1
|
Kyu HH, Vongpradith A, Dominguez RMV, Ma J, Albertson SB, Novotney A, Khalil IA, Troeger CE, Doxey MC, Ledesma JR, Sirota SB, Bender RG, Swetschinski LR, Cunningham M, Spearman S, Abate YH, Abd Al Magied AHA, Abd ElHafeez S, Abdoun M, Abera B, Abidi H, Aboagye RG, Abtew YD, Abualruz H, Abu-Gharbieh E, Abukhadijah HJ, Aburuz S, Addo IY, Adekanmbi V, Adetunji COO, Adeyeoluwa TE, Adhikary RK, Adnani QES, Adra S, Adzigbli LA, Afolabi AA, Afzal MS, Afzal S, Agampodi SB, Agide FD, Ahinkorah BO, Ahmad A, Ahmad S, Ahmed A, Ahmed A, Ahmed H, Ahmed S, Akinosoglou K, Akter E, Al Awaidy S, Alajlani MM, Alam K, Albakri A, Albashtawy M, Aldhaleei WA, Algammal AM, Al-Gheethi AAS, Ali A, Ali SS, Ali W, Alif SM, Aljunid SM, Al-Marwani S, Almazan JU, Al-Mekhlafi HM, Almustanyir S, Alqahatni SA, Alrawashdeh A, Al-Rifai RH, Alsabri MA, Altaf A, Altirkawi KA, Alvis-Guzman N, Alvis-Zakzuk NJ, Alyahya MSI, Al-Zyoud WA, Amugsi DA, Andrei CL, Antoni S, Anuoluwa BS, Anuoluwa IA, Anwar S, Anwari P, Apostol GLC, Arabloo J, Arafat M, Aravkin AY, Areda D, Aregawi BB, Aremu A, Arndt MB, Asgedom AA, Ashraf T, Athari SS, Atreya A, Ayele F, Azadi D, Azhar GS, Aziz S, Azzam AY, et alKyu HH, Vongpradith A, Dominguez RMV, Ma J, Albertson SB, Novotney A, Khalil IA, Troeger CE, Doxey MC, Ledesma JR, Sirota SB, Bender RG, Swetschinski LR, Cunningham M, Spearman S, Abate YH, Abd Al Magied AHA, Abd ElHafeez S, Abdoun M, Abera B, Abidi H, Aboagye RG, Abtew YD, Abualruz H, Abu-Gharbieh E, Abukhadijah HJ, Aburuz S, Addo IY, Adekanmbi V, Adetunji COO, Adeyeoluwa TE, Adhikary RK, Adnani QES, Adra S, Adzigbli LA, Afolabi AA, Afzal MS, Afzal S, Agampodi SB, Agide FD, Ahinkorah BO, Ahmad A, Ahmad S, Ahmed A, Ahmed A, Ahmed H, Ahmed S, Akinosoglou K, Akter E, Al Awaidy S, Alajlani MM, Alam K, Albakri A, Albashtawy M, Aldhaleei WA, Algammal AM, Al-Gheethi AAS, Ali A, Ali SS, Ali W, Alif SM, Aljunid SM, Al-Marwani S, Almazan JU, Al-Mekhlafi HM, Almustanyir S, Alqahatni SA, Alrawashdeh A, Al-Rifai RH, Alsabri MA, Altaf A, Altirkawi KA, Alvis-Guzman N, Alvis-Zakzuk NJ, Alyahya MSI, Al-Zyoud WA, Amugsi DA, Andrei CL, Antoni S, Anuoluwa BS, Anuoluwa IA, Anwar S, Anwari P, Apostol GLC, Arabloo J, Arafat M, Aravkin AY, Areda D, Aregawi BB, Aremu A, Arndt MB, Asgedom AA, Ashraf T, Athari SS, Atreya A, Ayele F, Azadi D, Azhar GS, Aziz S, Azzam AY, Babu GR, Bahrami Taghanaki P, Bahramian S, Balakrishnan S, Banik B, Bante SA, Bardhan M, Bärnighausen TW, Barqawi HJ, Barrow A, Basharat Z, Bassat Q, Bastan MM, Basu S, Bathini PP, Behzadi P, Beiranvand M, Bello MB, Bello OO, Beloukas A, Beran A, Bhandari D, Bhardwaj P, Bhutta ZA, Borhany H, Bouaoud S, Brauer M, Buonsenso D, Butt ZA, Çakmak Barsbay M, Cámera LA, Capodici A, Castañeda-Orjuela CA, Cenderadewi M, Chakraborty C, Chakraborty S, Chattu VK, Chaudhary AA, Chichagi F, Ching PR, Chirinos-Caceres JL, Chopra H, Choudhari SG, Chowdhury EK, Chu DT, Chukwu IS, Chutiyami M, Cruz-Martins N, Dadras O, Dai X, Dandona L, Dandona R, Darcho SD, Das JK, Dash NR, Delgado-Enciso I, Desye B, Devanbu VGC, Dhama K, Dhimal M, Diaz MJ, Do TC, Dohare S, Dorostkar F, Doshi OP, Doshmangir L, Dsouza HL, Duraisamy S, Durojaiye OC, E'mar AR, Ed-Dra A, Edinur HA, Efendi D, Efendi F, Eghbali F, Ekundayo TC, El Sayed I, Elhadi M, El-Metwally AA, Elshaer M, Elsohaby I, Eltaha C, Eshrati B, Eslami M, Fahim A, Fakhradiyev IR, Fakhri-Demeshghieh A, Farahmand M, Fasina FO, Fasina MM, Feizkhah A, Fekadu G, Ferreira N, Fetensa G, Fischer F, Fukumoto T, Fux B, Gadanya MA, Gaihre S, Gajdács M, Galali Y, Gandhi AP, Gautam RK, Gebregergis MW, Gebrehiwot M, Gebremeskel TG, Getachew ME, Getahun GK, Getie M, Ghasemzadeh A, Ghazy RM, Ghozy S, Gil AU, Girmay AA, Gizaw ATT, Golechha M, Goleij P, Gona PN, Grada A, Guarducci G, Gudeta MD, Gupta VK, Habteyohannes AD, Hadi NR, Hamidi S, Hamilton EB, Harapan H, Hasan MK, Hasan SM, Hasani H, Hasnain MS, Hassan II, He J, Hemmati M, Hezam K, Hosseinzadeh M, Huang J, Huynh HH, Ibitoye SE, Ikuta KS, Ilesanmi OS, Ilic IM, Ilic MD, Inamdar S, Isa MA, Islam MR, Islam SMS, Ismail NE, Iwu CD, Jacobsen KH, Jahrami H, Jain A, Jain N, Jairoun AA, Jakovljevic M, Jalilzadeh Yengejeh R, Javidnia J, Jayaram S, Jokar M, Jonas JB, Joseph A, Joseph N, Jozwiak JJ, Kabir H, Kadir DHH, Kamal MM, Kamal VK, Kamireddy A, Kanchan T, Kanmodi KK, Kannan S S, Kantar RS, Karami J, Karki P, Kasraei H, Kaur H, Keykhaei M, Khader YS, Khalilian A, Khamesipour F, Khan G, Khan MJ, Khan ZA, Khanal V, Khatab K, Khatatbeh MM, Khater AM, Kheirallah KA, Khidri FF, Khosla AA, Kim K, Kim YJ, Kisa A, Kissoon N, Klu D, Kochhar S, Kolahi AA, Kompani F, Kosen S, Krishan K, Kuate Defo B, Kuddus MA, Kuddus M, Kulimbet M, Kumar GA, Kumar R, Kyei-Arthur F, Lahariya C, Lal DK, Le NHH, Lee SW, Lee WC, Lee YY, Li MC, Ligade VS, Liu G, Liu S, Liu X, Liu X, Lo CH, Lucchetti G, Lv L, Malhotra K, Malik AA, Marasini BP, Martorell M, Marzo RR, Masoumi-Asl H, Mathur M, Mathur N, Mediratta RP, Meftah E, Mekene Meto T, Meles HN, Melese EB, Mendoza W, Merati M, Meretoja TJ, Mestrovic T, Mettananda S, Minh LHN, Mishra V, Mithra P, Mohamadkhani A, Mohamed AI, Mohamed MFH, Mohamed NS, Mohammed M, Mohammed S, Monasta L, Moni MA, Motappa R, Mougin V, Mubarik S, Mulita F, Munjal K, Munkhsaikhan Y, Naghavi P, Naik G, Nair TS, Najmuldeen HHR, Nargus S, Narimani Davani D, Nashwan AJ, Natto ZS, Nazri-Panjaki A, Nchanji GT, Ndishimye P, Ngunjiri JW, Nguyen DH, Nguyen NNY, Nguyen VT, Nigatu YT, Nikoobar A, Niranjan V, Nnaji CA, Noman EA, Noor NM, Noor STA, Nouri M, Nozari M, Nri-Ezedi CA, Nugen F, Odetokun IA, Ogunfowokan AA, Ojo-Akosile TR, Okeke IN, Okekunle AP, Olorukooba AA, Olufadewa II, Oluwatunase GO, Orish VN, Ortega-Altamirano DV, Ortiz-Prado E, Osuagwu UL, Osuolale O, Ouyahia A, Padubidri JR, Pandey A, Pandey A, Pando-Robles V, Pardhan S, Parikh RR, Patel J, Patil S, Pawar S, Peprah P, Perianayagam A, Perna S, Petcu IR, Philip AK, Polibin RV, Postma MJ, Pourtaheri N, Pradhan J, Prates EJS, Pribadi DRA, Qasim NH, Qazi AS, R D, Radhakrishnan V, Rahim F, Rahman M, Rahman MA, Rahmani S, Rahmanian M, Rahmanian N, Ramadan MM, Ramasamy SK, Ramazanu S, Rameto MAA, Ramteke PW, Rana K, Ranabhat CL, Rasella D, Rashidi MM, Rasouli-Saravani A, Rathish D, Rauniyar SK, Rawaf S, Redwan EMM, Regmi AR, Rengasamy KRR, Rezaei N, Rezaei N, Rezaeian M, Riad A, Rodrigues M, Rodriguez JAB, Roever L, Rohilla R, Ronfani L, Rony MKK, Ross AG, Roudashti S, Roy B, Runghien T, Sachdeva Dhingra M, Saddik BA, Sadeghi E, Safari M, Sahoo SS, Sajadi SM, Salami AA, Saleh MA, Samadi Kafil H, Samodra YL, Sanabria J, Sanjeev RK, Sarkar T, Sartorius B, Sathian B, Satpathy M, Sawhney M, Schumacher AE, Sebsibe MA, Serban D, Shafie M, Shahid S, Shahid W, Shaikh MA, Sham S, Shamim MA, Shams-Beyranvand M, Shamshirgaran MA, Shanawaz M, Shannawaz M, Sharifan A, Sharma M, Sharma V, Shenoy SM, Sherchan SP, Shetty M, Shetty PH, Shiferaw D, Shittu A, Shorofi SA, Siddig EE, Silva LMLR, Singh B, Singh JA, Sinto R, Socea B, Soeters HM, Sokhan A, Sood P, Soraneh S, Sreeramareddy CT, Srinivasamurthy SK, Srivastava VK, Stanikzai MH, Subedi N, Subramaniyan V, Sulaiman SK, Suleman M, Swain CK, Szarpak L, T Y SS, Tabatabaei SM, Tabche C, Taha ZMA, Talukder A, Tamuzi JL, Tan KK, Tandukar S, Temsah MH, Thakali O, Thakur R, Thirunavukkarasu S, Thomas J, Thomas NK, Ticoalu JHV, Tiwari K, Tovani-Palone MR, Tram KH, Tran AT, Tran NM, Tran TH, Tromans SJ, Truyen TTTT, Tumurkhuu M, Udoakang AJ, Udoh A, Ullah S, Umair M, Umar M, Unim B, Unnikrishnan B, Vahdati S, Vaithinathan AG, Valizadeh R, Verma M, Verras GI, Vinayak M, Waheed Y, Walde MT, Wang Y, Waqas M, Weerakoon KG, Wickramasinghe ND, Wolde AA, Wu F, Yaghoubi S, Yaya S, Yezli S, Yiğit V, Yin D, Yon DK, Yonemoto N, Yusuf H, Zahid MH, Zakham F, Zaki L, Zare I, Zastrozhin M, Zeariya MGM, Zhang H, Zhang ZJ, Zhumagaliuly A, Zia H, Zoladl M, Mokdad AH, Lim SS, Vos T, Platts-Mills JA, Mosser JF, Reiner RC, Hay SI, Naghavi M, Murray CJL. Global, regional, and national age-sex-specific burden of diarrhoeal diseases, their risk factors, and aetiologies, 1990-2021, for 204 countries and territories: a systematic analysis for the Global Burden of Disease Study 2021. THE LANCET. INFECTIOUS DISEASES 2025; 25:519-536. [PMID: 39708822 PMCID: PMC12018300 DOI: 10.1016/s1473-3099(24)00691-1] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Diarrhoeal diseases claim more than 1 million lives annually and are a leading cause of death in children younger than 5 years. Comprehensive global estimates of the diarrhoeal disease burden for specific age groups of children younger than 5 years are scarce, and the burden in children older than 5 years and in adults is also understudied. We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021 to assess the burden of, and trends in, diarrhoeal diseases overall and attributable to 13 pathogens, as well as the contributions of associated risk factors, in children and adults in 204 countries and territories from 1990 to 2021. METHODS We used the Cause of Death Ensemble modelling strategy to analyse vital registration data, verbal autopsy data, mortality surveillance data, and minimally invasive tissue sampling data. We used DisMod-MR (version 2.1), a Bayesian meta-regression tool, to analyse incidence and prevalence data identified via systematic reviews, population-based surveys, and claims and inpatient data. We calculated diarrhoeal disability-adjusted life-years (DALYs) as the sum of years of life lost (YLLs) and years lived with disability (YLDs) for each location, year, and age-sex group. For aetiology estimation, we used a counterfactual approach to quantify population-attributable fractions (PAFs). Additionally, we estimated the diarrhoeal disease burden attributable to the independent effects of risk factors using the comparative risk assessment framework. FINDINGS In 2021, diarrhoeal diseases caused an estimated 1·17 million (95% uncertainty interval 0·793-1·62) deaths globally, representing a 60·3% (50·6-69·0) decrease since 1990 (2·93 million [2·31-3·73] deaths). The most pronounced decline was in children younger than 5 years, with a 79·2% (72·4-84·6) decrease in diarrhoeal deaths. Global YLLs also decreased substantially, from 186 million (147-221) in 1990 to 51·4 million (39·9-65·9) in 2021. In 2021, an estimated 59·0 million (47·2-73·2) DALYs were attributable to diarrhoeal diseases globally, with 30·9 million (23·1-42·0) of these affecting children younger than 5 years. Leading risk factors for diarrhoeal DALYs included low birthweight and short gestation in the neonatal age groups, child growth failure in children aged between 1-5 months and 2-4 years, and unsafe water and poor sanitation in older children and adults. We estimated that the removal of all evaluated diarrhoeal risk factors would reduce global DALYs from 59·0 million (47·2-73·2) to 4·99 million (1·99-10·0) among all ages combined. Globally in 2021, rotavirus was the predominant cause of diarrhoeal deaths across all ages, with a PAF of 15·2% (11·4-20·1), followed by norovirus at 10·6% (2·3-17·0) and Cryptosporidium spp at 10·2% (7·03-14·3). In children younger than 5 years, the fatal PAF of rotavirus was 35·2% (28·7-43·0), followed by Shigella spp at 24·0% (15·2-37·9) and adenovirus at 23·8% (14·8-36·3). Other pathogens with a fatal PAF greater than 10% in children younger than 5 years included Cryptosporidium spp, typical enteropathogenicEscherichia coli, and enterotoxigenic E coli producing heat-stable toxin. INTERPRETATION The substantial decline in the global burden of diarrhoeal diseases since 1990, particularly in children younger than 5 years, supports the effectiveness of health interventions such as oral rehydration therapy, enhanced water, sanitation, and hygiene (WASH) infrastructure, and the introduction and scale-up of rotavirus vaccination. Targeted interventions and preventive measures against key risk factors and pathogens could further reduce this burden. Continued investment in the development and distribution of vaccines for leading pathogens remains crucial. FUNDING Bill & Melinda Gates Foundation.
Collapse
|
2
|
Rao MS, Gaur A, Bharadwaj HR, Imran S, Tan JK, Abbas S, Fuad M, Abuhashem S, Shah MH, Dalal P, Al Khatib AN, Abbasher Hussien Mohamed Ahmed K. The current state of pediatric gastroenterology in under-resourced nations. Ann Med Surg (Lond) 2025; 87:2218-2228. [PMID: 40212147 PMCID: PMC11981426 DOI: 10.1097/ms9.0000000000003141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/25/2025] [Indexed: 04/13/2025] Open
Abstract
Background Pediatric gastroenterology (GI) care in low- and middle-income countries (LMICs) faces substantial challenges due to limited healthcare infrastructure, inadequate resources, and a shortage of specialized healthcare professionals. These challenges lead to delayed diagnoses and treatment, exacerbating the morbidity and mortality associated with pediatric GI diseases, which include both infectious conditions like diarrhea and chronic conditions such as inflammatory bowel disease (IBD) and liver diseases. Aim The aim of this review is to examine the current state of pediatric GI care in LMICs, identify the key challenges these regions face, and propose strategies to improve healthcare outcomes for children affected by GI disorders. Methods This review synthesizes existing literature from a range of LMICs, analyzing factors such as the economic burden of healthcare, barriers to access, the availability of diagnostic and therapeutic services, and the state of pediatric hepatology and endoscopy. Studies included in the review were sourced from countries in sub-Saharan Africa, South Asia, and other LMIC regions, focusing on pediatric GI disorders and healthcare delivery. Results Economic burden: Families in LMICs face significant economic barriers in accessing pediatric GI care, with treatment costs often exceeding household income, especially in private healthcare settings. Healthcare access: Limited access to healthcare facilities, especially in rural areas, coupled with the shortage of trained pediatric gastroenterologists and necessary medical equipment, leads to delayed diagnoses and inadequate care for conditions like Helicobacter pylori infections and chronic liver diseases. Sanitation and infectious diseases: Poor sanitation and lack of access to clean water contribute to the high prevalence of diarrheal diseases, which can be reduced through better hygiene practices and improved infrastructure. Training gaps: The shortage of trained healthcare workers, particularly pediatric specialists, hinders effective care delivery, with healthcare workers often overburdened due to workforce migration and low salaries. Hepatology and endoscopy: Pediatric hepatology, especially in the context of viral hepatitis, and the availability of pediatric GI endoscopy are severely limited in LMICs, further complicating the management of liver diseases and GI conditions in children. Conclusion Improving pediatric GI care in LMICs requires addressing systemic challenges such as inadequate healthcare infrastructure, limited financial resources, and a shortage of trained professionals. Prevention strategies like vaccination, sanitation improvements, and public health education campaigns are crucial for reducing the prevalence of pediatric GI diseases. In addition, enhancing access to specialized training, healthcare services, and diagnostic tools will improve outcomes for children in resource-limited settings. Continued international collaboration and investment in local healthcare systems are essential for creating sustainable solutions and bridging the gap in pediatric GI care.
Collapse
Affiliation(s)
- Medha Sridhar Rao
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Aditya Gaur
- Yeovil District Hospital, Somerset NHS Foundation Trust, Higher Kingston, Yeovil, United Kingdom
| | | | - Shahzeb Imran
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Joecelyn Kirani Tan
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Saad Abbas
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Muhtasim Fuad
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | | - Muhammad Hamza Shah
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Priyal Dalal
- School of Medicine and Dentistry, University of Central Lancashire, Preston, United Kingdom
| | | | | |
Collapse
|
3
|
Salvador-Erro J, Pastor Y, Gamazo C. Targeting Enterotoxins: Advancing Vaccine Development for Enterotoxigenic Escherichia coli ETEC. Toxins (Basel) 2025; 17:71. [PMID: 39998088 PMCID: PMC11860656 DOI: 10.3390/toxins17020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal disease worldwide, particularly in children in low- and middle-income countries. Its ability to rapidly colonize the intestinal tract through diverse colonization factors and toxins underpins its significant public health impact. Despite extensive research and several vaccine candidates reaching clinical trials, no licensed vaccine exists for ETEC. This review explores the temporal and spatial coordination of ETEC virulence factors, focusing on the interplay between adherence mechanisms and toxin production as critical targets for therapeutic intervention. Advancements in molecular biology and host-pathogen interaction studies have uncovered species-specific variations and cross-reactivity between human and animal strains. In particular, the heat-labile (LT) and heat-stable (ST) toxins have provided crucial insights into molecular mechanisms and intestinal disruption. Additional exotoxins, such as EAST-1 and hemolysins, further highlight the multifactorial nature of ETEC pathogenicity. Innovative vaccine strategies, including multiepitope fusion antigens (MEFAs), mRNA-based approaches, and glycoconjugates, aim to enhance broad-spectrum immunity. Novel delivery methods, like intradermal immunization, show promise in eliciting robust immune responses. Successful vaccination against ETEC will offer an effective and affordable solution with the potential to greatly reduce mortality and prevent stunting, representing a highly impactful and cost-efficient solution to a critical global health challenge.
Collapse
Affiliation(s)
| | | | - Carlos Gamazo
- Department of Microbiology and Parasitology, Navarra Medical Research Institute (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (J.S.-E.); (Y.P.)
| |
Collapse
|
4
|
Prajapati M, Malik P, Sinha A, Yadav H, Jaiwal YK, Ahlawat YK, Chaudhary D, Jaiwal R, Sharma N, Jaiwal PK, Chattu VK. Biotechnological Interventions for the Production of Subunit Vaccines Against Group A Rotavirus. Cell Biochem Funct 2024; 42:e70031. [PMID: 39707603 DOI: 10.1002/cbf.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
Group A rotavirus (RVA) is a major cause of severe gastroenteritis in infants and young children globally, despite the availability of live-attenuated vaccines. Challenges such as limited efficacy in low-income regions, safety concerns for immunocompromised individuals, and cold-chain dependency necessitate alternative vaccine strategies. Subunit vaccines, which use specific viral proteins to elicit immunity, provide a safer and more adaptable approach. This review highlights biotechnological advancements in producing subunit vaccines, focusing on recombinant expression systems like bacterial, yeast, insect, mammalian, and plant-based platforms for scalable and cost-effective production of viral proteins. Key innovations include molecular engineering, adjuvant development, and delivery system improvements to enhance vaccine immunogenicity and efficacy. Subunit vaccines and virus-like particles expressed in various systems have demonstrated promising preclinical and clinical results, with some candidates nearing commercial readiness. Reverse vaccinology, combined with Artificial Intelligence and Machine Learning, is driving the development of innovative multiepitope vaccines and antivirals. Strategies such as passive immunization, single-chain antibodies, immunobiotics, and novel antivirals are also explored as alternative management options. The review also underscores advanced genome editing and reverse genetics approaches to improve vaccine design and antiviral therapies. These biotechnological interventions offer hope for equitable and effective control of rotavirus diarrhea, particularly in resource-limited settings, and represent significant progress toward addressing current vaccine limitations.
Collapse
Affiliation(s)
- Mukta Prajapati
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Pooja Malik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Astha Sinha
- Department of Paediatrics, Civil Hospital, Rohtak, India
| | - Honey Yadav
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Yachna K Jaiwal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Yogesh K Ahlawat
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Darshna Chaudhary
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Ranjana Jaiwal
- Department of Zoology, Maharshi Dayanand University, Rohtak, India
| | - Nisha Sharma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Pawan K Jaiwal
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Vijay K Chattu
- Department of OS & OT, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Yang Y, Qi R, Chen M, Feng K, Liu Z, Kang H, Jiang Q, Qu L, Liu J. Screening and Immune Efficacy Evaluation of Antigens with Protection Against Feline Calicivirus. Vaccines (Basel) 2024; 12:1205. [PMID: 39591108 PMCID: PMC11598032 DOI: 10.3390/vaccines12111205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Feline calicivirus (FCV), a pathogen that causes upper respiratory tract diseases in felids, primarily leads to oral ulcers and various respiratory symptoms, which can be fatal in severe cases. Currently, FCV prevention and control rely primarily on vaccination; however, the existing vaccine types in China are mainly inactivated vaccines, leading to a single prevention and control method with suboptimal outcomes. METHODS AND RESULTS This study commences with a genetic evolution analysis of Chinese FCV isolates, confirming the presence of two major genotypes, GI and GII with GI emerging as the dominant form. We subsequently selected the broadly neutralizing vaccine candidate strain DL39 as the template for the truncation and expression of multiple recombinant proteins. Through serological assays, we successfully confirmed the optimal protective antigen region, which is designated CE39 (CDE). Further investigation revealed the location of the optimal protective antigen region within the CE region for both the GI and GII genotype strains. Capitalizing on this discovery, a bivalent recombinant protein, designated CE39-CEFB, was generated. Cat antisera generated against CE39 and CE39-CEFB proteins were used in cross-neutralization against various strains of different genotypes, yielding high neutralization titers ranging from 1:45 to 1:15 and from 1:48 to 1:29, respectively, which surpassed those induced by antisera from cats vaccinated with Mi-aosanduo (commercial vaccine, strain 255). Ultimately, in vivo challenge experiments were per-formed after immunizing cats with the CE39 and CE39-CEFB proteins, utilizing Miaosanduo as a control for comparison. The results demonstrated that immunization with both proteins effectively made cats less susceptible to FCV GI, GII, and VSD strains infection, resulting in superior immune efficacy compared with that in the Miaosanduo group. CONCLUSION These results indicate that this study successfully identified the antigen CE39, which has broad-spectrum antigenicity, through in vivo and in vitro experiments. These findings pre-liminarily demonstrate that the optimal protective antigen region of FCV strains is the CE region, laying a theoretical foundation for the development of novel broad-spectrum vaccines against FCV disease.
Collapse
Affiliation(s)
- Yupeng Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ruibin Qi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Mengru Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Kexin Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhe Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongtao Kang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qian Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Liandong Qu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jiasen Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
6
|
Banerjee S, Halder P, Das S, Maiti S, Withey JH, Mitobe J, Chowdhury G, Kitahara K, Miyoshi SI, Mukhopadhyay AK, Dutta S, Koley H. Trivalent outer membrane vesicles-based combination vaccine candidate induces protective immunity against Campylobacter and invasive non-typhoidal Salmonella in adult mice. Med Microbiol Immunol 2024; 213:21. [PMID: 39407046 DOI: 10.1007/s00430-024-00805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 10/07/2024] [Indexed: 12/28/2024]
Abstract
Campylobacter and invasive non-typhoidal Salmonella (iNTS) are among the most common causative agents of gastroenteritis worldwide. As of now, no single combination licensed vaccine is available for public health use against both iNTS and Campylobacter species. Outer-membrane vesicles (OMVs) are nanoscale proteoliposomes released from the surface of gram-negative bacteria during log phase and harbor a variety of immunogenic proteins. Based on epidemiology of infections, we formulated a novel trivalent outer membrane vesicles (TOMVs)-based vaccine candidate against Campylobacter jejuni (CJ), Salmonella Typhimurium (ST) and Salmonella Enteritidis (SE). Isolated OMVs from CJ, ST and SE were combined in equal ratios for formulation of TOMVs and 5 µg of the developed vaccine candidate was used for intraperitoneal immunization of adult BALB/c mice. Immunization with TOMVs significantly activated both the humoral and cellular arm of adaptive immune response. Robust bactericidal effect was elicited by TOMVs immunized adult mice sera. TOMVs immunization induced long-term protective efficacy against CJ, ST and SE infections in mice. The study illustrates the ability of TOMVs-based combination immunogen in eliciting broad-spectrum protective immunity against prevalent Campylobacter and iNTS pathogens. According to the findings, TOMVs can work as a potent combination-based acellular vaccine candidate for amelioration of Campylobacter and iNTS-mediated gastroenteritis.
Collapse
Affiliation(s)
- Soumalya Banerjee
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Sanjib Das
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Suhrid Maiti
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Jeffrey H Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jiro Mitobe
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Kei Kitahara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India.
| |
Collapse
|
7
|
Zizza A, Guido M, Sedile R, Benelli M, Nuzzo M, Paladini P, Romano A, Grima P. A Multi-Pathogen Retrospective Study in Patients Hospitalized for Acute Gastroenteritis. Diseases 2024; 12:213. [PMID: 39329882 PMCID: PMC11431555 DOI: 10.3390/diseases12090213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/25/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Acute gastroenteritis (AGE) is a gastrointestinal tract disease often caused by consuming food or water contaminated by bacteria, viruses, or parasites, that can lead to severe symptoms requiring hospitalization. A retrospective study on patients admitted for AGE between 2021 and 2023 at the Pediatrics and Infectious Diseases Departments of Lecce Hospital was conducted. Demographic characteristics, year and month of admission, length of hospital stay, etiological agents, co-infections, and blood chemistry data of patients were collected. The study included 103 patients ranging in age from 0 to 15 years, with 58.25% being male. A total of 78 bacterial, 35 viral, and 7 parasitic infections were identified. The most commonly detected pathogens were Escherichia coli (38.83%), Norovirus (28.16%), Campylobacter jejuni (22.33%), and Salmonella typhi/paratyphi (10.68%). Only a few cases of Cryptosporidium (5.83%) were identified. Additionally, 17 co-infections (16.50%) were detected. Viral infections are the primary cause of hospitalization for AGE in children <5 years, while bacterial infections are more common among older patients. The significantly higher number of children <5 years old with elevated creatinine compared to children ≥5 years suggested that young children are more susceptible to dehydration than older children. Few cases of AGE were attributed to pathogens for which a vaccine has already been licensed. AGE is a serious health concern that could be effectively prevented by implementing food-based and community-level sanitation systems, as well as by increasing vaccination coverage of available vaccines and developing new effective and safe vaccines.
Collapse
Affiliation(s)
- Antonella Zizza
- Institute of Clinical Physiology, National Research Council, 73100 Lecce, Italy;
| | - Marcello Guido
- Laboratory of Hygiene, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Raffaella Sedile
- Institute of Clinical Physiology, National Research Council, 73100 Lecce, Italy;
| | - Marzia Benelli
- Pediatric Unit, Vito Fazzi Hospital, 73100 Lecce, Italy; (M.B.); (P.P.)
| | - Milva Nuzzo
- Infectious Diseases Unit, Vito Fazzi Hospital, 73100 Lecce, Italy; (M.N.); (A.R.); (P.G.)
| | - Pasquale Paladini
- Pediatric Unit, Vito Fazzi Hospital, 73100 Lecce, Italy; (M.B.); (P.P.)
| | - Anacleto Romano
- Infectious Diseases Unit, Vito Fazzi Hospital, 73100 Lecce, Italy; (M.N.); (A.R.); (P.G.)
| | - Pierfrancesco Grima
- Infectious Diseases Unit, Vito Fazzi Hospital, 73100 Lecce, Italy; (M.N.); (A.R.); (P.G.)
| |
Collapse
|
8
|
Hosomi K, Hatanaka N, Hinenoya A, Adachi J, Tojima Y, Furuta M, Uchiyama K, Morita M, Nagatake T, Saika A, Kawai S, Yoshii K, Kondo S, Yamasaki S, Kunisawa J. QcrC is a potential target for antibody therapy and vaccination to control Campylobacter jejuni infection by suppressing its energy metabolism. Front Microbiol 2024; 15:1415893. [PMID: 39015740 PMCID: PMC11250076 DOI: 10.3389/fmicb.2024.1415893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Campylobacter spp. are a public health concern, yet there is still no effective vaccine or medicine available. Methods Here, we developed a Campylobacter jejuni-specific antibody and found that it targeted a menaquinol cytochrome c reductase complex QcrC. Results The antibody was specifically reactive to multiple C. jejuni strains including clinical isolates from patients with acute enteritis and was found to inhibit the energy metabolism and growth of C. jejuni. Different culture conditions produced different expression levels of QcrC in C. jejuni, and these levels were closely related not only to the energy metabolism of C. jejuni but also its pathogenicity. Furthermore, immunization of mice with recombinant QcrC induced protective immunity against C. jejuni infection. Discussion Taken together, our present findings highlight a possible antibody- or vaccination-based strategy to prevent or control Campylobacter infection by targeting the QcrC-mediated metabolic pathway.
Collapse
Affiliation(s)
- Koji Hosomi
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Noritoshi Hatanaka
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Atsushi Hinenoya
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, NIBIOHN, Osaka, Japan
| | - Yoko Tojima
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Mari Furuta
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Keita Uchiyama
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Makiko Morita
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Functional Anatomy, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Azusa Saika
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Soichiro Kawai
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Ken Yoshii
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Saki Kondo
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Shinji Yamasaki
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Graduate School of Dentistry, Osaka University, Osaka, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| |
Collapse
|
9
|
Dakouo D, Ouermi D, Ouattara AK, Simpore A, Compaore TR, Traore MAE, Gamsore Z, Zoure AA, Traore L, Zohoncon TM, Yonli AT, Ilboudo PD, Djigma FW, Simpore J. Rotavirus vaccines in Africa and Norovirus genetic diversity in children aged 0 to 5 years old: a systematic review and meta-analysis : Rotavirus vaccines in Africa and Norovirus genetic diversity. BMC Infect Dis 2024; 24:547. [PMID: 38822241 PMCID: PMC11143598 DOI: 10.1186/s12879-024-09434-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
Noroviruses are the second leading cause of death in children under the age of 5 years old. They are responsible for 200 million cases of diarrhoea and 50,000 deaths in children through the word, mainly in low-income countries. The objective of this review was to assess how the prevalence and genetic diversity of noroviruses have been affected by the introduction of rotavirus vaccines in Africa. PubMed, Web of Science and Science Direct databases were searched for articles. All included studies were conducted in Africa in children aged 0 to 5 years old with gastroenteritis. STATA version 16.0 software was used to perform the meta-analysis. The method of Dersimonian and Laird, based on the random effects model, was used for the statistical analyses in order to estimate the pooled prevalence's at a 95% confidence interval (CI). Heterogeneity was assessed by Cochran's Q test using the I2 index. The funnel plot was used to assess study publication bias. A total of 521 studies were retrieved from the databases, and 19 were included in the meta-analysis. The pooled norovirus prevalence's for pre- and post-vaccination rotavirus studies were 15% (95 CI, 15-18) and 13% (95 CI, 09-17) respectively. GII was the predominant genogroup, with prevalence of 87.64% and 91.20% respectively for the pre- and post-vaccination studies. GII.4 was the most frequently detected genotype, with rates of 66.84% and 51.24% respectively for the pre- and post-vaccination studies. This meta-analysis indicates that rotavirus vaccination has not resulted in a decrease in norovirus infections in Africa.
Collapse
Affiliation(s)
- Dako Dakouo
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
| | - Djénéba Ouermi
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
- Département de Biologie et Physiologie Animales, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Abdoul Karim Ouattara
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso.
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso.
| | - Abibou Simpore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Agence Nationale pour la Sécurité Sanitaire de l'Environnement, de l'Alimentation, du Travail et des Produits de Santé (ANSSEAT), Ouagadougou, Burkina Faso
| | - Tégwendé Rebecca Compaore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Département Biomédical et Santé Publique, Institut de Recherche en Sciences de la Santé (IRSS/CNRST), Ouagadougou 03, 03 BP 7192, Burkina Faso
| | - Mah Alima Esther Traore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
| | - Zakaria Gamsore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
| | - Abdou Azaque Zoure
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Département Biomédical et Santé Publique, Institut de Recherche en Sciences de la Santé (IRSS/CNRST), Ouagadougou 03, 03 BP 7192, Burkina Faso
| | - Lassina Traore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
| | - Théodora Mahoukèdè Zohoncon
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
- Faculté de Médecine, Université Saint Thomas d'Aquin, Ouagadougou 01, 06 BP 10212, Burkina Faso
| | - Albert Théophane Yonli
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
| | - P Denise Ilboudo
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
| | - Florencia Wendkuuni Djigma
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
| | - Jacques Simpore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
| |
Collapse
|
10
|
Liu Y, Lam DMK, Luan M, Zheng W, Ai H. Recent development of oral vaccines (Review). Exp Ther Med 2024; 27:223. [PMID: 38590568 PMCID: PMC11000446 DOI: 10.3892/etm.2024.12511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/08/2024] [Indexed: 04/10/2024] Open
Abstract
Oral immunization can elicit an effective immune response and immune tolerance to specific antigens. When compared with the traditional injection route, delivering antigens via the gastrointestinal mucosa offers superior immune effects and compliance, as well as simplicity and convenience, making it a more optimal route for immunization. At present, various oral vaccine delivery systems exist. Certain modified bacteria, such as Salmonella, Escherichia coli and particularly Lactobacillus, are considered promising carriers for oral vaccines. These carriers can significantly enhance immunization efficiency by actively replicating in the intestinal tract following oral administration. The present review provided a discussion of the main mechanisms of oral immunity and the research progress made in the field of oral vaccines. Additionally, it introduced the advantages and disadvantages of the currently more commonly administered injectable COVID-19 vaccines, alongside the latest advancements in this area. Furthermore, recent developments in oral vaccines are summarized, and their potential benefits and side effects are discussed.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | | | - Mei Luan
- Department of Geriatric Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Wenfu Zheng
- Chinese Academy of Sciences Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
11
|
Li S, Anvari S, Ptacek G, Upadhyay I, Kaminski RW, Sack DA, Zhang W. A broadly immunogenic polyvalent Shigella multiepitope fusion antigen protein protects against Shigella sonnei and Shigella flexneri lethal pulmonary challenges in mice. Infect Immun 2023; 91:e0031623. [PMID: 37795982 PMCID: PMC10652900 DOI: 10.1128/iai.00316-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
There are no licensed vaccines for Shigella, a leading cause of children's diarrhea and a common etiology of travelers' diarrhea. To develop a cross-protective Shigella vaccine, in this study, we constructed a polyvalent protein immunogen to present conserved immunodominant epitopes of Shigella invasion plasmid antigens B (IpaB) and D (IpaD), VirG, GuaB, and Shiga toxins on backbone protein IpaD, by applying an epitope- and structure-based multiepitope-fusion-antigen (MEFA) vaccinology platform, examined protein (Shigella MEFA) broad immunogenicity, and evaluated antibody function against Shigella invasion and Shiga toxin cytotoxicity but also protection against Shigella lethal challenge. Mice intramuscularly immunized with Shigella MEFA protein developed IgG responses to IpaB, IpaD, VirG, GuaB, and Shiga toxins 1 and 2; mouse sera significantly reduced invasion of Shigella sonnei, Shigella flexneri serotype 2a, 3a, or 6, Shigella boydii, and Shigella dysenteriae type 1 and neutralized cytotoxicity of Shiga toxins of Shigella and Shiga toxin-producing Escherichia coli in vitro. Moreover, mice intranasally immunized with Shigella MEFA protein (adjuvanted with dmLT) developed antigen-specific serum IgG, lung IgG and IgA, and fecal IgA antibodies, and survived from lethal pulmonary challenge with S. sonnei or S. flexneri serotype 2a, 3a, or 6. In contrast, the control mice died, became unresponsive, or lost 20% of body weight in 48 h. These results indicated that this Shigella MEFA protein is broadly immunogenic, induces broadly functional antibodies, and cross-protects against lethal pulmonary challenges with S. sonnei or S. flexneri serotypes, suggesting a potential application of this polyvalent MEFA protein in Shigella vaccine development.
Collapse
Affiliation(s)
- Siqi Li
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Shaghayegh Anvari
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| | - Galen Ptacek
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ipshita Upadhyay
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Robert W. Kaminski
- Department of Enteric Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - David A. Sack
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
12
|
Banerjee S, Halder P, Das S, Maiti S, Bhaumik U, Dutta M, Chowdhury G, Kitahara K, Miyoshi SI, Mukhopadhyay AK, Dutta S, Koley H. Pentavalent outer membrane vesicles immunized mice sera confers passive protection against five prevalent pathotypes of diarrhoeagenic Escherichia coli in neonatal mice. Immunol Lett 2023; 263:33-45. [PMID: 37734682 DOI: 10.1016/j.imlet.2023.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Diarrhoeagenic Escherichia coli (DEC) pathotypes are one of the major causative agents of diarrhoea induced childhood morbidity and mortality in developing countries. Licensed vaccines providing broad spectrum protection against DEC mediated infections are not available. Outer membrane vesicles (OMVs) are microvesicles released by gram-negative bacteria during the growth phase and contain multiple immunogenic proteins. Based on prevalence of infections, we have formulated a pentavalent outer-membrane vesicles (POMVs) based immunogen targeting five main pathotypes of DEC responsible for diarrhoeal diseases. Following isolation, OMVs from five DEC pathotypes were mixed in equal proportions to formulate POMVs and 10 µg of the immunogen was intraperitoneally administered to adult BALB/c mice. Three doses of POMVs induced significant humoral immune response against whole cell lysates (WCLs), outer membrane proteins (OMPs) and lipopolysaccharides (LPS) isolated from DEC pathotypes along with significant induction of cellular immune response in adult mice. Passive transfer of POMVs immunized adult mice sera protected neonatal mice significantly against DEC infections. Overall, this study finds POMVs to be immunogenic in conferring broad-spectrum passive protection to neonatal mice against five main DEC pathotypes. Altogether, these findings suggest that POMVs can be used as a potent vaccine candidate to ameliorate the DEC-mediated health burden.
Collapse
Affiliation(s)
- Soumalya Banerjee
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Sanjib Das
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Suhrid Maiti
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Ushasi Bhaumik
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India; Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Kei Kitahara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan; Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan; Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India.
| |
Collapse
|
13
|
Salem OAM, El Sayed Zaki M, Elsayed AG, Hassan AZM, Mohamed EH. Study of Cosavirus, Salivirus, and Bufavirus viruses in children with acute gastroenteritis. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:89. [DOI: 10.1186/s43088-023-00429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/02/2023] [Indexed: 12/06/2024] Open
Abstract
Abstract
Background
Acute gastroenteritis (AGE) in children represents a health problem. Besides common enteric viruses such as rotavirus and adenovirus, new viruses such as cosavirus, salivirus, and bufavirus may be associated with AGE. The objective of the study was to detect cosavirus, salivirus, and bufavirus viruses in children below 5 years with acute gastroenteritis by the use of real-time polymerase chain reaction (PCR) besides detection of rotavirus and adenovirus by enzyme-linked immunosorbent assay (ELISA).
Method
The study included 150 children ≤ 5 years with community-acquired diarrhea. Stool samples from children were subjected for the detection of rotavirus and adenovirus antigens by ELISA and for detection of buvavirus, salivirus, and cosavirus by real-time PCR.
Results
The commonest virus detected in the stool samples of children with AGE was rotavirus 31.3% followed by adenovirus 24%. Among the new viruses studied, salivirus was detected in six samples (4.0%), buvavirus was detected in four samples (2.7%), and cosavirus was detected in two samples (1.3%). The mixed rotavirus detection with studied viruses was 23.4% for adenovirus, 4.3% for calicivirus, and 2.1% for bocavirus, and none of the detected cosavirus was associated with rotavirus. In the studied children, at least one of the new viruses was detected in ten children (6.7%). Buvavirus, salivirus, and cosavirus were detected as a single virus (0.7%) in the children with acute gastroenteritis and buvavirus was detected with cosavirus without other viruses in one sample (0.7%).
Conclusion
The study reports the occurrence of buvavirus, cosavirus, and salivirus in the pediatric patients with community-acquired acute gastroenteritis. There was a high prevalence of rotavirus and adenovirus antigens in those patients with low positivity for buvavirus, cosavirus, and salivirus viruses. There is a need for a large cohort study to study the prevalence of buvavirus, cosavirus, and salivirus in pediatrics with acute gastroenteritis and to validate their association with the disease.
Collapse
|
14
|
Li S, Seo H, Upadhyay I, Zhang W. A Polyvalent Adhesin-Toxoid Multiepitope-Fusion-Antigen-Induced Functional Antibodies against Five Enterotoxigenic Escherichia coli Adhesins (CS7, CS12, CS14, CS17, and CS21) but Not Enterotoxins (LT and STa). Microorganisms 2023; 11:2473. [PMID: 37894131 PMCID: PMC10608864 DOI: 10.3390/microorganisms11102473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The increasing prevalence and association with moderate-to-severe diarrhea make enterotoxigenic Escherichia coli (ETEC) adhesins CS7, CS12, CS14, CS17, and CS21 potential targets of ETEC vaccines. Currently, there are no vaccines licensed to protect against ETEC, a top cause of children's diarrhea and travelers' diarrhea. Recently, a polyvalent adhesin protein (adhesin MEFA-II) was demonstrated to induce antibodies that inhibited adherence from these five ETEC adhesins and reduced the enterotoxicity of ETEC heat-stable toxin (STa), which plays a key role in causing ETEC-associated diarrhea. To improve adhesin MEFA-II for functional antibodies against STa toxin and the other ETEC toxin, heat-labile toxin (LT), we modified adhesin MEFA-II by adding another STa toxoid and an LT epitope; we examined the new antigen immunogenicity (to five adhesins and two toxins) and more importantly antibody functions against ETEC adherence and STa and LT enterotoxicity. Data show that mice intramuscularly immunized with the new antigen (adhesin MEFA-IIb) developed robust IgG responses to the targeted adhesins (CS7, CS12, CS14, CS17, and CS21) and toxins (STa and LT). Mouse antibodies inhibited the adherence of ETEC strains expressing any of these five adhesins but failed to neutralize STa or LT enterotoxicity. In further studies, rabbits intramuscularly immunized with adhesin MEFA-IIb developed robust antigen-specific antibodies; when challenged with an ETEC isolate expressing CS21 adhesin (JF2101, CS21, and STa), the immunized rabbits showed a significant reduction in intestinal colonization by ETEC bacteria. These data indicate that adhesin MEFA-IIb is broadly immunogenic and induces functional antibodies against the targeted ETEC adhesins but not the toxins.
Collapse
Affiliation(s)
| | | | | | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
15
|
Andrade AA, Paiva AD, Machado ABF. Microbiology of street food: understanding risks to improve safety. J Appl Microbiol 2023; 134:lxad167. [PMID: 37516449 DOI: 10.1093/jambio/lxad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/26/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
Street foods play important socioeconomic and cultural roles and are popular worldwide. In addition to providing convenient and low-cost meals for urban populations, street food offers an essential source of income for vendors, especially women, and it can reflect traditional local culture, which is an important attraction for tourists. Despite these benefits, the microbiological safety of street food has become a worldwide concern because it is often prepared and sold under inadequate safety conditions, without legal control and sanitary surveillance. Consequently, high counts of fecal indicator bacteria and several foodborne pathogens have been detected in street foods. This review provides insight into the microbiology of street food, focus on the associated microbiological safety aspects and main pathogens, and the global status of this important economic activity. Furthermore, the need to apply molecular detection rather than traditional culture-based methods is discussed to better understand the actual risks of microbial infection associated with street foods. Recognition is always the first step toward addressing a problem.
Collapse
Affiliation(s)
- Anderson Assunção Andrade
- Microbiology Research Laboratory, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais 38025-015, Brazil
| | - Aline Dias Paiva
- Microbiology Research Laboratory, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais 38025-015, Brazil
| | - Alessandra Barbosa Ferreira Machado
- Laboratory of Bacterial Physiology and Molecular Genetics, Center for Studies in Microbiology, Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora (UFJF), Juiz de Fora 36036-330, Brazil
| |
Collapse
|
16
|
Upadhyay I, Parvej SMD, Li S, Lauder KL, Shen Y, Zhang W. Polyvalent Protein Adhesin MEFA-II Induces Functional Antibodies against Enterotoxigenic Escherichia coli (ETEC) Adhesins CS7, CS12, CS14, CS17, and CS21 and Heat-Stable Toxin (STa). Appl Environ Microbiol 2023; 89:e0068323. [PMID: 37212687 PMCID: PMC10304760 DOI: 10.1128/aem.00683-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023] Open
Abstract
There are no licensed vaccines for enterotoxigenic Escherichia coli (ETEC), a common cause of children's diarrhea and travelers' diarrhea. ETEC strains producing enterotoxins (heat-labile toxin, LT; heat-stable toxin, STa) and adhesins CFA/I, CFA/II (CS1-CS3) or CFA/IV (CS4-CS6) attributed to a majority of ETEC-associated diarrheal cases, thus the two toxins (STa, LT) and the seven adhesins (CFA/I, CS1 to CS6) are historically the primary targets in ETEC vaccine development. Recent studies, however, revealed that ETEC strains with adhesins CS14, CS21, CS7, CS17, and CS12 are also prevalent and cause moderate-to-severe diarrhea; these adhesins are now considered antigen targets as well for ETEC vaccines. In this study, we applied the epitope- and structure-based multiepitope-fusion-antigen (MEFA) vaccinology platform and constructed a polyvalent protein to present immuno-dominant continuous B-cell epitopes of these five adhesins (also an STa toxoid); we then characterized this protein antigen's (termed as adhesin MEFA-II) broad immunogenicity and evaluated antibody functions against each targeted adhesin and STa toxin. Data showed that mice intramuscularly immunized with adhesin MEFA-II protein developed robust IgG to the targeted adhesins and toxin STa. Importantly, the antigen-derived antibodies significantly inhibited adherence of ETEC bacteria expressing adhesin CS7, CS12, CS14, CS17, or CS21 and reduced STa enterotoxicity. These results indicated that adhesin MEFA-II protein is broadly immunogenic and induces cross-functional antibodies, suggesting adhesin MEFA-II can be an effective ETEC vaccine antigen; if included in an ETEC vaccine candidate, adhesin MEFA-II can expand vaccine coverage and increase efficacy against ETEC-associated children's diarrhea and travelers' diarrhea. IMPORTANCE An effective vaccine is lacking against ETEC, a primary cause of children's diarrhea and traveler's diarrhea and a threat to global health. The key challenge in ETEC vaccine development is that ETEC bacteria express heterogeneous virulence determinants (>25 adhesins and two toxins). While the current strategy to target the seven most prevalent ETEC adhesins (CFA/I, CS1 to CS6) potentially lead to a vaccine against many clinical cases, the prevalence of ETEC strains shifts chronically and geographically, and ETEC expressing other adhesins, mainly CS7, CS12, CS14, CS17, and CS21, also cause moderate-to-severe diarrhea. However, it is impossible to develop an ETEC vaccine to target as many as 12 adhesins under conventional approaches. This study used a unique vaccinology platform to create a polyvalent antigen and demonstrated the antigen's broad immunogenicity and functions against the targeted ETEC adhesins, enabling the development of a broadly protective vaccine essentially against all of the important ETEC strains.
Collapse
Affiliation(s)
- Ipshita Upadhyay
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Shafiullah M. D. Parvej
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Siqi Li
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kathryn L. Lauder
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yiyang Shen
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
17
|
Beikzadeh B. Immunoinformatics design of multi-epitope vaccine using OmpA, OmpD and enterotoxin against non-typhoidal salmonellosis. BMC Bioinformatics 2023; 24:63. [PMID: 36823524 PMCID: PMC9950014 DOI: 10.1186/s12859-023-05183-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Non-typhoidal Salmonella (NTS) is one of the important bacteria that cause foodborne diseases and invasive infections in children and elderly people. Since NTS infection is difficult to control due to the emergence of antibiotic-resistant species and its adverse effect on immune response, the development of a vaccine against NTS would be necessary. This study aimed to develop a multi-epitope vaccine against the most prevalent serovars of NTS (Salmonella Typhimurium, Salmonella Enteritidis) using an immunoinformatics approach and targeting OmpA, OmpD, and enterotoxin (Stn). RESULTS Initially, the B cell and T cell epitopes were predicted. Then, epitopes and suitable adjuvant were assembled by molecular linkers to construct a multi-epitope vaccine. The computational tools predicted the tertiary structure, refined the tertiary structure and validated the final vaccine construct. The effectiveness of the vaccine was evaluated via molecular docking, molecular dynamics simulation, and in silico immune simulation. The vaccine model had good binding affinity and stability with MHC-I, MHC-II, and toll-like receptors (TLR-1, 2, 4) as well as activation of T cells, IgM, IgG, IFN-γ and IL-2 responses. Furthermore, after codon optimization of the vaccine sequence, this sequence was cloned in E. coli plasmid vector pET-30a (+) within restriction sites of HindIII and BamHI. CONCLUSIONS This study, for the first time, introduced a multi-epitope vaccine based on OmpA, OmpD and enterotoxin (Stn) of NTS that could stimulate T and B cell immune responses and produced in the prokaryotic system. This vaccine was validated in-silico phase which is an essential study to reduce challenges before in vitro and in vivo studies.
Collapse
Affiliation(s)
- Babak Beikzadeh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
18
|
Khan NU, Shamsullah, Shahidullah, Shah AA, Zaidi SSZ, Chen Z. Epidemiology of Human Adenovirus in Pakistani Children Hospitalized with Community-Acquired Gastroenteritis under the Age of Five Years. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12534. [PMID: 36231834 PMCID: PMC9566016 DOI: 10.3390/ijerph191912534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 07/22/2023]
Abstract
Acute gastroenteritis is the major cause of morbidity and mortality among infants and children around the globe. Along with other enteropathogens, human adenovirus (HadV) is a major etiological agent associated with diarrhea in young children. However, information about the epidemiology of Adenoviruses in Pakistan is limited or has not been reported. A total of 1082 stool samples were collected from patients with acute gastroenteritis under the age of five years with symptoms of diarrhea, vomiting, nausea, and abdominal cramps who visited Benazir Bhutto Hospital Rawalpindi and Children's hospital in Lahore of Punjab Province in Pakistan. Of this, 384 cases with no blood in their stool, negative for Rotavirus, and under the age of five years were recruited in this study. Human Adenoviruses were isolated in the human epithelial HEp-2 cell line. Furthermore, adenovirus antigen detection was carried out by an enzyme-linked immunosorbent assay (ELISA), and then all positive and negative samples were confirmed by nested PCR. After inoculating a clear stool supernatant on HEp-2 cell lines, we observed a positive cytopathic effect in 65 (16%) cases. Using an enzyme-linked immunosorbent assay, HAdV antigens were detected in 54 (14.06%) of the clear supernatant from gastroenteritis cases. However, HAdV hexon coding regions were amplified in 57 (14.80%) fecal samples, mainly from patients ≤24 months of age. The findings of this study suggest that adenovirus circulates significantly in the children population under the age of five years and may be the potential etiological factor of acute gastroenteritis in the mentioned cities. This study provides baseline data about the possible role of adenovirus in causing viral diarrhea in children. Further large-scale epidemiological surveys are recommended to better understand disease burden, etiological agents, and its clinical impact across the country.
Collapse
Affiliation(s)
- Nazif Ullah Khan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Centre for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Shamsullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shahidullah
- Khyber Medical College, Khyber Medical University, Peshawar 25120, Pakistan
| | - Aamer Ali Shah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Centre for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| |
Collapse
|
19
|
Li R, Shao G, Xie Z, Hu Z, Feng K, He J, Wang H, Fu J, Zhang X, Xie Q. Construction and Immunogenicity of a Recombinant Pseudorabies Virus Expressing SARS-CoV-2-S and SARS-CoV-2-N. Front Vet Sci 2022; 9:920087. [PMID: 35982925 PMCID: PMC9380597 DOI: 10.3389/fvets.2022.920087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/22/2022] [Indexed: 12/05/2022] Open
Abstract
Coronavirus (CoV) is an important pathogen of humans and animals, which can infect humans or animals through the respiratory mucosal route. Syndrome coronavirus 2 (SARS-CoV-2) is quite similar to syndrome coronavirus (SARS-CoV) with the same receptor, angiotensin-converting enzyme 2 (ACE2). The S and N proteins are the most important protective antigens of the SARS-CoV-2. The S protein on the viral membrane mediates the virus attachment with the host cells, and the N protein is the most abundant expression during infection. In this study, the recombinant viruses expressing the S and N proteins of SARS-CoV-2 were successfully constructed by Red/ET recombinant technology using Pseudorabies virus (PRV) strain Bartha-K61 as a vector. Genetic stability and growth kinetics analysis showed that the recombinant viruses rPRV-SARS-CoV-2-S and rPRV-SARS-CoV-2-N had similar genetic stability and proliferation characteristics to the parental PRV. The immunoassay results showed that mice immunized with recombinant viruses could produce total IgG antibodies. Therefore, PRV is feasible and promising as a viral vector to express SARS-CoV-2-S and SARS-CoV-2-N genes. This study can provide a reference for future research on live vector vaccines for domestic animals, pets, and wild animals.
Collapse
Affiliation(s)
- Ruoying Li
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guanming Shao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zi Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zezhong Hu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Keyu Feng
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiahui He
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Jinan, China
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Jinan, China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Qingmei Xie
| |
Collapse
|
20
|
Zhang Y, Tan P, Zhao Y, Ma X. Enterotoxigenic Escherichia coli: intestinal pathogenesis mechanisms and colonization resistance by gut microbiota. Gut Microbes 2022; 14:2055943. [PMID: 35358002 PMCID: PMC8973357 DOI: 10.1080/19490976.2022.2055943] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in children and travelers in developing countries. ETEC is characterized by the ability to produce major virulence factors including colonization factors (CFs) and enterotoxins, that bind to specific receptors on epithelial cells and induce diarrhea. The gut microbiota is a stable and sophisticated ecosystem that performs a range of beneficial functions for the host, including protection against pathogen colonization. Understanding the pathogenic mechanisms of ETEC and the interaction between the gut microbiota and ETEC represents not only a research need but also an opportunity and challenge to develop precautions for ETEC infection. Herein, this review focuses on recent discoveries about ETEC etiology, pathogenesis and clinical manifestation, and discusses the colonization resistances mediated by gut microbiota, as well as preventative strategies against ETEC with an aim to provide novel insights that can reduce the adverse effect on human health.
Collapse
Affiliation(s)
- Yucheng Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Ying Zhao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China,CONTACT Xi Ma State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Lian S, Liu J, Wu Y, Xia P, Zhu G. Bacterial and Viral Co-Infection in the Intestine: Competition Scenario and Their Effect on Host Immunity. Int J Mol Sci 2022; 23:ijms23042311. [PMID: 35216425 PMCID: PMC8877981 DOI: 10.3390/ijms23042311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Bacteria and viruses are both important pathogens causing intestinal infections, and studies on their pathogenic mechanisms tend to focus on one pathogen alone. However, bacterial and viral co-infections occur frequently in clinical settings, and infection by one pathogen can affect the severity of infection by another pathogen, either directly or indirectly. The presence of synergistic or antagonistic effects of two pathogens in co-infection can affect disease progression to varying degrees. The triad of bacterial–viral–gut interactions involves multiple aspects of inflammatory and immune signaling, neuroimmunity, nutritional immunity, and the gut microbiome. In this review, we discussed the different scenarios triggered by different orders of bacterial and viral infections in the gut and summarized the possible mechanisms of synergy or antagonism involved in their co-infection. We also explored the regulatory mechanisms of bacterial–viral co-infection at the host intestinal immune interface from multiple perspectives.
Collapse
Affiliation(s)
- Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (S.L.); (J.L.); (Y.W.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiaqi Liu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (S.L.); (J.L.); (Y.W.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yunping Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (S.L.); (J.L.); (Y.W.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (S.L.); (J.L.); (Y.W.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (S.L.); (J.L.); (Y.W.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
22
|
Intradermally administered enterotoxigenic E. coli vaccine candidate MecVax induces functional serum IgG antibodies against seven adhesins (CFA/I, CS1-CS6) and both toxins (STa, LT). Appl Environ Microbiol 2021; 88:e0213921. [PMID: 34936832 DOI: 10.1128/aem.02139-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There are no vaccines licensed for enterotoxigenic Escherichia coli (ETEC), a leading bacterial cause of children's diarrhea and travelers' diarrhea. MecVax, a multivalent E. coli vaccine candidate composed of two epitope- and structure-based polyvalent proteins (toxoid fusion 3xSTaN12S-mnLTR192G/L211A and CFA/I/II/IV MEFA), is to induce broad anti-adhesin and antitoxin antibodies against heterogeneous ETEC pathovars. Administered intraperitoneally (IP) or intramuscularly (IM), MecVax was shown to induce antibodies against seven ETEC adhesins (CFA/I, CS1-CS6), which are produced by ETEC pathovars causing over 60% of ETEC-associated diarrheal cases and the moderate-to-severe cases, and both toxins (heat-labile toxin - LT and heat-stable toxin - STa) expressed by all ETEC strains. To further characterize immunogenicity of this protein-based injectable subunit vaccine candidate and to explore other parenteral administration routes for the product, in this study, we intradermally (ID) immunized mice with MecVax and measured antigen-specific antibody responses and further antibody functional activities against the adhesins and toxins targeted by the vaccine. Data showed that mice ID immunized with MecVax developed robust anti-CFA/I, -CS1, -CS2, -CS3, -CS4, -CS5, -CS6, -LT and anti-STa IgG responses. Furthermore, antibodies derived from MecVax via ID route inhibited adherence of ETEC or E. coli strains expressing any of the seven target adhesins (CFA/I, CS1-CS6) and neutralized enterotoxicity of LT and STa toxins. These results confirmed broad immunogenicity of MecVax and suggested that this multivalent ETEC subunit vaccine candidate can be effectively delivered via ID route. IMPORTANCE Enterotoxigenic Escherichia coli (ETEC) is a leading bacterial cause of diarrhea in children living in developing countries and international travelers. Developing an effective vaccine for ETEC diarrhea has been hampered because of challenges of virulence heterogeneity and difficulties of inducing neutralizing antibodies against the key STa toxin. MecVax, a subunit vaccine candidate carrying two polyvalent protein antigens for the first time induces functional antibodies against the most important ETEC adhesins which are associated with a majority of diarrheal cases and the moderate-to-severe cases but also against enterotoxicity of LT and more importantly STa toxin which plays a key role in children's diarrhea and travelers' diarrhea, potentially leading to development of a truly effective ETEC vaccine. Data from this study may also indicated that this ETEC subunit vaccine can be administered effectively via ID route, expanding clinical administration options for this vaccine product.
Collapse
|
23
|
Tan M. Norovirus Vaccines: Current Clinical Development and Challenges. Pathogens 2021; 10:pathogens10121641. [PMID: 34959596 PMCID: PMC8709042 DOI: 10.3390/pathogens10121641] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/05/2023] Open
Abstract
Noroviruses are the major viral pathogens causing epidemic and endemic acute gastroenteritis with significant morbidity and mortality. While vaccines against norovirus diseases have been shown to be of high significance, the development of a broadly effective norovirus vaccine remains difficult, owing to the wide genetic and antigenic diversity of noroviruses with multiple co-circulated variants of various genotypes. In addition, the absence of a robust cell culture system, an efficient animal model, and reliable immune markers of norovirus protection for vaccine evaluation further hinders the developmental process. Among the vaccine candidates that are currently under clinical studies, recombinant VP1-based virus-like particles (VLPs) that mimic major antigenic features of noroviruses are the common ones, with proven safety, immunogenicity, and protective efficacy, supporting a high success likelihood of a useful norovirus vaccine. This short article reviews the recent progress in norovirus vaccine development, focusing on those from recent clinical studies, as well as summarizes the barriers that are being encountered in this developmental process and discusses issues of future perspective.
Collapse
Affiliation(s)
- Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
24
|
Lu T, Das S, Howlader DR, Zheng Q, Ratnakaram SSK, Whittier SK, Picking WD, Picking WL. L-DBF Elicits Cross Protection Against Different Serotypes of Shigella spp. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.729731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Shigellosis is a severe diarrheal disease caused by members of the genus Shigella, with at least 80 million cases and 700,000 deaths annually around the world. The type III secretion system (T3SS) is the primary virulence factor used by the shigellae, and we have previously demonstrated that vaccination with the type T3SS proteins IpaB and IpaD, along with an IpaD/IpaB fusion protein (DBF), protects mice from Shigella infection in a lethal pulmonary model. To simplify the formulation and development of the DBF Shigella vaccine, we have genetically fused LTA1, the active subunit of heat-labile toxin from enterotoxigenic E. coli, with DBF to produce the self-adjuvanting antigen L-DBF. Here we immunized mice with L-DBF via the intranasal, intramuscular, and intradermal routes and challenged them with a lethal dose of S. flexneri 2a. While none of the mice vaccinated intramuscularly or intradermally were protected, mice vaccinated with L-DBF intranasally were protected from lethal challenges with S. flexneri 2a, S. flexneri 1b, S. flexneri 3a, S. flexneri 6, and S. sonnei. Intranasal L-DBF induced both B cell and T cell responses that correlated with protection against Shigella infection. Our results suggest that L-DBF is a candidate for developing an effective serotype-independent vaccine against Shigella spp.
Collapse
|
25
|
Venkatesan MM, Ballou C, Barnoy S, McNeal M, El-Khorazaty J, Frenck R, Baqar S. Antibody in Lymphocyte Supernatant (ALS) responses after oral vaccination with live Shigella sonnei vaccine candidates WRSs2 and WRSs3 and correlation with serum antibodies, ASCs, fecal IgA and shedding. PLoS One 2021; 16:e0259361. [PMID: 34793505 PMCID: PMC8601580 DOI: 10.1371/journal.pone.0259361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
The levels of antigen-specific Antibodies in Lymphocyte Supernatant (ALS) using an ELISA are being used to evaluate mucosal immune responses as an alternate to measuring the number of Antibody Secreting Cells (ASCs) using an ELISpot assay. A recently completed trial of two novel S. sonnei live oral vaccine candidates WRSs2 and WRSs3 established that both candidates were safe, well tolerated and immunogenic in a vaccine dose-dependent manner. Previously, mucosal immune responses were measured by assaying IgA- and IgG-ASC in peripheral blood mononuclear cells (PBMCs). In this report, the magnitude of the S. sonnei antigen-specific IgA- and IgG-ALS responses was measured and correlated with previously described ASCs, serum antibodies, fecal IgA and vaccine shedding. Overall, the magnitude of S. sonnei anti-Invaplex50 ALS was higher than that of LPS or IpaB, and both vaccines demonstrated a more robust IgA-ALS response than IgG; however, compared to WRSs3, the magnitude and percentage of responders were higher among WRSs2 recipients for IgA- or IgG-ALS. All WRSs2 vaccinees at the two highest doses responded for LPS and Invaplex50-specific IgA-ALS and 63-100% for WRSs3 vaccinees responded. Regardless of the vaccine candidate, vaccine dose or detecting antigen, the kinetics of ALS responses were similar peaking on days 7 to 9 and returning to baseline by day 14. The ALS responses were vaccine-specific since no responses were detected among placebo recipients at any time. A strong correlation and agreement between responders/non-responders were noted between ALS and other mucosal (ASC and fecal IgA) and systemic (serum antibody) immune responses. These data indicate that the ALS assay can be a useful tool to evaluate mucosal responses to oral vaccination, an observation noted with trials of other bacterial diarrheal pathogens. Furthermore, this data will guide the list of immunological assays to be conducted for efficacy trials in different populations. It is hoped that an antigen-specific-ALS titer may be a key mucosal correlate of protection, a feature not currently available for any Shigella vaccines candidates. https://clinicaltrials.gov/show/NCT01336699.
Collapse
Affiliation(s)
- Malabi M. Venkatesan
- Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | | | - Shoshana Barnoy
- Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Monica McNeal
- Division of Infectious Diseases, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | | | - Robert Frenck
- Division of Infectious Diseases, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Shahida Baqar
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
26
|
Multiepitope Fusion Antigen: MEFA, an Epitope- and Structure-Based Vaccinology Platform for Multivalent Vaccine Development. Methods Mol Biol 2021. [PMID: 34784037 DOI: 10.1007/978-1-0716-1900-1_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Vaccines are regarded as the most cost-effective countermeasure against infectious diseases. One challenge often affecting vaccine development is antigenic diversity or pathogen heterogeneity. Different strains produce immunologically heterogeneous virulence factors, therefore an effective vaccine needs to induce broad-spectrum host immunity to provide cross-protection. Recent advances in genomics and proteomics, particularly computational biology and structural biology, establishes structural vaccinology and highlights the feasibility of developing effective and precision vaccines. Here, we introduce the epitope- and structure-based vaccinology platform multiepitope-fusion-antigen (MEFA), and provide instructions to generate polyvalent MEFA immunogens for vaccine development. Conceptually, MEFA combines epitope vaccinology and structural vaccinology to enable a protein immunogen to present heterogeneous antigenic domains (epitopes) and to induce broadly protective immunity against different virulence factors, strains or diseases. Methodologically, the MEFA platform first identifies a safe, structurally stable and strongly immunogenic backbone protein and immunodominant (ideally neutralizing or protective) epitopes from heterogeneous strains or virulence factors of interest. Then, assisted with protein modeling and molecule dynamic simulation, MEFA integrates heterogeneous epitopes into a backbone protein via epitope substitution for a polyvalent MEFA protein and mimics epitope native antigenicity. Finally, the MEFA protein is examined for broad immunogenicity in animal immunization, and assessed for potential application for multivalent vaccine development in preclinical studies.
Collapse
|
27
|
Preclinical Characterization of Immunogenicity and Efficacy against Diarrhea from MecVax, a Multivalent Enterotoxigenic E. coli Vaccine Candidate. Infect Immun 2021; 89:e0010621. [PMID: 33875477 DOI: 10.1128/iai.00106-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
There are no vaccines licensed for enterotoxigenic Escherichia coli (ETEC), a leading cause of diarrhea for children in developing countries and international travelers. Virulence heterogeneity among strains and difficulties identifying safe antigens for protective antibodies against STa, a potent but poorly immunogenic heat-stable toxin which plays a key role in ETEC diarrhea, are challenges in ETEC vaccine development. To overcome these challenges, we applied a toxoid fusion strategy and a novel epitope- and structure-based multiepitope fusion antigen (MEFA) vaccinology platform to construct two chimeric multivalent proteins, toxoid fusion 3xSTaN12S-mnLTR192G/L211A and adhesin CFA/I/II/IV MEFA, and demonstrated that the proteins induced protective antibodies against STa and heat-labile toxin (LT) produced by all ETEC strains or the seven most important ETEC adhesins (CFA/I and CS1 to CS6) expressed by the ETEC strains causing 60 to 70% of diarrheal cases and moderate to severe cases. Combining two proteins, we prepared a protein-based multivalent ETEC vaccine, MecVax. MecVax was broadly immunogenic; mice and pigs intramuscularly immunized with MecVax developed no apparent adverse effects but had robust antibody responses to the target toxins and adhesins. Importantly, MecVax-induced antibodies were broadly protective, demonstrated by significant adherence inhibition against E. coli bacteria producing any of the seven adhesins and neutralization of STa and cholera toxin (CT) enterotoxicity. Moreover, MecVax protected against watery diarrhea and provided over 70% and 90% protection against any diarrhea from an STa-positive or an LT-positive ETEC strain in a pig challenge model. These results indicated that MecVax induces broadly protective antibodies and prevents diarrhea preclinically, signifying that MecVax is potentially an effective injectable vaccine for ETEC. IMPORTANCE Enterotoxigenic Escherichia coli (ETEC) bacteria are a top cause of children's diarrhea and travelers' diarrhea and are responsible for over 220 million diarrheal cases and more than 100,000 deaths annually. A safe and effective ETEC vaccine can significantly improve public health, particularly in developing countries. Data from this preclinical study showed that MecVax induces broadly protective antiadhesin and antitoxin antibodies, becoming the first ETEC vaccine candidate to induce protective antibodies inhibiting adherence of the seven most important ETEC adhesins and neutralizing the enterotoxicity of not only LT but also STa toxin. More importantly, MecVax is shown to protect against clinical diarrhea from STa-positive or LT-positive ETEC infection in a pig challenge model, recording protection from antibodies induced by the protein-based, injectable, subunit vaccine MecVax against ETEC diarrhea and perhaps the possibility of intramuscularly administered protein vaccines for protection against intestinal mucosal infection.
Collapse
|
28
|
Farahmand M, Moghoofei M, Dorost A, Shoja Z, Ghorbani S, Kiani SJ, Khales P, Esteghamati A, Sayyahfar S, Jafarzadeh M, Minaeian S, Khanaliha K, Naghdalipour M, Tavakoli A. Global prevalence and genotype distribution of norovirus infection in children with gastroenteritis: A meta-analysis on 6 years of research from 2015 to 2020. Rev Med Virol 2021; 32:e2237. [PMID: 33793023 DOI: 10.1002/rmv.2237] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
In the post rotavirus vaccine era, norovirus (NoV) plays an increasingly important role in epidemic and sporadic gastroenteritis among children. This study was designed to provide an updated meta-analytic review of the prevalence of NoV among paediatric patients with gastroenteritis and to clarify the relationship between NoV infection and gastroenteritis. Systematic searches of the literature for potentially relevant studies were carried out from 1 January 2015 to 29 May 2020. The inverse variance method was chosen for weighting of the studies, and the random-effects model was used to analyse data. To determine the association between NoV infection and gastroenteritis in children, pooled odds ratio (OR) and its 95% confidence interval (CI) were computed for case-control studies. The pooled prevalence of NoV infection among 12,0531 children with gastroenteritis from 45 countries across the world was 17.7% (95% CI: 16.3%-19.2%). There were 28 studies with a case-control design, and the pooled prevalence of NoV infection among 11,954 control subjects was 6.7% (95% CI: 5.1%-8.8%). The pooled OR of the association of NoV infection and gastroenteritis was 2.7 (95% CI: 2.2-3.4). The most common NoV genotypes were GII.4 (59.3%) and GII.3 (14.9%). The highest frequency of NoV was found in the age group below 1 year. Our findings indicated a substantial burden of gastroenteritis caused by NoV globally, with GII.4 and GII.3 the major genotypes responsible for the majority of NoV-associated gastroenteritis cases among children. Younger age and male sex can be considered risk factors for NoV-associated gastroenteritis among children.
Collapse
Affiliation(s)
- Mohammad Farahmand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abolfazl Dorost
- Department of Health Economics and Management, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Saied Ghorbani
- Department of Medical Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Jalal Kiani
- Department of Medical Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pegah Khales
- Department of Medical Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Abdoulreza Esteghamati
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Sayyahfar
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrzad Jafarzadeh
- Institute of Endocrinology and Metabolism Research and Training Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mehri Naghdalipour
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Tavakoli
- Department of Medical Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Adeleke VT, Adeniyi AA, Adeleke MA, Okpeku M, Lokhat D. The design of multiepitope vaccines from plasmids of diarrheagenic Escherichia coli against diarrhoea infection: Immunoinformatics approach. INFECTION GENETICS AND EVOLUTION 2021; 91:104803. [PMID: 33684568 DOI: 10.1016/j.meegid.2021.104803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 01/19/2023]
Abstract
Diarrhoea infection is a major global health public problem and is caused by many organisms including diarrheagenic Escherichia coli pathotypes. The common problem with diarrhoea is the drug resistance of pathogenic bacteria, the most promising alternative means of preventing drug resistance is vaccination. However, there has not been any significant success in the prevention of diarrhoea caused by E. coli through vaccination. Epitope-based vaccine is gaining more attention due to its safety and specificity. Sequence variation of protective antigens of the pathogen has posed a new challenge in the development of epitope-based vaccines against the infection, leading to the necessity of multiepitope based design. In this study, immunoinformatics tools were used to design multiepitope vaccine candidates from plasmid genome sequences of multiple pathotypes of E. coli species involved in diarrhoea infections. The ability of the identified epitopes to be used as a cross-protect multiepitope vaccine was achieved by identifying conserved, immunogenic and antigenic peptides that can elicit CD4+ T-cell, CD8+ T-cell and B-cell and bind to MHC I and II HLA alleles. The molecular docking results of T-cell epitopes showed their well binding affinity to receptive protein and with a wider population coverage. The different multiepitope-based vaccines (MEVCs) candidates were constructed and based on the types of epitope linker they contained. The MEVCs exhibited very good binding interactions with the human immune receptor. Among multiepitope vaccines constructed, MEVC6, MEVCA and MEVCB are more promising as potential vaccine candidates for cross-protection against gastrointestinal infections according to the computational study. It is also hoped that after validation and testing, the predicted multiepitope-based vaccine candidates will probably resolve the challenge of immunological heterogeneity facing enteric vaccine development.
Collapse
Affiliation(s)
- Victoria T Adeleke
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Howard Campus, Durban 4041, South Africa.
| | - Adebayo A Adeniyi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa; Department of Industrial Chemistry, Federal University, Oye, Ekiti, Nigeria
| | - Matthew A Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| | - David Lokhat
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Howard Campus, Durban 4041, South Africa
| |
Collapse
|
30
|
Khalid A, Lin RCY, Iredell JR. A Phage Therapy Guide for Clinicians and Basic Scientists: Background and Highlighting Applications for Developing Countries. Front Microbiol 2021; 11:599906. [PMID: 33643225 PMCID: PMC7904893 DOI: 10.3389/fmicb.2020.599906] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Approximately 10% of global health research is devoted to 90% of global disease burden (the so-called “10/90 Gap”) and it often neglects those diseases most prevalent in low-income countries. Antibiotic resistant bacterial infections are known to impact on healthcare, food security, and socio-economic fabric in the developing countries. With a global antibiotic resistance crisis currently reaching a critical level, the unmet needs in the developing countries are even more striking. The failure of traditional antimicrobials has led to renewed interest in century-old bacteriophage (phage) therapy in response to the urgent need to develop alternative therapies to treat infections. Phage therapy may have particular value in developing countries where relevant phages can be sourced and processed locally and efficiently, breaking specifically the economic barrier of access to expensive medicine. Hence this makes phage therapy an attractive and feasible option. In this review, we draw our respective clinical experience as well as phage therapy research and clinical trial, and discuss the ways in which phage therapy might reduce the burden of some of the most important bacterial infections in developing countries.
Collapse
Affiliation(s)
- Ali Khalid
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Ruby C Y Lin
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
| |
Collapse
|
31
|
Weiss A. The therapeutic landscape for gut bacterial infections: opportunities and limitations. Gut Microbes 2020; 12:1. [PMID: 33092470 PMCID: PMC7588188 DOI: 10.1080/19490976.2020.1825076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|