1
|
Vuong TT, Cazzaniga FA, Tran L, Våge J, Di Bari M, Pirisinu L, D'Agostino C, Nonno R, Moda F, Benestad SL. Prions in Muscles of Cervids with Chronic Wasting Disease, Norway. Emerg Infect Dis 2025; 31:246-255. [PMID: 39983705 PMCID: PMC11845164 DOI: 10.3201/eid3102.240903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025] Open
Abstract
Chronic wasting disease (CWD) is an emerging prion disease in Nordic countries and has been detected in reindeer, moose, and red deer since 2016. CWD sporadically detected in moose and red deer in 3 Nordic countries demonstrated pathologic and strain characteristics different from CWD in reindeer, including an unexpected lack of prions outside the central nervous system as measured by standard diagnostic tests. Using protein misfolding cyclic amplification, we detected prions in the lymphoreticular system of moose and red deer with CWD in Norway and, remarkably, in muscles of both of those species and in CWD-infected reindeer. One moose lymph node and 1 moose muscle sample showed infectivity when experimentally transmitted to bank voles. Our findings highlight the systemic nature of CWD strains in Europe and raise questions regarding the risk of human exposure through edible tissues.
Collapse
|
2
|
Ernst S, Piestrzyńska-Kajtoch A, Gethmann J, Natonek-Wiśniewska M, Sadeghi B, Polak MP, Keller M, Gavier-Widén D, Moazami-Goudarzi K, Houston F, Groschup MH, Fast C. Prion protein gene (PRNP) variation in German and Danish cervids. Vet Res 2024; 55:98. [PMID: 39095901 PMCID: PMC11297704 DOI: 10.1186/s13567-024-01340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/31/2024] [Indexed: 08/04/2024] Open
Abstract
The structure of cellular prion proteins encoded by the prion protein gene (PRNP) impacts susceptibility to transmissible spongiform encephalopathies, including chronic wasting disease (CWD) in deer. The recent emergence of CWD in Northern European reindeer (Rangifer tarandus), moose (Alces alces alces) and red deer (Cervus elaphus), in parallel with the outbreak in North America, gives reason to investigate PRNP variation in European deer, to implement risk assessments and adjust CWD management for deer populations under threat. We here report PRNP-sequence data from 911 samples of German red, roe (Capreolus capreolus), sika (Cervus nippon) and fallow deer (Dama dama) as well as additional data from 26 Danish red deer close to the German border and four zoo species not native to Germany. No PRNP sequence variation was observed in roe and fallow deer, as previously described for populations across Europe. In contrast, a broad PRNP variation was detected in red deer, with non-synonymous polymorphisms at codons 98, 226 and 247 as well as synonymous mutations at codons 21, 78, 136 and 185. Moreover, a novel 24 bp deletion within the octapeptide repeat was detected. In summary, 14 genotypes were seen in red deer with significant differences in their geographical distribution and frequencies, including geographical clustering of certain genotypes, suggesting "PRNP-linages" in this species. Based on data from North American CWD and the genotyping results of the European CWD cases, we would predict that large proportions of wild cervids in Europe might be susceptible to CWD once introduced to naive populations.
Collapse
Affiliation(s)
- Sonja Ernst
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | | | - Jörn Gethmann
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | | | - Balal Sadeghi
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | - Miroslaw P Polak
- Department of Virology, National Veterinary Research Institute, Pulawy, Poland
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | | | | | - Fiona Houston
- Division of Immunology, The Roslin Institute, Royal Dick School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany.
| |
Collapse
|
3
|
Baron JN, Mysterud A, Hopp P, Rosendal T, Frössling J, Benestad SL, Våge J, Nöremark M, Viljugrein H. Assessing freedom from chronic wasting disease in semi-domesticated reindeer in Norway and Sweden. Prev Vet Med 2024; 229:106242. [PMID: 38924869 DOI: 10.1016/j.prevetmed.2024.106242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024]
Abstract
Establishing freedom from disease is a key component of surveillance and may have direct consequences for trade and economy. Transboundary populations pose challenges in terms of variable legislation, efforts, and data availability between countries, often limiting surveillance efficiency. Chronic wasting disease (CWD) is a contagious prion disease of cervids. The long incubation period and slow initial epidemic growth make it notoriously difficult to detect CWD in the early phase of an epidemic. The recent emergence of CWD in wild reindeer in Norway poses a threat to approximately 250,000 semi-domesticated reindeer in Norway and 250,000 in Sweden, including transboundary populations. Here, we provide a first analysis of surveillance data (2016-2022) from all reindeer districts in Norway and Sweden to determine the probability of freedom from CWD infection. During the six years, 6017 semi-domesticated reindeer were tested in Sweden and 51,974 in Norway. Most samples came from healthy slaughtered animals (low risk). Reindeer use large and remote areas and (high risk) samples from fallen stock and animals with clinical signs were difficult to obtain. A scenario tree model was run for seven different set of values for the input parameters (design prevalence within and between districts, probability of introduction, and relative risks) to determine the effect on surveillance sensitivity. At the national level, the mean probability of disease freedom was 59.0 % in Sweden and 87.0 % in Norway by 2021. The most marked effect on sensitivity was varying the design prevalence both within and between districts. Uncertainty about relative risk ratios affected sensitivity for Sweden more than for Norway, due to the higher proportion of animals in the high-risk group in the former (13.8 % vs. 2.1 %, respectively). A probability of disease freedom of 90 % or higher was reached in 8.2 % of the 49 districts in Sweden and 43.5 % of the 46 districts in Norway for a design prevalence of 0.5 %. The probability of freedom remained below 60 % in 29 districts (59.2 %) in Sweden and 10 districts (21.7 %) in Norway. At the national level, only Norway had a sufficiently large number of samples to reach a probability of more than 95 % of disease freedom within a period of 10 years. Our cross-border assessment forms an important knowledge base for designing future surveillance efforts depending on the spatial pattern of prevalence of CWD and risk of spread.
Collapse
Affiliation(s)
- Jerome N Baron
- Department of Epidemiology, Surveillance and Risk Assessment, Swedish Veterinary Agency (SVA), Uppsala SE-751 89, Sweden
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, Oslo NO-0316, Norway; Norwegian Institute for Nature Research, Trondheim NO-7485, Norway
| | - Petter Hopp
- Norwegian Veterinary Institute (NVI), P.O. Box 64, Ås NO-1431, Norway
| | - Thomas Rosendal
- Department of Epidemiology, Surveillance and Risk Assessment, Swedish Veterinary Agency (SVA), Uppsala SE-751 89, Sweden
| | - Jenny Frössling
- Department of Epidemiology, Surveillance and Risk Assessment, Swedish Veterinary Agency (SVA), Uppsala SE-751 89, Sweden; Department of Animal Environment and Health, Swedish University of Agricultural Sciences, PO Box 234, Skara SE-532 23, Sweden
| | - Sylvie L Benestad
- Norwegian Veterinary Institute (NVI), P.O. Box 64, Ås NO-1431, Norway
| | - Jørn Våge
- Norwegian Veterinary Institute (NVI), P.O. Box 64, Ås NO-1431, Norway
| | - Maria Nöremark
- Department of Epidemiology, Surveillance and Risk Assessment, Swedish Veterinary Agency (SVA), Uppsala SE-751 89, Sweden.
| | | |
Collapse
|
4
|
Harpaz E, Cazzaniga FA, Tran L, Vuong TT, Bufano G, Salvesen Ø, Gravdal M, Aldaz D, Sun J, Kim S, Celauro L, Legname G, Telling GC, Tranulis MA, Benestad SL, Espenes A, Moda F, Ersdal C. Transmission of Norwegian reindeer CWD to sheep by intracerebral inoculation results in an unusual phenotype and prion distribution. Vet Res 2024; 55:94. [PMID: 39075607 PMCID: PMC11285437 DOI: 10.1186/s13567-024-01350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Chronic wasting disease (CWD), a prion disease affecting cervids, has been known in North America (NA) since the 1960s and emerged in Norway in 2016. Surveillance and studies have revealed that there are different forms of CWD in Fennoscandia: contagious CWD in Norwegian reindeer and sporadic CWD in moose and red deer. Experimental studies have demonstrated that NA CWD prions can infect various species, but thus far, there have been no reports of natural transmission to non-cervid species. In vitro and laboratory animal studies of the Norwegian CWD strains suggest that these strains are different from the NA strains. In this work, we describe the intracerebral transmission of reindeer CWD to six scrapie-susceptible sheep. Detection methods included immunohistochemistry (IHC), western blot (WB), enzyme-linked immunosorbent assay (ELISA), real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA). In the brain, grey matter vacuolation was limited, while all sheep exhibited vacuolation of the white matter. IHC and WB conventional detection techniques failed to detect prions; however, positive seeding activity with the RT-QuIC and PMCA amplification techniques was observed in the central nervous system of all but one sheep. Prions were robustly amplified in the lymph nodes of all animals, mainly by RT-QuIC. Additionally, two lymph nodes were positive by WB, and one was positive by ELISA. These findings suggest that sheep can propagate reindeer CWD prions after intracerebral inoculation, resulting in an unusual disease phenotype and prion distribution with a low amount of detectable prions.
Collapse
Affiliation(s)
- Erez Harpaz
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
| | - Federico Angelo Cazzaniga
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Linh Tran
- Section for Biohazard and Pathology, Norwegian Veterinary Institute, Ås, Norway
| | - Tram T Vuong
- Section for Biohazard and Pathology, Norwegian Veterinary Institute, Ås, Norway
| | - Giuseppe Bufano
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Øyvind Salvesen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
- Åkerblå AS, Haugesund, Norway
| | - Maiken Gravdal
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
| | - Devin Aldaz
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Julianna Sun
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Sehun Kim
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Luigi Celauro
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Glenn C Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Michael A Tranulis
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Sylvie L Benestad
- Section for Biohazard and Pathology, Norwegian Veterinary Institute, Ås, Norway
| | - Arild Espenes
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Fabio Moda
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cecilie Ersdal
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway.
| |
Collapse
|
5
|
Arifin MI, Hannaoui S, Ng RA, Zeng D, Zemlyankina I, Ahmed-Hassan H, Schatzl HM, Kaczmarczyk L, Jackson WS, Benestad SL, Gilch S. Norwegian moose CWD induces clinical disease and neuroinvasion in gene-targeted mice expressing cervid S138N prion protein. PLoS Pathog 2024; 20:e1012350. [PMID: 38950080 PMCID: PMC11244775 DOI: 10.1371/journal.ppat.1012350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/12/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting deer, elk and moose in North America and reindeer, moose and red deer in Northern Europe. Pathogenesis is driven by the accumulation of PrPSc, a pathological form of the host's cellular prion protein (PrPC), in the brain. CWD is contagious among North American cervids and Norwegian reindeer, with prions commonly found in lymphatic tissue. In Nordic moose and red deer CWD appears exclusively in older animals, and prions are confined to the CNS and undetectable in lymphatic tissues, indicating a sporadic origin. We aimed to determine transmissibility, neuroinvasion and lymphotropism of Nordic CWD isolates using gene-targeted mice expressing either wild-type (138SS/226QQ) or S138N (138NN/226QQ) deer PrP. When challenged with North American CWD strains, mice expressing S138N PrP did not develop clinical disease but harbored prion seeding activity in brain and spleen. Here, we infected these models intracerebrally or intraperitoneally with Norwegian moose, red deer and reindeer CWD isolates. The moose isolate was the first CWD type to cause full-blown disease in the 138NN/226QQ model in the first passage, with 100% attack rate and shortened survival times upon second passage. Furthermore, we detected prion seeding activity or PrPSc in brains and spinal cords, but not spleens, of 138NN/226QQ mice inoculated intraperitoneally with the moose isolate, providing evidence of prion neuroinvasion. We also demonstrate, for the first time, that transmissibility of the red deer CWD isolate was restricted to transgenic mice overexpressing elk PrPC (138SS/226EE), identical to the PrP primary structure of the inoculum. Our findings highlight that susceptibility to clinical disease is determined by the conformational compatibility between prion inoculum and host PrP primary structure. Our study indicates that neuroinvasion of Norwegian moose prions can occur without, or only very limited, replication in the spleen, an unprecedented finding for CWD.
Collapse
Affiliation(s)
| | - Samia Hannaoui
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Raychal Ashlyn Ng
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Doris Zeng
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Irina Zemlyankina
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Hanaa Ahmed-Hassan
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Zoonoses Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hermann M. Schatzl
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | | | | | | | - Sabine Gilch
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
6
|
Kvalnes T, Flagstad Ø, Våge J, Strand O, Viljugrein H, Sæther B. Harvest and decimation affect genetic drift and the effective population size in wild reindeer. Evol Appl 2024; 17:e13684. [PMID: 38617828 PMCID: PMC11009432 DOI: 10.1111/eva.13684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024] Open
Abstract
Harvesting and culling are methods used to monitor and manage wildlife diseases. An important consequence of these practices is a change in the genetic dynamics of affected populations that may threaten their long-term viability. The effective population size (N e) is a fundamental parameter for describing such changes as it determines the amount of genetic drift in a population. Here, we estimate N e of a harvested wild reindeer population in Norway. Then we use simulations to investigate the genetic consequences of management efforts for handling a recent spread of chronic wasting disease, including increased adult male harvest and population decimation. The N e/N ratio in this population was found to be 0.124 at the end of the study period, compared to 0.239 in the preceding 14 years period. The difference was caused by increased harvest rates with a high proportion of adult males (older than 2.5 years) being shot (15.2% in 2005-2018 and 44.8% in 2021). Increased harvest rates decreased N e in the simulations, but less sex biased harvest strategies had a lower negative impact. For harvest strategies that yield stable population dynamics, shifting the harvest from calves to adult males and females increased N e. Population decimation always resulted in decreased genetic variation in the population, with higher loss of heterozygosity and rare alleles with more severe decimation or longer periods of low population size. A very high proportion of males in the harvest had the most severe consequences for the loss of genetic variation. This study clearly shows how the effects of harvest strategies and changes in population size interact to determine the genetic drift of a managed population. The long-term genetic viability of wildlife populations subject to a disease will also depend on population impacts of the disease and how these interact with management actions.
Collapse
Affiliation(s)
- Thomas Kvalnes
- Norwegian Institute for Nature Research (NINA)TrondheimNorway
- Centre for Biodiversity Dynamics (CBD), Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | | | - Jørn Våge
- Norwegian Veterinary InstituteÅsNorway
| | - Olav Strand
- Norwegian Institute for Nature Research (NINA)TrondheimNorway
| | | | - Bernt‐Erik Sæther
- Centre for Biodiversity Dynamics (CBD), Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Gjærevoll Center for Biodiversity Foresight AnalysesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
7
|
Pereira JC, Gonçalves-Anjo N, Orge L, Pires MA, Rocha S, Figueira L, Matos AC, Silva J, Mendonça P, Carvalho P, Tavares P, Lima C, Alves A, Esteves A, Pinto ML, Pires I, Gama A, Sargo R, Silva F, Seixas F, Vieira-Pinto M, Bastos E. Estimating sequence diversity of prion protein gene ( PRNP) in Portuguese populations of two cervid species: red deer and fallow deer. Prion 2023; 17:75-81. [PMID: 36945178 PMCID: PMC10038017 DOI: 10.1080/19336896.2023.2191540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Among the transmissible spongiform encephalopathies (TSEs), chronic wasting disease (CWD) in cervids is now a rising concern in wildlife within Europe, after the detection of the first case in Norway in 2016, in a wild reindeer and until June 2022 a total of 34 cases were described in Norway, Sweden and Finland. The definite diagnosis is post-mortem, performed in target areas of the brain and lymph nodes. Samples are first screened using a rapid test and, if positive, confirmed by immunohistochemistry and Western immunoblotting. The study of the genetics of the prion protein gene, PRNP, has been proved to be a valuable tool for determining the relative susceptibility to TSEs. In the present study, the exon 3 of PRNP gene of 143 samples from red deer (Cervus elaphus) and fallow deer (Dama dama) of Portugal was analysed. Three single nucleotide polymorphisms (SNPs) were found in red deer - codon A136A, codon T98A, codon Q226E - and no sequence variation was detected in fallow deer. The low genetic diversity found in our samples is compatible with previous studies in Europe. The comparison with results from North America suggests that the free-ranging deer from our study may present susceptibility to CWD, although lack of experimental data and the necessity of continuous survey are necessary to evaluate these populations.
Collapse
Affiliation(s)
- Jorge C Pereira
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Nuno Gonçalves-Anjo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Leonor Orge
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Maria A Pires
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Sara Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Luís Figueira
- Polytechnic Institute of Castelo Branco (IPCB), Castelo Branco, Portugal
| | - Ana C Matos
- Polytechnic Institute of Castelo Branco (IPCB), Castelo Branco, Portugal
| | - João Silva
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Paula Mendonça
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Paulo Carvalho
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Paula Tavares
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Carla Lima
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Anabela Alves
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | | | - Maria L Pinto
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Isabel Pires
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Adelina Gama
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Roberto Sargo
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Filipe Silva
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | | | - Estela Bastos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
8
|
Harpaz E, Vuong TT, Tran L, Tranulis MA, Benestad SL, Ersdal C. Inter- and intra-species conversion efficacies of Norwegian prion isolates estimated by serial protein misfolding cyclic amplification. Vet Res 2023; 54:84. [PMID: 37773068 PMCID: PMC10542671 DOI: 10.1186/s13567-023-01220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
Prion diseases, including chronic wasting disease (CWD) in cervids, are fatal neurodegenerative disorders caused by the misfolding of cellular prion proteins. CWD is known to spread among captive and free-ranging deer in North America. In 2016, an outbreak of contagious CWD was detected among wild reindeer in Norway, marking the first occurrence of the disease in Europe. Additionally, new sporadic forms of CWD have been discovered in red deer in Norway and moose in Fennoscandia. We used serial protein misfolding cyclic amplification to study the ability of Norwegian prion isolates from reindeer, red deer, and moose (two isolates), as well as experimental classical scrapie from sheep, to convert a panel of 16 brain homogenates (substrates) from six different species with various prion protein genotypes. The reindeer CWD isolate successfully converted substrates from all species except goats. The red deer isolate failed to convert sheep and goat substrates but exhibited amplification in all cervid substrates. The two moose isolates demonstrated lower conversion efficacies. The wild type isolate propagated in all moose substrates and in the wild type red deer substrate, while the other isolate only converted two of the moose substrates. The experimental classical scrapie isolate was successfully propagated in substrates from all species tested. Thus, reindeer CWD and classical sheep scrapie isolates were similarly propagated in substrates from different species, suggesting the potential for spillover of these contagious diseases. Furthermore, the roe deer substrate supported conversion of three isolates suggesting that this species may be vulnerable to prion disease.
Collapse
Affiliation(s)
- Erez Harpaz
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien 112, 4325, Sandnes, Norway
| | - Tram Thu Vuong
- Department of Biohazard and Pathology, Norwegian Veterinary Institute, P.O. box 64, 1431, Ås, Norway
| | - Linh Tran
- Department of Biohazard and Pathology, Norwegian Veterinary Institute, P.O. box 64, 1431, Ås, Norway
| | - Michael Andreas Tranulis
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Universitetstunet 3, 1433, Ås, Norway
| | - Sylvie L Benestad
- Department of Biohazard and Pathology, Norwegian Veterinary Institute, P.O. box 64, 1431, Ås, Norway
| | - Cecilie Ersdal
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien 112, 4325, Sandnes, Norway.
| |
Collapse
|
9
|
Sola D, Tran L, Våge J, Madslien K, Vuong TT, Korpenfelt SL, Ågren EO, Averhed G, Nöremark M, Sörén K, Isaksson M, Acín C, Badiola JJ, Gavier-Widén D, Benestad SL. Heterogeneity of pathological prion protein accumulation in the brain of moose (Alces alces) from Norway, Sweden and Finland with chronic wasting disease. Vet Res 2023; 54:74. [PMID: 37684668 PMCID: PMC10492377 DOI: 10.1186/s13567-023-01208-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/27/2023] [Indexed: 09/10/2023] Open
Abstract
Prion diseases are a group of neurodegenerative, transmissible, and fatal disorders that affect several animal species. They are characterized by the conformational conversion of the cellular prion protein (PrPC) into the pathological prion protein (PrPSc). In 2016, chronic wasting disease (CWD) gained great importance at European level due to the first disease detection in a wild reindeer (Rangifer tarandus) in Norway. The subsequent intensive CWD surveillance launched in cervids resulted in the detection of CWD in moose (Alces alces), with 11 cases in Norway, 3 in Finland and 4 in Sweden. These moose cases differ considerably from CWD cases in North American and reindeer in Norway, as PrPSc was detectable in the brain but not in lymphoid tissues. These facts suggest the occurrence of a new type of CWD. Here, we show some immunohistochemical features that are clearly different from CWD cases in North American and Norwegian reindeer. Further, the different types of PrPSc deposits found among moose demonstrate strong variations between the cases, supporting the postulation that these cases could carry multiple strains of CWD.
Collapse
Affiliation(s)
- Diego Sola
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain.
| | - Linh Tran
- WOAH Reference Laboratory for CWD (SLB), Norwegian Veterinary Institute (NVI), Postboks 64, 1431, Ås, Ås, Norway
| | - Jørn Våge
- WOAH Reference Laboratory for CWD (SLB), Norwegian Veterinary Institute (NVI), Postboks 64, 1431, Ås, Ås, Norway
| | - Knut Madslien
- WOAH Reference Laboratory for CWD (SLB), Norwegian Veterinary Institute (NVI), Postboks 64, 1431, Ås, Ås, Norway
| | - Tram T Vuong
- WOAH Reference Laboratory for CWD (SLB), Norwegian Veterinary Institute (NVI), Postboks 64, 1431, Ås, Ås, Norway
| | | | - Erik O Ågren
- National Veterinary Institute (SVA), 75189, Uppsala, Sweden
| | - Gustav Averhed
- National Veterinary Institute (SVA), 75189, Uppsala, Sweden
| | - Maria Nöremark
- National Veterinary Institute (SVA), 75189, Uppsala, Sweden
| | - Kaisa Sörén
- National Veterinary Institute (SVA), 75189, Uppsala, Sweden
| | - Mats Isaksson
- National Veterinary Institute (SVA), 75189, Uppsala, Sweden
| | - Cristina Acín
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain
| | - Juan José Badiola
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain
| | - Dolores Gavier-Widén
- National Veterinary Institute (SVA), 75189, Uppsala, Sweden
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, 75007, Uppsala, Sweden
| | - Sylvie L Benestad
- WOAH Reference Laboratory for CWD (SLB), Norwegian Veterinary Institute (NVI), Postboks 64, 1431, Ås, Ås, Norway
| |
Collapse
|
10
|
Mazza M, Tran L, Loprevite D, Cavarretta MC, Meloni D, Dell’Atti L, Våge J, Madslien K, Vuong TT, Bozzetta E, Benestad SL. Are rapid tests and confirmatory western blot used for cattle and small ruminants TSEs reliable tools for the diagnosis of Chronic Wasting Disease in Europe? PLoS One 2023; 18:e0286266. [PMID: 37647272 PMCID: PMC10468065 DOI: 10.1371/journal.pone.0286266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/12/2023] [Indexed: 09/01/2023] Open
Abstract
The first case of CWD in Europe was detected in a Norwegian reindeer in 2016, followed later by two CWD cases in Norwegian moose. To prevent the potential spread of CWD to the EU, the European Commission (Regulation EU 2017_1972) implemented a CWD surveillance programme in cervids in the six countries having reindeer and or moose (Estonia, Finland, Latvia, Lithuania, Poland, and Sweden). Each country had to test a minimum of 3000 cervids for CWD using diagnostic rapid tests approved by the EC Regulation. Experimental transmission studies in rodents have demonstrated that the CWD strains found in Norwegian reindeer are different from those found in moose and that these European strains are all different from the North American ones. Data on the performances of authorised rapid tests are limited for CWD (from North America) and are currently minimal for CWD from Europe, due to the paucity of positive material. The aim of this study was to evaluate the diagnostic performances of three of the so-called "rapid" tests, commercially available and approved for TSE diagnosis in cattle and small ruminants, to detect the CWD strains circulating in Europe. The performances of these three tests were also compared to two different confirmatory western blot methods. Using parallel testing on the same panel of available samples, we evaluated here the analytical sensitivity of these methods for TSE diagnosis of CWD in Norwegian cervids tissues. Our results show that all the methods applied were able to detect the CWD positive samples even if differences in analytical sensitivity were clearly observed. Although this study could not assess the test accuracy, due to the small number of samples available, it is conceivable that the rapid and confirmatory diagnostic systems applied for CWD surveillance in Northern Europe are reliable tools.
Collapse
Affiliation(s)
- Maria Mazza
- European Reference Laboratory for Transmissible Spongiform Encephalopathies - Italian Reference Laboratory for Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Linh Tran
- World Organisation for Animal Health (WOAH, founded as OIE) - Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, Oslo, Norway
| | - Daniela Loprevite
- European Reference Laboratory for Transmissible Spongiform Encephalopathies - Italian Reference Laboratory for Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Maria C. Cavarretta
- European Reference Laboratory for Transmissible Spongiform Encephalopathies - Italian Reference Laboratory for Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Daniela Meloni
- European Reference Laboratory for Transmissible Spongiform Encephalopathies - Italian Reference Laboratory for Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Luana Dell’Atti
- European Reference Laboratory for Transmissible Spongiform Encephalopathies - Italian Reference Laboratory for Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Jørn Våge
- World Organisation for Animal Health (WOAH, founded as OIE) - Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, Oslo, Norway
| | - Knut Madslien
- World Organisation for Animal Health (WOAH, founded as OIE) - Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, Oslo, Norway
| | - Tram T. Vuong
- World Organisation for Animal Health (WOAH, founded as OIE) - Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, Oslo, Norway
| | - Elena Bozzetta
- European Reference Laboratory for Transmissible Spongiform Encephalopathies - Italian Reference Laboratory for Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Sylvie L. Benestad
- World Organisation for Animal Health (WOAH, founded as OIE) - Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
11
|
Koutsoumanis K, Allende A, Alvarez‐Ordoñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Skandamis P, Suffredini E, Miller MW, Mysterud A, Nöremark M, Simmons M, Tranulis MA, Vaccari G, Viljugrein H, Ortiz‐Pelaez A, Ru G. Monitoring of chronic wasting disease (CWD) (IV). EFSA J 2023; 21:e07936. [PMID: 37077299 PMCID: PMC10107390 DOI: 10.2903/j.efsa.2023.7936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
The European Commission requested an analysis of the Chronic Wasting Disease (CWD) monitoring programme in Norway, Sweden, Finland, Iceland, Estonia, Latvia, Lithuania and Poland (9 January 2017-28 February 2022). Thirteen cases were detected in reindeer, 15 in moose and 3 in red deer. They showed two phenotypes, distinguished by the presence or absence of detectable disease-associated normal cellular prion protein (PrP) in lymphoreticular tissues. CWD was detected for the first time in Finland, Sweden and in other areas of Norway. In countries where the disease was not detected, the evidence was insufficient to rule out its presence altogether. Where cases were detected, the prevalence was below 1%. The data also suggest that the high-risk target groups for surveillance should be revised, and 'road kill' removed. Data show that, in addition to differences in age and sex, there are differences in the prion protein gene (PRNP) genotypes between positive and negative wild reindeer. A stepwise framework has been proposed with expanded minimum background surveillance to be implemented in European countries with relevant cervid species. Additional surveillance may include ad hoc surveys for four different objectives, specific to countries with/without cases, focusing on parallel testing of obex and lymph nodes from adult cervids in high-risk target groups, sustained over time, using sampling units and a data-driven design prevalence. Criteria for assessing the probability of CWD presence have been outlined, based on the definition of the geographical area, an annual assessment of risk of introduction, sustained minimum background surveillance, training and engagement of stakeholders and a surveillance programme based on data-driven parameters. All positive cases should be genotyped. Sample sizes for negative samples have been proposed to detect and estimate the frequency of PRNP polymorphisms. Double-strand sequencing of the entire PRNP open reading frame should be undertaken for all selected samples, with data collated in a centralised collection system at EU level.
Collapse
|
12
|
Tranulis MA, Tryland M. The Zoonotic Potential of Chronic Wasting Disease-A Review. Foods 2023; 12:foods12040824. [PMID: 36832899 PMCID: PMC9955994 DOI: 10.3390/foods12040824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Prion diseases are transmissible neurodegenerative disorders that affect humans and ruminant species consumed by humans. Ruminant prion diseases include bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep and goats and chronic wasting disease (CWD) in cervids. In 1996, prions causing BSE were identified as the cause of a new prion disease in humans; variant Creutzfeldt-Jakob disease (vCJD). This sparked a food safety crisis and unprecedented protective measures to reduce human exposure to livestock prions. CWD continues to spread in North America, and now affects free-ranging and/or farmed cervids in 30 US states and four Canadian provinces. The recent discovery in Europe of previously unrecognized CWD strains has further heightened concerns about CWD as a food pathogen. The escalating CWD prevalence in enzootic areas and its appearance in a new species (reindeer) and new geographical locations, increase human exposure and the risk of CWD strain adaptation to humans. No cases of human prion disease caused by CWD have been recorded, and most experimental data suggest that the zoonotic risk of CWD is very low. However, the understanding of these diseases is still incomplete (e.g., origin, transmission properties and ecology), suggesting that precautionary measures should be implemented to minimize human exposure.
Collapse
Affiliation(s)
- Michael A. Tranulis
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 5003 As, Norway
- Correspondence: ; Tel.: +47-67232040
| | - Morten Tryland
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, 2480 Koppang, Norway
| |
Collapse
|
13
|
Wadsworth JDF, Joiner S, Linehan JM, Jack K, Al-Doujaily H, Costa H, Ingold T, Taema M, Zhang F, Sandberg MK, Brandner S, Tran L, Vikøren T, Våge J, Madslien K, Ytrehus B, Benestad SL, Asante EA, Collinge J. Humanized Transgenic Mice Are Resistant to Chronic Wasting Disease Prions From Norwegian Reindeer and Moose. J Infect Dis 2022; 226:933-937. [PMID: 33502474 PMCID: PMC9470110 DOI: 10.1093/infdis/jiab033] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
Chronic wasting disease (CWD) is the transmissible spongiform encephalopathy or prion disease affecting cervids. In 2016, the first cases of CWD were reported in Europe in Norwegian wild reindeer and moose. The origin and zoonotic potential of these new prion isolates remain unknown. In this study to investigate zoonotic potential we inoculated brain tissue from CWD-infected Norwegian reindeer and moose into transgenic mice overexpressing human prion protein. After prolonged postinoculation survival periods no evidence for prion transmission was seen, suggesting that the zoonotic potential of these isolates is low.
Collapse
Affiliation(s)
- Jonathan D F Wadsworth
- Medical Research Council Prion Unit at University College London, University College London Institute of Prion Diseases, London, United Kingdom
| | - Susan Joiner
- Medical Research Council Prion Unit at University College London, University College London Institute of Prion Diseases, London, United Kingdom
| | - Jacqueline M Linehan
- Medical Research Council Prion Unit at University College London, University College London Institute of Prion Diseases, London, United Kingdom
| | - Kezia Jack
- Medical Research Council Prion Unit at University College London, University College London Institute of Prion Diseases, London, United Kingdom
| | - Huda Al-Doujaily
- Medical Research Council Prion Unit at University College London, University College London Institute of Prion Diseases, London, United Kingdom
| | - Helena Costa
- Medical Research Council Prion Unit at University College London, University College London Institute of Prion Diseases, London, United Kingdom
| | - Thea Ingold
- Medical Research Council Prion Unit at University College London, University College London Institute of Prion Diseases, London, United Kingdom
| | - Maged Taema
- Medical Research Council Prion Unit at University College London, University College London Institute of Prion Diseases, London, United Kingdom
| | - Fuquan Zhang
- Medical Research Council Prion Unit at University College London, University College London Institute of Prion Diseases, London, United Kingdom
| | - Malin K Sandberg
- Medical Research Council Prion Unit at University College London, University College London Institute of Prion Diseases, London, United Kingdom
| | - Sebastian Brandner
- Medical Research Council Prion Unit at University College London, University College London Institute of Prion Diseases, London, United Kingdom
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology and Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London National Health Service Foundation Trust, London, United Kingdom
| | - Linh Tran
- Norwegian Veterinary Institute, Oslo, Norway
| | | | - Jørn Våge
- Norwegian Veterinary Institute, Oslo, Norway
| | | | | | | | - Emmanuel A Asante
- Medical Research Council Prion Unit at University College London, University College London Institute of Prion Diseases, London, United Kingdom
| | - John Collinge
- Medical Research Council Prion Unit at University College London, University College London Institute of Prion Diseases, London, United Kingdom
| |
Collapse
|
14
|
London EW, Roca AL, Novakofski JE, Mateus-Pinilla NE. A De Novo Chromosome-Level Genome Assembly of the White-Tailed Deer, Odocoileus Virginianus. J Hered 2022; 113:479-489. [PMID: 35511871 PMCID: PMC9308042 DOI: 10.1093/jhered/esac022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Abstract
Cervids are distinguished by the shedding and regrowth of antlers. Furthermore, they provide insights into prion and other diseases. Genomic resources can facilitate studies of the genetic underpinnings of deer phenotypes, behavior, and disease resistance. Widely distributed in North America, the white-tailed deer (Odocoileus virginianus) has recreational, commercial, and food source value for many households. We present a genome generated using DNA from a single Illinois white-tailed sequenced on the PacBio Sequel II platform and assembled using Wtdbg2. Omni-C chromatin conformation capture sequencing was used to scaffold the genome contigs. The final assembly was 2.42 Gb, consisting of 508 scaffolds with a contig N50 of 21.7 Mb, a scaffold N50 of 52.4 Mb, and a BUSCO complete score of 93.1%. Thirty-six chromosome pseudomolecules comprised 93% of the entire sequenced genome length. A total of 20 651 predicted genes using the BRAKER pipeline were validated using InterProScan. Chromosome length assembly sequences were aligned to the genomes of related species to reveal corresponding chromosomes.
Collapse
Affiliation(s)
- Evan W London
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alfred L Roca
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jan E Novakofski
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nohra E Mateus-Pinilla
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
15
|
Kroll F, Dimitriadis A, Campbell T, Darwent L, Collinge J, Mead S, Vire E. Prion protein gene mutation detection using long-read Nanopore sequencing. Sci Rep 2022; 12:8284. [PMID: 35585119 PMCID: PMC9117325 DOI: 10.1038/s41598-022-12130-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/05/2022] [Indexed: 01/04/2023] Open
Abstract
Prion diseases are fatal neurodegenerative conditions that affect humans and animals. Rapid and accurate sequencing of the prion gene PRNP is paramount to human prion disease diagnosis and for animal surveillance programmes. Current methods for PRNP genotyping involve sequencing of small fragments within the protein-coding region. The contribution of variants in the non-coding regions of PRNP including large structural changes is poorly understood. Here, we used long-range PCR and Nanopore sequencing to sequence the full length of PRNP, including its regulatory region, in 25 samples from blood and brain of individuals with inherited or sporadic prion diseases. Nanopore sequencing detected the same variants as identified by Sanger sequencing, including repeat expansions/deletions. Nanopore identified additional single-nucleotide variants in the non-coding regions of PRNP, but no novel structural variants were discovered. Finally, we explored somatic mosaicism of PRNP's octapeptide repeat region, which is a hypothetical cause of sporadic prion disease. While we found changes consistent with somatic mutations, we demonstrate that they may have been generated by the PCR. Our study illustrates the accuracy of Nanopore sequencing for rapid and field prion disease diagnosis and highlights the need for single-molecule sequencing methods for the detection of somatic mutations.
Collapse
Affiliation(s)
- François Kroll
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| | - Athanasios Dimitriadis
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| | - Tracy Campbell
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| | - Lee Darwent
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| | - John Collinge
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| | - Simon Mead
- MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF, UK.
| | - Emmanuelle Vire
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| |
Collapse
|
16
|
Kurbakov KA, Konorov EA, Semina MT, Stolpovsky YA. Distribution of Alleles of PRNP Gene Associated with Chronic Wasting Disease in Wild and Domesticated Reindeer Rangifer tarandus in Russia. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Tranulis MA, Gavier-Widén D, Våge J, Nöremark M, Korpenfelt SL, Hautaniemi M, Pirisinu L, Nonno R, Benestad SL. Chronic wasting disease in Europe: new strains on the horizon. Acta Vet Scand 2021; 63:48. [PMID: 34823556 PMCID: PMC8613970 DOI: 10.1186/s13028-021-00606-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/30/2021] [Indexed: 01/05/2023] Open
Abstract
Prion diseases are fatal neurodegenerative disorders with known natural occurrence in humans and a few other mammalian species. The diseases are experimentally transmissible, and the agent is derived from the host-encoded cellular prion protein (PrPC), which is misfolded into a pathogenic conformer, designated PrPSc (scrapie). Aggregates of PrPSc molecules, constitute proteinaceous infectious particles, known as prions. Classical scrapie in sheep and goats and chronic wasting disease (CWD) in cervids are known to be infectious under natural conditions. In CWD, infected animals can shed prions via bodily excretions, allowing direct host-to-host transmission or indirectly via prion-contaminated environments. The robustness of prions means that transmission via the latter route can be highly successful and has meant that limiting the spread of CWD has proven difficult. In 2016, CWD was diagnosed for the first time in Europe, in reindeer (Rangifer tarandus) and European moose (Alces alces). Both were diagnosed in Norway, and, subsequently, more cases were detected in a semi-isolated wild reindeer population in the Nordfjella area, in which the first case was identified. This population was culled, and all reindeer (approximately 2400) were tested for CWD; 18 positive animals, in addition to the first diagnosed case, were found. After two years and around 25,900 negative tests from reindeer (about 6500 from wild and 19,400 from semi-domesticated) in Norway, a new case was diagnosed in a wild reindeer buck on Hardangervidda, south of the Nordfjella area, in 2020. Further cases of CWD were also identified in moose, with a total of eight in Norway, four in Sweden, and two cases in Finland. The mean age of these cases is 14.7 years, and the pathological features are different from North American CWD and from the Norwegian reindeer cases, resembling atypical prion diseases such as Nor98/atypical scrapie and H- and L-forms of BSE. In this review, these moose cases are referred to as atypical CWD. In addition, two cases were diagnosed in red deer (Cervus elaphus) in Norway. The emergence of CWD in Europe is a threat to European cervid populations, and, potentially, a food-safety challenge, calling for a swift, evidence-based response. Here, we review data on surveillance, epidemiology, and disease characteristics, including prion strain features of the newly identified European CWD agents.
Collapse
|
18
|
Moazami-Goudarzi K, Andréoletti O, Vilotte JL, Béringue V. Review on PRNP genetics and susceptibility to chronic wasting disease of Cervidae. Vet Res 2021; 52:128. [PMID: 34620247 PMCID: PMC8499490 DOI: 10.1186/s13567-021-00993-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
To date, chronic wasting disease (CWD) is the most infectious form of prion disease affecting several captive, free ranging and wild cervid species. Responsible for marked population declines in North America, its geographical spread is now becoming a major concern in Europe. Polymorphisms in the prion protein gene (PRNP) are an important factor influencing the susceptibility to prions and their rate of propagation. All reported cervid PRNP genotypes are affected by CWD. However, in each species, some polymorphisms are associated with lower attack rates and slower progression of the disease. This has potential consequences in terms of genetic selection, CWD diffusion and strain evolution. CWD also presents a zoonotic risk due to prions capacity to cross species barriers. This review summarizes our current understanding of CWD control, focusing on PRNP genetic, strain diversity and capacity to infect other animal species, including humans.
Collapse
Affiliation(s)
| | - Olivier Andréoletti
- UMR INRAE ENVT 1225 - IHAP, École Nationale Vétérinaire de Toulouse, 31076, Toulouse, France
| | - Jean-Luc Vilotte
- University Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Vincent Béringue
- University Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| |
Collapse
|
19
|
Viljugrein H, Hopp P, Benestad SL, Våge J, Mysterud A. Risk-based surveillance of chronic wasting disease in semi-domestic reindeer. Prev Vet Med 2021; 196:105497. [PMID: 34564054 DOI: 10.1016/j.prevetmed.2021.105497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/27/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Reindeer pastoralism is a widespread practise across Fennoscandia and Russia. An outbreak of chronic wasting disease (CWD) among wild reindeer (Rangifer tarandus) poses a severe threat to the semi-domestic reindeer herding culture. Establishing surveillance is therefore key, but current models for surveillance of CWD are designed for wild cervids and rely on samples obtained from recreational hunters. Targeting animal groups with a higher infection probability is often used for more efficient disease surveillance. CWD has a long incubation period of 2-3 years, and the animals show clinical signs in the later stages of the infection i.e. 1-4 months prior to death. The semi-domestic reindeer are free-ranging most of the year, but during slaughtering in late fall, herders stress the animals in penned areas. This allows removal of animals with deviant behaviour or physical appearance, and such removals are likely to include animals in the clinical stages of CWD if the population is infected. In Norway, the semi-domestic reindeer in Filefjell is adjacent to a previously CWD infected wild population. We developed a risk-based surveillance method for this semi-domestic setting to establish the probability of freedom from infection over time, or enable early disease detection and mitigation. The surveillance scheme with a scenario tree using three risk categories (sample category, demographic group, and deviations in behaviour or physical appearance) was more effective and less invasive as compared to the surveillance method developed for wild reindeer. We also simulated how variation in susceptibility, incubation period and time for onset of clinical signs (linked to variation in the prion protein gene, PRNP) would potentially affect surveillance. Surveillance for CWD was mandatory within EU-member states with reindeer (2018-2020). The diversity of management systems and epidemiological settings will require the development of a set of surveillance systems suitable for each different context. Our surveillance model is designed for a population with a high risk of CWD introduction requiring massive sampling, while at the same time aiming to limit adverse effects to the populations in areas of surveillance.
Collapse
Affiliation(s)
- Hildegunn Viljugrein
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431, Ås, Norway; Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316, Oslo, Norway.
| | - Petter Hopp
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431, Ås, Norway
| | | | - Jørn Våge
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431, Ås, Norway
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316, Oslo, Norway; Norwegian Institute for Nature Research (NINA), P. O. Box 5685, Sluppen, NO-7485, Trondheim, Norway
| |
Collapse
|
20
|
Güere ME, Våge J, Tharaldsen H, Kvie KS, Bårdsen BJ, Benestad SL, Vikøren T, Madslien K, Rolandsen CM, Tranulis MA, Røed KH. Chronic wasting disease in Norway-A survey of prion protein gene variation among cervids. Transbound Emerg Dis 2021; 69:e20-e31. [PMID: 34346562 DOI: 10.1111/tbed.14258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/29/2022]
Abstract
Susceptibility of cervids to Chronic Wasting Disease (CWD), a prion disease, can be modulated by variations in the prion protein gene (PRNP), encoding the cellular prion protein (PrPC ). In prion diseases, PrPC is conformationally converted to pathogenic conformers (PrPSc ), aggregates of which comprise infectious prions. CWD has recently been observed in its contagious form in Norwegian reindeer (Rangifer tarandus) and in novel, potentially sporadic forms, here called 'atypical CWD', in moose (Alces alces) and red deer (Cervus elaphus). To estimate relative susceptibility of different Norwegian cervid species to CWD, their non-synonymous PRNP variants were analyzed. In reindeer, seven PRNP alleles were observed and in red deer and moose two alleles were present, whereas roe deer (Capreolus capreolus) PRNP was monomorphic. One 'archetypal' PRNP allele associated with susceptibility was common to all four cervid species. The distribution of PRNP alleles differed between wild and semi-domesticated reindeer, with alleles associated with a high susceptibility occurring, on average, above 55% in wild reindeer and below 20% in semi-domesticated reindeer. This difference may reflect the diverse origins of the populations and/or selection processes during domestication and breeding. Overall, PRNP genetic data indicate considerable susceptibility to CWD among Norwegian cervids and suggest that PRNP homozygosity may be a risk factor for the atypical CWD observed in moose. The CWD isolates found in the Norwegian cervid species differ from those previously found in Canada and USA. Our study provides an overview of the PRNP genetics in populations exposed to these emerging strains that will provide a basis for understanding these strains' dynamics in relation to PRNP variability.
Collapse
Affiliation(s)
- Mariella Evelyn Güere
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Jørn Våge
- Norwegian Veterinary Institute, OIE Reference Laboratory for CWD, Ås, Norway
| | - Helene Tharaldsen
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Kjersti Sternang Kvie
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Bård-Jørgen Bårdsen
- Arctic Ecology Department, Fram Centre, Norwegian Institute for Nature Research, Tromsø, Norway
| | | | - Turid Vikøren
- Norwegian Veterinary Institute, OIE Reference Laboratory for CWD, Ås, Norway
| | - Knut Madslien
- Norwegian Veterinary Institute, OIE Reference Laboratory for CWD, Ås, Norway
| | - Christer Moe Rolandsen
- Terrestrial Ecology Department, Norwegian Institute for Nature Research, Trondheim, Norway
| | - Michael Andreas Tranulis
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Knut Håkon Røed
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
21
|
LaCava MEF, Malmberg JL, Edwards WH, Johnson LNL, Allen SE, Ernest HB. Spatio-temporal analyses reveal infectious disease-driven selection in a free-ranging ungulate. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210802. [PMID: 34430048 PMCID: PMC8355672 DOI: 10.1098/rsos.210802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/06/2021] [Indexed: 05/07/2023]
Abstract
Infectious diseases play an important role in wildlife population dynamics by altering individual fitness, but detecting disease-driven natural selection in free-ranging populations is difficult due to complex disease-host relationships. Chronic wasting disease (CWD) is a fatal infectious prion disease in cervids for which mutations in a single gene have been mechanistically linked to disease outcomes, providing a rare opportunity to study disease-driven selection in wildlife. In Wyoming, USA, CWD has gradually spread across mule deer (Odocoileus hemionus) populations, producing natural variation in disease history to evaluate selection pressure. We used spatial variation and a novel temporal comparison to investigate the relationship between CWD and a mutation at codon 225 of the mule deer prion protein gene that slows disease progression. We found that individuals with the 'slow' 225F allele were less likely to test positive for CWD, and the 225F allele was more common in herds exposed to CWD longer. We also found that in the past 2 decades, the 225F allele frequency increased more in herds with higher CWD prevalence. This study expanded on previous research by analysing spatio-temporal patterns of individual and herd-based disease data to present multiple lines of evidence for disease-driven selection in free-ranging wildlife.
Collapse
Affiliation(s)
- Melanie E. F. LaCava
- Wildlife Genomics and Disease Ecology Laboratory, Department of Veterinary Sciences, Program in Ecology, University of Wyoming, Laramie, WY 82071, USA
| | - Jennifer L. Malmberg
- Department of Veterinary Sciences, Wyoming State Veterinary Laboratory, University of Wyoming, Laramie, WY 82070, USA
| | - William H. Edwards
- Wyoming Game and Fish Department, Wildlife Health Laboratory, Laramie, WY 82070, USA
| | - Laura N. L. Johnson
- Wildlife Genomics and Disease Ecology Laboratory, Department of Veterinary Sciences, University of Wyoming, Laramie, WY 82071, USA
| | - Samantha E. Allen
- Wyoming Game and Fish Department, Department of Veterinary Sciences, University of Wyoming, Laramie, WY 82070, USA
| | - Holly B. Ernest
- Wildlife Genomics and Disease Ecology Laboratory, Department of Veterinary Sciences, Program in Ecology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
22
|
Bian J, Kim S, Kane SJ, Crowell J, Sun JL, Christiansen J, Saijo E, Moreno JA, DiLisio J, Burnett E, Pritzkow S, Gorski D, Soto C, Kreeger TJ, Balachandran A, Mitchell G, Miller MW, Nonno R, Vikøren T, Våge J, Madslien K, Tran L, Vuong TT, Benestad SL, Telling GC. Adaptive selection of a prion strain conformer corresponding to established North American CWD during propagation of novel emergent Norwegian strains in mice expressing elk or deer prion protein. PLoS Pathog 2021; 17:e1009748. [PMID: 34310663 PMCID: PMC8341702 DOI: 10.1371/journal.ppat.1009748] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/05/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Prions are infectious proteins causing fatal, transmissible neurodegenerative diseases of animals and humans. Replication involves template-directed refolding of host encoded prion protein, PrPC, by its infectious conformation, PrPSc. Following its discovery in captive Colorado deer in 1967, uncontrollable contagious transmission of chronic wasting disease (CWD) led to an expanded geographic range in increasing numbers of free-ranging and captive North American (NA) cervids. Some five decades later, detection of PrPSc in free-ranging Norwegian (NO) reindeer and moose marked the first indication of CWD in Europe. To assess the properties of these emergent NO prions and compare them with NA CWD we used transgenic (Tg) and gene targeted (Gt) mice expressing PrP with glutamine (Q) or glutamate (E) at residue 226, a variation in wild type cervid PrP which influences prion strain selection in NA deer and elk. Transmissions of NO moose and reindeer prions to Tg and Gt mice recapitulated the characteristic features of CWD in natural hosts, revealing novel prion strains with disease kinetics, neuropathological profiles, and capacities to infect lymphoid tissues and cultured cells that were distinct from those causing NA CWD. In support of strain variation, PrPSc conformers comprising emergent NO moose and reindeer CWD were subject to selective effects imposed by variation at residue 226 that were different from those controlling established NA CWD. Transmission of particular NO moose CWD prions in mice expressing E at 226 resulted in selection of a kinetically optimized conformer, subsequent transmission of which revealed properties consistent with NA CWD. These findings illustrate the potential for adaptive selection of strain conformers with improved fitness during propagation of unstable NO prions. Their potential for contagious transmission has implications for risk analyses and management of emergent European CWD. Finally, we found that Gt mice expressing physiologically controlled PrP levels recapitulated the lymphotropic properties of naturally occurring CWD strains resulting in improved susceptibilities to emergent NO reindeer prions compared with over-expressing Tg counterparts. These findings underscore the refined advantages of Gt models for exploring the mechanisms and impacts of strain selection in peripheral compartments during natural prion transmission. Prions cause fatal, transmissible neurodegenerative diseases in animals and humans. They are composed of an infectious, neurotoxic protein (PrP) which replicates by imposing pathogenic conformations on its normal, host-encoded counterpart. Chronic wasting disease (CWD) is a contagious prion disorder threatening increasing numbers of free-ranging and captive North American deer, elk, and moose. While CWD detection in Norwegian reindeer and moose in 2016 marked the advent of disease in Europe, its origins and relationship to North American CWD were initially unclear. Here we show, using mice engineered to express deer or elk PrP, that Norwegian reindeer and moose CWD are caused by novel prion strains with properties distinct from those of North American CWD. We found that selection and propagation of North American and Norwegian CWD strains was controlled by a key amino acid residue in host PrP. We also found that particular Norwegian isolates adapted during their propagation in mice to produce prions with characteristics of the North American strain. Our findings defining the transmission profiles of novel Norwegian prions and their unstable potential to produce adapted strains with improved fitness for contagious transmission have implications for risk analyses and management of emergent European CWD.
Collapse
Affiliation(s)
- Jifeng Bian
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sehun Kim
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sarah J. Kane
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jenna Crowell
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Julianna L. Sun
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeffrey Christiansen
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Eri Saijo
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Julie A. Moreno
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - James DiLisio
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Emily Burnett
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Damian Gorski
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Claudio Soto
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Terry J. Kreeger
- Wyoming Game and Fish Department, Wheatland, Wyoming, United States of America
| | - Aru Balachandran
- Canadian Food Inspection Agency, National and OIE Reference Laboratory for Scrapie and CWD, Ottawa, Canada
| | - Gordon Mitchell
- Canadian Food Inspection Agency, National and OIE Reference Laboratory for Scrapie and CWD, Ottawa, Canada
| | - Michael W. Miller
- Colorado Parks and Wildlife, Fort Collins, Colorado, United States of America
| | - Romolo Nonno
- Istituto Superiore di Sanità, Department of Veterinary Public Health, Nutrition and Food Safety, Rome, Italy
| | - Turid Vikøren
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Jørn Våge
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Knut Madslien
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Linh Tran
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Tram Thu Vuong
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Sylvie L. Benestad
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Glenn C. Telling
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
23
|
Haworth SE, Nituch L, Northrup JM, Shafer ABA. Characterizing the demographic history and prion protein variation to infer susceptibility to chronic wasting disease in a naïve population of white-tailed deer ( Odocoileus virginianus). Evol Appl 2021; 14:1528-1539. [PMID: 34178102 PMCID: PMC8210793 DOI: 10.1111/eva.13214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/12/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Assessments of the adaptive potential in natural populations are essential for understanding and predicting responses to environmental stressors like climate change and infectious disease. Species face a range of stressors in human-dominated landscapes, often with contrasting effects. White-tailed deer (Odocoileus virginianus; deer) are expanding in the northern part of their range following decreasing winter severity and increasing forage availability. Chronic wasting disease (CWD), a prion disease affecting deer, is likewise expanding and represents a major threat to deer and other cervids. We obtained tissue samples from free-ranging deer across their native range in Ontario, Canada, which has yet to detect CWD in wild populations. We used high-throughput sequencing to assess neutral genomic variation and variation in the prion protein gene (PRNP) that is partly responsible for the protein misfolding when deer contract CWD. Neutral variation revealed a high number of rare alleles and no population structure, and demographic models suggested a rapid historical population expansion. Allele frequencies of PRNP variants associated with CWD susceptibility and disease progression were evenly distributed across the landscape and consistent with deer populations not infected with CWD. We estimated the selection coefficient of CWD, with simulations showing an observable and rapid shift in PRNP allele frequencies that coincides with the start of a novel CWD outbreak. Sustained surveillance of genomic and PRNP variation can be a useful tool for guiding management practices, which is especially important for CWD-free regions where deer are managed for ecological and economic benefits.
Collapse
Affiliation(s)
- Sarah E. Haworth
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughONCanada
| | - Larissa Nituch
- Wildlife Research and Monitoring SectionOntario Ministry of Natural Resources and ForestryTrent UniversityPeterboroughONCanada
| | - Joseph M. Northrup
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughONCanada
- Wildlife Research and Monitoring SectionOntario Ministry of Natural Resources and ForestryTrent UniversityPeterboroughONCanada
| | - Aaron B. A. Shafer
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughONCanada
- Department of ForensicsTrent UniversityPeterboroughONCanada
| |
Collapse
|
24
|
Keatts LO, Robards M, Olson SH, Hueffer K, Insley SJ, Joly DO, Kutz S, Lee DS, Chetkiewicz CLB, Lair S, Preston ND, Pruvot M, Ray JC, Reid D, Sleeman JM, Stimmelmayr R, Stephen C, Walzer C. Implications of Zoonoses From Hunting and Use of Wildlife in North American Arctic and Boreal Biomes: Pandemic Potential, Monitoring, and Mitigation. Front Public Health 2021; 9:627654. [PMID: 34026707 PMCID: PMC8131663 DOI: 10.3389/fpubh.2021.627654] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
The COVID-19 pandemic has re-focused attention on mechanisms that lead to zoonotic disease spillover and spread. Commercial wildlife trade, and associated markets, are recognized mechanisms for zoonotic disease emergence, resulting in a growing global conversation around reducing human disease risks from spillover associated with hunting, trade, and consumption of wild animals. These discussions are especially relevant to people who rely on harvesting wildlife to meet nutritional, and cultural needs, including those in Arctic and boreal regions. Global policies around wildlife use and trade can impact food sovereignty and security, especially of Indigenous Peoples. We reviewed known zoonotic pathogens and current risks of transmission from wildlife (including fish) to humans in North American Arctic and boreal biomes, and evaluated the epidemic and pandemic potential of these zoonoses. We discuss future concerns, and consider monitoring and mitigation measures in these changing socio-ecological systems. While multiple zoonotic pathogens circulate in these systems, risks to humans are mostly limited to individual illness or local community outbreaks. These regions are relatively remote, subject to very cold temperatures, have relatively low wildlife, domestic animal, and pathogen diversity, and in many cases low density, including of humans. Hence, favorable conditions for emergence of novel diseases or major amplification of a spillover event are currently not present. The greatest risk to northern communities from pathogens of pandemic potential is via introduction with humans visiting from other areas. However, Arctic and boreal ecosystems are undergoing rapid changes through climate warming, habitat encroachment, and development; all of which can change host and pathogen relationships, thereby affecting the probability of the emergence of new (and re-emergence of old) zoonoses. Indigenous leadership and engagement in disease monitoring, prevention and response, is vital from the outset, and would increase the success of such efforts, as well as ensure the protection of Indigenous rights as outlined in the United Nations Declaration on the Rights of Indigenous Peoples. Partnering with northern communities and including Indigenous Knowledge Systems would improve the timeliness, and likelihood, of detecting emerging zoonotic risks, and contextualize risk assessments to the unique human-wildlife relationships present in northern biomes.
Collapse
Affiliation(s)
- Lucy O. Keatts
- Wildlife Conservation Society Health Program, Bronx, NY, United States
| | - Martin Robards
- Wildlife Conservation Society, Arctic Beringia Program, Fairbanks, AK, United States
| | - Sarah H. Olson
- Wildlife Conservation Society Health Program, Bronx, NY, United States
| | - Karsten Hueffer
- Department of Veterinary Medicine & Arctic and Northern Studies Program, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Stephen J. Insley
- Wildlife Conservation Society Canada, Toronto, ON, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | - Susan Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - David S. Lee
- Department of Wildlife and Environment, Nunavut Tunngavik Inc., Ottawa, ON, Canada
| | | | - Stéphane Lair
- Canadian Wildlife Health Cooperative, Université de Montréal, Montreal, QC, Canada
| | | | - Mathieu Pruvot
- Wildlife Conservation Society Health Program, Bronx, NY, United States
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Justina C. Ray
- Wildlife Conservation Society Canada, Toronto, ON, Canada
| | - Donald Reid
- Wildlife Conservation Society Canada, Toronto, ON, Canada
| | - Jonathan M. Sleeman
- United States Geological Survey National Wildlife Health Center, Madison, WI, United States
| | - Raphaela Stimmelmayr
- North Slope Department of Wildlife Management, Utqiagvik, AK, United States
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Craig Stephen
- University of British Columbia, Vancouver, BC, Canada
- Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Chris Walzer
- Wildlife Conservation Society Health Program, Bronx, NY, United States
- Conservation Medicine Unit, Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
25
|
Arifin MI, Hannaoui S, Chang SC, Thapa S, Schatzl HM, Gilch S. Cervid Prion Protein Polymorphisms: Role in Chronic Wasting Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22052271. [PMID: 33668798 PMCID: PMC7956812 DOI: 10.3390/ijms22052271] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion disease found in both free-ranging and farmed cervids. Susceptibility of these animals to CWD is governed by various exogenous and endogenous factors. Past studies have demonstrated that polymorphisms within the prion protein (PrP) sequence itself affect an animal's susceptibility to CWD. PrP polymorphisms can modulate CWD pathogenesis in two ways: the ability of the endogenous prion protein (PrPC) to convert into infectious prions (PrPSc) or it can give rise to novel prion strains. In vivo studies in susceptible cervids, complemented by studies in transgenic mice expressing the corresponding cervid PrP sequence, show that each polymorphism has distinct effects on both PrPC and PrPSc. It is not entirely clear how these polymorphisms are responsible for these effects, but in vitro studies suggest they play a role in modifying PrP epitopes crucial for PrPC to PrPSc conversion and determining PrPC stability. PrP polymorphisms are unique to one or two cervid species and most confer a certain degree of reduced susceptibility to CWD. However, to date, there are no reports of polymorphic cervid PrP alleles providing absolute resistance to CWD. Studies on polymorphisms have focused on those found in CWD-endemic areas, with the hope that understanding the role of an animal's genetics in CWD can help to predict, contain, or prevent transmission of CWD.
Collapse
Affiliation(s)
- Maria Immaculata Arifin
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Samia Hannaoui
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sheng Chun Chang
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Simrika Thapa
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hermann M. Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence:
| |
Collapse
|
26
|
Nonno R, Di Bari MA, Pirisinu L, D'Agostino C, Vanni I, Chiappini B, Marcon S, Riccardi G, Tran L, Vikøren T, Våge J, Madslien K, Mitchell G, Telling GC, Benestad SL, Agrimi U. Studies in bank voles reveal strain differences between chronic wasting disease prions from Norway and North America. Proc Natl Acad Sci U S A 2020; 117:31417-31426. [PMID: 33229531 PMCID: PMC7733848 DOI: 10.1073/pnas.2013237117] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic wasting disease (CWD) is a relentless epidemic disorder caused by infectious prions that threatens the survival of cervid populations and raises increasing public health concerns in North America. In Europe, CWD was detected for the first time in wild Norwegian reindeer (Rangifer tarandus) and moose (Alces alces) in 2016. In this study, we aimed at comparing the strain properties of CWD prions derived from different cervid species in Norway and North America. Using a classical strain typing approach involving transmission and adaptation to bank voles (Myodes glareolus), we found that prions causing CWD in Norway induced incubation times, neuropathology, regional deposition of misfolded prion protein aggregates in the brain, and size of their protease-resistant core, different from those that characterize North American CWD. These findings show that CWD prion strains affecting Norwegian cervids are distinct from those found in North America, implying that the highly contagious North American CWD prions are not the proximate cause of the newly discovered Norwegian CWD cases. In addition, Norwegian CWD isolates showed an unexpected strain variability, with reindeer and moose being caused by different CWD strains. Our findings shed light on the origin of emergent European CWD, have significant implications for understanding the nature and the ecology of CWD in Europe, and highlight the need to assess the zoonotic potential of the new CWD strains detected in Europe.
Collapse
Affiliation(s)
- Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Michele A Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Claudia D'Agostino
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Barbara Chiappini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Stefano Marcon
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Geraldina Riccardi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Linh Tran
- World Organization for Animal Health Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, N-0106 Oslo, Norway
| | - Turid Vikøren
- World Organization for Animal Health Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, N-0106 Oslo, Norway
| | - Jørn Våge
- World Organization for Animal Health Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, N-0106 Oslo, Norway
| | - Knut Madslien
- World Organization for Animal Health Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, N-0106 Oslo, Norway
| | - Gordon Mitchell
- National and World Organization for Animal Health Reference Laboratory for Scrapie and Chronic Wasting Disease, Canadian Food Inspection Agency, Ottawa, ON K2H 8P9, Canada
| | - Glenn C Telling
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80525
| | - Sylvie L Benestad
- World Organization for Animal Health Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, N-0106 Oslo, Norway
| | - Umberto Agrimi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
27
|
Arifin MI, Staskevicius A, Shim SY, Huang YH, Fenton H, McLoughlin PD, Mitchell G, Cullingham CI, Gilch S. Large-scale prion protein genotyping in Canadian caribou populations and potential impact on chronic wasting disease susceptibility. Mol Ecol 2020; 29:3830-3840. [PMID: 32810895 PMCID: PMC7590118 DOI: 10.1111/mec.15602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022]
Abstract
Polymorphisms within the prion protein gene (Prnp) are an intrinsic factor that can modulate chronic wasting disease (CWD) pathogenesis in cervids. Although wild European reindeer (Rangifer tarandus tarandus) were infected with CWD, as yet there have been no reports of the disease in North American caribou (R. tarandus spp.). Previous Prnp genotyping studies on approximately 200 caribou revealed single nucleotide polymorphisms (SNPs) at codons 2 (V/M), 129 (G/S), 138 (S/N), 146 (N/n) and 169 (V/M). The impact of these polymorphisms on CWD transmission is mostly unknown, except for codon 138. Reindeer carrying at least one allele encoding for asparagine (138NN or 138SN) are less susceptible to clinical CWD upon infection by natural routes, with the majority of prions limited to extraneural tissues. We sequenced the Prnp coding region of two caribou subspecies (n = 986) from British Columbia, Saskatchewan, Yukon, Nunavut and the Northwest Territories, to identify SNPs and their frequencies. Genotype frequencies at codon 138 differed significantly between barren-ground (R. t. groenlandicus) and woodland (R. t. caribou) caribou when we excluded the Chinchaga herd (p < .05). We also found new variants at codons 153 (Y/F) and 242 (P/L). Our findings show that the 138N allele is rare among caribou in areas with higher risk of contact with CWD-infected species. As both subspecies are classified as Threatened and play significant roles in North American Indigenous culture, history, food security and the economy, determining frequencies of Prnp genotypes associated with susceptibility to CWD is important for future wildlife management measures.
Collapse
Affiliation(s)
- Maria Immaculata Arifin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Antanas Staskevicius
- National and OIE Reference Laboratory for Scrapie and CWD, Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Su Yeon Shim
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Yuan-Hung Huang
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Heather Fenton
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts
| | | | - Gordon Mitchell
- National and OIE Reference Laboratory for Scrapie and CWD, Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | | | - Sabine Gilch
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
28
|
Zink RM, Najar N, Vázquez-Miranda H, Buchanan BL, Loy D, Brodersen BW. Geographic variation in the PRNP gene and its promoter, and their relationship to chronic wasting disease in North American deer. Prion 2020; 14:185-192. [PMID: 32715865 PMCID: PMC7518737 DOI: 10.1080/19336896.2020.1796250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PRNP genotypes, number of octarepeats (PHGGGWGQ) and indels in the PRNP promoter can influence the progression of prion disease in mammals. We found no relationship between presence of promoter indels in white-tailed deer and mule deer from Nebraska and CWD presence. White-tailed deer with the 95 H allele and G20D mule deer were more likely to be CWD-free, but unlike other studies white-tailed deer with the 96S allele(s) were equally likely to be CWD-free. We provide the first information on PRNP genotypes and indels in the promoter for Key deer (all homozygous 96SS) and Coues deer (lacked 95 H and 96S alleles, but possessed a uniquely high frequency of 103 T). All deer surveyed were homozygous for three tandem octarepeats.
Collapse
Affiliation(s)
- Robert M Zink
- School of Natural Resources, University of Nebraska-Lincoln , Lincoln, NE, USA.,School of Biological Sciences, University of Nebraska-Lincoln , Lincoln, NE, USA.,Nebraska State Museum, University of Nebraska-Lincoln , Lincoln, NE, USA
| | - Nadje Najar
- School of Natural Resources, University of Nebraska-Lincoln , Lincoln, NE, USA
| | - Hernán Vázquez-Miranda
- School of Natural Resources, University of Nebraska-Lincoln , Lincoln, NE, USA.,Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México , Ciudad de México, CP, Mexico
| | | | - Duan Loy
- Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln , Lincoln, NE, USA
| | - Bruce W Brodersen
- Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln , Lincoln, NE, USA
| |
Collapse
|