1
|
Chang HP, Le HK, Liu S, Shah DK. PK/PD of Positively Charged ADC in Mice. Pharmaceutics 2025; 17:377. [PMID: 40143040 PMCID: PMC11944646 DOI: 10.3390/pharmaceutics17030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Antibody-drug conjugates (ADCs) show significant promise in oncology but often suffer from a narrow therapeutic window. Introducing a positive charge on the antibody is one proposed strategy to enhance tumor distribution and efficacy of ADC. Accordingly, this study evaluates the pharmacokinetics (PK) and pharmacology of an ADC developed using a positively charged (+5) version of anti-HER2 antibody trastuzumab conjugated with vc-MMAE linker-payload. Methods: A positively charged variant of trastuzumab was generated and conjugated to vc-MMAE. In vitro cytotoxicity assays were performed in cell lines with varying HER2 expression levels: N87 (high), MCF-7 (low), and MDA-MB-468 (non-expressing). In vivo biodistribution of wild-type (WT) and positively charged (+5) ADC was investigated in plasma, tumors, liver, and spleen. A pilot efficacy and toxicity study was also conducted in N87 tumor-bearing mice. Results: The charged ADC showed differential potency and PK behavior compared to the WT ADC. The charged ADC had similar potency in N87 cells but demonstrated ~20-fold and ~60-fold higher potency in MCF-7 and MDA-MB-468 cells. Plasma exposures of all the analytes were found to be reduced following the administration of charged ADC. However, total antibody exposure was found to increase in liver, spleen, and low antigen-expressing MCF-7 tumors. Tumor payload exposures were found to be significantly reduced for the charged ADCs, but liver and spleen displayed higher peak concentrations and increased tissue-to-plasma exposure ratios for the payload, suggesting preferential distribution of ADC with high drug-antibody ratio (DAR) to liver and spleen. Consistent with reduced tumor exposures, charged ADC showed lower efficacy in N87 tumor-bearing mice. No overt toxicity was observed for the charged ADC. Conclusions: Our findings suggest that while positively charged ADCs may be more potent in vitro, their efficacy in vivo may be compromised due to altered PK behavior. Thus, introducing a positive charge into the antibody framework may not be a viable strategy for improving the therapeutic potential of ADCs.
Collapse
Affiliation(s)
| | | | | | - Dhaval K. Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14214, USA; (H.-P.C.); (H.K.L.)
| |
Collapse
|
2
|
Grairi M, Le Borgne M. Antibody-drug conjugates: prospects for the next generation. Drug Discov Today 2024; 29:104241. [PMID: 39542204 DOI: 10.1016/j.drudis.2024.104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
The concept of a 'magic bullet' was first introduced by Paul Ehrlich in the early 1900s, he foresaw the advent of targeted therapies and the specific killing of harmful cells and/or microorganisms. However, these therapies were only used in the clinic after the second half of the 20th century with the development of specific monoclonal antibodies. To date, 13 antibody-drug conjugates (ADCs) are commercially available. Many advances have been made by modifying one or several of the three main components of an ADC, namely the antibody, the cleavable or non-cleavable linker or the payload, and by integrating conjugation chemistry. Despite these efforts, some problems have emerged and thus limit their effectiveness. New strategies could overcome these problems and identify the next generation of ADC.
Collapse
Affiliation(s)
- Meriem Grairi
- Institut des Sciences Pharmaceutiques et Biologiques (ISPB), Faculté de Pharmacie, Université Claude Bernard Lyon 1, Univ Lyon, 69373 Lyon, France
| | - Marc Le Borgne
- Institut des Sciences Pharmaceutiques et Biologiques (ISPB), Faculté de Pharmacie, Université Claude Bernard Lyon 1, Univ Lyon, 69373 Lyon, France; Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373 Lyon, France.
| |
Collapse
|
3
|
Lieu LB, Nagy C, Huang J, Mullen C, McAlister GC, Zabrouskov V, Srzentić K, Durbin KR, Melani RD, Fornelli L. Enhanced Payload Localization in Antibody-Drug Conjugates Using a Middle-Down Mass Spectrometry Approach with Proton Transfer Charge Reduction. Anal Chem 2024; 96:18483-18490. [PMID: 39511732 PMCID: PMC11892948 DOI: 10.1021/acs.analchem.4c03872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a novel class of immunoconjugates with growing therapeutic relevance, since they combine the efficacy of cytotoxic drugs with the specificity of antibodies. However, by design, ADCs introduce structural features into the monoclonal antibody scaffold that complicate their analysis. Payload attachment to cysteine or lysine residues can often result in product heterogeneity, regarding both the number of attached drug molecules and their conjugation site, necessitating the use of state-of-the-art MS instrumentation to elucidate their complexity. In middle-down mass spectrometry (MD MS), the gas-phase sequencing of ∼25 kDa ADC subunits with different ion activation techniques generally produces rich fragmentation mass spectra; however, spectral congestion can cause some fragment ions to go undetected, including those that can pinpoint the exact location of payload conjugation sites. Proton transfer charge reduction (PTCR) can substantially simplify fragment ion spectra, thereby unveiling the presence of product ions whose signals were previously suppressed. Herein, we present an MD MS strategy relying on the use of PTCR to investigate a cysteine-based ADC mimic with a variable drug-to-antibody ratio, targeting the unambiguous localization of payload conjugation sites. Unlike traditional tandem MS experiments (MS2), which could not provide a complete map of conjugation sites, a single PTCR-based experiment (MS3) proved to be sufficient to achieve this goal across all variably modified ADC subunits, including isomeric ones. Combining the results obtained from orthogonal ion activation techniques followed by PTCR further strengthened the confidence in the assignments.
Collapse
Affiliation(s)
- Linda B. Lieu
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK, 73019
| | - Cynthia Nagy
- University of Oklahoma, School of Biological Sciences, 730 Van Vleet Oval, Norman, OK, 73019
| | - Jingjing Huang
- Thermo Fisher Scientific, 355 River Oaks pkwy, San Jose, CA, 35134
| | | | | | - Vlad Zabrouskov
- Thermo Fisher Scientific, 355 River Oaks pkwy, San Jose, CA, 35134
| | - Kristina Srzentić
- Thermo Fisher Scientific, 11 Neuhofstrasse, 4153 Reinach, Switzerland
| | | | - Rafael D. Melani
- Thermo Fisher Scientific, 355 River Oaks pkwy, San Jose, CA, 35134
| | - Luca Fornelli
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK, 73019
- University of Oklahoma, School of Biological Sciences, 730 Van Vleet Oval, Norman, OK, 73019
| |
Collapse
|
4
|
Leng C, Sun S, Lin W, Pavon JA, Gennaro L, Gunawan RC, Bu X, Yang T, Li S. Imaged capillary isoelectric focusing method development for charge variants of high DAR ADCs. Anal Chim Acta 2024; 1328:343176. [PMID: 39266202 DOI: 10.1016/j.aca.2024.343176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/12/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Charge heterogeneity is a critical quality attribute for therapeutic biologics including antibody-drug conjugates (ADCs). Developing an ion exchange chromatography (IEX) or an imaged capillary isoelectric focusing (icIEF) method for ADCs with high drug-to-antibody ratio (DAR) is challenging because of the increased hydrophobicity from the payload-linker, DAR heterogeneity, and payload-linker instability. A sub-optimal method can be poorly stability-indicating due to the inability to discern contributions from charge and size variants conjugated with different number of drugs/payloads. Systematic strategy and guidance on charge variant method development is highly desired for high DAR ADCs with various complex structures. RESULTS This work encompasses the development and optimization of icIEF methods for high DAR ADCs of various DAR values (4-8) and payload linker chemistry. Method optimization focuses on improving resolution and stability indicating capabilities and differentiating contributions from the protein and payload-linker. Types, proportion, and combination of solubilizers and carrier ampholytes, as well as focusing parameters were interrogated. Our findings show that the structural units of the linker, the DAR, and the payload chemistry prescribe the selection of buffer, solubilizer, and ampholyte. We demonstrate that a stronger denaturant or solubilizer is needed for high DAR ADCs with polyethylene glycol (PEG)-containing linker structure compared to peptide linker. For unstable payload-linker, buffer system enhances sample stability which is vital to method robustness. In addition, a longer isoelectric focusing time is necessary for an ADC than its corresponding antibody to reach optimal focusing. SIGNIFICANCE To the best of our knowledge, this is the first comprehensive study on icIEF method development for charge variant determination of high DAR ADCs with unique physicochemical properties.
Collapse
Affiliation(s)
- Chuan Leng
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States.
| | - Shuwen Sun
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States
| | - Wei Lin
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States
| | | | - Lynn Gennaro
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States
| | - Rico C Gunawan
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States
| | - Xiaodong Bu
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States
| | - Tong Yang
- Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd, No. 666 Xinhua Avenue, Chengdu Cross-Strait Science and Technology Industry Development Park, Wenjiang District, Chengdu, Sichuan Province, PR China
| | - Senwu Li
- Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd, No. 666 Xinhua Avenue, Chengdu Cross-Strait Science and Technology Industry Development Park, Wenjiang District, Chengdu, Sichuan Province, PR China
| |
Collapse
|
5
|
Hu Y, Zhu Y, Qi D, Tang C, Zhang W. Trop2-targeted therapy in breast cancer. Biomark Res 2024; 12:82. [PMID: 39135109 PMCID: PMC11321197 DOI: 10.1186/s40364-024-00633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Human trophoblastic cell surface antigen 2 (Trop2) is a glycoprotein, a cellular marker of trophoblastic and stem cells, and a calcium signaling transducer involved in several signaling pathways, leading to the proliferation, invasion, and metastasis of tumors. It is expressed at a low level in normal epithelial cells, but at a high level in many tumors, making it an ideal target for cancer therapy. According to previous literature, Trop2 is broadly expressed in all breast cancer subtypes, especially in triple negative breast cancer (TNBC). Several clinical trials have demonstrated the effectiveness of Trop2-targeted therapy in breast cancer. Sacituzumab govitecan (SG) is a Trop2-targeted antibody-drug conjugate (ADC) that has been approved for the treatment of metastatic TNBC and hormone receptor-positive (HR+) and human epidermal growth factor receptor 2-negative (HER2-) breast cancer. This article reviews the structure and function of Trop2, several major Trop2-targeted ADCs, other appealing novel Trop2-targeted agents and relevant clinical trials to provide a landscape of how Trop2-targeted treatments will develop in the future.
Collapse
Affiliation(s)
- Yixuan Hu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yinxing Zhu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
- Department of Radiation Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Dan Qi
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Cuiju Tang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Wenwen Zhang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
6
|
Wu G, Yu C, Yin S, Du J, Zhang Y, Fu Z, Wang L, Wang J. A native SEC-MS workflow and validation for analyzing drug-to-antibody ratio and drug load distribution in cysteine-linked antibody-drug conjugates. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1241:124167. [PMID: 38823148 DOI: 10.1016/j.jchromb.2024.124167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
The development and optimization of Antibody-Drug Conjugates (ADCs) hinge on enhanced analytical and bioanalytical characterization, particularly in assessing critical quality attributes (CQAs). The ADC's potency is largely determined by the average number of drugs attached to the monoclonal antibody (mAb), known as the drug-to-antibody ratio (DAR). Furthermore, the drug load distribution (DLD) influences the therapeutic window of the ADC, defining the range of dosages effective in treating diseases without causing toxic effects. Among CQAs, DAR and DLD are vital; their control is essential for ensuring manufacturing consistency and product quality. Typically, hydrophobic interaction chromatography (HIC) or reversed-phase liquid chromatography (RPLC) with UV detector have been used to quantitate DAR and DLD in quality control (QC) environment. Recently, Native size-exclusion chromatography-mass spectrometry (nSEC-MS) proves the potential as a platformable quantitative method for characterizing DAR and DLD across various cysteine-linked ADCs in research or early preclinical development. In this work, we established and assessed a streamlined nSEC-MS workflow with a benchtop LC-MS platform, to quantitatively monitor DAR and DLD of different chemotype and drug load level cysteine-linked ADCs. Moreover, to deploy this workflow in QC environment, complete method validation was conducted in three independent laboratories, adhering to the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) Q2(R1) guidelines. The results met the predefined analytical target profile (ATP) and performance criteria, encompassing specificity/selectivity, accuracy, precision, linearity, range, quantification/detection limit, and robustness. Finally, the method validation design offers a reference for other nSEC-MS methods that are potentially used to determine the DAR and DLD on cysteine-linker ADCs. To the best of our knowledge, this study is the first reported systematic validation of the nSEC-MS method for detecting DAR and DLD. The results indicated that the co-validated nSEC-MS workflow is suitable for DAR and DLD routine analysis in ADC quality control, release, and stability testing.
Collapse
Affiliation(s)
- Gang Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Chuanfei Yu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, China
| | - Sicheng Yin
- Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Jialiang Du
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, China
| | - Yifan Zhang
- Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Zhihao Fu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, China
| | - Lan Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, China
| | - Junzhi Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
7
|
Grammoustianou M, Dimitrakopoulos FI, Koutras A. Current Status and Future Perspectives of Antibody-Drug Conjugates in Hormone Receptor-Positive Breast Cancer. Cancers (Basel) 2024; 16:1801. [PMID: 38791880 PMCID: PMC11120191 DOI: 10.3390/cancers16101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024] Open
Abstract
Breast cancer is the most common cancer type in women. The vast majority of breast cancer patients have hormone receptor-positive (HR+) tumors. In advanced HR+ breast cancer, the combination of endocrine therapy with cyclin-dependent kinase 4/6 (CDK4/6) inhibitors is considered the standard of care in the front-line setting. Nevertheless, resistance to hormonal therapy and CDK4/6 inhibitors eventually occurs, leading to progression of the disease. Antibody-drug conjugates (ADCs) comprise a promising therapeutic choice with significant efficacy in patients with HR+ breast cancer, which is resistant to endocrine treatment. ADCs typically consist of a cytotoxic payload attached by a linker to a monoclonal antibody that targets a specific tumor-associated antigen, offering the advantage of a more selective delivery of chemotherapy to cancer cells. In this review, we focus on the ADC mechanisms of action, their toxicity profile and therapeutic uses as well as on related biomarkers and future perspectives in advanced HR+ breast cancer.
Collapse
Affiliation(s)
- Maria Grammoustianou
- Oncology Department, Sotiria General Hospital, 115 27 Athens, Greece;
- Breast Cancer Survivorship Research Group, Gustave Roussy, 94805 Villejuif, France
| | | | - Angelos Koutras
- Division of Oncology, Department of Medicine, University Hospital, Medical School, University of Patras, 265 04 Patras, Greece;
| |
Collapse
|
8
|
Sirén H. Research of saccharides and related biocomplexes: A review with recent techniques and applications. J Sep Sci 2024; 47:e2300668. [PMID: 38699940 DOI: 10.1002/jssc.202300668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 05/05/2024]
Abstract
Saccharides and biocompounds as saccharide (sugar) complexes have various roles and biological functions in living organisms due to modifications via nucleophilic substitution, polymerization, and complex formation reactions. Mostly, mono-, di-, oligo-, and polysaccharides are stabilized to inactive glycosides, which are formed in metabolic pathways. Natural saccharides are important in food and environmental monitoring. Glycosides with various functionalities are significant in clinical and medical research. Saccharides are often studied with the chromatographic methods of hydrophilic interaction liquid chromatography and anion exchange chromatograpy, but also with capillary electrophoresis and mass spectrometry with their on-line coupling systems. Sample preparation is important in the identification of saccharide compounds. The cases discussed here focus on bioscience, clinical, and food applications.
Collapse
Affiliation(s)
- Heli Sirén
- Chemicum Building, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Makey DM, Ruotolo BT. Liquid-phase separations coupled with ion mobility-mass spectrometry for next-generation biopharmaceutical analysis. Expert Rev Proteomics 2024; 21:259-270. [PMID: 38934922 PMCID: PMC11299228 DOI: 10.1080/14789450.2024.2373707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION The pharmaceutical industry continues to expand its search for innovative biotherapeutics. The comprehensive characterization of such therapeutics requires many analytical techniques to fully evaluate critical quality attributes, making analysis a bottleneck in discovery and development timelines. While thorough characterization is crucial for ensuring the safety and efficacy of biotherapeutics, there is a need to further streamline analytical characterization and expedite the overall timeline from discovery to market. AREAS COVERED This review focuses on recent developments in liquid-phase separations coupled with ion mobility-mass spectrometry (IM-MS) for the development and characterization of biotherapeutics. We cover uses of IM-MS to improve the characterization of monoclonal antibodies, antibody-drug conjugates, host cell proteins, glycans, and nucleic acids. This discussion is based on an extensive literature search using Web of Science, Google Scholar, and SciFinder. EXPERT OPINION IM-MS has the potential to enhance the depth and efficiency of biotherapeutic characterization by providing additional insights into conformational changes, post-translational modifications, and impurity profiles. The rapid timescale of IM-MS positions it well to enhance the information content of existing assays through its facile integration with standard liquid-phase separation techniques that are commonly used for biopharmaceutical analysis.
Collapse
Affiliation(s)
- Devin M Makey
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
10
|
Li M, Zhao X, Yu C, Wang L. Antibody-Drug Conjugate Overview: a State-of-the-art Manufacturing Process and Control Strategy. Pharm Res 2024; 41:419-440. [PMID: 38366236 DOI: 10.1007/s11095-023-03649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/16/2023] [Indexed: 02/18/2024]
Abstract
Antibody-drug conjugates (ADCs) comprise an antibody, linker, and drug, which direct their highly potent small molecule drugs to target tumor cells via specific binding between the antibody and surface antigens. The antibody, linker, and drug should be properly designed or selected to achieve the desired efficacy while minimizing off-target toxicity. With a unique and complex structure, there is inherent heterogeneity introduced by product-related variations and the manufacturing process. Here this review primarily covers recent key advances in ADC history, clinical development status, molecule design, manufacturing processes, and quality control. The manufacturing process, especially the conjugation process, should be carefully developed, characterized, validated, and controlled throughout its lifecycle. Quality control is another key element to ensure product quality and patient safety. A patient-centric strategy has been well recognized and adopted by the pharmaceutical industry for therapeutic proteins, and has been successfully implemented for ADCs as well, to ensure that ADC products maintain their quality until the end of their shelf life. Deep product understanding and process knowledge defines attribute testing strategies (ATS). Quality by design (QbD) is a powerful approach for process and product development, and for defining an overall control strategy. Finally, we summarize the current challenges on ADC development and provide some perspectives that may help to give related directions and trigger more cross-functional research to surmount those challenges.
Collapse
Affiliation(s)
- Meng Li
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Xueyu Zhao
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Chuanfei Yu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Lan Wang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China.
| |
Collapse
|
11
|
Zhou L, Lu Y, Liu W, Wang S, Wang L, Zheng P, Zi G, Liu H, Liu W, Wei S. Drug conjugates for the treatment of lung cancer: from drug discovery to clinical practice. Exp Hematol Oncol 2024; 13:26. [PMID: 38429828 PMCID: PMC10908151 DOI: 10.1186/s40164-024-00493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Liu
- Department of Geriatrics, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanglong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisha Zi
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
12
|
Bouvarel T, Camperi J, Guillarme D. Multi-dimensional technology - Recent advances and applications for biotherapeutic characterization. J Sep Sci 2024; 47:e2300928. [PMID: 38471977 DOI: 10.1002/jssc.202300928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 03/14/2024]
Abstract
This review provides an overview of the latest advancements and applications in multi-dimensional liquid chromatography coupled with mass spectrometry (mD-LC-MS), covering aspects such as inter-laboratory studies, digestion strategy, trapping column, and multi-level analysis. The shift from an offline to an online workflow reduces sample processing artifacts, analytical variability, analysis time, and the labor required for data acquisition. Over the past few years, this technique has demonstrated sufficient maturity for application across a diverse range of complex products. Moreover, there is potential for this strategy to evolve into an integrated process analytical technology tool for the real-time monitoring of monoclonal antibody quality. This review also identifies emerging trends, including its application to new modalities, the possibility of evaluating biological activity within the mD-LC set-up, and the consideration of multi-dimensional capillary electrophoresis as an alternative to mD-LC. As mD-LC-MS continues to evolve and integrate emerging trends, it holds the potential to shape the next generation of analytical tools, offering exciting possibilities for enhanced characterization and monitoring of complex biopharmaceutical products.
Collapse
Affiliation(s)
- Thomas Bouvarel
- Protein Analytical Chemistry, Genentech, South San Francisco, California, USA
| | - Julien Camperi
- Cell Therapy Engineering and Development, Genentech, South San Francisco, California, USA
| | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Torrente-López A, Hermosilla J, Salmerón-García A, Cabeza J, Ruiz-Martínez A, Navas N. Comprehensive physicochemical and functional analysis of pembrolizumab based on controlled degradation studies: Impact on antigen-antibody binding. Eur J Pharm Biopharm 2024; 194:131-147. [PMID: 38101489 DOI: 10.1016/j.ejpb.2023.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Monoclonal antibodies-based medicines are widely used in the treatment of different diseases. These medicines are very sensitive to exposure to different environmental conditions and their handling in hospitals may affect their safety and efficacy. This is the case for pembrolizumab (Keytruda®, 25 mg/mL), for which there is not yet much information on its risk behaviour associated with routine handling or unintentional mishandling. Here we performed a wider physicochemical and functional analysis of pembrolizumab medicine including controlled degradation studies: heat, freeze/thaw, agitation, accelerated light exposure and high hypertonic solution. After that, the samples were analysed by a set of analytical techniques to evaluated critical quality attributes: Far-UV CD, IT-FS, DLS, RP/UHPLC(UV)-MS, SE/UHPLC(UV), RP/UHPLC(UV)-MS/MS and ELISA. The results provide an in-depth understanding of the biochemical and biophysical properties of pembrolizumab, showing that the medicine is affected by accelerated light exposure and temperature of 60 °C, demonstrated by the detection of non-natural dimers and HMWS. Light exposure also revealed different isoform profile and increase in oxidations. Regarding functionality by means of the interaction antigen-antibody binding, all the stressors promoted a decrease in pembrolizumab capacity to bind to PD-1 receptor, although the biological activity remained still high for all of them, being 60 °C and accelerated light exposure the most affected.
Collapse
Affiliation(s)
- Anabel Torrente-López
- Department of Analytical Chemistry, Science Faculty, Biohealth Research Institute (ibs.GRANADA), University of Granada, E-18071 Granada, Spain
| | - Jesús Hermosilla
- Department of Analytical Chemistry, Science Faculty, Biohealth Research Institute (ibs.GRANADA), University of Granada, E-18071 Granada, Spain
| | - Antonio Salmerón-García
- Department of Clinical Pharmacy, Biohealth Research Institute (ibs.GRANADA), San Cecilio University Hospital, E-18012 Granada, Spain
| | - José Cabeza
- Department of Clinical Pharmacy, Biohealth Research Institute (ibs.GRANADA), San Cecilio University Hospital, E-18012 Granada, Spain
| | - Adolfina Ruiz-Martínez
- Department of Pharmacy and Pharmaceutical Technology, Pharmacy Faculty, University of Granada, E-18011 Granada, Spain
| | - Natalia Navas
- Department of Analytical Chemistry, Science Faculty, Biohealth Research Institute (ibs.GRANADA), University of Granada, E-18071 Granada, Spain.
| |
Collapse
|
14
|
Bisht T, Adhikari A, Patil S, Dhoundiyal S. Bioconjugation Techniques for Enhancing Stability and Targeting Efficiency of Protein and Peptide Therapeutics. Curr Protein Pept Sci 2024; 25:226-243. [PMID: 37921168 DOI: 10.2174/0113892037268777231013154850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 11/04/2023]
Abstract
Bioconjugation techniques have emerged as powerful tools for enhancing the stability and targeting efficiency of protein and peptide therapeutics. This review provides a comprehensive analysis of the various bioconjugation strategies employed in the field. The introduction highlights the significance of bioconjugation techniques in addressing stability and targeting challenges associated with protein and peptide-based drugs. Chemical and enzymatic bioconjugation methods are discussed, along with crosslinking strategies for covalent attachment and site-specific conjugation approaches. The role of bioconjugation in improving stability profiles is explored, showcasing case studies that demonstrate successful stability enhancement. Furthermore, bioconjugation techniques for ligand attachment and targeting are presented, accompanied by examples of targeted protein and peptide therapeutics. The review also covers bioconjugation approaches for prolonging circulation and controlled release, focusing on strategies to extend half-life, reduce clearance, and design-controlled release systems. Analytical characterization techniques for bioconjugates, including the evaluation of conjugation efficiency, stability, and assessment of biological activity and targeting efficiency, are thoroughly examined. In vivo considerations and clinical applications of bioconjugated protein and peptide therapeutics, including pharmacokinetic and pharmacodynamic considerations, as well as preclinical and clinical developments, are discussed. Finally, the review concludes with an overview of future perspectives, emphasizing the potential for novel conjugation methods and advanced targeting strategies to further enhance the stability and targeting efficiency of protein and peptide therapeutics.
Collapse
Affiliation(s)
- Tanuja Bisht
- Department of Pharmacy, Shree Dev Bhoomi Institute of Education, Science and Technology, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun, Uttarakhand, India
| | - Anupriya Adhikari
- Department of Pharmacy, Shree Dev Bhoomi Institute of Education, Science and Technology, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun, Uttarakhand, India
| | - Shivanand Patil
- Department of Pharmacy, Shree Dev Bhoomi Institute of Education, Science and Technology, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun, Uttarakhand, India
| | - Shivang Dhoundiyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
15
|
Kaltashov IA, Ivanov DG, Yang Y. Mass spectrometry-based methods to characterize highly heterogeneous biopharmaceuticals, vaccines, and nonbiological complex drugs at the intact-mass level. MASS SPECTROMETRY REVIEWS 2024; 43:139-165. [PMID: 36582075 PMCID: PMC10307928 DOI: 10.1002/mas.21829] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The intact-mass MS measurements are becoming increasingly popular in characterization of a range of biopolymers, especially those of interest to biopharmaceutical industry. However, as the complexity of protein therapeutics and other macromolecular medicines increases, the new challenges arise, one of which is the high levels of structural heterogeneity that are frequently exhibited by such products. The very notion of the molecular mass measurement loses its clear and intuitive meaning when applied to an extremely heterogenous system that cannot be characterized by a unique mass, but instead requires that a mass distribution be considered. Furthermore, convoluted mass distributions frequently give rise to unresolved ionic signal in mass spectra, from which little-to-none meaningful information can be extracted using standard approaches that work well for homogeneous systems. However, a range of technological advances made in the last decade, such as the hyphenation of intact-mass MS measurements with front-end separations, better integration of ion mobility in MS workflows, development of an impressive arsenal of gas-phase ion chemistry tools to supplement MS methods, as well as the revival of the charge detection MS and its triumphant entry into the field of bioanalysis already made impressive contributions towards addressing the structural heterogeneity challenge. An overview of these techniques is accompanied by critical analysis of the strengths and weaknesses of different approaches, and a brief overview of their applications to specific classes of biopharmaceutical products, vaccines, and nonbiological complex drugs.
Collapse
Affiliation(s)
- Igor A. Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst MA 01003
| | - Daniil G. Ivanov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst MA 01003
| | | |
Collapse
|
16
|
Beaumal C, Deslignière E, Diemer H, Carapito C, Cianférani S, Hernandez-Alba O. Improved characterization of trastuzumab deruxtecan with PTCR and internal fragments implemented in middle-down MS workflows. Anal Bioanal Chem 2024; 416:519-532. [PMID: 38008785 DOI: 10.1007/s00216-023-05059-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
Antibody-drug conjugates (ADCs) are highly complex proteins mainly due to the structural microvariability of the mAb, along with the additional heterogeneity afforded by the bioconjugation process. Top-down (TD) and middle-down (MD) strategies allow the straightforward fragmentation of proteins to elucidate the conjugated amino acid residues. Nevertheless, these spectra are very crowded with multiple overlapping and unassigned ion fragments. Here we report on the use of dedicated software (ClipsMS) and application of proton transfer charge reduction (PTCR), to respectively expand the fragment ion search space to internal fragments and improve the separation of overlapping fragment ions for a more comprehensive characterization of a recently approved ADC, trastuzumab deruxtecan (T-DXd). Subunit fragmentation allowed between 70 and 90% of sequence coverage to be obtained. Upon addition of internal fragment assignment, the three subunits were fully sequenced, although internal fragments did not contribute significantly to the localization of the payloads. Finally, the use of PTCR after subunit fragmentation provided a moderate sequence coverage increase between 2 and 13%. The reaction efficiently decluttered the fragmentation spectra allowing increasing the number of fragment ions characteristic of the conjugation site by 1.5- to 2.5-fold. Altogether, these results show the interest in the implementation of internal fragment ion searches and more particularly the use of PTCR reactions to increase the number of signature ions to elucidate the conjugation sites and enhance the overall sequence coverage of ADCs, making this approach particularly appealing for its implementation in R&D laboratories.
Collapse
Affiliation(s)
- Corentin Beaumal
- Laboratoire de Spectrométrie de Masse Bio Organique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Evolène Deslignière
- Laboratoire de Spectrométrie de Masse Bio Organique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Hélène Diemer
- Laboratoire de Spectrométrie de Masse Bio Organique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio Organique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse Bio Organique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse Bio Organique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087, Strasbourg, France.
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France.
| |
Collapse
|
17
|
Shikida N, Yamazaki S, Takahashi K, Matsuda Y, Shimbo K. Analytical studies on the conjugation site specificity of trastuzumab modified by Escherichia coli lipoate ligase A: multiple-enzyme digestion approach for peptide mapping. Anal Bioanal Chem 2023; 415:6461-6469. [PMID: 37702772 DOI: 10.1007/s00216-023-04922-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
Tag-free protein modification has received considerable attention in the field of chemical biology owing to the versatility and simplicity of the reaction sequence. In 2021, a novel tag-free enzymatic modification of antibodies utilizing lipoate ligase A (LplA) was reported to reveal its potential in the production of site-specific antibody conjugates. Primary peptide mapping analysis revealed the biased site specificity of antibodies modified by LplA; however, quantitative analysis remains challenging because of the complicated heterogeneity derived from biased selective modification. In an effort to further understand the site occupancy of LplA-modified antibodies, this study employed numerous unconventional techniques and strategies. Optimization of HPLC conditions and utilization of enzymes such as trypsin, Glu-C, and chymotrypsin significantly increased sequence data coverage. The transition from traditional spectral counting to a more accurate peak area-based label-free quantification helped better analyze peptide modification levels. The results obtained indicate that LplA-induced modifications are specific lysines, particularly the light chain Lys188/190 site, which have an increased modification rate compared to chemically induced modifications. This study not only contributes to the understanding of peptide modification, but also presents an improved methodology that promises to stimulate further research in this field.
Collapse
Affiliation(s)
- Natsuki Shikida
- Ajinomoto Co., Inc., 1-1 Suzuki-Cho, Kawasaki, Kanagawa, 210-8681, Japan
| | - Shunsuke Yamazaki
- Ajinomoto Co., Inc., 1-1 Suzuki-Cho, Kawasaki, Kanagawa, 210-8681, Japan
| | | | - Yutaka Matsuda
- Ajinomoto Co., Inc., 1-1 Suzuki-Cho, Kawasaki, Kanagawa, 210-8681, Japan.
| | - Kazutaka Shimbo
- Ajinomoto Co., Inc., 1-1 Suzuki-Cho, Kawasaki, Kanagawa, 210-8681, Japan.
| |
Collapse
|
18
|
Reinert T, Houzé P, Mignet N, Francois YN, Gahoual R. Post-translational modifications comparative identification and kinetic study of infliximab innovator and biosimilars in serum using capillary electrophoresis-tandem mass spectrometry. J Pharm Biomed Anal 2023; 234:115541. [PMID: 37399702 DOI: 10.1016/j.jpba.2023.115541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
Despite reports indicating the potential impact of post-translational modifications on the activity of a monoclonal antibody, their prediction or monitoring post-administration remains a challenge. In addition, with the expiration of patents concerning the early generation of mAbs, the production of biosimilars is constantly increasing. Structural differences of biosimilars compared to the innovator product are commonly evaluated for the formulated product in the context of biosimilarity assessment. However, estimating their structural outcome after administration is particularly difficult. Due to the complexity of in vivo studies, there is a need to develop analytical strategies to predict PTMs consequently to their administration and their impact on mAbs potency. Here, we identified and evaluated the modification kinetics of 4 asparagine deamidations and 2 aspartate isomerizations of infliximab innovator product (Remicade®) and two biosimilars (Inflectra® and Remsima®) in vitro using serum incubation at 37 °C. The methodology was based on a bottom-up approach with capillary electrophoresis hyphenated with mass spectrometry analysis for an unequivocal assignment of modified and unmodified forms. 2 asparagines demonstrated a gradual deamidation correlated with incubation time. The specific extraction efficiency was evaluated to determine possible changes in the antigen binding affinity of infliximab with the incubation. Results showed the possibility to achieve an additional aspect concerning biosimilarity assessment, oriented on the study of the structural stability after administration.
Collapse
Affiliation(s)
- Tessa Reinert
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, France; Université Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm, Faculté de sciences pharmaceutiques et biologiques, Paris, France
| | - Pascal Houzé
- Université Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm, Faculté de sciences pharmaceutiques et biologiques, Paris, France; Laboratoire de Toxicologie Biologique, Hôpital Lariboisière, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Nathalie Mignet
- Université Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm, Faculté de sciences pharmaceutiques et biologiques, Paris, France
| | - Yannis-Nicolas Francois
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, France
| | - Rabah Gahoual
- Université Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm, Faculté de sciences pharmaceutiques et biologiques, Paris, France.
| |
Collapse
|
19
|
Riccardi F, Dal Bo M, Macor P, Toffoli G. A comprehensive overview on antibody-drug conjugates: from the conceptualization to cancer therapy. Front Pharmacol 2023; 14:1274088. [PMID: 37790810 PMCID: PMC10544916 DOI: 10.3389/fphar.2023.1274088] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023] Open
Abstract
Antibody-Drug Conjugates (ADCs) represent an innovative class of potent anti-cancer compounds that are widely used in the treatment of hematologic malignancies and solid tumors. Unlike conventional chemotherapeutic drug-based therapies, that are mainly associated with modest specificity and therapeutic benefit, the three key components that form an ADC (a monoclonal antibody bound to a cytotoxic drug via a chemical linker moiety) achieve remarkable improvement in terms of targeted killing of cancer cells and, while sparing healthy tissues, a reduction in systemic side effects caused by off-tumor toxicity. Based on their beneficial mechanism of action, 15 ADCs have been approved to date by the market approval by the Food and Drug Administration (FDA), the European Medicines Agency (EMA) and/or other international governmental agencies for use in clinical oncology, and hundreds are undergoing evaluation in the preclinical and clinical phases. Here, our aim is to provide a comprehensive overview of the key features revolving around ADC therapeutic strategy including their structural and targeting properties, mechanism of action, the role of the tumor microenvironment and review the approved ADCs in clinical oncology, providing discussion regarding their toxicity profile, clinical manifestations and use in novel combination therapies. Finally, we briefly review ADCs in other pathological contexts and provide key information regarding ADC manufacturing and analytical characterization.
Collapse
Affiliation(s)
- Federico Riccardi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| |
Collapse
|
20
|
Dumontet C, Reichert JM, Senter PD, Lambert JM, Beck A. Antibody-drug conjugates come of age in oncology. Nat Rev Drug Discov 2023; 22:641-661. [PMID: 37308581 DOI: 10.1038/s41573-023-00709-2] [Citation(s) in RCA: 278] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 06/14/2023]
Abstract
Antibody-drug conjugates (ADCs) combine the specificity of monoclonal antibodies with the potency of highly cytotoxic agents, potentially reducing the severity of side effects by preferentially targeting their payload to the tumour site. ADCs are being increasingly used in combination with other agents, including as first-line cancer therapies. As the technology to produce these complex therapeutics has matured, many more ADCs have been approved or are in late-phase clinical trials. The diversification of antigenic targets as well as bioactive payloads is rapidly broadening the scope of tumour indications for ADCs. Moreover, novel vector protein formats as well as warheads targeting the tumour microenvironment are expected to improve the intratumour distribution or activation of ADCs, and consequently their anticancer activity for difficult-to-treat tumour types. However, toxicity remains a key issue in the development of these agents, and better understanding and management of ADC-related toxicities will be essential for further optimization. This Review provides a broad overview of the recent advances and challenges in ADC development for cancer treatment.
Collapse
Affiliation(s)
- Charles Dumontet
- CRCL INSERM 1052/CNRS 5286, University of Lyon, Hospices Civils de Lyon, Lyon, France.
| | | | | | | | - Alain Beck
- Institut de Recherche Pierre Fabre, CIPF, Saint-Julien-en-Genevois, France
| |
Collapse
|
21
|
Yang T, Li W, Huang T, Zhou J. Antibody-Drug Conjugates for Breast Cancer Treatment: Emerging Agents, Targets and Future Directions. Int J Mol Sci 2023; 24:11903. [PMID: 37569276 PMCID: PMC10418918 DOI: 10.3390/ijms241511903] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
To achieve the scheme of "magic bullets" in antitumor therapy, antibody-drug conjugates (ADCs) were developed. ADCs consist of antibodies targeting tumor-specific antigens, chemical linkers, and cytotoxic payloads that powerfully kill cancer cells. With the approval of ado-trastuzumab emtansine (T-DM1) and fam-trastuzumab deruxtecan (T-DXd), the therapeutic potentials of ADCs in breast cancer have come into the spotlight. Nearly 30 ADCs for breast cancer are under exploration to move targeted therapy forward. In this review, we summarize the presenting and emerging agents and targets of ADCs. The ADC structure and development history are also concluded. Moreover, the challenges faced and prospected future directions in this field are reviewed, which give insights into novel treatments with ADCs for breast cancer.
Collapse
Affiliation(s)
| | | | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
22
|
Yu W, Ramprasad MP, Pal M, Chen C, Paruchuri S, Skidmore L, Knudsen N, Allen M, Buechler Y. Analytical comparability to evaluate impact of manufacturing changes of ARX788, an Anti-HER2 ADC in late-stage clinical development. PLoS One 2023; 18:e0284198. [PMID: 37428761 PMCID: PMC10332591 DOI: 10.1371/journal.pone.0284198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
ARX788 is an anti-HER2 antibody drug conjugate (ADC) developed using Ambrx proprietary Engineered Precision Biologics technology. The manufacturing process of ARX788 has been optimized during the course of early to late-phase clinical development. A comprehensive evaluation of side-by-side comparability between pre- and post-change process for ARX788 drug substance and drug product from a quality perspective was conducted based on ICH Q5E guidelines consisting of batch release assays, physicochemical and biophysical characterization, biological characterization, and forced degradation studies. All results have substantiated a high degree of similarity between the pre- and post-change ARX788 drug substance batches and drug product lots, demonstrating that the process manufacturing changes did not impact product quality.
Collapse
Affiliation(s)
- Wayne Yu
- Ambrx Incorporated, La Jolla, CA, United States of America
| | | | - Manoj Pal
- Ambrx Incorporated, La Jolla, CA, United States of America
| | - Chris Chen
- Ambrx Incorporated, La Jolla, CA, United States of America
| | | | | | - Nick Knudsen
- Ambrx Incorporated, La Jolla, CA, United States of America
| | - Molly Allen
- Ambrx Incorporated, La Jolla, CA, United States of America
| | - Ying Buechler
- Ambrx Incorporated, La Jolla, CA, United States of America
| |
Collapse
|
23
|
Maiti R, Patel B, Patel N, Patel M, Patel A, Dhanesha N. Antibody drug conjugates as targeted cancer therapy: past development, present challenges and future opportunities. Arch Pharm Res 2023; 46:361-388. [PMID: 37071273 PMCID: PMC11345756 DOI: 10.1007/s12272-023-01447-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/26/2023] [Indexed: 04/19/2023]
Abstract
Antibody drug conjugates (ADCs) are promising cancer therapeutics with minimal toxicity as compared to small cytotoxic molecules alone and have shown the evidence to overcome resistance against tumor and prevent relapse of cancer. The ADC has a potential to change the paradigm of cancer chemotherapeutic treatment. At present, 13 ADCs have been approved by USFDA for the treatment of various types of solid tumor and haematological malignancies. This review covers the three structural components of an ADC-antibody, linker, and cytotoxic payload-along with their respective structure, chemistry, mechanism of action, and influence on the activity of ADCs. It covers comprehensive insight on structural role of linker towards efficacy, stability & toxicity of ADCs, different types of linkers & various conjugation techniques. A brief overview of various analytical techniques used for the qualitative and quantitative analysis of ADC is summarized. The current challenges of ADCs, such as heterogeneity, bystander effect, protein aggregation, inefficient internalization or poor penetration into tumor cells, narrow therapeutic index, emergence of resistance, etc., are outlined along with recent advances and future opportunities for the development of more promising next-generation ADCs.
Collapse
Affiliation(s)
- Ritwik Maiti
- Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Bhumika Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India.
| | - Nrupesh Patel
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Mehul Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Alkesh Patel
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA.
| |
Collapse
|
24
|
Legrand P, Dufaÿ S, Mignet N, Houzé P, Gahoual R. Modeling study of long-term stability of the monoclonal antibody infliximab and biosimilars using liquid-chromatography-tandem mass spectrometry and size-exclusion chromatography-multi-angle light scattering. Anal Bioanal Chem 2023; 415:179-192. [PMID: 36449030 PMCID: PMC9709354 DOI: 10.1007/s00216-022-04396-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022]
Abstract
Monoclonal antibodies (mAbs) represent a dynamic class of biopharmaceutical products, as evidenced by an increasing number of market authorizations for mAb innovator and biosimilar products. Stability studies are commonly performed during product development, for instance, to exclude unstable molecules, optimize the formulation or determine the storage limit. Such studies are time-consuming, especially for mAbs, because of their structural complexity which requires multiple analytical techniques to achieve a detailed characterization. We report the implementation of a novel methodology based on the accelerated stability assessment program (ASAP) in order to model the long-term stability of mAbs in relation to different structural aspects. Stability studies of innovator infliximab and two different biosimilars were performed using forced degradation conditions alongside in-use administration conditions in order to investigate their similarity regarding stability. Thus, characterization of post-translational modifications was achieved using liquid-chromatography-tandem mass spectrometry (LC-MS/MS) analysis, and the formation of aggregates and free chain fragments was characterized using size-exclusion chromatography-multi-angle light scattering (SEC-MALS-UV/RI) analysis. Consequently, ASAP models were investigated with regard to free chain fragmentation of mAbs concomitantly with N57 deamidation, located in the hypervariable region. Comparison of ASAP models and the long-term stability data from samples stored in intravenous bags demonstrated a relevant correlation, indicating the stability of the mAbs. The developed methodology highlighted the particularities of ASAP modeling for mAbs and demonstrated the possibility to independently consider the different types of degradation pathways in order to provide accurate and appropriate prediction of the long-term stability of this type of biomolecule.
Collapse
Affiliation(s)
- Pauline Legrand
- Université Paris Cité, Faculté de sciences pharmaceutiques et biologiques, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm U1267, 4, avenue de l'observatoire, 75270, Paris Cedex 06, France.
- Département Recherche Et Développement Pharmaceutique, Agence Générale Des Equipements Et Produits de Santé (AGEPS), Assistance Publique-Hôpitaux de Paris, (AP-HP), Paris, France.
| | - Sophie Dufaÿ
- Département Recherche Et Développement Pharmaceutique, Agence Générale Des Equipements Et Produits de Santé (AGEPS), Assistance Publique-Hôpitaux de Paris, (AP-HP), Paris, France
| | - Nathalie Mignet
- Université Paris Cité, Faculté de sciences pharmaceutiques et biologiques, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm U1267, 4, avenue de l'observatoire, 75270, Paris Cedex 06, France
| | - Pascal Houzé
- Université Paris Cité, Faculté de sciences pharmaceutiques et biologiques, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm U1267, 4, avenue de l'observatoire, 75270, Paris Cedex 06, France
- Laboratoire de Toxicologie Biologique, Hôpital Lariboisière, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Rabah Gahoual
- Université Paris Cité, Faculté de sciences pharmaceutiques et biologiques, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm U1267, 4, avenue de l'observatoire, 75270, Paris Cedex 06, France
| |
Collapse
|
25
|
Nupur N, Rathore AS. Elucidating chemical and disulfide heterogeneities in rituximab using reduced and non-reduced peptide mapping. J Sep Sci 2022; 45:2887-2900. [PMID: 35670633 DOI: 10.1002/jssc.202200290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/07/2022]
Abstract
Peptide mapping by liquid chromatography-mass spectrometry is the gold standard to characterize post-translational modifications and disulfide bonds. The structural integrity, heterogeneity, and quality of biotherapeutic proteins are evaluated via reduced and non-reduced peptide mapping methods. However, non-enzymatic artifacts are often induced during sample preparation when alkaline pH conditions are used. To minimize these artifacts, methods using various acidic pH conditions have been developed by multiple researchers. However, these may lead to missed and non-specific cleavages during the analysis. In this study, improved reduced and non-reduced peptide mapping method has been proposed to characterize endogenous chemical modifications and native disulfide bonds of monoclonal antibody -based products. Solubilization has been carried out at acidic pH conditions under high temperature, followed by the addition of tris (2-carboxyethyl) phosphine as a reducing agent and a low alkylating agent. It was observed that the non-enzymatic post-translational modifications and non-native disulfide scrambled peptides significantly reduced under trypsin plus Lys-C digestion conditions at acidic pH as compared to the traditional methods. The results demonstrate that the proposed peptide mapping method using trypsin plus Lys-C could identify and quantify various chemical and disulfide heterogeneities with minimal artifacts. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Neh Nupur
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi, 110016, India.,DBT Center of Excellence for Biopharmaceutical Technology, IIT Delhi, Hauz Khas, New Delhi, 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi, 110016, India.,DBT Center of Excellence for Biopharmaceutical Technology, IIT Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
26
|
Fekete S, DeLano M, Harrison AB, Shiner SJ, Belanger JL, Wyndham KD, Lauber MA. Size Exclusion and Ion Exchange Chromatographic Hardware Modified with a Hydrophilic Hybrid Surface. Anal Chem 2022; 94:3360-3367. [PMID: 35143179 DOI: 10.1021/acs.analchem.1c05466] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Certain biomolecules have proven to be difficult to analyze by liquid chromatography (LC), especially under certain chromatographic conditions. The separation of proteins in aqueous mobile phases is one such example because there is the potential for both hydrophobic and ionic secondary interactions to occur with chromatographic hardware to the detriment of peak recovery, peak shape, and the overall sensitivity of the LC analysis. To decrease non-specific adsorption and undesired secondary interactions between column hardware and biomolecules, we have developed and applied a new hydrophilically modified hybrid surface (h-HST) for size exclusion chromatography (SEC) and anion exchange (AEX) separations of proteins and nucleic acids. This surface incorporates additional oxygen and carbon atoms onto an ethylene bridge hybrid siloxane polymer. As a result, it exhibits reduced electrostatic properties and hydrophilicity that facilitates challenging aqueous separations. Flow injection tests with a phosphate buffer showed superior protein recovery from an h-HST frit when compared to unmodified ethylene-bridged hybrid HST, titanium, stainless steel, and PEEK frits. When applied to SEC of rituximab, ramucirumab, and trastuzumab emtansine with a 50 mM ammonium acetate buffer, this new hydrophilic chromatographic hardware yielded improved monomer and aggregate recovery, higher plate numbers, and more symmetrical peaks. AEX columns also benefited from h-HST hardware. An acidic mAb (eculizumab) showed improved recovery, more stable retention, and a sharper peak when eluted from an h-HST versus SS column. Moreover, AEX separations of intact mRNA samples (Cas9 and EPO mRNA) were improved, where it was seen that h-HST column hardware provided higher sensitivity and more repeatable peak areas from injection to injection. As such, there is significant potential in the use of h-HST chromatographic hardware to facilitate more robust and more sensitive analyses for a multitude of challenging separations and analytes.
Collapse
Affiliation(s)
- Szabolcs Fekete
- Waters Corporation, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Mathew DeLano
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | | | - Stephen J Shiner
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | | | - Kevin D Wyndham
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Matthew A Lauber
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| |
Collapse
|
27
|
Khetan R, Curtis R, Deane CM, Hadsund JT, Kar U, Krawczyk K, Kuroda D, Robinson SA, Sormanni P, Tsumoto K, Warwicker J, Martin ACR. Current advances in biopharmaceutical informatics: guidelines, impact and challenges in the computational developability assessment of antibody therapeutics. MAbs 2022; 14:2020082. [PMID: 35104168 PMCID: PMC8812776 DOI: 10.1080/19420862.2021.2020082] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Therapeutic monoclonal antibodies and their derivatives are key components of clinical pipelines in the global biopharmaceutical industry. The availability of large datasets of antibody sequences, structures, and biophysical properties is increasingly enabling the development of predictive models and computational tools for the "developability assessment" of antibody drug candidates. Here, we provide an overview of the antibody informatics tools applicable to the prediction of developability issues such as stability, aggregation, immunogenicity, and chemical degradation. We further evaluate the opportunities and challenges of using biopharmaceutical informatics for drug discovery and optimization. Finally, we discuss the potential of developability guidelines based on in silico metrics that can be used for the assessment of antibody stability and manufacturability.
Collapse
Affiliation(s)
- Rahul Khetan
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Robin Curtis
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | | | | | - Uddipan Kar
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | | | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.,Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | - Pietro Sormanni
- Chemistry of Health, Yusuf Hamied Department of Chemistry, University of Cambridge
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.,Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.,The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jim Warwicker
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Andrew C R Martin
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| |
Collapse
|
28
|
Jin Y, Schladetsch MA, Huang X, Balunas MJ, Wiemer AJ. Stepping forward in antibody-drug conjugate development. Pharmacol Ther 2022; 229:107917. [PMID: 34171334 PMCID: PMC8702582 DOI: 10.1016/j.pharmthera.2021.107917] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023]
Abstract
Antibody-drug conjugates (ADCs) are cancer therapeutic agents comprised of an antibody, a linker and a small-molecule payload. ADCs use the specificity of the antibody to target the toxic payload to tumor cells. After intravenous administration, ADCs enter circulation, distribute to tumor tissues and bind to the tumor surface antigen. The antigen then undergoes endocytosis to internalize the ADC into tumor cells, where it is transported to lysosomes to release the payload. The released toxic payloads can induce apoptosis through DNA damage or microtubule inhibition and can kill surrounding cancer cells through the bystander effect. The first ADC drug was approved by the United States Food and Drug Administration (FDA) in 2000, but the following decade saw no new approved ADC drugs. From 2011 to 2018, four ADC drugs were approved, while in 2019 and 2020 five more ADCs entered the market. This demonstrates an increasing trend for the clinical development of ADCs. This review summarizes the recent clinical research, with a specific focus on how the in vivo processing of ADCs influences their design. We aim to provide comprehensive information about current ADCs to facilitate future development.
Collapse
Affiliation(s)
- Yiming Jin
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Megan A Schladetsch
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Xueting Huang
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Marcy J Balunas
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Andrew J Wiemer
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
29
|
Chapel S, Rouvière F, Guibal P, Mathieu D, Heinisch S. Development of a sub-hour on-line comprehensive cation exchange chromatography x RPLC method hyphenated to HRMS for the characterization of lysine-linked antibody-drug conjugates. Talanta 2021; 240:123174. [PMID: 35026643 DOI: 10.1016/j.talanta.2021.123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
This study details the development of on-line two-dimensional liquid chromatography (2D-LC) methods combining cation-exchange chromatography (CEX) and reversed-phase liquid chromatography (RPLC) for the separation of the charge variants of a lysine-linked antibody-drug conjugate (ADC). This combination gives an excellent example of the potential benefits of 2D-LC approaches for the analysis of such complex protein formats. CEX is considered the reference technique for the separation of protein charge variants but its retention mechanism usually requires the use of a high concentration of non-volatile salts, which impedes its compatibility with MS detection. In this context, the use of an on-line 2D-LC-MS approach not only allows on-line desalting and indirect coupling of CEX with mass spectrometry (MS) detection but it also provides increased and complementary information within a single analysis. The first part of this study was devoted to the choice of stationary phases and the optimization of chromatographic conditions in both dimensions. Based on the results obtained in 1D-CEX with ultraviolet detection (UV) and 1D-RPLC with UV and high-resolution mass spectrometry (HRMS) detections, an on-line comprehensive two-dimensional liquid chromatography method combining CEX and RPLC was developed. The last part of this study was devoted to the identification of the separated species using HRMS detection and in the comparison of three ADC samples exposed to different durations of thermal stress.
Collapse
Affiliation(s)
- Soraya Chapel
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Florent Rouvière
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Pierre Guibal
- Sanofi Aventis R&D, 1 Impasse des Ateliers, 94400, Vitry-sur-Seine, France
| | - Delphine Mathieu
- Sanofi Aventis R&D, 1 Impasse des Ateliers, 94400, Vitry-sur-Seine, France
| | - Sabine Heinisch
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, 5 rue de la Doua, 69100, Villeurbanne, France.
| |
Collapse
|
30
|
In a flash of light: X-ray free electron lasers meet native mass spectrometry. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 39:89-99. [PMID: 34906329 DOI: 10.1016/j.ddtec.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/14/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023]
Abstract
During the last years, X-ray free electron lasers (XFELs) have emerged as X-ray sources of unparalleled brightness, delivering extreme amounts of photons in femtosecond pulses. As such, they have opened up completely new possibilities in drug discovery and structural biology, including studying high resolution biomolecular structures and their functioning in a time resolved manner, and diffractive imaging of single particles without the need for their crystallization. In this perspective, we briefly review the operation of XFELs, their immediate uses for drug discovery and focus on the potentially revolutionary single particle diffractive imaging technique and the challenges which remain to be overcome to fully realize its potential to provide high resolution structures without the need for crystallization, freezing or the need to keep proteins stable at extreme concentrations for long periods of time. As the issues have been to a large extent sample delivery related, we outline a way for native mass spectrometry to overcome these and enable so far impossible research with a potentially huge impact on structural biology and drug discovery, such as studying structures of transient intermediate species in viral life cycles or during functioning of molecular machines.
Collapse
|
31
|
Matsuda Y, Mendelsohn BA. Recent Advances in Drug-Antibody Ratio Determination of Antibody-Drug Conjugates. Chem Pharm Bull (Tokyo) 2021; 69:976-983. [PMID: 34602579 DOI: 10.1248/cpb.c21-00258] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antibody-drug conjugates (ADCs) are biopharmaceuticals produced by chemically linking small molecules (payloads) to antibodies that possess specific affinity for the target cell. The ADCs currently on the commercially market are the result of a stochastic conjugation of highly-potent payloads to multiple sites on the monoclonal antibody, resulting in a heterogeneous drug-antibody ratio (DAR) and drug distribution. The heterogeneity inherent to ADCs not produced site-specifically may not only be detrimental to the quality of the drug but also is less-desirable from the perspective of regulatory science. An ideal method or unified approach used to measure the DAR for ADCs, a critical aspect of their analysis and characterization, has not yet been established in the ADC field and remains an often-challenging issue for bioanalytical chemists. In this review we describe, compare, and evaluate the characteristics of various DAR determination methods for ADCs featuring recently reported technologies. The future landscape of bioconjugate DAR analysis is also discussed.
Collapse
|
32
|
Matsuda Y, Leung M, Tawfiq Z, Fujii T, Mendelsohn BA. In-situ Reverse Phased HPLC Analysis of Intact Antibody-Drug Conjugates. ANAL SCI 2021; 37:1171-1176. [PMID: 33518587 DOI: 10.2116/analsci.20p424] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/22/2021] [Indexed: 08/09/2023]
Abstract
The field of oncology has recently seen an exponential growth in antibody-drug conjugates (ADCs) as a biopharmaceutical class with seven ADCs being launched onto the market in the last ten years. Despite the increase in the industrial research and development of these compounds, their structural complexity and heterogeneity continue to present various challenges regarding their analysis including reaction monitoring. Robust and simple reaction monitoring analysis are in demand in the view of at-line in-process monitoring, and can instill control, confidence and reliability in the ADC manufacturing process. Aiming at providing chromatographic methods for conjugation monitoring, we evaluated herein the potential of utilizing reverse phase HPLC analysis, without sample pretreatment, for characterization of traditional cysteine-based ADCs. This analysis can be used for estimation of drug antibody ratio (DAR), which has shown the same trends and results as other well-established HPLC techniques. This methodology was also applied to three ADCs derived from three different antibodies. Additionally, we analyzed unpurified ADC samples existing in a complex reaction matrix and separated ADC species and payload compounds. This investigation was conducted using three different ADCs based on different payloads. The results described herein indicate the potential application of this RP-HPLC methodology in reaction monitoring studies.
Collapse
Affiliation(s)
- Yutaka Matsuda
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kawasaki, Kanagawa, 210-8681, Japan.
| | - Monica Leung
- Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, CA, 92121, United States
| | - Zhala Tawfiq
- Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, CA, 92121, United States
| | - Tomohiro Fujii
- Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, CA, 92121, United States
| | - Brian A Mendelsohn
- Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, CA, 92121, United States.
- Exelixis Inc, 1851 Harbor Bay Pkwy, Alameda, CA, 94502, United States.
| |
Collapse
|
33
|
Deslignière E, Ehkirch A, Duivelshof BL, Toftevall H, Sjögren J, Guillarme D, D’Atri V, Beck A, Hernandez-Alba O, Cianférani S. State-of-the-Art Native Mass Spectrometry and Ion Mobility Methods to Monitor Homogeneous Site-Specific Antibody-Drug Conjugates Synthesis. Pharmaceuticals (Basel) 2021; 14:ph14060498. [PMID: 34073805 PMCID: PMC8225019 DOI: 10.3390/ph14060498] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are biotherapeutics consisting of a tumor-targeting monoclonal antibody (mAb) linked covalently to a cytotoxic drug. Early generation ADCs were predominantly obtained through non-selective conjugation methods based on lysine and cysteine residues, resulting in heterogeneous populations with varying drug-to-antibody ratios (DAR). Site-specific conjugation is one of the current challenges in ADC development, allowing for controlled conjugation and production of homogeneous ADCs. We report here the characterization of a site-specific DAR2 ADC generated with the GlyCLICK three-step process, which involves glycan-based enzymatic remodeling and click chemistry, using state-of-the-art native mass spectrometry (nMS) methods. The conjugation process was monitored with size exclusion chromatography coupled to nMS (SEC-nMS), which offered a straightforward identification and quantification of all reaction products, providing a direct snapshot of the ADC homogeneity. Benefits of SEC-nMS were further demonstrated for forced degradation studies, for which fragments generated upon thermal stress were clearly identified, with no deconjugation of the drug linker observed for the T-GlyGLICK-DM1 ADC. Lastly, innovative ion mobility-based collision-induced unfolding (CIU) approaches were used to assess the gas-phase behavior of compounds along the conjugation process, highlighting an increased resistance of the mAb against gas-phase unfolding upon drug conjugation. Altogether, these state-of-the-art nMS methods represent innovative approaches to investigate drug loading and distribution of last generation ADCs, their evolution during the bioconjugation process and their impact on gas-phase stabilities. We envision nMS and CIU methods to improve the conformational characterization of next generation-empowered mAb-derived products such as engineered nanobodies, bispecific ADCs or immunocytokines.
Collapse
Affiliation(s)
- Evolène Deslignière
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, 67087 Strasbourg, France; (E.D.); (A.E.); (O.H.-A.)
- Infrastructure Nationale de Protéomique ProFI—FR2048, 67087 Strasbourg, France
| | - Anthony Ehkirch
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, 67087 Strasbourg, France; (E.D.); (A.E.); (O.H.-A.)
- Infrastructure Nationale de Protéomique ProFI—FR2048, 67087 Strasbourg, France
| | - Bastiaan L. Duivelshof
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland; (B.L.D.); (D.G.); (V.D.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | | | | | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland; (B.L.D.); (D.G.); (V.D.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland; (B.L.D.); (D.G.); (V.D.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Alain Beck
- IRPF—Centre d’Immunologie Pierre-Fabre (CIPF), 74160 Saint-Julien-en-Genevois, France;
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, 67087 Strasbourg, France; (E.D.); (A.E.); (O.H.-A.)
- Infrastructure Nationale de Protéomique ProFI—FR2048, 67087 Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, 67087 Strasbourg, France; (E.D.); (A.E.); (O.H.-A.)
- Infrastructure Nationale de Protéomique ProFI—FR2048, 67087 Strasbourg, France
- Correspondence:
| |
Collapse
|
34
|
Martelet A, Garrigue V, Zhang Z, Genet B, Guttman A. Multi-attribute method based characterization of antibody drug conjugates (ADC) at the intact and subunit levels. J Pharm Biomed Anal 2021; 201:114094. [PMID: 33957368 DOI: 10.1016/j.jpba.2021.114094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 01/06/2023]
Abstract
Antibody-drug conjugates (ADCs) represent an important class of new biopharmaceutical modalities. ADCs are highly complex and heterogeneous molecules, potentially containing numerous product-related structures, that can contribute to the quality, efficacy and safety of the product. To keep up with product life cycle related changes, wide-range and targeted characterization of product quality attributes (PQA) are of high demand. Multi-attribute methods (MAM) can screen numerous PQAs in a parallel fashion including product properties as well as product and process-related impurities. MAM is usually based on a bottom-up approach relying on the enzymatic digestion of the protein into peptides prior to mass spectrometry (MS). However, this processing workflow can result in considerable information loss, such as the drug distribution profile of an antibody-drug conjugate. Therefore, complementary MAM approaches, based on subunit and intact mass analyses, are necessary approaches offering the advantage of product identity confirmation, quantification of the different conjugated species and monitoring the drug-to-antibody ratio at the same time. In this work we introduce a high throughput MS based attribute tracking method for ADC characterization at the intact and subunit levels by simultaneously monitoring multiple PQAs. The workflow includes sample preparation and MS instrument suitability testing for heterogeneous lysine-linked ADCs, software solutions for routine PQAs tracking, method repeatability and an easy data review fitting perfectly into high throughput analyses. As methionine oxidation is one of the modifications that should be closely monitored at any step of process development, an important application to oxidative stress evaluation using forced degradation demonstrated the applicability of the workflow.
Collapse
|
35
|
Jones J, Pack L, Hunter JH, Valliere-Douglass JF. Native size-exclusion chromatography-mass spectrometry: suitability for antibody-drug conjugate drug-to-antibody ratio quantitation across a range of chemotypes and drug-loading levels. MAbs 2021; 12:1682895. [PMID: 31769727 PMCID: PMC6927766 DOI: 10.1080/19420862.2019.1682895] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Native size-exclusion chromatography-mass spectrometry (nSEC-MS) is an analytical methodology that is appropriate for accurately quantitating the drug-to-antibody ratio (DAR) on a wide variety of interchain cysteine-linked antibody-drug conjugates (ADCs), irrespective of chemotype. In the current preclinical environment, novel ADCs conjugated with unique drug-linkers need to progress toward the clinic as quickly as possible. Platform analytical approaches can reduce time-to-clinic because key process development and optimization activities can be decoupled from the development of bespoke, molecule-specific analytical methods. In this work, we assessed the potential of nSEC-MS as a platformable, quantitative DAR method. The nSEC-MS method was evaluated according to performance characteristics and parameters described in the ICH guideline Validation of Analytical Procedures: Text and Methodology Q2(R1). In order to comprehensively assess the accuracy and bias of nSEC-MS DAR quantitation, ADCs were generated using three different drug-linker chemotypes with DARs ranging from 2 to 8. These molecules were tested by hydrophobic interaction chromatography (HIC) and nSEC-MS, and DARs obtained from both methods were compared to assess the degree to which nSEC-MS quantitation aligned with the HIC release assay. Our results indicated that there is no bias introduced by nSEC-MS quantitation of DAR and that SEC-MS data can be bridged to HIC data without the need for a correction factor or offset. nSEC-MS was also found to be suitable for unbiased DAR quantitation in the other ADC chemotypes that were evaluated. Based on the totality of our work, we conclude that, used as intended, nSEC-MS is well suited for quantitating DAR on a variety of interchain cysteine-linked ADCs in an accurate, unbiased manner.
Collapse
Affiliation(s)
- Jay Jones
- Analytical Sciences, Seattle Genetics Inc., Bothell, WA, USA
| | - Laura Pack
- Quality, Seattle Genetics Inc., Bothell, WA, USA
| | - Joshua H Hunter
- Conjugation Process Development, Seattle Genetics Inc., Bothell, WA, USA
| | | |
Collapse
|
36
|
Abstract
High-resolution native mass spectrometry (MS) provides accurate mass measurements (within 30 ppm) of intact ADCs and can also yield drug load distribution (DLD) and average drug to antibody ratio (DAR) in parallel with hydrophobic interaction chromatography (HIC). Native MS is furthermore unique in its ability to simultaneously detect covalent and noncovalent species in a mixture and for HIC peak identity assessment offline or online.As an orthogonal method described in this chapter, LC-MS following ADC reduction or IdeS (Fabricator) digestion and reduction can also be used to measure the DLD of light chain and Fd fragments for hinge native cysteine residues such as brentuximab vedotin. Both methods allow also the measurement of average DAR for both monomeric and multimeric species. In addition, the Fc fragments can be analyzed in the same run, providing a complete glycoprofile and the demonstration or absence of additional conjugation of this subdomain involved in FcRn and Fc-gammaR binding.
Collapse
|
37
|
Wagner-Rousset E, Colas O, Chenu S, François YN, Guillarme D, Cianferani S, Tsybin YO, Sjögren J, Delobel A, Beck A. Fast Afucosylation Profiling of Glycoengineered Antibody Subunits by Middle-Up Mass Spectrometry. Methods Mol Biol 2021; 2271:73-83. [PMID: 33908000 DOI: 10.1007/978-1-0716-1241-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Middle-up LC-MS antibody characterization workflows using reduction or IdeS digestion for a focused assessment of N-glycan profiling of three representative glycoengineered monoclonal antibodies (mAbs), namely, obinutuzumab (GlycomAb technology, Glycart/Roche), benralizumab (Potelligent Technology, BioWa, Kyowa Kirin) and mAb B (kifunensine) and compared to mAb A, produced in a common CHO cell line. In addition, EndoS or EndoS2 enzyme are used for quantitative determination of Fc-glycan core afucosylation and high mannose for these antibodies, as requested by health authorities for Fc-competent therapeutics mAbs critical quality attributes (CQAs).
Collapse
Affiliation(s)
- Elsa Wagner-Rousset
- Pierre Fabre Laboratories, IRPF-Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Olivier Colas
- Pierre Fabre Laboratories, IRPF-Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Stéphane Chenu
- Pierre Fabre Laboratories, IRPF-Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140, Université de Strasbourg, CNRS, Strasbourg, France
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU, Geneva, Switzerland
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Yury O Tsybin
- Spectroswiss Sarl, EPFL Innovation Park, Lausanne, Switzerland
| | | | | | - Alain Beck
- Pierre Fabre Laboratories, IRPF-Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France.
| |
Collapse
|
38
|
Dean AQ, Luo S, Twomey JD, Zhang B. Targeting cancer with antibody-drug conjugates: Promises and challenges. MAbs 2021; 13:1951427. [PMID: 34291723 PMCID: PMC8300931 DOI: 10.1080/19420862.2021.1951427] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a rapidly expanding class of biotherapeutics that utilize antibodies to selectively deliver cytotoxic drugs to the tumor site. As of May 2021, the U.S. Food and Drug Administration (FDA) has approved ten ADCs, namely Adcetris®, Kadcyla®, Besponsa®, Mylotarg®, Polivy®, Padcev®, Enhertu®, Trodelvy®, Blenrep®, and Zynlonta™ as monotherapy or combinational therapy for breast cancer, urothelial cancer, myeloma, acute leukemia, and lymphoma. In addition, over 80 investigational ADCs are currently being evaluated in approximately 150 active clinical trials. Despite the growing interest in ADCs, challenges remain to expand their therapeutic index (with greater efficacy and less toxicity). Recent advances in the manufacturing technology for the antibody, payload, and linker combined with new bioconjugation platforms and state-of-the-art analytical techniques are helping to shape the future development of ADCs. This review highlights the current status of marketed ADCs and those under clinical investigation with a focus on translational strategies to improve product quality, safety, and efficacy.
Collapse
Affiliation(s)
- Alexis Q. Dean
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Shen Luo
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Julianne D. Twomey
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Baolin Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
39
|
Joubert N, Beck A, Dumontet C, Denevault-Sabourin C. Antibody-Drug Conjugates: The Last Decade. Pharmaceuticals (Basel) 2020; 13:ph13090245. [PMID: 32937862 PMCID: PMC7558467 DOI: 10.3390/ph13090245] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 01/01/2023] Open
Abstract
An armed antibody (antibody–drug conjugate or ADC) is a vectorized chemotherapy, which results from the grafting of a cytotoxic agent onto a monoclonal antibody via a judiciously constructed spacer arm. ADCs have made considerable progress in 10 years. While in 2009 only gemtuzumab ozogamicin (Mylotarg®) was used clinically, in 2020, 9 Food and Drug Administration (FDA)-approved ADCs are available, and more than 80 others are in active clinical studies. This review will focus on FDA-approved and late-stage ADCs, their limitations including their toxicity and associated resistance mechanisms, as well as new emerging strategies to address these issues and attempt to widen their therapeutic window. Finally, we will discuss their combination with conventional chemotherapy or checkpoint inhibitors, and their design for applications beyond oncology, to make ADCs the magic bullet that Paul Ehrlich dreamed of.
Collapse
Affiliation(s)
- Nicolas Joubert
- GICC EA7501, Equipe IMT, Université de Tours, UFR des Sciences Pharmaceutiques, 31 Avenue Monge, 37200 Tours, France;
- Correspondence:
| | - Alain Beck
- Institut de Recherche Pierre Fabre, Centre d’Immunologie Pierre Fabre, 5 Avenue Napoléon III, 74160 Saint Julien en Genevois, France;
| | - Charles Dumontet
- Cancer Research Center of Lyon (CRCL), INSERM, 1052/CNRS 5286/UCBL, 69000 Lyon, France;
- Hospices Civils de Lyon, 69000 Lyon, France
| | - Caroline Denevault-Sabourin
- GICC EA7501, Equipe IMT, Université de Tours, UFR des Sciences Pharmaceutiques, 31 Avenue Monge, 37200 Tours, France;
| |
Collapse
|
40
|
Srzentić K, Fornelli L, Tsybin YO, Loo JA, Seckler H, Agar JN, Anderson LC, Bai DL, Beck A, Brodbelt JS, van der Burgt YEM, Chamot-Rooke J, Chatterjee S, Chen Y, Clarke DJ, Danis PO, Diedrich JK, D'Ippolito RA, Dupré M, Gasilova N, Ge Y, Goo YA, Goodlett DR, Greer S, Haselmann KF, He L, Hendrickson CL, Hinkle JD, Holt MV, Hughes S, Hunt DF, Kelleher NL, Kozhinov AN, Lin Z, Malosse C, Marshall AG, Menin L, Millikin RJ, Nagornov KO, Nicolardi S, Paša-Tolić L, Pengelley S, Quebbemann NR, Resemann A, Sandoval W, Sarin R, Schmitt ND, Shabanowitz J, Shaw JB, Shortreed MR, Smith LM, Sobott F, Suckau D, Toby T, Weisbrod CR, Wildburger NC, Yates JR, Yoon SH, Young NL, Zhou M. Interlaboratory Study for Characterizing Monoclonal Antibodies by Top-Down and Middle-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1783-1802. [PMID: 32812765 PMCID: PMC7539639 DOI: 10.1021/jasms.0c00036] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The Consortium for Top-Down Proteomics (www.topdownproteomics.org) launched the present study to assess the current state of top-down mass spectrometry (TD MS) and middle-down mass spectrometry (MD MS) for characterizing monoclonal antibody (mAb) primary structures, including their modifications. To meet the needs of the rapidly growing therapeutic antibody market, it is important to develop analytical strategies to characterize the heterogeneity of a therapeutic product's primary structure accurately and reproducibly. The major objective of the present study is to determine whether current TD/MD MS technologies and protocols can add value to the more commonly employed bottom-up (BU) approaches with regard to confirming protein integrity, sequencing variable domains, avoiding artifacts, and revealing modifications and their locations. We also aim to gather information on the common TD/MD MS methods and practices in the field. A panel of three mAbs was selected and centrally provided to 20 laboratories worldwide for the analysis: Sigma mAb standard (SiLuLite), NIST mAb standard, and the therapeutic mAb Herceptin (trastuzumab). Various MS instrument platforms and ion dissociation techniques were employed. The present study confirms that TD/MD MS tools are available in laboratories worldwide and provide complementary information to the BU approach that can be crucial for comprehensive mAb characterization. The current limitations, as well as possible solutions to overcome them, are also outlined. A primary limitation revealed by the results of the present study is that the expert knowledge in both experiment and data analysis is indispensable to practice TD/MD MS.
Collapse
Affiliation(s)
- Kristina Srzentić
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Luca Fornelli
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Yury O Tsybin
- Spectroswiss, EPFL Innovation Park, Building I, 1015 Lausanne, Switzerland
| | - Joseph A Loo
- University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Henrique Seckler
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Jeffrey N Agar
- Northeastern University, Boston, Massachusetts 02115, United States
| | - Lissa C Anderson
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Dina L Bai
- University of Virginia, Charlottesville, Virginia 22901, United States
| | - Alain Beck
- Centre d'immunologie Pierre Fabre, 74160 Saint-Julien-en-Genevois, France
| | | | | | | | | | - Yunqiu Chen
- Biogen, Inc., Cambridge, Massachusetts 02142-1031, United States
| | - David J Clarke
- The University of Edinburgh, EH9 3FJ Edinburgh, United Kingdom
| | - Paul O Danis
- Consortium for Top-Down Proteomics, Cambridge, Massachusetts 02142, United States
| | - Jolene K Diedrich
- The Scripps Research Institute, La Jolla, California 92037, United States
| | | | | | - Natalia Gasilova
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ying Ge
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Young Ah Goo
- University of Maryland, Baltimore, Maryland 21201, United States
| | - David R Goodlett
- University of Maryland, Baltimore, Maryland 21201, United States
| | - Sylvester Greer
- University of Texas at Austin, Austin, Texas 78712-1224, United States
| | | | - Lidong He
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | | | - Joshua D Hinkle
- University of Virginia, Charlottesville, Virginia 22901, United States
| | - Matthew V Holt
- Baylor College of Medicine, Houston, Texas 77030-3411, United States
| | - Sam Hughes
- The University of Edinburgh, EH9 3FJ Edinburgh, United Kingdom
| | - Donald F Hunt
- University of Virginia, Charlottesville, Virginia 22901, United States
| | - Neil L Kelleher
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Anton N Kozhinov
- Spectroswiss, EPFL Innovation Park, Building I, 1015 Lausanne, Switzerland
| | - Ziqing Lin
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | - Alan G Marshall
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Florida State University, Tallahassee, Florida 32310-4005, United States
| | - Laure Menin
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Robert J Millikin
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | - Simone Nicolardi
- Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Ljiljana Paša-Tolić
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Neil R Quebbemann
- University of California-Los Angeles, Los Angeles, California 90095, United States
| | | | - Wendy Sandoval
- Genentech, Inc., South San Francisco, California 94080-4990, United States
| | - Richa Sarin
- Biogen, Inc., Cambridge, Massachusetts 02142-1031, United States
| | | | | | - Jared B Shaw
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Lloyd M Smith
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Frank Sobott
- University of Antwerp, 2000 Antwerp, Belgium
- University of Leeds, LS2 9JT Leeds, United Kingdom
| | | | - Timothy Toby
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Chad R Weisbrod
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Norelle C Wildburger
- Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - John R Yates
- The Scripps Research Institute, La Jolla, California 92037, United States
| | - Sung Hwan Yoon
- University of Maryland, Baltimore, Maryland 21201, United States
| | - Nicolas L Young
- Baylor College of Medicine, Houston, Texas 77030-3411, United States
| | - Mowei Zhou
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
41
|
TAWFIQ Z, MATSUDA Y, ALFONSO MJ, CLANCY C, ROBLES V, LEUNG M, MENDELSOHN BA. Analytical Comparison of Antibody-drug Conjugates Based on Good Manufacturing Practice Strategies. ANAL SCI 2020; 36:871-875. [DOI: 10.2116/analsci.19p465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Watts E, Williams JD, Miesbauer LJ, Bruncko M, Brodbelt JS. Comprehensive Middle-Down Mass Spectrometry Characterization of an Antibody–Drug Conjugate by Combined Ion Activation Methods. Anal Chem 2020; 92:9790-9798. [DOI: 10.1021/acs.analchem.0c01232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Eleanor Watts
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | | | | | - Milan Bruncko
- AbbVie, North Chicago, Illinois 60064-1802, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| |
Collapse
|
43
|
Gahoual R, Bolbach G, Ould-Melha I, Clodic G, François YN, Scherman D, Mignet N, Houzé P. Kinetic and structural characterization of therapeutic albumin chemical functionalization using complementary mass spectrometry techniques. J Pharm Biomed Anal 2020; 185:113242. [DOI: 10.1016/j.jpba.2020.113242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/06/2023]
|
44
|
Duivelshof BL, Deslignière E, Hernandez-Alba O, Ehkirch A, Toftevall H, Sjögren J, Cianferani S, Beck A, Guillarme D, D’Atri V. Glycan-Mediated Technology for Obtaining Homogeneous Site-Specific Conjugated Antibody–Drug Conjugates: Synthesis and Analytical Characterization by Using Complementary Middle-up LC/HRMS Analysis. Anal Chem 2020; 92:8170-8177. [DOI: 10.1021/acs.analchem.0c00282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Bastiaan L. Duivelshof
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Evolène Deslignière
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Anthony Ehkirch
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | | | | | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Alain Beck
- IRPF - Centre d’Immunologie Pierre-Fabre (CIPF), 5 Avenue Napoléon III, BP 60497 Saint-Julien-en-Genevois, France
| | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Valentina D’Atri
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
45
|
Dovgan I, Ehkirch A, Lehot V, Kuhn I, Koniev O, Kolodych S, Hentz A, Ripoll M, Ursuegui S, Nothisen M, Cianférani S, Wagner A. On the use of DNA as a linker in antibody-drug conjugates: synthesis, stability and in vitro potency. Sci Rep 2020; 10:7691. [PMID: 32376903 PMCID: PMC7203131 DOI: 10.1038/s41598-020-64518-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
Here we present the synthesis and evaluation of antibody-drug conjugates (ADCs), for which antibody and drug are non-covalently connected using complementary DNA linkers. These ADCs are composed of trastuzumab, an antibody targeting HER2 receptors overexpressed on breast cancer cells, and monomethyl auristatin E (MMAE) as a drug payload. In this new ADC format, trastuzumab conjugated to a 37-mer oligonucleotide (ON) was prepared and hybridized with its complementary ON modified at 5-end with MMAE (cON-MMAE) in order to obtain trastuzumab-DNA-MMAE. As an advantage, the cON-MMAE was completely soluble in water, which decreases overall hydrophobicity of toxic payload, an important characteristic of ADCs. The stability in the human plasma of these non-engineered ON-based linkers was investigated and showed a satisfactory half-life of 5.8 days for the trastuzumab-DNA format. Finally, we investigated the in vitro cytotoxicity profile of both the DNA-linked ADC and the ON-drug conjugates and compared them with classical covalently linked ADC. Interestingly, we found increased cytotoxicity for MMAE compared to cON-MMAE and an EC50 in the nanomolar range for trastuzumab-DNA-MMAE on HER2-positive cells. Although this proved to be less potent than classically linked ADC with picomolar range EC50, the difference in cytotoxicity between naked payload and conjugated payload was significant when an ON linker was used. We also observed an interesting increase in cytotoxicity of trastuzumab-DNA-MMAE on HER2-negative cells. This was attributed to enhanced non-specific interaction triggered by the DNA strand as it could be confirmed using ligand tracer assay.
Collapse
Affiliation(s)
- Igor Dovgan
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| | - Anthony Ehkirch
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, France
| | - Victor Lehot
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| | - Isabelle Kuhn
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| | - Oleksandr Koniev
- Syndivia SAS, 650 Boulevard Gonthier d'Andernach, 67400, Illkirch-Graffenstaden, France
| | - Sergii Kolodych
- Syndivia SAS, 650 Boulevard Gonthier d'Andernach, 67400, Illkirch-Graffenstaden, France
| | - Alexandre Hentz
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| | - Manon Ripoll
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| | - Sylvain Ursuegui
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| | - Marc Nothisen
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| | - Sarah Cianférani
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, France.,IPHC, CNRS, UMR7178, University of Strasbourg, 67087, Strasbourg, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France.
| |
Collapse
|
46
|
Proof of site-specificity of antibody-drug conjugates produced by chemical conjugation technology: AJICAP first generation. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1140:121981. [DOI: 10.1016/j.jchromb.2020.121981] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/10/2023]
|
47
|
Park HM, Winton VJ, Drader JJ, Manalili Wheeler S, Lazar GA, Kelleher NL, Liu Y, Tran JC, Compton PD. Novel Interface for High-Throughput Analysis of Biotherapeutics by Electrospray Mass Spectrometry. Anal Chem 2020; 92:2186-2193. [PMID: 31880920 PMCID: PMC7008517 DOI: 10.1021/acs.analchem.9b04826] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
With the rapid rise of therapeutic antibodies and antibody-drug conjugates, significant investments have been made in developing workflows that utilize mass spectrometry to detect these intact molecules, the large fragments generated by their selective digestion, and the peptides generated by traditional proteomics workflows. The resultant data is used to gain insight into a wide range of parameters, including primary sequence, disulfide bonding, glycosylation patterns, biotransformation, and more. However, many of the technologies utilized to couple these workflows to mass spectrometers have significant limitations that force nonoptimal modifications to upstream sample preparation steps, limit the throughput of high-volume workflows, and prevent the harmonization of diverse experiments onto a single hardware platform. Here, we describe a new analytical platform that enables direct and high-throughput coupling to electrospray ionization mass spectrometry. The SampleStream platform is compatible with both native and denaturing electrospray, operates with a throughput of up to 15 s/sample, provides extensive concentration of dilute samples, and affords similar sensitivity to comparable liquid chromatographic methods.
Collapse
Affiliation(s)
- Hae-Min Park
- Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Valerie J. Winton
- Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Jared J. Drader
- Integrated Protein Technologies, Inc., 2170 Campus Drive, Evanston, IL 60208, United States
| | - Sheri Manalili Wheeler
- Integrated Protein Technologies, Inc., 2170 Campus Drive, Evanston, IL 60208, United States
| | - Greg A. Lazar
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Neil L. Kelleher
- Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
- Integrated Protein Technologies, Inc., 2170 Campus Drive, Evanston, IL 60208, United States
| | - Yichin Liu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John C. Tran
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Philip D. Compton
- Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
- Integrated Protein Technologies, Inc., 2170 Campus Drive, Evanston, IL 60208, United States
| |
Collapse
|
48
|
Antibody Conjugates-Recent Advances and Future Innovations. Antibodies (Basel) 2020; 9:antib9010002. [PMID: 31936270 PMCID: PMC7148502 DOI: 10.3390/antib9010002] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/18/2022] Open
Abstract
Monoclonal antibodies have evolved from research tools to powerful therapeutics in the past 30 years. Clinical success rates of antibodies have exceeded expectations, resulting in heavy investment in biologics discovery and development in addition to traditional small molecules across the industry. However, protein therapeutics cannot drug targets intracellularly and are limited to soluble and cell-surface antigens. Tremendous strides have been made in antibody discovery, protein engineering, formulation, and delivery devices. These advances continue to push the boundaries of biologics to enable antibody conjugates to take advantage of the target specificity and long half-life from an antibody, while delivering highly potent small molecule drugs. While the "magic bullet" concept produced the first wave of antibody conjugates, these entities were met with limited clinical success. This review summarizes the advances and challenges in the field to date with emphasis on antibody conjugation, linker-payload chemistry, novel payload classes, absorption, distribution, metabolism, and excretion (ADME), and product developability. We discuss lessons learned in the development of oncology antibody conjugates and look towards future innovations enabling other therapeutic indications.
Collapse
|
49
|
Shi RL, Xiao G, Dillon TM, Ricci MS, Bondarenko PV. Characterization of therapeutic proteins by cation exchange chromatography-mass spectrometry and top-down analysis. MAbs 2020; 12:1739825. [PMID: 32292112 PMCID: PMC7188404 DOI: 10.1080/19420862.2020.1739825] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 01/10/2023] Open
Abstract
Recently, cation exchange chromatography (CEX) using aqueous volatile buffers was directly coupled with mass spectrometry (MS) and applied for intact analysis of therapeutic proteins and antibodies. In our study, chemical modifications responsible for charge variants were identified by CEX-UV-MS for a monoclonal antibody (mAb), a bispecific antibody, and an Fc-fusion protein. We also report post-CEX column addition of organic solvent and acid followed by mixing at elevated temperatures, which unfolded proteins, increased ion intensity (sensitivity) and facilitated top-down analysis. mAb stressed by hydrogen peroxide oxidation was used as a model system, which produced additional CEX peaks. The on-line CEX-UV-MS top-down analysis produced gas-phase fragments containing one or two methionine residues. Oxidation of some methionine residues contributed to earlier (acidic), some to later (basic) eluting peaks, while oxidation of other residues did not change CEX elution. The abundance of the oxidized and non-oxidized fragment ions also allowed estimation of the oxidation percentage of different methionine residues in stressed mAb. CEX-UV-MS measurement revealed a new intact antibody proteoform at 5% that eluted as a basic peak and included paired modifications: high-mannose glycosylation and remaining C-terminal lysine residue (M5/M5 + K). This finding was confirmed by peptide mapping and on-column disulfide reduction coupled with reversed-phase liquid chromatography - top-down MS analysis of the collected basic peak. Overall, our results demonstrate the utility of the on-line method in providing site-specific structural information of charge modifications without fraction collection and laborious peptide mapping.
Collapse
Affiliation(s)
- Rachel Liuqing Shi
- Attribute Sciences, Process Development, Amgen Inc., Thousand Oaks, CA, USA
| | - Gang Xiao
- Attribute Sciences, Process Development, Amgen Inc., Thousand Oaks, CA, USA
| | - Thomas M. Dillon
- Attribute Sciences, Process Development, Amgen Inc., Thousand Oaks, CA, USA
| | - Margaret S. Ricci
- Attribute Sciences, Process Development, Amgen Inc., Thousand Oaks, CA, USA
| | | |
Collapse
|
50
|
Abstract
Mass spectrometry performed in nondenaturing conditions (native MS) has proven its utility for the quantitative and qualitative analysis of antibody-drug conjugates (ADCs), especially when ADCs' subunits involve noncovalent interactions (i.e., cysteine-conjugated ADCs). Its hyphenation to ion mobility spectrometry (IM-MS) allows differentiation of gas-phase ions based on their rotationally averaged collision cross section providing an additional dimension of conformational characterization of ADCs. More recently, size exclusion chromatography (SEC) appeared as an interesting technique to perform online buffer exchange in an automated way prior to native MS/IM-MS analysis. Online SEC-native MS/IM-MS allows the global structural characterization of ADCs and the assessment of some critical quality attributes (CQAs) required for ADC release on the market, such as drug load distribution (DLD), drug-to-antibody ratio (DAR), the average DAR (DARav), and the relative amount of unconjugated mAb.
Collapse
Affiliation(s)
- Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), IPHC, UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Anthony Ehkirch
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), IPHC, UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Alain Beck
- Pierre Fabre Laboratories, IRPF-Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), IPHC, UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France.
| |
Collapse
|