1
|
Yu Z, Lin H, Zhang H, Han Y. Exploring guest species in zeolites using transmission electron microscopy: a review and outlook. Chem Soc Rev 2025. [PMID: 40237072 DOI: 10.1039/d5cs00159e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Zeolites, with their well-defined microporous frameworks, accommodate diverse guest species, including metal ions, atoms, clusters, complexes, and organic molecules. Direct imaging of these species and their interactions with the framework is crucial for understanding their structural and functional roles. Transmission electron microscopy (TEM), particularly aberration-corrected scanning TEM (STEM), has become an indispensable tool, offering atomic-resolution real-space insights. This review summarizes key (S)TEM techniques for probing guest species in zeolites, with a focus on low-dose strategies to minimize beam damage. We discuss the principles, applications, and limitations of various imaging modalities and highlight recent advances in visualizing metallic and organic species. Finally, we explore future directions for (S)TEM in zeolite research, emphasizing the opportunities and challenges of in situ, three-dimensional, and cryogenic imaging for resolving host-guest interactions with greater precision.
Collapse
Affiliation(s)
- Zhiling Yu
- Center for Electron Microscopy, South China University of Technology, Guangzhou 511442, China.
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
| | - Huang Lin
- Center for Electron Microscopy, South China University of Technology, Guangzhou 511442, China.
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
| | - Hui Zhang
- Center for Electron Microscopy, South China University of Technology, Guangzhou 511442, China.
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 511442, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 511442, China
| | - Yu Han
- Center for Electron Microscopy, South China University of Technology, Guangzhou 511442, China.
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 511442, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
2
|
Luo X, Seidler M, Lee YJ, Yu T, Zuckermann RN, Balsara NP, Abel BA, Prendergast D, Jiang X. Evaluating Cryo-TEM Reconstruction Accuracy of Self-Assembled Polymer Nanostructures. Macromol Rapid Commun 2025; 46:e2400589. [PMID: 39264522 DOI: 10.1002/marc.202400589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/30/2024] [Indexed: 09/13/2024]
Abstract
Cryogenic transmission electron microscopy (cryo-TEM) combined with single particle analysis (SPA) is an emerging imaging approach for soft materials. However, the accuracy of SPA-reconstructed nanostructures, particularly those formed by synthetic polymers, remains uncertain due to potential packing heterogeneity of the nanostructures. In this study, the combination of molecular dynamics (MD) simulations and image simulations is utilized to validate the accuracy of cryo-TEM 3D reconstructions of self-assembled polypeptoid fibril nanostructures. Using CryoSPARC software, image simulations, 2D classifications, ab initio reconstructions, and homogenous refinements are performed. By comparing the results with atomic models, the recovery of molecular details is assessed, heterogeneous structures are identified, and the influence of extraction location on the reconstructions is evaluated. These findings confirm the fidelity of single particle analysis in accurately resolving complex structural characteristics and heterogeneous structures, exhibiting its potential as a valuable tool for detailed structural analysis of synthetic polymers and soft materials.
Collapse
Affiliation(s)
- Xubo Luo
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Morgan Seidler
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Yen Jea Lee
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Tianyi Yu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ronald N Zuckermann
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nitash P Balsara
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Brooks A Abel
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - David Prendergast
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Xi Jiang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
3
|
Triantafyllopoulou E, Perinelli DR, Forys A, Pantelis P, Gorgoulis VG, Lagopati N, Trzebicka B, Bonacucina G, Valsami G, Pippa N, Pispas S. Unveiling the Performance of Co-Assembled Hybrid Nanocarriers: Moving towards the Formation of a Multifunctional Lipid/Random Copolymer Nanoplatform. Pharmaceutics 2024; 16:1204. [PMID: 39339240 PMCID: PMC11434724 DOI: 10.3390/pharmaceutics16091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Despite the appealing properties of random copolymers, the use of these biomaterials in association with phospholipids is still limited, as several aspects of their performance have not been investigated. The aim of this work is the formulation of lipid/random copolymer platforms and the comprehensive study of their features by multiple advanced characterization techniques. Both biomaterials are amphiphilic, including two phospholipids (1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)) and a statistical copolymer of oligo (ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(diisopropylamino) ethyl methacrylate (DIPAEMA). We examined the design parameters, including the lipid composition, the % comonomer ratio, and the lipid-to-polymer ratio that could be critical for their behavior. The structures were also probed in different conditions. To the best of the authors' knowledge, this is the first time that P(OEGMA-co-DIPAEMA)/lipid hybrid colloidal dispersions have been investigated from a membrane mechanics, biophysical, and morphological perspective. Among other parameters, the copolymer architecture and the hydrophilic to hydrophobic balance are deemed fundamental parameters for the biomaterial co-assembly, having an impact on the membrane's fluidity, morphology, and thermodynamics. Exploiting their unique characteristics, the most promising candidates were utilized for methotrexate (MTX) loading to explore their encapsulation capability and potential antitumor efficacy in vitro in various cell lines.
Collapse
Affiliation(s)
- Efstathia Triantafyllopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Diego Romano Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Pavlos Pantelis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
| | - Nefeli Lagopati
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Giulia Bonacucina
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Georgia Valsami
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
4
|
Islam F, Das S, Ashaduzzaman M, Sillman B, Yeapuri P, Nayan MU, Oupický D, Gendelman HE, Kevadiya BD. Development of an extended action fostemsavir lipid nanoparticle. Commun Biol 2024; 7:917. [PMID: 39080401 PMCID: PMC11289258 DOI: 10.1038/s42003-024-06589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
An extended action fostemsavir (FTR) lipid nanoparticle (LNP) formulation prevents human immunodeficiency virus type one (HIV-1) infection. This FTR formulation establishes a drug depot in monocyte-derived macrophages that extend the drug's plasma residence time. The LNP's physicochemical properties improve FTR's antiretroviral activities, which are linked to the drug's ability to withstand fluid flow forces and levels of drug cellular internalization. Each is, in measure, dependent on PEGylated lipid composition and flow rate ratios affecting the size, polydispersity, shape, zeta potential, stability, biodistribution, and antiretroviral efficacy. The FTR LNP physicochemical properties enable the drug-particle's extended actions.
Collapse
Affiliation(s)
- Farhana Islam
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Srijanee Das
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Md Ashaduzzaman
- Department of Computer Science, University of Nebraska Omaha, Omaha, NE, 68182, USA
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pravin Yeapuri
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
5
|
Triantafyllopoulou E, Forys A, Perinelli DR, Balafouti A, Karayianni M, Trzebicka B, Bonacucina G, Valsami G, Pippa N, Pispas S. Deciphering the Lipid-Random Copolymer Interactions and Encoding Their Properties to Design a Hybrid System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11936-11946. [PMID: 38797979 PMCID: PMC11190979 DOI: 10.1021/acs.langmuir.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Lipid/copolymer colloidal systems are deemed hybrid materials with unique properties and functionalities. Their hybrid nature leads to complex interfacial phenomena, which have not been fully encoded yet, navigating their properties. Moving toward in-depth knowledge of such systems, a comprehensive investigation of them is imperative. In the present study, hybrid lipid/copolymer structures were fabricated and examined by a gamut of techniques, including dynamic light scattering, fluorescence spectroscopy, cryogenic transmission electron microscopy, microcalorimetry, and high-resolution ultrasound spectroscopy. The biomaterials that were mixed for this purpose at different ratios were 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine and four different linear, statistical (random) amphiphilic copolymers, consisting of oligo(ethylene glycol) methyl ether methacrylate as the hydrophilic comonomer and lauryl methacrylate as the hydrophobic one. The colloidal dispersions were studied for lipid/copolymer interactions regarding their physicochemical, morphological, and biophysical behavior. Their membrane properties and interactions with serum proteins were also studied. The aforementioned techniques confirmed the hybrid nature of the systems and the location of the copolymer in the structure. More importantly, the random architecture of the copolymers, the hydrophobic-to-hydrophilic balance of the nanoplatforms, and the lipid-to-polymer ratio are highlighted as the main design-influencing factors. Elucidating the lipid/copolymer interactions would contribute to the translation of hybrid nanoparticle performance and, thus, their rational design for multiple applications, including drug delivery.
Collapse
Affiliation(s)
- Efstathia Triantafyllopoulou
- Section
of Pharmaceutical Technology, Department of Pharmacy, School of Health
Sciences, National and Kapodistrian University
of Athens, Panepistimioupolis
Zografou, Athens 15771, Greece
| | - Aleksander Forys
- Centre
of Polymer and Carbon Materials, Polish
Academy of Sciences, Zabrze 41-819, Poland
| | - Diego Romano Perinelli
- School
of Pharmacy, University of Camerino, Via Gentile III da Varano, Camerino 62032, Italy
| | - Anastasia Balafouti
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Maria Karayianni
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Barbara Trzebicka
- Centre
of Polymer and Carbon Materials, Polish
Academy of Sciences, Zabrze 41-819, Poland
| | - Giulia Bonacucina
- School
of Pharmacy, University of Camerino, Via Gentile III da Varano, Camerino 62032, Italy
| | - Georgia Valsami
- Section
of Pharmaceutical Technology, Department of Pharmacy, School of Health
Sciences, National and Kapodistrian University
of Athens, Panepistimioupolis
Zografou, Athens 15771, Greece
| | - Natassa Pippa
- Department
of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou 15771, Athens 157 72, Greece
| | - Stergios Pispas
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| |
Collapse
|
6
|
Matheson AB, Koutsos V, Euston SR, Clegg PS. Atomic Force Microscopy of Phytosterol Based Edible Oleogels. Gels 2023; 9:750. [PMID: 37754431 PMCID: PMC10530765 DOI: 10.3390/gels9090750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/28/2023] Open
Abstract
This work reviews the use of atomic force microscopy (AFM) as a tool to investigate oleogels of edible triglyceride oils. Specific attention is given to those oleogels based on phytosterols and their esters, a class of material the authors have studied extensively. This work consists of a summary of the role of AFM in imaging edible oleogels, including the processing and preparation steps required to obtain high-quality AFM images of them. Finally, there is a comparison between AFM and other techniques that may be used to obtain structural information from oleogel samples. The aim of this review is to provide a useful introduction and summary of the technique for researchers in the fields of gels and food sciences looking to perform AFM measurements on edible oleogels.
Collapse
Affiliation(s)
- Andrew B. Matheson
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Edinburgh EH9 3FD, UK
| | - Vasileios Koutsos
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Sanderson Building, Edinburgh EH9 3FB, UK
| | - Stephen R. Euston
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
- Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 0C3, Canada
| | - Paul S. Clegg
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Edinburgh EH9 3FD, UK
| |
Collapse
|
7
|
Sinha NJ, Langenstein MG, Pochan DJ, Kloxin CJ, Saven JG. Peptide Design and Self-assembly into Targeted Nanostructure and Functional Materials. Chem Rev 2021; 121:13915-13935. [PMID: 34709798 DOI: 10.1021/acs.chemrev.1c00712] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptides have been extensively utilized to construct nanomaterials that display targeted structure through hierarchical assembly. The self-assembly of both rationally designed peptides derived from naturally occurring domains in proteins as well as intuitively or computationally designed peptides that form β-sheets and helical secondary structures have been widely successful in constructing nanoscale morphologies with well-defined 1-d, 2-d, and 3-d architectures. In this review, we discuss these successes of peptide self-assembly, especially in the context of designing hierarchical materials. In particular, we emphasize the differences in the level of peptide design as an indicator of complexity within the targeted self-assembled materials and highlight future avenues for scientific and technological advances in this field.
Collapse
Affiliation(s)
- Nairiti J Sinha
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Matthew G Langenstein
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Christopher J Kloxin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Gradzielski M, Duvail M, de Molina PM, Simon M, Talmon Y, Zemb T. Using Microemulsions: Formulation Based on Knowledge of Their Mesostructure. Chem Rev 2021; 121:5671-5740. [PMID: 33955731 DOI: 10.1021/acs.chemrev.0c00812] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microemulsions, as thermodynamically stable mixtures of oil, water, and surfactant, are known and have been studied for more than 70 years. However, even today there are still quite a number of unclear aspects, and more recent research work has modified and extended our picture. This review gives a short overview of how the understanding of microemulsions has developed, the current view on their properties and structural features, and in particular, how they are related to applications. We also discuss more recent developments regarding nonclassical microemulsions such as surfactant-free (ultraflexible) microemulsions or ones containing uncommon solvents or amphiphiles (like antagonistic salts). These new findings challenge to some extent our previous understanding of microemulsions, which therefore has to be extended to look at the different types of microemulsions in a unified way. In particular, the flexibility of the amphiphilic film is the key property to classify different microemulsion types and their properties in this review. Such a classification of microemulsions requires a thorough determination of their structural properties, and therefore, the experimental methods to determine microemulsion structure and dynamics are reviewed briefly, with a particular emphasis on recent developments in the field of direct imaging by means of electron microscopy. Based on this classification of microemulsions, we then discuss their applications, where the application demands have to be met by the properties of the microemulsion, which in turn are controlled by the flexibility of their amphiphilic interface. Another frequently important aspect for applications is the control of the rheological properties. Normally, microemulsions are low viscous and therefore enhancing viscosity has to be achieved by either having high concentrations (often not wished for) or additives, which do not significantly interfere with the microemulsion. Accordingly, this review gives a comprehensive account of the properties of microemulsions, including most recent developments and bringing them together from a united viewpoint, with an emphasis on how this affects the way of formulating microemulsions for a given application with desired properties.
Collapse
Affiliation(s)
- Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Magali Duvail
- ICSM, Université Montpellier, CEA, CNRS, ENSCM, 30207 Marcoule, France
| | - Paula Malo de Molina
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain.,IKERBASQUE - Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Miriam Simon
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany.,Department of Chemical Engineering and the Russell Berrie Nanotechnolgy Inst. (RBNI), Technion-Israel Institute of Technology, Haifa, IL-3200003, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnolgy Inst. (RBNI), Technion-Israel Institute of Technology, Haifa, IL-3200003, Israel
| | - Thomas Zemb
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany.,ICSM, Université Montpellier, CEA, CNRS, ENSCM, 30207 Marcoule, France
| |
Collapse
|
9
|
Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021; 332:312-336. [PMID: 33652113 DOI: 10.1016/j.jconrel.2021.02.031] [Citation(s) in RCA: 473] [Impact Index Per Article: 118.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Polymeric micelles, i.e. aggregation colloids formed in solution by self-assembling of amphiphilic polymers, represent an innovative tool to overcome several issues related to drug administration, from the low water-solubility to the poor drug permeability across biological barriers. With respect to other nanocarriers, polymeric micelles generally display smaller size, easier preparation and sterilization processes, and good solubilization properties, unfortunately associated with a lower stability in biological fluids and a more complicated characterization. Particularly challenging is the study of their interaction with the biological environment, essential to predict the real in vivo behavior after administration. In this review, after a general presentation on micelles features and properties, different characterization techniques are discussed, from the ones used for the determination of micelles basic characteristics (critical micellar concentration, size, surface charge, morphology) to the more complex approaches used to figure out micelles kinetic stability, drug release and behavior in the presence of biological substrates (fluids, cells and tissues). The techniques presented (such as dynamic light scattering, AFM, cryo-TEM, X-ray scattering, FRET, symmetrical flow field-flow fractionation (AF4) and density ultracentrifugation), each one with their own advantages and limitations, can be combined to achieve a deeper comprehension of polymeric micelles in vivo behavior. The set-up and validation of adequate methods for micelles description represent the essential starting point for their development and clinical success.
Collapse
Affiliation(s)
- M Ghezzi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - S Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - C Padula
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - P Santi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - E Del Favero
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Segrate, Italy
| | - L Cantù
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Segrate, Italy
| | - S Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
10
|
Zanata DDM, Felisberti MI. Self-assembly of dual-responsive amphiphilic POEGMA- b-P4VP- b-POEGMA triblock copolymers: effect of temperature, pH, and complexation with Cu 2+. Polym Chem 2021. [DOI: 10.1039/d1py00716e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic and dual-responsive triblock copolymer POEGMA-b-P4VP-b-POEGMA synthesized by RAFT self-assemble into spherical or interconnected micelles depending on the external stimulus and their complexation with Cu2+ results in responsive nanogels.
Collapse
Affiliation(s)
- Daniela de Morais Zanata
- Institute of Chemistry, University of Campinas (UNICAMP), P. O. Box 6154, Campinas, SP 13083-970, Brazil
| | - Maria Isabel Felisberti
- Institute of Chemistry, University of Campinas (UNICAMP), P. O. Box 6154, Campinas, SP 13083-970, Brazil
| |
Collapse
|
11
|
Lafleur RPM, Herziger S, Schoenmakers SMC, Keizer ADA, Jahzerah J, Thota BNS, Su L, Bomans PHH, Sommerdijk NAJM, Palmans ARA, Haag R, Friedrich H, Böttcher C, Meijer EW. Supramolecular Double Helices from Small C 3-Symmetrical Molecules Aggregated in Water. J Am Chem Soc 2020; 142:17644-17652. [PMID: 32935541 PMCID: PMC7564094 DOI: 10.1021/jacs.0c08179] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Supramolecular fibers
in water, micrometers long and several nanometers
in width, are among the most studied nanostructures for biomedical
applications. These supramolecular polymers are formed through a spontaneous
self-assembly process of small amphiphilic molecules by specific secondary
interactions. Although many compounds do not possess a stereocenter,
recent studies suggest the (co)existence of helical structures, albeit
in racemic form. Here, we disclose a series of supramolecular (co)polymers
based on water-soluble benzene-1,3,5-tricarboxamides (BTAs) that form
double helices, fibers that were long thought to be chains of single
molecules stacked in one dimension (1D). Detailed cryogenic transmission
electron microscopy (cryo-TEM) studies and subsequent three-dimensional-volume
reconstructions unveiled helical repeats, ranging from 15 to 30 nm.
Most remarkable, the pitch can be tuned through the composition of
the copolymers, where two different monomers with the same core but
different peripheries are mixed in various ratios. Like in lipid bilayers,
the hydrophobic shielding in the aggregates of these disc-shaped molecules
is proposed to be best obtained by dimer formation, promoting supramolecular
double helices. It is anticipated that many of the supramolecular
polymers in water will have a thermodynamic stable structure, such
as a double helix, although small structural changes can yield single
stacks as well. Hence, it is essential to perform detailed analyses
prior to sketching a molecular picture of these 1D fibers.
Collapse
Affiliation(s)
- René P M Lafleur
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Svenja Herziger
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany.,Research Center of Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraβe 36a, Berlin 14195, Germany
| | - Sandra M C Schoenmakers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Arthur D A Keizer
- Center of Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Jahaziel Jahzerah
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Bala N S Thota
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Lu Su
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Paul H H Bomans
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands.,Center of Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Nico A J M Sommerdijk
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands.,Center of Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Anja R A Palmans
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Heiner Friedrich
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands.,Center of Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Christoph Böttcher
- Research Center of Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraβe 36a, Berlin 14195, Germany
| | - E W Meijer
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
12
|
Fuentes E, Boháčová K, Fuentes‐Caparrós AM, Schweins R, Draper ER, Adams DJ, Pujals S, Albertazzi L. PAINT-ing Fluorenylmethoxycarbonyl (Fmoc)-Diphenylalanine Hydrogels. Chemistry 2020; 26:9869-9873. [PMID: 32428285 PMCID: PMC7496660 DOI: 10.1002/chem.202001560] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/05/2020] [Indexed: 12/14/2022]
Abstract
Self-assembly of fluorenylmethoxycarbonyl-protected diphenylalanine (FmocFF) in water is widely known to produce hydrogels. Typically, confocal microscopy is used to visualize such hydrogels under wet conditions, that is, without freezing or drying. However, key aspects of hydrogels like fiber diameter, network morphology and mesh size are sub-diffraction limited features and cannot be visualized effectively using this approach. In this work, we show that it is possible to image FmocFF hydrogels by Points Accumulation for Imaging in Nanoscale Topography (PAINT) in native conditions and without direct gel labelling. We demonstrate that the fiber network can be visualized with improved resolution (≈50 nm) both in 2D and 3D. Quantitative information is extracted such as mesh size and fiber diameter. This method can complement the existing characterization tools for hydrogels and provide useful information supporting the design of new materials.
Collapse
Affiliation(s)
- Edgar Fuentes
- Nanoscopy for nanomedicine labInstitute for Bioengineering of CataloniaBaldiri Reixac08028BarcelonaSpain
| | - Kamila Boháčová
- Nanoscopy for nanomedicine labInstitute for Bioengineering of CataloniaBaldiri Reixac08028BarcelonaSpain
- Department School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| | | | - Ralf Schweins
- Large Scale Structures GroupInstitut Laue-Langevin71 Avenue des Martyrs, CS 2015638042Grenoble, CEDEX 9France
| | - Emily R. Draper
- Department School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| | - Dave J. Adams
- Department School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| | - Silvia Pujals
- Nanoscopy for nanomedicine labInstitute for Bioengineering of CataloniaBaldiri Reixac08028BarcelonaSpain
- Department of Electronics and Biomedical EngineeringFaculty of PhysicsUniversitat de BarcelonaAv. Diagonal 64708028BarcelonaSpain
| | - Lorenzo Albertazzi
- Nanoscopy for nanomedicine labInstitute for Bioengineering of CataloniaBaldiri Reixac08028BarcelonaSpain
- Department of Biomedical EngineeringInstitute of Complex Molecular Systems (ICMS)Eindhoven University of Technology (TUE)PO Box 513, 5600 MBEindhovenThe Netherlands
| |
Collapse
|
13
|
Qi H, Liu X, Henn DM, Mei S, Staub MC, Zhao B, Li CY. Breaking translational symmetry via polymer chain overcrowding in molecular bottlebrush crystallization. Nat Commun 2020; 11:2152. [PMID: 32358513 PMCID: PMC7195396 DOI: 10.1038/s41467-020-15477-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/09/2020] [Indexed: 11/09/2022] Open
Abstract
One of the fundamental laws in crystallization is translational symmetry, which accounts for the profound shapes observed in natural mineral crystals and snowflakes. Herein, we report on the spontaneous formation of spherical hollow crystals with broken translational symmetry in crystalline molecular bottlebrush (mBB) polymers. The unique structure is named as mBB crystalsome (mBBC), highlighting its similarity to the classical molecular vesicles. Fluorescence resonance energy transfer (FRET) experiments show that the mBBC formation is driven by local chain overcrowding-induced asymmetric lamella bending, which is further confirmed by correlating crystalsome size with crystallization temperature and mBB's side chain grafting density. Our study unravels a new principle of spontaneous translational symmetry breaking, providing a general route towards designing versatile nanostructures.
Collapse
Affiliation(s)
- Hao Qi
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Xiting Liu
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Daniel M Henn
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Shan Mei
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Mark C Staub
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA.
| | - Christopher Y Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Tian Y, Polzer FB, Zhang HV, Kiick KL, Saven JG, Pochan DJ. Nanotubes, Plates, and Needles: Pathway-Dependent Self-Assembly of Computationally Designed Peptides. Biomacromolecules 2018; 19:4286-4298. [DOI: 10.1021/acs.biomac.8b01163] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yu Tian
- Materials Science and Engineering Department, University of Delaware, Newark, Delaware 19716, United States
| | - Frank B. Polzer
- Materials Science and Engineering Department, University of Delaware, Newark, Delaware 19716, United States
| | - Huixi Violet Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kristi L. Kiick
- Materials Science and Engineering Department, University of Delaware, Newark, Delaware 19716, United States
| | - Jeffery G. Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Darrin J. Pochan
- Materials Science and Engineering Department, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
15
|
Atanase L, Desbrieres J, Riess G. Micellization of synthetic and polysaccharides-based graft copolymers in aqueous media. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.06.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Friedl C, Renger T, Berlepsch HV, Ludwig K, Schmidt am Busch M, Megow J. Structure Prediction of Self-Assembled Dye Aggregates from Cryogenic Transmission Electron Microscopy, Molecular Mechanics, and Theory of Optical Spectra. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2016; 120:19416-19433. [PMID: 27642380 PMCID: PMC5021387 DOI: 10.1021/acs.jpcc.6b05856] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/26/2016] [Indexed: 05/03/2023]
Abstract
Cryogenic transmission electron microscopy (cryo-TEM) studies suggest that TTBC molecules self-assemble in aqueous solution to form single-walled tubes with a diameter of about 35 Å. In order to reveal the arrangement and mutual orientations of the individual molecules in the tube, we combine information from crystal structure data of this dye with a calculation of linear absorbance and linear dichroism spectra and molecular dynamics simulations. We start with wrapping crystal planes in different directions to obtain tubes of suitable diameter. This set of tube models is evaluated by comparing the resulting optical spectra with experimental data. The tubes that can explain the spectra are investigated further by molecular dynamics simulations, including explicit solvent molecules. From the trajectories of the most stable tube models, the short-range ordering of the dye molecules is extracted and the optimization of the structure is iteratively completed. The final structural model is a tube of rings with 6-fold rotational symmetry, where neighboring rings are rotated by 30° and the transition dipole moments of the chromophores form an angle of 74° with respect to the symmetry axis of the tube. This model is in agreement with cryo-TEM images and can explain the optical spectra, consisting of a sharp red-shifted J-band that is polarized parallel to to the symmetry axis of the tube and a broad blue-shifted H-band polarized perpendicular to this axis. The general structure of the homogeneous spectrum of this hybrid HJ-aggregate is described by an analytical model that explains the difference in redistribution of oscillator strength inside the vibrational manifolds of the J- and H-bands and the relative intensities and excitation energies of those bands. In addition to the particular system investigated here, the present methodology can be expected to aid the structure prediction for a wide range of self-assembled dye aggregates.
Collapse
Affiliation(s)
- Christian Friedl
- Institut
für Theoretische Physik, Johannes
Kepler Universität Linz, Altenberger Strasse 69, AT-4040 Linz, Austria
| | - Thomas Renger
- Institut
für Theoretische Physik, Johannes
Kepler Universität Linz, Altenberger Strasse 69, AT-4040 Linz, Austria
- E-mail: . Phone: +43 (0)732 24685151
| | - Hans v. Berlepsch
- Forschungszentrum
für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 36a, D-14195 Berlin, Federal Republic
of Germany
| | - Kai Ludwig
- Forschungszentrum
für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 36a, D-14195 Berlin, Federal Republic
of Germany
| | - Marcel Schmidt am Busch
- Institut
für Theoretische Physik, Johannes
Kepler Universität Linz, Altenberger Strasse 69, AT-4040 Linz, Austria
| | - Jörg Megow
- Institut
für Theoretische Physik, Johannes
Kepler Universität Linz, Altenberger Strasse 69, AT-4040 Linz, Austria
- Institut
für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Federal Republic of Germany
- E-mail: . Phone: +49 (0)331 9775195
| |
Collapse
|
17
|
Stewart PL. Cryo-electron microscopy and cryo-electron tomography of nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [DOI: 10.1002/wnan.1417] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/11/2016] [Accepted: 06/02/2016] [Indexed: 01/04/2023]
|
18
|
Liu K, Li H, Lu Y, Wang R, Bei F, Lu L, Han Q, Wu X. A completely controlled sphere-to-bilayer micellar transition: the molecular mechanism and application on the growth of nanosheets. SOFT MATTER 2016; 12:3703-3709. [PMID: 26996652 DOI: 10.1039/c6sm00003g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The combination of a simple modification of the sample addition method to generate a sort of continuously accumulated external stimulation with only minute increments in amplitude and the introduction of probe molecules (herein aniline) within the micelle allow the direct continuous in situ spectroscopic monitoring of possible micellar transitions. In this way, a sphere-to-ellipsoid and further an ellipsoid-to-bilayer micellar transition of sodium dodecyl sulfate (SDS) induced by camphor sulfuric acid (CSA) is observed to experience four stages in the time sequence: (i) the accumulated protons released from CSA in the hydration layer of the micelle stimulate the rearrangement of SDS micelles; (ii) the micelles transform into ellipsoidal shapes as evidenced by the characteristic chemical shift anisotropy and the corresponding molecular dynamic properties from probe molecules; (iii) further protonation of aniline induces the micelle to turn into lamellar structures; (iv) aniline is freed from the micelle while leaving the SDS bilayers undistorted. Moreover, polyaniline nanosheets incorporating SDS bilayers in sandwich structures, which can display excellent capacitive behavior at relatively high current densities for the fabricated supercapacitors, are prepared from the aniline oriented by the bending energy of the SDS bilayers.
Collapse
Affiliation(s)
- Kong Liu
- Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
| | - Huanyuan Li
- Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
| | - Yuan Lu
- Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
| | - Ruijuan Wang
- Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
| | - Fengli Bei
- Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
| | - Lude Lu
- Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
| | - Qiaofeng Han
- Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
| | - Xiaodong Wu
- Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
| |
Collapse
|
19
|
Self-Assembly of Amphiphilic Block Copolymers in Selective Solvents. FLUORESCENCE STUDIES OF POLYMER CONTAINING SYSTEMS 2016. [DOI: 10.1007/978-3-319-26788-3_2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Löbling TI, Haataja JS, Synatschke CV, Schacher FH, Müller M, Hanisch A, Gröschel AH, Müller AHE. Hidden structural features of multicompartment micelles revealed by cryogenic transmission electron tomography. ACS NANO 2014; 8:11330-11340. [PMID: 25195820 DOI: 10.1021/nn504197y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The demand for ever more complex nanostructures in materials and soft matter nanoscience also requires sophisticated characterization tools for reliable visualization and interpretation of internal morphological features. Here, we address both aspects and present synthetic concepts for the compartmentalization of nanoparticle peripheries as well as their in situ tomographic characterization. We first form negatively charged spherical multicompartment micelles from ampholytic triblock terpolymers in aqueous media, followed by interpolyelectrolyte complex (IPEC) formation of the anionic corona with bis-hydrophilic cationic/neutral diblock copolymers. At a 1:1 stoichiometric ratio of anionic and cationic charges, the so-formed IPECs are charge neutral and thus phase separate from solution (water). The high chain density of the ionic grafts provides steric stabilization through the neutral PEO corona of the grafted diblock copolymer and suppresses collapse of the IPEC; instead, the dense grafting results in defined nanodomains oriented perpendicular to the micellar core. We analyze the 3D arrangements of the complex and purely organic compartments, in situ, by means of cryogenic transmission electron microscopy (cryo-TEM) and tomography (cryo-ET). We study the effect of block lengths of the cationic and nonionic block on IPEC morphology, and while 2D cryo-TEM projections suggest similar morphologies, cryo-ET and computational 3D reconstruction reveal otherwise hidden structural features, e.g., planar IPEC brushes emanating from the micellar core.
Collapse
Affiliation(s)
- Tina I Löbling
- Makromolekulare Chemie II, Universität Bayreuth , D-95440 Bayreuth, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Barthel MJ, Rinkenauer AC, Wagner M, Mansfeld U, Hoeppener S, Czaplewska JA, Gottschaldt M, Träger A, Schacher FH, Schubert US. Small but Powerful: Co-Assembly of Polyether-Based Triblock Terpolymers into Sub-30 nm Micelles and Synergistic Effects on Cellular Interactions. Biomacromolecules 2014; 15:2426-39. [DOI: 10.1021/bm5002894] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Markus J. Barthel
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Dutch
Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| | - Alexandra C. Rinkenauer
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Michael Wagner
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich Mansfeld
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Stephanie Hoeppener
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Justyna A. Czaplewska
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Michael Gottschaldt
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Anja Träger
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Felix H. Schacher
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Dutch
Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| |
Collapse
|
22
|
Burrows ND, Penn RL. Cryogenic transmission electron microscopy: aqueous suspensions of nanoscale objects. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:1542-1553. [PMID: 24001937 DOI: 10.1017/s1431927613013354] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Direct imaging of nanoscale objects suspended in liquid media can be accomplished using cryogenic transmission electron microscopy (cryo-TEM). Cryo-TEM has been used with particular success in microbiology and other biological fields. Samples are prepared by plunging a thin film of sample into an appropriate cryogen, which essentially produces a snapshot of the suspended objects in their liquid medium. With successful sample preparation, cryo-TEM images can facilitate elucidation of aggregation and self-assembly, as well as provide detailed information about cells and viruses. This work provides an explanation of sample preparation, detailed examples of the many artifacts found in cryo-TEM of aqueous samples, and other key considerations for successful cryo-TEM imaging.
Collapse
Affiliation(s)
- Nathan D Burrows
- Department of Chemistry, University of Minnesota - Twin Cities 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
23
|
Yang S, Wang B, Cui D, Kerwood D, Wilkens S, Han J, Luk YY. Stereochemical Control of Nonamphiphilic Lyotropic Liquid Crystals: Chiral Nematic Phase of Assemblies Separated by Six Nanometers of Aqueous Solvents. J Phys Chem B 2013; 117:7133-43. [DOI: 10.1021/jp401382h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Sijie Yang
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United
States
| | - Bing Wang
- Novartis Institutes for BioMedical Research, Inc., Cambridge, Massachusetts
02139, United States
| | - Dawei Cui
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United
States
| | - Deborah Kerwood
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United
States
| | - Stephan Wilkens
- Department
of Biochemistry and
Molecular Biology, Upstate Medical University, State University of New York, Syracuse, New York 13210, United
States
| | - Junjie Han
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United
States
| | - Yan-Yeung Luk
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United
States
- Department of Biomedical
and
Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
24
|
Wyman IW, Liu G. Micellar structures of linear triblock terpolymers: Three blocks but many possibilities. POLYMER 2013. [DOI: 10.1016/j.polymer.2012.12.079] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Weissman H, Rybtchinski B. Noncovalent self-assembly in aqueous medium: Mechanistic insights from time-resolved cryogenic electron microscopy. Curr Opin Colloid Interface Sci 2012. [DOI: 10.1016/j.cocis.2012.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Newcomb CJ, Moyer TJ, Lee SS, Stupp SI. Advances in cryogenic transmission electron microscopy for the characterization of dynamic self-assembling nanostructures. Curr Opin Colloid Interface Sci 2012. [PMID: 23204913 DOI: 10.1016/j.cocis.2012.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Elucidating the structural information of nanoscale materials in their solvent-exposed state is crucial, as a result, cryogenic transmission electron microscopy (cryo-TEM) has become an increasingly popular technique in the materials science, chemistry, and biology communities. Cryo-TEM provides a method to directly visualize the specimen structure in a solution-state through a thin film of vitrified solvent. This technique complements X-ray, neutron, and light scattering methods that probe the statistical average of all species present; furthermore, cryo-TEM can be used to observe changes in structure over time. In the area of self-assembly, this tool has been particularly powerful for the characterization of natural and synthetic small molecule assemblies, as well as hybrid organic-inorganic composites. In this review, we discuss recent advances in cryogenic TEM in the context of self-assembling systems with emphasis on characterization of transitions observed in response to external stimuli.
Collapse
Affiliation(s)
- Christina J Newcomb
- Department of Materials Science and Engineering Northwestern University, Evanston, IL, USA
| | | | | | | |
Collapse
|
27
|
Saracino GAA, Cigognini D, Silva D, Caprini A, Gelain F. Nanomaterials design and tests for neural tissue engineering. Chem Soc Rev 2012; 42:225-62. [PMID: 22990473 DOI: 10.1039/c2cs35065c] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanostructured scaffolds recently showed great promise in tissue engineering: nanomaterials can be tailored at the molecular level and scaffold morphology may more closely resemble features of extracellular matrix components in terms of porosity, framing and biofunctionalities. As a consequence, both biomechanical properties of scaffold microenvironments and biomaterial-protein interactions can be tuned, allowing for improved transplanted cell engraftment and better controlled diffusion of drugs. Easier said than done, a nanotech-based regenerative approach encompasses different fields of know-how, ranging from in silico simulations, nanomaterial synthesis and characterization at the nano-, micro- and mesoscales to random library screening methods (e.g. phage display), in vitro cellular-based experiments and validation in animal models of the target injury. All of these steps of the "assembly line" of nanostructured scaffolds are tightly interconnected both in their standard analysis techniques and in their most recent breakthroughs: indeed their efforts have to jointly provide the deepest possible analyses of the diverse facets of the challenging field of neural tissue engineering. The purpose of this review is therefore to provide a critical overview of the recent advances in and drawbacks and potential of each mentioned field, contributing to the realization of effective nanotech-based therapies for the regeneration of peripheral nerve transections, spinal cord injuries and brain traumatic injuries. Far from being the ultimate overview of such a number of topics, the reader will acknowledge the intrinsic complexity of the goal of nanotech tissue engineering for a conscious approach to the development of a regenerative therapy and, by deciphering the thread connecting all steps of the research, will gain the necessary view of its tremendous potential if each piece of stone is correctly placed to work synergically in this impressive mosaic.
Collapse
Affiliation(s)
- Gloria A A Saracino
- Center for Nanomedicine and Tissue Engineering, A.O. Ospedale Niguarda Cà Granda, Milan, 20162, Italy
| | | | | | | | | |
Collapse
|
28
|
Fryd MM, Mason TG. Nanoinclusions in cryogenically quenched nanoemulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:12015-12021. [PMID: 22881456 DOI: 10.1021/la301834x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nanodroplets containing mixtures of silicone oil and squalene are dispersed in a simple aqueous surfactant solution, quenched in liquid ethane, and examined using cryogenic transmission electron microscopy (CTEM). Depending on the phase of ice that forms around the nanodroplets and on the composition of the oil mixture, nanoinclusions can be observed inside oil nanodroplets, independent of surfactant type. Our observations suggest that these nanoinclusions arise from nucleation of vapor cavities as the water freezes and expands while the oil remains liquid during the quench.
Collapse
Affiliation(s)
- Michael M Fryd
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | | |
Collapse
|
29
|
Direct-Imaging Cryo-SEM of Nanostructure Evolution in Didodecyldimethylammonium Bromide-Based Microemulsions. ACTA ACUST UNITED AC 2012. [DOI: 10.1524/zpch.2012.0294] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
We applied cryogenic-temperature scanning electron microscopy (cryo-SEM) to perform a first direct-imaging study of single-phase microemulsions of didodecyldimethylammonium bromide (DDAB), isooctane, and water. The structural changes from a bicontinuous network to an oil-continuous structure, observed upon the addition of water to the system, are consistent with previous indirect investigations, thus validating the model of Ninham, Evans, and coworkers, published in 1984, and demonstrating the power of this novel methodology.
Collapse
|
30
|
Vargo KB, Parthasarathy R, Hammer DA. Self-assembly of tunable protein suprastructures from recombinant oleosin. Proc Natl Acad Sci U S A 2012; 109:11657-62. [PMID: 22753512 PMCID: PMC3406865 DOI: 10.1073/pnas.1205426109] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using recombinant amphiphilic proteins to self-assemble suprastructures would allow precise control over surfactant chemistry and the facile incorporation of biological functionality. We used cryo-TEM to confirm self-assembled structures from recombinantly produced mutants of the naturally occurring sunflower protein, oleosin. We studied the phase behavior of protein self-assembly as a function of solution ionic strength and protein hydrophilic fraction, observing nanometric fibers, sheets, and vesicles. Vesicle membrane thickness correlated with increasing hydrophilic fraction for a fixed hydrophobic domain length. The existence of a bilayer membrane was corroborated in giant vesicles through the localized encapsulation of hydrophobic Nile red and hydrophilic calcein. Circular dichroism revealed that changes in nanostructural morphology in this family of mutants was unrelated to changes in secondary structure. Ultimately, we envision the use of recombinant techniques to introduce novel functionality into these materials for biological applications.
Collapse
Affiliation(s)
- Kevin B. Vargo
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Ranganath Parthasarathy
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Daniel A. Hammer
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104; and
- Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
31
|
Mittal V, Matsko NB. Microscopic analysis of the surface functionalization of polymer particles and subsequent grafting of polymer chains from the surface. JOURNAL OF ELECTRON MICROSCOPY 2012; 61:367-380. [PMID: 22802487 DOI: 10.1093/jmicro/dfs053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The characterization of the surface functionalization of polymer particles and subsequent grafting of hydrated polymer chains from their surface by microscopic techniques are essential to obtain reliable data about the actual morphology of the system. Since the size range of morphological features of functionalized polymer surfaces has long ago reached the lower end of the nanometer scale, classical light microscopy and dynamic light scattering have been replaced by electron and atomic force microscopy techniques which provide sufficient resolution for the visualization of nano-sized structures. Moreover, only polymer particle aggregates and fine organization of hydrated polymer chains which are not efficiently characterized by particle size measurements can be detected accurately with microscopy methods. Both solid and hydrated systems can be characterized by transmission electron microscopy and scanning electron microscopy (inc. cryo-electron microscopy (EM)) after appropriate sample preparation. Moreover, analytical EM methods allow not only for the size, shape and internal structure characterization, but also for the chemical composition with high spatial resolution.
Collapse
Affiliation(s)
- Vikas Mittal
- Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, United Arab Emirates.
| | | |
Collapse
|
32
|
Patterson JP, Sanchez AM, Petzetakis N, Smart TP, Epps TH, Portman I, Wilson NR, O'Reilly RK. A simple approach to characterizing block copolymer assemblies: graphene oxide supports for high contrast multi-technique imaging. SOFT MATTER 2012; 8:3322-3328. [PMID: 24049544 PMCID: PMC3774068 DOI: 10.1039/c2sm07040e] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Block copolymers are well-known to self-assemble into a range of 3-dimensional morphologies. However, due to their nanoscale dimensions, resolving their exact structure can be a challenge. Transmission electron microscopy (TEM) is a powerful technique for achieving this, but for polymeric assemblies chemical fixing/staining techniques are usually required to increase image contrast and protect specimens from electron beam damage. Graphene oxide (GO) is a robust, water-dispersable, and nearly electron transparent membrane: an ideal support for TEM. We show that when using GO supports no stains are required to acquire high contrast TEM images and that the specimens remain stable under the electron beam for long periods, allowing sample analysis by a range of electron microscopy techniques. GO supports are also used for further characterization of assemblies by atomic force microscopy. The simplicity of sample preparation and analysis, as well as the potential for significantly increased contrast background, make GO supports an attractive alternative for the analysis of block copolymer assemblies.
Collapse
Affiliation(s)
- Joseph P. Patterson
- University of Warwick, Department of Chemistry, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom. Fax: +0247 652 4112; Tel: +0247 652 3236
| | - Ana M. Sanchez
- University of Warwick, Department of Physics, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom. Fax: +0247 652 4112; Tel: +0247 652 3236
| | - Nikos Petzetakis
- University of Warwick, Department of Chemistry, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom. Fax: +0247 652 4112; Tel: +0247 652 3236
| | - Thomas P. Smart
- University of Delaware, Department of Chemical Engineering, 150, Academy Street, Newark, DE 19716, USA
| | - Thomas H. Epps
- University of Delaware, Department of Chemical Engineering, 150, Academy Street, Newark, DE 19716, USA
| | - Ian Portman
- University of Warwick, Department of Life Sciences, Electron Microscopy, Facility Coventry, CV4 7AL, United Kingdom
| | - Neil R. Wilson
- University of Warwick, Department of Physics, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom. Fax: +0247 652 4112; Tel: +0247 652 3236
| | - Rachel K. O'Reilly
- University of Warwick, Department of Chemistry, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom. Fax: +0247 652 4112; Tel: +0247 652 3236
| |
Collapse
|
33
|
O'Reilly RK. Self-Assembled Nanoparticles. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Maddikeri RR, Colak S, Gido SP, Tew GN. Zwitterionic Polymersomes in an Ionic Liquid: Room Temperature TEM Characterization. Biomacromolecules 2011; 12:3412-7. [DOI: 10.1021/bm2010142] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Raghavendra R. Maddikeri
- Department
of Polymer Science and Engineering, University of Massachusetts—Amherst, Conte Research
Center for Polymers, 120 Governors Drive, Amherst, Massachusetts 01003,
United States
| | - Semra Colak
- Department
of Polymer Science and Engineering, University of Massachusetts—Amherst, Conte Research
Center for Polymers, 120 Governors Drive, Amherst, Massachusetts 01003,
United States
| | - Samuel P. Gido
- Department
of Polymer Science and Engineering, University of Massachusetts—Amherst, Conte Research
Center for Polymers, 120 Governors Drive, Amherst, Massachusetts 01003,
United States
| | - Gregory N. Tew
- Department
of Polymer Science and Engineering, University of Massachusetts—Amherst, Conte Research
Center for Polymers, 120 Governors Drive, Amherst, Massachusetts 01003,
United States
| |
Collapse
|
35
|
Gallyamov MO. Scanning Force Microscopy as Applied to Conformational Studies in Macromolecular Research. Macromol Rapid Commun 2011; 32:1210-46. [DOI: 10.1002/marc.201100150] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/06/2011] [Indexed: 01/17/2023]
|
36
|
|