1
|
Shu Y, Zhou W, Zhang W, Lu L, Gao Y, Yu Y, Shan C, Tong D, Zhang X, Shi W, Liu G. Exposure to malathion impairs learning and memory of zebrafish by disrupting cholinergic signal transmission, undermining synaptic plasticity, and aggravating neuronal apoptosis. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137391. [PMID: 39892146 DOI: 10.1016/j.jhazmat.2025.137391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
The prevalence of organophosphorus pesticides, such as malathion, in water environments poses a severe threat to aquatic organisms. Although the brain is a potential target for malathion, little is known about its effect on cognitive functions in fish. In this study, we evaluated the effect of 4-week malathion exposure on the learning and memory of zebrafish using T-maze tasks. In addition to verifying the accumulation of malathion in the brain and its deleterious effects on blood-brain barrier integrity, the impacts of malathion on cholinergic signal transmission, synaptic plasticity, apoptosis, and oxidative stress were determined. Our results demonstrated that a 4-week malathion exposure resulted in typical learning and memory-deficit-like behaviors. Apart from inhibiting cholinergic signal transmission, synaptic plasticity was severely undermined by malathion (as evidenced by the disruption of BDNF/PI3K/AKT/CREB pathway, suppression of synaptophysins, and activation of microglia). Moreover, significantly higher levels of TUNEL fluorescence signals as well as apoptotic enzymes and genes probably induced by oxidative stress were detected in the brains of malathion-exposed zebrafish. Collectively, our results suggested that malathion at environmentally realistic levels can significantly undermine learning and memory of zebrafish by disrupting cholinergic signal transmission, impairing synaptic plasticity, and aggravating neuronal apoptosis via inducing oxidative stress.
Collapse
Affiliation(s)
- Yang Shu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Gao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Conghui Shan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Gao YZ, Liu K, Wu XM, Shi CN, He QL, Wu HP, Yang JJ, Yao H, Ji MH. Oxidative Stress-mediated Loss of Hippocampal Parvalbumin Interneurons Contributes to Memory Precision Decline After Acute Sleep Deprivation. Mol Neurobiol 2025; 62:5377-5394. [PMID: 39546120 DOI: 10.1007/s12035-024-04628-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Sleep is pivotal to memory consolidation, and sleep deprivation (SD) after learning can impede this process, leading to memory disorders. In the present study, we aimed to explore the effects of acute sleep deprivation (ASD) on memory disorders and the underlying mechanisms. ASD model was induced by subjecting the mice to 6 h of SD following fear conditioning training. Different cohorts were used for behavioral, biochemical, and electrophysiological tests. Here, we showed that memory precision decline was induced by ASD, concomitant with a notable elevation in oxidative stress within PV interneurons, loss of PV, and disturbed neuronal oscillation in the CA1 region. Notably, chemogenetic activation of PV interneurons effectively ameliorated abnormal gamma oscillation and memory precision decline observed in ASD mice. Meanwhile, chemogenetic inhibition of PV interneurons successfully mimicked the abnormal brain oscillations and memory precision decline observed in ASD mice. Additionally, prior administration of the antioxidant medication N-acetylcysteine effectively reversed memory precision decline and mitigated PV loss and abnormal oscillation triggered by ASD. Collectively, our findings indicated that ASD increased oxidative stress in PV interneurons, thereby disrupting neural oscillation in the CA1 and ultimately leading to memory precision decline.
Collapse
Affiliation(s)
- Yu-Zhu Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin-Miao Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cui-Na Shi
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiu-Li He
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai-Peng Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Hao Yao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Mu-Huo Ji
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Umeda T, Sakai A, Uekado R, Shigemori K, Nakajima R, Yamana K, Tomiyama T. Simply crushed zizyphi spinosi semen prevents neurodegenerative diseases and reverses age-related cognitive decline in mice. eLife 2025; 13:RP100737. [PMID: 40266679 PMCID: PMC12017767 DOI: 10.7554/elife.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
Neurodegenerative diseases are age-related disorders characterized by the cerebral accumulation of amyloidogenic proteins, and cellular senescence underlies their pathogenesis. Thus, it is necessary for preventing these diseases to remove toxic proteins, repair damaged neurons, and suppress cellular senescence. As a source for such prophylactic agents, we selected zizyphi spinosi semen (ZSS), a medicinal herb used in traditional Chinese medicine. Oral administration of ZSS hot water extract ameliorated Aβ and tau pathology and cognitive impairment in mouse models of Alzheimer's disease and frontotemporal dementia. Non-extracted ZSS simple crush powder showed stronger effects than the extract and improved α-synuclein pathology and cognitive/motor function in Parkinson's disease model mice. Furthermore, when administered to normal aged mice, the ZSS powder suppressed cellular senescence, reduced DNA oxidation, promoted brain-derived neurotrophic factor expression and neurogenesis, and enhanced cognition to levels similar to those in young mice. The quantity of known active ingredients of ZSS, jujuboside A, jujuboside B, and spinosin was not proportional to the nootropic activity of ZSS. These results suggest that ZSS simple crush powder is a promising dietary material for the prevention of neurodegenerative diseases and brain aging.
Collapse
Affiliation(s)
- Tomohiro Umeda
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of MedicineOsakaJapan
- Cerebro Pharma IncOsakaJapan
| | - Ayumi Sakai
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of MedicineOsakaJapan
- Cerebro Pharma IncOsakaJapan
| | - Rumi Uekado
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Keiko Shigemori
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Ryota Nakajima
- NOMON Co., Ltd, and New Business Development Unit, Teijin Ltd, Kasumigaseki Common Gate West TowerTokyoJapan
| | - Kei Yamana
- NOMON Co., Ltd, and New Business Development Unit, Teijin Ltd, Kasumigaseki Common Gate West TowerTokyoJapan
| | - Takami Tomiyama
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of MedicineOsakaJapan
- Cerebro Pharma IncOsakaJapan
| |
Collapse
|
4
|
Kress TC, Barris CT, Kovacs L, Khakina BN, Jordan CR, Bruder-Nascimento T, Stepp DW, MacArthur R, Patel VS, Chen J, Pacholczyk R, Kennard S, Belin de Chantemèle EJ. CD4 + T Cells Expressing Viral Proteins Induce HIV-Associated Endothelial Dysfunction and Hypertension Through Interleukin 1α-Mediated Increases in Endothelial NADPH Oxidase 1. Circulation 2025; 151:1187-1203. [PMID: 39907014 PMCID: PMC12011537 DOI: 10.1161/circulationaha.124.070538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Although combination antiretroviral therapy has increased life expectancy in people living with HIV, it has led to a marked increase in the prevalence of hypertension, the cause of which is unknown. Despite combination antiretroviral therapy, HIV-derived proteins remain expressed and produced by CD4+ T lymphocytes in people living with HIV. However, their contribution to HIV-associated hypertension and impaired endothelium-dependent relaxation remains ill defined. METHODS Here, we tested the hypothesis that CD4+ T cells expressing viral proteins contribute to endothelial dysfunction and hypertension using the Tg26 mouse model of HIV that expresses 7 of the 9 HIV proteins under the long terminal repeat promoter. We used male and female mice, bone marrow transplantation (BMT), adoptive transfer of CD4+ T cells, and aorta specimen discarded from people living with HIV. RESULTS We reported that intact Tg26 mice and mice receiving BMT (Tg26→WT) or CD4+ T cells from Tg26 mice display impaired endothelium-dependent relaxation and hypertension. Conversely, BMT from WT mice into Tg26 mice, inhibition of T cell activation, and CD4+ T cell depletion restored endothelial function and blood pressure in Tg26 mice. Cytokine profiling revealed that Tg26 mice, Tg26→WT, and Tg26 CD4+ T cells consistently exhibit high interleukin 1α (IL-1α) levels with no significant increase in other cytokines, whereas BMT from WT mice into Tg26 mice reduced IL-1α levels. IL-1α neutralization reduced blood pressure and restored endothelial function in Tg26 mice. To investigate the role of CD4+ T cells and IL-1α in endothelial dysfunction, we developed an aorta-immune cell coculture system. Exposure of WT aortas to Tg26 CD4+ T cells impaired endothelium-dependent relaxation, which was blocked by IL-1α-neutralizing antibody. While investigating the mechanisms of endothelial dysfunction, we reported that Tg26 mice, Tg26→WT aorta exhibit high NADPH oxidase (NOX) 1 expression. IL-1α exposure increased NOX1 in human microvascular endothelial cells, and NOX1 blockade restored endothelial function in Tg26 and Tg26→WT arteries, whereas NOX1 deficiency protected against Tg26 BMT-induced impaired endothelium-dependent relaxation and hypertension. Aortas from people living with HIV exhibit high NOX1 levels, and exposure of human aorta to Tg26 T cells increased NOX1 expression. CONCLUSIONS We provide the first evidence that CD4+ T cells expressing HIV viral proteins induced hypertension through IL-1α-mediated increases in vascular NOX1, which impairs endothelial function in males and females.
Collapse
Affiliation(s)
- Taylor C Kress
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Candee T. Barris
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Laszlo Kovacs
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Beryl N. Khakina
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Coleton R. Jordan
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Thiago Bruder-Nascimento
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - David W. Stepp
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Rodger MacArthur
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Vijay S. Patel
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Jie Chen
- Department of Biostatistics, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Rafal Pacholczyk
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Simone Kennard
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Eric J. Belin de Chantemèle
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| |
Collapse
|
5
|
Chen J, Zhao Y, Ruan R, Feng X, Niu Z, Pan L, Xia C, Gu Q, Feng W, Zhao L, Fan Y, Lai F, Zhao C, Wang J, Zhang J, Sun Y. Bone Morphogenetic Protein-2-Derived Peptide-Conjugated Nanozyme-Integrated Photoenhanced Hybrid Hydrogel for Cascade-Regulated Bone Regeneration. ACS NANO 2025; 19:14707-14726. [PMID: 40214204 DOI: 10.1021/acsnano.4c13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Critical-sized bone defects present a clinical challenge due to their limited self-repair capacity. Application of bone tissue-engineering scaffolds often overlooks the dynamic modulation of the microenvironment, resulting in unsatisfactory bone-regeneration outcomes. In this study, a bone morphogenetic protein-2-derived peptide-loaded honeycomb manganese dioxide (BHM) nanozyme was incorporated into a composite hydrogel (BHM@CG) composed of l-arginine-modified methacrylated carboxymethyl chitosan and gallic acid-grafted methacrylated gelatin. This hydrogel demonstrated a cascade-regulated enhancement of hemostasis, antibacterial activity, anti-inflammatory effects, and osteogenesis. Initially, the BHM@CG hydrogel achieved rapid hemostasis by quickly adhering to irregular defects upon injury. Subsequently, it displayed robust antibacterial activity through synergistic hydrogen bonding, hydrophobic interactions, and cationic interactions. Meanwhile, the BHM nanozyme and polyphenol groups from gallic acid effectively eliminated reactive oxygen species, enabling long-term inflammation regulation. Finally, sustained release of bioactive components promoted cell migration, angiogenesis, and osteogenesis, achieving a bone-formation rate of nearly 40% in a critical-sized calvarial defect model by week 8. More interestingly, the hydrogel also demonstrated efficient antibacterial and bone-regeneration capabilities in an infected critical-sized calvarial defect model. Overall, this hydrogel dynamically modulated the bone-defect microenvironment and effectively enhanced bone regeneration, offering a promising strategy for critical-sized bone-defect repair.
Collapse
Affiliation(s)
- Jiaxin Chen
- Center of Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, P. R. China
| | - Ye Zhao
- Center of Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, P. R. China
| | - Renjie Ruan
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
| | - Xiao Feng
- Center of Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, P. R. China
| | - Zexuan Niu
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, P. R. China
| | - Lei Pan
- Center of Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, P. R. China
| | - Chen Xia
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, P. R. China
| | - Qinhao Gu
- Center of Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, P. R. China
| | - Wei Feng
- Center of Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, P. R. China
| | - Luyi Zhao
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, P. R. China
| | - Yong Fan
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, P. R. China
| | - Fangyuan Lai
- Center of Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, P. R. China
| | - Chenchen Zhao
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| | - Ji Wang
- Center of Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, P. R. China
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
| | - Yi Sun
- Center of Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, P. R. China
| |
Collapse
|
6
|
Meister M, Sharma S, He X, Chepaitis PS, Waddey T, Wilson M, Premnath V, Jeevarajan J, Black M, Wright C. Evaluating inhalation risks and toxicological impacts of lithium-ion battery thermal runaway emissions. ENVIRONMENT INTERNATIONAL 2025; 199:109466. [PMID: 40286557 DOI: 10.1016/j.envint.2025.109466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/07/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025]
Abstract
The occurrence of thermal runaway (TR) events continues to rise as the need for lithium-ion batteries (LIB) for energy storage increases. However, the inhalation risks associated with LIB TR events remain widely unknown. The objective of this study was to evaluate the impact of LIB TR particulate emission exposures on primary small airway epithelial cells (SAEC). TR was triggered by subjecting lithium-ion cells to thermal abuse at different states of charge (SOC). Two different battery cathode chemistry compositions, namely, nickel manganese cobalt (NMC) or lithium iron phosphate (LFP) were evaluated. Aerosol monitoring and sampling instrumentation were employed followed by physicochemical particle characterization and inhalation dosimetry modeling. SAEC were treated with TR particulate emission extracts for 24 h and 7 days at doses representing a cumulative 1- and 5-year inhalation exposure. Following treatment, cellular viability, reactive oxygen species (ROS) production, and protein expression of DNA damage and epithelial mesenchymal transition (EMT) markers were assessed. TR particulate emissions consisted of ultrafine particles containing a variety of heavy metals. Cellular senescence was induced by NMC-derived TR extracts, but not LFP-derived TR extracts. SAEC treated with the 5-year dose of NMC-derived TR extract, induced significant ROS production. In cells treated with NMC-derived TR extract, regulators of DNA repair and cell cycle arrest were perturbed. Oxidative stress subsequently induced EMT, as SAEC treated with NMC-derived TR particulate emissions reduced E-cadherin expression and upregulated Fascin and Vimentin expression. This study reveals the respiratory implications of TR particulate emissions and the role of battery chemistry.
Collapse
Affiliation(s)
- Maureen Meister
- Chemical Insights Research Institute of UL Research Institutes, Marietta, GA 30367, United States
| | - Shaligram Sharma
- Chemical Insights Research Institute of UL Research Institutes, Marietta, GA 30367, United States
| | - Xiaojia He
- Chemical Insights Research Institute of UL Research Institutes, Marietta, GA 30367, United States
| | - Patrick S Chepaitis
- Chemical Insights Research Institute of UL Research Institutes, Marietta, GA 30367, United States
| | - Taryn Waddey
- Chemical Insights Research Institute of UL Research Institutes, Marietta, GA 30367, United States
| | - Mark Wilson
- Chemical Insights Research Institute of UL Research Institutes, Marietta, GA 30367, United States
| | - Vinay Premnath
- Electrochemical Safety Research Institute of UL Research Institutes, Houston, TX 77204, United States
| | - Judith Jeevarajan
- Electrochemical Safety Research Institute of UL Research Institutes, Houston, TX 77204, United States
| | - Marilyn Black
- Chemical Insights Research Institute of UL Research Institutes, Marietta, GA 30367, United States
| | - Christa Wright
- Chemical Insights Research Institute of UL Research Institutes, Marietta, GA 30367, United States.
| |
Collapse
|
7
|
Bentegeac R, Achour D, Grare C, Muntaner M, Gauthier V, Amouyel P, Matran R, Zerimech F, Lo Guidice JM, Dauchet L. Associations between air pollution and biomarkers of oxidative stress and lung damage in a large population-based sample of non-smoking adults in northern France. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:166. [PMID: 40220195 PMCID: PMC11993482 DOI: 10.1007/s10653-025-02472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
Air pollution is an environmental risk factor associated with lung and cardiovascular disease that may be mediated by physiological pathways such as oxidative stress. Previous studies have identified associations between air pollution and biomarkers of oxidative stress (8-OHdG, 4-HNE, and fluorescent oxidation products (FOPs)), as well as lung health marker CC16, in younger and asthmatic populations. The objective of this study of a large population-based sample of non-smoking adults was to explore the relationship between long-term and short-term atmospheric pollution exposures and plasma or urine levels of these biomarkers. Our study was a post-hoc analysis of the cross-sectional ELISABET study from 2011 to 2013. We included non-smoking inhabitants of Lille, France from the ELISABET study. We assessed mean pluri-annual residential and short-term exposures to atmospheric pollution components (PM10, NO2, and O3) and collected several biomarkers (CC16, 8-OHdG, 4-HNE, and fluorescent oxidation products (FOPs)). We searched for associations between pollutants and biomarkers using log-linear robust multivariate regressions. Our work did not show any association between short- or long-term exposure to air pollution components and CC16, 8-OHdG, 4-HNE or FOP in a large (980 subjects) sample of Lille's general population, despite having sufficient statistical power to replicate previous findings of associations between air pollution and these biomarkers found in younger or asthmatic populations.
Collapse
Affiliation(s)
- Raphaël Bentegeac
- U1167 - RID-AGE, INSERM, Lille, France.
- Institut Pasteur de Lille, Lille, France.
- Lille University Hospital Center, Lille, France.
- Lille University, Lille, France.
| | - Djamal Achour
- Institut Pasteur de Lille, Lille, France
- Lille University Hospital Center, Lille, France
- ULR 4483 - IMPECS, Lille University, Lille, France
| | - Céline Grare
- Institut Pasteur de Lille, Lille, France
- Lille University Hospital Center, Lille, France
- ULR 4483 - IMPECS, Lille University, Lille, France
| | - Manon Muntaner
- U1167 - RID-AGE, INSERM, Lille, France
- Institut Pasteur de Lille, Lille, France
- Lille University Hospital Center, Lille, France
- Lille University, Lille, France
| | - Victoria Gauthier
- U1167 - RID-AGE, INSERM, Lille, France
- Institut Pasteur de Lille, Lille, France
- Lille University Hospital Center, Lille, France
- Lille University, Lille, France
| | - Philippe Amouyel
- U1167 - RID-AGE, INSERM, Lille, France
- Institut Pasteur de Lille, Lille, France
- Lille University Hospital Center, Lille, France
- Lille University, Lille, France
| | - Regis Matran
- Institut Pasteur de Lille, Lille, France
- Lille University Hospital Center, Lille, France
- ULR 4483 - IMPECS, Lille University, Lille, France
| | - Farid Zerimech
- Institut Pasteur de Lille, Lille, France
- Lille University Hospital Center, Lille, France
- ULR 4483 - IMPECS, Lille University, Lille, France
| | - Jean-Marc Lo Guidice
- Institut Pasteur de Lille, Lille, France
- Lille University Hospital Center, Lille, France
- ULR 4483 - IMPECS, Lille University, Lille, France
| | - Luc Dauchet
- U1167 - RID-AGE, INSERM, Lille, France
- Institut Pasteur de Lille, Lille, France
- Lille University Hospital Center, Lille, France
- Lille University, Lille, France
| |
Collapse
|
8
|
Bribiescas RG, Sancilio A, Amir D, Cepon-Robins TJ, Gildner T, Liebert MA, Madimenos F, Urlacher SS, Snodgrass J, Sugiyama L. Testosterone, 8-Oxo-2'-Deoxyguanosine (8-OHdG) and Cu/Zn Superoxide Dismutase (SOD) in Adult Shuar Males of Amazonian Ecuador: A Test for Evidence of Trade-Offs Between Reproductive Effort and Oxidative Stress. Am J Hum Biol 2025; 37:e70042. [PMID: 40231632 DOI: 10.1002/ajhb.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/16/2025] Open
Abstract
OBJECTIVES Reproductive effort incurs the cost of biological aging and morbidity by compromising somatic maintenance when key resources are limited. Oxidative stress is positively correlated with reproductive effort in adult human females and non-human male animal models, but human males are understudied. We hypothesized that due to its anabolic and metabolic promotion of reproductive effort in human males, testosterone would be positively associated with biomarkers of oxidative stress. METHODS Urinary testosterone in adult Shuar males of Amazonia Ecuador, a foraging/horticultural population, was measured with urinary 8-hydroxy-2' -deoxyguanosine (8-OHdG), a biomarker of oxidative stress, and Cu/Zn superoxide dismutase (Cu/Zn SOD), a protective antioxidant against oxidative stress. Age and anthropometric measures were included in multivariate models. RESULTS No significant correlation was observed between testosterone and 8-OHdG, r2 = 0.01, p = 0.61, n = 29, or Cu/Zn SOD, r2 = 0.0005, p = 0.93, n = 17. Multiple linear regression models including testosterone, Cu/Zn SOD, anthropometrics, and age, with 8-OHdG as the dependent variable, were modestly supportive of an association. The most parsimonious 8-OHdG model included age, Cu/Zn SOD, and testosterone (R2 adjusted = 0.38, p = 0.04, AICc = 141.95). All multivariate models for Cu/Zn SOD were not significant (p > 0.05). CONCLUSIONS Oxidative stress may not be a cost of reproductive effort in this population of adult males; perhaps due to consistently low testosterone levels in non-industrialized populations, differences in the metabolic cost of reproductive effort between males and females (i.e., aerobic metabolism), and/or study limitations based on cross-sectional measures of oxidative stress and testosterone.
Collapse
Affiliation(s)
- R G Bribiescas
- Department of Anthropology, Yale University, New Haven, Connecticut, USA
| | | | - D Amir
- Department of Psychology, Duke University, Durham, North Carolina, USA
| | - T J Cepon-Robins
- Department of Anthropology, University of Colorado, Colorado Springs, Colorado, USA
| | - T Gildner
- Department of Anthropology, Washington University, St. Louis, Missouri, USA
| | - M A Liebert
- Department of Anthropology, Northern Arizona University, Flagstaff, Arizona, USA
| | - F Madimenos
- Department of Anthropology, Queens College, City University of New York, New York, New York, USA
| | - S S Urlacher
- Department of Anthropology, Baylor University, Waco, Texas, USA
| | - J Snodgrass
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
| | - L Sugiyama
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
9
|
Vörösházi J, Mackei M, Sebők C, Tráj P, Márton RA, Neogrády Z, Mátis G. Protective effects of baicalin against deoxynivalenol-induced oxidative and inflammatory damage in chicken-derived hepatic 3D cell cultures. Sci Rep 2025; 15:11180. [PMID: 40169826 PMCID: PMC11962109 DOI: 10.1038/s41598-025-95868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/24/2025] [Indexed: 04/03/2025] Open
Abstract
Deoxynivalenol (DON) is a trichothecene mycotoxin often contaminating grains used in poultry feed production and causing several adverse effects in farm animals. Therefore, it is important to investigate compounds that can be potential candidates to mitigate these effects, such as baicalin. The effects of DON and baicalin were investigated in chicken-derived 3D hepatic cell cultures, and cell viability, LDH activity, oxidative parameters (NRF-2, 8-OHdG) and inflammatory parameters (IL-6, IL-8, IFN-γ) were monitored for 24 and 48 h. Our results suggest that DON reduced cellular metabolic activity but did not prove to be cytotoxic, and baicalin was able to attenuate this adverse effect. The change in extracellular LDH activity suggests that after 48 h the cells have already started to respond to the adverse effects of the toxin and protective mechanisms were induced. Based on the measured oxidative parameters, baicalin showed antioxidant activity, but after longer exposure, our results indicate a prooxidant effect. Baicalin also had an anti-inflammatory effect based on the amount of IL-6 and IL-8, while DON exerted a dose-and time-dependent pleiotropic activity. These results suggest that DON may have an impact on cellular inflammation and oxidative homeostasis, and that baicalin could be able to alleviate these adverse effects.
Collapse
Affiliation(s)
- Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary.
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Rege Anna Márton
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, 1078, Hungary
| |
Collapse
|
10
|
Schuurman M, Nguyen J, Wilson RB, Barillaro M, Wallace M, Borradaile N, Wang R. Long-Term Administration of Antioxidant N-Acetyl-L-Cysteine Impacts Beta Cell Oxidative Stress, Insulin Secretion, and Intracellular Signaling Pathways in Aging Mice. Antioxidants (Basel) 2025; 14:417. [PMID: 40298742 PMCID: PMC12023964 DOI: 10.3390/antiox14040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Accepted: 03/29/2025] [Indexed: 04/30/2025] Open
Abstract
Research into the effects of long-term antioxidant supplementation on the islet microenvironment is limited. This study examined whether long-term N-acetyl-L-cysteine (NAC) supplementation can prevent changes in metabolic outcomes, beta cell function, and pancreatic stellate cell (PaSC) activation in aging mice. Male C57BL/6N mice at 18 weeks were administered 50 mM NAC through their daily drinking water and treated for up to 60 weeks. Aging NAC mice displayed lower body weights and improved glucose tolerance but reduced insulin secretion and insulin signaling compared to control (ND) mice. When some 40-week-old ND and NAC mice were subjected to 8 weeks of a high-fat diet (HFD)-stress challenge, results showed that NAC reduced HFD-induced beta cell oxidative stress and preserved nuclear PDX-1 expression. The findings from this study suggest that while NAC can be beneficial for diet-induced stress during aging, the effects of long-term NAC on the islets of physiologically aging mice are more ambiguous. Further exploration is required to determine the effects of NAC-mediated lowering of beta cell oxidative stress on insulin secretion and signaling pathways. This study highlights the importance of investigating oxidative stress balance in aging islets under normal diet conditions to determine if antioxidative therapies can be utilized without interfering with essential physiological processes.
Collapse
Affiliation(s)
- Meg Schuurman
- Children’s Health Research Institute, London, ON N6C 2V5, Canada; (M.S.); (R.B.W.); (M.B.); (M.W.)
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; (J.N.); (N.B.)
| | - Jonathan Nguyen
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; (J.N.); (N.B.)
| | - Rachel B. Wilson
- Children’s Health Research Institute, London, ON N6C 2V5, Canada; (M.S.); (R.B.W.); (M.B.); (M.W.)
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; (J.N.); (N.B.)
| | - Malina Barillaro
- Children’s Health Research Institute, London, ON N6C 2V5, Canada; (M.S.); (R.B.W.); (M.B.); (M.W.)
| | - Madison Wallace
- Children’s Health Research Institute, London, ON N6C 2V5, Canada; (M.S.); (R.B.W.); (M.B.); (M.W.)
| | - Nica Borradaile
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; (J.N.); (N.B.)
| | - Rennian Wang
- Children’s Health Research Institute, London, ON N6C 2V5, Canada; (M.S.); (R.B.W.); (M.B.); (M.W.)
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; (J.N.); (N.B.)
| |
Collapse
|
11
|
Lichtner KE, Dziubek JK, Joseph NA, Chapman SE, Chace TJ, Sun D, Bitzer ZT, Stier A, Mauck RA, Jones PL, Haussmann MF. Corticosterone and Mitochondrial Efficiency Are Associated With Changes in DNA Oxidative Damage During an Acute Stress Response in Leach's Storm-Petrels (Hydrobates leucorhous). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025. [PMID: 40123474 DOI: 10.1002/jez.2917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/28/2025] [Indexed: 03/25/2025]
Abstract
The ability of organisms to effectively respond to challenges is critical for survival. We investigated how an acute stressor affected corticosterone, mitochondrial function, and DNA oxidative damage in a wild population of Leach's storm-petrels (Hydrobates leucorhous). We conducted a standardized 20-min handling procedure on storm-petrel chicks and collected baseline and post-handling blood samples. We measured plasma corticosterone and red blood cell DNA oxidative damage levels through the detection of a mutated DNA base 8-Hydroxy-2'-deoxyguanosine (8-OHdG). In addition, we quantified six measures of mitochondrial aerobic metabolism from red blood cells. Overall, the handling stressor increased plasma corticosterone levels and decreased mitochondrial efficiency to produce ATP. Although the increase in corticosterone was inversely related to the change in DNA oxidative damage, the decrease in mitochondrial efficiency was positively correlated with the change in DNA oxidative damage. Thus, over an acute stress response, individuals who had the largest increase in corticosterone also had the least amount of oxidative damage. In addition, individuals who prioritized ATP production during the acute stress also showed higher levels of oxidative damage. This work highlights the complex pathways by which corticosterone and mitochondrial efficiency affect oxidative damage during acute stress, providing new insights into the trade-offs underlying physiological responses in wild animals.
Collapse
Affiliation(s)
| | | | | | | | - Tori J Chace
- Bucknell University, Lewisburg, Pennsylvania, USA
| | - Dongxiao Sun
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Zachary T Bitzer
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Antoine Stier
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | | | | | | |
Collapse
|
12
|
Del Valle JS, Van Helden RW, Moustakas I, Wei F, Asseler JD, Metzemaekers J, Pilgram GSK, Mummery CL, van der Westerlaken LAJ, van Mello NM, Chuva de Sousa Lopes SM. Ex vivo removal of pro-fibrotic collagen and rescue of metabolic function in human ovarian fibrosis. iScience 2025; 28:112020. [PMID: 40104066 PMCID: PMC11914289 DOI: 10.1016/j.isci.2025.112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/21/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Tissue fibrosis, with the excessive accumulation of extracellular matrix, leads to organ dysfunction. The ovary shows signs of fibrosis from an early age, creating a permissive environment for ovarian cancer. A robust culture-platform to study human ovarian fibrosis would enable screens for antifibrotic drugs to prevent or even reverse this process. Based on previous results showing that androgen therapy can induce ovarian fibrosis, we characterized the fibrotic state of ovaries from transmasculine donors of reproductive age. Anti-inflammatory and antioxidant drugs, such as Pirfenidone, Metformin, and Mitoquinone, could reduce and revert the excess collagen content of the ovarian cortical tissue during culture. We demonstrated that Metformin exerts an antioxidant role and prevents a glycolytic metabolic shift in non-immune ovarian stromal cells in the human ovary, while promoting early folliculogenesis during culture. These results may contribute to develop strategies to manage pro-tumorigenic fibrotic ovarian stroma in advanced age and metabolic disorders.
Collapse
Affiliation(s)
- Julieta S Del Valle
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Ruben W Van Helden
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Ioannis Moustakas
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Fu Wei
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Joyce D Asseler
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center, Amsterdam 1105 AZ, the Netherlands
- Amsterdam UMC, Centre of Expertise on Gender Dysphoria, Amsterdam 1081 HV, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam 1081 HV, the Netherlands
| | - Jeroen Metzemaekers
- Department of Gynecology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Gonneke S K Pilgram
- Department of Gynecology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | | | - Norah M van Mello
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center, Amsterdam 1105 AZ, the Netherlands
- Amsterdam UMC, Centre of Expertise on Gender Dysphoria, Amsterdam 1081 HV, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam 1081 HV, the Netherlands
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
- Ghent-Fertility and Stem Cell Team (G-FAST), Department of Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
13
|
Cruz JC, Rocha BA, Souza MCO, Kannan K, Júnior FB. Co-exposure to multiple endocrine-disrupting chemicals and oxidative stress: Epidemiological evidence of nonmonotonic dose response curves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178952. [PMID: 40010254 DOI: 10.1016/j.scitotenv.2025.178952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/04/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
This study aimed to investigate the effect of multiple exposure to eight classes (parabens, bisphenols, glycidyl ethers, antimicrobials, benzophenones, phthalates, tri and dichlorophenols) of endocrine disrupting chemicals (EDCs) on oxidative stress levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG). A cross-sectional study was conducted with 300 healthy Brazilian children and adolescents. Urinary levels of 65 EDCs, creatinine and 8-OHdG were analyzed by Liquid Chromatography-Tandem Mass Spectrometry. Elastic net was used to estimate the associations between the levels of EDCs and 8-OHdG. The optimal hyperparameters were estimated using ten-fold cross-validation. Bayesian Kernel machine regression (BKMR) was used to investigate potential interactions and 8-OHdG level response as a function of the co-exposure to EDCs. The elastic net analysis showed that 2,4-DCP (0.149; CI 95 %:-0.033, 0.335, p = 0.02) and BPA (0.21; CI 95 %: 0.08; 0.356, p < 0.005) were associated with urinary levels of 8-OHdG. The BKMR model indicated a positive nonlinear and nonmonotonic relationship between EDCs mixture and 8-OHdG with an inverted U-shaped dose-response curve. This study suggests the first epidemiological evidence of a complex, nonmonotonic relationship between urinary levels of EDCs and 8-OHdG. However, the lack of established reference ranges for 8-OHdG limited a deeper discussion of our findings' clinical significance. Therefore, further studies should focus on validating our results across diverse populations, particularly those affected by oxidative stress-related diseases, and investigate potential mechanisms for supporting this association.
Collapse
Affiliation(s)
- Jonas Carneiro Cruz
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/n°, Ribeirao Preto, Sao Paulo 14040-903, Brazil.
| | - Bruno Alves Rocha
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/n°, Ribeirao Preto, Sao Paulo 14040-903, Brazil; Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Marília Cristina Oliveira Souza
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/n°, Ribeirao Preto, Sao Paulo 14040-903, Brazil
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12237, United States
| | - Fernando Barbosa Júnior
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/n°, Ribeirao Preto, Sao Paulo 14040-903, Brazil
| |
Collapse
|
14
|
Yu KE, Mitra S, Meng Q, DelRosario I, Devaskar SU, Janzen C, Sullivan PS, Chen L, Jerrett M, Ritz B. Diet, polycyclic aromatic hydrocarbons, and oxidative stress biomarkers in pregnancy: A Los Angeles pregnancy cohort. ENVIRONMENTAL RESEARCH 2025; 275:121399. [PMID: 40088999 DOI: 10.1016/j.envres.2025.121399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Polycyclic aromatic hydrocarbon (PAH) exposure during pregnancy has been associated with increased oxidative stress. Few studies have evaluated the relationship between diet, urinary PAHs, and oxidative stress biomarkers among pregnant women. We enrolled a prospective cohort of pregnant women who gave birth at UCLA between 2016 and 2019. Dietary intake over the past month was evaluated by a food frequency questionnaire during mid-pregnancy, and three diet index scores were calculated: Healthy Eating Index (HEI) 2015, Alternate Mediterranean Diet (aMED), and Alternate Healthy Eating Index for Pregnancy (AHEI-P). Urine samples were collected up to three times during pregnancy and analyzed for PAH biomarkers, including 2-hydroxyfluorene + 3-hydroxyfluorene (FLUO2FLUO3), 1-hydroxyphenanthrene (PHEN1), 2-hydroxyphenanthrene (PHEN2), 3-hydroxyphenanthrene (PHEN3), 4-hydroxyphenanthrene (PHEN4), 2-hydroxynaphthalene (NAP2), and 1-hydroxypyrene (PYR1), and two oxidative stress biomarkers, malondialdehyde (MDA) and 8-hydroxyguanosine (8-OHdG). We employed multiple linear regression models to estimate effects of diet on measures of urinary PAHs and oxidative stress biomarkers. A better diet quality, as indicated by three diet indices, was associated with lower urinary PAH metabolites and lower concentrations of oxidative stress biomarkers. This pattern appeared to be consistent across all three sampling periods (9-17 weeks, 18-29 weeks, and 30 weeks-delivery). Healthier diets may lower PAH exposure and oxidative stress in pregnancy.
Collapse
Affiliation(s)
- Kasey E Yu
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, 90095, California, USA
| | - Sanjali Mitra
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, 90095, California, USA
| | - Qi Meng
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, 90095, California, USA
| | - Irish DelRosario
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, 90095, California, USA
| | - Sherin U Devaskar
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, 90095, California, USA
| | - Carla Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, 90095, California, USA
| | - Peggy S Sullivan
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, 90095, California, USA
| | - Liwei Chen
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, 90095, California, USA
| | - Michael Jerrett
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, 90095, California, USA
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, 90095, California, USA; Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, 90095, California, USA.
| |
Collapse
|
15
|
Perez-Montero B, Fermin-Rodriguez ML, Portero-Fuentes M, Sarquis J, Caceres S, Portal JCID, Juan LD, Miro G, Cruz-Lopez F. Malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in canine serum: establishing reference intervals and influencing factors. BMC Vet Res 2025; 21:161. [PMID: 40069799 PMCID: PMC11900598 DOI: 10.1186/s12917-025-04614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Mounting evidence suggests that malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) are valuable biomarkers of lipid and nucleic acid oxidation in numerous canine diseases. However, their application in clinical settings is limited due to the absence of reference intervals (RI) and the analytical inconsistencies. Therefore, this study aimed to characterize serum MDA and 8-OHdG concentrations in dogs, to establish assay-specific RI, and to identify biological, haematological and biochemical factors influencing these markers. METHODS A total of 190 clinically healthy dogs were recruited, including pet dogs, working dogs and shelter dogs. Serum MDA concentration was measured by the Thiobarbituric Acid Reactive Substances (TBARS) assay, while 8-OHdG levels were determined by using a competitive ELISA. RI were established by non-parametric methods. Potential associations between oxidative stress (OS) biomarkers and multiple biological, haematological and biochemical factors were assessed using multivariate regression models. RESULTS RI for serum MDA (1.85-14.51 µM) and 8-OHdG (0.06-0.75 ng/mL) were established in the reference population (144 and 143 dogs, respectively). The multivariate regression model for MDA revealed a positive association with total cholesterol concentration, and a negative association with monocyte count. 8-OHdG level was positively associated with urea concentration. Notably, both models also revealed a significant association between MDA and 8-OHdG. Biological factors, including the age and size of the animals, did not exert a significant influence on the results. CONCLUSIONS This is the first study to establish serum RI for MDA and 8-OHdG in a large and diverse canine population. Additionally, the multivariate regression models identified relevant haematological and biochemical, but not biological factors that should be considered when interpreting the results. These findings could significantly enhance the application of MDA and 8-OHdG as biomarkers in clinical settings, and promote further exploration of their value in canine diseases.
Collapse
Affiliation(s)
- B Perez-Montero
- Clinical Pathology Service, Veterinary Teaching Hospital, Complutense University, Madrid, Spain.
| | - M L Fermin-Rodriguez
- Clinical Pathology Service, Veterinary Teaching Hospital, Complutense University, Madrid, Spain
- Animal Medicine and Surgery Department, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
| | - M Portero-Fuentes
- Animal Medicine and Surgery Department, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
| | - J Sarquis
- Animal Health Department, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
| | - S Caceres
- Animal Physiology Department, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
| | - J C Illera Del Portal
- Animal Physiology Department, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
| | - L de Juan
- Animal Health Department, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
- VISAVET Health Surveillance Centre, Complutense University, Madrid, Spain
| | - G Miro
- Animal Health Department, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
| | - F Cruz-Lopez
- VISAVET Health Surveillance Centre, Complutense University, Madrid, Spain
| |
Collapse
|
16
|
Tambe PK, Shetty MP, Rana K, Bharati S. Targeted Modulation of Mitochondrial Oxidative Stress Ameliorates 5-Fluorouracil-Induced Renal Injury in BALB/c Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2025; 2025:8892026. [PMID: 40225412 PMCID: PMC11986914 DOI: 10.1155/omcl/8892026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/15/2025] [Indexed: 04/15/2025]
Abstract
Background: The present study reports the protective effect conferred by scavenging mitochondrial oxidative stress (mtOS) in 5-fluorouracil (5-FU)-induced renal injury. Methods: 5-FU renal toxicity model was created by administering 5-FU (12 mg/kg b.w. intraperitoneally [i.p.], for 4 days) to male BALB/c mice. The protective effect of mitochondria-targeted antioxidant (MTA), Mito-TEMPO coadministered at a dosage of 0.1 mg/kg b.w. i.p., was established in terms of levels/expressions of renal injury markers, histopathological alterations, oxidative DNA damage, proinflammatory markers, mtOS, mitochondrial dysfunction, and modulation of apoptotic proteins and apoptotic cell death. Results: A significant rise in the levels of serum urea, uric acid, and creatinine was noted after 5-FU administration to the animals. Immunohistochemical and ELISA findings demonstrated significant decrease in podocin and conversely a significant increase in neutrophil gelatinase-associated lipocalin (NGAL) expression after 5-FU challenge. The histopathological analysis further revealed Bowman's capsule dilation, glomerular condensation, and vacuolar degeneration. Mito-TEMPO treatment significantly lowered renal injury markers, reversed the expressions of podocin and NGAL to normal, and restored normal histoarchitecture of renal tissue. Mitochondrial reactive oxygen species (mtROS), mtLPO, activity of mitochondrial enzyme complexes, and mitochondrial antioxidant defense status were significantly improved in Mito-TEMPO protected group as compared to the 5-FU group. Further, significantly decreased expression of 8-OHdG, reduction in apoptotic cell death, and modulation of apoptotic proteins Bax, Bcl-2, and caspase-3 were noted in Mito-TEMPO protected group, indicating its protective effect against 5-FU-induced renal injury. Conclusion: The approach of targeting mtOS using MTA, Mito-TEMPO, may prove as safe adjuvant in alleviating renal toxicity during 5-FU chemotherapy.
Collapse
Affiliation(s)
- Prasad Kisan Tambe
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Maya P. Shetty
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Komal Rana
- Manipal Government of Karnataka Bioincubator Advanced Research Centre, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjay Bharati
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
17
|
Zheng X, Kong W, Dai X, You C. YBX1 Modulates 8-Oxoguanine Recognition and Repair in DNA. ACS Chem Biol 2025; 20:529-536. [PMID: 39903676 DOI: 10.1021/acschembio.4c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
8-Oxoguanine (8-oxoG) is not only a biomarker of oxidative DNA damage but also an epigenetic-like regulator in mammalian cells. The identification and characterization of 8-oxoG-binding proteins would be crucial for further understanding the biological consequences of 8-oxoG. Here, we identified human Y-box-binding protein 1 (YBX1) as a novel binding protein for 8-oxoG modification in DNA by using a quantitative proteomic approach. Moreover, we found that the deficiency of YBX1 can substantially decrease the cellular sensitivity to oxidative stress and facilitate the repair of 8-oxoG embedded in DNA. These findings provided new insight into the biological significance of the functional interplay between YBX1 and 8-oxoG modification in DNA.
Collapse
Affiliation(s)
- Xiaofang Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 400030, PR China
| | - Weiheng Kong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xiaoxia Dai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Changjun You
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
18
|
Parkin JGH, Dean LSN, Bell JA, Easton NHC, Edgeway LJ, Cooper MJ, Ridley R, Conforti F, Wang S, Yao L, Li J, Raj HV, Downward J, Gerlofs-Nijland M, Cassee FR, Wang Y, Cook RB, Jones MG, Davies DE, Loxham M. Copper-enriched automotive brake wear particles perturb human alveolar cellular homeostasis. Part Fibre Toxicol 2025; 22:4. [PMID: 39940013 PMCID: PMC11823208 DOI: 10.1186/s12989-024-00617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/24/2024] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Airborne fine particulate matter with diameter < 2.5 μm (PM2.5), can reach the alveolar regions of the lungs, and is associated with over 4 million premature deaths per year worldwide. However, the source-specific consequences of PM2.5 exposure remain poorly understood. A major, but unregulated source is car brake wear, which exhaust emission reduction measures have not diminished. METHODS We used an interdisciplinary approach to investigate the consequences of brake-wear PM2.5 exposure upon lung alveolar cellular homeostasis using diesel exhaust PM as a comparator. This involved RNA-Seq to analyse global transcriptomic changes, metabolic analyses to investigate glycolytic reprogramming, mass spectrometry to determine PM composition, and reporter assays to provide mechanistic insight into differential effects. RESULTS We identified brake-wear PM from copper-enriched non-asbestos organic, and ceramic brake pads as inducing the greatest oxidative stress, inflammation, and pseudohypoxic HIF activation (a pathway implicated in diseases associated with air pollution exposure, including cancer, and pulmonary fibrosis), as well as perturbation of metabolism, and metal homeostasis compared with brake wear PM from low- or semi-metallic pads, and also, importantly, diesel exhaust PM. Compositional and metal chelator analyses identified that differential effects were driven by copper. CONCLUSIONS We demonstrate here that brake-wear PM may perturb cellular homeostasis more than diesel exhaust PM. Our findings demonstrate the potential differences in effects, not only for non-exhaust vs exhaust PM, but also amongst different sources of non-exhaust PM. This has implications for our understanding of the potential health effects of road vehicle-associated PM. More broadly, our findings illustrate the importance of PM composition on potential health effects, highlighting the need for targeted legislation to protect public health.
Collapse
Affiliation(s)
- James G H Parkin
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK.
| | - Lareb S N Dean
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Southampton Marine and Maritime Institute, University of Southampton, Boldrewood Innovation Campus, Southampton, UK
| | - Joseph A Bell
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Natasha H C Easton
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Southampton Marine and Maritime Institute, University of Southampton, Boldrewood Innovation Campus, Southampton, UK
- School of Ocean and Earth Sciences, University of Southampton, Southampton, UK
| | - Liam J Edgeway
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK
| | - Matthew J Cooper
- School of Ocean and Earth Sciences, University of Southampton, Southampton, UK
| | - Robert Ridley
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Franco Conforti
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Siyuan Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Liudi Yao
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Juanjuan Li
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Helen Vethakan Raj
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | | | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Yihua Wang
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Richard B Cook
- National Centre for Advanced Tribology (nCATS), Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Mark G Jones
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK
| | - Donna E Davies
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK
| | - Matthew Loxham
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK.
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK.
- Southampton Marine and Maritime Institute, University of Southampton, Boldrewood Innovation Campus, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK.
| |
Collapse
|
19
|
Zewail-Foote M, del Mundo IMA, Klattenhoff AW, Vasquez KM. Oxidative damage within alternative DNA structures results in aberrant mutagenic processing. Nucleic Acids Res 2025; 53:gkaf066. [PMID: 39970277 PMCID: PMC11826088 DOI: 10.1093/nar/gkaf066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/17/2025] Open
Abstract
Genetic instability is a hallmark of cancer, and mutation hotspots in human cancer genomes co-localize with alternative DNA structure-forming sequences (e.g. H-DNA), implicating them in cancer etiology. H-DNA has been shown to stimulate genetic instability in mammals. Here, we demonstrate a new paradigm of genetic instability, where a cancer-associated H-DNA-forming sequence accumulates more oxidative lesions than B-DNA under conditions of oxidative stress (OS), often found in tumor microenvironments. We show that OS results in destabilization of the H-DNA structure and attenuates the fold increase in H-DNA-induced mutations over control B-DNA in mammalian cells. Furthermore, the mutation spectra revealed that the damaged H-DNA-containing region was processed differently compared to H-DNA in the absence of oxidative damage in mammalian cells. The oxidatively modified H-DNA elicits differential recruitment of DNA repair proteins from both the base excision repair and nucleotide excision repair mechanisms. Altogether, these results suggest a new model of genetic instability whereby H-DNA-forming regions are hotspots for DNA damage in oxidative microenvironments, resulting in its altered mutagenic processing. Our findings provide valuable insights into the role of OS in DNA structure-induced genetic instability and may establish H-DNA-forming sequences as promising genomic biomarkers and potential therapeutic targets for genetic diseases.
Collapse
Affiliation(s)
- Maha Zewail-Foote
- Department of Chemistry and Biochemistry, Southwestern University, 1001 E University Ave, Georgetown, TX 78626, United States
| | - Imee M A del Mundo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, United States
| | - Alex W Klattenhoff
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, United States
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, United States
| |
Collapse
|
20
|
Taştemur Ş, Ekĭcĭ M, Mendĭl AS, Özkaraca M, Ataseven H. Effects of dexpanthenol on 5-fluorouraci-induced nephrotoxicity, hepatotoxicity, and intestinal mucositis in rats: a clinical, biochemical, and pathological study. ASIAN BIOMED 2025; 19:36-50. [PMID: 40231165 PMCID: PMC11994222 DOI: 10.2478/abm-2025-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Background 5-fluorouracil (5-FU) is a broad-spectrum drug that has a wide range of side effects. Patients may experience severe comorbidities as a result of these toxic side effects, making it impossible for them to continue chemotherapy. Despite the fact that various molecules have been experimented, there is no literature data on the efficacy of dexpanthenol (DXP) for mitigating the toxic effects of 5-FU. Objective To investigate the protective effects of DXP on nephrotoxicity, hepatotoxicity, and intestinal toxicity induced by 5-FU in rats. Methods Twenty-eight male Wistar-Albino rats aged 16 weeks were randomly assigned to four groups. We created a rat model of intestinal mucositis, nephrotoxicity, and hepatotoxicity through intraperitoneal 5-FU (35 mg/kg for 4 d) injection. 500 mg/kg and 1000 mg/kg of DXP were administered to the treatment groups. The effects of dexpanthenol were evaluated clinically, biochemically, histopathologically, and immunohistochemically (inducible nitric oxide synthase [iNOS], cyclooxygenase-2 [COX-2], 8-hydroxyguanosine [8-OHdG], and nuclear factor kappa B [NF-κB]). Results 5-FU caused a decrease in body weight and food intake, and an increase in diarrhea scores in rats. 5-FU led to significant disruptions in the hepatic biochemical markers (aspartate transaminase [AST], alanine transaminase [ALT], alkaline phosphatase [ALP], total bilirubin, direct bilirubin, and lactate dehydrogenase [LDH]), renal biochemical markers (blood urea nitrogen [BUN], creatinine, and uric acid), and protein and albumin, which are markers of both hepatic and renal functions. Severe pyknosis and mononuclear cell infiltrations were observed in the liver, and mononuclear cell infiltration and tubular degeneration in the kidneys. Jejunum and colon showed villous hyperemia and hemorrhage, respectively, along with mononuclear cell infiltration. Furthermore, 5-FU increased the immunohistochemical expressions of iNOS, COX-2, 8-OHdG, and NF-κB in the examined tissues. The administration of DXP at doses of 500 mg/kg and 1000 mg/kg demonstrated significant mitigation of the toxic effects induced by 5-FU on the liver, kidney, jejunum, and colon. Conclusion DXP showed protective effects against nephrotoxicity, hepatotoxicity, and intestinal toxicity caused by 5-FU. These findings suggest that DXP may serve as a potential therapeutic agent to alleviate the severe side effects of 5-FU chemotherapy, thereby improving patient tolerance and quality of life. Further clinical studies are warranted to validate these results and explore the translational potential of DXP in human cancer therapy.
Collapse
Affiliation(s)
- Şeyma Taştemur
- Department of Internal Medicine, Faculty of Medicine, Sivas Cumhuriyet University, Sivas58140, Turkey
| | - Mehmet Ekĭcĭ
- Department of Veterinary Physiology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas58140, Turkey
| | - Ali Sefa Mendĭl
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Erciyes University, Kayseri38280, Turkey
| | - Mustafa Özkaraca
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas58140, Turkey
| | - Hilmi Ataseven
- Department of Gastroenterology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas58140, Turkey
| |
Collapse
|
21
|
Sauvain JJ, Wild P, Charreau T, Jouannique V, Sakthithasan K, Debatisse A, Suárez G, Hopf NB, Guseva Canu I. Are metals in exhaled breath condensate and urine associated with oxidative/nitrosative stress and metabolism-related biomarkers? Results from 303 randomly selected Parisian subway workers. ENVIRONMENT INTERNATIONAL 2025; 196:109325. [PMID: 39952202 DOI: 10.1016/j.envint.2025.109325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Subway particles can cause oxidative stress, with metals being a key factor. Only few epidemiological studies have examined the role of metal mixtures in this effect for subway workers. OBJECTIVES This cross-sectional study examined the relationship between metal concentrations in exhaled breath condensate (EBC) and urine, and biomarkers of oxidative/nitrosative stress and metabolism in subway workers. METHODS The study involved 303 randomly selected Parisian metro workers exposed to various levels of subway particles. Metals in EBC and urine were measured using ICP-MS, and biomarkers were analyzed through liquid chromatography-mass spectrometry. Factor analysis as dimension reduction strategy and cluster analysis to account for metal mixtures and multiple multi-media effect biomarkers was used along with multivariable linear regression analysis on factor variables adjusted for potential confounders. RESULTS Significant positive associations were observed between urinary metals and oxidative stress biomarkers, despite similar metal levels in workers and the general population. Metals in EBC were linked to nitrosative stress and other metabolites in EBC. Worker occupation correlated with small chain fatty acids in EBC and urinary levels of barium and titanium. Smoking was associated with effect biomarkers but not with exposure biomarkers. CONCLUSIONS Elevated metal levels in EBC and urine are associated with altered bronchopulmonary metabolites and increased systemic oxidative stress. While Ba and Ti may originate from brake wear, other metals identified in EBC and urine are not clearly related with subway particles and may be from non-occupational sources. Smoking showed a stronger relationship with the workers' oxidative stress status than occupation.
Collapse
Affiliation(s)
- J J Sauvain
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - P Wild
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - T Charreau
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - V Jouannique
- Service Santé-Travail, Régie autonome des transports parisiens (RATP), 88 Boulevard Sébastopol, 75003 Paris, France.
| | - K Sakthithasan
- Service Santé-Travail, Régie autonome des transports parisiens (RATP), 88 Boulevard Sébastopol, 75003 Paris, France.
| | - A Debatisse
- Service Santé-Travail, Régie autonome des transports parisiens (RATP), 88 Boulevard Sébastopol, 75003 Paris, France.
| | - G Suárez
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - N B Hopf
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - I Guseva Canu
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| |
Collapse
|
22
|
Morgil GK, Çok İ. Evaluation and comparison of DNA alkylation and oxidative damage in e-cigarette and heated tobacco users. Toxicol Mech Methods 2025; 35:125-135. [PMID: 39138671 DOI: 10.1080/15376516.2024.2390028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVES This study, aimed to determine and compare DNA damage in e-cigarette and HTP (IQOS) users by assessing DNA-adducts, which are biomarkers of various DNA alkylation and oxidation. METHODS For the evaluation of DNA alkylation, N3-Ethyladenine (N3-EtA) and N3-Methyladenine (N3-MeA) adducts were used. DNA oxidation was assessed using, 8-hydroxy-2'-deoxyguanosine(8-OHdG). The urinary cotinine, N3-MeA, N3-EtA, and 8-OHdG concentrations of the cigarette smokers (n:39), e-cigarette users (n:28), IQOS users (n:20), passive smokers (n:32), and nonsmokers(n:41) who lived Ankara, Turkiye were determined using, liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS In light of the detected 8-OHdG levels, e-cigarette (3.19 ng/g creatinine) and IQOS (4.38 ng/g creatinine) users had higher oxidative DNA damage than healthy nonsmokers (2.51 ng/g creatinine). Alkylated DNA-adducts were identified in the urine of e-cigarette (N3-MeA: 3.92 ng/g creatinine; N3-EtA: 0.23 ng/g creatinine) and IQOS (N3-MeA: 7.54 ng/g creatinine; N3-EtA: 0.29 ng/g creatinine) users. In the generation of N3-MeA adducts, a significant difference was found between IQOS users and e-cigarette users (p < 0.05). Also, DNA alkylation in flavored e-cigarette users (N3-MeA: 4.51 ng/g creatinine; N3-EtA: 0.27 ng/g creatinine) was higher than in non-flavored e-cigarette users (N3-MeA: 2.27 ng/g creatinine; N3-EtA: 0.06 ng/g creatinine). The highest cotinine levels were found in cigarette smokers (16.1316 ng/g creatinine). No significant difference was found when e-cigarette (1163.02 ng/g creatinine) and IQOS smokers were compared (1088.3 ng/g creatinine). CONCLUSION People who use e-cigarettes and IQOS may be at higher risk of genotoxicity than those who do not use and are not exposed to any tobacco products. Furthermore, the usage of flavoring additives in e-cigarettes contributed to additional genotoxic damage risks.
Collapse
Affiliation(s)
- Göksel Koç Morgil
- Minister of Health, General Directorate of Public Health, Department of Consumer Safety and Public Health Laboratories, Toxicology Laboratory, Sıhhıye, Ankara, Türkiye
| | - İsmet Çok
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Ankara, Turkiye
| |
Collapse
|
23
|
Menozzi L, Vu T, Canning AJ, Rawtani H, Taboada C, Abi Antoun ME, Ma C, Delia J, Nguyen VT, Cho SW, Chen J, Charity T, Xu Y, Tran P, Xia J, Palmer GM, Vo-Dinh T, Feng L, Yao J. Three-dimensional diffractive acoustic tomography. Nat Commun 2025; 16:1149. [PMID: 39880853 PMCID: PMC11779832 DOI: 10.1038/s41467-025-56435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Acoustically probing biological tissues with light or sound, photoacoustic and ultrasound imaging can provide anatomical, functional, and/or molecular information at depths far beyond the optical diffusion limit. However, most photoacoustic and ultrasound imaging systems rely on linear-array transducers with elevational focusing and are limited to two-dimensional imaging with anisotropic resolutions. Here, we present three-dimensional diffractive acoustic tomography (3D-DAT), which uses an off-the-shelf linear-array transducer with single-slit acoustic diffraction. Without jeopardizing its accessibility by general users, 3D-DAT has achieved simultaneous 3D photoacoustic and ultrasound imaging with optimal imaging performance in deep tissues, providing near-isotropic resolutions, high imaging speed, and a large field-of-view, as well as enhanced quantitative accuracy and detection sensitivity. Moreover, powered by the fast focal line volumetric reconstruction, 3D-DAT has achieved 50-fold faster reconstruction times than traditional photoacoustic imaging reconstruction. Using 3D-DAT on small animal models, we mapped the distribution of the biliverdin-binding serpin complex in glassfrogs, tracked gold nanoparticle accumulation in a mouse tumor model, imaged genetically-encoded photoswitchable tumors, and investigated polyfluoroalkyl substances exposure on developing embryos. With its enhanced imaging performance and high accessibility, 3D-DAT may find broad applications in fundamental life sciences and biomedical research.
Collapse
Affiliation(s)
- Luca Menozzi
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Aidan J Canning
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Carlos Taboada
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Chenshuo Ma
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jesse Delia
- American Museum of Natural History, New York City, New York, USA
| | - Van Tu Nguyen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Soon-Woo Cho
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jianing Chen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Theresa Charity
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yirui Xu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Phuong Tran
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, USA
| | - Gregory M Palmer
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Tuan Vo-Dinh
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Chemistry, Duke University, Durham, NC, 27708, USA.
| | - Liping Feng
- Duke University School of Medicine, Durham, NC, USA.
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Neurology, Duke University of School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
24
|
Kuźmycz O, Kowalczyk A, Bolanowska A, Drozdzowska A, Lach J, Wierzbińska W, Kluz T, Stączek P. A comprehensive analysis of the uterine microbiome in endometrial cancer patients - identification of Anaerococcus as a potential biomarker and carcinogenic cofactor. Front Cell Infect Microbiol 2025; 15:1511625. [PMID: 39958933 PMCID: PMC11827426 DOI: 10.3389/fcimb.2025.1511625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/02/2025] [Indexed: 02/18/2025] Open
Abstract
Introduction Endometrial cancer (EC) is a significant gynecological malignancy with increasing incidence worldwide. Emerging evidence highlights the role of the uterine microbiome in the pathogenesis of EC. This study aims to characterize the uterine microbiome in EC patients and identify potential microbial biomarkers, with a focus on Anaerococcus as a differentiating taxon. Methods The endocervical canal swabs from patients with EC (n=16) and non-cancerous patients (EM, n=13) were collected. The V3-V4 region of the 16S rRNA gene was sequenced using the Illumina platform. Bioinformatic analyses were performed with QIIME2, and statistical comparisons were conducted to assess differences in microbial composition and diversity. In vitro experiments were conducted to assess the functional impact of Anaerococcus on human uterine fibroblasts, including its ability to adhere to the human cells and induce oxidative stress. Results The α-diversity metrics, including Shannon entropy and observed amplicon sequence variants (ASVs), revealed significantly higher microbial diversity in EC samples compared to EM. Anaerococcus was identified as a key taxon differentiating EC from EM groups, showing a higher relative abundance in EC samples. Functional predictions and in vitro assays indicated that Anaerococcus may contribute to carcinogenesis by inducing reactive oxygen species (ROS) production, and has the high ability to adhere to the human endometrial fibroblasts. Discussion The study provides evidence of distinct microbial signatures in EC, with Anaerococcus emerging as a potential biomarker. The in vitro findings suggest its role in endometrial carcinogenesis, underscoring its potential as a target for future diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Olga Kuźmycz
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Faculty of Biology and Environmental, Protection, Lodz, Poland
| | - Aleksandra Kowalczyk
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Faculty of Biology and Environmental, Protection, Lodz, Poland
| | - Aleksandra Bolanowska
- Department of Gynecology and Obstetrics, Fryderyk Chopin University Hospital No. 1, Rzeszow, Poland
| | - Anna Drozdzowska
- Department of Gynecology and Obstetrics, Fryderyk Chopin University Hospital No. 1, Rzeszow, Poland
| | - Jakub Lach
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Faculty of Biology and Environmental, Protection, Lodz, Poland
- Biobank Lab, Department of Cancer Biology and Epigenetics, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Wiktoria Wierzbińska
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Faculty of Biology and Environmental, Protection, Lodz, Poland
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Fryderyk Chopin University Hospital No. 1, Rzeszow, Poland
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Paweł Stączek
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Faculty of Biology and Environmental, Protection, Lodz, Poland
| |
Collapse
|
25
|
Zaman R, Tan ESS, Bustami NA, Amini F, Seghayat MS, Ho YB, Tan CK. Assessment of Opuntia ficus-indica supplementation on enhancing antioxidant levels. Sci Rep 2025; 15:3507. [PMID: 39875543 PMCID: PMC11775336 DOI: 10.1038/s41598-025-87680-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
Opuntia ficus-indica (OFi) is a major fruit source prevalent in semiarid and arid regions across various countries worldwide. It is widely recognised for its potential health benefits; however, most studies investigating its effects have been limited to pre-clinical models, highlighting the need for further validation through clinical trials. This study aimed to evaluate the effectiveness of OFi supplementation in enhancing antioxidant levels. Fifty healthy participants, aged 18 years and older, including males and females, received a daily OFi supplement of 1500 mg for 3 months. These findings revealed a significant 48.1% increase in salivary total antioxidant capacity (TAC) (P < 0.001), indicating improved antioxidant activity. Simultaneously, oxidative stress biomarkers showed substantial reductions: malondialdehyde (MDA) decreased by 28.3%, nitrotyrosine (3-NT) decreased by 51.5%, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) decreased by 59.8% (P < 0.001). Furthermore, participants reported a 20.1% improvement (P < 0.001) in Visual Analogue Scales (VAS), reflecting a notable enhancement in overall well-being. In conclusion, OFi exhibited promising efficacy in elevating antioxidant levels and mitigating oxidative stress. These findings suggest its potential as an adjuvant therapy for managing chronic conditions associated with oxidative stress.
Collapse
Affiliation(s)
- Rahela Zaman
- School of Healthy Aging, Aesthetic and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia
- College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eugenie Sin Sing Tan
- School of Healthy Aging, Aesthetic and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Normina Ahmad Bustami
- School of Healthy Aging, Aesthetic and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Farahnaz Amini
- School of Healthy Aging, Aesthetic and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia
- Centre for Brain Health, Faculty of Medicine, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | - Yu Bin Ho
- Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400, Serdang, Malaysia
| | - Chung Keat Tan
- School of Healthy Aging, Aesthetic and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
26
|
Hassen HY, Govarts E, Remy S, Cox B, Iszatt N, Portengen L, Covaci A, Schoeters G, Den Hond E, Henauw SD, Bruckers L, Koppen G, Verheyen VJ. Association of environmental pollutants with asthma and allergy, and the mediating role of oxidative stress and immune markers in adolescents. ENVIRONMENTAL RESEARCH 2025; 265:120445. [PMID: 39586518 PMCID: PMC11672208 DOI: 10.1016/j.envres.2024.120445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Asthma and allergic diseases are among the common causes of morbidity and mortality globally. Various environmental pollutants are linked to the development of asthma and allergic diseases. Evidence on the role of oxidative stress and immune markers in the association of environmental pollutants with asthma and allergy is scant. We examined cross-sectional associations between environmental pollutants and asthma and allergy, investigated mixture effects and possible mediation by oxidative stress or immune markers. METHODS We used data from the Flemish Environment and Health Study 2016-2020 (FLEHS IV), including 409 adolescents aged 13-16 years. Fifty-four pollutants, including metals, phthalates, Di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH), bisphenols, currently used and legacy pesticides, flame retardants, per- and polyfluoroalkyl substances (PFAS), polyaromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) were analyzed. Outcomes were self-reported asthma, rhinitis, eczema, allergies, respiratory infection, and airway inflammation, measured through fractional exhaled nitric oxide (FeNO). Single pollutant models using multiple regression analysis and multipollutant models using Bayesian Kernel Machine Regression (BKMR) were fitted. As sensitivity analysis, Bayesian model averaging (BMA) and elastic net (ENET) models were also performed. For Bayesian models, posterior inclusion probabilities (PIP) were used to identify the most important chemicals. Mediation analysis was performed to investigate the role of oxidative stress, measured by urinary 8-hydroxy-2' -deoxyguanosine (8-OHdG), and immune markers (eosinophils, basophils, InterLeukin 8, InterLeukin 6, and Interferon-ᵧ in blood). RESULTS In single pollutant models, FeNO was significantly higher by 20% (95% CI: 6, 36%) and 13% (95% CI: 2, 25%) per interquartile range (IQR) fold in mono-n-butyl phthalate (MnBP) and mono-benzyl phthalate (MBzP), respectively. In BKMR analysis, the group PIPs indicated phthalates and DINCH as the most important group (group PIP = 0.509), with MnBP being the most important pollutant within that group (conditional PIP = 0.564; %change = 28%; 95%CI: 6, 54%). Similar patterns were observed in all multipollutant models. Eosinophil count mediated 37.8% (p = 0.018) and 27.9% (p = 0.045) of the association between MBzP and FeNO, and the association between MnBP and FeNO, respectively. 8-OHdG plays a significant mediating role in the association of 2,4-Dichlorophenoxyacetic acid (2,4-D) (55.4%), 3,5,6-Trichloro-2-pyridinol (TCPY) (48.1%), and 1-Naphthylamine (1-NAP) (32.7%) with rhinitis, while the total effects of these chemicals on rhinitis were not statistically significant. CONCLUSIONS This study found associations between phthalates, MnBP and MBzP, and elevated FeNO, which appeared to be mediated by eosinophil count. 8-OHdG plays a significant mediating role in the association between 2,4-D, TCPY, and 1-NAP with rhinitis, while their direct effects remain non-significant. Use of inflammatory and oxidative stress markers can enhance the understanding of inflammatory processes in asthma and allergic diseases due to environmental pollutants.
Collapse
Affiliation(s)
- Hamid Y Hassen
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium.
| | - Eva Govarts
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Sylvie Remy
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Bianca Cox
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway; Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Greet Schoeters
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Elly Den Hond
- Provincial Institute of Hygiene (PIH), Kronenburgstraa 45, 2000, Antwerpen, Belgium; Family Medicine and Population health, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Stefaan De Henauw
- Department of Public Health and Primary Care, Ghent university, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Liesbeth Bruckers
- BioStat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Gudrun Koppen
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Veerle J Verheyen
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| |
Collapse
|
27
|
Jeong SM, Nam HN, Choi SJ. Effects of the Interactions Between Food Additive Titanium Dioxide and Matrices on Genotoxicity. Int J Mol Sci 2025; 26:617. [PMID: 39859330 PMCID: PMC11765690 DOI: 10.3390/ijms26020617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Titanium dioxide (TiO2), a white color food additive, is widely used in bakery products, candies, chewing gums, soups, and creamers. Concerns about its potential genotoxicity have recently emerged, particularly following the European Union's ban on its usage as a food additive due to its genotoxicity potential. Conflicting in vitro and in vivo results regarding its genotoxicity highlight the need for further in-depth investigation. Moreover, food additives can interact with food components or biological matrices, potentially altering their biological responses and genotoxicity. In this study, we evaluated the interactions between two different sizes of additive TiO2 particles and food or biological matrices, including albumin, fetal bovine serum (FBS), and glucose. The results showed that the hydrodynamic diameters of TiO2 increased upon interaction with albumin or FBS, but not with glucose. The presence of albumin or FBS reduced TiO2-induced cytotoxicity, oxidative stress, in vitro intestinal transport, and ex vivo intestinal absorption to untreated control levels, regardless of particle size. While TiO2 caused DNA damage in intestinal Caco-2 cells, the interactions with albumin or FBS significantly reduced the DNA damage to levels comparable to untreated controls. The DNA damage was closely related to oxidative stress caused by TiO2. These findings suggest that the interaction of TiO2 with albumin or FBS, resulting in increased hydrodynamic diameters, mitigates its cytotoxicity, oxidative stress, intestinal transport, and genotoxicity. Further investigation is required to fully understand the potential genotoxicity of TiO2 in food contexts.
Collapse
Affiliation(s)
| | | | - Soo-Jin Choi
- Department of Food Science & Technology, Seoul Women’s University, Seoul 01797, Republic of Korea; (S.-M.J.); (H.-N.N.)
| |
Collapse
|
28
|
Ransdell-Green EC, Baranowska-Kortylewicz J, Wang D. Advances in Fluorescence Techniques for the Detection of Hydroxyl Radicals near DNA and Within Organelles and Membranes. Antioxidants (Basel) 2025; 14:79. [PMID: 39857413 PMCID: PMC11762621 DOI: 10.3390/antiox14010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Hydroxyl radicals (•OH), the most potent oxidants among reactive oxygen species (ROS), are a major contributor to oxidative damage of biomacromolecules, including DNA, lipids, and proteins. The overproduction of •OH is implicated in the pathogenesis of numerous diseases such as cancer, neurodegenerative disorders, and some cardiovascular pathologies. Given the localized nature of •OH-induced damage, detecting •OH, specifically near DNA and within organelles, is crucial for understanding their pathological roles. The major challenge of •OH detection results from their short half-life, high reactivity, and low concentrations within biological systems. As a result, there is a growing need for the development of highly sensitive and selective probes that can detect •OH in specific cellular regions. This review focuses on the advances in fluorescence probes designed to detect •OH near DNA and within cellular organelles and membranes. The key designs of the probes are highlighted, with emphasis on their strengths, applications, and limitations. Recommendations for future research directions are given to further enhance probe development and characterization.
Collapse
Affiliation(s)
| | - Janina Baranowska-Kortylewicz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
29
|
Monadi T, Mohajer Z, Soltani A, Khazeei Tabari MA, Manayi A, Azadbakht M. The influence of apigenin on cellular responses to radiation: From protection to sensitization. Biofactors 2025; 51:e2113. [PMID: 39134426 DOI: 10.1002/biof.2113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/24/2024] [Indexed: 12/29/2024]
Abstract
Apigenin, a dietary flavonoid, has gained increasing attention for its potential therapeutic applications in radiation protection and radiosensitization. Ionizing radiation (IR) can harm healthy cells, but as radiotherapy remains crucial in cancer treatment. Owing to the remarkable application of radiotherapy in the treatment of cancers, it is vital to protect healthy cells from radiation hazards while increasing the sensitivity of cancer cells to radiation. This article reviews the current understanding of apigenin's radioprotective and radiosensitive properties with a focuses on the involved signaling pathways and key molecular targets. When exposed to irradiation, apigenin reduces inflammation via cyclooxygenase-2 inhibition and modulates proapoptotic and antiapoptotic biomarkers. Apigenin's radical scavenging abilities and antioxidant enhancement mitigate oxidative DNA damage. It inhibits radiation-induced mammalian target of rapamycin activation, vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP), and STAT3 expression, while promoting AMPK, autophagy, and apoptosis, suggesting potential in cancer prevention. As a radiosensitizer, apigenin inhibits tumor growth by inducing apoptosis, suppressing VEGF-C, tumor necrosis factor alpha, and STAT3, reducing MMP-2/9 activity, and inhibiting cancer cell glucose uptake. Cellular and animal studies support apigenin's radioprotective and anticancer potential, making it a potential candidate for further research. Investigation into apigenin's therapeutic efficacy in diverse cancer types and radiation damage is essential.
Collapse
Affiliation(s)
- Taha Monadi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohajer
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Soltani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Azadbakht
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Medicinal Plants Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
30
|
Elsangeedy E, Yamaleyeva DN, Edenhoffer NP, Deak A, Soloshenko A, Ray J, Sun X, Shaltout OH, Cruz-Diaz N, Westwood B, Kim-Shapiro D, Diz DI, Soker S, Pulgar VM, Ronca A, Willey JS, Yamaleyeva LM. Sex-specific cardiovascular adaptations to simulated microgravity in Sprague-Dawley rats. NPJ Microgravity 2024; 10:110. [PMID: 39702444 DOI: 10.1038/s41526-024-00450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024] Open
Abstract
Men and women have different cardiovascular responses to spaceflight; however, few studies have focused on direct comparisons between sexes. We investigated the mechanisms of aortic stiffening in socially and sexually mature 20-week-old male and female Sprague Dawley (SD) rats exposed to hindlimb unloading (HLU) for 14 days. Pulse wave velocity (PWV) was greater in the aortic arch of females after HLU versus control females (n = 6-8). HLU had no effect on aortic PWV in males (n = 5-6). Aortic α smooth muscle actin, myosin, collagen, elastin, and collagen-to-elastin ratio were not different in rats of either sex following HLU. The levels of G protein-coupled estrogen receptor (GPER) were lower in the aorta of SD females exposed to HLU compared with female controls but were not altered in males. HLU females also had lower aortic PPARγ, increased oxidative stress markers, and diastolic dysfunction compared with control females. GPER agonist G1 prevented the increase in PWV and 8-hydroxy-2'-deoxyguanosine without altering PPARγ or p47phox in HLU females (n = 4 in each group) suggesting that lower GPER may contribute to arterial stiffening in the setting of simulated microgravity. This study highlights sex-specific vascular adaptations to the state of simulated microgravity.
Collapse
Affiliation(s)
- Ebrahim Elsangeedy
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dina N Yamaleyeva
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nicholas P Edenhoffer
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Allyson Deak
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Anna Soloshenko
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jonathan Ray
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Xuming Sun
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Omar H Shaltout
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nildris Cruz-Diaz
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Brian Westwood
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Debra I Diz
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Victor M Pulgar
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Pharmaceutical & Clinical Sciences, Campbell University, Buies Creek, NC, USA
| | - April Ronca
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Liliya M Yamaleyeva
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
31
|
Chang S, Zhang Z, Liu Q, Wu H, Dong A. An Innovative Food Processing Technology: Microwave Electrodeless Ultraviolet, Luminescence Mechanism, Microbial Inactivation, and Food Application. Foods 2024; 13:4110. [PMID: 39767052 PMCID: PMC11675193 DOI: 10.3390/foods13244110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Microwave electrodeless ultraviolet (MWUV) technology, as an emerging food processing technique, has garnered growing attention in the realm of food science in recent years. Based on different application requirements, MWUV equipment types are categorized as microwave oven reactor, continuous-flow UV-microwave reactor, coaxially driven MWUV reactor, and complete ultraviolet reactor. The luminescence properties of MWUV equipment depend on their filler gas; mercury is commonly used as a filler gas to produce a wavelength at 253.7 nm for food non-thermal sterilization. The microbial sterilization effect of MWUV is primarily attributed to the synergistic action of microwave and ultraviolet (UV): MWUV enhances reactive oxygen species (ROS) production, disrupts the cell membrane structures of bacteria, leads to bacterial endosome leakage, and induces nucleic acid damage. MWUV extends food shelf-life by eliminating microorganisms without significantly altering food quality compared with traditional thermal sterilization methods. Additionally, MWUV, combined with digestion reagents such as HNO3 and H2O2, can effectively enhance the digestion of food samples to detect essential and toxic elements. Studies on MWUV technology hold broad potential in the food industry, with promising implications for food safety and consumer demand for high-quality food. Future research may focus on optimizing the equipment parameters and integrating with other food processing technologies to facilitate further development and application of MWUV.
Collapse
Affiliation(s)
- Shuqi Chang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (S.C.); (Z.Z.)
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Zhaoyi Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (S.C.); (Z.Z.)
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Qin Liu
- Inner Mongolia Tailida Dairy Co., Ltd., Hohhot 010010, China;
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (S.C.); (Z.Z.)
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (S.C.); (Z.Z.)
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| |
Collapse
|
32
|
Mayer E, Winkler I, Huber E, Urbanek M, Kiechl-Kohlendorfer U, Griesmaier E, Posod A. Effects of DHEA and DHEAS in Neonatal Hypoxic-Ischemic Brain Injury. Antioxidants (Basel) 2024; 13:1542. [PMID: 39765870 PMCID: PMC11726961 DOI: 10.3390/antiox13121542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/15/2025] Open
Abstract
Neonatal brain injury remains a significant issue with limited treatment options. This study investigates the potential of the endogenous neurosteroid dehydroepiandrosterone (DHEA) and its sulfate ester (DHEAS) as neuroprotective agents, building on evidence of their mechanisms in adult brain injury models. The primary objective was to evaluate their neuroprotective and anti-oxidative properties in a mouse model of neonatal hypoxic-ischemic brain injury. Using the modified Rice-Vannucci model, brain injury was induced in 7-day-old mouse pups, followed by treatment with various concentrations of DHEA and DHEAS (0.1, 1, and 10 µg/g body weight) via intraperitoneal injection after a 2 h recovery period. Mice were sacrificed after 24 hours for analysis of somatometry, brain injury, apoptosis, microglial activation, and oxidative stress markers (NOX2, 4-HNE, 8-OHdG), along with the anti-oxidant marker SOD1. While no statistically significant effects of DHEA or DHEAS were observed at the tested doses and time points, the absence of toxic or adverse effects highlights their safety profile. These findings provide a foundation for further research into optimizing dosing strategies, timing, and delivery methods. Future studies should refine these variables to maximize neuroprotective efficacy, investigate DHEA(S)' exact mechanisms of action, and explore their potential for clinical application in neonatal care.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Posod
- Department of Pediatrics II (Neonatology), Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| |
Collapse
|
33
|
Moriya RG, Parthiban A, Devi N, Jorvekar SB, Baruah RS, Biswas B, Saharia N, Rao S, Bankar JS, Prasad SK, Sudhagar S, Murty US, Borkar RM. Comprehensive assessment of Zingiber sianginensis: Phytometabolomic analysis and its impact on oxidative stress biomarkers. J Pharm Biomed Anal 2024; 251:116421. [PMID: 39208650 DOI: 10.1016/j.jpba.2024.116421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
In India, ginger is highly valued for cultural and medicinal purposes. Besides traditional uses, ginger has been proven for its efficacy in cancer, chemotherapy-induced nausea, bacterial infections, neuroinflammation, and oxidative stress. This study focuses on Zingiber sianginensis, a rare ginger species in the Siang region of Arunachal Pradesh, India. This study studied pharmacognostical evaluation, phytometabolomics analysis, and its effect on oxidative stress biomarkers. Microscopic and chemical tests were employed for pharmacognostical evaluation, revealing distinctive characteristics of Zingiber sianginensis, such as non-close collateral vascular bundles and unique cork layers. Chemical tests, including the phloroglucinol and hydrochloric acid test, differentiated Zingiber sianginensis from Zingiber officinale Roscoe. Phytometabolomics analysis, using Gas Chromatography-Mass Spectrometry (GC/MS) and Liquid Chromatography-Electrospray Ionisation-Quadrupole Time of Flight-Mass Spectrometry (LC-ESI-QTOF-MS/MS) techniques, identified a diverse range of metabolites in Zingiber sianginensis, including polyphenols, monoterpenoids, diterpenoids, sesquiterpenoids, and organic compounds. The LC-ESI-QTOF-MS/MS analysis revealed 158 compounds, verified through cross-referencing with established databases. Heavy metal analysis by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) confirmed that Zingiber sianginensis complies with safety standards, showing concentrations of heavy metals within acceptable limits. The isolation and characterization of compounds from Zingiber sianginensis identified natural products such as (R)-(-)- alpha-Curcumene (1), 1-Dehydro-[10]-gingerdione (2), 6-Shogaol (3), and 6-Gingerol (4). Quantification of 6-gingerol revealed that Zingiber sianginensis contains approximately twice the amount compared to Zingiber officinale Roscoe's, suggesting its potential as a source for higher 6-gingerol content. The hydroalcoholic extract of Zingiber sianginensis exhibited antioxidant properties, reducing oxidative stress biomarkers in human dermal fibroblast cells treated with rotenone. Allantoin and 3-bromotyrosine levels significantly decreased, indicating the extract's potential in combating oxidative stress-related disorders. Overall, this comprehensive study provides valuable insights into the pharmacognostical, phytometabolomic, and safety aspects of Zingiber sianginensis, highlighting its potential as a source of bioactive compounds with health benefits.
Collapse
Affiliation(s)
- Rahul G Moriya
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Changsari, Guwahati 781101, India
| | - A Parthiban
- Centre for GMP extraction Facility, National Institute of Pharmaceutical Education and Research, Changsari, Guwahati 781101, India
| | - Nayanika Devi
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Changsari, Guwahati 781101, India
| | - Sachin B Jorvekar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Changsari, Guwahati 781101, India
| | - Rupam Sankar Baruah
- Assam Bio-Resource Centre, Assam Science Technology and Environment Council, Baihata Chariali, Guwahati 781381, India
| | - Bidisha Biswas
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Changsari, Guwahati 781101, India
| | - Nilotpal Saharia
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Changsari, Guwahati 781101, India
| | - Srinivas Rao
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Changsari, Guwahati 781101, India
| | - Jagdish S Bankar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Satyendra K Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - S Sudhagar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Changsari, Guwahati 781101, India
| | - Upadhyayula Suryanarayana Murty
- Centre for GMP extraction Facility, National Institute of Pharmaceutical Education and Research, Changsari, Guwahati 781101, India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Changsari, Guwahati 781101, India; Centre for GMP extraction Facility, National Institute of Pharmaceutical Education and Research, Changsari, Guwahati 781101, India.
| |
Collapse
|
34
|
Apte A, Dutta Dey P, Julakanti SR, Midura-Kiela M, Skopp SM, Canchis J, Fauser T, Bardill J, Seal S, Jackson DM, Ghishan FK, Kiela PR, Zgheib C, Liechty KW. Oral Delivery of miR146a Conjugated to Cerium Oxide Nanoparticles Improves an Established T Cell-Mediated Experimental Colitis in Mice. Pharmaceutics 2024; 16:1573. [PMID: 39771552 PMCID: PMC11679827 DOI: 10.3390/pharmaceutics16121573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Dysregulated inflammation and oxidative stress are strongly implicated in the pathogenesis of inflammatory bowel disease. We have developed a novel therapeutic that targets inflammation and oxidative stress. It is comprised of microRNA-146a (miR146a)-loaded cerium oxide nanoparticles (CNPs) (CNP-miR146a). We hypothesized that oral delivery of CNP-miR146a would reduce colonic inflammation in a mouse model of established, chronic, T cell-mediated colitis. Methods: The stability of CNP-miR146a and mucosal delivery was assessed in vitro with simulated gastrointestinal fluid and in vivo after oral gavage by quantitative real-time RT-PCR. The efficacy of orally administered CNP-miR146a was tested in mice with established colitis using the model of adoptive naïve T-cell transfer in recombinant activating gene 2 knockout (Rag2-/-) mice. Measured outcomes included histopathology; CD45+ immune cell infiltration; oxidative DNA damage (tissue 8-hydroxy-2'-deoxyguanosine; 8-OHdG); expression of IL-6 and TNF mRNA and protein, and flow cytometry analysis of lamina propria Th1 and Th17 cell populations. Results: miR146a expression remained stable in simulated gastric and intestinal conditions. miR146a expression increased in the intestines of mice six hours following oral gavage of CNP-miR146a. Oral delivery of CNP-miR146a in mice with colitis was associated with reduced inflammation and oxidative stress in the proximal and distal colons as evidenced by histopathology scoring, reduced immune cell infiltration, reduced IL-6 and TNF expression, and decreased populations of CD4+Tbet+IFNg+ Th1, CD4+RorgT+IL17+ Th17, as well as pathogenic double positive IFNg+IL17+ T cells. Conclusions: CNP-miR146a represents a novel orally available therapeutic with high potential to advance into clinical trials.
Collapse
Affiliation(s)
- Anisha Apte
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA
| | - Pujarini Dutta Dey
- Department of Pediatrics, Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, University of Arizona Health Sciences Center, Tucson, AZ 85621, USA
| | - Srisaianirudh Reddy Julakanti
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA
| | - Monica Midura-Kiela
- Department of Pediatrics, Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, University of Arizona Health Sciences Center, Tucson, AZ 85621, USA
| | - Stacy M. Skopp
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA
| | - Jimena Canchis
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA
| | - Tobias Fauser
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA
| | - James Bardill
- Laboratory for Fetal and Regenerative Biology, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | | | - Fayez K. Ghishan
- Department of Pediatrics, Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, University of Arizona Health Sciences Center, Tucson, AZ 85621, USA
| | - Pawel R. Kiela
- Department of Pediatrics, Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, University of Arizona Health Sciences Center, Tucson, AZ 85621, USA
- Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, AZ 85621, USA
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA
- Ceria Therapeutics, Inc., Tucson, AZ 85721, USA
| | - Kenneth W. Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA
- Ceria Therapeutics, Inc., Tucson, AZ 85721, USA
| |
Collapse
|
35
|
Lee CH, Chang MH, Koh YH, Pack SP, Seo M, Cha H, Lee JH. Mechanistic insight into airborne particulate matter PM10 as an environmental hazard for hemorrhagic stroke: Evidence from in vitro and in vivo studies. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136319. [PMID: 39488980 DOI: 10.1016/j.jhazmat.2024.136319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Airborne particulate matter less than 10 µm in diameter (PM10) is recognized as a significant environmental risk factor for hemorrhagic stroke (HS), as evidenced by epidemiological studies that link PM10 with the heightened cerebrovascular mortality related to HS. Nonetheless, the molecular mechanisms underlying this association remain unknown. Cerebral aneurysm (CA), an etiological factor of HS, is characterized by a bulge resulting from the abnormal loss of the muscular layer of a cerebral artery, comprising brain vascular endothelial cell (BVEC) and vascular smooth muscle cell (VSMC). BVEC exhibiting an inflammatory phenotype is critical for VSMC death within the cerebrovasculature. Here, we elucidate a molecular mechanism by which PM10 augments necroptotic death of VSMC as a consequence of intercellular effects arising from FasL inflammatory cytokine, which is derived from BVEC. Notably, BVEC exposed to PM10 upregulates FasL through ATM-NF-κB signaling, in response to oxidative DNA damage. This genotoxic stress is attributed to pro-oxidant action of aluminum, the prevalent element in PM10. Furthermore, respiratory exposure to PM10 in mice precipitates early onset of CA development through necroptotic VSMC death in cerebral artery, by activating FasL expression in BVEC. In conclusion, this study provides molecular evidence establishing a direct association between PM10 pollution and an elevated risk of stroke, particularly HS.
Collapse
Affiliation(s)
- Chae Hwan Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; BK21 FOUR Research Group for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea; Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea
| | - Moon Han Chang
- Division of Brain Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Young Ho Koh
- Division of Brain Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Seung Pil Pack
- Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea; Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Minseok Seo
- Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea; Department of Computer and Information Science, Korea University, Sejong, Republic of Korea
| | - Hanvit Cha
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea.
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; BK21 FOUR Research Group for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea; Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea; Institutes of Natural Sciences, Korea University, Sejong, Republic of Korea.
| |
Collapse
|
36
|
Jahan F, Vasam G, Cariaco Y, Nik-Akhtar A, Green A, Menzies KJ, Bainbridge SA. NAD + depletion is central to placental dysfunction in an inflammatory subclass of preeclampsia. Life Sci Alliance 2024; 7:e202302505. [PMID: 39389781 PMCID: PMC11467044 DOI: 10.26508/lsa.202302505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive disorder of pregnancy and a major cause of maternal/perinatal adverse health outcomes with no effective therapeutic strategies. Our group previously identified distinct subclasses of PE, one of which exhibits heightened placental inflammation (inflammation-driven PE). In non-pregnant populations, chronic inflammation is associated with decreased levels of cellular NAD+, a vitamin B3 derivative involved in energy metabolism and mitochondrial function. Interestingly, specifically in placentas from women with inflammation-driven PE, we observed the increased activity of NAD+-consuming enzymes, decreased NAD+ content, decreased expression of mitochondrial proteins, and increased oxidative damage. HTR8 human trophoblasts likewise demonstrated increased NAD+-dependent ADP-ribosyltransferase (ART) activity, coupled with decreased mitochondrial respiration rates and invasive function under inflammatory conditions. Such adverse effects were attenuated by boosting cellular NAD+ levels with nicotinamide riboside (NR). Finally, in an LPS-induced rat model of inflammation-driven PE, NR administration (200 mg/kg/day) from gestational days 1-19 prevented maternal hypertension and fetal/placental growth restriction, improved placental mitochondrial function, and reduced inflammation and oxidative stress. This study demonstrates the critical role of NAD+ in maintaining placental function and identifies NAD+ boosting as a promising preventative strategy for PE.
Collapse
Affiliation(s)
- Fahmida Jahan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Yusmaris Cariaco
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Abolfazl Nik-Akhtar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Alex Green
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Keir J Menzies
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Shannon A Bainbridge
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
37
|
Pir R, Sulukan E, Şenol O, Atakay M, Baran A, Kankaynar M, Yıldız E, Salih B, Ceyhun SB. Co-exposure effect of different colour of LED lights and increasing temperature on zebrafish larvae (Danio rerio): Immunohistochemical, metabolomics, molecular and behaviour approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175468. [PMID: 39147052 DOI: 10.1016/j.scitotenv.2024.175468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Although there are studies in the literature on the effects of different coloured light-emitting diodes (LEDs) on different organisms, there is limited information on how these effects change with temperature increase. In this study, the effects of blue, green, red and white LED lights on the early development process of zebrafish (Danio rerio (Hamilton, 1822)) were comprehensively investigated. In addition, to simulate global warming, it was examined how a one-degree temperature increase affects this process. For this purpose, zebrafish embryos, which were placed at 4 hpf (hours post fertilization) in an incubator whose interior was divided into four areas, were kept at three different temperatures (28, 29 and 30 °C) for 120 h. The group kept in a dark environment was chosen as the control. The temperature of the control group was also increased at the same rate as the other groups. The results showed that at the end of the exposure period, temperature and light colour caused an increase in body malformations. Histopathological damage and immunopositive signals of HSP 70 and 8-OHdG biomarkers in larval brains, increase in free oxygen radicals, apoptotic cells and lipid accumulation throughout the body, increase in locomotor activity, decrease in heart rate and blood flow, and significant changes in more than thirty metabolite levels were detected. In addition, it has been determined that many metabolic pathways are affected, especially glutathione, vitamin B6 and pyrimidine metabolism. Moreover, it has been observed that a one-degree temperature increase worsens this negative effect. It was concluded that blue light was the closest light to the control group and was less harmful than other light colours. The study revealed that blue light produced results that were most similar to those seen in the control group.
Collapse
Affiliation(s)
- Rabia Pir
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye; Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Türkiye
| | - Ekrem Sulukan
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye; Basic Science Department, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye
| | - Onur Şenol
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Türkiye
| | - Mehmet Atakay
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Ankara, Türkiye
| | - Alper Baran
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye; Department of Veterinary Public Health, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Türkiye
| | - Meryem Kankaynar
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye; Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Türkiye
| | - Emriye Yıldız
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye; Department of Aquaculture Engineering, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Turkey
| | - Bekir Salih
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Ankara, Türkiye
| | - Saltuk Buğrahan Ceyhun
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye; Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Türkiye; Department of Aquaculture Engineering, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye.
| |
Collapse
|
38
|
Qi W, Zhang H, Han Y, Chen W, Teng Y, Chatzidiakou L, Barratt B, Jones R, Kelly F, Zhu T, Zhang J, Ji JS. Short-term air pollution and greenness exposures on oxidative stress in urban and peri-urban residents in Beijing: A part of AIRLESS study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175148. [PMID: 39089388 DOI: 10.1016/j.scitotenv.2024.175148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/08/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Exposure to air pollution has been associated with increased risks of cardiopulmonary diseases, cancer, and mortality, whereas residing near green spaces may reduce the risks. However, limited research explores their combined effect on oxidative stress. METHODS A total of 251 participants with multi-time measurements were included in the longitudinal-designed study. Personal gaseous air pollutants (CO, NO, NO2, and O3,) and particulate pollution (PM1, PM2.5, and PM10) were measured and followed in two 7-day windows while ambient exposure levels and urine samples were collected simultaneously. Participants' Normalized Difference Vegetation Index (NDVI) was estimated and used to represent greenness exposure. Urinary oxidative stress biomarkers include free malondialdehyde (MDA), total MDA, and 8-hydroxydeoxyguanosine (8-OHdG). Linear mixed-effects models were used to independently and jointly estimate the associations of greenness and air pollution with oxidative stress biomarkers. RESULTS We found consistent positive associations of personal ozone (O3) exposure with 8-OHdG percent changes, and this association was modified by gender and outdoor activity frequency. Consistent positive associations of personal lag 2-day carbon monoxide (CO) exposure with the percent changes of the three oxidative stress biomarkers were significant. We additionally observed that individuals who lived in greener areas had lower levels of urinary-free and total MDA. Participants in the highest NDVI tertile had 0.38 and 0.46 lower free and total MDA levels, [95 % CI: (-0.70, -0.05) and (-0.78, -0.13)], compared to the lowest NDVI tertile. There was also evidence indicating the modification effects by area, education, and outdoor activity frequency on associations between NDVI exposure and creatinine adjusted free MDA (all Pfor interaction < 0.05). Additional greenness modification effects on personal O3 exposure with urinary 8-OHdG was observed. CONCLUSION Our study provides biological evidence of the modification effect of the built environment on the impact of air pollution.
Collapse
Affiliation(s)
- Wenhao Qi
- Global Health Research Center, Duke Kunshan University, Duke University, Kunshan, China; State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Hanbin Zhang
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK; European Centre for Environment and Human Health, University of Exeter Medical School, Penryn, Cornwall, UK
| | - Yiqun Han
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK; BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yanbo Teng
- Global Health Research Center, Duke Kunshan University, Duke University, Kunshan, China
| | - Lia Chatzidiakou
- Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Benjamin Barratt
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Rod Jones
- Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Frank Kelly
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Junfeng Zhang
- Global Health Research Center, Duke Kunshan University, Duke University, Kunshan, China; Nicholas School of the Environment, Duke University, Durham, NC, United States; Duke Global Health Institute, Duke University, Durham, NC, United States
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China.
| |
Collapse
|
39
|
Stewart R, Hope Hutson K, Nestorova GG. Therapeutic potential of astrocyte-derived extracellular vesicles in mitigating cytotoxicity and transcriptome changes in human brain endothelial cells. Neuroscience 2024; 560:181-190. [PMID: 39343159 DOI: 10.1016/j.neuroscience.2024.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
This study investigates the therapeutic effect of astrocyte-derived extracellular vesicles (EVs) in mitigating neurotoxicity-induced transcriptome changes, mitochondrial function, and base excision repair mechanisms in human brain endothelial cells (HBECs). Neurodegenerative disorders are marked by inflammatory processes impacting the blood-brain barrier (BBB) that involve its main components- HBECs and astrocytes. Astrocytes maintain homeostasis through various mechanisms, including EV release. The effect of these EVs on mitigating neurotoxicity in HBECs has not been investigated. This study assesses the impact of astrocyte-derived EVs on global transcriptome changes, cell proliferation, cytotoxicity, oxidative DNA damage, and mitochondrial morphology in HBECs exposed to the neurotoxic reagent Na2Cr2O7. Exposure to Na2Cr2O7 for 5 and 16 h induced oxidative DNA damage, measured by an increase in genomic 8OHdG, while the EVs reduced the accumulation of the adduct. A neurotoxic environment caused a non-statistically significant upregulation of the DNA repair enzyme OGG1 while the addition of astrocyte-derived EVs was associated with the same level of expression. EVs caused increased cell proliferation and reduced cytotoxicity in Na2Cr2O7-treated cells. Mitochondrial dysfunction associated with a reduced copy number and circular morphology induced by neurotoxic exposure was not reversed by astrocyte-derived EVs. High-throughput RNA sequencing revealed that exposure to Na2Cr2O7 suppressed immune response genes. The addition of astrocyte-derived EVs resulted in the dysregulation of long noncoding RNAs impacting genes associated with brain development and angiogenesis. These findings reveal the positive impact of astrocytes-derived EVs in mitigating neurotoxicity and as potential therapeutic avenues for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruth Stewart
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, 71270, USA
| | - K Hope Hutson
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, 71270, USA
| | - Gergana G Nestorova
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, 71270, USA.
| |
Collapse
|
40
|
Hu Y, Luo X, Chen H, Ke J, Feng M, Yuan W. MiR-204-5p regulates SIRT1 to promote the endoplasmic reticulum stress-induced apoptosis of inner ear cells in C57BL/6 mice with hearing loss. PLoS One 2024; 19:e0309892. [PMID: 39531447 PMCID: PMC11556682 DOI: 10.1371/journal.pone.0309892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/20/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE This study investigated the effect of miR-204-5p-mediated silencing of SIRT1 on the development of deafness in C57BL/6 mice and the roles of miR-204-5p and SIRT1 in deafness. METHODS Auditory brainstem response recordings, H&E staining, and immunohistochemistry were used to observe changes in hearing function and cochlear tissue morphology in 2-month-old and 15-month-old C57BL/6 mice. A senescence model was induced using H2O2 in inner ear cells (HEI-OC1). Changes in HEI-OC1 cell proliferation were detected using the CCK-8 assay, whereas flow cytometry was used to detect changes in apoptosis. MiR-204-5p expression was measured via RT‒qPCR. The SIRT1 agonist RSV and a miR-204-5p inhibitor were used to study changes in ER stress (ERS), proliferation, and apoptosis in HEI-OC1 cells. Western blotting was performed to detect changes in ATF4, CHOP, SIRT1, PERK, p-PERK, Bax, and Bcl-2 protein levels. A dual-luciferase reporter gene assay was carried out to assess the ability of miR-204-5p to target SIRT1. RESULTS Relative miR-204-5p expression levels in the cochleae of aged C57BL/6 mice increased, whereas SIRT1 expression levels decreased, and miR-204-5p and SIRT1 expression levels were negatively correlated. ERS and increased 8-OHDG levels were observed in aged C57BL/6 mice. In a model of inner ear cell aging, H2O2 treatment induced increases in miR-204-5p expression and ERS-mediated apoptosis. MiR-204-5p was found to target SIRT1 and inhibit its expression. SIRT1 activation and a miR-204-5p inhibitor promoted HEI-OC1 cell proliferation and reduced apoptosis. The miR-204-5p inhibitor regulated expression of the ERS proteins PERK, ATF4, and CHOP to upregulate Bcl-2 and downregulate Bax. CONCLUSION This study identified the roles of miR-204-5p and SIRT1 in deafness in C57BL/6 mice and investigated the loss of cochlear outer hair cells and the involvement of apoptosis and ERS in deafness.
Collapse
Affiliation(s)
- Yaqin Hu
- Chongqing Medical University, Chongqing, China
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| | - Xiaoqin Luo
- Hospital of Traditional Chinese Medicine Affiliated to Southwest Medical University, Luzhou, China
| | - Hongjiang Chen
- Chongqing Medical University, Chongqing, China
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| | - Jing Ke
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| | - Menglong Feng
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| | - Wei Yuan
- Chongqing Medical University, Chongqing, China
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
41
|
Nowak-Jary J, Machnicka B. Comprehensive Analysis of the Potential Toxicity of Magnetic Iron Oxide Nanoparticles for Medical Applications: Cellular Mechanisms and Systemic Effects. Int J Mol Sci 2024; 25:12013. [PMID: 39596080 PMCID: PMC11594039 DOI: 10.3390/ijms252212013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Owing to recent advancements in nanotechnology, magnetic iron oxide nanoparticles (MNPs), particularly magnetite (Fe3O4) and maghemite (γ-Fe2O3), are currently widely employed in the field of medicine. These MNPs, characterized by their large specific surface area, potential for diverse functionalization, and magnetic properties, have found application in various medical domains, including tumor imaging (MRI), radiolabelling, internal radiotherapy, hyperthermia, gene therapy, drug delivery, and theranostics. However, ensuring the non-toxicity of MNPs when employed in medical practices is paramount. Thus, ongoing research endeavors are essential to comprehensively understand and address potential toxicological implications associated with their usage. This review aims to present the latest research and findings on assessing the potential toxicity of magnetic nanoparticles. It meticulously delineates the primary mechanisms of MNP toxicity at the cellular level, encompassing oxidative stress, genotoxic effects, disruption of the cytoskeleton, cell membrane perturbation, alterations in the cell cycle, dysregulation of gene expression, inflammatory response, disturbance in ion homeostasis, and interference with cell migration and mobility. Furthermore, the review expounds upon the potential impact of MNPs on various organs and systems, including the brain and nervous system, heart and circulatory system, liver, spleen, lymph nodes, skin, urinary, and reproductive systems.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516 Zielona Gora, Poland;
| | | |
Collapse
|
42
|
Dzierżyński E, Gawlik PJ, Puźniak D, Flieger W, Jóźwik K, Teresiński G, Forma A, Wdowiak P, Baj J, Flieger J. Microplastics in the Human Body: Exposure, Detection, and Risk of Carcinogenesis: A State-of-the-Art Review. Cancers (Basel) 2024; 16:3703. [PMID: 39518141 PMCID: PMC11545399 DOI: 10.3390/cancers16213703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Humans cannot avoid plastic exposure due to its ubiquitous presence in the natural environment. The waste generated is poorly biodegradable and exists in the form of MPs, which can enter the human body primarily through the digestive tract, respiratory tract, or damaged skin and accumulate in various tissues by crossing biological membrane barriers. There is an increasing amount of research on the health effects of MPs. Most literature reports focus on the impact of plastics on the respiratory, digestive, reproductive, hormonal, nervous, and immune systems, as well as the metabolic effects of MPs accumulation leading to epidemics of obesity, diabetes, hypertension, and non-alcoholic fatty liver disease. MPs, as xenobiotics, undergo ADMET processes in the body, i.e., absorption, distribution, metabolism, and excretion, which are not fully understood. Of particular concern are the carcinogenic chemicals added to plastics during manufacturing or adsorbed from the environment, such as chlorinated paraffins, phthalates, phenols, and bisphenols, which can be released when absorbed by the body. The continuous increase in NMP exposure has accelerated during the SARS-CoV-2 pandemic when there was a need to use single-use plastic products in daily life. Therefore, there is an urgent need to diagnose problems related to the health effects of MP exposure and detection. Methods: We collected eligible publications mainly from PubMed published between 2017 and 2024. Results: In this review, we summarize the current knowledge on potential sources and routes of exposure, translocation pathways, identification methods, and carcinogenic potential confirmed by in vitro and in vivo studies. Additionally, we discuss the limitations of studies such as contamination during sample preparation and instrumental limitations constraints affecting imaging quality and MPs detection sensitivity. Conclusions: The assessment of MP content in samples should be performed according to the appropriate procedure and analytical technique to ensure Quality and Control (QA/QC). It was confirmed that MPs can be absorbed and accumulated in distant tissues, leading to an inflammatory response and initiation of signaling pathways responsible for malignant transformation.
Collapse
Affiliation(s)
- Eliasz Dzierżyński
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Piotr J. Gawlik
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Damian Puźniak
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Wojciech Flieger
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
- Institute of Health Sciences, John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland
- Doctoral School, Medical University of Lublin, Aleje Racławickie 1, 20-059 Lublin, Poland
| | - Katarzyna Jóźwik
- Department of Neurosurgery and Paediatric Neurosurgery, ul. Jaczewskiego 8, 20-090 Lublin, Poland
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.)
| | - Paulina Wdowiak
- Institute of Medical Sciences, John Paul the II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a (Collegium Pharmaceuticum), 20-093 Lublin, Poland
| |
Collapse
|
43
|
Sturgis J, Singh R, Caron QR, Samuels IS, Shiju TM, Mukkara A, Freedman P, Bonilha VL. Modeling aging and retinal degeneration with mitochondrial DNA mutation burden. Aging Cell 2024; 23:e14282. [PMID: 39210608 PMCID: PMC11561647 DOI: 10.1111/acel.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 09/04/2024] Open
Abstract
Somatic mitochondrial DNA (mtDNA) mutation accumulation has been observed in individuals with retinal degenerative disorders. To study the effects of aging and mtDNA mutation accumulation in the retina, a polymerase gamma (POLG) exonuclease-deficient model, the PolgD257A mutator mice (D257A), was used. POLG is an enzyme responsible for regulating mtDNA replication and repair. Retinas of young and older mice with this mutation were analyzed in vivo and ex vivo to provide new insights into the contribution of age-related mitochondrial (mt) dysfunction due to mtDNA damage. Optical coherence tomography (OCT) image analysis revealed a decrease in retinal and photoreceptor thickness starting at 6 months of age in mice with the D257A mutation compared to wild-type (WT) mice. Electroretinography (ERG) testing showed a significant decrease in all recorded responses at 6 months of age. Sections labeled with markers of different types of retinal cells, including cones, rods, and bipolar cells, exhibited decreased labeling starting at 6 months. However, electron microscopy analysis revealed differences in retinal pigment epithelium (RPE) mt morphology beginning at 3 months. Interestingly, there was no increase in oxidative stress and parkin-mediated mitophagy in the ages analyzed in the retina or RPE of D257A mice. Additionally, D257A RPE exhibited an accelerated rate of autofluorescence cytoplasmic granule formation and accumulation. Mt markers displayed different abundance in protein lysates obtained from retina and RPE samples. These findings suggest that the accumulation of mtDNA mutations leads to impaired mt function and accelerated aging, resulting in retinal degeneration.
Collapse
Affiliation(s)
- John Sturgis
- Department of Ophthalmic Research, Cole Eye InstituteCleveland ClinicClevelandOhioUSA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, School of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Rupesh Singh
- Department of Ophthalmic Research, Cole Eye InstituteCleveland ClinicClevelandOhioUSA
| | - Quinn R. Caron
- Department of Ophthalmic Research, Cole Eye InstituteCleveland ClinicClevelandOhioUSA
| | - Ivy S. Samuels
- Department of Ophthalmic Research, Cole Eye InstituteCleveland ClinicClevelandOhioUSA
- Research ServiceLouis Stokes Cleveland VA Medical CenterClevelandOhioUSA
| | - Thomas Micheal Shiju
- Department of Ophthalmic Research, Cole Eye InstituteCleveland ClinicClevelandOhioUSA
| | - Aditi Mukkara
- Department of Ophthalmic Research, Cole Eye InstituteCleveland ClinicClevelandOhioUSA
- College of Arts and SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Paul Freedman
- Department of Ophthalmic Research, Cole Eye InstituteCleveland ClinicClevelandOhioUSA
- Present address:
Debusk College of Osteopathic MedicineKnoxvilleTennesseeUSA
| | - Vera L. Bonilha
- Department of Ophthalmic Research, Cole Eye InstituteCleveland ClinicClevelandOhioUSA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, School of MedicineCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
44
|
Barbaro MR, Cremon C, Marasco G, Savarino E, Guglielmetti S, Bonomini F, Palombo M, Fuschi D, Rotondo L, Mantegazza G, Duncan R, di Sabatino A, Valente S, Pasquinelli G, Vergnolle N, Stanghellini V, Collins SM, Barbara G. Molecular Mechanisms Underlying Loss of Vascular and Epithelial Integrity in Irritable Bowel Syndrome. Gastroenterology 2024; 167:1152-1166. [PMID: 39004156 DOI: 10.1053/j.gastro.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND & AIMS The pathophysiology of irritable bowel syndrome (IBS) is multifactorial and includes epithelial barrier dysfunction, a key element at the interface between the gut lumen and the deeper intestinal layers. Beneath the epithelial barrier there is the vascular one representing the last barrier to avoid luminal antigen dissemination The aims of this study were to correlate morpho-functional aspects of epithelial and vascular barriers with symptom perception in IBS. METHODS Seventy-eight healthy subjects (controls) and 223 patients with IBS were enrolled in the study and phenotyped according to validated questionnaires. Sugar test was used to evaluate in vivo permeability. Immunohistochemistry, western blot, and electron microscopy were used to characterize the vascular barrier. Vascular permeability was evaluated by assessing the mucosal expression of plasmalemma vesicle-associated protein-1 and vascular endothelial cadherin. Caco-2 or human umbilical vein endothelial cell monolayers were incubated with soluble mediators released by mucosal biopsies to highlight the mechanisms involved in permeability alteration. Correlation analyses have been performed among experimental and clinical data. RESULTS The intestinal epithelial barrier was compromised in patients with IBS throughout the gastrointestinal tract. IBS-soluble mediators increased Caco-2 permeability via a downregulation of tight junction gene expression. Blood vessel density and vascular permeability were increased in the IBS colonic mucosa. IBS mucosal mediators increased permeability in human umbilical vein endothelial cell monolayers through the activation of protease-activated receptor-2 and histone deacetylase 11, resulting in vascular endothelial cadherin downregulation. Permeability changes correlated with intestinal and behavioral symptoms and health-related quality of life of patients with IBS. CONCLUSIONS Epithelial and vascular barriers are compromised in patients with IBS and contribute to clinical manifestations.
Collapse
Affiliation(s)
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Edoardo Savarino
- Department of Surgery, Oncology, and Gastroenterology of the University of Padova, Padova, Italy
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Francesca Bonomini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luca Rotondo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giacomo Mantegazza
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Robin Duncan
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Antonio di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Department of Internal Medicine 1, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Sabrina Valente
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Gianandrea Pasquinelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, Univ Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Stephen M Collins
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
45
|
Firdous SM, Khan SA, Maity A. Oxidative stress-mediated neuroinflammation in Alzheimer's disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8189-8209. [PMID: 38832985 DOI: 10.1007/s00210-024-03188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
Reactive oxygen species (ROS) are metabolic by-products that constitute an indispensable component of physiological processes, albeit their heightened presence may proffer substantial perils to biological entities. Such a proliferation gives rise to a gradual escalation of oxidative stress within the organism, thereby compromising mitochondrial functionality and inflicting harm upon various bodily systems, with a particular predilection for the central nervous system. In its nascent stages, it is plausible that inflammation has been a facilitator in the progression of the malady. The precise role of inflammation in Alzheimer's disease (AD) remains somewhat enigmatic, although it is conceivable that activated microglia and astrocytes might be implicated in the removal of amyloid-β (Aβ) deposits. Nonetheless, prolonged microglial activation is associated with Tau phosphorylation and Aβ aggregation. Research studies have indicated that AD brains upregulate complementary molecules, inflammatory cytokines, acute phase reacting agents, and other inflammatory mediators that may cause neurodegeneration. In this review, oxidative damage products will be discussed as potential peripheral biomarkers for AD and its early stages. The disordered excretion of pro-inflammatory cytokines, chemokines, oxygen, and nitrogen-reactive species, along with the stimulation of the complement system by glial cells, has the potential to disrupt the functionality of neuronal termini. This perturbation, in turn, culminates in compromised synaptic function, a phenomenon empirically linked to the manifestation of cognitive impairments. The management of neurodegenerative conditions in the context of dementia necessitates therapeutic interventions that specifically target the excessive production of inflammatory and oxidative agents. Furthermore, we shall deliberate upon the function of microglia and oxidative injury in the etiology of AD and the ensuing neurodegenerative processes.
Collapse
Affiliation(s)
- Sayed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India.
| | - Sahabaj Ali Khan
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India
| | - Amritangshu Maity
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India
| |
Collapse
|
46
|
Mrakic-Sposta S, Brizzolari A, Vezzoli A, Graci C, Cimmino A, Giacon TA, Dellanoce C, Barassi A, Sesana G, Bosco G. Decompression Illness After Technical Diving Session in Mediterranean Sea: Oxidative Stress, Inflammation, and HBO Therapy. Int J Mol Sci 2024; 25:11367. [PMID: 39518919 PMCID: PMC11546868 DOI: 10.3390/ijms252111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
SCUBA diving poses risks due to pressure changes during descent (compression) and ascent (decompression). Decompression sickness (DCS) occurs due to gas bubble formation as the pressure decreases, causing joint pain, numbness, dizziness, or even paralysis and death. Immediate treatment involves 100% oxygen to help eliminate inert gases and hyperbaric oxygen therapy (HBOT), which is essential to reduce gas emboli formation and inflammation, thus improving symptoms. We evaluated oxy-inflammation biomarkers in the saliva and urine of nine subjects pre- and post-technical dive on the Haven wreck (GE, Italy). A case of DCS occurred during the dive. The injured diver was treated immediately with O2 and transported to the hyperbaric center of "ASST Ospedale Ca Granda" in Milan. He was treated following the U.S. Navy Treatment Table 5 at 2.8 ATA and the day after with Table 15 at 2.4 ATA. Venous blood and urine samples were collected before and after each HBO treatment. Our study shows that dive increased oxy-inflammation biomarkers (ROS +126%; lipid peroxidation +23%; interleukins-6 +81%, -1β +19%, and TNFα +84%) and nitric oxide metabolites levels (+36%). HBOT after a DCS episode reduced oxidative stress, lowering the very high marker of lipid peroxidation (8-iso-PGF2α), and inhibited inflammatory interleukins. Overall, HBOT improved physiological responses in the diver affected by DCS.
Collapse
Affiliation(s)
- Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (A.V.); (C.D.)
- ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (C.G.); (A.C.); (G.S.)
| | - Andrea Brizzolari
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (T.A.G.)
- Department of Health Sciences, Università degli Studi of Milan, 20142 Milan, Italy;
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (A.V.); (C.D.)
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (T.A.G.)
| | - Carmela Graci
- ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (C.G.); (A.C.); (G.S.)
| | - Attilio Cimmino
- ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (C.G.); (A.C.); (G.S.)
| | - Tommaso Antonio Giacon
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (T.A.G.)
| | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (A.V.); (C.D.)
- ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (C.G.); (A.C.); (G.S.)
| | - Alessandra Barassi
- Department of Health Sciences, Università degli Studi of Milan, 20142 Milan, Italy;
| | - Giovanni Sesana
- ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (C.G.); (A.C.); (G.S.)
| | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (T.A.G.)
| |
Collapse
|
47
|
Pandiyan A, Lari S, Vanka J, Kumar BS, Ghosh S, Jee B, Jonnalagadda PR. Plasma pesticide residues-serum 8-OHdG among farmers/non-farmers diagnosed with lymphoma, leukaemia and breast cancers: A case-control study. PLoS One 2024; 19:e0295625. [PMID: 39436919 PMCID: PMC11495580 DOI: 10.1371/journal.pone.0295625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/23/2023] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND A hospital-based cross-sectional case-control study was conducted to investigate the association between exposure through various pesticide residues detected in the plasma and serum 8-OHdG levels among farmers and non-farmers diagnosed with leukaemia, lymphoma and breast cancers and compare the same with healthy controls with no cancer and no exposure. METHODOLOGY The present study was conducted among the farmers and non-farmers visiting a regional tertiary cancer care hospital in Hyderabad, Telangana State, India. Data were collected by administering a pre-tested questionnaire through an interview followed by the collection of blood samples which were analyzed for pesticide residues using LC-MS/MS while the serum levels of 8-OHdG were measured using ELISA. Data were analyzed using SPSS 24. RESULTS The pesticide residues detected were chlorpyrifos, dimethoate, malathion, phosalone, and quinalphos which were approved and recommended for their use on the crops that were cultivated by the farmers in their plasma samples along with banned pesticide residues like monocrotophos, diazinon, and dichlorvos among farmers diagnosed with all three types of cancers while the non-farmers and healthy controls were not detected with any such residues. In addition, farmers diagnosed with leukemia had higher levels of all the pesticide residues in their plasma than those diagnosed with lymphoma and breast cancers. Further, a significant difference was also observed between profenofos residues in plasma and serum 8-OHdG levels. CONCLUSION In the present study, though the farmers diagnosed with three types of cancers were detected with various types of pesticide residues analysed, only residues of profenofos showed a significant difference with serum levels of 8-OHdG suggesting the need for an in-depth follow up molecular studies in a larger cohort to assess the possible association between 8-OHdG levels with the pesticide residues among the exposed.
Collapse
Affiliation(s)
- Arun Pandiyan
- ICMR-National Institute of Nutrition, Tarnaka, Osmania University, Hyderabad, Telangana, India
| | - Summaiya Lari
- ICMR-National Institute of Nutrition, Tarnaka, Osmania University, Hyderabad, Telangana, India
- Department of Biochemistry, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Janardhan Vanka
- ICMR-National Institute of Nutrition, Tarnaka, Osmania University, Hyderabad, Telangana, India
| | | | - Sudip Ghosh
- ICMR-National Institute of Nutrition, Tarnaka, Osmania University, Hyderabad, Telangana, India
| | - Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Padmaja R. Jonnalagadda
- ICMR-National Institute of Nutrition, Tarnaka, Osmania University, Hyderabad, Telangana, India
| |
Collapse
|
48
|
Liu BM, Hayes AW. Mechanisms and Assessment of Genotoxicity of Metallic Engineered Nanomaterials in the Human Environment. Biomedicines 2024; 12:2401. [PMID: 39457713 PMCID: PMC11504605 DOI: 10.3390/biomedicines12102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Engineered nanomaterials (ENMs) have a broad array of applications in agriculture, engineering, manufacturing, and medicine. Decades of toxicology research have demonstrated that ENMs can cause genotoxic effects on bacteria, mammalian cells, and animals. Some metallic ENMs (MENMs), e.g., metal or metal oxide nanoparticles TiO2 and CuO, induce genotoxicity via direct DNA damage and/or reactive oxygen species-mediated indirect DNA damage. There are various physical features of MENMs that may play an important role in promoting their genotoxicity, for example, size and chemical composition. For a valid genotoxicity assessment of MENMs, general considerations should be given to various factors, including, but not limited to, NM characterization, sample preparation, dosing selection, NM cellular uptake, and metabolic activation. The recommended in vitro genotoxicity assays of MENMs include hprt gene mutation assay, chromosomal aberration assay, and micronucleus assay. However, there are still knowledge gaps in understanding the mechanisms underlying the genotoxicity of MENMs. There are also a variety of challenges in the utilization and interpretation of the genotoxicity assessment assays of MENMs. In this review article, we provide mechanistic insights into the genotoxicity of MENMs in the human environment. We review advances in applying new endpoints, biomarkers, and methods to the genotoxicity assessments of MENMs. The guidance of the United States, the United Kingdom, and the European Union on the genotoxicity assessments of MENMs is also discussed.
Collapse
Affiliation(s)
- Benjamin M. Liu
- Division of Pathology and Laboratory Medicine, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Department of Microbiology, Immunology & Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Children’s National Research Institute, Washington, DC 20012, USA
- The District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| | - A. Wallace Hayes
- Center for Environmental/Occupational Risk Analysis & Management, University of South Florida College of Public Health, Tampa, FL 33612, USA
- Institute for Integrated Toxicology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
49
|
Sawicka D, Maciak S, Sadowska A, Sokołowska E, Gohal S, Guzińska-Ustymowicz K, Niemirowicz-Laskowska K, Car H. Metabolic Rate and Oxidative Stress as a Risk Factors in the Development of Colorectal Cancer. Int J Mol Sci 2024; 25:10713. [PMID: 39409042 PMCID: PMC11476475 DOI: 10.3390/ijms251910713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
There is growing evidence that the body's energy expenditures constitute a significant risk factor for the development of most deadly diseases, including cancer. Our aim was to investigate the impact of basal metabolic rate (BMR) on the growth and progression of colorectal cancer (CRC). To do so, we used a unique model consisting of three lines of laboratory mice (Mus musculus) artificially selected for high (HBMR) and low (LBMR) basal metabolic rate and randomly bred individuals (non-selected, NSBMR). The experimental individuals were implanted with human colorectal cancer cells DLD-1. The variation in BMR between the lines allowed for testing the impact of whole-body metabolism on oxidative and antioxidant parameters in the liver throughout the cancerogenesis process. We investigated the dependence between metabolic values, reactive oxygen species (ROS) levels, and Kelch-like ECH-associated protein 1-based E3 ligase complexes (Keap1) gene activity in these animals. We found that the HBMR strain had a higher concentration of oxidative enzymes compared to the LBMR and NSBMR. Furthermore, the growth rate of CRC tumors was associated with alterations in the levels of oxidative stress enzymes and Keap1 expression in animals with a high metabolic rate. Our results indicate that a faster growth and development of CRC line DLD-1 is associated with enzymatic redox imbalance in animals with a high BMR.
Collapse
Affiliation(s)
- Diana Sawicka
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna Street 37, 15-295 Bialystok, Poland; (A.S.); (S.G.); (K.N.-L.); (H.C.)
| | - Sebastian Maciak
- Department of Evolutionary and Physiological Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego Street 1J, 15-245 Bialystok, Poland;
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna Street 37, 15-295 Bialystok, Poland; (A.S.); (S.G.); (K.N.-L.); (H.C.)
| | - Emilia Sokołowska
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona Street 15A, 15-274 Bialystok, Poland;
| | - Sylwia Gohal
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna Street 37, 15-295 Bialystok, Poland; (A.S.); (S.G.); (K.N.-L.); (H.C.)
| | - Katarzyna Guzińska-Ustymowicz
- Department of General Pathomorphology, Medical University of Bialystok, Waszyngtona Street 13, 15-269 Bialystok, Poland;
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna Street 37, 15-295 Bialystok, Poland; (A.S.); (S.G.); (K.N.-L.); (H.C.)
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna Street 37, 15-295 Bialystok, Poland; (A.S.); (S.G.); (K.N.-L.); (H.C.)
| |
Collapse
|
50
|
Baudin J, Hernandez-Baixauli J, Romero-Giménez J, Yang H, Mulero F, Puiggròs F, Mardinoglu A, Arola L, Caimari A. A cocktail of histidine, carnosine, cysteine and serine reduces adiposity and improves metabolic health and adipose tissue immunometabolic function in ovariectomized rats. Biomed Pharmacother 2024; 179:117326. [PMID: 39208671 DOI: 10.1016/j.biopha.2024.117326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Many women have sought alternative therapies to address menopause. Recently, a multi-ingredient supplement (MIS) containing L-histidine, L-carnosine, L-serine, and L-cysteine has been shown to be effective at ameliorating hepatic steatosis (HS) in ovariectomized (OVX) rats, a postmenopausal oestrogen deficiency model. Considering that HS frequently accompanies obesity, which often occurs during menopause, we aimed to investigate the effects of this MIS for 8 weeks in OVX rats. Twenty OVX rats were orally supplemented with either MIS (OVX-MIS) or vehicle (OVX). Ten OVX rats received vehicle orally along with subcutaneous injections of 17β-oestradiol (OVX-E2), whereas 10 rats underwent a sham operation and received oral and injected vehicles (control group). MIS consumption partly counteracted the fat mass accretion observed in OVX animals, leading to decreased total fat mass, adiposity index and retroperitoneal white adipose tissue (RWAT) adipocyte hypertrophy. OVX-MIS rats also displayed increased lean mass and lean/fat ratio, suggesting a healthier body composition, similar to the results reported for OVX-E2 animals. MIS consumption decreased the circulating levels of the proinflammatory marker CRP, the total cholesterol-to-HDL-cholesterol ratio and the leptin-to-adiponectin ratio, a biomarker of diabetes risk and metabolic syndrome. RWAT transcriptomics indicated that MIS favourably regulated genes involved in adipocyte structure and morphology, cell fate determination and differentiation, glucose/insulin homeostasis, inflammation, response to stress and oxidative phosphorylation, which may be mechanisms underlying the beneficial effects described for OVX-MIS rats. Our results pave the way for using this MIS formulation to improve the body composition and immunometabolic health of menopausal women.
Collapse
Affiliation(s)
- Julio Baudin
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus 43204, Spain; Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus 43204, Spain
| | - Jordi Romero-Giménez
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus 43204, Spain
| | - Hong Yang
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm SE-17165, Sweden
| | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, Reus 43204, Spain
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm SE-17165, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona 43007, Spain.
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, Reus 43204, Spain.
| |
Collapse
|