1
|
Nagraj AK, Patel R, Gavade A, Pais R, Verma P, Patil J. Isoelectric point, net charge and amino acid analysis of experimentally validated therapeutic antibodies. In Silico Pharmacol 2025; 13:66. [PMID: 40255258 PMCID: PMC12006645 DOI: 10.1007/s40203-025-00356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/04/2025] [Indexed: 04/22/2025] Open
Abstract
The isoelectric point (pI) of an antibody is known to affect its non-specific interactions and repulsive self-interactions. However, analytical outcomes for the pI of a large number of therapeutic antibodies remain unexplored. In this study, we explored the pI and net charge of variable heavy (VH), variable light (VL), CDR (complementarity determining regions) and whole IgG on a large number of therapeutic antibodies, additionally amino acids distribution in the CDR regions were also analyzed. A total of 708 experimentally validated antibodies from the Thera-SAbDab database were analyzed in this study. Analysis of the antibody dataset showed that the pI of the whole IgG sequence is between 5 and 9, while the majority was in the intermediate range between 7 and 9 (86.7%). The charge had a wide range from - 10 to 12, with the majority falling between the charges 2-6 (53.4%). However, the combined pI score of the CDRs of light chains (60%) as well as for the heavy chains (67%) was observed in the range of 4-6. The amino acid composition analysis of CDR regions revealed that most of the amino acids in the light chain are uncharged-polar (46.3%) followed by hydrophobic-aliphatic (28.4%), while in the heavy chain; it is hydrophobic-aliphatic (35.2%) followed by uncharged-polar (24.6%). In conclusion, the pI and net charge analysis of therapeutic antibodies are crucial for understanding pharmacokinetic properties. Moreover, amino acid composition of the light and heavy chain CDR regions has a significant impact on the pI and charge of the entire IgG antibody. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00356-y.
Collapse
Affiliation(s)
- Anil Kumar Nagraj
- Innoplexus Consulting Services Pvt Ltd, Floor 7 th, Midas Tower, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra 411057 India
| | - Riya Patel
- Innoplexus Consulting Services Pvt Ltd, Floor 7 th, Midas Tower, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra 411057 India
| | - Akshata Gavade
- Innoplexus Consulting Services Pvt Ltd, Floor 7 th, Midas Tower, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra 411057 India
| | - Roylan Pais
- Innoplexus Consulting Services Pvt Ltd, Floor 7 th, Midas Tower, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra 411057 India
| | - Pratibha Verma
- Innoplexus Consulting Services Pvt Ltd, Floor 7 th, Midas Tower, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra 411057 India
| | - Jaspal Patil
- Innoplexus Consulting Services Pvt Ltd, Floor 7 th, Midas Tower, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra 411057 India
| |
Collapse
|
2
|
Shoemaker T, Amer BR, Razinkov V, Huh J, Wei Y, Qi W, Roberts CJ. "Assessing impact of hinge flexibility on predicted second osmotic virial coefficients". Eur J Pharm Sci 2025; 209:107064. [PMID: 40113105 DOI: 10.1016/j.ejps.2025.107064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/18/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Monoclonal antibodies (MAbs) are a key modality for treating a range of diseases because of their unique biophysical properties, such as high binding affinity and high specificity. However, MAb solutions can have unpredictable behavior that is detrimental to the drug product including aggregation and self-association, and high viscosity at elevated protein concentrations. Coarse-grained (CG) molecular simulations provide an opportunity to probe antibody behavior and self-interactions early in development without large experimental or computational burden. Recent work used a 1-bead-per-charge with 1-bead-per-domain (1bC/D) to model a combination of screened electrostatic, steric, and short-ranged non-electrostatic interactions to accurately predict experimental protein self-interactions for MAbs but neglected the influence of MAb hinge flexibility. This work includes the effects of flexibility of the hinge region while maintaining the 1bC/D resolution and computational efficiency. The flexibility is modeled by intramolecular rotations and flexing of antibody fragments about the central hinge to capture literature results for the distribution of internal structures for a single MAb. The difference between flexible and rigid models are analyzed for two body interactions for a reasonably large data set (n = 63) of different MAbs at typical commercial solution conditions. The net behavior showed small differences for the flexible vs. rigid model for most MAbs, within the range of experimental results, with a small number of exceptions. While the overall MAb-MAb self-interactions were not largely dependent on intramolecular degrees of freedom of the hinge region, there were some predicted differences in particular amino acid pairwise interactions from flexible to rigid models, which may indicate the additional computational burden of including hinge flexibility would be useful for future work focused on protein design and extensions to high protein concentration drug development where there are multi-protein spatial correlations.
Collapse
Affiliation(s)
- Terrance Shoemaker
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE USA 19713
| | - Brendan R Amer
- Amgen, Process Development. Thousand Oaks, CA, USA 91320
| | | | - Joon Huh
- Amgen, Process Development. Thousand Oaks, CA, USA 91320
| | - Yangjie Wei
- Amgen, Process Development. Thousand Oaks, CA, USA 91320
| | - Wei Qi
- Amgen, Process Development. Thousand Oaks, CA, USA 91320
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE USA 19713.
| |
Collapse
|
3
|
Chen HT, Zhang Y, Huang J, Sawant M, Smith MD, Rajagopal N, Desai AA, Makowski E, Licari G, Xie Y, Marlow MS, Kumar S, Tessier PM. Human antibody polyreactivity is governed primarily by the heavy-chain complementarity-determining regions. Cell Rep 2024; 43:114801. [PMID: 39392756 PMCID: PMC11564698 DOI: 10.1016/j.celrep.2024.114801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/13/2024] Open
Abstract
Although antibody variable regions mediate antigen-specific binding, they can also mediate non-specific interactions with non-cognate antigens, impacting diverse immunological processes and the efficacy, safety, and half-life of antibody therapeutics. To understand the molecular basis of antibody non-specificity, we sorted two dissimilar human naïve antibody libraries against multiple reagents to enrich for variants with different levels of polyreactivity. Sequence analysis of >300,000 paired antibody variable regions revealed that the heavy chain primarily mediates human antibody polyreactivity, and this is due to the high positive charge, high hydrophobicity, and combinations thereof in the corresponding complementarity-determining regions, which can be predicted using a machine learning model developed in this work. Notably, a subset of the most important features governing antibody non-specific interactions, namely those that contain tyrosine, also govern specific antigen recognition. Our findings are broadly relevant for understanding fundamental aspects of antibody molecular recognition and the applied aspects of antibody-drug design.
Collapse
Affiliation(s)
- Hsin-Ting Chen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yulei Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Huang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Manali Sawant
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew D Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nandhini Rajagopal
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877, USA
| | - Alec A Desai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily Makowski
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Giuseppe Licari
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877, USA
| | - Yunxuan Xie
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael S Marlow
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877, USA
| | - Sandeep Kumar
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877, USA
| | - Peter M Tessier
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Jain T, Prinz B, Marker A, Michel A, Reichel K, Czepczor V, Klieber S, Sun W, Kathuria S, Oezguer Bruederle S, Lange C, Wahl L, Starr C, Masiero A, Avery L. Assessment and incorporation of in vitro correlates to pharmacokinetic outcomes in antibody developability workflows. MAbs 2024; 16:2384104. [PMID: 39083118 PMCID: PMC11296533 DOI: 10.1080/19420862.2024.2384104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
In vitro assessments for the prediction of pharmacokinetic (PK) behavior of biotherapeutics can help identify corresponding liabilities significantly earlier in the discovery timeline. This can minimize the need for extensive early in vivo PK characterization, thereby reducing animal usage and optimizing resources. In this study, we recommend bolstering classical developability workflows with in vitro measures correlated with PK. In agreement with current literature, in vitro measures assessing nonspecific interactions, self-interaction, and FcRn interaction are demonstrated to have the highest correlations to clearance in hFcRn Tg32 mice. Crucially, the dataset used in this study has broad sequence diversity and a range of physicochemical properties, adding robustness to our recommendations. Finally, we demonstrate a computational approach that combines multiple in vitro measurements with a multivariate regression model to improve the correlation to PK compared to any individual assessment. Our work demonstrates that a judicious choice of high throughput in vitro measurements and computational predictions enables the prioritization of candidate molecules with desired PK properties.
Collapse
Affiliation(s)
- Tushar Jain
- Department of Computational Biology, Adimab LLC, Mountain View, CA, USA
| | - Bianka Prinz
- Department of Antibody Discovery, Adimab LLC, Lebanon, NH, USA
| | - Alexander Marker
- Department of Drug Metabolism and Pharmacokinetics, Sanofi, Frankfurt, Germany
| | - Alexander Michel
- Department of Drug Metabolism and Pharmacokinetics, Sanofi, Cambridge, MA, USA
| | - Katrin Reichel
- Department of Large Molecule Research, Sanofi, Frankfurt, Germany
| | - Valerie Czepczor
- Department of Drug Metabolism and Pharmacokinetics, Sanofi, Paris, France
| | - Sylvie Klieber
- Department of Drug Metabolism and Pharmacokinetics, Sanofi, Paris, France
| | - Wei Sun
- Department of Drug Metabolism and Pharmacokinetics, Sanofi, Cambridge, MA, USA
| | - Sagar Kathuria
- Department of Large Molecule Research, Sanofi, Cambridge, MA, USA
| | | | - Christian Lange
- Department of Large Molecule Research, Sanofi, Frankfurt, Germany
| | - Lena Wahl
- Department of Large Molecule Research, Sanofi, Frankfurt, Germany
| | | | | | - Lindsay Avery
- Department of Drug Metabolism and Pharmacokinetics, Sanofi, Cambridge, MA, USA
| |
Collapse
|
5
|
Reusch J, Andersen JT, Rant U, Schlothauer T. Insight into the avidity-affinity relationship of the bivalent, pH-dependent interaction between IgG and FcRn. MAbs 2024; 16:2361585. [PMID: 38849969 PMCID: PMC11164218 DOI: 10.1080/19420862.2024.2361585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Monoclonal antibodies (mAbs) as therapeutics necessitate favorable pharmacokinetic properties, including extended serum half-life, achieved through pH-dependent binding to the neonatal Fc receptor (FcRn). While prior research has mainly investigated IgG-FcRn binding kinetics with a focus on single affinity values, it has been shown that each IgG molecule can engage two FcRn molecules throughout an endosomal pH gradient. As such, we present here a more comprehensive analysis of these interactions with an emphasis on both affinity and avidity by taking advantage of switchSENSE technology, a surface-based biosensor where recombinant FcRn was immobilized via short DNA nanolevers, mimicking the membranous orientation of the receptor. The results revealed insight into the avidity-to-affinity relationship, where assessing binding through a pH gradient ranging from pH 5.8 to 7.4 showed that the half-life extended IgG1-YTE has an affinity inflection point at pH 7.2, reflecting its engineering for improved FcRn binding compared with the wild-type counterpart. Furthermore, IgG1-YTE displayed a pH switch for the avidity enhancement factor at pH 6.2, reflecting strong receptor binding to both sides of the YTE-containing Fc, while avidity was abolished at pH 7.4. When compared with classical surface plasmon resonance (SPR) technology and complementary methods, the use of switchSENSE demonstrated superior capabilities in differentiating affinity from avidity within a single measurement. Thus, the methodology provides reliable kinetic rate parameters for both binding modes and their direct relationship as a function of pH. Also, it deciphers the potential effect of the variable Fab arms on FcRn binding, in which SPR has limitations. Our study offers guidance for how FcRn binding properties can be studied for IgG engineering strategies.
Collapse
Affiliation(s)
- Johannes Reusch
- Dynamic Biosensors GmbH, Munich, Germany
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | | | - Tilman Schlothauer
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
6
|
Larsen HA, Atkins WM, Nath A. The origins of nonideality exhibited by monoclonal antibodies and Fab fragments in human serum. Protein Sci 2023; 32:e4812. [PMID: 37861473 PMCID: PMC10659951 DOI: 10.1002/pro.4812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
The development of therapeutic antibodies remains challenging, time-consuming, and expensive. A key contributing factor is a lack of understanding of how proteins are affected by complex biological environments such as serum and plasma. Nonideality due to attractive or repulsive interactions with cosolutes can alter the stability, aggregation propensity, and binding interactions of proteins in solution. Fluorescence correlation spectroscopy (FCS) can be used to measure apparent second virial coefficient (B2,app ) values for therapeutic and model monoclonal antibodies (mAbs) that capture the nature and strength of interactions with cosolutes directly in undiluted serum and similar complex biological media. Here, we use FCS-derived B2,app measurements to identify the components of human serum responsible for nonideal interactions with mAbs and Fab fragments. Most mAbs exhibit neutral or slightly attractive interactions with intact serum. Generally, mAbs display repulsive interactions with albumin and mildly attractive interactions with IgGs in the context of whole serum. Crucially, however, these attractive interactions are much stronger with pooled IgGs isolated from other serum components, indicating that the effects of serum nonideality can only be understood by studying the intact medium (rather than isolated components). Moreover, Fab fragments universally exhibited more attractive interactions than their parental mAbs, potentially rendering them more susceptible to nonideality-driven perturbations. FCS-based B2,app measurements have the potential to advance our understanding of how physiological environments impact protein-based therapeutics in general. Furthermore, incorporating such assays into preclinical biologics development may help de-risk molecules and make for a faster and more efficient development process.
Collapse
Affiliation(s)
- Hayli A. Larsen
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - William M. Atkins
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Abhinav Nath
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
7
|
Liu S, Shah DK. Physiologically Based Pharmacokinetic Modeling to Characterize the Effect of Molecular Charge on Whole-Body Disposition of Monoclonal Antibodies. AAPS J 2023; 25:48. [PMID: 37118220 DOI: 10.1208/s12248-023-00812-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/11/2023] [Indexed: 04/30/2023] Open
Abstract
Motivated by a series of work demonstrating the effect of molecular charge on antibody pharmacokinetics (PK), physiological-based pharmacokinetic (PBPK) models are emerging that relate in silico calculated charge or in vitro measures of polyspecificity to antibody PK parameters. However, only plasma data has been used for model development in these studies, leading to unvalidated assumptions. Here, we present an extended platform PBPK model for antibodies that incorporate charge-dependent endothelial cell pinocytosis rate and nonspecific off-target binding in the interstitial space and on circulating blood cells, to simultaneously characterize whole-body disposition of three antibody charge variants. Predictive potential of various charge metrics was also explored, and the difference between positive charge patches and negative charge patches (i.e., PPC-PNC) was used as the charge parameter to establish quantitative relationships with nonspecific binding affinities and endothelial cell uptake rate. Whole-body disposition of these charge variants was captured well by the model, with less than 2-fold predictive error in area under the curve of most plasma and tissue PK data. The model also predicted that with greater positive charge, nonspecific binding was more substantial, and pinocytosis rate increased especially in brain, heart, kidney, liver, lung, and spleen, but remained unchanged in adipose, bone, muscle, and skin. The presented PBPK model contributes to our understanding of the mechanisms governing the disposition of charged antibodies and can be used as a platform to guide charge engineering based on desired plasma and tissue exposures.
Collapse
Affiliation(s)
- Shufang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, Ney York, 14214-8033, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, Ney York, 14214-8033, USA.
| |
Collapse
|
8
|
Ausserwöger H, Krainer G, Welsh TJ, Thorsteinson N, de Csilléry E, Sneideris T, Schneider MM, Egebjerg T, Invernizzi G, Herling TW, Lorenzen N, Knowles TPJ. Surface patches induce nonspecific binding and phase separation of antibodies. Proc Natl Acad Sci U S A 2023; 120:e2210332120. [PMID: 37011217 PMCID: PMC10104583 DOI: 10.1073/pnas.2210332120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/06/2023] [Indexed: 04/05/2023] Open
Abstract
Nonspecific interactions are a key challenge in the successful development of therapeutic antibodies. The tendency for nonspecific binding of antibodies is often difficult to reduce by rational design, and instead, it is necessary to rely on comprehensive screening campaigns. To address this issue, we performed a systematic analysis of the impact of surface patch properties on antibody nonspecificity using a designer antibody library as a model system and single-stranded DNA as a nonspecificity ligand. Using an in-solution microfluidic approach, we find that the antibodies tested bind to single-stranded DNA with affinities as high as KD = 1 µM. We show that DNA binding is driven primarily by a hydrophobic patch in the complementarity-determining regions. By quantifying the surface patches across the library, the nonspecific binding affinity is shown to correlate with a trade-off between the hydrophobic and total charged patch areas. Moreover, we show that a change in formulation conditions at low ionic strengths leads to DNA-induced antibody phase separation as a manifestation of nonspecific binding at low micromolar antibody concentrations. We highlight that phase separation is driven by a cooperative electrostatic network assembly mechanism of antibodies with DNA, which correlates with a balance between positive and negative charged patches. Importantly, our study demonstrates that both nonspecific binding and phase separation are controlled by the size of the surface patches. Taken together, these findings highlight the importance of surface patches and their role in conferring antibody nonspecificity and its macroscopic manifestation in phase separation.
Collapse
Affiliation(s)
- Hannes Ausserwöger
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Georg Krainer
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Timothy J. Welsh
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Nels Thorsteinson
- Research and Development, Chemical Computing Group, Montreal, QuebecH3A 2R7, Canada
| | - Ella de Csilléry
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Tomas Sneideris
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Matthias M. Schneider
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Thomas Egebjerg
- Global Research Technologies, Novo Nordisk A/S2760Måløv, Denmark
| | | | - Therese W. Herling
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Nikolai Lorenzen
- Global Research Technologies, Novo Nordisk A/S2760Måløv, Denmark
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Department of Physics, Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| |
Collapse
|
9
|
Licari G, Martin KP, Crames M, Mozdzierz J, Marlow MS, Karow-Zwick AR, Kumar S, Bauer J. Embedding Dynamics in Intrinsic Physicochemical Profiles of Market-Stage Antibody-Based Biotherapeutics. Mol Pharm 2023; 20:1096-1111. [PMID: 36573887 PMCID: PMC9906779 DOI: 10.1021/acs.molpharmaceut.2c00838] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
Adequate stability, manufacturability, and safety are crucial to bringing an antibody-based biotherapeutic to the market. Following the concept of holistic in silico developability, we introduce a physicochemical description of 91 market-stage antibody-based biotherapeutics based on orthogonal molecular properties of variable regions (Fvs) embedded in different simulation environments, mimicking conditions experienced by antibodies during manufacturing, formulation, and in vivo. In this work, the evaluation of molecular properties includes conformational flexibility of the Fvs using molecular dynamics (MD) simulations. The comparison between static homology models and simulations shows that MD significantly affects certain molecular descriptors like surface molecular patches. Moreover, the structural stability of a subset of Fv regions is linked to changes in their specific molecular interactions with ions in different experimental conditions. This is supported by the observation of differences in protein melting temperatures upon addition of NaCl. A DEvelopability Navigator In Silico (DENIS) is proposed to compare mAb candidates for their similarity with market-stage biotherapeutics in terms of physicochemical properties and conformational stability. Expanding on our previous developability guidelines (Ahmed et al. Proc. Natl. Acad. Sci. 2021, 118 (37), e2020577118), the hydrodynamic radius and the protein strand ratio are introduced as two additional descriptors that enable a more comprehensive in silico characterization of biotherapeutic drug candidates. Test cases show how this approach can facilitate identification and optimization of intrinsically developable lead candidates. DENIS represents an advanced computational tool to progress biotherapeutic drug candidates from discovery into early development by predicting drug properties in different aqueous environments.
Collapse
Affiliation(s)
- Giuseppe Licari
- Early
Stage Pharmaceutical Development, Pharmaceutical Development Biologicals
& In silico Team, Boehringer Ingelheim
International GmbH & Co. KG, Biberach/Riss 88397, Germany
| | - Kyle P. Martin
- Biotherapeutics
Discovery & In silico Team, Boehringer
Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | - Maureen Crames
- Biotherapeutics
Discovery & In silico Team, Boehringer
Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | - Joseph Mozdzierz
- Biotherapeutics
Discovery & In silico Team, Boehringer
Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | - Michael S. Marlow
- Biotherapeutics
Discovery & In silico Team, Boehringer
Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | - Anne R. Karow-Zwick
- Early
Stage Pharmaceutical Development, Pharmaceutical Development Biologicals
& In silico Team, Boehringer Ingelheim
International GmbH & Co. KG, Biberach/Riss 88397, Germany
| | - Sandeep Kumar
- Biotherapeutics
Discovery & In silico Team, Boehringer
Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | - Joschka Bauer
- Early
Stage Pharmaceutical Development, Pharmaceutical Development Biologicals
& In silico Team, Boehringer Ingelheim
International GmbH & Co. KG, Biberach/Riss 88397, Germany
| |
Collapse
|
10
|
Liu S, Humphreys SC, Cook KD, Conner KP, Correia AR, Jacobitz AW, Yang M, Primack R, Soto M, Padaki R, Lubomirski M, Smith R, Mock M, Thomas VA. Utility of physiologically based pharmacokinetic modeling to predict inter-antibody variability in monoclonal antibody pharmacokinetics in mice. MAbs 2023; 15:2263926. [PMID: 37824334 PMCID: PMC10572049 DOI: 10.1080/19420862.2023.2263926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/24/2023] [Indexed: 10/14/2023] Open
Abstract
In this investigation, we tested the hypothesis that a physiologically based pharmacokinetic (PBPK) model incorporating measured in vitro metrics of off-target binding can largely explain the inter-antibody variability in monoclonal antibody (mAb) pharmacokinetics (PK). A diverse panel of 83 mAbs was evaluated for PK in wild-type mice and subjected to 10 in vitro assays to measure major physiochemical attributes. After excluding for target-mediated elimination and immunogenicity, 56 of the remaining mAbs with an eight-fold variability in the area under the curve (A U C 0 - 672 h : 1.74 × 106 -1.38 × 107 ng∙h/mL) and 10-fold difference in clearance (2.55-26.4 mL/day/kg) formed the training set for this investigation. Using a PBPK framework, mAb-dependent coefficients F1 and F2 modulating pinocytosis rate and convective transport, respectively, were estimated for each mAb with mostly good precision (coefficient of variation (CV%) <30%). F1 was estimated to be the mean and standard deviation of 0.961 ± 0.593, and F2 was estimated to be 2.13 ± 2.62. Using principal component analysis to correlate the regressed values of F1/F2 versus the multidimensional dataset composed of our panel of in vitro assays, we found that heparin chromatography retention time emerged as the predictive covariate to the mAb-specific F1, whereas F2 variability cannot be well explained by these assays. A sigmoidal relationship between F1 and the identified covariate was incorporated within the PBPK framework. A sensitivity analysis suggested plasma concentrations to be most sensitive to F1 when F1 > 1. The predictive utility of the developed PBPK model was evaluated against a separate panel of 14 mAbs biased toward high clearance, among which area under the curve of PK data of 12 mAbs was predicted within 2.5-fold error, and the positive and negative predictive values for clearance prediction were 85% and 100%, respectively. MAb heparin chromatography assay output allowed a priori identification of mAb candidates with unfavorable PK.
Collapse
Affiliation(s)
- Shufang Liu
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Sara C. Humphreys
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Kevin D. Cook
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Kip P. Conner
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | | | | | - Melissa Yang
- Therapeutic Discovery, Amgen, Thousand Oaks, CA, USA
| | - Ronya Primack
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, Thousand Oaks, CA, USA
| | - Marcus Soto
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, Thousand Oaks, CA, USA
| | - Rupa Padaki
- Process Development, Amgen Inc, Thousand Oaks, CA, USA
| | | | - Richard Smith
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Marissa Mock
- Therapeutic Discovery, Amgen, Thousand Oaks, CA, USA
| | - Veena A. Thomas
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| |
Collapse
|
11
|
Ausserwöger H, Schneider MM, Herling TW, Arosio P, Invernizzi G, Knowles TPJ, Lorenzen N. Non-specificity as the sticky problem in therapeutic antibody development. Nat Rev Chem 2022; 6:844-861. [PMID: 37117703 DOI: 10.1038/s41570-022-00438-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
Abstract
Antibodies are highly potent therapeutic scaffolds with more than a hundred different products approved on the market. Successful development of antibody-based drugs requires a trade-off between high target specificity and target binding affinity. In order to better understand this problem, we here review non-specific interactions and explore their fundamental physicochemical origins. We discuss the role of surface patches - clusters of surface-exposed amino acid residues with similar physicochemical properties - as inducers of non-specific interactions. These patches collectively drive interactions including dipole-dipole, π-stacking and hydrophobic interactions to complementary moieties. We elucidate links between these supramolecular assembly processes and macroscopic development issues, such as decreased physical stability and poor in vivo half-life. Finally, we highlight challenges and opportunities for optimizing protein binding specificity and minimizing non-specificity for future generations of therapeutics.
Collapse
|
12
|
Ball K, Bruin G, Escandón E, Funk C, Pereira JNS, Yang TY, Yu H. Characterizing the Pharmacokinetics and Biodistribution of Therapeutic Proteins: An Industry White Paper. Drug Metab Dispos 2022; 50:858-866. [PMID: 35149542 DOI: 10.1124/dmd.121.000463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022] Open
Abstract
Characterization of the pharmacokinetics and biodistribution of therapeutic proteins (TPs) is a hot topic within the pharmaceutical industry, particularly with an ever-increasing catalog of novel modality TPs. Here, we review the current practices, and provide a summary of extensive cross-company discussions as well as a survey completed by International Consortium for Innovation and Quality members on this theme. A wide variety of in vitro, in vivo and in silico techniques are currently used to assess pharmacokinetics and biodistribution of TPs, and we discuss the relevance of these from an industry perspective, focusing on pharmacokinetic/pharmacodynamic understanding at the preclinical stage of development, and translation to human. We consider that the 'traditional in vivo biodistribution study' is becoming insufficient as a standalone tool, and thorough characterization of the interaction of the TP with its target(s), target biology, and off-target interactions at a microscopic scale are key to understand the overall biodistribution on a full-body scale. Our summary of the current challenges and our recommendations to address these issues could provide insight into the implementation of best practices in this area of drug development, and continued cross-company collaboration will be of tremendous value. SIGNIFICANCE STATEMENT: The Innovation and Quality Consortium Translational and ADME Sciences Leadership Group working group for the absorption, distribution, metabolism, and excretion of therapeutic proteins evaluates the current practices and challenges in characterizing the pharmacokinetics and biodistribution of therapeutic proteins during drug development, and proposes recommendations to address these issues. Incorporating the in vitro, in vivo and in silico approaches discussed herein may provide a pragmatic framework to increase early understanding of pharmacokinetic/pharmacodynamic relationships, and aid translational modeling for first-in-human dose predictions.
Collapse
Affiliation(s)
- Kathryn Ball
- Clinical Pharmacology & Quantitative Pharmacology, CPSS, R&D, AstraZeneca, Cambridge, United Kingdom (K.B.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B.); PPDM ADME Biologics, Merck & Co., Inc., South San Francisco, California (E.E.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (C.F.); Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany (J.N.S.P.); Janssen BioTherapeutics, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Gerard Bruin
- Clinical Pharmacology & Quantitative Pharmacology, CPSS, R&D, AstraZeneca, Cambridge, United Kingdom (K.B.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B.); PPDM ADME Biologics, Merck & Co., Inc., South San Francisco, California (E.E.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (C.F.); Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany (J.N.S.P.); Janssen BioTherapeutics, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Enrique Escandón
- Clinical Pharmacology & Quantitative Pharmacology, CPSS, R&D, AstraZeneca, Cambridge, United Kingdom (K.B.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B.); PPDM ADME Biologics, Merck & Co., Inc., South San Francisco, California (E.E.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (C.F.); Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany (J.N.S.P.); Janssen BioTherapeutics, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Christoph Funk
- Clinical Pharmacology & Quantitative Pharmacology, CPSS, R&D, AstraZeneca, Cambridge, United Kingdom (K.B.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B.); PPDM ADME Biologics, Merck & Co., Inc., South San Francisco, California (E.E.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (C.F.); Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany (J.N.S.P.); Janssen BioTherapeutics, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Joao N S Pereira
- Clinical Pharmacology & Quantitative Pharmacology, CPSS, R&D, AstraZeneca, Cambridge, United Kingdom (K.B.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B.); PPDM ADME Biologics, Merck & Co., Inc., South San Francisco, California (E.E.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (C.F.); Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany (J.N.S.P.); Janssen BioTherapeutics, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Tong-Yuan Yang
- Clinical Pharmacology & Quantitative Pharmacology, CPSS, R&D, AstraZeneca, Cambridge, United Kingdom (K.B.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B.); PPDM ADME Biologics, Merck & Co., Inc., South San Francisco, California (E.E.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (C.F.); Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany (J.N.S.P.); Janssen BioTherapeutics, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Hongbin Yu
- Clinical Pharmacology & Quantitative Pharmacology, CPSS, R&D, AstraZeneca, Cambridge, United Kingdom (K.B.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B.); PPDM ADME Biologics, Merck & Co., Inc., South San Francisco, California (E.E.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (C.F.); Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany (J.N.S.P.); Janssen BioTherapeutics, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| |
Collapse
|
13
|
Ménochet K, Yu H, Wang B, Tibbitts J, Hsu CP, Kamath AV, Richter WF, Baumann A. Non-human primates in the PKPD evaluation of biologics: Needs and options to reduce, refine, and replace. A BioSafe White Paper. MAbs 2022; 14:2145997. [PMID: 36418217 PMCID: PMC9704389 DOI: 10.1080/19420862.2022.2145997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Monoclonal antibodies (mAbs) deliver great benefits to patients with chronic and/or severe diseases thanks to their strong specificity to the therapeutic target. As a result of this specificity, non-human primates (NHP) are often the only preclinical species in which therapeutic antibodies cross-react with the target. Here, we highlight the value and limitations that NHP studies bring to the design of safe and efficient early clinical trials. Indeed, data generated in NHPs are integrated with in vitro information to predict the concentration/effect relationship in human, and therefore the doses to be tested in first-in-human trials. The similarities and differences in the systems defining the pharmacokinetics and pharmacodynamics (PKPD) of mAbs in NHP and human define the nature and the potential of the preclinical investigations performed in NHPs. Examples have been collated where the use of NHP was either pivotal to the design of the first-in-human trial or, inversely, led to the termination of a project prior to clinical development. The potential impact of immunogenicity on the results generated in NHPs is discussed. Strategies to optimize the use of NHPs for PKPD purposes include the addition of PD endpoints in safety assessment studies and the potential re-use of NHPs after non-terminal studies or cassette dosing several therapeutic agents of interest. Efforts are also made to reduce the use of NHPs in the industry through the use of in vitro systems, alternative in vivo models, and in silico approaches. In the case of prediction of ocular PK, the body of evidence gathered over the last two decades renders the use of NHPs obsolete. Expert perspectives, advantages, and pitfalls with these alternative approaches are shared in this review.
Collapse
Affiliation(s)
| | - Hongbin Yu
- R&D Project Management and Development Strategies, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
| | - Bonnie Wang
- Nonclinical Disposition and Bioanalysis, Bristol Myers Squibb, Inc, Princeton, NJ, USA
| | - Jay Tibbitts
- Nonclinical Development, South San Francisco, CA, USA
| | - Cheng-Pang Hsu
- Preclinical Development and Clinical Pharmacology, AskGene Pharma Inc, Camarillo, CA, USA
| | - Amrita V. Kamath
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, South San Francisco, CA, USA
| | - Wolfgang F. Richter
- Roche Pharma Research and Early Development, Roche Innovation, Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Andreas Baumann
- R&D, Bayer Pharma AG, Berlin, Germany & Non-clinical Biotech Consulting, Potsdam, Germany °(° present affiliation)
| |
Collapse
|
14
|
Frances N, Bacac M, Bray-French K, Christen F, Hinton H, Husar E, Quackenbush E, Schäfer M, Schick E, Vyver AVD, Richter WF. Novel In Vivo and In Vitro Pharmacokinetic/Pharmacodynamic-Based Human Starting Dose Selection for Glofitamab. J Pharm Sci 2021; 111:1208-1218. [PMID: 34953862 DOI: 10.1016/j.xphs.2021.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 12/30/2022]
Abstract
We present a novel approach for first-in-human (FIH) dose selection of the CD20xCD3 bispecific antibody, glofitamab, based on pharmacokinetic/pharmacodynamic (PKPD) assessment in cynomolgus monkeys to select a high, safe starting dose, with cytokine release (CR) as the PD endpoint. Glofitamab pharmacokinetics were studied in mice and cynomolgus monkeys; PKPD of IL-6, TNF-α and interferon-γ release following glofitamab, with/without obinutuzumab pretreatment (Gpt) was studied in cynomolgus monkeys. Potency differences for CR between cynomolgus monkeys and humans were determined by glofitamab incubation in whole blood of both species. The PKPD model for CR was translated to humans to project a starting dose that did not induce CR exceeding a clinically-predefined threshold. In cynomolgus monkeys, glofitamab showed a species-specific atypical high clearance, with and without B-cell debulking by Gpt. CR was related to glofitamab serum levels and B-cell counts. B-cell reduction by Gpt led to a marked decrease in CR. FIH starting dose (5 µg) was selected based on IL-6 release considering the markedly higher glofitamab in vitro potency in human vs monkey blood. This is a novel PKPD-based approach for selection of FIH starting dose for a CD20xCD3 bispecific antibody in B-cell lymphoma, evidenced in the glofitamab study, NP30179 (NCT03075696).
Collapse
Affiliation(s)
- Nicolas Frances
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, Basel, Switzerland
| | - Marina Bacac
- Roche Innovation Center Zürich, Roche Pharmaceutical Research and Early Development, Zürich, Switzerland
| | - Katharine Bray-French
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, Basel, Switzerland
| | - François Christen
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, Basel, Switzerland
| | - Heather Hinton
- Roche Innovation Center Zürich, Roche Pharmaceutical Research and Early Development, Zürich, Switzerland
| | - Elisabeth Husar
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, Basel, Switzerland
| | - Elizabeth Quackenbush
- Roche Innovation Center New York, Roche Pharmaceutical Research and Early Development, New York City, NY
| | - Martin Schäfer
- Roche Innovation Center Munich, Roche Pharmaceutical Research and Early Development, Penzberg, Germany
| | - Eginhard Schick
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, Basel, Switzerland
| | - Arthur Van De Vyver
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, Basel, Switzerland
| | - Wolfgang F Richter
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, Basel, Switzerland.
| |
Collapse
|
15
|
Makowski EK, Schardt JS, Tessier PM. Improving antibody drug development using bionanotechnology. Curr Opin Biotechnol 2021; 74:137-145. [PMID: 34890875 DOI: 10.1016/j.copbio.2021.10.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 12/20/2022]
Abstract
Monoclonal antibodies are being used to treat a remarkable breadth of human disorders. Nevertheless, there are several key challenges at the earliest stages of antibody drug development that need to be addressed using simple and widely accessible methods, especially related to generating antibodies against membrane proteins and identifying antibody candidates with drug-like biophysical properties (high solubility and low viscosity). Here we highlight key bionanotechnologies for preparing functional and stable membrane proteins in diverse types of lipoparticles that are being used to improve antibody discovery and engineering efforts. We also highlight key bionanotechnologies for high-throughput and ultra-dilute screening of antibody biophysical properties during antibody discovery and optimization that are being used for identifying antibodies with superior combinations of in vitro (formulation) and in vivo (half-life) properties.
Collapse
Affiliation(s)
- Emily K Makowski
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - John S Schardt
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M Tessier
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Departmant of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
16
|
Dietlin-Auril V, Lecerf M, Depinay S, Noé R, Dimitrov JD. Interaction with 2,4-dinitrophenol correlates with polyreactivity, self-binding, and stability of clinical-stage therapeutic antibodies. Mol Immunol 2021; 140:233-239. [PMID: 34773862 DOI: 10.1016/j.molimm.2021.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022]
Abstract
Therapeutic antibodies should cover particular physicochemical and functional requirements for successful entry into clinical practice. Numerous experimental and computational approaches have been developed for early identification of different unfavourable features of antibodies. Immune repertoires of healthy humans contain a fraction of antibodies that recognize nitroarenes. These antibodies have been demonstrated to manifest antigen-binding polyreactivity. Here we observed that >20 % of 112 clinical stage therapeutic antibodies show pronounced binding to 2,4-dinitrophenol conjugated to albumin. This interaction predicts a number of unfavourable functional and physicochemical features of antibodies such as polyreactivity, tendency for self-association, stability and expression yields. Based on these findings we proposed a simple approach that may add to the armamentarium of assays for early identification of developability liabilities of antibodies intended for therapeutic use.
Collapse
Affiliation(s)
- Valentin Dietlin-Auril
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Maxime Lecerf
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Stephanie Depinay
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Rémi Noé
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006, Paris, France.
| |
Collapse
|
17
|
Low BE, Christianson GJ, Lowell E, Qin W, Wiles MV. Functional humanization of immunoglobulin heavy constant gamma 1 Fc domain human FCGRT transgenic mice. MAbs 2021; 12:1829334. [PMID: 33025844 PMCID: PMC7577234 DOI: 10.1080/19420862.2020.1829334] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A major asset of many monoclonal antibody (mAb)-based biologics is their persistence in circulation. The MHC class I family Fc receptor, FCGRT, is primarily responsible for this extended pharmacokinetic behavior. Engagement of FCGRT with the crystallizable fragment (Fc) domain protects IgG from catabolic elimination, thereby extending the persistence and bioavailability of IgG and related Fc-based biologics. There is a need for reliable in vivo models to facilitate the preclinical development of novel IgG-based biologics. FcRn-humanized mice have been widely accepted as translationally relevant surrogates for IgG-based biologics evaluations. Although such FCGRT-humanized mice, especially the mouse strain, B6.Cg-Fcgrttm1Dcr Tg(FCGRT)32Dcr (abbreviated Tg32), have been substantially validated for modeling humanized IgG-based biologics, there is a recognized caveat – they lack an endogenous source of human IgG that typifies the human competitive condition. Here, we used CRISPR/Cas9-mediated homology-directed repair to equip the hFCGRT Tg32 strain with a human IGHG1 Fc domain. This replacement now results in mice that produce human IgG1 Fc-mouse IgG Fab2 chimeric antibodies at physiologically relevant levels, which can be further heightened by immunization. This endogenous chimeric IgG1 significantly dampens the serum half-life of administered humanized mAbs in an hFCGRT-dependent manner. Thus, such IgG1-Fc humanized mice may provide a more physiologically relevant competitive hFCGRT-humanized mouse model for the preclinical development of human IgG-based biologics.
Collapse
Affiliation(s)
| | | | - Emily Lowell
- Previously at the Jackson Laboratory , Bar Harbor, ME, USA
| | - Wenning Qin
- Previously at the Jackson Laboratory , Bar Harbor, ME, USA
| | | |
Collapse
|
18
|
A cell based assay for evaluating binding and uptake of an antibody using hepatic nonparenchymal cells. Sci Rep 2021; 11:8383. [PMID: 33863984 PMCID: PMC8052349 DOI: 10.1038/s41598-021-87912-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/06/2021] [Indexed: 11/08/2022] Open
Abstract
Evaluation of the binding and uptake of an antibody in liver non-parenchymal cells (NPC), including liver sinusoidal endothelial cells, is important for revealing its pharmacokinetic (PK) behavior, since NPC has important roles in eliminating an antibody from the blood via the Fc fragment of IgG receptor IIB (FcγRIIB). However, there is currently no in vitro quantitative assay using NPC. This study reports on the development of a cell-based assay for evaluating the binding and uptake of such an antibody using liver NPC of mice and monkeys. In mice, the FcγRIIB-expressing cells were identified in the CD146-positive and CD45-negative fraction by flow cytometry. A titration assay was performed to determine the PK parameters, and the obtained parameter was comparable to that determined by the fitting of the in vivo PK. This approach was also extended to NPC from monkeys. The concentration-dependent binding and uptake was measured to determine the PK parameters using monkey NPC, the FcγRIIB-expressing fraction of which was identified by CD31 and CD45. The findings presented herein demonstrate that the in vitro liver NPC assay using flow cytometry is a useful tool to determine the binding and uptake of biologics and to predict the PK.
Collapse
|
19
|
Nagayasu M, Ozeki K. Combination of cassette-dosing and microsampling for reduced animal usage for antibody pharmacokinetics in cynomolgus monkeys, wild-type mice, and human FcRn transgenic mice. Pharm Res 2021; 38:583-592. [PMID: 33782838 DOI: 10.1007/s11095-021-03028-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/03/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE The aim of this study was to develop a useful antibody PK evaluation tool using a combination of cassette-dosing and microsampling in mice and monkeys in order to reduce the number of animals used. METHODS Cetuximab, denosumab, infliximab, and a mixture of the three antibodies, i.e., cassette-dosing, were administered intravenously to cynomolgus monkeys, C57BL/6J mice, and homozygous human neonatal Fc-receptor transgenic (Tg32) mice. Mouse blood was collected from one animal continuously via the jugular vein at nine points. RESULTS In cynomolgus monkeys, infliximab showed faster elimination in the cassette-dosing group than in the single-dose group. Anti-drug antibody production was observed, but the PK parameters of the clearance and distribution volume were similar in both groups. In C57BL/6J and Tg32 mice, each of the plasma concentrations-time profiles after cassette-dosing were similar to those after single dosing. PK evaluation using a combination of cassette-dosing and microsampling in mice may reduce the number of mice used by approximately 90% compared with the conventional method. CONCLUSIONS The combination of antibody cassette-dosing and microsampling is a promising PK evaluation method as a high-throughput and reliable with reduced numbers of mice and cynomolgus monkeys.
Collapse
Affiliation(s)
- Miho Nagayasu
- Research Division, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba-shi, Shizuoka, 412-8513, Japan
| | - Kazuhisa Ozeki
- Research Division, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba-shi, Shizuoka, 412-8513, Japan.
| |
Collapse
|
20
|
Germovsek E, Cheng M, Giragossian C. Allometric scaling of therapeutic monoclonal antibodies in preclinical and clinical settings. MAbs 2021; 13:1964935. [PMID: 34530672 PMCID: PMC8463036 DOI: 10.1080/19420862.2021.1964935] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Constant technological advancement enabled the production of therapeutic monoclonal antibodies (mAbs) and will continue to contribute to their rapid expansion. Compared to small-molecule drugs, mAbs have favorable characteristics, but also more complex pharmacokinetics (PK), e.g., target-mediated nonlinear elimination and recycling by neonatal Fc-receptor. This review briefly discusses mAb biology, similarities and differences in PK processes across species and within human, and provides a detailed overview of allometric scaling approaches for translating mAb PK from preclinical species to human and extrapolating from adults to children. The approaches described here will remain vital in mAb drug development, although more data are needed, for example, from very young patients and mAbs with nonlinear PK, to allow for more confident conclusions and contribute to further growth of this field. Improving mAb PK predictions will facilitate better planning of (pediatric) clinical studies and enable progression toward the ultimate goal of expediting drug development.
Collapse
Affiliation(s)
- Eva Germovsek
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | - Ming Cheng
- Development Biologicals, Drug Metabolism And Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, US
| | - Craig Giragossian
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, US
| |
Collapse
|
21
|
Sawant MS, Streu CN, Wu L, Tessier PM. Toward Drug-Like Multispecific Antibodies by Design. Int J Mol Sci 2020; 21:E7496. [PMID: 33053650 PMCID: PMC7589779 DOI: 10.3390/ijms21207496] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
The success of antibody therapeutics is strongly influenced by their multifunctional nature that couples antigen recognition mediated by their variable regions with effector functions and half-life extension mediated by a subset of their constant regions. Nevertheless, the monospecific IgG format is not optimal for many therapeutic applications, and this has led to the design of a vast number of unique multispecific antibody formats that enable targeting of multiple antigens or multiple epitopes on the same antigen. Despite the diversity of these formats, a common challenge in generating multispecific antibodies is that they display suboptimal physical and chemical properties relative to conventional IgGs and are more difficult to develop into therapeutics. Here we review advances in the design and engineering of multispecific antibodies with drug-like properties, including favorable stability, solubility, viscosity, specificity and pharmacokinetic properties. We also highlight emerging experimental and computational methods for improving the next generation of multispecific antibodies, as well as their constituent antibody fragments, with natural IgG-like properties. Finally, we identify several outstanding challenges that need to be addressed to increase the success of multispecific antibodies in the clinic.
Collapse
Affiliation(s)
- Manali S. Sawant
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Craig N. Streu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemistry, Albion College, Albion, MI 49224, USA
| | - Lina Wu
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M. Tessier
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Noguchi Y, Ozeki K, Akita H. Pharmacokinetic prediction of an antibody in mice based on an in vitro cell-based approach using target receptor-expressing cells. Sci Rep 2020; 10:16268. [PMID: 33004886 PMCID: PMC7529773 DOI: 10.1038/s41598-020-73255-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/14/2020] [Indexed: 11/18/2022] Open
Abstract
In vivo pharmacokinetics (PK) studies using mice and monkeys are the main approaches for evaluating and predicting the PK of antibodies, and there is a strong demand for methods that do not require animal experiments. In this work, we focused on quantitatively predicting the nonlinear PK of an antibody based on cell-based assays. An anti-mouse Fc gamma receptor IIB antibody was used as a model antibody. To determine the PK parameters related to nonspecific elimination in vivo, the plasma concentration profile at 100 mg/kg, at which target-specific clearance is saturated, was analyzed by a 2-compartment model. To estimate the parameters related to target-specific elimination, the Michaelis–Menten constant (Km) and the maximum elimination rate (Vmax) were determined by an uptake assay using Chinese hamster ovary (CHO) cells expressing the target receptor. Finally, the integration of all of these parameters permitted the PK to be predicted at doses ranging from 1 to 100 mg/kg regardless of whether target-specific clearance was saturated or nonsaturated. The findings presented herein show that in vitro assays using target-expressing cells are useful tools for obtaining PK parameters and predicting PK profiles and, in some cases, eliminate the need for in vivo PK studies using experimental animals.
Collapse
Affiliation(s)
- Yuki Noguchi
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Kazuhisa Ozeki
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan.
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-0856, Japan
| |
Collapse
|
23
|
Dimitrov JD. Harnessing the Therapeutic Potential of 'Rogue' Antibodies. Trends Pharmacol Sci 2020; 41:409-417. [PMID: 32334839 DOI: 10.1016/j.tips.2020.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/23/2022]
Abstract
Therapeutic antibodies have revolutionized modern medicine. At present, antibodies are successfully used for treatment of diverse human diseases, ranging from cancer to viral infections. All clinically approved antibodies rely on highly specific recognition of their target antigen. Antigen-binding promiscuity, binding to autoantigens, and propensity for self-binding (homophilic interaction) are highly undesirable characteristics of antibody drug candidates. Nevertheless, the immune system of all healthy individuals constantly produces and uses large quantities of antibodies that can be classified as inappropriate for development as drugs. Here, I provide arguments that antibodies with 'aberrant' properties have therapeutic potential. They could be useful in certain complex pathological conditions, thus enriching our armamentarium for treatment of human diseases.
Collapse
Affiliation(s)
- Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France.
| |
Collapse
|
24
|
Foti RS, Biswas K, Aral J, Be X, Berry L, Cheng Y, Conner K, Falsey JR, Glaus C, Herberich B, Hickman D, Ikotun T, Li H, Long J, Huang L, Miranda LP, Murray J, Moyer B, Netirojjanakul C, Nixey TE, Sham K, Soto M, Tegley CM, Tran L, Wu B, Yin L, Rock DA. Use of Cryopreserved Hepatocytes as Part of an Integrated Strategy to Characterize In Vivo Clearance for Peptide-Antibody Conjugate Inhibitors of Nav1.7 in Preclinical Species. Drug Metab Dispos 2019; 47:1111-1121. [PMID: 31387871 DOI: 10.1124/dmd.119.087742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/08/2019] [Indexed: 02/13/2025] Open
Abstract
The identification of nonopioid alternatives to treat chronic pain has received a great deal of interest in recent years. Recently, the engineering of a series of Nav1.7 inhibitory peptide-antibody conjugates has been reported, and herein, the preclinical efforts to identify novel approaches to characterize the pharmacokinetic properties of the peptide conjugates are described. A cryopreserved plated mouse hepatocyte assay was designed to measure the depletion of the peptide-antibody conjugates from the media, with a correlation being observed between percentage remaining in the media and in vivo clearance (Pearson r = -0.5525). Physicochemical (charge and hydrophobicity), receptor-binding [neonatal Fc receptor (FcRn)], and in vivo pharmacokinetic data were generated and compared with the results from our in vitro hepatocyte assay, which was hypothesized to encompass all of the aforementioned properties. Correlations were observed among hydrophobicity; FcRn binding; depletion rates from the hepatocyte assay; and ultimately, in vivo clearance. Subsequent studies identified potential roles for the low-density lipoprotein and mannose/galactose receptors in the association of the Nav1.7 peptide conjugates with mouse hepatocytes, although in vivo studies suggested that FcRn was still the primary receptor involved in determining the pharmacokinetics of the peptide conjugates. Ultimately, the use of the cryopreserved hepatocyte assay along with FcRn binding and hydrophobic interaction chromatography provided an efficient and integrated approach to rapidly triage molecules for advancement while reducing the number of in vivo pharmacokinetic studies. SIGNIFICANCE STATEMENT: Although multiple in vitro and in silico tools are available in small-molecule drug discovery, pharmacokinetic characterization of protein therapeutics is still highly dependent upon the use of in vivo studies in preclinical species. The current work demonstrates the combined use of cryopreserved hepatocytes, hydrophobic interaction chromatography, and neonatal Fc receptor binding to characterize a series of Nav1.7 peptide-antibody conjugates prior to conducting in vivo studies, thus providing a means to rapidly evaluate novel protein therapeutic platforms while concomitantly reducing the number of in vivo studies conducted in preclinical species.
Collapse
Affiliation(s)
- Robert S Foti
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Kaustav Biswas
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Jennifer Aral
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Xuhai Be
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Loren Berry
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Yuan Cheng
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Kip Conner
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - James R Falsey
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Charles Glaus
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Brad Herberich
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Dean Hickman
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Tayo Ikotun
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Hongyan Li
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Jason Long
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Liyue Huang
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Les P Miranda
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Justin Murray
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Bryan Moyer
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Chawita Netirojjanakul
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Thomas E Nixey
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Kelvin Sham
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Marcus Soto
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Christopher M Tegley
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Linh Tran
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Bin Wu
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Lin Yin
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Dan A Rock
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| |
Collapse
|
25
|
Xu Y, Wang D, Mason B, Rossomando T, Li N, Liu D, Cheung JK, Xu W, Raghava S, Katiyar A, Nowak C, Xiang T, Dong DD, Sun J, Beck A, Liu H. Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs 2018; 11:239-264. [PMID: 30543482 DOI: 10.1080/19420862.2018.1553476] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing attention has been paid to developability assessment with the understanding that thorough evaluation of monoclonal antibody lead candidates at an early stage can avoid delays during late-stage development. The concept of developability is based on the knowledge gained from the successful development of approximately 80 marketed antibody and Fc-fusion protein drug products and from the lessons learned from many failed development programs over the last three decades. Here, we reviewed antibody quality attributes that are critical to development and traditional and state-of-the-art analytical methods to monitor those attributes. Based on our collective experiences, a practical workflow is proposed as a best practice for developability assessment including in silico evaluation, extended characterization and forced degradation using appropriate analytical methods that allow characterization with limited material consumption and fast turnaround time.
Collapse
Affiliation(s)
- Yingda Xu
- a Protein Analytics , Adimab , Lebanon , NH , USA
| | - Dongdong Wang
- b Analytical Department , Bioanalytix, Inc ., Cambridge , MA , USA
| | - Bruce Mason
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tony Rossomando
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Ning Li
- d Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Dingjiang Liu
- e Formulation Development , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Jason K Cheung
- f Pharmaceutical Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Wei Xu
- g Analytical Method Development , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Smita Raghava
- h Sterile Formulation Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Amit Katiyar
- i Analytical Development , Bristol-Myers Squibb , Pennington , NJ , USA
| | - Christine Nowak
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tao Xiang
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Diane D Dong
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Joanne Sun
- k Product development , Innovent Biologics , Suzhou Industrial Park , China
| | - Alain Beck
- l Analytical chemistry , NBEs, Center d'immunologie Pierre Fabre , St Julien-en-Genevois Cedex , France
| | - Hongcheng Liu
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| |
Collapse
|
26
|
Goulet DR, Watson MJ, Tam SH, Zwolak A, Chiu ML, Atkins WM, Nath A. Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance. Drug Metab Dispos 2018; 46:1900-1907. [PMID: 30232177 PMCID: PMC7370997 DOI: 10.1124/dmd.118.081893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/10/2018] [Indexed: 12/27/2022] Open
Abstract
The serum half-life and clearance of therapeutic monoclonal antibodies (mAbs) are critical factors that impact their efficacy and optimal dosing regimen. The pH-dependent binding of an mAb to the neonatal Fc receptor (FcRn) has long been recognized as an important determinant of its pharmacokinetics. However, FcRn affinity alone is not a reliable predictor of mAb half-life, suggesting that other biologic or biophysical mechanisms must be accounted for. mAb thermal stability, which reflects its unfolding and aggregation propensities, may also relate to its pharmacokinetic properties. However, no rigorous statistical regression methods have been used to identify combinations of physical parameters that best predict biologic properties. In this work, a panel of eight mAbs with published human pharmacokinetic data were selected for biophysical analyses of FcRn binding and thermal stability. Biolayer interferometry was used to characterize FcRn/mAb binding at acidic and neutral pH, while differential scanning calorimetry was used to determine thermodynamic unfolding parameters. Individual binding or stability parameters were generally weakly correlated with half-life and clearance values. Least absolute shrinkage and selection operator regression was used to identify the combination of two parameters with the best correlation to half-life and clearance as being the FcRn binding response at pH 7.0 and the change in heat capacity. Leave-one-out subsampling yielded a root mean square difference between observed and predicted half-life of just 2.7 days (16%). Thus, the incorporation of multiple biophysical parameters into a cohesive model may facilitate early-stage prediction of in vivo half-life and clearance based on simple in vitro experiments.
Collapse
Affiliation(s)
- Dennis R Goulet
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington (D.R.G., M.J.W., W.M.A., A.N.); and Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania (S.H.T., A.Z., M.L.C.)
| | - Michael J Watson
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington (D.R.G., M.J.W., W.M.A., A.N.); and Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania (S.H.T., A.Z., M.L.C.)
| | - Susan H Tam
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington (D.R.G., M.J.W., W.M.A., A.N.); and Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania (S.H.T., A.Z., M.L.C.)
| | - Adam Zwolak
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington (D.R.G., M.J.W., W.M.A., A.N.); and Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania (S.H.T., A.Z., M.L.C.)
| | - Mark L Chiu
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington (D.R.G., M.J.W., W.M.A., A.N.); and Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania (S.H.T., A.Z., M.L.C.)
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington (D.R.G., M.J.W., W.M.A., A.N.); and Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania (S.H.T., A.Z., M.L.C.)
| | - Abhinav Nath
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington (D.R.G., M.J.W., W.M.A., A.N.); and Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania (S.H.T., A.Z., M.L.C.)
| |
Collapse
|
27
|
Shiraiwa H, Narita A, Kamata-Sakurai M, Ishiguro T, Sano Y, Hironiwa N, Tsushima T, Segawa H, Tsunenari T, Ikeda Y, Kayukawa Y, Noguchi M, Wakabayashi T, Sakamoto A, Konishi H, Kuramochi T, Endo M, Hattori K, Nezu J, Igawa T. Engineering a bispecific antibody with a common light chain: Identification and optimization of an anti-CD3 epsilon and anti-GPC3 bispecific antibody, ERY974. Methods 2018; 154:10-20. [PMID: 30326272 DOI: 10.1016/j.ymeth.2018.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/03/2018] [Accepted: 10/11/2018] [Indexed: 01/07/2023] Open
Abstract
The antibody drug market is rapidly expanding, and various antibody engineering technologies are being developed to create antibodies that can provide better benefit to patients. Although bispecific antibody drugs have been researched for more than 30 years, currently only a limited number of bispecific antibodies have achieved regulatory approval. Of the few successful examples of industrially manufacturing a bispecific antibody, the "common light chain format" is an elegant technology that simplifies the purification of a whole IgG-type bispecific antibody. Using this IgG format, the bispecific function can be introduced while maintaining the natural molecular shape of the antibody. In this article, we will first introduce the outline, prospects, and limitations of the common light chain format. Then, we will describe the identification and optimization process for ERY974, an anti-glypican-3 × anti-CD3ε T cell-redirecting bispecific antibody with a common light chain. This format includes one of Chugai's proprietary technologies, termed ART-Ig technology, which consists of a method to identify a common light chain, isoelectric point (pI) engineering to purify the desired bispecific IgG antibody from byproducts, and Fc heterodimerization by an electrostatic steering effect. Furthermore, we describe some tips for de-risking the antibody when engineering a T cell redirecting antibody.
Collapse
Affiliation(s)
- Hirotake Shiraiwa
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan.
| | - Atsushi Narita
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Mika Kamata-Sakurai
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Takahiro Ishiguro
- Translational Clinical Research Division, Chugai Pharmaceutical Co., Ltd., Chuo-ku, Tokyo, Japan
| | - Yuji Sano
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Naoka Hironiwa
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | | | - Hiroaki Segawa
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Toshiaki Tsunenari
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Yosuke Ikeda
- Chugai Pharma Manufacturing Co., Ltd., Kita-ku, Tokyo, Japan
| | - Yoko Kayukawa
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Mizuho Noguchi
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Tetsuya Wakabayashi
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Akihisa Sakamoto
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Hiroko Konishi
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | | | - Mika Endo
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Kunihiro Hattori
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Junichi Nezu
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Tomoyuki Igawa
- Chugai Pharmabody Research Pte. Ltd., Biopolis Drive, Singapore
| |
Collapse
|
28
|
Ovacik M, Lin K. Tutorial on Monoclonal Antibody Pharmacokinetics and Its Considerations in Early Development. Clin Transl Sci 2018; 11:540-552. [PMID: 29877608 PMCID: PMC6226118 DOI: 10.1111/cts.12567] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/11/2018] [Indexed: 12/21/2022] Open
Abstract
The tutorial introduces the readers to the fundamentals of antibody pharmacokinetics (PK) in the context of drug development. Topics covered include an overview of antibody development, PK characteristics, and the application of antibody PK/pharmacodynamics (PD) in research and development decision-making. We also discuss the general considerations for planning a nonclinical PK program and describe the types of PK studies that should be performed during early development of monoclonal antibodies.
Collapse
Affiliation(s)
- Meric Ovacik
- Department of Preclinical and Translational Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Kedan Lin
- Clinical Pharmacology, NGM Biopharmaceuticals, Inc., South San Francisco, California, USA
| |
Collapse
|
29
|
Rabia LA, Desai AA, Jhajj HS, Tessier PM. Understanding and overcoming trade-offs between antibody affinity, specificity, stability and solubility. Biochem Eng J 2018; 137:365-374. [PMID: 30666176 DOI: 10.1016/j.bej.2018.06.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The widespread use of monoclonal antibodies for therapeutic applications has led to intense interest in optimizing several of their natural properties (affinity, specificity, stability, solubility and effector functions) as well as introducing non-natural activities (bispecificity and cytotoxicity mediated by conjugated drugs). A common challenge during antibody optimization is that improvements in one property (e.g., affinity) can lead to deficits in other properties (e.g., stability). Here we review recent advances in understanding trade-offs between different antibody properties, including affinity, specificity, stability and solubility. We also review new approaches for co-optimizing multiple antibody properties and discuss how these methods can be used to rapidly and systematically generate antibodies for a wide range of applications.
Collapse
Affiliation(s)
- Lilia A Rabia
- Center for Biotechnology & Interdisciplinary Studies, Isermann Dept. of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Alec A Desai
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Harkamal S Jhajj
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M Tessier
- Center for Biotechnology & Interdisciplinary Studies, Isermann Dept. of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
30
|
Avery LB, Wade J, Wang M, Tam A, King A, Piche-Nicholas N, Kavosi MS, Penn S, Cirelli D, Kurz JC, Zhang M, Cunningham O, Jones R, Fennell BJ, McDonnell B, Sakorafas P, Apgar J, Finlay WJ, Lin L, Bloom L, O'Hara DM. Establishing in vitro in vivo correlations to screen monoclonal antibodies for physicochemical properties related to favorable human pharmacokinetics. MAbs 2018; 10:244-255. [PMID: 29271699 DOI: 10.1080/19420862.2017.1417718] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Implementation of in vitro assays that correlate with in vivo human pharmacokinetics (PK) would provide desirable preclinical tools for the early selection of therapeutic monoclonal antibody (mAb) candidates with minimal non-target-related PK risk. Use of these tools minimizes the likelihood that mAbs with unfavorable PK would be advanced into costly preclinical and clinical development. In total, 42 mAbs varying in isotype and soluble versus membrane targets were tested in in vitro and in vivo studies. MAb physicochemical properties were assessed by measuring non-specific interactions (DNA- and insulin-binding ELISA), self-association (affinity-capture self-interaction nanoparticle spectroscopy) and binding to matrix-immobilized human FcRn (surface plasmon resonance and column chromatography). The range of scores obtained from each in vitro assay trended well with in vivo clearance (CL) using both human FcRn transgenic (Tg32) mouse allometrically projected human CL and observed human CL, where mAbs with high in vitro scores resulted in rapid CL in vivo. Establishing a threshold value for mAb CL in human of 0.32 mL/hr/kg enabled refinement of thresholds for each in vitro assay parameter, and using a combinatorial triage approach enabled the successful differentiation of mAbs at high risk for rapid CL (unfavorable PK) from those with low risk (favorable PK), which allowed mAbs requiring further characterization to be identified. Correlating in vitro parameters with in vivo human CL resulted in a set of in vitro tools for use in early testing that would enable selection of mAbs with the greatest likelihood of success in the clinic, allowing costly late-stage failures related to an inadequate exposure profile, toxicity or lack of efficacy to be avoided.
Collapse
Affiliation(s)
| | - Jason Wade
- b BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA
| | - Mengmeng Wang
- a BioMedicine Design, Pfizer Inc. , Andover , MA , USA
| | - Amy Tam
- b BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA
| | - Amy King
- b BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA
| | | | | | - Steve Penn
- a BioMedicine Design, Pfizer Inc. , Andover , MA , USA.,c Medicine Design, Pfizer Inc. , Cambridge , MA , USA
| | - David Cirelli
- d Pharmaceutical Sciences, Pfizer Inc. , Andover , MA , USA
| | | | - Minlei Zhang
- a BioMedicine Design, Pfizer Inc. , Andover , MA , USA
| | | | - Rhys Jones
- b BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA.,f Currently Medicine Design, Pfizer Inc. , La Jolla , CA , USA
| | | | | | - Paul Sakorafas
- d Pharmaceutical Sciences, Pfizer Inc. , Andover , MA , USA
| | - James Apgar
- b BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA
| | - William J Finlay
- e Biomedicine Design, Pfizer Inc. , Dublin , Ireland.,g Currently CodeBase , Edinburgh , UK
| | - Laura Lin
- b BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA
| | - Laird Bloom
- b BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA
| | | |
Collapse
|
31
|
Carter PJ, Lazar GA. Next generation antibody drugs: pursuit of the 'high-hanging fruit'. Nat Rev Drug Discov 2017; 17:197-223. [DOI: 10.1038/nrd.2017.227] [Citation(s) in RCA: 447] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|