (P < 0·0001). Among isoflavone metabolites, onlyO-DMA and total metabolites were significantly different (P < 0·05). Total isoflavone intake was highly correlated with the urinary excretion of total parent compounds (r0·68;P < 0·01), parent compounds plus their metabolites (r0·66–0·69;P < 0·01) and total isoflavonoids (r0·72;P < 0·0001). In conclusion, overnight urinary excretion of total isoflavonoids is a reliable biomarker of usual isoflavone intake in Korean girls of pubertal age.
Collapse
|
49
|
Mortensen A, Kulling SE, Schwartz H, Rowland I, Ruefer CE, Rimbach G, Cassidy A, Magee P, Millar J, Hall WL, Kramer Birkved F, Sorensen IK, Sontag G. Analytical and compositional aspects of isoflavones in food and their biological effects. Mol Nutr Food Res 2009; 53 Suppl 2:S266-309. [PMID: 19774555 DOI: 10.1002/mnfr.200800478] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This paper provides an overview of analytical techniques used to determine isoflavones (IFs) in foods and biological fluids with main emphasis on sample preparation methods. Factors influencing the content of IFs in food including processing and natural variability are summarized and an insight into IF databases is given. Comparisons of dietary intake of IFs in Asian and Western populations, in special subgroups like vegetarians, vegans, and infants are made and our knowledge on their absorption, distribution, metabolism, and excretion by the human body is presented. The influences of the gut microflora, age, gender, background diet, food matrix, and the chemical nature of the IFs on the metabolism of IFs are described. Potential mechanisms by which IFs may exert their actions are reviewed, and genetic polymorphism as determinants of biological response to soy IFs is discussed. The effects of IFs on a range of health outcomes including atherosclerosis, breast, intestinal, and prostate cancers, menopausal symptoms, bone health, and cognition are reviewed on the basis of the available in vitro, in vivo animal and human data.
Collapse
Affiliation(s)
- Alicja Mortensen
- The National Food Institute, Technical University of Denmark, Søborg, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Stoupi S, Williamson G, Drynan JW, Barron D, Clifford MN. A comparison of the in vitro
biotransformation of (-)-epicatechin and procyanidin B2 by human faecal microbiota. Mol Nutr Food Res 2009; 54:747-59. [DOI: 10.1002/mnfr.200900123] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|