1
|
Li K, Ru Y, Zheng H, Qin X, Li Z, Xia X, Dong Q, Ma Y. Advancements in photodynamic inactivation: A comprehensive review of photosensitizers, mechanisms, and applications in food area. Compr Rev Food Sci Food Saf 2025; 24:e370127. [PMID: 39898886 DOI: 10.1111/1541-4337.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
Food microbial contamination results in serious food safety issues and numerous food loss and waste, presenting one of the most significant challenges facing the global food system. Photodynamic inactivation (PDI) technology, which combines light and photosensitizers (PS) to provide antimicrobial effects, is an ideal nonthermal antimicrobial technique for the food industry. This review provides a comprehensive overview of PDI technology, beginning with the fundamental photoactivation principles of PS and the pathways of photoinduced reactive oxygen species (ROS) generation. PS is the most critical factor affecting PDI efficiency, which is categorized into three types: organic, metal oxide-, and carbon-based. This review systemically summarizes the photophysical properties, in vitro PDI performances, potential enhancement strategies, and the advantages and limitations of each type of PS. Furthermore, the antimicrobial mechanisms of the PDI technologies are analyzed at both microscopic and molecular levels. Finally, the current applications of PDI in various food systems are discussed, along with the associated challenges and opportunities. Overall, this review offers crucial insights into optimizing and advancing PDI technology, highlighting key challenges and suggesting future research directions to enhance the effectiveness and scalability of PDI for diverse food applications.
Collapse
Affiliation(s)
- Kexin Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yibo Ru
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hao Zheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xuejuan Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yue Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Sun M, Miao J, Zhang Y, Hao Y, Zhang J, Li H, Bai H, Shi L. Antioxidant activity analysis of new interspecific hybrid germplasm thyme and oregano essential oils with different chemotypes. BMC PLANT BIOLOGY 2025; 25:33. [PMID: 39780082 PMCID: PMC11716255 DOI: 10.1186/s12870-024-06015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Thyme and oregano essential oils (EOs) and their components have numerous applications in the pharmaceutical, food, and cosmetic industries owing to their antioxidant, antibacterial, antifungal, anti-inflammatory, antiviral, and immunological properties. We attempted to create new chemotypes through the hybridization of thyme and oregano for functional EO research and product development. Here, we used interspecific hybridization to create new thyme and oregano germplasms with new EO chemotypes. The antioxidant activities of these new chemotype EOs were verified by DPPH, ABTS, and FRAP analyses. We determined that there are five types of thyme hybrid EOs: geraniol-type, carvacrol-type, thymol-type, parent polymerization-type, and α-terpineol/α-terpinyl acetate-type. Moreover, there are five types of oregano hybrid EOs: carvacrol-type, thymol-type, sabinene hydrate-type, parent polymerization-type, and carvacrol/sabinene hydrate-type. The geraniol, thymol, and carvacrol contents ranged from 30.45%, 1.21% and 0.00%, respectively, in the parents to 81.66%, 52.65%, and 46.16%, respectively, in the thyme hybrids. The carvacrol and thymol contents ranged from 2.33% to 24.18%, respectively, in the parents to 94.16% and 76.77%, respectively, in the oregano hybrids, indicating obvious heterosis. We further used three antioxidant assays, DPPH, ABTS, and FRAP, to analyse the antioxidant activity of thyme and oregano hybrid EO samples. The antioxidant capacities of carvacrol- and thymol-type EOs were significantly superior to those of other chemotypes. Our data suggest that carvacrol- and thymol-type EOs with greater antioxidant potential can be applied in many industries. In addition, the function of high geraniol-type thyme EO should be further researched. The results will also be very useful for the selection of new varieties, functional research on carvacrol-, thymol-, and geraniol-type essential oils, and product development of feed additives, cosmetics, etc.
Collapse
Affiliation(s)
- Meiyu Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Jiahui Miao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanpeng Hao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Hui Li
- China National Botanical Garden, Beijing, 100093, China
| | - Hongtong Bai
- China National Botanical Garden, Beijing, 100093, China
| | - Lei Shi
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
3
|
Nazari M, Shokoohizadeh L, Taheri M. Natural products in the treatment of diabetic foot infection. Eur J Med Res 2025; 30:8. [PMID: 39773682 PMCID: PMC11705749 DOI: 10.1186/s40001-024-02255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025] Open
Abstract
Diabetic foot infections (DFIs) are a significant complication in diabetes mellitus, leading to increased morbidity, hospitalizations, and healthcare burdens. The growing prevalence of antibiotic-resistant pathogens has reduced the efficacy of conventional treatments, highlighting the need for alternative therapeutic strategies. Natural products, known for their antimicrobial, anti-inflammatory, and wound-healing properties, have garnered attention as potential treatments for DFIs. This review examines key natural compounds, including eugenol, thymol, carvacrol, curcumin, and Aloe vera, and their mechanisms of action in combating diabetic infections. We analyze the antimicrobial efficacy of these compounds, their ability to inhibit biofilm formation, and their role in wound healing. The review also explores challenges in integrating natural products into clinical practice and the potential for their use alongside or in place of traditional antibiotic therapies. Our findings suggest that natural products could play a crucial role in developing sustainable and effective treatment strategies for DFIs, especially in the face of rising antimicrobial resistance.
Collapse
Affiliation(s)
- Mohsen Nazari
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leili Shokoohizadeh
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
4
|
Waheed M, Hussain MB, Saeed F, Afzaal M, Ahmed A, Irfan R, Akram N, Ahmed F, Hailu GG. Phytochemical Profiling and Therapeutic Potential of Thyme ( Thymus spp.): A Medicinal Herb. Food Sci Nutr 2024; 12:9893-9912. [PMID: 39723027 PMCID: PMC11666979 DOI: 10.1002/fsn3.4563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 12/28/2024] Open
Abstract
Thymol is a phenol monoterpene that is naturally derived from cymene and is an isomer of carvacrol. It constitutes a significant portion (10%-64%) of the essential oils found in thyme (Thymus vulgaris L., Lamiaceae), a medicinal plant renowned for its therapeutic properties. Wild thyme is native to the Mediterranean region and has been used in cooking and medicine for a long time. In contemporary contexts, both thymol and thyme offer diverse functional applications in the pharmaceutical, food, and cosmetic industries. Thymol has attracted scientific interest for its potential therapeutic applications in pharmaceuticals and nutraceuticals. Studies have explored its efficacy in treating respiratory, nervous, and cardiovascular disorders, highlighting its promising role in diverse therapeutic interventions. Additionally, this compound demonstrates antimicrobial, antioxidant, anticarcinogenic, anti-inflammatory, and antispasmodic properties. It also shows potential as a growth enhancer and has immunomodulatory properties as well. Other discussed aspects include thymol toxicity, bioavailability, metabolism, and distribution in animals and humans. This review summarizes the most significant data regarding the beneficial effects of thyme bioactive compounds and their applications as a food preservative while taking into account the thyme plant extract and its essential oil.
Collapse
Affiliation(s)
- Marwa Waheed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | | | - Farhan Saeed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmed
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Rushba Irfan
- Institute of Home Sciences, Faculty of Food, Nutrition & Home SciencesUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Noor Akram
- Food Safety & Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Faiyaz Ahmed
- Department of Basic Health Sciences, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | | |
Collapse
|
5
|
Lopes LE, da Silva Barroso S, Caldas JK, Vasconcelos PR, Canuto KM, Dariva C, Santos KS, Severino P, Cardoso JC, Souto EB, Gomes MZ. Neuroprotective effects of Tradescantia spathacea tea bioactives in Parkinson's disease: In vivo proof-of-concept. J Tradit Complement Med 2024; 14:435-445. [PMID: 39035688 PMCID: PMC11259708 DOI: 10.1016/j.jtcme.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 07/23/2024] Open
Abstract
Background and aim Tradescantia spathacea (T. spathacea) is a traditional medicinal plant from Central America and its tea, obtained by infusion, has been recognized as a functional food. The aim of this work was to investigate the effects of dry tea containing biocompounds from T. spathacea tea on motor and emotional behavior, as well as tyrosine hydroxylase (TH) and glial fibrillary acidic protein (GFAP) expression in 6-hydroxydopamine (6-OHDA)-lesioned rats. Experimental procedure Bioactives were identified by Ultra Performance Liquid Chromatography (UPLC) and an in vivo study in male Wistar rats was run as proof of concept of neuroprotective effects of DTTS. Results and conclusion We found 15 biocompounds that had not been previously reported in T. spathacea: the UPLC-QTOF-MS/MS allowed identification five phenolic acids, one coumarin, two flavonoids, one iridoid, one phenylpropanoid glycoside, and six fatty acid derivatives. The dry tea of T. spathacea (DTTS) presented significant antioxidant activity and high contents of phenolic compounds and flavonoids. Doses of 10, 30, and 100 mg/kg of DTTS were protective against dopaminergic neurodegeneration and exhibited modulatory action on the astrocyte-mediated neuroinflammatory response. Behavioral tests showed that 30 mg/kg of DTTS counteracted motor impairment, while 100 mg/kg produced an anxiolytic effect. The DTTS could be, therefore, a promising strategy for the management of Parkinson's disease.
Collapse
Affiliation(s)
- Lorenna E.S. Lopes
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
| | | | - Joanny K.M. Caldas
- Research and Technology Institute (ITP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
| | - Paulo R. Vasconcelos
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2.270, Bairro Planalto do Pici, Fortaleza, CEP 60511-110, Ceará, Brazil
| | - Kirley M. Canuto
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2.270, Bairro Planalto do Pici, Fortaleza, CEP 60511-110, Ceará, Brazil
| | - Claudio Dariva
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
- Research and Technology Institute (ITP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
| | - Klebson S. Santos
- Research and Technology Institute (ITP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
| | - Patricia Severino
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
- Research and Technology Institute (ITP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
| | - Juliana C. Cardoso
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
- Research and Technology Institute (ITP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
| | - Eliana B. Souto
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, MEDTECH, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Margarete Z. Gomes
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
- Research and Technology Institute (ITP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
| |
Collapse
|
6
|
Barjasteh A, Kaushik N, Choi EH, Kaushik NK. Cold Atmospheric Pressure Plasma Solutions for Sustainable Food Packaging. Int J Mol Sci 2024; 25:6638. [PMID: 38928343 PMCID: PMC11203612 DOI: 10.3390/ijms25126638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Increasing the number of resistant bacteria resistant to treatment is one of the leading causes of death worldwide. These bacteria are created in wounds and injuries and can be transferred through hospital equipment. Various attempts have been made to treat these bacteria in recent years, such as using different drugs and new sterilization methods. However, some bacteria resist drugs, and other traditional methods cannot destroy them. In the meantime, various studies have shown that cold atmospheric plasma can kill these bacteria through different mechanisms, making cold plasma a promising tool to deactivate bacteria. This new technology can be effectively used in the food industry because it has the potential to inactivate microorganisms such as spores and microbial toxins and increase the wettability and printability of polymers to pack fresh and dried food. It can also increase the shelf life of food without leaving any residue or chemical effluent. This paper investigates cold plasma's potential, advantages, and disadvantages in the food industry and sterilization.
Collapse
Affiliation(s)
- Azadeh Barjasteh
- Department of Physics, Lorestan University, Khorramabad 68151-44316, Iran;
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea;
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea;
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea;
| |
Collapse
|
7
|
Osanloo M, Noori F, Varaa N, Tavassoli A, Goodarzi A, Moghaddam MT, Ebrahimi L, Abpeikar Z, Farmani AR, Safaei M, Fereydouni N, Goodarzi A. The wound healing effect of polycaprolactone-chitosan scaffold coated with a gel containing Zataria multiflora Boiss. volatile oil nanoemulsions. BMC Complement Med Ther 2024; 24:56. [PMID: 38273247 PMCID: PMC10809667 DOI: 10.1186/s12906-024-04352-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
AIMS Thymus plant is a very useful herbal medicine with various properties such as anti-inflammatory and antibacterial. Therefore, the properties of this plant have made this drug a suitable candidate for wound healing. In this study, hydroxypropyl methylcellulose (HPMC) gel containing Zataria multiflora volatile oil nanoemulsion (neZM) along with polycaprolactone/chitosan (PCL-CS) nanofibrous scaffold was used, and the effect of three experimental groups on the wound healing process was evaluated. The first group, HPMC gel containing neZM, the second group, PCL-CS nanofibers, and the third group, HPMC gel containing neZM and bandaged with PCL-CS nanofibers (PCL-CS/neZM). Wounds bandaged with common sterile gas were considered as control. METHODS The nanoemulsion was synthesized by a spontaneous method and loaded into a hydroxypropyl methylcellulose (HPMC) gel. The DLS test investigated the size of these nanoemulsions. A PCL-CS nanofibrous scaffold was also synthesized by electrospinning method then SEM and contact angle tests investigated morphology and hydrophilicity/hydrophobicity of its surface. The animal study was performed on full-thickness skin wounds in rats, and the process of tissue regeneration in the experimental and control groups was evaluated by H&E and Masson's trichrome staining. RESULTS The results showed that the nanoemulsion has a size of 225±9 nm and has an acceptable dispersion. The PCL-CS nanofibers synthesized by the electrospinning method also show non-beaded smooth fibers and due to the presence of chitosan with hydrophilic properties, have higher surface hydrophobicity than PCL fibers. The wound healing results show that the PCL-CS/neZM group significantly reduced the wound size compared to the other groups on the 7th, 14th, and 21st days. The histological results also show that the PCL-CS/neZM group could significantly reduce the parameters of edema, inflammation, and vascularity and increase the parameters of fibrosis, re-epithelialization, and collagen deposition compared to other groups on day 21. CONCLUSION The results of this study show that the PCL-CS/neZM treatment can effectively improve wound healing.
Collapse
Affiliation(s)
- Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Fariba Noori
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Negar Varaa
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Alireza Tavassoli
- Department of Pathology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Aida Goodarzi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Lida Ebrahimi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohsen Safaei
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran.
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
8
|
Kačániová M, Čmiková N, Kluz MI, Akacha BB, Saad RB, Mnif W, Waszkiewicz-Robak B, Garzoli S, Hsouna AB. Anti- Salmonella Activity of Thymus serpyllum Essential Oil in Sous Vide Cook-Chill Rabbit Meat. Foods 2024; 13:200. [PMID: 38254501 PMCID: PMC10815041 DOI: 10.3390/foods13020200] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Food is generally prepared and vacuum-sealed in a water bath, then heated to a precise temperature and circulated in a sous vide machine. Due to its affordability and ease of use, this cooking method is becoming increasingly popular in homes and food service businesses. However, suggestions from manufacturers and chefs for long-term, low-temperature sous vide cooking raise questions about food safety in the media. In this study, heat treatment with different times and wild thyme essential oil (EO) in sous vide-processed rabbit longissimus dorsi muscle were found to inactivate Salmonella enterica. The rabbit meat samples were vacuum-packed in control groups, in the second group the rabbit meat samples were injected with S. enterica, and in the third group were meat samples infected with S. enterica with Thymus serpylum EO additive. The vacuum-packed samples were cooked sous vide for the prescribed time at 55, 60, and 65 °C. At 5, 15, 30, and 60 min, the quantities of S. enterica, total bacterial counts, and coliform bacteria were measured in groups of sous vide rabbit meat. Microbiological analyses of rabbit meat samples on days 1 and 7 were evaluated. In this study, total viable counts, coliforms bacteria, and number of Salmonella spp. were identified. After incubation, isolates from different groups of microorganisms were identified by the mass spectrometry technique. For each day measured, the test group exposed to a temperature of 55 °C for 5 min had a greater number of total microbiota. The most isolated microorganisms by MALDI-TOF MS Biotyper from the control and treated groups were Lactococcus garvieae and in the treated groups also S. enterica. Based on our analysis of sous vide rabbit meat samples, we discovered that adding 1% of thyme essential oil to the mixture reduced the amount of Salmonella cells and increased the overall and coliform bacterial counts. The microbiological quality of sous vide rabbit meat that was kept for seven days was positively impacted by the addition of thyme essential oil.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, 94976 Nitra, Slovakia;
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, 01 043 Warszawa, Poland; (M.I.K.); (B.W.-R.)
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, 94976 Nitra, Slovakia;
| | - Maciej Ireneusz Kluz
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, 01 043 Warszawa, Poland; (M.I.K.); (B.W.-R.)
| | - Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, Sfax 3018, Tunisia (R.B.S.); (A.B.H.)
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, Sfax 3018, Tunisia (R.B.S.); (A.B.H.)
| | - Wissem Mnif
- Department of Chemistry, College of Sciences at Bisha, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Bożena Waszkiewicz-Robak
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, 01 043 Warszawa, Poland; (M.I.K.); (B.W.-R.)
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, 00185 Rome, Italy;
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, Sfax 3018, Tunisia (R.B.S.); (A.B.H.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
9
|
Siddiqui SA, Lakshmikanth D, Pradhan C, Farajinejad Z, Castro-Muñoz R, Sasidharan A. Implementing fermentation technology for comprehensive valorisation of seafood processing by-products: A critical review on recovering valuable nutrients and enhancing utilisation. Crit Rev Food Sci Nutr 2023; 65:964-991. [PMID: 38095589 DOI: 10.1080/10408398.2023.2286623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Fermentation technology is a biorefining tool that has been used in various industrial processes to recover valuable nutrients from different side streams. One promising application of this technique is in the reclamation of nutritional components from seafood side streams. Seafood processing generates significant amounts of waste, including heads, shells, and other side streams. These side streams contain high quantities of valued nutritional components that can be extracted using fermentation technology. The fermentation technology engages the application of microorganisms to convert the side stream into valuable products like biofuels, enzymes, and animal feed. Natural polymers such as chitin and chitosan have various purposes in the food, medicinal, and agricultural industry. Another example is the fish protein hydrolysates (FPH) from seafood side streams. FPHs are protein-rich powders which could be used in animal nutrition and nutraceutical industry. The resulting hydrolysate is further filtered and dried resulting in a FPH powder. Fermentation technology holds great possibility in the recovery of valuable nutrients from seafood side streams. The process can help reduce waste and generate new value-added products from what would otherwise be considered a waste product. With further research and development, fermentation technology can become a key tool in the biorefining industry.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Dhanya Lakshmikanth
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, India
| | - Chiranjiv Pradhan
- Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, India
| | - Zahra Farajinejad
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Roberto Castro-Muñoz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
| | - Abhilash Sasidharan
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, India
| |
Collapse
|
10
|
Parvin SI, Mandal MK, Gopi P, Singh S, Khan MR, Pandya P, Islam MM, Gazi HAR. A comparative study on DNA and protein binding properties of thymol and thymoquinone. J Biomol Struct Dyn 2023; 41:10944-10956. [PMID: 36841618 DOI: 10.1080/07391102.2023.2180665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/10/2022] [Indexed: 02/27/2023]
Abstract
Two phytochemicals, thymol and thymoquinone obtained from thymes (Thymus vulgaris L., Lamiaceae etc.) and Nagila Sativa seed, respectively. Both the phytochemicals show several biochemical activities like anticancer, antimicrobial etc. In this paper, we studied the affinities of thymol and thymoquinone towards calf thymus DNA (CT-DNA) and protein (bovine serum albumin). Spectroscopic and molecular modelling studies revealed that both compounds have a high affinity toward both the receptors; DNA and protein. Both phytochemicals binds to the minor grooves of DNA and suitable pockets of protein. Several free energy function and hydrogen bonding play significant role during the binding phenomenon.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Priyanka Gopi
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, India
| | - Shweta Singh
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, India
| | | | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, India
| | - Md Maidul Islam
- Department of Chemistry, Aliah University, New Town, Kolkata, India
| | | |
Collapse
|
11
|
Islam M, Malakar S, Rao MV, Kumar N, Sahu JK. Recent advancement in ultrasound-assisted novel technologies for the extraction of bioactive compounds from herbal plants: a review. Food Sci Biotechnol 2023; 32:1763-1782. [PMID: 37781053 PMCID: PMC10541372 DOI: 10.1007/s10068-023-01346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 10/03/2023] Open
Abstract
Herbal plants comprise potent bioactives, and they have a potential for the development of functional foods. Ultrasonication technology can be used to enhance the efficiency and quality of these bioactivities. The present review discussed the ultrasound-assisted novel extraction technologies (supercritical carbon dioxide (CO2) and high pressurized liquid), including mechanistic understanding, influencing factors, extract process efficiency, and the recovery of bioactives with an industrial perspective. The strong observations of this study are the novel ultrasound-induced extraction process variables, such as ultrasound amplitude, sonication time, temperature, solid-solvent ratio, and pressure, are significantly influenced and must be optimized for maximum recovery of bioactives. The novel green technologies (ultrasound and assisted) could remarkably improve the extraction efficiency and enhance the quality of green extract. This review will support technological understanding about the impact on process parameters for the extraction of bioactives for the development of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Makdud Islam
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana, 131028 India
| | - Santanu Malakar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana, 131028 India
| | - Madaraboina Venkateswara Rao
- Department of Food Technology, Vignan’s Foundation for Science Technology and Research, Vadlamudi, Andhra Pradesh India 522213
| | - Nitin Kumar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana, 131028 India
| | - Jatindra K. Sahu
- Food Customization Research Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi New Delhi, India
| |
Collapse
|
12
|
Patel TA, Kevadiya BD, Bajwa N, Singh PA, Zheng H, Kirabo A, Li YL, Patel KP. Role of Nanoparticle-Conjugates and Nanotheranostics in Abrogating Oxidative Stress and Ameliorating Neuroinflammation. Antioxidants (Basel) 2023; 12:1877. [PMID: 37891956 PMCID: PMC10604131 DOI: 10.3390/antiox12101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress is a deteriorating condition that arises due to an imbalance between the reactive oxygen species and the antioxidant system or defense of the body. The key reasons for the development of such conditions are malfunctioning of various cell organelles, such as mitochondria, endoplasmic reticulum, and Golgi complex, as well as physical and mental disturbances. The nervous system has a relatively high utilization of oxygen, thus making it particularly vulnerable to oxidative stress, which eventually leads to neuronal atrophy and death. This advances the development of neuroinflammation and neurodegeneration-associated disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, dementia, and other memory disorders. It is imperative to treat such conditions as early as possible before they worsen and progress to irreversible damage. Oxidative damage can be negated by two mechanisms: improving the cellular defense system or providing exogenous antioxidants. Natural antioxidants can normally handle such oxidative stress, but they have limited efficacy. The valuable features of nanoparticles and/or nanomaterials, in combination with antioxidant features, offer innovative nanotheranostic tools as potential therapeutic modalities. Hence, this review aims to represent novel therapeutic approaches like utilizing nanoparticles with antioxidant properties and nanotheranostics as delivery systems for potential therapeutic applications in various neuroinflammation- and neurodegeneration-associated disease conditions.
Collapse
Affiliation(s)
- Tapan A. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Neha Bajwa
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali 140413, Punjab, India; (N.B.); (P.A.S.)
| | - Preet Amol Singh
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali 140413, Punjab, India; (N.B.); (P.A.S.)
| | - Hong Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA;
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| |
Collapse
|
13
|
Babotă M, Frumuzachi O, Nicolescu A, Dias MI, Pinela J, Barros L, Añibarro-Ortega M, Stojković D, Carević T, Mocan A, López V, Crișan G. Thymus Species from Romanian Spontaneous Flora as Promising Source of Phenolic Secondary Metabolites with Health-Related Benefits. Antioxidants (Basel) 2023; 12:antiox12020390. [PMID: 36829949 PMCID: PMC9952121 DOI: 10.3390/antiox12020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Wild thyme aerial parts (Serpylli herba) are recognized as a valuable herbal product with antioxidant, anti-inflammatory, and antibacterial effects. Although pharmacopoeial regulations allow its collection exclusively from Thymus serpyllum, substitution with other species is frequent in current practice. This study analyzed the phenolic composition, antioxidant, and enzyme-inhibitory and antimicrobial activity of the hydroethanolic extracts obtained from five Romanian wild thyme species (Thymus alpestris, T. glabrescens, T. panonicus, T. pulcherimus and T. pulegioides). The analysis of individual phenolic constituents was performed through LC-ESI-DAD/MS2, while for the in vitro evaluation of antioxidant potential, TEAC, FRAP, DPPH, TBARS and OxHLIA assays were employed. The anti-enzymatic potential was tested in vitro against tyrosinase, α-glucosidase and acetylcholinesterase. High rosmarinic acid contents were quantified in all species (20.06 ± 0.32-80.49 ± 0.001 mg/g dry extract); phenolic acids derivatives (including salvianolic acids) were confirmed as the principal metabolites of T. alpestris and T. glabrescens, while eriodictyol-O-di-hexoside was found exclusively in T. alpestris. All species showed strong antioxidant potential and moderate anti-enzymatic effect against α-glucosidase and acetylcholinesterase, showing no anti-tyrosinase activity. This is the first detailed report on the chemical and biological profile of T. alpestris collected from Romanian spontaneous flora.
Collapse
Affiliation(s)
- Mihai Babotă
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Oleg Frumuzachi
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Alexandru Nicolescu
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mikel Añibarro-Ortega
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Tamara Carević
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-742-017-816
| | - Víctor López
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, 50830 Zaragoza, Spain
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain
| | - Gianina Crișan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Sun M, Zhu L, Zhang Y, Liu N, Zhang J, Li H, Bai H, Shi L. Creation of new germplasm resources, development of SSR markers, and screening of monoterpene synthases in thyme. BMC PLANT BIOLOGY 2023; 23:13. [PMID: 36604636 PMCID: PMC9817278 DOI: 10.1186/s12870-022-04029-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Thyme derived essential oil and its components have numerous applications in pharmaceutical, food, and cosmetic industries, owing to their antibacterial, antifungal, and antiviral properties. To obtain thyme essential oil with different terpene composition, we developed new germplasm resources using the conventional hybridization approach. RESULTS Phenotypic characteristics, including essential oil yield and composition, glandular trichome density, plant type, and fertility, of three wild Chinese and seven European thyme species were evaluated. Male-sterile and male-fertile thyme species were crossed in different combinations, and two F1 populations derived from Thymus longicaulis (Tl) × T. vulgaris 'Fragrantissimus' (Tvf) and T. vulgaris 'Elsbeth' (Tve) × T. quinquecostatus (Tq) crosses were selected, with essential oil yield and terpene content as the main breeding goals. Simultaneously, simple sequence repeat (SSR) primers were developed based on the whole-genome sequence of T. quinquecostatus to authenticate the F1 hybrids. A total of 300 primer pairs were selected, and polymerase chain reaction (PCR) was carried out on the parents of the two hybrid populations (Tl, Tvf, Tve, and Tq). Based on the chemotype of the parents and their F1 progenies, we examined the expression of genes encoding two γ-terpinene synthases, one α-terpineol synthase, and maybe one geraniol synthase in all genotypes by quantitative real-time PCR (qRT-PCR). CONCLUSION We used hybridization to create new germplasm resources of thyme, developed SSR markers based on the whole-genome sequence of T. quinquecostatus, and screened the expression of monoterpene synthase genes in thyme. The results of this study provide a strong foundation for the creation of new germplasm resources, construction of the genetic linkage maps, and identification of quantitative trait loci (QTLs), and help gain insight into the mechanism of monoterpenoids biosynthesis in thyme.
Collapse
Affiliation(s)
- Meiyu Sun
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Li Zhu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ningning Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinzheng Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
15
|
Alruhaili MH, Almuhayawi MS, Gattan HS, Alharbi MT, Nagshabandi MK, Jaouni SKA, Selim S, AbdElgawad H. Insight into the phytochemical profile and antimicrobial activities of Amomum subulatum and Amomum xanthioides: an in vitro and in silico study. FRONTIERS IN PLANT SCIENCE 2023; 14:1136961. [PMID: 37152127 PMCID: PMC10157186 DOI: 10.3389/fpls.2023.1136961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/23/2023] [Indexed: 05/09/2023]
Abstract
Introduction Medicinal plants have been considered as potential source of therapeutics or as starting materials in drugs formulation. Methods The current study aims to shed light on the therapeutic potential of the Amomum subulatom and Amomum xanthioides Fruits by analyzing the phytochemical composition of their seeds and fruits using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) techniques to determine the presence of bioactive components such as flavonoids, phenols, vitamins, steroids, and essential oils. Results and Discussion The protein content is usually higher than the total lipids in both species except the fruit of A. subulatum which contain more lipids than proteins. The total protein contents for A. subulatum were 235.03 ± 21.49 and 227.49 ± 25.82 mg/g dry weight while for A. xanthioides were 201.9 ± 37.79 and 294.99 ± 37.93 mg/g dry weight for seeds and fruit, respectively. The Carvacrol levels in A. subulatum is 20 times higher than that in A. xanthioides. Lower levels of α-Thujene, Phyllanderenes, Ascaridole, and Pinocarvone were also observed in both species. According to DPPH (2,2-diphenylpicrylhydrazyl) assay, seed the extract of A. subulatum exhibited the highest antioxidant activity (78.26±9.27 %) followed by the seed extract of A. xanthioides (68.21±2.56 %). Similarly, FRAP (Ferric Reducing Antioxidant Power) assay showed that the highest antioxidant activity was exhibited by the seed extract of the two species; 20.14±1.11 and 21.18±1.04 µmol trolox g-1 DW for A. subulatum and A. xanthioides, respectively. In terms of anti-lipid peroxidation, relatively higher values were obtained for the fruit extract of A. subulatum (6.08±0.35) and the seed extract of A. xanthioides (6.11±0.55). Ethanolic seed extracts of A. subulatum had the highest efficiency against four Gram-negative bacterial species which causes serious human diseases, namely Pseudomonas aeruginosa, Proteus vulgaris, Enterobacter aerogenes, and Salmonella typhimurium. In addition, P. aeruginosa was also inhibited by the fruit extract of both A. subulatum and A. xanthioides. For the seed extract of A. xanthioides, large inhibition zones were formed against P. vulgaris and the fungus Candida albicans. Finally, we have in silico explored the mode of action of these plants by performing detailed molecular modeling studies and showed that the antimicrobial activities of these plants could be attributed to the high binding affinity of their bioactive compounds to bind to the active sites of the sterol 14-alpha demethylase and the transcriptional regulator MvfR. Conclusion These findings demonstrate the two species extracts possess high biological activities and therapeutical values, which increases their potential value in a number of therapeutic applications.
Collapse
Affiliation(s)
- Mohammed H. Alruhaili
- Department of Clinical Microbiology and Immunology Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
- *Correspondence: Mohammed H. Alruhaili, ; Samy Selim, ; Hamada AbdElgawad,
| | - Mohammed S. Almuhayawi
- Department of Clinical Microbiology and Immunology Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Hattan S. Gattan
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohanned Talal Alharbi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammed K. Nagshabandi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- *Correspondence: Mohammed H. Alruhaili, ; Samy Selim, ; Hamada AbdElgawad,
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- *Correspondence: Mohammed H. Alruhaili, ; Samy Selim, ; Hamada AbdElgawad,
| |
Collapse
|
16
|
Babotă M, Frumuzachi O, Nicolescu A, Stojković D, Soković M, Rocchetti G, Zhang L, Lucini L, Crișan G, Mocan A, Voștinaru O. Phenolic profile, in vitro antimicrobial and in vivo diuretic effects of endemic wild thyme Thymus comosus Heuff ex. Griseb. (Lamiaceae) from Romania. Front Pharmacol 2023; 14:1115117. [PMID: 36874013 PMCID: PMC9981668 DOI: 10.3389/fphar.2023.1115117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Thymus comosus Heuff ex. Griseb. (Lamiaceae) is a wild thyme species endemic for Romanian Carpathian areas, frequently collected as substitute for collective herbal product Serpylli herba, cited as antibacterial and diuretic remedy in traditional medicine. The present study aimed to evaluate the in vivo diuretic effect and in vitro antimicrobial properties of three herbal preparations (infusion-TCI, tincture-TCT and an hydroethanolic extract prepared through an optimized ultrasound-assisted method-OpTC) obtained from the aerial parts of T. comosus Heuff ex. Griseb, also evaluating their comprehensive phenolic profile. In vivo diuretic effect was tested using Wistar rats treated orally with each herbal preparation (125 and 250 mg/kg dispersed in 25 ml/kg isotonic saline solution) and quantified based on cumulative urine output (ml), diuretic action and diuretic activity. Additionally, sodium and potassium excretion were monitored using a potentiometric method with selective electrodes. In vitro antibacterial and antifungal activities were assessed using p-iodonitrotetrazolium chloride assay against six bacterial strains and six fungal strains by monitoring minimum inhibitory concentration (MICs), minimum bactericidal concentrations (MBCs) and minimum fungicidal concentrations (MFCs). Finally, phenolic profile of the aforementioned herbal extracts was evaluated using an ultra-high-pressure liquid chromatography (UHPLC) coupled with high-resolution mass spectrometry (HRMS) method to check the impact of the different preparations on the most abundant and significant compounds. All the extracts exerted a mild diuretic action, TCT and OpTC inducing the most intense diuretic effect. Both herbal preparations produced a statistically significant, dose-dependent and gradual increase of the urine output, the effect being more intense at 24 h (6.63-7.13 ml/24 h). Potentiometric evaluation of urine samples collected from treated rats revealed a clear and mild natriuretic and kaliuretic effect after the administration. In terms of antimicrobial activity, E. coli (MIC-0.38 mg/ml), B. cereus (MIC-0.75 mg/ml)), Penicillium funiculosum and P. verrucosum var. cyclopium (MIC-0.19 mg/ml) showed the greater sensitivity to the tested extracts, respectively. UHPLC-HRMS screening showed that the bioactive potential of T. comosus herbal preparations was likely related to the higher amounts of phenolic acids (including rosmarinic acid), flavonoids (mainly flavones and derivatives) and other phenolics (such as different isomers of salvianolic acids) in their composition. The obtained results support the ethnopharmacological evidence regarding the mild diuretic and antibacterial potentials of the endemic wild thyme T. comosus, this study being the first one that assessed the aforementioned bioactivities for this species.
Collapse
Affiliation(s)
- Mihai Babotă
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Oleg Frumuzachi
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandru Nicolescu
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gianina Crișan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Oliviu Voștinaru
- Department of Pharmacology, Physiology and Physiopathology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
17
|
Martins-Gomes C, Steck J, Keller J, Bunzel M, Nunes FM, Silva AM. Molecular Characterization of Thymus capitellatus Extracts and Their Antioxidant, Neuroprotective and Anti-Proliferative Activities. Int J Mol Sci 2022; 23:15187. [PMID: 36499513 PMCID: PMC9738728 DOI: 10.3390/ijms232315187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Thymus capitellatus Hoffmanns & Link is an endemic species of the Iberian Peninsula listed as near-threatened, due to its restricted geographical distribution, occurring mainly in Portugal's mainland. In this work, we detail for the first time T. capitellatus extracts' phytochemical composition, as well as an evaluation of bioactivities to point out potential health benefits. Aqueous decoction (AD) and hydroethanolic (HE) extracts were obtained, both rich in flavonoids. However, quercetin-(?)-O-hexoside was identified as the main compound in T. capitellatus HE extract, while the phenolic acid rosmarinic acid was the main component of AD extracts. In addition, HE extract presents significant amounts of salvianolic acids and of the terpenoids oleanolic and ursolic acid. Both extracts showed antioxidant activity, evaluated by their capacity to scavenge ABTS and superoxide radicals, as well as an ability to prevent lipid peroxidation. AD extracts were also effective in scavenging hydroxyl and nitric oxide radicals. As potential functional foods, T. capitellatus extracts presented neuroprotective and anti-diabetic activity, in addition to time- and dose-dependent anti-proliferative activity against Caco-2 (colorectal adenocarcinoma) and HepG2 (hepatic carcinoma) cells. HE extract presented higher cytotoxicity than AD extract, and HepG2 cells were more resistant than Caco-2 cells. After 24 h exposure to HE extract, the IC50 values were 330 μg/mL and 447 μg/mL for Caco-2 and HepG2 cells, respectively. T. capitellatus has potential as a functional food or as a source of bioactive molecules. These results also highlight the need to preserve species with as yet unknown molecular compositions and potential medicinal applications.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Lab., University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab., University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Jan Steck
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Judith Keller
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab., University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Chemistry, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Lab., University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| |
Collapse
|
18
|
Alsakhawy SA, Baghdadi HH, El-Shenawy MA, Sabra SA, El-Hosseiny LS. Encapsulation of thymus vulgaris essential oil in caseinate/gelatin nanocomposite hydrogel: In vitro antibacterial activity and in vivo wound healing potential. Int J Pharm 2022; 628:122280. [DOI: 10.1016/j.ijpharm.2022.122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
|
19
|
Santiesteban-López NA, Gómez-Salazar JA, Santos EM, Campagnol PCB, Teixeira A, Lorenzo JM, Sosa-Morales ME, Domínguez R. Natural Antimicrobials: A Clean Label Strategy to Improve the Shelf Life and Safety of Reformulated Meat Products. Foods 2022; 11:2613. [PMID: 36076798 PMCID: PMC9455744 DOI: 10.3390/foods11172613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Meat is a nutrient-rich matrix for human consumption. However, it is also a suitable environment for the proliferation of both spoilage and pathogenic microorganisms. The growing demand to develop healthy and nutritious meat products with low fat, low salt and reduced additives and achieving sanitary qualities has led to the replacement of the use of synthetic preservatives with natural-origin compounds. However, the reformulation process that reduces the content of several important ingredients (salt, curing salts, etc.), which inhibit the growth of multiple microorganisms, greatly compromises the stability and safety of meat products, thus posing a great risk to consumer health. To avoid this potential growth of spoiling and/or pathogenic microorganisms, numerous molecules, including organic acids and their salts; plant-derived compounds, such as extracts or essential oils; bacteriocins; and edible coatings are being investigated for their antimicrobial activity. This review presents some important compounds that have great potential to be used as natural antimicrobials in reformulated meat products.
Collapse
Affiliation(s)
| | - Julián Andrés Gómez-Salazar
- Departamento de Alimentos, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato 36500, Mexico
| | - Eva M. Santos
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42039, Mexico
| | - Paulo C. B. Campagnol
- Departmento de Tecnologia e Ciência de Alimentos, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Alfredo Teixeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - María Elena Sosa-Morales
- Departamento de Alimentos, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato 36500, Mexico
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| |
Collapse
|
20
|
Rational Design of Self-Emulsifying Pellet Formulation of Thymol: Technology Development Guided by Molecular-Level Structure Characterization and Ex Vivo Testing. Pharmaceutics 2022; 14:pharmaceutics14081545. [PMID: 35893801 PMCID: PMC9394426 DOI: 10.3390/pharmaceutics14081545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022] Open
Abstract
The growing need for processing natural lipophilic and often volatile substances such as thymol, a promising candidate for topical treatment of intestinal mucosa, led us to the utilization of solid-state nuclear magnetic resonance (ss-NMR) spectroscopy for the rational design of enteric pellets with a thymol self-emulsifying system (SES). The SES (triacylglycerol, Labrasol®, and propylene glycol) provided a stable o/w emulsion with particle size between 1 and 7 µm. The ex vivo experiment confirmed the SES mucosal permeation and thymol delivery to enterocytes. Pellets W90 (MCC, Neusilin®US2, chitosan) were prepared using distilled water (90 g) by the M1−M3 extrusion/spheronisation methods varying in steps number and/or cumulative time. The pellets (705−740 µm) showed mostly comparable properties—zero friability, low intraparticular porosity (0−0.71%), and relatively high density (1.43−1.45%). They exhibited similar thymol release for 6 h (burst effect in 15th min ca. 60%), but its content increased (30−39.6 mg/g) with a shorter process time. The M3-W90 fluid-bed coated pellets (Eudragit®L) prevented undesirable thymol release in stomach conditions (<10% for 3 h). A detailed, ss-NMR investigation revealed structural differences across samples prepared by M1−M3 methods concerning system stability and internal interactions. The suggested formulation and methodology are promising for other lipophilic volatiles in treating intestinal diseases.
Collapse
|
21
|
Eroglu Ozkan E, Ersoy E, Yesil Canturk Y, Mataraci Kara E, Cinar E, Sahin H, Karahan S, Karaca Sancaktepe K, Yilmaz MA, Boga M. The Therapeutic Potential of Ethnomedicinally Important Anatolian Thyme Species: A Phytochemical and Biological Assessment. Front Pharmacol 2022; 13:923063. [PMID: 35754476 PMCID: PMC9218417 DOI: 10.3389/fphar.2022.923063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Thyme has been used for various therapeutic purposes in many different cultures, which makes it one of the most riveting medicinal plants throughout history. From its beneficial effects on the respiratory tract or the gastrointestinal system, to its unique skin-related activities, the investigation of the medicinal properties of thyme has always been an alluring topic for researchers aiming to develop conventional medications from this traditional herb. With an incentive to contribute to the extensive thyme research, three Thymus L. species namely Thymus cariensis Hub-Mor. & Jalas (endemic), Thymus praceox subsp. grossheimii (Ronniger) Jalas, and Thymus pubescens Boiss. et Kotschy ex Celak from Turkey were deeply investigated within this study. The analysis of the phytochemical constituents of the extracts was conducted by LC-MS/MS. 12 biologically important secondary metabolites (p-coumaric acid, caffeic acid, salicylic acid, quinic acid, fumaric acid, vanillin, malic acid, rutin, apigenin, naringenin, and nicotiflorin) were detected in all extracts. Their total phenolic and flavonoid contents were calculated (11.15 ± 0.17-61.12 ± 2.59 μg PEs/mg extract, 2.53 ± 0.04-40.28 ± 0.92 μg QEs/mg extract, respectively), and the antioxidant potential of the extracts was evaluated by DPPH and ABTS radical scavenging and CUPRAC activity methods, accordingly, the extracts were shown to possess significant antioxidant activity. Among them, Thymus cariensis Hub-Mor. & Jalas was the most active with IC50 values of 34.97 ± 1.00 μg/ml and 9.98 ± 0.04 μg/ml regarding the DPPH and ABTS radical scavenging assays, respectively, and an A0.5 value of 5.80 ± 0.02 μg/ml according to CUPRAC activity method. Their anticholinesterase, antityrosinase, and antiurease activities were also tested, Thymus cariensis Hub-Mor. & Jalas (35.61 ± 1.20%) and Thymus pubescens Boiss. et Kotschy ex Celak aerial part extract (33.49 ± 1.39%) exhibited moderate antibutyrylcholinesterase activity at 200 μg/ml concentration. The results of the cell viability assay indicated that the extracts demonstrated moderate-to-low cytotoxicity on A498 human renal cell lines. Furthermore, all studied extracts exerted noteworthy antimicrobial activity, especially against Candida tropicalis (MIC values: 19.53-78.12 μg/ml). The presented data substantiates the use of thyme extracts as therapeutic agents in both ethnomedicine and conventional therapies.
Collapse
Affiliation(s)
- Esra Eroglu Ozkan
- Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ezgi Ersoy
- Department of Pharmacognosy, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Yeter Yesil Canturk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Emel Mataraci Kara
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ercan Cinar
- Department of Nursing, School of Health Sciences, Batman University, Batman, Turkey
| | - Hasan Sahin
- Department of Pharmacognosy, Faculty of Pharmacy, Dicle University, Diyarbakır, Turkey
| | - Selim Karahan
- Department of Laboratory Animals, Faculty of Veterinary, Dicle University, Diyarbakır, Turkey
- Dicle University Health Sciences Application and Research Center (DÜSAM), Diyarbakır, Turkey
| | | | - Mustafa Abdullah Yilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır, Turkey
| | - Mehmet Boga
- Dicle University Health Sciences Application and Research Center (DÜSAM), Diyarbakır, Turkey
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
22
|
Chowdhury NN, Islam MN, Jafrin R, Rauf A, Khalil AA, Emran TB, Aljohani ASM, Alhumaydhi FA, Lorenzo JM, Shariati MA, Simal-Gandara J. Natural plant products as effective alternatives to synthetic chemicals for postharvest fruit storage management. Crit Rev Food Sci Nutr 2022; 63:10332-10350. [PMID: 35612470 DOI: 10.1080/10408398.2022.2079112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruits contain enormous source of vitamins that provides energy to the human body. These are also affluent in essential and vital vitamins, minerals, fiber, and health-promoting components, which has led to an increase in fruit consumption in recent years. Though fruit consumption has expanded considerably in recent years, the use of synthetic chemicals to ripen or store fruits has been steadily increasing, resulting in postharvest deterioration. Alternatives to synthetic chemicals should be considered to control this problem. Instead of utilizing synthetic chemicals, this study suggests using natural plant products to control postharvest decay. The aim of this study indicates how natural plant products can be useful and effective to eliminate postharvest diseases rather than using synthetic chemicals. Several electronic databases were investigated as information sources, including Google Scholar, PubMed, Web of Science, Scopus, ScienceDirect, SpringerLink, Semantic Scholar, MEDLINE, and CNKI Scholar. The current review focused on the postharvest of fruits has become more and more necessary because of these vast demands of fruits. Pathogen-induced diseases are the main component and so the vast portion of fruits get wasted after harvest. Besides, it may occur harmful during harvesting and subsequent handling, storage, and marketing and after consumer purchasing and also causes for numerous endogenous and exogenous diseases via activating ROS, oxidative stress, lipid peroxidation, etc. However, pathogenicity can be halted by using postharvest originating natural fruits containing bioactive elements that may be responsible for the management of nutritional deficiency, inflammation, cancer, and so on. However, issues arising during the postharvest diseases must be controlled and resolved before releasing the horticultural commodities for commercialization. Therefore, the control of postharvest pathogens still depends on the use of synthetic fungicides; however, due to the problem of the development of the fungicide-resistant strains there is a good demand of public to eradicate the use of pesticides with the arrival of numerous diseases that are expanded in their intensity by the specific chemical product. By using of the organic or natural products for controlling postharvest diseases of fruits has become a mandatory step to take. In addition, antimicrobial packaging may have a greater impact on long-term food security by lowering the risk of pathogenicity and increasing the longevity of fruit shelf life. Taken together, natural chemicals as acetaldehyde, hexanal, eugenol, linalool, jasmonates, glucosinolates, essential oils, and many plant bioactive are reported for combating of the postharvest illnesses and guide to way of storage of fruits in this review.
Collapse
Affiliation(s)
- Nahidun Nesa Chowdhury
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Rifat Jafrin
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management, The First Cossack University), Moscow, Russia
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain
| |
Collapse
|
23
|
Hammoudi Halat D, Krayem M, Khaled S, Younes S. A Focused Insight into Thyme: Biological, Chemical, and Therapeutic Properties of an Indigenous Mediterranean Herb. Nutrients 2022; 14:2104. [PMID: 35631245 PMCID: PMC9147557 DOI: 10.3390/nu14102104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
A perennial wild shrub from the Lamiaceae family and native to the Mediterranean region, thyme is considered an important wild edible plant studied for centuries for its unique importance in the food, pharmaceutical, and cosmetic industry. Thyme is loaded with phytonutrients, minerals and vitamins. It is pungent in taste, yet rich in moisture, proteins, crude fiber, minerals and vitamins. Its chemical composition may vary with geographical location but is mainly composed of flavonoids and antioxidants. Previous studies have illustrated the therapeutic effects of thyme and its essential oils, especially thymol and carvacrol, against various diseases. This is attributed to its multi-pharmacological properties that include, but are not limited to, antioxidant, anti-inflammatory, and antineoplastic actions. Moreover, thyme has long been known for its antiviral, antibacterial, antifungal, and antiseptic activities, in addition to remarkable disruption of microbial biofilms. In the COVID-19 era, some thyme constituents were investigated for their potential in viral binding. As such, thyme presents a wide range of functional possibilities in food, drugs, and other fields and prominent interest as a nutraceutical. The aims of the current review are to present botanical and nutritive values of this herb, elaborate its major constituents, and review available literature on its dietetic and biological activities.
Collapse
Affiliation(s)
- Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon
| | - Maha Krayem
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon; (M.K.); (S.K.)
| | - Sanaa Khaled
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon; (M.K.); (S.K.)
| | - Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon;
| |
Collapse
|
24
|
Seeds as Potential Sources of Phenolic Compounds and Minerals for the Indian Population. Molecules 2022; 27:molecules27103184. [PMID: 35630662 PMCID: PMC9144825 DOI: 10.3390/molecules27103184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
Seeds are major sources of nutrients and bioactive compounds for human beings. In this work, the chemical composition and physicochemical properties of 155 Indian seeds (belonging to 49 families) are reported. Moisture and ash were measured with reference protocols from AOAC; total polyphenols and flavonoids were measured with spectrophotometric methods after extraction with organic solvents, and mineral elements were determined by X-ray fluorescence spectrophotometry. Total phenolic compounds, flavonoids and mineral contents (Al, Ba, Ca, Cl, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, P, Rb, S, Sr, Ti, V and Zn) were found to vary in the ranges 182−5000, 110−4465 and 687−7904 mg/100 g (DW), respectively. Noticeably, polyphenol contents higher than 2750 mg/100 g were observed in 18 seeds. In addition, mineral contents >5000 mg/100 g were detected in the seeds from Cuminum cyminum, Foeniculum vulgare, Commiphora wightii, Parkia javanica, Putranjiva roxburghii, Santalum album and Strychnos potatorum. Botanical and taxonomical variations in the proximate characteristics of the examined seeds are also discussed.
Collapse
|
25
|
Preparation and Enhanced Antimicrobial Activity of Thymol Immobilized on Different Silica Nanoparticles with Application in Apple Juice. COATINGS 2022. [DOI: 10.3390/coatings12050671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In order to diminish the application limitations of essential oils (EOs) as natural antimicrobial components in the food industry, novel antimicrobial materials were designed and prepared by immobilization of thymol derivatives on silica particles with different morphologies (hollow mesoporous silica nanoparticles, MCM-41, amorphous silica). The structural characteristics of antimicrobial materials were estimated by FESEM, FT-IR, TGA, N2 adsorption-desorption, and small-angle XRD, and the results revealed that both mesoporous silica nanoparticles maintained the orderly structures and had good immobilization yield. Furthermore, the antibacterial performance tests showed that mesoporous silica nanoparticles greatly enhanced the antimicrobial activity of thymol against two representative foodborne bacteria (Escherichia coli and Staphylococcus aureus), and the application of the antimicrobial support was tested in apple juices inoculated with E. coli. The MBC of functionalized mesoporous silica supports was established to be below 0.1 mg/mL against E. coli and S. aureus, which is much lower than that of free thymol (0.3 mg/mL and 0.5 mg/mL against E. coli and S. aureus, respectively). In addition, at a range from 0.05 mg/mL to 0.2 mg/mL, immobilized hollow mesoporous silica nanoparticles (HMSNs) can inhibit the growth of E. coli in apple juice and maintain good sensory properties during 7 days of storage.
Collapse
|
26
|
Khalil M, Serale N, Diab F, Baldini F, Portincasa P, Lupidi G, Vergani L. Beneficial Effects of Carvacrol on In Vitro Models of Metabolically-Associated Liver Steatosis and Endothelial Dysfunction: A Role for Fatty Acids in Interfering with Carvacrol Binding to Serum Albumin. Curr Med Chem 2022; 29:5113-5129. [PMID: 35366761 DOI: 10.2174/0929867329666220401103643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/18/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022]
Abstract
Background:
Carvacrol, a plant phenolic monoterpene, is largely employed as
food additive and phytochemical.
Objective:
We aimed to assess the lipid lowering and protective effects of carvacrol in
vitro using cellular models of hepatic steatosis and endothelial dysfunction. We also investigated if and how the binding of carvacrol to albumin, the physiological transporter
for small compounds in the blood, might be altered by the presence of high levels of fatty
acids (FAs).
Methods:
Hepatic FaO cells treated with exogenous FAs mimic hepatosteatosis; endothelial HECV cells exposed to hydrogen peroxide are a model of endothelial dysfunction. In
these models, we measured spectrophotometrically lipid accumulation and release,
lipoperoxidation, free radical production, and nitric oxide release before and after treatment with carvacrol. The carvacrol binding to albumin in the presence or absence of high
levels of FAs was assessed by absorption and emission spectroscopies.
Results:
Carvacrol counteracted lipid accumulation and oxidative stress in hepatocytes
and protected endothelial cells from oxidative stress and dysfunction. Moreover, high levels of FAs reduced the binding of carvacrol to albumin.
Conclusion:
The results suggest the good potential of carvacrol in ameliorating dysfunction of hepatic and endothelial cells in vitro. High levels of circulating FAs might compete with carvacrol for binding to albumin thus influencing its transport and bio-distribution.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Dept. of Biomedical Sciences and Human Oncology, Medical School, University of Bari “Aldo Moro”, Italy
| | - Nadia Serale
- Clinica Medica “A. Murri”, Dept. of Biomedical Sciences and Human Oncology, Medical School, University of Bari “Aldo Moro”, Italy
| | - Farah Diab
- Department of Earth, Environment and Life Sciences (DISTAV), University
of Genova, Corso Europa 26, 16132, Haly
| | - Francesca Baldini
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia,
Genoa, Italy
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Dept. of Biomedical Sciences and Human Oncology, Medical School, University of Bari “Aldo Moro”, Italy
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University
of Genova, Corso Europa 26, 16132, Haly
| |
Collapse
|
27
|
Ozkan K, Karadag A, Sagdic O. The effects of drying and fermentation on the bioaccessibility of phenolics and antioxidant capacity of Thymus vulgaris leaves. ACTA ALIMENTARIA 2022. [DOI: 10.1556/066.2021.00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Fresh thyme leaves (Thymus vulgaris L.) were dried at 45 °C for 5 h and naturally fermented at 20 °C in a brine solution containing salt and vinegar for 18 days. The ethanolic extracts of fresh (FT), dried (DT), and fermented-pickled (PT) thyme leaves were assessed in terms of total phenolic content (TPC), total flavonoid content (TFC), antioxidant capacity values and subjected to in vitro gastrointestinal digestion. TPC, TFC, and antioxidant capacity values of fermented thyme leaves were found significantly higher than of dried and fresh samples. The bioaccessibility index (BI) value for TPC and TFC was highest for PT and lowest for DT, indicating that both processes had different effects on the structure of phenolic compounds present in the thyme leaves. Similarly both Recovery and BI values of DPPH antioxidant capacity were highest for PT, but lowest for fresh samples. When CUPRAC assay was applied, the recovery % for FT and PT was similar, and the BI was higher for FT. Results showed that compared to the results of fresh thyme leaves, drying and pickling had a considerable effect on the initial phenolic compounds extracted and their fate during in vitro digestion.
Collapse
Affiliation(s)
- K. Ozkan
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210, Istanbul, Turkey
| | - A. Karadag
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210, Istanbul, Turkey
| | - O. Sagdic
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210, Istanbul, Turkey
| |
Collapse
|
28
|
TABAN BMERCANOGLU, STAVROPOULOU E, WINKELSTRÖTER LKRETLI, BEZIRTZOGLOU E. Value-added effects of using aromatic plants in foods and human therapy. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.43121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Rathod NB, Kulawik P, Ozogul F, Regenstein JM, Ozogul Y. Biological activity of plant-based carvacrol and thymol and their impact on human health and food quality. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Identification and quantification of phenolic and volatile constituents in five different Anatolian thyme species using LC–MS/MS and GC-MS, with biological activities. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
The Use of Salvia macrosiphon and Lepidium sativum Linn. Seed Gums in Nanoencapsulation Processes: Improving Antioxidant Activity of Potato Skin Extract. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5519857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the present study, the effect of Salvia macrosiphon Seed Gum (SMSG) and Lepidium sativum Linn. Seed Gum (LSSG) as a coating agent on the properties of nanoencapsulated potato skin extract was studied. Moreover, the antioxidant effect of nanoencapsulated extract at a concentration of 1000 ppm incorporated into soybean oil was evaluated. The Z-average size of the emulsions stabilized by SMSG; LSSG; and a complex (1 : 1) of SMSG and LSSG (CSL) was estimated as 160.2, 144.3, and 115.2 nm. The encapsulation efficiency of phenolic extracts in the powders formed by SMSG, LSSG, and CSL was 82.39, 81.67, and 93.6% which declined to 45.28, 48.22, and 62.67% after storage for 40 days at 30°C. The results indicated that the use of coating agents for encapsulation enhanced their antioxidant effect and compared with TBHQ and free extract that nanoencapsulated extract by CSL had the highest antioxidant activity followed by LSSG nanoencapsulated extract and SMSG nanoencapsulated extract.
Collapse
|
32
|
Pandey AK, Chávez-González ML, Silva AS, Singh P. Essential oils from the genus Thymus as antimicrobial food preservatives: Progress in their use as nanoemulsions-a new paradigm. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Chen K, Zhang M, Bhandari B, Mujumdar AS. Edible flower essential oils: A review of chemical compositions, bioactivities, safety and applications in food preservation. Food Res Int 2021; 139:109809. [PMID: 33509452 DOI: 10.1016/j.foodres.2020.109809] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Abstract
In the context of consumers' growing concerns and boycotts of artificial and harmful chemicals, satisfying the demands for good-quality food products possessing clean and safe images is a challenge for food industry. Due to natural and avirulent images, various bioactivities as well as potentials to be used as safer substitutes for chemical preservatives, flower essential oils (EOs) have aroused increasing interests in the recent past. Many literatures have verified the biological activities of flower EOs, and have given high value to the preservative potentials of flower EOs in food systems. In this work, a review is done on the most recent publications associating the chemical constituents, bioactivities (antibacterial, antifungal, antioxidant and anti-pest abilities) and safety of flower EOs. The effects of flower EOs on food flavor are also discussed. Finally, the current combined preservation applications of flower EOs and other technologies are summarized.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Shandong Huamei Biology Science & Technology Co., Ltd., 250400 Pingyin, Shandong, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, China.
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Ste. Anne de Bellevue, Quebec H9×3V9, Canada
| |
Collapse
|
34
|
Plant Extracts Obtained with Green Solvents as Natural Antioxidants in Fresh Meat Products. Antioxidants (Basel) 2021; 10:antiox10020181. [PMID: 33513904 PMCID: PMC7912489 DOI: 10.3390/antiox10020181] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/23/2022] Open
Abstract
Plants are rich in bioactive compounds (BACs), mainly polyphenols, which are valuable choices to replace synthetic antioxidants in meat products. These natural antioxidants from plants, in the form of extracts and essential oils (EOs), have been obtained from different sources such as fruits (dragon fruit, guarana, pomegranate), vegetables, (cabbage, onion), herbs, and spices (epazote, ginger, rosemary, sage, thyme, turmeric, winter savory) by several extraction processes. However, in the context of current directives there is a notable incentive for “green” solvents to replace organic ones and conventional techniques, in order to avoid harm to the environment, operator, and consumer health. In addition, the recycling of co-products from the processing of these plant materials allow us to obtain valuable BACs from under-exploited materials, contributing to the revalorization of these wastes. The resulting extracts allow us to maintain the quality of meat products, exhibiting similar or better antioxidant properties compared to those shown by synthetic ones. Their incorporation in fresh meat products would maintain the oxidative stability, stabilizing colour parameters, decreasing the formation of metmyoglobin, lipid, and protein oxidation and the generation of lipid-derived volatile compounds, without affecting sensory attributes. In addition, these novel ingredients contribute to improve both technological and functional characteristics, thus diversifying the offer of so-called “wellness foods”. In this review, the application of plant extracts as natural antioxidants in several fresh meat products is presented, showing their efficacy as scavenging radicals and imparting additional health benefits.
Collapse
|
35
|
Faryadi S, Sheikhahmadi A, Farhadi A, Nourbakhsh H. Effects of silymarin and nano-silymarin on performance, egg quality, nutrient digestibility, and intestinal morphology of laying hens during storage. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1975503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Samira Faryadi
- Department of Animal Science, Faculty of Agricultural, University of Kurdistan, Sanandaj, Iran
| | - Ardashir Sheikhahmadi
- Department of Animal Science, Faculty of Agricultural, University of Kurdistan, Sanandaj, Iran
| | - Ayoub Farhadi
- Department of Animal Science, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Himan Nourbakhsh
- Department of Food Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
36
|
Ayub H, Ahmad A, Amir RM, Irshad G. Multivariate analysis of peach quality treated with essential oil coatings. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Haris Ayub
- Department of Food Technology PMAS‐Arid Agriculture University Rawalpindi Pakistan
| | - Asif Ahmad
- Department of Food Technology PMAS‐Arid Agriculture University Rawalpindi Pakistan
| | - Rai Muhammad Amir
- Department of Food Technology PMAS‐Arid Agriculture University Rawalpindi Pakistan
| | - Gulshan Irshad
- Department of Plant Pathology PMAS‐Arid Agriculture University Rawalpindi Pakistan
| |
Collapse
|
37
|
Pateiro M, Munekata PES, Sant'Ana AS, Domínguez R, Rodríguez-Lázaro D, Lorenzo JM. Application of essential oils as antimicrobial agents against spoilage and pathogenic microorganisms in meat products. Int J Food Microbiol 2020; 337:108966. [PMID: 33202297 DOI: 10.1016/j.ijfoodmicro.2020.108966] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/27/2023]
Abstract
Meat and meat products are perishable products that require the use additives to prevent the spoilage by foodborne microorganisms and pathogenic bacteria. Current trends for products without synthetic preservatives have led to the search for new sources of antimicrobial compounds. Essential oils (EOs), which has been used since ancient times, meet these goals since their effectiveness as antimicrobial agents in meat and meat products have been demonstrated. Cinnamon, clove, coriander, oregano, rosemary, sage, thyme, among others, have shown a greater potential to control and inhibit the growth of microorganisms. Although EOs are natural products, their quality must be evaluated before being used, allowing to grant the Generally Recognized as Safe (GRAS) classification. The bioactive compounds (BAC) present in their composition are linked to their activity, being the concentration and the quality of these compounds very important characteristics. Therefore, a single mechanism of action cannot be attributed to them. Extraction technique plays an important role, which has led to improve conventional techniques in favour of green emerging technologies that allow to preserve better target bioactive components, operating at lower temperatures and avoiding as much as possible the use of solvents, with more sustainable processing and reduced energy use and environmental pollution. Once extracted, these compounds display greater inhibition of gram-positive than gram-negative bacteria. Membrane disruption is the main mechanism of action involved. Their intense characteristics and the possible interaction with meat components make that their application combined with other EOs, encapsulated and being part of active film, increase their bioactivity without modifying the quality of the final product.
Collapse
Affiliation(s)
- Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - David Rodríguez-Lázaro
- Microbiology Division, Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain.
| |
Collapse
|
38
|
Tangerines Cultivated on Madeira Island-A High Throughput Natural Source of Bioactive Compounds. Foods 2020; 9:foods9101470. [PMID: 33076393 PMCID: PMC7602526 DOI: 10.3390/foods9101470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 11/17/2022] Open
Abstract
Tangerines (Citrus reticulata) are popular fruits worldwide, being rich in many bioactive metabolites. The setubalense variety cultivated on Madeira Island has an intense aroma easily distinguishable from other tangerines, being traditionally used to enrich several foods and beverages. Nonetheless, setubalense volatile composition has never been characterized, and we aimed to unveil the bioactive potential of peels and juices of setubalense tangerines and compare them with the murcott variety grown in Portugal mainland. Using headspace solid-phase microextraction coupled to gas chromatography mass spectrometry (HS-SPME/GC-MS), we identified a total of 128 volatile organic metabolites (VOMs) in the juice and peels, with d-limonene, γ-terpinene, β-myrcene, α- and β-pinene, o-cymene, and terpinolene, the most dominant in both cultivars. In contrast, setubalense juices are richer in terpenes, many of them associated with health protection. Discriminant analysis revealed a pool of VOMs, including β-caryophyllene and E-ocimene, with bioactive properties able to differentiate among tangerines according to variety and sample type (peel vs. juice). This is the first report on the volatile composition of setubalense tangerines grown on Madeira Island revealing that its pungent aroma is constituted by secondary metabolites with specific aroma notes and health properties. This is strong evidence of the higher nutraceutical value of such fruit for the human diet.
Collapse
|
39
|
Gullón P, Gullón B, Astray G, Munekata PES, Pateiro M, Lorenzo JM. Value-Added Compound Recovery from Invasive Forest for Biofunctional Applications: Eucalyptus Species as a Case Study. Molecules 2020; 25:E4227. [PMID: 32942656 PMCID: PMC7570642 DOI: 10.3390/molecules25184227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
From ancient times, the medicinal properties of the different Eucalyptus species are well known. In fact, plants from this family have been used in folk medicine as antiseptics, and to treat different ailments of the upper respiratory tract such as sinus congestion, common cold, or influenza. Moreover, other biological activities were described for Eucalyptus species such as antioxidant and antimicrobial properties. In the last few decades, numerous investigations revealed that the compounds responsible for these properties are secondary metabolites that belonging to the group of phenolic compounds and are present in different parts of the plants such as leaves, bark, wood, fruits, and stumps. The increasing demand for natural compounds that can substitute synthetic antioxidants and the increase in resistance to traditional antibiotics have boosted the intense search for renewable natural sources containing substances with such bioactivities, as well as greener extraction technologies and avant-garde analytical methods for the identification of the target molecules. The literature data used in this paper were collected via Scopus (2001-2020) using the following search terms: Eucalyptus, extraction methods, phenolic compounds, and biological activities. This review collects the main studies related to the recovery of value-added compounds from different Eucalyptus species, as well as their biofunctional applications.
Collapse
Affiliation(s)
- Patricia Gullón
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain;
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain;
| | - Gonzalo Astray
- Department of Physical Chemistry, Faculty Science, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain;
- CITACA, Agri-Food Research and Transfer Cluster, Campus Auga, University of Vigo, 32004 Ourense, Spain
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.)
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
40
|
Munekata PES, Gullón B, Pateiro M, Tomasevic I, Domínguez R, Lorenzo JM. Natural Antioxidants from Seeds and Their Application in Meat Products. Antioxidants (Basel) 2020; 9:E815. [PMID: 32883005 PMCID: PMC7555033 DOI: 10.3390/antiox9090815] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/30/2022] Open
Abstract
The use of synthetic antioxidants in the food industry has raised important questions about the effects of prolonged consumption on human health. On top of that, the consumption of meat products has been changing due to the awareness generated by health-related organizations. In this sense, exploring strategies to develop and produce healthier meat products has become a paramount concern. Several studies explored the composition of several seeds to characterize and explore the compounds with antioxidant activity, which are mainly composed of polyphenols. The use of antioxidant extracts in meat products has shown important results to delay the oxidative reactions in meat products derived from the processing and storage of meat products. Moreover, these extracts can also replace synthetic antioxidants and preserve the quality of meat products. Therefore, the aims of this review are first, to present the sources and compounds with antioxidant activity in seeds, and second, to discuss their protective effect against oxidative reactions in meat products.
Collapse
Affiliation(s)
- Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia no. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.)
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain; (B.G.); (R.D.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia no. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.)
| | - Igor Tomasevic
- Department of Animal Source Food Technology, Faculty of Agriculture, Nemanjina 6, University of Belgrade, 11080 Belgrade, Serbia;
| | - Ruben Domínguez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain; (B.G.); (R.D.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia no. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
41
|
Al-Hilphy AR, Al-Musafer AM, Gavahian M. Pilot-scale ohmic heating-assisted extraction of wheat bran bioactive compounds: Effects of the extract on corn oil stability. Food Res Int 2020; 137:109649. [PMID: 33233228 DOI: 10.1016/j.foodres.2020.109649] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/03/2020] [Accepted: 08/27/2020] [Indexed: 12/28/2022]
Abstract
Recent studies introduced ohmic heating-assisted extraction (OHAE) as a promising emerging technology at laboratory-scales. The objectives of the present study were, first, to investigate the applicability of OHAE at pilot-scale for extraction of bioactive compounds from wheat bran immersed in a polar solvent (salted water containing 0.1% NaCl) at the electric field strengths (EFS) of 4.28, 7.90, and 15.71 V/cm and, second, to evaluate the effects of the wheat extracts on the corn oil stability during 30 days of storage at 45 °C. The results showed that OHAE saved 63% of energy consumption compared with the conventional extraction method. Also, the scaled-up OHAE unit yielded extracts with high quantities of bioactive compounds (110-460 ppm total phenolics) and higher antioxidant activities (antioxidant effectiveness of 56-84%) than those of the extract obtained through the conventional extraction method, i.e., 95 ppm total phenolics with antioxidant effectiveness of 51%. Increasing the EFS increased total phenolics and antioxidant effectiveness of extracts. The incorporation of 250 ppm of the extract obtained at the highest EFS effectively postponed the oxidation of corn oil during one month of storage (peroxide value of 7 vs. 19 meq/kg compared with the control sample) and extended the half-life of oil from 11 to 26 days. Besides, mathematical models proposed in this study well-predicted the oxidation stability of the oil samples mixed with the extract.
Collapse
Affiliation(s)
| | - Alaa M Al-Musafer
- Quality Control Department, General Company for Grain Processing, Baghdad, Iraq
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC.
| |
Collapse
|
42
|
Rocchetti G, Alcántara C, Bäuerl C, García-Pérez JV, Lorenzo JM, Lucini L, Collado MC, Barba FJ. Bacterial growth and biological properties of Cymbopogon schoenanthus and Ziziphus lotus are modulated by extraction conditions. Food Res Int 2020; 136:109534. [PMID: 32846595 DOI: 10.1016/j.foodres.2020.109534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
The present study aims to evaluate the antibacterial activity and biological properties of two traditional Saharian plants (Cymbopogon schoenanthus and Ziziphus lotus). The plant extracts were obtained by using a different combination of extraction methods (conventional vs. ultrasound-assisted) and solvents (water vs. ethanol:water (50:50, v/v)). The antioxidant profile, anti-inflammatory activity and impact on bacterial growth (foodborne and probiotic bacteria) of the obtained extracts were assessed. The plant species showed the hierarchically more important role in determining the biological properties of the extracts, followed by extraction solvent and extraction conditions. Conventional Z. lotus hydroethanolic extracts showed the highest total phenolic content (20.4 mg GAE/g), while Z. lotus ethanol extracts from ultrasound-assisted process presented the highest content of carotenoids (0.15 mg/g). In addition, ultrasound-assisted Z. lotus hydroethanolic extracts presented the highest in vitro radical scavenging activity, being 7.93 mmol Trolox/g. Multivariate analysis statistics (PCA) showed that both the extraction methodology and the solvent used strongly affected the bacterial growth. Z. lotus mainly decreased the growth rate of S. aureus and L. innocua. Interestingly, the aqueous extracts of this plant as well as those from C. schoenanthus, obtained by conventional extraction, significantly increased the growth rate and the maximal optical density of L. casei. Aqueous extracts of both Z. lotus and C. schoenanthus slightly influenced the growth of Bifidobacterium. Overall, the extracts of these plants showed selective activities with respect to pathogens and probiotic bacteria and may provide an advantage both in terms of antimicrobial and prebiotic activity.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Cristina Alcántara
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Av. Agustin Escardino 7, Valencia, Spain
| | - Christine Bäuerl
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Av. Agustin Escardino 7, Valencia, Spain
| | - Jose V García-Pérez
- Grupo de Análisis y Simulación de Procesos Agroalimentarios (ASPA), Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Valencia 46022, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain.
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - María Carmen Collado
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Av. Agustin Escardino 7, Valencia, Spain.
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n 46100, Burjassot, València, Spain.
| |
Collapse
|
43
|
Improving antioxidant effect of phenolic extract of Mentha piperita using nanoencapsulation process. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00606-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Nieto G. A Review on Applications and Uses of Thymus in the Food Industry. PLANTS (BASEL, SWITZERLAND) 2020; 9:E961. [PMID: 32751488 PMCID: PMC7464319 DOI: 10.3390/plants9080961] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
Thyme is one of the most important medicinal plants because of its ethnopharmacological relevance and high content of bioactive compounds. This review focuses particularly on thyme as an alternative natural antioxidant and antimicrobial with potential use in the food industry. This is in line with the preferences of the current consumer, who demands healthier and more natural products. Different studies have concluded that the use of thyme increases stability and reduces lipid oxidation during the shelf-life period of foods (meat, meat products, milk, fish or fish products), which makes thyme a promising source of natural additives. Despite these findings, the use of Thymus extracts or essential oils as natural additives in foods is reduced in comparison with other natural preservative extracts. This review provides an overview of the most important information on the positive effect of the bioactive compounds of thyme and its uses as a preservative in foods, taking into account its origin (from plants, plant extracts or essential oils).
Collapse
Affiliation(s)
- Gema Nieto
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Espinardo, 30071 Murcia, Spain
| |
Collapse
|
45
|
Humulus lupulus L. as a Natural Source of Functional Biomolecules. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155074] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hops (Humulus lupulus L.) are used traditionally in the brewing industry to confer bitterness, aroma, and flavor to beer. However, in recent years, it has been reported that female inflorescences contain a huge variety of bioactive compounds. Due to the growing interest of the consumers by natural ingredients, intense research has been carried out in the last years to find new sources of functional molecules. This review collects the works about the bioactive potential of hops with applications in the food, pharmaceutical, or cosmetic industries. Moreover, an overview of the main extraction technologies to recover biomolecules from hops is shown. Bioactivities of hop extracts such as antibacterial, antifungal, cardioprotective, antioxidant, anti-inflammatory, anticarcinogenic, and antiviral are also summarized. It can be concluded that hops present a high potential of bioactive ingredients with high quality that can be used as preservative agents in fresh foods, extending their shelf life, and they can be incorporated in cosmetic formulation for skincare as well.
Collapse
|
46
|
Estakhr P, Tavakoli J, Beigmohammadi F, Alaei S, Mousavi Khaneghah A. Incorporation of the nanoencapsulated polyphenolic extract of Ferula persica into soybean oil: Assessment of oil oxidative stability. Food Sci Nutr 2020; 8:2817-2826. [PMID: 32566199 PMCID: PMC7300055 DOI: 10.1002/fsn3.1575] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 01/22/2023] Open
Abstract
In the present study, for the first time, the biological activities of Ferula persica extract (FPE) coated with locust bean gum (LBG) and chitosan in W/O/W emulsions were investigated. Based on the findings, the Z-average size of emulsions coated by chitosan, LBG, and the complex of chitosan and LBG (1:1) (CCL) was 115.47, 128.37, and 68.12 nm, respectively. The encapsulation efficiency of the phenolic extracts in the powder produced by chitosan, LBG, and CCL decreased from 85.3 to 64.1, from 89 to 71.4, and from 93.3% to 77.9% during 24-day storage, respectively. Also, the application of the coating in the encapsulation of FPE increased the antioxidant efficacy in soybean oil while compared with tert-butylhydroquinone (TBHQ) and un-encapsulated FPE. In this regard, The FPE nanoencapsulated by CCL showed the best antioxidative activity in soybean oil, followed by the FPE of nanoencapsulated by LBG and chitosan, respectively, which can be correlated with higher levels of polyphenolic compounds release over time in the sample coated with CCL. In this context, the encapsulation with CCL can be proposed as a promising technique to improve the antioxidant activity of extracts.
Collapse
Affiliation(s)
- Parviz Estakhr
- Department of Food Science and TechnologyFaculty of Agriculture, Kermanshah BranchIslamic Azad UniversityKermanshahIran
| | - Javad Tavakoli
- Department of Food Science and TechnologyFaculty of AgricultureJahrom UniversityJahromIran
| | - Faranak Beigmohammadi
- Department of Food Science and TechnologyFaculty of Agriculture, Kermanshah BranchIslamic Azad UniversityKermanshahIran
| | - Shima Alaei
- Department of Agronomy and Plant BreedingFaculty of Agriculture, Kermanshah BranchIslamic Azad UniversityKermanshahIran
| | - Amin Mousavi Khaneghah
- Department of Food ScienceFaculty of Food EngineeringUniversity of Campinas (UNICAMP)CampinasBrazil
| |
Collapse
|
47
|
Munekata PES, Alcántara C, Žugčić T, Abdelkebir R, Collado MC, García-Pérez JV, Jambrak AR, Gavahian M, Barba FJ, Lorenzo JM. Impact of ultrasound-assisted extraction and solvent composition on bioactive compounds and in vitro biological activities of thyme and rosemary. Food Res Int 2020; 134:109242. [PMID: 32517919 DOI: 10.1016/j.foodres.2020.109242] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 11/19/2022]
Abstract
Mediterranean herbs, specially thyme and rosemary, are important ingredients in food preparation and more recently have been studied as natural sources of bioactive compounds. This study aimed to study the effect of matrix (thyme vs. rosemary), and extraction protocol (conventional extraction vs. ultrasound assisted extraction) solvent composition (water vs. 50:50 ethanol:water solution) on the extraction of high value compounds (phenolic compounds, flavonoids and carotenoids) and also explore the antioxidant, antimicrobial (Listeria innocua, Staphylococcus aureus, and Salmonella enterica), probiotic (Lactobacillus casei and Bifidobacterium lactis), and anti-inflammatory activities. The phenolic, flavonoid and carotenoid content of extracts was greatly influenced by extraction conditions wherein the ultrasound pre-treatment improved the extraction of carotenoids but induced the opposite effect for polyphenols and flavonoids in both herbs. Only the aqueous extract of thyme obtained from ultrasound pre-treatment was the only extract that inhibited the growth of potentially pathogenic bacteria, stimulated the probiotic bacteria and achieved high anti-inflammatory and antioxidant activity. Moreover, this extract also was rich on phenolic compounds (such as p-coumaric acid 4-O-glucoside, kaempferol 3-O-rutinoside, feruloyl glucose, and 4-vinylguaiacol) and carotenoids. Therefore, ultrasound extraction of bioactive compounds with water as solvent could be explored in food and pharmaceutical applications.
Collapse
Affiliation(s)
- Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Cristina Alcántara
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Av. Agustin Escardino 7, Valencia, Spain
| | - Tihana Žugčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; Universitat de València, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - Radhia Abdelkebir
- Universitat de València, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; Range Ecology Laboratory in the Institute of Arid Regions (IRA) of Medenine, Medenine, Tunisia
| | - María Carmen Collado
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Av. Agustin Escardino 7, Valencia, Spain.
| | - Jose V García-Pérez
- Grupo de Análisis y Simulación de Procesos Agroalimentarios (ASPA), Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Valencia 46022, Spain
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201 Taiwan
| | - Francisco J Barba
- Universitat de València, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain.
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain.
| |
Collapse
|
48
|
Yekta MM, Rezaei M, Nouri L, Azizi MH, Jabbari M, Eş I, Khaneghah AM. Antimicrobial and antioxidant properties of burgers with quinoa peptide‐loaded nanoliposomes. J Food Saf 2020. [DOI: 10.1111/jfs.12753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mina Mahdavi Yekta
- Young Researcher and Elite clubShahre‐Qods Branch, Islamic Azad University Tehran Iran
| | - Mohammad Rezaei
- Department of Food Hygiene, Faculty of Veterinary MedicineUniversity of Tehran Tehran Iran
- Department of Food Safety and Hygiene, School of Public HealthTehran University of Medical Sciences Tehran Iran
| | - Leila Nouri
- Department of Food Science and Technology, Faculty of AgricultureDamghan Islamic Azad University Damghan Iran
| | - Mohammad H. Azizi
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares University Tehran Iran
| | - Maryam Jabbari
- Department of Public Health, School of Paramedical and HealthZanjan University of Medical Sciences Zanjan Iran
| | - Ismail Eş
- Department of Material and Bioprocess Engineering, School of Chemical EngineeringUniversity of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food EngineeringUniversity of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| |
Collapse
|
49
|
Ghasemi G, Alirezalu A, Ghosta Y, Jarrahi A, Safavi SA, Abbas-Mohammadi M, Barba FJ, Munekata PES, Domínguez R, Lorenzo JM. Composition, Antifungal, Phytotoxic, and Insecticidal Activities of Thymus kotschyanus Essential Oil. Molecules 2020; 25:E1152. [PMID: 32143475 PMCID: PMC7179150 DOI: 10.3390/molecules25051152] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 11/29/2022] Open
Abstract
Essential oils (EOs) are some of the outstanding compounds found in Thymus that can exert antifungal, phytotoxic, and insecticidal activities, which encourage their exploration and potential use for agricultural and food purposes. The essential oils (EO) obtained from Thymus kotschyanus collected in the East Azerbaijan Province (Iran) were characterized using a gas chromatography-mass spectrometry (GC-MS) analysis. Thymol was the most important compound (60.48%), although 35 other active compounds were identified in the EO. Significant amounts of carvacrol (3.08%), p-cymene (5.56%), and γ-terpinene (6.67%) were found in the EO. The T. kotschyanus EO was tested against important phytopathogenic fungi (Botrytis cinerea, Aspergillus niger, and Penicillium expansum). The antifungal assay showed that the use of ≥500 ppm of EO resulted in a fungicidal effect against all funguses tested. In a similar way, the use of ≥500 ppm of EO inhibited the germination of all crop weed seeds (Amaranthus retroflexus L. and Panicum miliaceum L.) and their subsequent growth, which demonstrated its herbicidal effect. Finally, the insecticidal capacity of T. kotschyanus EO was also observed against selected insects (Oryzaephilus surinamensis and Sitophilus oryzae). O. surinamensis was more susceptible to the effect of EO (LC50 = 4.78 µL/L air) than S. oryzae (LC50 = 13.20 µL/L air). The obtained results of the present study can provide new safe resources to the development of new products for the food, agriculture, and pharmaceutical industries.
Collapse
Affiliation(s)
- Ghader Ghasemi
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran;
| | - Abolfazl Alirezalu
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran;
| | - Youbert Ghosta
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 165-5715944931, Iran; (Y.G.); (A.J.); (S.A.S.)
| | - Azadeh Jarrahi
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 165-5715944931, Iran; (Y.G.); (A.J.); (S.A.S.)
| | - Seyed Ali Safavi
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 165-5715944931, Iran; (Y.G.); (A.J.); (S.A.S.)
| | - Mahdi Abbas-Mohammadi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran;
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain;
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, 16 San Cibrao das Viñas, 32900 Ourense, Spain (R.D.)
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, 16 San Cibrao das Viñas, 32900 Ourense, Spain (R.D.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, 16 San Cibrao das Viñas, 32900 Ourense, Spain (R.D.)
| |
Collapse
|
50
|
Munekata PES, Rocchetti G, Pateiro M, Lucini L, Domínguez R, Lorenzo JM. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: an overview. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|