1
|
Wang P, Wang R, Zhao W, Zhao Y, Wang D, Zhao S, Ge Z, Ma Y, Zhao X. Gut microbiota-derived 4-hydroxyphenylacetic acid from resveratrol supplementation prevents obesity through SIRT1 signaling activation. Gut Microbes 2025; 17:2446391. [PMID: 39725607 DOI: 10.1080/19490976.2024.2446391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Resveratrol (RSV), a natural polyphenol, has been suggested to influence glucose and lipid metabolism. However, the underlying molecular mechanism of its action remains largely unknown due to its multiple biological targets and low bioavailability. In this study, we demonstrate that RSV supplementation ameliorates high-fat-diet (HFD)-induced gut microbiota dysbiosis, enhancing the abundance of anti-obesity bacterial strains such as Akkermansia, Bacteroides and Blautia. The critical role of gut microbiota in RSV-mediated anti-obesity effects was confirmed through antibiotic-induced microbiome depletion and fecal microbiota transplantation (FMT), which showed that RSV treatment effectively mitigates body weight, histopathological damage, glucose dysregulation and systematic inflammation associated with HFD. Metabolomics analysis revealed that RSV supplementation significantly increases the levels of the gut microbial flavonoid catabolite 4-hydroxyphenylacetic acid (4-HPA). Notably, 4-HPA was sufficient to reverse obesity and glucose intolerance in HFD-fed mice. Mechanistically,4-HPA treatment markedly regulates SIRT1 signaling pathways and induces the expression of beige fat and thermogenesis-specific markers in white adipose tissue (WAT). These beneficial effects of 4-HPA are partially abolished by EX527, a known SIRT1 inhibitor. Collectively, our findings indicate that RSV improve obesity through a gut microbiota-derived 4-HPA-SIRT1 axis, highlighting gut microbiota metabolites as a promising target for obesity prevention.
Collapse
Affiliation(s)
- Pan Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruiqi Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wenting Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yuanyuan Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Dan Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shuang Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhiwen Ge
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yue Ma
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaoyan Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
2
|
Liu X, Feng J, Guo M, Chen C, Zhao T, Sun X, Zhang Y. Resetting the aging clock through epigenetic reprogramming: Insights from natural products. Pharmacol Ther 2025; 270:108850. [PMID: 40221101 DOI: 10.1016/j.pharmthera.2025.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/04/2024] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Epigenetic modifications play a critical role in regulating gene expression under various physiological and pathological conditions. Epigenetic modifications reprogramming is a recognized hallmark of aging and a key component of the aging clock used to differentiate between chronological and biological age. The potential for prospective diagnosis and regulatory capabilities position epigenetic modifications as an emerging drug target to extend longevity and alleviate age-related organ dysfunctions. In the past few decades, numerous preclinical studies have demonstrated the therapeutic potential of natural products in various human diseases, including aging, with some advancing to clinical trials and clinical application. This review highlights the discovery and recent advancements in the aging clock, as well as the potential use of natural products as anti-aging therapeutics by correcting disordered epigenetic reprogramming. Specifically, the focus is on the imbalance of histone modifications, alterations in DNA methylation patterns, disrupted ATP-dependent chromatin remodeling, and changes in RNA modifications. By exploring these areas, new insights can be gained into aging prediction and anti-aging interventions.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Jing Feng
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Madi Guo
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Chen Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Tong Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Xiuxiu Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China.
| |
Collapse
|
3
|
Juesas A, Saez-Berlanga A, Babiloni-Lopez C, Martin EG, Garrigues-Pelufo L, Ferri-Caruana A, Gene-Morales J, Martin-Rivera F, Chulvi-Medrano I, Jiménez-Martínez P, Alix-Fages C, Cwiklinska M, Gallo V, Zarza V, Gargallo P, Fernandez-Garrido J, Caballero O, Casaña J, Moretti E, Grazioli E, Navarra GA, Bellafiore M, Janicijevic D, Hammami R, Colado JC. Effects of Accentuated Eccentric and Maximal Strength High-Resistance Training Programs with or Without a Curcumin-Based Formulation Supplement on Body Composition, Blood Pressure, and Metabolic Parameters in Older Adults. Diseases 2025; 13:62. [PMID: 39997069 PMCID: PMC11854016 DOI: 10.3390/diseases13020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study compared the effects of high-resistance training (RT) programs, with or without curcumin supplementation, on variables commonly associated with metabolic syndrome (MetS), including body composition, blood pressure, and metabolic parameters. METHODS Eighty-one older adults at risk of MetS (BMI > 25 kg/m2, fat mass > 32%, and systolic blood pressure > 130 mmHg in half of the participants) were randomly assigned to six groups, which were comprised as follows: four experimental groups involving either accentuated eccentric or maximal strength RT with curcumin or placebo and two control groups receiving either curcumin or placebo. Experimental groups completed a 16-week full-body RT with elastic bands, while controls did not exercise. RESULTS The results showed that (I) all experimental protocols significantly reduced fat mass (p ≤ 0.001), with the maximal strength RT group supplemented with curcumin (Max-Cur) showing the greatest reduction, at 14.3%; (II) muscle gains were significant and comparable across experimental groups (p ≤ 0.008); (III) both systolic and diastolic blood pressure decreased similarly across experimental groups (p ≤ 0.001); (IV) metabolic parameters significantly improved across experimental groups (p ≤ 0.037), except for creatinine, which showed an undesirable peak only in the Max-Cur group; (V) curcumin supplementation enhanced the effects of both RT programs; and (VI) between 54% and 100% of participants achieved clinically meaningful improvements in seven out of ten MetS-related variables across experimental groups. CONCLUSIONS Our findings indicate that high-RT programs combined with curcumin supplementation positively impacted all MetS-related variables. The Max-Cur RT group stood out as the most beneficial, with the greatest fat mass reductions, highlighting this approach as a promising strategy to reduce the risk of MetS in older adults.
Collapse
Affiliation(s)
- Alvaro Juesas
- Department of Education Sciences, CEU Cardenal Herrera University, 46115 Castellón, Spain;
- Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (A.S.-B.); (F.M.-R.); (I.C.-M.); (J.C.C.)
| | - Angel Saez-Berlanga
- Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (A.S.-B.); (F.M.-R.); (I.C.-M.); (J.C.C.)
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (E.G.M.); (L.G.-P.); (P.J.-M.); (C.A.-F.); (P.G.)
| | - Carlos Babiloni-Lopez
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (E.G.M.); (L.G.-P.); (P.J.-M.); (C.A.-F.); (P.G.)
| | - Ezequiel G. Martin
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (E.G.M.); (L.G.-P.); (P.J.-M.); (C.A.-F.); (P.G.)
| | - Luis Garrigues-Pelufo
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (E.G.M.); (L.G.-P.); (P.J.-M.); (C.A.-F.); (P.G.)
| | - Ana Ferri-Caruana
- Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (A.S.-B.); (F.M.-R.); (I.C.-M.); (J.C.C.)
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (E.G.M.); (L.G.-P.); (P.J.-M.); (C.A.-F.); (P.G.)
| | - Javier Gene-Morales
- Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (A.S.-B.); (F.M.-R.); (I.C.-M.); (J.C.C.)
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (E.G.M.); (L.G.-P.); (P.J.-M.); (C.A.-F.); (P.G.)
| | - Fernando Martin-Rivera
- Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (A.S.-B.); (F.M.-R.); (I.C.-M.); (J.C.C.)
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (E.G.M.); (L.G.-P.); (P.J.-M.); (C.A.-F.); (P.G.)
| | - Iván Chulvi-Medrano
- Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (A.S.-B.); (F.M.-R.); (I.C.-M.); (J.C.C.)
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (E.G.M.); (L.G.-P.); (P.J.-M.); (C.A.-F.); (P.G.)
| | - Pablo Jiménez-Martínez
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (E.G.M.); (L.G.-P.); (P.J.-M.); (C.A.-F.); (P.G.)
- ICEN Institute, 28002 Madrid, Spain; (M.C.); (V.G.); (V.Z.)
| | - Carlos Alix-Fages
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (E.G.M.); (L.G.-P.); (P.J.-M.); (C.A.-F.); (P.G.)
- ICEN Institute, 28002 Madrid, Spain; (M.C.); (V.G.); (V.Z.)
| | | | - Veronica Gallo
- ICEN Institute, 28002 Madrid, Spain; (M.C.); (V.G.); (V.Z.)
| | - Virginia Zarza
- ICEN Institute, 28002 Madrid, Spain; (M.C.); (V.G.); (V.Z.)
| | - Pedro Gargallo
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (E.G.M.); (L.G.-P.); (P.J.-M.); (C.A.-F.); (P.G.)
| | - Julio Fernandez-Garrido
- Nursing Department, Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain; (J.F.-G.); (O.C.)
| | - Oscar Caballero
- Nursing Department, Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain; (J.F.-G.); (O.C.)
| | - Jose Casaña
- Exercise Intervention for Health Research Group (EXINH-RG), Physiotherapy Department, University of Valencia, 46010 Valencia, Spain;
| | - Elisa Moretti
- Department of Movement, Human and Health Science, Faculty of Sport Science, University of Rome “Foro Italico”, 00135 Rome, Italy; (E.M.); (E.G.)
| | - Elisa Grazioli
- Department of Movement, Human and Health Science, Faculty of Sport Science, University of Rome “Foro Italico”, 00135 Rome, Italy; (E.M.); (E.G.)
| | - Giovanni Angelo Navarra
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90133 Palermo, Italy; (G.A.N.); (M.B.)
| | - Marianna Bellafiore
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90133 Palermo, Italy; (G.A.N.); (M.B.)
| | - Danica Janicijevic
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo 315010, China
- Department of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - Raouf Hammami
- Tunisian Research Laboratory ’Sports Performance Optimization’ (CNMSS-LR09SEP01), National Center of Medicine and Science in Sports (CNMSS), Tunis 1004, Tunisia;
- Higher Institute of Sport and Physical Education of Ksar Said, Manouba University, Manouba 2010, Tunisia
| | - Juan C. Colado
- Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (A.S.-B.); (F.M.-R.); (I.C.-M.); (J.C.C.)
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (E.G.M.); (L.G.-P.); (P.J.-M.); (C.A.-F.); (P.G.)
| |
Collapse
|
4
|
Farzin L, Mansouri E, Salehi S, Baker E, Amirkhizi F, Asghari S. Effects of resveratrol supplementation on serum concentrations of plasminogen activator inhibitor-1, fibroblast growth factor 21, and adiponectin in patients with nonalcoholic fatty liver disease. BMC Nutr 2025; 11:36. [PMID: 39930480 PMCID: PMC11809030 DOI: 10.1186/s40795-025-00997-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder which may progress from simple steatosis to liver failure. Patients with NAFLD have higher levels of systemic inflammation. Resveratrol, a natural polyphenolic compound, has been shown to have anti-inflammatory effects through various mechanisms. The aim of this study was to evaluate the effect of resveratrol supplementation on serum levels of plasminogen activator inhibitor-1 (PAI-1), adiponectin, fibroblast growth factor-21 (FGF-21) as well as high-sensitivity C-reactive protein (hs-CRP) in patients with NAFLD. METHODS In this double-blind randomized controlled trial, 50 adults with NAFLD aged 20-60 years were allocated into two groups; the intervention and the placebo group received two capsules per day each containing 300 mg resveratrol and placebo, respectively. Fasting blood samples and anthropometric measurements were collected for all patients at baseline and at the end of the trial. Cges in the outcomes were analyzed using analysis of covariance (ANCOVA). RESULTS After 12 weeks of intervention, resveratrol supplementation did not cause significant changes in serum levels of liver enzymes including alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), and alkaline phosphatase (ALP) compared to the control group. No significant differences were observed in the serum levels of PAI-1, adiponectin, FGF-21, and hs-CRP between the two groups at the end of the study. CONCLUSIONS Resveratrol supplementation for 12 weeks did not show favorable effects on serum levels of liver enzymes, PAI-1, adiponectin, FGF-21, and hs-CRP. TRIAL REGISTRATION Iranian Registry of Clinical Trials (IRCT201511233664N16) (2016-02-08).
Collapse
Affiliation(s)
- Laleh Farzin
- Students' Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Mansouri
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No#44, Hojjatdoust St., Naderi St., Keshavarz Blvd, Tehran, 141556117, Iran
| | - Shiva Salehi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No#44, Hojjatdoust St., Naderi St., Keshavarz Blvd, Tehran, 141556117, Iran
| | - Emma Baker
- Cabrini Research, Malvern, VIC, Australia
| | - Farshad Amirkhizi
- Department of Nutrition, Faculty of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Somayyeh Asghari
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No#44, Hojjatdoust St., Naderi St., Keshavarz Blvd, Tehran, 141556117, Iran.
| |
Collapse
|
5
|
Niu Y, Yu W, Kou X, Wu S, Liu M, Chen C, Ji J, Shao Y, Xue Z. Bioactive compounds regulate appetite through the melanocortin system: a review. Food Funct 2024; 15:11811-11833. [PMID: 39506527 DOI: 10.1039/d4fo04024d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Obesity, a significant health crisis, arises from an imbalance between energy intake and expenditure. Enhancing appetite regulation has garnered substantial attention from researchers as a novel and effective strategy for weight management. The melanocortin system, situated in the hypothalamus, is recognized as a critical node in the regulation of appetite. It integrates long-term and short-term hormone signals from the periphery as well as nutrients, forming a complex network of interacting feedback mechanisms with the gut-brain axis, significantly contributing to the regulation of energy homeostasis. Appetite regulation by bioactive compounds has been a focus of intensive research due to their favorable safety profiles and easy accessibility. These bioactive compounds, derived from a variety of plant and animal sources, modulate the melanocortin system and influence appetite and energy homeostasis through multiple pathways: central nervous system, peripheral hormones, and intestinal microbiota. Here, we review the anatomy, function, and receptors of the melanocortin system, outline the long-term and short-term regulatory hormones that act on the melanocortin system, and discuss the bioactive compounds and their mechanisms of action that exert a regulatory effect on appetite by targeting the melanocortin system. This review contributes to a better understanding of how bioactive compounds regulate appetite via the melanocortin system, thereby providing nutritional references for citizens' dietary preferences.
Collapse
Affiliation(s)
- Yujia Niu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Shuqi Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Mengyi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Chenlong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jiaxin Ji
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Ying Shao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
6
|
Zhang X, Yi R, Liu Y, Ma J, Xu J, Tian Q, Yan X, Wang S, Yang G. Resveratrol: potential application in safeguarding testicular health. EPMA J 2024; 15:643-657. [PMID: 39635023 PMCID: PMC11612077 DOI: 10.1007/s13167-024-00377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 12/07/2024]
Abstract
Factors such as increasing mental pressure and poor living habits in modern society have led to an increase in the incidence of male reproductive diseases, including poor semen quality, testicular malignancy, and congenital developmental defects. The decline of male fertility deserves our attention. Resveratrol (3,4', 5-trihydroxy-trans-Stilbene, 3,4',5-trihydroxy), a polyphenol widely found in plant foods, is expected to enhance testicular function and promote breakthroughs in the treatment of diseases related to the male reproductive system. A large number of studies have shown that in male animals, resveratrol can enhance testicular function and spermatogenesis by activating SIRT1 expression and resist the damage of the testicular system by adverse factors. This article reviews the basic protective pathways of resveratrol against testicular and sperm damage, which involve oxidative stress, cell apoptosis, inflammatory damage, and mitochondrial function. The healthcare framework of predictive, preventive, and personalized medicine (PPPM/3PM) is by far the most beneficial for healthcare and is suitable for the management of chronic diseases. This review also summarizes the health benefits of resveratrol on male reproduction in the context of PPPM/3PM by comprehensively collecting and reviewing the available evidence, thus leading to a working hypothesis that resveratrol can personalize prevention and protection of male reproductive function. It provides a new perspective and direction for future research on the health effects of resveratrol in improving male reproductive function.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Ruhan Yi
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Yun Liu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Jiaxuan Ma
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Jiawei Xu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Qing Tian
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Xinyu Yan
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Shaopeng Wang
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Dalian, 116011 China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| |
Collapse
|
7
|
Chew HSJ, Soong RY, Teo YQJ, Flølo TN, Chong B, Yong CL, Ang SH, Ho Y, Chew NWS, So JBY, Shabbir A. Anthropometric and cardiometabolic effects of polyphenols in people with overweight and obesity: an umbrella review. Nutr Rev 2024; 82:1556-1593. [PMID: 38213191 DOI: 10.1093/nutrit/nuad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
CONTEXT Polyphenols are plant-based compounds with potential anti-inflammatory, antioxidant, and anti-obesogenic properties. However, their effects on health outcomes remain unclear. OBJECTIVE To evaluate the effects of polyphenols on anthropometric and cardiometabolic markers. DATA SOURCES Six electronic databases-namely, EMBASE, CINAHL, PubMed, Scopus, The Cochrane Library (reviews only), and Web of Science-were searched for relevant systematic reviews with meta-analyses (SRMAs). DATA EXTRACTION Three reviewers performed the data extraction via a data-extraction Microsoft Excel spreadsheet. DATA ANALYSIS An umbrella review and meta-analysis of existing SRMAs was conducted. Eighteen SRMAs published from 2015 to 2023, representing 445 primary studies and 838 unique effect sizes, were identified. Meta-analyses were conducted using random-effects models with general inverse variance. Polyphenol-containing foods were found to significantly improve weight (-0.36 kg; 95% confidence interval [CI]: -0.62, 0.77 kg; P < 0.01, I2 = 64.9%), body mass index (-0.25 kg/m2; 95% CI: -0.34, -0.17 kg/m2; P < 0.001, I2 = 82.4%), waist circumference (-0.74 cm; 95% CI: -1.34, -0.15 cm; P < 0.01, I2 = 99.3%), low-density-lipoprotein cholesterol (-1.75 mg/dL; 95% CI: -2.56, -0.94; P < 0.001, I2 = 98.6%), total cholesterol (-1.23 mg/dL; 95% CI: -2.00, -0.46; P = 0.002, I2 = 94.6%), systolic blood pressure (-1.77 mmHg; 95% CI: -1.77, -0.93 mmHg; P < 0.001, I2 = 72.4%), diastolic blood pressure (-1.45 mmHg; 95% CI: -2.09, -0.80 mmHg; P < 0.001, I2 = 61.0%), fat percentage (-0.70%; 95% CI: -1.03, -0.36%; P < 0.001, I2 = 52.6%), fasting blood glucose (-0.18 mg/dL; 95% CI: -0.35, -0.01 mg/dL; P = 0.04, I2 = 62.0%), and C-reactive protein (CRP; including high-sensitivity-CRP [hs-CRP]) (-0.2972 mg/dL; 95% CI: -0.52, -0.08 mg/dL; P = 0.01, I2 = 87.9%). No significant changes were found for high-density-lipoprotein cholesterol (-0.12 mg/dL; 95% CI: -1.44, 0.69; P = 0.67, I2 = 89.4%) and triglycerides (-1.29 mg/dL; 95% CI: -2.74, 0.16; P = 0.08, I2 = 85.4%). Between-study heterogeneity could be explained by polyphenol subclass differences. CONCLUSION The findings of this umbrella review support the beneficial effects of polyphenols on anthropometric and metabolic markers, but discretion is warranted to determine the clinical significance of the magnitude of the biomarker improvements. SYSTEMATIC REVIEW REGISTRATION International Prospective Register of Systematic Reviews no. CRD42023420206.
Collapse
Affiliation(s)
- Han Shi Jocelyn Chew
- Alice Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Rou Yi Soong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yu Qing Jolene Teo
- University of Medicine and Health Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tone Nygaard Flølo
- Department of Nursing and Health Promotion, Oslo Metropolitan University, Oslo, Norway
- Department of Surgery, Voss Hospital, Haukeland University Hospital, Voss, Norway
| | - Bryan Chong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Cai Ling Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shi Han Ang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yishen Ho
- Department of Food Science and Technology, National University of Singapore, Singapore
| | | | | | - Asim Shabbir
- Department of Surgery, National University Hospital, Singapore
| |
Collapse
|
8
|
Özyalçın B, Sanlier N. Antiobesity pathways of pterostilbene and resveratrol: a comprehensive insight. Crit Rev Food Sci Nutr 2024; 64:11428-11436. [PMID: 37486219 DOI: 10.1080/10408398.2023.2238319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
It may not always be possible for obese individuals to limit energy intake or to provide and/or maintain greater energy expenditure through exercise and physical activity. Therefore, the search for effective methods for obesity continues. Recently, the anti-obesity effect of stilbenes has attracted attention. In this review, aim was evaluating the effect of pterostilbene and resveratrol against obesity and the possible mechanisms in this effect. Dietary phytochemicals can induce body weight loss by increasing basal metabolic rate and thermogenesis and/or altering lipid metabolism. Stilbenes are products of the plant phenylpropanoid pathway. Very important mechanisms for the anti-obesity impact belonging to resveratrol as well as pterostilbene include thermogenic activation in brown adipose tissue alongside the browning of white adipose tissue. Considering nutrition and dietary habits, which have an important place in lifestyle changes for both the prevention and the treatment of obesity, pterostilbene and resveratrol, which are polyphenols and stilbenes, are seen as promising. However, optimal dose, duration, mechanism, long-term safety, side effects, combination, elucidation of genomic interactions, and lifestyle modifications should be considered.
Collapse
Affiliation(s)
- Büşra Özyalçın
- Department of Nutrition and Dietetics, Ankara Medipol University, Ankara, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
9
|
Santana TM, Caria SJ, Carlini GCG, Rogero MM, Donato J, Tavares MR, Castro IA. Trans-resveratrol reduced hepatic oxidative stress in an animal model without inducing an upregulation of nuclear factor erythroid 2-related factor 2. J Clin Biochem Nutr 2024; 75:40-45. [PMID: 39070534 PMCID: PMC11273272 DOI: 10.3164/jcbn.23-124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/09/2024] [Indexed: 07/30/2024] Open
Abstract
Trans-resveratrol, a widely used supplement for humans, aims to enhance the body's antioxidant defense. Studies suggest that it exerts anti-inflammatory and antioxidant effects by activating the nuclear factor erythroid 2-related factor 2 (Nrf2). In order to evaluate this hypothesis, LDLr(-/-) mice were fed a Western diet to induce liver inflammation and oxidative stress. One group was fed a diet containing 0.60 mg/day of trans-resveratrol (RESV), while another group received no dietary supplementation (CONT). Oxidative stress biomarkers and inflammatory cytokines were assessed in liver homogenates. It was observed that trans-resveratrol decreased hepatic oxidative stress by increasing the GSH/GSSG ratio and reducing malondialdehyde (MDA) concentration. However, the RESV group exhibited a reduction in Nrf2 relative expression compared to CONT. Additionally, trans-resveratrol supplementation reduced nuclear factor-κB (NF-κB) expression but led to an increase in IL-6, with no significant changes observed in tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) concentrations. Overall, these findings indicate that the in vivo antioxidant impact induced by trans-resveratrol supplementation in hepatic tissue did not correlate with increase of inflammatory cytokines and Nrf2 relative expression. Further exploration of alternative mechanisms, such as direct radical scavenger activity, is warranted to elucidate the antioxidant effect.
Collapse
Affiliation(s)
- Tamires M. Santana
- LADAF. Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, B14, São Paulo 05508-900, Brazil
- Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, Av. Lineu Prestes, 580, B14, São Paulo 05508-900, Brazil
| | - Sarah J. Caria
- LADAF. Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, B14, São Paulo 05508-900, Brazil
| | - Giovanna C. G. Carlini
- LADAF. Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, B14, São Paulo 05508-900, Brazil
| | - Marcelo M. Rogero
- Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, Av. Lineu Prestes, 580, B14, São Paulo 05508-900, Brazil
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, São Paulo 01246-904, Brazil
| | - José Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes, 2415, São Paulo 05508-900, Brazil
| | - Mariana R. Tavares
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes, 2415, São Paulo 05508-900, Brazil
| | - Inar A. Castro
- LADAF. Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, B14, São Paulo 05508-900, Brazil
- Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, Av. Lineu Prestes, 580, B14, São Paulo 05508-900, Brazil
| |
Collapse
|
10
|
Yu X, Jia Y, Ren F. Multidimensional biological activities of resveratrol and its prospects and challenges in the health field. Front Nutr 2024; 11:1408651. [PMID: 38933889 PMCID: PMC11199730 DOI: 10.3389/fnut.2024.1408651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Resveratrol (RES) is a naturally occurring polyphenolic compound. Recent studies have identified multiple potential health benefits of RES, including antioxidant, anti-inflammatory, anti-obesity, anticancer, anti-diabetic, cardiovascular, and neuroprotective properties. The objective of this review is to summarize and analyze the studies on the biological activities of RES in disease prevention and treatment, as well as its metabolism and bioavailability. It also discusses the challenges in its clinical application and future research directions. RES exhibits significant potential in the prevention and treatment of many diseases. The future direction of RES research should focus on improving its bioavailability, conducting more clinical trials to determine its effectiveness in humans, and investigating its mechanism of action. Once these challenges have been overcome, RES is expected to become an effective health intervention.
Collapse
Affiliation(s)
| | | | - Feiyue Ren
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
11
|
Alqarni S, Alsebai M, Alsaigh BA, Alrashedy AS, Albahrani IT, Aljohar AY, Alazmi AO. Do polyphenols affect body fat and/or glucose metabolism? Front Nutr 2024; 11:1376508. [PMID: 38919387 PMCID: PMC11198119 DOI: 10.3389/fnut.2024.1376508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Background Obesity is reaching epidemic proportions with 51% of the population expected to be obese by 2030. Recently, polyphenols have been highlighted as an effective approach to managing obesity and associated risks. Polyphenols are a large class of bioactive plant compounds classified into two major categories: flavonoids which are distinguished by the fundamental C6-C3-C6 skeleton and non-flavonoids. Objective This systematic review evaluated the effect of different polyphenol sources in overweight and obese people with and without type 2 diabetes. The primary outcome was lipid profile and the secondary outcomes were blood glucose, HbA1c (%), HOMA-IR, weight, and body mass index. Method A search was undertaken in PubMed, Web of Science, Medline, and Wiley for randomized control trials that assessed different sources of polyphenols in overweight and obese people with or without type 2 diabetes. The quality of the included studies was assessed using the National Heart, Lung, and Blood Institute Quality Assessment Tool. Result The search yielded 935 studies, of which six randomized control trials met the inclusion criteria. Five studies found no significant difference in lipid profile between the control and intervention groups in triglycerides, total cholesterol, LDL cholesterol, and HDL cholesterol. However, one study showed significant differences in triglycerides (p = 0.04) and HDL cholesterol (p = 0.05) between the two groups with no significant difference in total cholesterol and LDL cholesterol. There were no significant changes in blood glucose observed in the included studies, with only two studies reporting a significant difference in A1c between the groups. Four studies found no difference in HOMA-IR, while one study showed a significant decrease in HOMA-IR in the intervention group compared to the control group. Three studies reported no difference in BMI or weight between the two groups. Conclusion The data associated with the specific health benefits of polyphenols and their sources in people with overweight, obese, and type 2 diabetes are still limited, so further research is required to support their use and prove their benefits.
Collapse
Affiliation(s)
- Saleha Alqarni
- Department of Clinical Nutrition, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mashael Alsebai
- Department of Clinical Nutrition, Nottingham University, Nottingham, United Kingdom
| | - Batool Adal Alsaigh
- Department of Clinical Nutrition, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abeer Sayer Alrashedy
- Department of Clinical Nutrition, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Israa Talal Albahrani
- Department of Clinical Nutrition, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Albandri Yousef Aljohar
- Department of Clinical Nutrition, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Amjad Obaid Alazmi
- Department of Clinical Nutrition, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
12
|
Calado CMSDS, Manhães-de-Castro R, da Conceição Pereira S, da Silva Souza V, Barbosa LNF, Dos Santos Junior OH, Lagranha CJ, Juárez PAR, Torner L, Guzmán-Quevedo O, Toscano AE. Resveratrol Reduces Neuroinflammation and Hippocampal Microglia Activation and Protects Against Impairment of Memory and Anxiety-Like Behavior in Experimental Cerebral Palsy. Mol Neurobiol 2024; 61:3619-3640. [PMID: 38001357 DOI: 10.1007/s12035-023-03772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023]
Abstract
Cerebral palsy (CP) is a neurodevelopmental disorder characterized by motor and postural impairments. However, early brain injury can promote deleterious effects on the hippocampus, impairing memory. This study aims to investigate the effects of resveratrol treatment on memory, anxiety-like behavior, and neuroinflammation markers in rats with CP. Male Wistar rats were subjected to perinatal anoxia (P0-P1) and sensory-motor restriction (P2-P28). They were treated with resveratrol (10 mg/kg, 0.1 ml/100 g) or saline from P3-P21, being divided into four experimental groups: CS (n = 15), CR (n = 15), CPS (n = 15), and CPR (n = 15). They were evaluated in the tests of novel object recognition (NORT), T-Maze, Light-Dark Box (LDB), and Elevated Plus Maze (EPM). Compared to the CS group, the CPS group has demonstrated a reduced discrimination index on the NORT (p < 0.0001) and alternation on the T-Maze (p < 0.01). In addition, the CPS group showed an increase in permanence time on the dark side in LDB (p < 0.0001) and on the close arms of the EPM (p < 0.001). The CPR group demonstrated an increase in the object discrimination index (p < 0.001), on the alternation (p < 0.001), on the permanence time on the light side (p < 0.0001), and on the open arms (p < 0.001). The CPR group showed a reduction in gene expression of IL-6 (p = 0.0175) and TNF-α (p = 0.0007) and an increase in Creb-1 levels (p = 0.0020). The CPS group showed an increase in the activated microglia and a reduction in cell proliferation in the hippocampus, while CPR animals showed a reduction of activated microglia and an increase in cell proliferation. These results demonstrate promising effects of resveratrol in cerebral palsy behavior impairment through reduced neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Caio Matheus Santos da Silva Calado
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Raul Manhães-de-Castro
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Sabrina da Conceição Pereira
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Vanessa da Silva Souza
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Leticia Nicoly Ferreira Barbosa
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Osmar Henrique Dos Santos Junior
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Claudia Jacques Lagranha
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Graduate Program in Biochemistry and Physiology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Pedro Alberto Romero Juárez
- Laboratory of Experimental Neuronutrition and Food Engineering, Tecnológico Nacional de México (TECNM), Instituto Tecnológico Superior de Tacámbaro, 61651, Tacámbaro, Michoacán, Mexico
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58330, Morelia, Michoacán, Mexico
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58330, Morelia, Michoacán, Mexico
| | - Omar Guzmán-Quevedo
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Laboratory of Experimental Neuronutrition and Food Engineering, Tecnológico Nacional de México (TECNM), Instituto Tecnológico Superior de Tacámbaro, 61651, Tacámbaro, Michoacán, Mexico
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58330, Morelia, Michoacán, Mexico
| | - Ana Elisa Toscano
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil.
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil.
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil.
- Nursing Unit, Vitória Academic Center, Federal University of Pernambuco, Rua Do Alto Do Reservatório S/N, Bela Vista, Vitória de Santo Antão, Pernambuco, 55608-680, Brazil.
| |
Collapse
|
13
|
Molani-Gol R, Rafraf M. Effects of resveratrol on the anthropometric indices and inflammatory markers: an umbrella meta-analysis. Eur J Nutr 2024; 63:1023-1040. [PMID: 38374352 DOI: 10.1007/s00394-024-03335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/20/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND The evidence for resveratrol's anti-obesity and anti-inflammatory qualities is accumulating, though meta-analyses have reported mixed results. The current umbrella meta-analysis aimed to assess the present evidence and provide an accurate estimate of the overall effects of resveratrol on the anthropometric indices and inflammatory markers. METHOD The Web of Science, PubMed, Scopus, and Google Scholar databases were searched till March 2023. The meta-analysis was performed utilizing a random-effects model. Moreover, the overall strength and quality of the evidence were assessed using the GRADE tool. RESULTS The results from 19 meta-analyses investigating 81 unique randomized controlled trials with 4088 participants revealed that resveratrol supplementation reduced the body mass index (ES = - 0.119, 95% CI (- 0.192, - 0.047), p = 0.001), waist circumference (ES = - 0.405, 95% CI [- 0.664, - 0.147], p = 0.002), serum levels of C-reactive protein (ES = - 0.390, 95% CI [- 0.474, - 0.306], p < 0.001), and tumor necrosis factor-α (ES = - 0.455, 95% CI [- 0.592, - 0.318], p < 0.001) in comparison to the control group. The effects of resveratrol on body weight and Interleukin-6 levels of participants were not significant. However, resveratrol administration significantly decreased body weight in trials with intervention duration ≥ 12 weeks [ES = - 0.160, 95% CI (- 0.268, - 0.052)] and supplement dosage ≥ 500 mg/day [ES = - 0.130, 95% CI (- 0.238, - 0.022)]. CONCLUSION The findings suggest the beneficial effects of resveratrol supplementation on reducing general and central obesity, as well as decreasing some inflammatory markers. Nevertheless, further high-quality research is required to prove these achievements and also evaluate resveratrol's effects on other inflammatory markers.
Collapse
Affiliation(s)
- Roghayeh Molani-Gol
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rafraf
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Farhat G. Polyphenols in obesity and weight management: Are they worth further research? An umbrella review. NUTR BULL 2024; 49:126-131. [PMID: 38469993 DOI: 10.1111/nbu.12667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/23/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024]
Abstract
Polyphenols are widely known for their putative antioxidant and anti-inflammatory effects and their potential protective role in several diseases such as type 2 diabetes, cardiovascular disease and cancer. They have also attracted significant interest as 'anti-obesity' agents, although with mechanisms of action that have been exclusively demonstrated in animal and in vitro studies. This umbrella review aims to evaluate current evidence surrounding the role of polyphenols in obesity and weight management and to establish the usefulness of these agents in combatting obesity. A search of systematic reviews and meta-analyses of randomised controlled trials was carried out. Nine systematic reviews (of which eight included a meta-analysis) were included. Evidence of polyphenols' effects on reducing bodyweight is mixed, and where the effects are significant, they are numerically small and unlikely to be of help in reducing bodyweight or preventing weight gain. Future research should focus on establishing the anti-inflammatory and antioxidant effects of polyphenols through well-designed randomised controlled trials. Such research could be more valuable and cost-effective since it has shown potential to improve human health.
Collapse
Affiliation(s)
- Grace Farhat
- Faculty of Health and Education, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
15
|
Yang K, Yang M, Shen Y, Kang L, Zhu X, Dong W, Lei X. Resveratrol Attenuates Hyperoxia Lung Injury in Neonatal Rats by Activating SIRT1/PGC-1α Signaling Pathway. Am J Perinatol 2024; 41:1039-1049. [PMID: 35240708 DOI: 10.1055/a-1787-3396] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Our previous study showed that resveratrol (Res) attenuates apoptosis and mitochondrial dysfunction in alveolar epithelial cell injury induced by hyperoxia by activating the SIRT1/PGC-1α signaling pathway. In the present study, we investigated whether Res protects against hyperoxia-induced lung injury in neonatal rats by activating SIRT1/PGC-1α signaling pathway. METHODS Naturally delivered neonatal rats were randomly divided into six groups: normoxia + normal saline, normoxia + dimethyl sulfoxide (DMSO), normoxia + Res, hyperoxia + normal saline, hyperoxia + DMSO, and hyperoxia + Res. Lung tissue samples were collected on postnatal days 1, 7, and 14. Hematoxylin and eosin staining was used to evaluate lung development. Dual-immunofluorescence staining, real-time polymerase chain reaction, and western blotting were used to evaluate the levels of silencing information regulator 2-related enzyme 1 (SIRT1), peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), nuclear respiratory factor 1 (Nrf1), Nrf2, transcription factor A (TFAM) and citrate synthase, the number of mitochondrial DNA (mtDNA) and mitochondria, the integrity of mtDNA, and the expression of TFAM in mitochondria. RESULTS We found that hyperoxia insulted lung development, whereas Res attenuated the hyperoxia lung injury. Res significantly upregulated the levels of SIRT1, PGC-1α, Nrf1, Nrf2, TFAM, and citrate synthase; promoted TFAM expression in the mitochondria; and increased the copy number of ND1 and the ratio of ND4/ND1. CONCLUSION Our data suggest that Res attenuates hyperoxia-induced lung injury in neonatal rats, and this was achieved, in part, by activating the SIRT1/PGC-1α signaling pathway to promote mitochondrial biogenesis. KEY POINTS · Hyperoxia insulted lung development in neonatal rats.. · Resveratrol promoted mitochondrial biogenesis to attenuate hyperoxia lung injury in neonatal rats.. · Resveratrol, at least in part, promoted mitochondrial biogenesis by activating the SIRT1/PGC-1α signaling pathway..
Collapse
Affiliation(s)
- Kun Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Menghan Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Yunchuan Shen
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Lan Kang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Xiaodan Zhu
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Xiaoping Lei
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| |
Collapse
|
16
|
Abstract
Obesity is a severe health problem worldwide due to its association with various adverse health consequences. The present study aims to evaluate the anti-obesity effects of resveratrol, as a natural polyphenol, on the 3T3-L1 adipocytes. PubMed, Scopus, ScienceDirect, Web of Sciences, and Google Scholar databases were searched up to March 2022 using relevant keywords. All original articles, written in English, evaluating the anti-obesity effects of resveratrol on the 3T3-L1 adipocytes were eligible for this review. Initially, 4361 records were found in the electronic search databases. After removing duplicates and irrelevant studies according to the title and abstract, the full text of the 51 articles was critically screened and 38 in vitro studies were included in this review. Except for one case, all of these studies reported that different doses (ranged 1-200 μM) of resveratrol treatment have anti-obesity effects on 3T3L1 adipocytes through various mechanisms such as induction of apoptosis, a decrease of fat accumulation and adipogenesis, promotion of white adipocytes browning, inhibition of preadipocyte proliferation and consequent differentiation, and up-regulation of miRNA that involved in the antiadipogenic and triacylglycerol metabolism in white adipose tissue. The findings indicate that resveratrol has anti-obesity effects. Therefore, resveratrol treatment could be used to prevent and treat obesity and its related disorders. Well-designed randomized clinical trials with different doses of resveratrol are recommended to be performed on obese subjects.
Collapse
Affiliation(s)
- Roghayeh Molani-Gol
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rafraf
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Erol Doğan Ö, Karaca Çelik KE, Baş M, Alan EH, Çağın YF. Effects of Mediterranean Diet, Curcumin, and Resveratrol on Mild-to-Moderate Active Ulcerative Colitis: A Multicenter Randomized Clinical Trial. Nutrients 2024; 16:1504. [PMID: 38794742 PMCID: PMC11123867 DOI: 10.3390/nu16101504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
This study aimed to investigate the effects of the Mediterranean diet (MD), combined with curcumin and resveratrol supplementation, on disease activity, serum inflammatory markers, and quality of life in patients with mild-to-moderate active ulcerative colitis (UC). This study was designed as a prospective multicenter three-arm randomized controlled trial. Participants were randomized to the MD, MD + curcumin, and MD + resveratrol groups. All participants were placed on the MD for 8 weeks. The MD + curcumin group also received 1600 mg/day of curcumin supplementation, whereas the MD + resveratrol group received 500 mg/day of resveratrol supplementation for 8 weeks. Anthropometric measurements, Truelove-Witts Index, Short Form-36, Inflammatory Bowel Disease Questionnaire, Mediterranean Diet Adherence Scale (MEDAS), and laboratory tests were performed at baseline and postintervention. Within-group comparisons showed that MD, MD + curcumin, and MD + resveratrol interventions were effective in reducing disease activity and inflammation and improving quality of life in individuals with UC (p < 0.05). Between-group comparisons revealed no significant difference in all parameters except for the pain subparameter of SF-36 and the MEDAS score (p < 0.05). The MD is an effective and safe intervention to be used in clinical practice in individuals with UC.
Collapse
Affiliation(s)
- Özge Erol Doğan
- Department of Nutrition and Dietetics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
- Department of Health Care Services, Vocational School of Health Services, Ardahan University, Ardahan 75002, Turkey
| | - Kezban Esen Karaca Çelik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Murat Baş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Eyüp Hakan Alan
- Department of Gastroenterology, Malatya Training and Research Hospital, Malatya 44330, Turkey
| | - Yasir Furkan Çağın
- Department of Gastroenterology, Faculty of Medicine, İnönü University, Malatya 44280, Turkey
| |
Collapse
|
18
|
Yang Q, Chen D, Li C, Liu R, Wang X. Mechanism of hypoxia-induced damage to the mechanical property in human erythrocytes-band 3 phosphorylation and sulfhydryl oxidation of membrane proteins. Front Physiol 2024; 15:1399154. [PMID: 38706947 PMCID: PMC11066195 DOI: 10.3389/fphys.2024.1399154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction: The integrity of the erythrocyte membrane cytoskeletal network controls the morphology, specific surface area, material exchange, and state of erythrocytes in the blood circulation. The antioxidant properties of resveratrol have been reported, but studies on the effect of resveratrol on the hypoxia-induced mechanical properties of erythrocytes are rare. Methods: In this study, the effects of different concentrations of resveratrol on the protection of red blood cell mor-phology and changes in intracellular redox levels were examined to select an appropriate concentration for further study. The Young's modulus and surface roughness of the red blood cells and blood viscosity were measured via atomic force microsco-py and a blood rheometer, respectively. Flow cytometry, free hemoglobin levels, and membrane lipid peroxidation levels were used to characterize cell membrane damage in the presence and absence of resveratrol after hypoxia. The effects of oxida-tive stress on the erythrocyte membrane proteins band 3 and spectrin were further investigated by immunofluorescent label-ing and Western blotting. Results and discussion: Resveratrol changed the surface roughness and Young's modulus of the erythrocyte mem-brane, reduced the rate of eryptosis in erythrocytes after hypoxia, and stabilized the intracellular redox level. Further data showed that resveratrol protected the erythrocyte membrane proteins band 3 and spectrin. Moreover, resistance to band 3 pro-tein tyrosine phosphorylation and sulfhydryl oxidation can protect the stability of the erythrocyte membrane skeleton net-work, thereby protecting erythrocyte deformability under hypoxia. The results of the present study may provide new insights into the roles of resveratrol in the prevention of hypoxia and as an antioxidant.
Collapse
Affiliation(s)
| | | | | | | | - Xiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
19
|
Faisal Z, Mazhar A, Batool SA, Akram N, Hassan M, Khan MU, Afzaal M, Hassan UU, Shah YA, Desta DT. Exploring the multimodal health-promoting properties of resveratrol: A comprehensive review. Food Sci Nutr 2024; 12:2240-2258. [PMID: 38628180 PMCID: PMC11016399 DOI: 10.1002/fsn3.3933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 04/19/2024] Open
Abstract
Resveratrol, a natural polyphenol in various plants, has gained significant attention for its potential health-promoting properties. It has been demonstrated, after reviewing various clinical and in vitro studies, that resveratrol possesses potent antioxidant potential. Resveratrol demonstrates cellular component protection by directly neutralizing free radicals (FRs) and enhancing the expression of natural antioxidant enzymes, thereby mitigating oxidative damage to proteins, lipids, and nucleic acids. Clinical trials have shown promising results, indicating that resveratrol supplementation can enhance antioxidant defenses and reduce oxidative damage markers in various populations. In addition to its antioxidant effects, resveratrol exhibits potent anti-inflammatory properties. It can modulate key inflammatory pathways, such as nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs), thereby suppressing the production of pro-inflammatory cytokines and chemokines. Furthermore, resveratrol's multimodal effects extend beyond its antioxidant and anti-inflammatory properties. It has been discovered to exert regulatory effects on various cellular processes, including apoptosis, cell cycle progression, angiogenesis, and immunological responses. The primary aim of this review paper is to provide a thorough overview of the current knowledge on resveratrol, including its chemical composition, bioaccessibility, clinical effectiveness, and utilization in nanotechnology to enhance its bioavailability. From future perspectives, revising the administration methods for certain contexts and understanding the underlying systems responsible for resveratrol's effects will require further inquiry. For the highest potential health results, advanced trial-based research is necessary for combinational nano-delivery of resveratrol.
Collapse
Affiliation(s)
- Zargham Faisal
- Department of Human NutritionBahauddin Zakariya University, Faculty of Food Science and NutritionMultanPakistan
| | - Aimen Mazhar
- Department of Human NutritionBahauddin Zakariya University, Faculty of Food Science and NutritionMultanPakistan
| | - Syeda Ayesha Batool
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Noor Akram
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Maleeha Hassan
- Department of Dietetics and Nutritional ScienceUniversity of SialkotSialkotPakistan
| | - Muhammad Usman Khan
- Department of Food Science and TechnologyBahauddin Zakariya University, Faculty of Food Science and NutritionMultanPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Usman Ul Hassan
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Yasir Abbas Shah
- Natural and Medical Science Research CentreUniversity of NizwaNizwaOman
| | - Derese Tamiru Desta
- School of Nutrition, Food Science and TechnologyHawassa UniversityHawassaEthiopia
| |
Collapse
|
20
|
Kowald A, Palmer D, Secci R, Fuellen G. Healthy Aging in Times of Extreme Temperatures: Biomedical Approaches. Aging Dis 2024; 15:601-611. [PMID: 37450930 PMCID: PMC10917539 DOI: 10.14336/ad.2023.0619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Climate extremes and rising energy prices present interconnected global health risks. Technical solutions can be supplemented with biomedical approaches to promote healthy longevity in hot and cold conditions. In summer, reducing basal metabolic rate through mild caloric restriction or CR mimetics, such as resveratrol, can potentially be used to lower body temperature. In winter, activating brown adipose tissue (BAT) for non-shivering thermogenesis and improved metabolic health can help adaptation to colder environments. Catechins found in green tea and in other food could be alternatives to drugs for these purposes. This review examines and discusses the biomedical evidence supporting the use of CR mimetics and BAT activators for health benefits amid increasingly extreme temperatures.
Collapse
Affiliation(s)
- Axel Kowald
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Daniel Palmer
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Riccardo Secci
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Georg Fuellen
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
- Interdisziplinäre Fakultät, Department AGIS (Altern des Individuums und der Gesellschaft), Universität Rostock, Germany.
- School of Medicine, University College Dublin, Ireland.
| |
Collapse
|
21
|
Hidalgo-Lozada GM, Villarruel-López A, Nuño K, García-García A, Sánchez-Nuño YA, Ramos-García CO. Clinically Effective Molecules of Natural Origin for Obesity Prevention or Treatment. Int J Mol Sci 2024; 25:2671. [PMID: 38473918 DOI: 10.3390/ijms25052671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The prevalence and incidence of obesity and the comorbidities linked to it are increasing worldwide. Current therapies for obesity and associated pathologies have proven to cause a broad number of adverse effects, and often, they are overpriced or not affordable for all patients. Among the alternatives currently available, natural bioactive compounds stand out. These are frequently contained in pharmaceutical presentations, nutraceutical products, supplements, or functional foods. The clinical evidence for these molecules is increasingly solid, among which epigallocatechin-3-gallate, ellagic acid, resveratrol, berberine, anthocyanins, probiotics, carotenoids, curcumin, silymarin, hydroxy citric acid, and α-lipoic acid stand out. The molecular mechanisms and signaling pathways of these molecules have been shown to interact with the endocrine, nervous, and gastroenteric systems. They can regulate the expression of multiple genes and proteins involved in starvation-satiety processes, activate the brown adipose tissue, decrease lipogenesis and inflammation, increase lipolysis, and improve insulin sensitivity. This review provides a comprehensive view of nature-based therapeutic options to address the increasing prevalence of obesity. It offers a valuable perspective for future research and subsequent clinical practice, addressing everything from the molecular, genetic, and physiological bases to the clinical study of bioactive compounds.
Collapse
Affiliation(s)
| | - Angelica Villarruel-López
- Department of Pharmacobiology, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara 44430, Mexico
| | - Karla Nuño
- Department of Psychology, Education and Health, ITESO Jesuit University of Guadalajara, Guadalajara 45604, Mexico
| | - Abel García-García
- Institute of Science and Technology for Health Innovation, Guadalajara 44770, Mexico
- Department of Medical Clinic, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Yaír Adonaí Sánchez-Nuño
- Department of Pharmacobiology, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara 44430, Mexico
| | | |
Collapse
|
22
|
Chapple B, Woodfin S, Moore W. The Perfect Cup? Coffee-Derived Polyphenols and Their Roles in Mitigating Factors Affecting Type 2 Diabetes Pathogenesis. Molecules 2024; 29:751. [PMID: 38398503 PMCID: PMC10891742 DOI: 10.3390/molecules29040751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Type 2 diabetes (T2D) is a growing health concern with an estimated 462 million people having been diagnosed worldwide. T2D is characterized by chronically elevated blood glucose and insulin resistance, which culminate in a diminished function of the β-cell mass in its later stages. This can be perpetuated by and result in inflammation, excess reactive oxygen species production, obesity, and the dysregulation of multiple cellular pathways. Many naturally occurring small molecules have been investigated in terms of their roles in modulating glucose homeostasis and β-cell function. Many of these compounds can be found in commonly used sources of food and drink. Interestingly, a correlation has been observed between coffee consumption and T2D incidence. However, the specific compounds responsible for this correlation and their mechanisms are still somewhat undetermined. This paper reviews recent research findings on the effects of several polyphenols that are either found in coffee or are metabolites of compounds found in coffee (enterodiol, enterolactone, matairesinol, secoisolariciresinol, kaempferol, quercetin, and chlorogenic acid) on glucose homeostasis and health complications associated with glucose dysregulation, with a special emphasis on their potential anti-diabetic effects. The factors that affect polyphenol content in coffee are also addressed.
Collapse
Affiliation(s)
| | | | - William Moore
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA; (B.C.); (S.W.)
| |
Collapse
|
23
|
Zhao XY, Wang JQ, Neely GG, Shi YC, Wang QP. Natural compounds as obesity pharmacotherapies. Phytother Res 2024; 38:797-838. [PMID: 38083970 DOI: 10.1002/ptr.8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.
Collapse
Affiliation(s)
- Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-Qiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Gostimirovic M, Rajkovic J, Bukarica A, Simanovic J, Gojkovic-Bukarica L. Resveratrol and Gut Microbiota Synergy: Preventive and Therapeutic Effects. Int J Mol Sci 2023; 24:17573. [PMID: 38139400 PMCID: PMC10743535 DOI: 10.3390/ijms242417573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The role of an imbalanced high-fat diet in the pathophysiology of common chronic noncommunicable diseases has been known for years. More recently, the concept of 'gut microbiota' and the interaction between their composition and gut metabolites produced from the intake of dietary products have gained the focus of researchers, mostly from the perspective of the prevention of cardiovascular and metabolic disorders, which are still the leading cause of death globally. The aim of this work is to highlight the health benefits of the interaction between resveratrol (RSV), red grape polyphenol, and gut microbiota, through aspects of their therapeutic and preventive potentials. Since changed microbiota (mostly as a consequence of antibiotic overuse) contribute to the persistence of post ('long')-COVID-19 symptoms, these aspects will be covered too. Data were obtained from the electronic databases (MedLine/PubMed), according to specific keywords regarding the protective role of resveratrol, the gut microbiota, and their synergy. RSV exerts beneficial properties in the modulation of cardiovascular, metabolic, and post-COVID-19-related disorders. In healthy individuals, it maintains an ergogenic capacity, prevents oxidative stress, and modulates the inflammatory response. Overall, it improves quality of life. The RSV-gut-microbiota interaction is beneficial in terms of maintaining human health. Along with physical activity, it is key for the prevention of chronic noncommunicable diseases.
Collapse
Affiliation(s)
- Milos Gostimirovic
- Department of Cardiovascular Pharmacology, Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.G.); (J.S.); (L.G.-B.)
| | - Jovana Rajkovic
- Department of Cardiovascular Pharmacology, Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.G.); (J.S.); (L.G.-B.)
| | - Ana Bukarica
- Institute for Cardiovascular Diseases Dedinje, Faculty of Medicine, University of Belgrade, 11040 Belgrade, Serbia;
| | - Jovana Simanovic
- Department of Cardiovascular Pharmacology, Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.G.); (J.S.); (L.G.-B.)
| | - Ljiljana Gojkovic-Bukarica
- Department of Cardiovascular Pharmacology, Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.G.); (J.S.); (L.G.-B.)
| |
Collapse
|
25
|
Ma HZ, Chen Y, Guo HH, Wang J, Xin XL, Li YC, Liu YF. Effect of resveratrol in gestational diabetes mellitus and its complications. World J Diabetes 2023; 14:808-819. [PMID: 37383595 PMCID: PMC10294056 DOI: 10.4239/wjd.v14.i6.808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/23/2023] [Accepted: 04/20/2023] [Indexed: 06/14/2023] Open
Abstract
The incidence rate of diabetes in pregnancy is about 20%, and diabetes in pregnancy will have a long-term impact on the metabolic health of mothers and their offspring. Mothers may have elevated blood glucose, which may lead to blood pressure disease, kidney disease, decreased resistance and secondary infection during pregnancy. The offspring may suffer from abnormal embryonic development, intrauterine growth restriction, obesity, autism, and other adverse consequences. Resveratrol (RSV) is a natural polyphenol compound, which is found in more than 70 plant species and their products, such as Polygonum cuspidatum, seeds of grapes, peanuts, blueberries, bilberries, and cranberries. Previous studies have shown that RSV has a potential beneficial effect on complex pregnancy, including improving the indicators of diabetes and pregnancy diabetes syndrome. This article has reviewed the molecular targets and signaling pathways of RSV, including AMP-activated protein kinase, mitogen-activated protein kinases, silent information regulator sirtuin 1, miR-23a-3p, reactive oxygen species, potassium channels and CX3C chemokine ligand 1, and the effect of RSV on gestational diabetes mellitus (GDM) and its complications. RSV improves the indicators of GDM by improving glucose metabolism and insulin tolerance, regulating blood lipids and plasma adipokines, and modulating embryonic oxidative stress and apoptosis. Furthermore, RSV can ameliorate the GDM complications by reducing oxidative stress, reducing the effects on placentation, reducing the adverse effects on embryonic development, reducing offspring's healthy risk, and so on. Thus, this review is of great significance for providing more options and possibilities for further research on medication of gestational diabetes.
Collapse
Affiliation(s)
- Hui-Zhong Ma
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, Liaoning Province, China
| | - Yuan Chen
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, Liaoning Province, China
| | - Hao-Hao Guo
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, Liaoning Province, China
| | - Jing Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, Liaoning Province, China
| | - Xiu-Lan Xin
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, China
| | - Yan-Cheng Li
- Department of Epidemiology, University of Florida, Gainesville, FL 32608, United States
| | - Yu-Feng Liu
- School of Pharmaceutical Sciences, Natural Products Pharmaceutical Engineering Technology Research Center of Liaoning Province, Liaoning University, Shenyang 110036, Liaoning Province, China
| |
Collapse
|
26
|
Gao X, Yue C, Tian R, Yu L, Tian F, Zhao J, Chen W, Zhai Q. The regulatory effects of specific polyphenols on Akkermansia are dependent on uridine. Food Chem 2023; 410:135367. [PMID: 36610089 DOI: 10.1016/j.foodchem.2022.135367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
We examined the microbial regulatory capacity of four polyphenols with different structure in healthy mice and explore the mechanism according to exogenous metabolites and microbial metabolites. Oral administration of four polyphenols, including caffeic acid (CA), procyanidin (PA), puerarin (Pue), and resveratrol (Res), did not lead to metabolic disorder in healthy mice. Gut microbiota analysis revealed that CA, PA, and Pue administration significantly enhanced the abundance of Akkermansia and Ruminococcaceae UCG-014 while Res supplement mainly promoted the growth of Lactobacillus and Bacteroides. Furthermore, correlation analysis and exogenous metabolite prediction revealed that the effects of polyphenols, including CA, PA, and Pue, on Akkermansia have strong relationship with uridine while the regulation of Res on microbiota might be dependent on the decrease on petroselinic acid. These investigations considerably suggest the importance of exploration of exogenous metabolites and reveal the similarity of effects of polyphenols on microbiota and metabolites.
Collapse
Affiliation(s)
- Xiaoxiang Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chenbo Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ruocen Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
27
|
Flori L, Piragine E, Spezzini J, Citi V, Calderone V, Martelli A. Influence of Polyphenols on Adipose Tissue: Sirtuins as Pivotal Players in the Browning Process. Int J Mol Sci 2023; 24:ijms24119276. [PMID: 37298226 DOI: 10.3390/ijms24119276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Adipose tissue (AT) can be classified into two different types: (i) white adipose tissue (WAT), which represents the largest amount of total AT, and has the main function of storing fatty acids for energy needs and (ii) brown adipose tissue (BAT), rich in mitochondria and specialized in thermogenesis. Many exogenous stimuli, e.g., cold, exercise or pharmacological/nutraceutical tools, promote the phenotypic change of WAT to a beige phenotype (BeAT), with intermediate characteristics between BAT and WAT; this process is called "browning". The modulation of AT differentiation towards WAT or BAT, and the phenotypic switch to BeAT, seem to be crucial steps to limit weight gain. Polyphenols are emerging as compounds able to induce browning and thermogenesis processes, potentially via activation of sirtuins. SIRT1 (the most investigated sirtuin) activates a factor involved in mitochondrial biogenesis, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), which, through peroxisome proliferator-activated receptor γ (PPAR-γ) modulation, induces typical genes of BAT and inhibits genes of WAT during the transdifferentiation process in white adipocytes. This review article aims to summarize the current evidence, from pre-clinical studies to clinical trials, on the ability of polyphenols to promote the browning process, with a specific focus on the potential role of sirtuins in the pharmacological/nutraceutical effects of natural compounds.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Jacopo Spezzini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, 56126 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
28
|
Soltani S, Sharifi-Zahabi E, Sangsefidi ZS, Ahmadi Vasmehjani A, Meshkini F, Clayton ZS, Abdollahi S. The effect of resveratrol supplementation on biomarkers of liver health: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2023; 37:1153-1166. [PMID: 36642444 DOI: 10.1002/ptr.7719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/25/2022] [Accepted: 12/18/2022] [Indexed: 01/17/2023]
Abstract
This study aimed to evaluate the effect of resveratrol on liver biomarkers in adult participants, using systematic review and meta-analysis of randomized controlled trials. PubMed, Scopus, Web of Science and Cochran Library was searched, up to October 2021. The pooled effects were calculated using a random-effects model and expressed as weighted mean difference and 95% confidence interval. The methodological quality of studies as well as certainty of evidence were assessed by standard tools. Thirty-seven relevant trials were found. Although overall analysis found no significant change, subgroup analysis showed a significant improvement in alanine aminotransferase (ALT; -7.79 U/L) and glutamyl transferase (-6.0 U/L) in patients with liver disorders, and ALT (-2.22 U/L) in younger adults; however, high-dose supplementation (>1,000 mg/day) appeared to increase alkaline phosphatase concentration (+5.07 U/L). ALT also increased in older adults (+2.33 U/L) following resveratrol supplementation. We found resveratrol did not have a significant effect on liver health in the general population. However, resveratrol could be effective in patients with liver disorders. Our findings also suggest that high-dose resveratrol administration and supplementation in older adults should be performed with caution. Further high-quality clinical trials are also needed to firmly establish the clinical efficacy of resveratrol.
Collapse
Affiliation(s)
- Sepideh Soltani
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elham Sharifi-Zahabi
- School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Sadat Sangsefidi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Azam Ahmadi Vasmehjani
- Department of Nutrition, School of Public Health, Shahid Sadughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Meshkini
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zachary Stephen Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Shima Abdollahi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
29
|
The effect of resveratrol in cardio-metabolic disorders during pregnancy and offspring outcomes: a review. J Dev Orig Health Dis 2023; 14:3-14. [PMID: 35678161 DOI: 10.1017/s2040174422000332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Resveratrol supplementation during pregnancy and lactation has been associated with a reduced risk of maternal obesity, gestational diabetes mellitus , and preeclampsia. In addition, emerging evidence has shown that maternal resveratrol supplementation diminishes cardio-metabolic disorders in offspring, highlighting its role in modulating adaptative responses involving phenotypical plasticity. Therefore, it is reasonable to infer that administration of resveratrol during pregnancy and lactation periods could be considered an important nutritional intervention to decrease the risk of maternal and offspring cardio-metabolic disorders. To highlight these new insights, this literature review will summarize the understanding emerging from experimental and clinical studies about resveratrol supplementation and its capacity to prevent or minimize maternal and offspring cardio-metabolic disorders.
Collapse
|
30
|
Castro-Barquero S, Casas R, Rimm EB, Tresserra-Rimbau A, Romaguera D, Martínez JA, Salas-Salvadó J, Martínez-González MA, Vidal J, Ruiz-Canela M, Konieczna J, Sacanella E, García-Gavilán JF, Fitó M, García-Arellano A, Estruch R. Loss of Visceral Fat is Associated with a Reduction in Inflammatory Status in Patients with Metabolic Syndrome. Mol Nutr Food Res 2023; 67:e2200264. [PMID: 36416291 DOI: 10.1002/mnfr.202200264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
SCOPE Excessive visceral adipose tissue (VAT) is associated with higher secretion of pro-inflammatory molecules, contributing to systemic inflammation and obesity-related metabolic disturbances. METHODS AND RESULTS This prospective analysis includes 117 overweight/obese adults (55-75 years) from the PREDIMED-Plus study. Fourteen inflammatory markers and adipokines are measured using a Bio-Plex assay with multiplex technology: insulin, glucagon, IL-6, visfatin, ghrelin, GLP-1, TNF-α, MCP-1, PAI-1, resistin, C-peptide, leptin, adipsin, and adiponectin. Participants are categorized into tertiles according to changes in VAT after 1-year of follow-up, determined by dual-energy X-Ray absorptiometry. Participants allocate in tertile 3, which represent an increase of VAT content after 1-year of follow-up compared to tertile 1, show significant differences in insulin (T3 vs T1, fully adjusted model: p = 0.037, p for trend 0.042), PAI-1 (fully adjusted model: p = 0.05, p for trend 0.06), c-peptide (fully adjusted model: p = 0.037, p for trend 0.042), and TNF-α (fully adjusted model p = 0.037, p for trend 0.042). CONCLUSION The results evidence that a reduction in VAT is associated with clinical improvements in several inflammatory and adiposity markers, mainly in insulin, c-peptide, and PAI-1 levels, and these improvements may contribute to a reduction in cardiometabolic disturbances observe in obesity.
Collapse
Affiliation(s)
- Sara Castro-Barquero
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, 28029, Spain.,Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, 08036, Spain
| | - Rosa Casas
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, 28029, Spain.,Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, 08036, Spain
| | - Eric B Rimm
- Departments of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Anna Tresserra-Rimbau
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, 28029, Spain.,Department of Nutrition, Food Science and Gastronomy, XaRTA, INSA, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, Spain
| | - Dora Romaguera
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, 28029, Spain.,Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR), Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, 07120, Spain
| | - J Alfredo Martínez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, 28029, Spain.,Department of Nutrition, Food Sciences, and Physiology, University of Navarra, Pamplona, 31009, Spain.,Nutritional Genomics and Epigenomics Group, IMDEA Food, CEI UAM + CSIC, Madrid, 28049, Spain
| | - Jordi Salas-Salvadó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, 28029, Spain.,Departament de Bioquímica i Biotecnologia, Unitat de Nutrició, Universitat Rovira i Virgili, Reus, 43201, Spain.,University Hospital of Sant Joan de Reus, Nutrition Unit, Reus, 43204, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, 43204, Spain
| | - Miguel A Martínez-González
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, 28029, Spain.,Department of Preventive Medicine and Public Health, University of Navarra, IDISNA, Pamplona, 31008, Spain
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain.,Department of Endocrinology, Institut d` Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, 08036, Spain
| | - Miguel Ruiz-Canela
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, 28029, Spain.,Department of Preventive Medicine and Public Health, University of Navarra, IDISNA, Pamplona, 31008, Spain
| | - Jadwiga Konieczna
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, 28029, Spain.,Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR), Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, 07120, Spain
| | - Emilio Sacanella
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, 28029, Spain.,Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, 08036, Spain
| | - Jesús Francisco García-Gavilán
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, 28029, Spain.,Departament de Bioquímica i Biotecnologia, Unitat de Nutrició, Universitat Rovira i Virgili, Reus, 43201, Spain.,University Hospital of Sant Joan de Reus, Nutrition Unit, Reus, 43204, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, 43204, Spain
| | - Montse Fitó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, 28029, Spain.,Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d`Investigació Médica (IMIM), Barcelona, 08003, Spain
| | - Ana García-Arellano
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, 28029, Spain.,Department of Preventive Medicine and Public Health, University of Navarra, IDISNA, Pamplona, 31008, Spain.,Emergency Medicine, Osasunbidea, Navarra Regional Health Service, Pamplona, 31003, Spain
| | - Ramon Estruch
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, 28029, Spain.,Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, 08036, Spain
| |
Collapse
|
31
|
Armani A, Feraco A, Camajani E, Gorini S, Lombardo M, Caprio M. Nutraceuticals in Brown Adipose Tissue Activation. Cells 2022; 11:cells11243996. [PMID: 36552762 PMCID: PMC9776638 DOI: 10.3390/cells11243996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Obesity and its associated comorbidities have become pandemic, and challenge the global healthcare system. Lifestyle changes, nutritional interventions and phamaceuticals should be differently combined in a personalized strategy to tackle such a public health burden. Altered brown adipose tissue (BAT) function contributes to the pathophysiology of obesity and glucose metabolism dysfunctions. BAT thermogenic activity burns glucose and fatty acids to produce heat through uncoupled respiration, and can dissipate the excessive calorie intake, reduce glycemia and circulate fatty acids released from white adipose tissue. Thus, BAT activity is expected to contribute to whole body energy homeostasis and protect against obesity, diabetes and alterations in lipid profile. To date, pharmacological therapies aimed at activating brown fat have failed in clinical trials, due to cardiovascular side effects or scarce efficacy. On the other hand, several studies have identified plant-derived chemical compounds capable of stimulating BAT thermogenesis in animal models, suggesting the translational applications of dietary supplements to fight adipose tissue dysfunctions. This review describes several nutraceuticals with thermogenic properties and provides indications, at a molecular level, of the regulation of the adipocyte thermogenesis by the mentioned phytochemicals.
Collapse
Affiliation(s)
- Andrea Armani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
- Correspondence:
| | - Alessandra Feraco
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Elisabetta Camajani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Stefania Gorini
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| |
Collapse
|
32
|
Liu X, Yu Z, Zhou HH, Feng Y, Bu Y, Zhai D, Zhang G, Ding S, Wang E, Mi Y, Wan Z. Effect of flavonoid intake on circulating levels of adiponectin and leptin: A systematic review and meta-analysis of randomized controlled clinical trials. Phytother Res 2022; 36:4139-4154. [PMID: 36117321 DOI: 10.1002/ptr.7617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/09/2022]
Abstract
This meta-analysis of randomized controlled trials (RCTs) was conducted to explore the effects of flavonoid intake on adiponectin and leptin levels. The PubMed, EMBASE, and Cochrane Library databases were searched on March 1, 2021. Random-effects, subgroup, sensitivity, and meta-regression analyses were conducted on 40 publications. Flavonoid intake significantly increased circulating adiponectin (0.54 μg/ml, 95% CI [0.20, 0.88], p = .002; I2 = 86.4%) and significantly reduced leptin levels (weighted mean difference: -0.79 ng/ml, 95% CI [-1.33, -0.25], p = .004; I2 = 87.7%). Subgroup analysis demonstrated that flavonoid intervention produced a significant elevation in adiponectin levels only in studies that lasted more than 12 weeks, conducted in Asian regions, were parallel-designed, involved obese or overweight participants and participants with type 2 diabetes mellitus (T2DM) or cardiovascular diseases, used tea catechins, and used a dietary supplement intervention. A significantly negative effect on leptin levels was observed in studies conducted in Asian countries, with healthy participants and participants with T2DM, used whole food interventions, and involved participants with lower baseline leptin levels. In conclusion, flavonoid intake significantly increased circulating adiponectin and decreased leptin levels; however, study heterogeneity was very high. Future well-designed trials are required to address heterogeneous study designs and clarify the efficacy of plants in regulating adiponectin and leptin levels.
Collapse
Affiliation(s)
- Xinxin Liu
- Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, China.,NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Huan-Huan Zhou
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yang Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjun Bu
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Desheng Zhai
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Guofu Zhang
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Shibin Ding
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Erhui Wang
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Yang Mi
- Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxiao Wan
- College of Public Health, Zhengzhou University, Zhengzhou, China.,School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
33
|
Effects of Antioxidant Supplementation on Metabolic Disorders in Obese Patients from Randomized Clinical Controls: A Meta-Analysis and Systematic Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7255413. [PMID: 36092166 PMCID: PMC9459443 DOI: 10.1155/2022/7255413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022]
Abstract
Purpose This systematic review and meta-analysis aim at elucidating the heterogeneity in beneficial effects of antioxidant supplementation in obese adults by exploring the differential effects of antioxidant supplementation on basic indicators of obesity, lipid metabolism, systemic antioxidant capacity, inflammatory biomarkers, and liver function. Methods The inclusion criteria specified randomized controlled trials with antioxidant intervention for adults (mean body mass index (BMI) > 30), from inception to Aug. 8, 2021, in the PubMed, Embase, The Cochrane Library, Web of Science, and Scopus databases. Meta-analysis and publication bias were performed using RevMan 5.4 software. Stata16 software was used to detect publication bias with Egger's and Begg's methods being mainly used. The data of basic indicators of obesity, lipid metabolism index, oxidative stress index, inflammatory biomarkers, and liver function index were collected to analyze the beneficial effects of antioxidant supplementation in obese patients. Results A total of 30 studies were included in this study with a sample of 845 obese patients from the antioxidant supplementation group and 766 obese patients from the placebo control group. The meta-analysis showed that obese patients with antioxidant supplementation had lower BMI (mean difference (MD): − 0.44 [95%confidence interval (CI): − 0.84, −0.04], p = 0.03), waist circumference (MD : −0.78 [95%CI:−1.45, −0.11], p = 0.02), fasting blood glucose (FBG) level (standardized mean difference (SMD): − 4.92 [95%CI:−6.87, −2.98], p < 0.001) and homeostasis model assessment of insulin resistance (MD : −0.45 [95%CI:−0.61, −0.3], p < 0.001) when compared to the placebo group. Obese patients on antioxidant supplementation had lower levels of total cholesterol (SMD : −0.43 [95%CI:−0.84, −0.02], p = 0.04), triglycerides (SMD : −0.17 [95%CI:−0.31, −0.04], p = 0.01), low-density lipoprotein (SMD : −0.15 [95%CI:−0.29, −0.01], p = 0.03), malondialdehyde (SMD : −1.67 [95%CI:−2.69, −0.65], p = 0.001), and tumor necrosis factor-alpha (SMD : −0.29 [95%CI:−0.56, −0.02], p = 0.03), respectively, when compared to the placebo group. In addition, obese patients with antioxidant supplementation had higher levels of high-density lipoprotein (SMD : 0.25 [95%CI : 0.03, 0.46], p = 0.03) and superoxide dismutase (SMD : 1.09 [95%CI : 0.52, 1.65], p < 0.001) when compared to the placebo group. Antioxidant supplementation had no effects on other analyzed parameters including waist–hip ratio, leptin, fat mass, interleukin-6, C-reactive protein, alanine transaminase, and aspartate transaminase in obese patients. Conclusion The meta-analysis results indicated that antioxidant supplementation exerted potential beneficial effects in obese patients by regulating FBG, oxidative stress, and inflammation, whilst more high-quality studies are required to confirm these effects. The present study may provide important insights for the treatment of clinical obesity and obesity-associated complications.
Collapse
|
34
|
Tondt J, Bays HE. Concomitant medications, functional foods, and supplements: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2022. OBESITY PILLARS 2022; 2:100017. [PMID: 37990714 PMCID: PMC10661915 DOI: 10.1016/j.obpill.2022.100017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/03/2022] [Indexed: 11/23/2023]
Abstract
Background This Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) is intended to provide clinicians an overview of the body weight effects of concomitant medications (i.e., pharmacotherapies not specifically for the treatment of obesity) and functional foods, as well as adverse side effects of supplements sometimes used by patients with pre-obesity/obesity. Methods The scientific information for this CPS is based upon published scientific citations, clinical perspectives of OMA authors, and peer review by the Obesity Medicine Association leadership. Results This CPS outlines clinically relevant aspects of concomitant medications, functional foods, and many of the more common supplements as they relate to pre-obesity and obesity. Topics include a discussion of medications that may be associated with weight gain or loss, functional foods as they relate to obesity, and side effects of supplements (i.e., with a focus on supplements taken for weight loss). Special attention is given to the warnings and lack of regulation surrounding weight loss supplements. Conclusions This Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) on concomitant medications, functional foods, and supplements is one of a series of OMA CPSs designed to assist clinicians in the care of patients with the disease of pre-obesity/obesity. Implementation of appropriate practices in these areas may improve the health of patients, especially those with adverse fat mass and adiposopathic metabolic consequences.
Collapse
Affiliation(s)
- Justin Tondt
- Department of Family and Community Medicine, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA, 23501, USA
| | - Harold Edward Bays
- Louisville Metabolic and Atherosclerosis Research Center, 3288 Illinois Avenue, University of Louisville School of Medicine, Louisville, KY, 40213, USA
| |
Collapse
|
35
|
Francisco CM, Fischer LW, Vendramini V, de Oliva SU, Paccola CC, Miraglia SM. Resveratrol reverses male reproductive damage in rats exposed to nicotine during the intrauterine phase and breastfeeding. Andrology 2022; 10:951-972. [PMID: 35472028 DOI: 10.1111/andr.13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Nicotine leads to reproductive changes culminating in male infertility and subfertility. Resveratrol, a polyphenol, is a biological modulator. Sirtuin 1 (SIRT1) protein can positively act on male reproduction, and its expression can be affected by nicotine and modulated by resveratrol. OBJECTIVES The capability of resveratrol to reverse the reproductive damage in adult male offspring, which was nicotine-exposed during the intrauterine phase and breastfeeding, was investigated. MATERIALS AND METHODS Four groups were established with male offspring born from nicotine-exposed and non-exposed rat dams during pregnancy and lactation. Forty-eight male Wistar rats were distributed into four groups: sham control (SC), resveratrol (R), nicotine (N), and nicotine + resveratrol (NR). Rat dams of the N and NR offspring were exposed to nicotine (2 mg/kg/day) during pregnancy and lactation using a subcutaneously implanted minipump. The offspring of the R and NR groups received resveratrol (300 mg/kg of body weight, gavage) for 63 days from puberty. At 114 days of age, the male rats were euthanized. RESULTS Nicotine did not alter the body weight, biometry of reproductive organs, or quantitative sperm parameters of adult offspring but caused an evident worsening of all sperm qualitative parameters studied. Daily treatment with resveratrol from puberty up to adulthood improved all qualitative sperm parameters significantly, leading some of them close to the control values. Resveratrol also improved the morphological integrity and expression of SIRT1 in the seminiferous epithelium of nicotine-exposed offspring. CONCLUSION AND DISCUSSION Resveratrol reversed the male reproductive damage caused by nicotine. Nicotine crosses the blood-placental membrane and is present in the breast milk of mothers who smoke. Resveratrol restored the altered reproductive parameters in the male adult offspring that were nicotine-exposed during intrauterine life and breastfeeding. The epigenetic modulating action of resveratrol can be involved in this nicotine damage reversion. Resveratrol may be a promising candidate to be investigated regarding the adjuvant strategies in the treatment of male infertility.
Collapse
Affiliation(s)
| | | | - Vanessa Vendramini
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| | - Samara Urban de Oliva
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| | - Camila Cicconi Paccola
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| | - Sandra Maria Miraglia
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Zhou Q, Wang Y, Han X, Fu S, Zhu C, Chen Q. Efficacy of Resveratrol Supplementation on Glucose and Lipid Metabolism: A Meta-Analysis and Systematic Review. Front Physiol 2022; 13:795980. [PMID: 35431994 PMCID: PMC9009313 DOI: 10.3389/fphys.2022.795980] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Background Lipids are ubiquitous metabolites with diverse functions. Excessive lipid accumulation can trigger lipid redistribution among metabolic organs such as adipose, liver and muscle, thus altering the lipid metabolism. It has been revealed that disturbed lipid metabolism would cause multiple disease complications and is highly correlated with human morbidity. Resveratrol (RSV), a phytoestrogen with antioxidant, can modulate insulin resistance and lipid profile. Recently, research on RSV supplementation to improve glucose and lipid metabolism has been controversial. A meta-analysis may provide a scientific reference for the relationship between lipid metabolism and RSV supplementation. Methods and Analysis We searched the PubMed, Cochrane Library, Web of Science, and Embase databases from inception to October 2021 using relevant keywords. A comprehensive search for randomized controlled trials (RCTs) was performed. For calculating pooled effects, continuous data were pooled by mean difference (MD) and 95% confidence interval (CI). Adopting the method of inverse-variance with a random-effect, all related statistical analyses were performed using the Rev Man V.5.3 and STATA V.15 software. Results A total of 25 articles were incorporated into the final meta-analysis after removal of duplicates by checking titles and abstracts and excluding non-relevant articles. The selected articles had a total of 1,171 participants, including 578 in the placebo group and 593 in the intervention group. According to the current meta-analysis, which demonstrated that there was a significant decrease in waist circumference (SMD = –0.36; 95% CI: –0.59, –0.14; P = 0.002; I2 = 88%), hemoglobin A1c (–0.48; –0.69, –0.27; P ≤ 0.001; I2 = 94%), total cholesterol (–0.15; –0.3, –0.01; P = 0.003; I2 = 94%), low density lipoprotein cholesterol (–0.42; –0.57, –0.27; P ≤ 0.001; I2 = 92%), high density lipoprotein cholesterol (0.16; –0.31, –0.02; P = 0.03; I2 = 81%) following resveratrol administration. Conclusion These results suggest that RSV has a dramatic impact on regulating lipid and glucose metabolism, and the major clinical value of resveratrol intake is for obese and diabetic patients. We hope that this study could provide more options for clinicians using RSV. Furthermore, in the future, large-scale and well-designed trials will be warranted to confirm these results. Systematic Review Registration Website [https://www.crd.york.ac.uk/prospero/#recordDetails], identifier [CRD42021244904].
Collapse
|
37
|
Resveratrol for Weight Loss in Obesity: An Assessment of Randomized Control Trial Designs in ClinicalTrials.gov. Nutrients 2022; 14:nu14071424. [PMID: 35406038 PMCID: PMC9002514 DOI: 10.3390/nu14071424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022] Open
Abstract
Resveratrol is a polyphenol that may improve weight loss outcomes in obese individuals. However, assessing the effectiveness of resveratrol supplementations as an appropriate intervention for weight loss in obesity across randomized control trials (RCTs) has been complicated by variability in their design. This study aims to evaluate design elements across RCTs of resveratrol interventions in obesity with weight loss as an end-point outcome, as recorded in ClinicalTrials.gov. We found discrepancies in participant inclusion criteria (sample size, age ranges, sex, BMI, medical conditions), interventional design (delivery modalities, dosages, duration) and primary outcomes measured (anthropomorphic, blood biomarkers). We identified a near three-fold variation in study sample size, two-fold variation in minimum inclusion age, five modalities of therapeutic resveratrol delivery with interventional durations ranging from two weeks to six months. Weight loss was only identified as a primary outcome in three of the seven studies evaluated. In conclusion, heterogeneity in trial design using resveratrol suggests that weight-loss-related outcomes are difficult to interpret and cross-validate. Indeed, conclusions drawn from human studies have been inconsistent, which may be attributed to study design heterogeneity including major differences in sample population, age, sex, BMI, underlying health conditions and end-point measures.
Collapse
|
38
|
Li J, Zeng X, Yang F, Wang L, Luo X, Liu R, Zeng F, Lu S, Huang X, Lei Y, Lan Y. Resveratrol: Potential Application in Sepsis. Front Pharmacol 2022; 13:821358. [PMID: 35222035 PMCID: PMC8864164 DOI: 10.3389/fphar.2022.821358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/21/2022] [Indexed: 01/02/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction syndrome caused by host response disorders due to infection or infectious factors and is a common complication of patients with clinical trauma, burns, and infection. Resveratrol is a natural polyphenol compound that is a SIRT-1 activator with anti-inflammatory, antiviral, antibacterial, antifungal inhibitory abilities as well as cardiovascular and anti-tumor protective effects. In recent years, some scholars have applied resveratrol in animal models of sepsis and found that it has an organ protective effect and can improve the survival time and reduce the mortality of animals with sepsis. In this study, Medline (Pubmed), embase, and other databases were searched to retrieve literature published in 2021 using the keywords “resveratrol” and “sepsis,” and then the potential of resveratrol for the treatment of sepsis was reviewed and prospected to provide some basis for future clinical research.
Collapse
Affiliation(s)
- Jiajia Li
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoting Zeng
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fuxun Yang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Wang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoxiu Luo
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongan Liu
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fan Zeng
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Sen Lu
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Lei
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunping Lan
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
39
|
Cho HM, Zhang M, Park EJ, Lee BW, Park YJ, Kim HW, Pham HTT, Chin YW, Oh WK. Flavonostilbenes Isolated from the Stems of Rhamnoneuron balansae as Potential SIRT1 Activators. JOURNAL OF NATURAL PRODUCTS 2022; 85:70-82. [PMID: 35040315 DOI: 10.1021/acs.jnatprod.1c00689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The cumulative effects of cell damage result in aging, which gradually decreases human function in various aspects and leads to multiple age-related chronic diseases. To overcome the adverse effects of aging, silent mating type information regulation 2 homologue (SIRT1) activators are promising bioactive compounds that mimic calorie restriction to improve quality of life and prevent aging. In this study, 11 new flavonostilbenes (1-11) and three known compounds (12-14) were purified from stems of Rhamnoneuron balansae. The structures of the new compounds were determined using extensive data from spectroscopic methods, including NMR and HRESIMS. Their absolute configurations were deduced by ECD calculations with coupling constant analysis. All of the isolated new compounds (1-11) were evaluated for their effects on SIRT1 deacetylase activity, the NAD+/NADH ratio, and the AMP-activated protein kinase activation level in cell-based assays. The results showed that rhamnoneuronal D (1) exhibits promising biological activity in several in vitro models related to SIRT1 and suggest it is a potential natural-product-based antiaging agent.
Collapse
Affiliation(s)
- Hyo-Moon Cho
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Mi Zhang
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Jin Park
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ba-Wool Lee
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeon-Joo Park
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Woo Kim
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ha-Thanh-Tung Pham
- Department of Botany, Hanoi University of Pharmacy, Hanoi 000084, Vietnam
| | - Young-Won Chin
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Won-Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
40
|
Obesity and Male Reproduction: Do Sirtuins Play a Role? Int J Mol Sci 2022; 23:ijms23020973. [PMID: 35055159 PMCID: PMC8779691 DOI: 10.3390/ijms23020973] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity is a major current public health problem of global significance. A progressive sperm quality decline, and a decline in male fertility, have been reported in recent decades. Several studies have reported a strict relationship between obesity and male reproductive dysfunction. Among the many mechanisms by which obesity impairs male gonadal function, sirtuins (SIRTs) have an emerging role. SIRTs are highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases that play a role in gene regulation, metabolism, aging, and cancer. SIRTs regulate the energy balance, the lipid balance, glucose metabolism, and adipogenesis, but current evidence also indicates a role for SIRTs in male reproduction. However, the majority of the studies have been conducted in animal models and very few have been conducted with humans. This review shows that SIRTs play an important role among the molecular mechanisms by which obesity interferes with male fertility. This highlights the need to deepen this relationship. It will be of particular interest to evaluate whether synthetic and/or natural compounds capable of modifying the activity of SIRTs may also be useful for the treatment of obesity and its effects on gonadal function. Although few studies have explored the role of SIRT activators in obesity-induced male infertility, some molecules, such as resveratrol, appear to be effective in modulating SIRT activity, as well as counteracting the negative effects of obesity on male fertility. The search for strategies to improve male reproductive function in overweight/obese patients is a challenge and understanding the role of SIRTs and their activators may open new interesting scenarios in the coming years.
Collapse
|
41
|
A comprehensive review on phytochemicals for fatty liver: are they potential adjuvants? J Mol Med (Berl) 2022; 100:411-425. [PMID: 34993581 DOI: 10.1007/s00109-021-02170-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of metabolic syndrome and, as such, is associated with obesity. With the current and growing epidemic of obesity, NAFLD is already considered the most common liver disease in the world. Currently, there is no official treatment for the disease besides weight loss. Although there are a few synthetic drugs currently being studied, there is also an abundance of herbal products that could also be used for treatment. With the World Health Organization (WHO) traditional medicine strategy (2014-2023) in mind, this review aims to analyze the mechanisms of action of some of these herbal products, as well as evaluate toxicity and herb-drug interactions available in literature.
Collapse
|
42
|
The Effect of Herbal Medicine and Natural Bioactive Compounds on Plasma Adiponectin: A Clinical Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1328:37-57. [PMID: 34981470 DOI: 10.1007/978-3-030-73234-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Noncommunicable diseases (NCDs) are one of the major public health concerns globally. Most of the NCDs including insulin resistance, metabolic syndrome, type 2 diabetes mellitus, fatty liver disease, and coronary heart disease are related to obesity and are called obesity-related NCDs (OR-NCDs). However, adipocytes can reduce OR-NCDs by secreting adiponectin. Adiponectin has an inverse relationship with body fat. Obese people have impairment in differentiating pre-adipocytes to adipocytes, the process facilitated by adiponectin. Adiponectin directly increases insulin sensitivity and reduces obesity-related insulin resistance by down-regulating hepatic glucose production and increasing fatty acid (FA) oxidation in skeletal muscle. Considering the various beneficial effects of adiponectin on health, increasing adiponectin might be a promising approach to prevent and treat OR-NCDs. Recent studies have shown that nutraceuticals and medicinal compounds isolated from plants could prevent and treat various diseases, particularly cardiovascular diseases (CVDs), diabetes mellitus, obesity, and non-alcoholic fatty liver disease. However, to our knowledge, the effect of these natural products, including herbal supplements and functional foods on adiponectin, has not yet been fully reviewed. The main aim of this review is to summarize the effects of nutraceuticals and herbal bioactive compounds on plasma adiponectin concentrations based on clinical studies. It can be concluded that medicinal plants, and herbal bioactive compounds, particularly curcumin, anthocyanins, resveratrol, soy, walnut, and dihydromyricetin can be used as adjunct or complementary therapeutic agents to increase plasma adiponectin, which could potentially prevent and treat NCDs.
Collapse
|
43
|
Gu W, Geng J, Zhao H, Li X, Song G. Effects of Resveratrol on Metabolic Indicators in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Int J Clin Pract 2022; 2022:9734738. [PMID: 35685602 PMCID: PMC9158797 DOI: 10.1155/2022/9734738] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/01/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND AIMS Previous studies on the effects of resveratrol on metabolic indicators reported contradictory findings, and these indicators have not been frequently studied in patients with type 2 diabetes. In this study, we aimed to examine the effects of resveratrol on metabolic indicators in a specific group of people with type 2 diabetes using the most recent literature. METHODS We used RevMan 5.4 and Stata 14.0 software to identify randomized controlled studies on the impact of resveratrol on metabolic indicators in patients with type 2 diabetes using relevant search terms and keywords such as "resveratrol" and "type 2 diabetes" in the China National Knowledge Infrastructure, PubMed, Cochrane, and Embase. Data were expressed as the weighted mean difference (WMD) and 95% confidence interval (CI). RESULTS This meta-analysis included 19 studies involving 1151 patients with type 2 diabetes, including 584 patients treated with resveratrol and 567 patients who received placebo. Compared with the control data, large doses of resveratrol (≥1000 mg) reduced fasting blood glucose levels (WMD: -18.76 mg/dL, 95% CI: -23.43, -14.09; P < 0.00001). Additionally, resveratrol reduced systolic blood pressure (WMD: -7.97 mmHg, 95% CI: -10.63, -5.31; P < 0.00001) and diastolic blood pressure (WMD: -3.55 mmHg, 95% CI: -5.18, -1.93; P < 0.00001) in patients with type 2 diabetes but did not improve waist circumference (WMD: 0.05 cm, 95% CI: -1.77, 1.88; P=0.95), triglyceride levels (WMD: -4.49 mg/dL, 95% CI: -24.23, 15.25; P=0.66), or high-density lipoprotein cholesterol levels (WMD: -1.05 mg/dL, 95% CI: -2.44, 0.33; P=0.14) in patients with type 2 diabetes. CONCLUSION This systematic review and meta-analysis updated the most recent literature and provided new evidence, proving that resveratrol treatment can reduce systolic blood pressure and diastolic blood pressure. High-dose resveratrol can reduce fasting blood glucose in patients with type 2 diabetes, although it has no effect on waist circumference, triglyceride, and high-density lipoprotein cholesterol.
Collapse
Affiliation(s)
- Wei Gu
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
- Endocrinology Department, Harrison International Peace Hospital, Hengshui 053000, China
| | - Jianlin Geng
- Endocrinology Department, Harrison International Peace Hospital, Hengshui 053000, China
| | - Hang Zhao
- Endocrinology Department, Hebei General Hospital, Shijiazhuang 050051, China
| | - Xiaolong Li
- Endocrinology Department, Harrison International Peace Hospital, Hengshui 053000, China
| | - Guangyao Song
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
- Endocrinology Department, Hebei General Hospital, Shijiazhuang 050051, China
| |
Collapse
|
44
|
|
45
|
Cadmium-Induced Kidney Injury in Mice Is Counteracted by a Flavonoid-Rich Extract of Bergamot Juice, Alone or in Association with Curcumin and Resveratrol, via the Enhancement of Different Defense Mechanisms. Biomedicines 2021; 9:biomedicines9121797. [PMID: 34944613 PMCID: PMC8698830 DOI: 10.3390/biomedicines9121797] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/23/2022] Open
Abstract
Cadmium (Cd) represents a public health risk due to its non-biodegradability and long biological half-life. The main target of Cd is considered the kidney, where it accumulates. No effective treatment for Cd poisoning is available so that several therapeutic approaches were proposed to prevent damages after Cd exposure. We evaluated the effects of a flavonoid-rich extract of bergamot juice (BJe), alone or in association with curcumin (Cur) and resveratrol (Re), in the kidney of mice exposed to cadmium chloride (CdCl2). Male mice were administered with CdCl2 and treated with Cur, Re, or BJe alone or in combination for 14 days. The kidneys were processed for biochemical, structural and morphometric evaluation. Cd treatment significantly increased urea nitrogen and creatinine levels, along with tp53, Bax, Nos2 and Il1b mRNA, while reduced that of Bcl2, as well as glutathione (GSH) content and glutathione peroxidase (GPx) activity. Moreover, Cd caused damages to glomeruli and tubules, and increased Nrf2, Nqo1 and Hmox1 gene expression. Cur, Re and BJe at 40 mg/kg significantly improved all parameters, while BJe at 20 mg/kg showed a lower protective effect. After treatment with the associations of the three nutraceuticals, all parameters were close to normal, thus suggesting a new potential strategy in the protection of renal functions in subjects exposed to environmental toxicants.
Collapse
|
46
|
Zeraattalab-Motlagh S, Jayedi A, Shab-Bidar S. The effects of resveratrol supplementation in patients with type 2 diabetes, metabolic syndrome, and nonalcoholic fatty liver disease: an umbrella review of meta-analyses of randomized controlled trials. Am J Clin Nutr 2021; 114:1675-1685. [PMID: 34320173 DOI: 10.1093/ajcn/nqab250] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Uncertainty remains about the estimates of the effects for resveratrol supplementation, including the certainty of the evidence for each estimate and the magnitude of the observed impact based on the minimal important difference. OBJECTIVE We aimed to provide an overview of the effects of resveratrol supplementation, in comparison to control groups, for the management of cardiometabolic risk factors in patients with type 2 diabetes (T2D), metabolic syndrome (MetS), and nonalcoholic fatty liver disease (NAFLD). METHODS PubMed, Scopus, and ISI Web of Science were searched from inception to May 2021. For each meta-analysis, the mean difference and its 95% CI were recalculated using a random-effects model. The certainty of evidence was rated using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) approach. RESULTS We identified 11 meta-analyses corresponding to 29 outcomes in 1476 individuals with T2D, 17 meta-analyses reporting 26 outcomes in 727 participants with the MetS, and 10 meta-analyses reporting 24 outcomes in 271 patients with NAFLD. Resveratrol supplementation had beneficial effects on some outcomes such as blood pressure, lipid profile, glycemic control, and insulin resistance in T2D, waist circumference in MetS, and body-weight and inflammation markers in NAFLD; however, for almost all outcomes, the magnitude of the effect was trivial, the certainty of evidence was very low to low, or the number of trials was too few. In the case of glycated hemoglobin (HbA1c), there was evidence that resveratrol can exert favorable and clinically important effects in the short term (<12 wk; mean difference: -1.05%, 95% CI: -2.09%, -0.02%; n = 6; GRADE = moderate). CONCLUSIONS Current evidence does not support supplementation with resveratrol for the management of cardiometabolic risk factors in patients with T2D, MetS, and NAFLD. In the case of HbA1c, subject to the limitations such as short-term follow-up and small sample size, there was a clinically important effect. The protocol of the present systematic review was registered in Open Science Framework (https://osf.io/ake85; registration doi: 10.17605/OSF.IO/AKE85).
Collapse
Affiliation(s)
- Sheida Zeraattalab-Motlagh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ahmad Jayedi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
47
|
Hofer SJ, Davinelli S, Bergmann M, Scapagnini G, Madeo F. Caloric Restriction Mimetics in Nutrition and Clinical Trials. Front Nutr 2021; 8:717343. [PMID: 34552954 PMCID: PMC8450594 DOI: 10.3389/fnut.2021.717343] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022] Open
Abstract
The human diet and dietary patterns are closely linked to the health status. High-calorie Western-style diets have increasingly come under scrutiny as their caloric load and composition contribute to the development of non-communicable diseases, such as diabetes, cancer, obesity, and cardiovascular disorders. On the other hand, calorie-reduced and health-promoting diets have shown promising results in maintaining health and reducing disease burden throughout aging. More recently, pharmacological Caloric Restriction Mimetics (CRMs) have gained interest of the public and scientific community as promising candidates that mimic some of the myriad of effects induced by caloric restriction. Importantly, many of the CRM candidates activate autophagy, prolong life- and healthspan in model organisms and ameliorate diverse disease symptoms without the need to cut calories. Among others, glycolytic inhibitors (e.g., D-allulose, D-glucosamine), hydroxycitric acid, NAD+ precursors, polyamines (e.g., spermidine), polyphenols (e.g., resveratrol, dimethoxychalcones, curcumin, EGCG, quercetin) and salicylic acid qualify as CRM candidates, which are naturally available via foods and beverages. However, it is yet unclear how these bioactive substances contribute to the benefits of healthy diets. In this review, we thus discuss dietary sources, availability and intake levels of dietary CRMs. Finally, since translational research on CRMs has entered the clinical stage, we provide a summary of their effects in clinical trials.
Collapse
Affiliation(s)
- Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|
48
|
Enhancing Bioavailability of Nutraceutically Used Resveratrol and Other Stilbenoids. Nutrients 2021; 13:nu13093095. [PMID: 34578972 PMCID: PMC8470508 DOI: 10.3390/nu13093095] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
Stilbenoids are interesting natural compounds with pleiotropic in vitro and in vivo activity. Their well-documented biological properties include anti-inflammatory effects, anticancer effects, effects on longevity, and many others. Therefore, they are nowadays commonly found in foods and dietary supplements, and used as a part of treatment strategy in various types of diseases. Bioactivity of stilbenoids strongly depends on different types of factors such as dosage, food composition, and synergistic effects with other plant secondary metabolites such as polyphenols or vitamins. In this review, we summarize the existing in vitro, in vivo, and clinical data from published studies addressing the optimization of bioavailability of stilbenoids. Stilbenoids face low bioavailability due to their chemical structure. This can be improved by the use of novel drug delivery systems or enhancers, which are discussed in this review. Current in vitro and in vivo evidence suggests that both approaches are very promising and increase the absorption of the original substance by several times. However, data from more clinical trials are required.
Collapse
|
49
|
Resveratrol and Markers of Polycystic Ovary Syndrome: a Systematic Review of Animal and Clinical Studies. Reprod Sci 2021; 29:2477-2487. [PMID: 34312768 DOI: 10.1007/s43032-021-00653-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/03/2021] [Indexed: 10/20/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common disorder affecting childbearing-age women, and is associated with reproductive and metabolic disturbances. The present study aimed to systematically review current animal studies and randomized placebo-controlled clinical trials (RCT) regarding the effects of resveratrol, a natural polyphenolic compound, on PCOS features. PubMed, Scopus, Web of Knowledge, and Google Scholar were comprehensively searched until December 2020. All original animal articles and RCTs evaluating the effects of resveratrol on PCOS were eligible for the review. Out of 289 initial records, eight animal studies and three RCTs met our inclusion criteria. Most of the included animal studies reported beneficial effects of resveratrol on the histomorphological features, sex hormones and gonadotropins, glycemic control, inflammation, and oxidative stress. Resveratrol also ameliorated ovarian volume, high-quality oocyte rate, high-quality embryo rate, androgens and gonadotropins concentrations, angiogenic factors levels, and endoplasmic reticulum stress in PCOS patients. Upregulation of sirtuin-1 was an examined mechanism proposed for some observed effects of resveratrol. The current literature is limited to conclude the beneficial effects of resveratrol on the management of PCOS. Although, according to the promising results of the animal studies and limited RCTs, resveratrol might be an effective phytochemical in PCOS control, especially regarding hormonal and reproductive abnormalities. More mechanistic studies and RCTs are warranted to obvious whether resveratrol can be prescribed in the clinical situation.
Collapse
|
50
|
Fraiz GM, da Conceição AR, de Souza Vilela DL, Rocha DMUP, Bressan J, Hermsdorff HHM. Can resveratrol modulate sirtuins in obesity and related diseases? A systematic review of randomized controlled trials. Eur J Nutr 2021; 60:2961-2977. [PMID: 34251517 DOI: 10.1007/s00394-021-02623-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE Human sirtuins can be a powerful therapeutic target in preventing and treating obesity and age-related diseases. Some dietary components can modulate sirtuins' activity, such as resveratrol. This systematic review aimed to assess whether resveratrol (RSV), without other interventions, can stimulate sirtuins in the treatment of excess weight and its comorbidities. METHODS MEDLINE/Pubmed, EMBASE and Cochrane Central Register of Controlled Trials (CENTRAL) were used for search eligible articles. Randomized clinical trials assessing RSV supplementation on changes in the sirtuins' gene expression/protein levels was the primary outcome. Other possible changes in cardiometabolic markers were considered the second outcome. Following PRISMA guidelines and using predefined inclusion and exclusion criteria, two reviewers independently and in parallel screened, assessed the studies' quality, and compiled data. Disagreements were resolved by consensus or consulting a third author. RESULTS This review included seven randomized control trials. Four articles demonstrated a significant increase in SIRT-1 with different RSV dosages and interventions time. The secondary outcomes showed improvements in insulin sensitivity, lipid profile, metabolic flexibility, total antioxidant capacity, energy expenditure changes, and reduction of ectopic accumulation of fat. CONCLUSION Data from RCTs studies showed that RSV supplementation could stimulate SIRT-1 in humans, and therefore contribute to the treatment of excess weight and its comorbidities. However, more research is needed because it was not possible to confirm this effect truly. [PROSPERO registration number: CRD42020205571].
Collapse
Affiliation(s)
- Gabriela Macedo Fraiz
- Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Aline Rosignoli da Conceição
- Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Darlene Larissa de Souza Vilela
- Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Daniela Mayumi Usuda Prado Rocha
- Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Josefina Bressan
- Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Helen Hermana Miranda Hermsdorff
- Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|