1
|
Agnello L, Masucci A, Tamburello M, Vassallo R, Massa D, Giglio RV, Midiri M, Gambino CM, Ciaccio M. The Role of Killer Ig-like Receptors in Diseases from A to Z. Int J Mol Sci 2025; 26:3242. [PMID: 40244151 PMCID: PMC11989319 DOI: 10.3390/ijms26073242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Killer Ig-like Receptors (KIRs) regulate immune responses, maintaining the balance between activation and inhibition of the immune system. KIRs are expressed on natural killer cells and some CD8 T cells and interact with HLA class I molecules, influencing various physiological and pathological processes. KIRs' polymorphism creates a variability in immune responses among individuals. KIRs are involved in autoimmune disorders, cancer, infections, neurological diseases, and other diseases. Specific combinations of KIRs and HLA are linked to several diseases' susceptibility, progression, and outcomes. In particular, the balance between inhibitory and activating KIRs can determine how the immune system responds to pathogens and tumors. An imbalance can lead to an excessive response, contributing to autoimmune diseases, or an inadequate response, allowing immune evasion by pathogens or cancer cells. The increasing number of studies on KIRs highlights their essential role as diagnostic and prognostic biomarkers and potential therapeutic targets. This review provides a comprehensive overview of the role of KIRs in all clinical conditions and diseases, listed alphabetically, where they are analyzed.
Collapse
Affiliation(s)
- Luisa Agnello
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Anna Masucci
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Martina Tamburello
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Roberta Vassallo
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Davide Massa
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Rosaria Vincenza Giglio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| | - Mauro Midiri
- Institute of Legal Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy;
| | - Caterina Maria Gambino
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| | - Marcello Ciaccio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
2
|
Zhao J, Chen M, Li X, Chen Z, Li W, Guo R, Wang M, Jiang Z, Song Y, Wang J, Liu D. Construction and characterization of chimeric FcγR T cells for universal T cell therapy. Exp Hematol Oncol 2025; 14:6. [PMID: 39810257 PMCID: PMC11734343 DOI: 10.1186/s40164-025-00595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Several approaches are being explored for engineering off-the-shelf chimeric antigen receptor (CAR) T cells. In this study, we engineered chimeric Fcγ receptor (FcγR) T cells and tested their potential as a versatile platform for universal T cell therapy. METHODS Chimeric FcγR (CFR) constructs were generated using three distinct forms of FcγR, namely CD16A, CD32A, and CD64. The functionality of CFR T cells was evaluated through degranulation assays, specific target lysis experiments, in vitro cytokine production analysis, and assessment of tumor xenograft destruction specificity in mouse models using different monoclonal antibodies (MoAbs). RESULTS Three types of CFR T cells were engineered, 16s3, 32-8a, 64-8a CFR T cells. In the presence of rituximab (RTX), cytotoxicity of all three types of CFR T cells against CD20+ Raji-wt, K562-CD20+, and primary tumor cells was significantly higher than that of the mock T cells (P < 0.001). When herceptin was used, all three types of CFR T cells exhibited significant cytotoxicity against HER2+ cell lines of SK-BR-3, SK-OV-3, and HCC1954 (P < 0.001). The cytotoxicity of 64-8a CFR T cells was significantly inhibited by free human IgG at a physiological dose (P < 0.001), which was not observed in 16s3, 32-8a CFR T cells. Compared to 32-8a CFR T cells, 16s3 CFR T cells exhibited more prolonged cytotoxicity than 32-8a CFR T cells (P < 0.01). In in vivo assays using xenograft models, 16s3 CFR T cells significantly prolonged the survival of mice xenografted with Raji-wt cells in the presence of RTX (P < 0.001), and effectively reduced tumor burden in mice xenografted with SK-OV-3 cells in the presence of herceptin (P < 0.05). No significant non-specific cytotoxicity of CFR T cells was found in vivo. CONCLUSION The anti-tumor effects of the CFR T cells in vitro and in xenograft mouse models are mediated by specific MoAbs such as RTX and herceptin. The CFR T cells therefore have the features of universal T cells with specificity directed by MoAbs. 16s3 CFR T cells are chosen for clinical trials.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Manling Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xudong Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhaoqi Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Delong Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY, USA
| |
Collapse
|
3
|
Ghasempour A, Mohseni R, Sharif PM, Hamidieh AA. Natural killer cell-based therapies in neuroblastoma. Cell Immunol 2025; 407:104898. [PMID: 39631142 DOI: 10.1016/j.cellimm.2024.104898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor of childhood forming around 15 % of all pediatric tumors. Despite advances in the treatment of NB, high-risk patients still face a grave prognosis. Adoptive cell therapies based on NK cells are becoming an assistive treatment for such cases. Moreover, there is also evidence that NKT-based therapies have promising results in the management of NB. Lower complications in comparison with adoptive T cell therapies, various cell sources, and miscellaneous tumor recognition mechanisms are some of the advantages of NK- and NKT-based therapies. This review is dedicated to searching for recent advances in this field.
Collapse
Affiliation(s)
- Abtin Ghasempour
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rashin Mohseni
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Mahdavi Sharif
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Graham LV, Fisher JG, Doyle ADP, Sale B, Del Rio L, French AJE, Mayor NP, Turner TR, Marsh SGE, Cragg MS, Forconi F, Khakoo SI, Blunt MD. KIR2DS2+ NK cells in cancer patients demonstrate high activation in response to tumour-targeting antibodies. Front Oncol 2024; 14:1404051. [PMID: 39286025 PMCID: PMC11402612 DOI: 10.3389/fonc.2024.1404051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Strategies to mobilise natural killer (NK) cells against cancer include tumour-targeting antibodies, NK cell engagers (NKCEs) and the adoptive transfer of ex vivo expanded healthy donor-derived NK cells. Genetic and functional studies have revealed that expression of the activating killer immunoglobulin-like receptor KIR2DS2 is associated with enhanced function in NK cells from healthy donors and improved outcome in several different malignancies. The optimal strategy to leverage KIR2DS2+ NK cells therapeutically is however currently unclear. In this study, we therefore evaluated the response of KIR2DS2-expressing NK cells to activation against cancer with clinically relevant tumour-targeting antibodies and following ex vivo expansion. We identified that KIR2DS2high NK cells from patients with chronic lymphocytic leukaemia and hepatocellular carcinoma had enhanced activation in response to tumour-targeting antibodies compared to KIR2DS2- NK cells. However, the superior function of healthy donor derived KIR2DS2high NK cells was lost following ex vivo expansion which is required for adoptive transfer-based therapeutic strategies. These data provide evidence that targeting KIR2DS2 directly in cancer patients may allow for the utilisation of their enhanced effector function, however such activity may be lost following their ex vivo expansion.
Collapse
Affiliation(s)
- Lara V Graham
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| | - Jack G Fisher
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| | - Amber D P Doyle
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| | - Ben Sale
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Luis Del Rio
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Albert J E French
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom
| | - Neema P Mayor
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom
- Department of Academic Haematology, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Thomas R Turner
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom
- Department of Academic Haematology, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Steven G E Marsh
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom
- Department of Academic Haematology, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Mark S Cragg
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Francesco Forconi
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
- Haematology Department, Cancer Care Directorate, University Hospital Southampton National Health Service (NHS) Trust, Southampton, United Kingdom
| | - Salim I Khakoo
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| | - Matthew D Blunt
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
5
|
Stip MC, Teeuwen L, Dierselhuis MP, Leusen JHW, Krijgsman D. Targeting the myeloid microenvironment in neuroblastoma. J Exp Clin Cancer Res 2023; 42:337. [PMID: 38087370 PMCID: PMC10716967 DOI: 10.1186/s13046-023-02913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Myeloid cells (granulocytes and monocytes/macrophages) play an important role in neuroblastoma. By inducing a complex immunosuppressive network, myeloid cells pose a challenge for the adaptive immune system to eliminate tumor cells, especially in high-risk neuroblastoma. This review first summarizes the pro- and anti-tumorigenic functions of myeloid cells, including granulocytes, monocytes, macrophages, and myeloid-derived suppressor cells (MDSC) during the development and progression of neuroblastoma. Secondly, we discuss how myeloid cells are engaged in the current treatment regimen and explore novel strategies to target these cells in neuroblastoma. These strategies include: (1) engaging myeloid cells as effector cells, (2) ablating myeloid cells or blocking the recruitment of myeloid cells to the tumor microenvironment and (3) reprogramming myeloid cells. Here we describe that despite their immunosuppressive traits, tumor-associated myeloid cells can still be engaged as effector cells, which is clear in anti-GD2 immunotherapy. However, their full potential is not yet reached, and myeloid cell engagement can be enhanced, for example by targeting the CD47/SIRPα axis. Though depletion of myeloid cells or blocking myeloid cell infiltration has been proven effective, this strategy also depletes possible effector cells for immunotherapy from the tumor microenvironment. Therefore, reprogramming of suppressive myeloid cells might be the optimal strategy, which reverses immunosuppressive traits, preserves myeloid cells as effectors of immunotherapy, and subsequently reactivates tumor-infiltrating T cells.
Collapse
Affiliation(s)
- Marjolein C Stip
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Loes Teeuwen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | | | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Daniëlle Krijgsman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands.
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Schengrund CL. The Ying and Yang of Ganglioside Function in Cancer. Cancers (Basel) 2023; 15:5362. [PMID: 38001622 PMCID: PMC10670608 DOI: 10.3390/cancers15225362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
The plethora of information about the expression of cancer cell-associated gangliosides, their role(s) in signal transduction, and their potential usefulness in the development of cancer treatments makes this an appropriate time to review these enigmatic glycosphingolipids. Evidence, reflecting the work of many, indicates that (1) expression of specific gangliosides, not generally found in high concentrations in most normal human cells, can be linked to certain types of cancer. (2) Gangliosides can affect the ability of cells to interact either directly or indirectly with growth factor receptors, thereby changing such things as a cell's mobility, rate of proliferation, and metastatic ability. (3) Anti-ganglioside antibodies have been tested, with some success, as potential treatments for certain cancers. (4) Cancer-associated gangliosides shed into the circulation can (a) affect immune cell responsiveness either positively or negatively, (b) be considered as diagnostic markers, and (c) be used to look for recurrence. (5) Cancer registries enable investigators to evaluate data from sufficient numbers of patients to obtain information about potential therapies. Despite advances that have been made, a discussion of possible approaches to identifying additional treatment strategies to inhibit metastasis, responsible for the majority of deaths of cancer patients, as well as for treating therapy-resistant tumors, is included.
Collapse
Affiliation(s)
- Cara-Lynne Schengrund
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
7
|
Vitale C, Bottino C, Castriconi R. Monocyte and Macrophage in Neuroblastoma: Blocking Their Pro-Tumoral Functions and Strengthening Their Crosstalk with Natural Killer Cells. Cells 2023; 12:885. [PMID: 36980226 PMCID: PMC10047506 DOI: 10.3390/cells12060885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Over the past decade, immunotherapy has represented an enormous step forward in the fight against cancer. Immunotherapeutic approaches have increasingly become a fundamental part of the combined therapies currently adopted in the treatment of patients with high-risk (HR) neuroblastoma (NB). An increasing number of studies focus on the understanding of the immune landscape in NB and, since this tumor expresses low or null levels of MHC class I, on the development of new strategies aimed at enhancing innate immunity, especially Natural Killer (NK) cells and macrophages. There is growing evidence that, within the NB tumor microenvironment (TME), tumor-associated macrophages (TAMs), which mainly present an M2-like phenotype, have a crucial role in mediating NB development and immune evasion, and they have been correlated to poor clinical outcomes. Importantly, TAM can also impair the antibody-dependent cellular cytotoxicity (ADCC) mediated by NK cells upon the administration of anti-GD2 monoclonal antibodies (mAbs), the current standard immunotherapy for HR-NB patients. This review deals with the main mechanisms regulating the crosstalk among NB cells and TAMs or other cellular components of the TME, which support tumor development and induce drug resistance. Furthermore, we will address the most recent strategies aimed at limiting the number of pro-tumoral macrophages within the TME, reprogramming the TAMs functional state, thus enhancing NK cell functions. We also prospectively discuss new or unexplored aspects of human macrophage heterogeneity.
Collapse
Affiliation(s)
- Chiara Vitale
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
8
|
Erbe AK, Diccianni MB, Mody R, Naranjo A, Zhang FF, Birstler J, Kim K, Feils AS, Hung JT, London WB, Shulkin BL, Mathew V, Parisi MT, Servaes S, Asgharzadeh S, Maris JM, Park J, Yu AL, Sondel PM, Bagatell R. KIR/KIR-ligand genotypes and clinical outcomes following chemoimmunotherapy in patients with relapsed or refractory neuroblastoma: a report from the Children's Oncology Group. J Immunother Cancer 2023; 11:e006530. [PMID: 36822669 PMCID: PMC9950969 DOI: 10.1136/jitc-2022-006530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND In the Children's Oncology Group ANBL1221 phase 2 trial for patients with first relapse/first declaration of refractory high-risk neuroblastoma, irinotecan and temozolomide (I/T) combined with either temsirolimus (TEMS) or immunotherapy (the anti-GD2 antibody dinutuximab (DIN) and granulocyte macrophage colony stimulating factory (GM-CSF)) was administered. The response rate among patients treated with I/T/DIN/GM-CSF in the initial cohort (n=17) was 53%; additional patients were enrolled to permit further evaluation of this chemoimmunotherapy regimen. Potential associations between immune-related biomarkers and clinical outcomes including response and survival were evaluated. METHODS Patients were evaluated for specific immunogenotypes that influence natural killer (NK) cell activity, including killer immunoglobulin-like receptors (KIRs) and their ligands, Fc gamma receptors, and NCR3. Total white cells and leucocyte subsets were assessed via complete blood counts, and flow cytometry of peripheral blood mononuclear cells was performed to assess the potential association between immune cell subpopulations and surface marker expression and clinical outcomes. Appropriate statistical tests of association were performed. The Bonferroni correction for multiple comparisons was performed where indicated. RESULTS Of the immunogenotypes assessed, the presence or absence of certain KIR and their ligands was associated with clinical outcomes in patients treated with chemoimmunotherapy rather than I/T/TEMS. While median values of CD161, CD56, and KIR differed in responders and non-responders, statistical significance was not maintained in logistic regression models. White cell and neutrophil counts were associated with differences in survival outcomes, however, increases in risk of event in patients assigned to chemoimmunotherapy were not clinically significant. CONCLUSIONS These findings are consistent with those of prior studies showing that KIR/KIR-ligand genotypes are associated with clinical outcomes following anti-GD2 immunotherapy in children with neuroblastoma. The current study confirms the importance of KIR/KIR-ligand genotype in the context of I/T/DIN/GM-CSF chemoimmunotherapy administered to patients with relapsed or refractory disease in a clinical trial. These results are important because this regimen is now widely used for treatment of patients at time of first relapse/first declaration of refractory disease. Efforts to assess the role of NK cells and genes that influence their function in response to immunotherapy are ongoing. TRIAL REGISTRATION NUMBER NCT01767194.
Collapse
Affiliation(s)
- Amy K Erbe
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin, USA
| | - Mitch B Diccianni
- Department of Pediatrics, University of California, San Diego, California, USA
| | - Rajen Mody
- C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, Michigan, USA
| | - Arlene Naranjo
- Children's Oncology Group Statistics and Data Center, University of Florida, Gainesville, Florida, USA
| | - Fan F Zhang
- Children's Oncology Group Statistics and Data Center, Monrovia, California, USA
| | - Jen Birstler
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA
| | - Arika S Feils
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Wendy B London
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Barry L Shulkin
- Departments of Diagnostic Imaging and Comprehensive Cancer Center, St. Jude Children's Research Hospital and the University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Varsha Mathew
- Department of Pediatrics, University of California, San Diego, California, USA
| | - Marguerite T Parisi
- Department of Pediatrics, Seattle Children's Hospital and the University, Seattle, Washington, USA
| | - Sabah Servaes
- Department of Pediatrics, The Children's Hospital, Philadelphia, Pennsylvania, USA
| | - Shahab Asgharzadeh
- Department Cancer and Blood Disease Institute, Childrens Hospital of Los Angeles, Los Angeles, California, USA
| | - John M Maris
- Department of Pediatrics, The Children's Hospital, Philadelphia, Pennsylvania, USA
| | - Julie Park
- Department of Pediatrics, Seattle Children's Hospital and the University, Seattle, Washington, USA
| | - Alice L Yu
- Department of Pediatrics, University of California, San Diego, California, USA
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, USA
| | - Rochelle Bagatell
- Department of Pediatrics, The Children's Hospital, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Wang W, Yu C, Cui Y, Liu C, Yang Y, Xu G, Wu G, Du J, Fu Z, Guo L, Long C, Xia X, Li Y, Wang L, Wang Y. Development of a reporter gene assay for antibody dependent cellular cytotoxicity activity determination of anti-rabies virus glycoprotein antibodies. Microbiol Immunol 2023; 67:69-78. [PMID: 36346082 DOI: 10.1111/1348-0421.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/09/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
Rabies is a viral disease that is nearly 100% fatal once clinical signs and symptoms develop. Post-exposure prophylaxis can efficiently prevent rabies, and antibody (Ab) induction by vaccination or passive immunization of human rabies immunoglobulin (HRIG) or monoclonal antibodies (mAbs) play an integral role in prevention against rabies. In addition to their capacity to neutralize viruses, antibodies exert their antiviral effects by antibody-dependent cellular cytotoxicity (ADCC), which plays an important role in antiviral immunity and clearance of viral infections. For antibodies against rabies virus (RABV), evaluation of ADCC activity was neglected. Here, we developed a robust cell-based reporter gene assay (RGA) for the determination of the ADCC activity of anti-RABV antibodies using CVS-N2c-293 cells, which stably express the glycoprotein (G) of RABV strain CVS-N2c as target cells, and Jurkat cells, which stably express FcγRⅢa and nuclear factor of activated T cells (NFAT) reporter gene as effector cells (Jurkat/NFAT-luc/FcγRⅢa cells). The experimental parameters were carefully optimized, and the established ADCC assay was systematically validated according to the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) Q2 guideline. We also evaluated the ADCC activity of anti-RABV antibodies, including mAbs, HRIG, and vaccine induced antisera, and found that all test antibodies exhibited ADCC activity with varied strengths. The established RGA provides a novel method for evaluating the ADCC of anti-RABV antibodies.
Collapse
Affiliation(s)
- Wenbo Wang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Chuanfei Yu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Yongfei Cui
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Chunyu Liu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Yalan Yang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Gangling Xu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Gang Wu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Jialiang Du
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Zhihao Fu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Luyong Guo
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Caifeng Long
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Xijie Xia
- China Pharmaceutical University, Nanjing, China
| | - Yuhua Li
- Division of Arboviral Vaccine, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Lan Wang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| |
Collapse
|
10
|
Desai AV, Gilman AL, Ozkaynak MF, Naranjo A, London WB, Tenney SC, Diccianni M, Hank JA, Parisi MT, Shulkin BL, Smith M, Moscow JA, Shimada H, Matthay KK, Cohn SL, Maris JM, Bagatell R, Sondel PM, Park JR, Yu AL. Outcomes Following GD2-Directed Postconsolidation Therapy for Neuroblastoma After Cessation of Random Assignment on ANBL0032: A Report From the Children's Oncology Group. J Clin Oncol 2022; 40:4107-4118. [PMID: 35839426 PMCID: PMC9746736 DOI: 10.1200/jco.21.02478] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Postconsolidation immunotherapy including dinutuximab, granulocyte-macrophage colony-stimulating factor, and interleukin-2 improved outcomes for patients with high-risk neuroblastoma enrolled on the randomized portion of Children's Oncology Group study ANBL0032. After random assignment ended, all patients were assigned to immunotherapy. Survival and toxicities were assessed. PATIENTS AND METHODS Patients with a pre-autologous stem cell transplant (ASCT) response (excluding bone marrow) of partial response or better were eligible. Demographics, stage, tumor biology, pre-ASCT response, and adverse events were summarized using descriptive statistics. Event-free survival (EFS) and overall survival (OS) from time of enrollment (up to day +200 from last ASCT) were evaluated. RESULTS From 2009 to 2015, 1,183 patients were treated. Five-year EFS and OS for the entire cohort were 61.1 ± 1.9% and 71.9 ± 1.7%, respectively. For patients ≥ 18 months old at diagnosis with International Neuroblastoma Staging System stage 4 disease (n = 662) 5-year EFS and OS were 57.0 ± 2.4% and 70.9 ± 2.2%, respectively. EFS was superior for patients with complete response/very good partial response pre-ASCT compared with those with PR (5-year EFS: 64.2 ± 2.2% v 55.4 ± 3.2%, P = .0133); however, OS was not significantly different. Allergic reactions, capillary leak, fever, and hypotension were more frequent during interleukin-2-containing cycles than granulocyte-macrophage colony-stimulating factor-containing cycles (P < .0001). EFS was superior in patients with higher peak dinutuximab levels during cycle 1 (P = .034) and those with a high affinity FCGR3A genotype (P = .0418). Human antichimeric antibody status did not correlate with survival. CONCLUSION Analysis of a cohort assigned to immunotherapy after cessation of random assignment on ANBL0032 confirmed previously described survival and toxicity outcomes. EFS was highest among patients with end-induction complete response/very good partial response. Among patients with available data, higher dinutuximab levels and FCGR3A genotype were associated with superior EFS. These may be predictive biomarkers for dinutuximab therapy.
Collapse
Affiliation(s)
| | | | - Mehmet Fevzi Ozkaynak
- Maria Fareri Children's Hospital Westchester Medical Center, New York Medical College, Valhalla, NY
| | - Arlene Naranjo
- Children's Oncology Group Statistics and Data Center, University of Florida, Gainesville, FL
| | - Wendy B. London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Sheena C. Tenney
- Children's Oncology Group Statistics and Data Center, University of Florida, Gainesville, FL
| | | | | | - Marguerite T. Parisi
- Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA
| | | | - Malcolm Smith
- Clinical Investigations Branch, National Cancer Institute, Bethesda, MD
| | - Jeffrey A. Moscow
- Investigational Drug Branch, National Cancer Institute, Bethesda, MD
| | | | | | | | - John M. Maris
- Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA
| | - Rochelle Bagatell
- Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA
| | - Paul M. Sondel
- University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Julie R. Park
- Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA
| | - Alice L. Yu
- University of California in San Diego, San Diego, CA
- Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
11
|
Bottino C, Della Chiesa M, Sorrentino S, Morini M, Vitale C, Dondero A, Tondo A, Conte M, Garaventa A, Castriconi R. Strategies for Potentiating NK-Mediated Neuroblastoma Surveillance in Autologous or HLA-Haploidentical Hematopoietic Stem Cell Transplants. Cancers (Basel) 2022; 14:cancers14194548. [PMID: 36230485 PMCID: PMC9559312 DOI: 10.3390/cancers14194548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary High-risk neuroblastomas (HR-NB) are malignant tumors of childhood that are treated with a very aggressive and life-threatening approach; this includes autologous hemopoietic stem cell transplantation (HSCT) and the infusion of a mAb targeting the GD2 tumor-associated antigen. Although the current treatment provided benefits, the 5-year overall survival remains below 50% due to relapses and refractoriness to therapy. Thus, there is an urgent need to ameliorate the standard therapeutic protocol, particularly improving the immune-mediated anti-tumor responses. Our review aims at summarizing and critically discussing novel immunotherapeutic strategies in HR-NB, including NK cell-based therapies and HLA-haploidentical HSCT from patients’ family. Abstract High-risk neuroblastomas (HR-NB) still have an unacceptable 5-year overall survival despite the aggressive therapy. This includes standardized immunotherapy combining autologous hemopoietic stem cell transplantation (HSCT) and the anti-GD2 mAb. The treatment did not significantly change for more than one decade, apart from the abandonment of IL-2, which demonstrated unacceptable toxicity. Of note, immunotherapy is a promising therapeutic option in cancer and could be optimized by several strategies. These include the HLA-haploidentical αβT/B-depleted HSCT, and the antibody targeting of novel NB-associated antigens such as B7-H3, and PD1. Other approaches could limit the immunoregulatory role of tumor-derived exosomes and potentiate the low antibody-dependent cell cytotoxicity of CD16 dim/neg NK cells, abundant in the early phase post-transplant. The latter effect could be obtained using multi-specific tools engaging activating NK receptors and tumor antigens, and possibly holding immunostimulatory cytokines in their construct. Finally, treatments also consider the infusion of novel engineered cytokines with scarce side effects, and cell effectors engineered with chimeric antigen receptors (CARs). Our review aims to discuss several promising strategies that could be successfully exploited to potentiate the NK-mediated surveillance of neuroblastoma, particularly in the HSCT setting. Many of these approaches are safe, feasible, and effective at pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
- Correspondence: ; Tel.: +39-01056363855
| | - Mariella Della Chiesa
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | | | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Chiara Vitale
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Alessandra Dondero
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology/Oncology and HSCT, Meyer Children’s University Hospital, 50139 Florence, Italy
| | - Massimo Conte
- Pediatric Oncology Unit-IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Alberto Garaventa
- Pediatric Oncology Unit-IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
12
|
Hingorani P, Krailo M, Buxton A, Hutson P, Sondel PM, Diccianni M, Yu A, Morris CD, Womer RB, Crompton B, Randall RL, Teot LA, DuBois SG, Janeway KA, Gorlick RG, Isakoff MS. Phase 2 study of anti-disialoganglioside antibody, dinutuximab, in combination with GM-CSF in patients with recurrent osteosarcoma: A report from the Children's Oncology Group. Eur J Cancer 2022; 172:264-275. [PMID: 35809374 PMCID: PMC9631806 DOI: 10.1016/j.ejca.2022.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/22/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Novel effective therapies are urgently needed in recurrent osteosarcoma. GD2 is expressed in human osteosarcoma tumours and cell lines. This study evaluated the disease control rate (DCR) in patients with recurrent osteosarcoma treated with the anti-GD2 antibody dinutuximab plus cytokine therapy as compared to historical outcomes. METHODS AOST1421 was a single-arm Phase 2 study for patients with recurrent pulmonary osteosarcoma in complete surgical remission. Patients received up to five cycles of dinutuximab (70 mg/m2/cycle) with granulocyte-macrophage colony-stimulating factor (GM-CSF). Two different dinutuximab infusion schedules were studied: 35 mg/m2/day over 20 h (2 days) and 17.5 mg/m2/day over 10 h (4 days). Primary end point was DCR, defined as a proportion of patients event free at 12 months from enrolment. The historical benchmark was 12-month DCR of 20% (95% CI 10-34%). Dinutuximab would be considered effective if ≥ 16/39 patients remained event free. Secondary objectives included toxicity evaluation and pharmacokinetics. RESULTS Thirty-nine eligible patients were included in the outcome analysis. Dinutuximab did not demonstrate evidence of efficacy as 11/39 patients remained event free for a DCR of 28.2% (95% CI 15-44.9%). One of 136 administered therapy cycles met criteria for unacceptable toxicity when a patient experienced sudden death of unknown cause. Other ≥ Grade 3 toxicities included pain, diarrhoea, hypoxia, and hypotension. Pharmacokinetic parameters were similar in the two schedules. CONCLUSIONS The combination of dinutuximab with GM-CSF did not significantly improve DCR in recurrent osteosarcoma. Dinutuximab toxicity and pharmacokinetics in adolescent and young adult osteosarcoma patients were similar to younger patients. Other strategies for targeting GD2 in osteosarcoma are being developed.
Collapse
Affiliation(s)
| | - Mark Krailo
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Paul Hutson
- UW School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Paul M Sondel
- Pediatrics, Human Oncology and Genetics, University of Wisconsin, Madison, WI, USA
| | | | - Alice Yu
- University of California, San Diego, CA, USA
| | - Carol D Morris
- Johns Hopkins University/ Sidney Kimmel Cancer Center, Baltimore, MD, USA
| | - Richard B Womer
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Crompton
- Dana-Farber/ Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - R Lor Randall
- University of California Davis Comprehensive Cancer Center, San Diego, CA, USA
| | - Lisa A Teot
- Dana-Farber/ Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Steven G DuBois
- Dana-Farber/ Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Katherine A Janeway
- Dana-Farber/ Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
13
|
Blunt MD, Vallejo Pulido A, Fisher JG, Graham LV, Doyle ADP, Fulton R, Carter MJ, Polak M, Johnson PWM, Cragg MS, Forconi F, Khakoo SI. KIR2DS2 Expression Identifies NK Cells With Enhanced Anticancer Activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:379-390. [PMID: 35768150 PMCID: PMC7613074 DOI: 10.4049/jimmunol.2101139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/08/2022] [Indexed: 12/13/2022]
Abstract
NK cells are promising cellular therapeutics against hematological and solid malignancies. Immunogenetic studies have identified that various activating killer cell Ig-like receptors (KIRs) are associated with cancer outcomes. Specifically, KIR2DS2 has been associated with reduced incidence of relapse following transplant in hematological malignancies and improved outcomes in solid tumors, but the mechanism remains obscure. Therefore, we investigated how KIR2DS2 expression impacts NK cell function. Using a novel flow cytometry panel, we show that human NK cells with high KIR2DS2 expression have enhanced spontaneous activation against malignant B cell lines, liver cancer cell lines, and primary chronic lymphocytic leukemia cells. Surface expression of CD16 was increased on KIR2DS2high NK cells, and, accordingly, KIR2DS2high NK cells had increased activation against lymphoma cells coated with the clinically relevant anti-CD20 Abs rituximab and obinutuzumab. Bulk RNA sequencing revealed that KIR2DS2high NK cells have upregulation of NK-mediated cytotoxicity, translation, and FCGR gene pathways. We developed a novel single-cell RNA-sequencing technique to identify KIR2DS2+ NK cells, and this confirmed that KIR2DS2 is associated with enhanced NK cell-mediated cytotoxicity. This study provides evidence that KIR2DS2 marks a population of NK cells primed for anticancer activity and indicates that KIR2DS2 is an attractive target for NK-based therapeutic strategies.
Collapse
Affiliation(s)
- Matthew D Blunt
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| | - Andres Vallejo Pulido
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| | - Jack G Fisher
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| | - Lara V Graham
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| | - Amber D P Doyle
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| | - Rebecca Fulton
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| | - Matthew J Carter
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Marta Polak
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| | - Peter W M Johnson
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Mark S Cragg
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Francesco Forconi
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Salim I Khakoo
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| |
Collapse
|
14
|
Anti-GD2 Directed Immunotherapy for High-Risk and Metastatic Neuroblastoma. Biomolecules 2022; 12:biom12030358. [PMID: 35327550 PMCID: PMC8945428 DOI: 10.3390/biom12030358] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroblastoma is one of the few childhood cancers that carries a tumor-specific antigen in the form of a glycolipid antigen known as GD2. It has restricted expression in normal tissue, such as peripheral afferent nerves. Monoclonal antibodies targeting GD2 have been applied clinically to high-risk neuroblastoma with significant success. However, there are different anti-GD2 products and administration regimens. For example, anti-GD2 has been used in combination with chemotherapy during the induction phase or with retinoic acid during the maintenance stage. Regimens also vary in the choice of whether to add cytokines (i.e., IL-2, GMCSF, or both). Furthermore, the addition of an immune enhancer, such as β-glucan, or allogeneic natural killer cells also becomes a confounder in the interpretation. The question concerning which product or method of administration is superior remains to be determined. So far, most studies agree that adding anti-GD2 to the conventional treatment protocol can achieve better short- to intermediate-term event-free and overall survival, but the long-term efficacy remains to be verified. How to improve its efficacy is another challenge. Late relapse and central nervous system metastasis have emerged as new problems. The methods to overcome the mechanisms related to immune evasion or resistance to immunotherapy represent new challenges to be resolved. The newer anti-GD2 strategies, such as bispecific antibody linking of anti-GD2 with activated T cells or chimeric antigen receptor T cells, are currently under clinical trials, and they may become promising alternatives. The use of anti-GD2/GD3 tumor vaccine is a novel and potential approach to minimizing late relapse. How to induce GD2 expression from tumor cells using the epigenetic approach is a hot topic nowadays. We expect that anti-GD2 treatment can serve as a model for the use of monoclonal antibody immunotherapy against cancers in the future.
Collapse
|
15
|
Muraro E, De Zorzi M, Miolo G, Lombardi D, Scalone S, Spazzapan S, Massarut S, Perin T, Dolcetti R, Steffan A, De Re V. KIR-HLA Functional Repertoire Influences Trastuzumab Efficiency in Patients With HER2-Positive Breast Cancer. Front Immunol 2022; 12:791958. [PMID: 35095867 PMCID: PMC8790064 DOI: 10.3389/fimmu.2021.791958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
Trastuzumab induced a high rate of pathological Complete Response (pCR) in patients affected by locally advanced HER2-positive Breast Cancer (HER2-BC), by exploiting immune-mediated mechanisms as Antibody-Dependent Cell Cytotoxicity (ADCC) involving Natural Killer (NK) cells. Host's immune genetics could influence the response to therapy, through the expression of variants that characterize NK receptors involved in ADCC effectiveness. Killer cell immunoglobin-like receptors (KIRs) modulate NK cell activity through their binding to class-I Human Leukocyte Antigens (HLA). The impact of the KIR/HLA repertoire in HER2-BC is under study. We characterized KIR genotypes of 36 patients with locally advanced HER2-BC treated with neoadjuvant chemotherapy including trastuzumab. We monitored pCR achievement before surgery and Disease-Free Survival (DFS) and Overall Survival (OS) after adjuvant therapy. HLA, and Fc gamma receptor IIIa (FcγR3A) and IIa (FcγR2A) were genotyped through targeted PCR and Sanger sequencing in 35/36 patients. The KIR-HLA combinations were then described as functional haplotypes and divided in two main categories as inhibitory tel A and stimulatory tel B. Trastuzumab-dependent ADCC activity was monitored with an in vitro assay using a HER2-BC model and patients' NK cells.We observed a higher frequency of KIR activators in patients who achieved a pCR compared to partial responders. During the study of functional haplotypes, individuals carrying a tel B haplotype showed greater ADCC efficiency than tel A cases. In subjects with the tel A haplotype the presence of the favorite V allele in FcγR3A receptor improved their low ADCC levels. Regardless of the haplotypes detected, the presence of KIR3DL2/HLA-A03 or A11 was always associated with the FcγR3A V allele, and therefore correlated with greater ADCC efficiency. However, this particular KIR receptor appeared to harm DFS and OS. Indeed, patients with tel B haplotype without KIR3DL2/HLA-A03 or A11 showed a better outcome. Our data, although preliminary, suggested a potential predictive role for KIR haplotype tel B, in identifying patients who achieve a pCR after neoadjuvant treatment with trastuzumab, and supported a negative prognostic impact of KIR3DL2/HLA-A03 or A11 in the adjuvant setting.
Collapse
Affiliation(s)
- Elena Muraro
- Immunopathology and Cancer Biomarkers Units, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Mariangela De Zorzi
- Immunopathology and Cancer Biomarkers Units, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Davide Lombardi
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Simona Scalone
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Simon Spazzapan
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Samuele Massarut
- Breast Surgery Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| | - Tiziana Perin
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| | - Riccardo Dolcetti
- Centre for Cancer Immunotherapy, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, VIC, Australia.,Department of Microbiology and Immunology, The University of Melbourne, VIC, Australia.,Faculty of Medicine, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Units, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Valli De Re
- Immunopathology and Cancer Biomarkers Units, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| |
Collapse
|
16
|
Tibbetts R, Yeo KK, Muthugounder S, Lee MH, Jung C, Porras-Corredor T, Sheard MA, Asgharzadeh S. Anti-disialoganglioside antibody internalization by neuroblastoma cells as a mechanism of immunotherapy resistance. Cancer Immunol Immunother 2022; 71:153-164. [PMID: 34043024 PMCID: PMC10991857 DOI: 10.1007/s00262-021-02963-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 05/06/2021] [Indexed: 01/18/2023]
Abstract
Neuroblastoma (NBL) accounts for a disproportionate number of deaths among childhood malignancies despite intensive multimodal therapy that includes antibody targeting disialoganglioside GD2, a NBL antigen. Unfortunately, resistance to anti-GD2 immunotherapy is frequent and we aimed to investigate mechanisms of resistance in NBL. GD2 expression was quantified by flow cytometry and anti-GD2 antibody internalization was measured using real-time microscopy in 20 human NBL cell lines. Neutrophil-mediated antibody-dependent cellular cytotoxicity (ADCC) assays were performed on a subset of the cell lines (n = 12), and results were correlated with GD2 expression and antibody internalization. GD2 was expressed on 19 of 20 NBL cell lines at variable levels, and neutrophil-mediated ADCC was observed only in GD2-expressing cell lines. We found no correlation between level of GD2 expression and sensitivity to neutrophil-mediated ADCC, suggesting that GD2 expression of many cell lines was above a threshold required for maximal ADCC, such that expression level could not be used to predict subsequent cytotoxicity. Instead, anti-GD2 antibody internalization, a process that occurred universally but differentially across GD2-expressing NBL cell lines, was inversely correlated with ADCC. Treatment with endocytosis inhibitors EIPA, chlorpromazine, MBCD, and cytochalasin-D showed potential to inhibit antibody internalization; however, only MBCD resulted in significantly increased sensitivity to neutrophil-mediated ADCC in 4 of 4 cell lines in vitro. Our data suggest that antibody internalization may represent a novel mechanism of immunotherapy escape by NBL and provide proof-of-principle that targeting pathways involved in antibody internalization may improve the efficacy of anti-GD2 immunotherapies.
Collapse
Affiliation(s)
- Rachelle Tibbetts
- Children's Hospital Los Angeles, The Saban Research Institute, 4650 Sunset Boulevard, MS 57, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kee Kiat Yeo
- Children's Hospital Los Angeles, The Saban Research Institute, 4650 Sunset Boulevard, MS 57, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Dana-Farber/Boston Childrens Cancer and Blood Disorders Center, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Sakunthala Muthugounder
- Children's Hospital Los Angeles, The Saban Research Institute, 4650 Sunset Boulevard, MS 57, Los Angeles, CA, 90027, USA
| | - Meng-Hua Lee
- Children's Hospital Los Angeles, The Saban Research Institute, 4650 Sunset Boulevard, MS 57, Los Angeles, CA, 90027, USA
| | - Cham Jung
- Children's Hospital Los Angeles, The Saban Research Institute, 4650 Sunset Boulevard, MS 57, Los Angeles, CA, 90027, USA
| | - Tania Porras-Corredor
- Children's Hospital Los Angeles, The Saban Research Institute, 4650 Sunset Boulevard, MS 57, Los Angeles, CA, 90027, USA
| | - Michael A Sheard
- Children's Hospital Los Angeles, The Saban Research Institute, 4650 Sunset Boulevard, MS 57, Los Angeles, CA, 90027, USA
| | - Shahab Asgharzadeh
- Children's Hospital Los Angeles, The Saban Research Institute, 4650 Sunset Boulevard, MS 57, Los Angeles, CA, 90027, USA.
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Seitz CM, Flaadt T, Mezger M, Lang AM, Michaelis S, Katz M, Syring D, Joechner A, Rabsteyn A, Siebert N, Troschke-Meurer S, Zumpe M, Lode HN, Yang SF, Atar D, Mast AS, Scheuermann S, Heubach F, Handgretinger R, Lang P, Schlegel P. Immunomonitoring of Stage IV Relapsed Neuroblastoma Patients Undergoing Haploidentical Hematopoietic Stem Cell Transplantation and Subsequent GD2 (ch14.18/CHO) Antibody Treatment. Front Immunol 2021; 12:690467. [PMID: 34367149 PMCID: PMC8339919 DOI: 10.3389/fimmu.2021.690467] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/16/2021] [Indexed: 11/14/2022] Open
Abstract
Haploidentical stem cell transplantation (haplo SCT) in Stage IV neuroblastoma relapsed patients has been proven efficacious, while immunotherapy utilizing the anti-GD2 antibody dinutuximab beta has become a standard treatment for neuroblastoma. The combinatorial therapy of haplo SCT and dinutuximab may potentiate the efficacy of the immunotherapy. To gain further understanding of the synergistic effects, functional immunomonitoring was assessed during the clinical trial CH14.18 1021 Antibody and IL2 After haplo SCT in Children with Relapsed Neuroblastoma (NCT02258815). Rapid immune reconstitution of the lymphoid compartment was confirmed, with clinically relevant dinutuximab serum levels found in all patients over the course of treatment. Only one patient developed human anti-chimeric antibodies (HACAs). In-patient monitoring revealed highly functional NK cell posttransplant capable of antibody-dependent cellular cytotoxicity (ADCC). Degranulation of NK cell subsets revealed a significant response increased by dinutuximab. This was irrespective of the KIR receptor–ligand constellation within the NK subsets, defined by the major KIR receptors CD158a, CD158b, and CD158e. Moreover, complement-dependent cytotoxicity (CDC) was shown to be an extremely potent effector-cell independent mechanism of tumor cell lysis, with a clear positive correlation to GD2 expression on the cancer cells as well as to the dinutuximab concentrations. The ex vivo testing of patient-derived effector cells and the sera collected during dinutuximab therapy demonstrated both high functionality of the newly established lymphoid immune compartment and provided confidence that the antibody dosing regimen was sufficient over the duration of the dinutuximab therapy (up to nine cycles in a 9-month period). During the course of the dinutuximab therapy, proinflammatory cytokines and markers (sIL2R, TNFa, IL6, and C reactive protein) were significantly elevated indicating a strong anti-GD2 immune response. No impact of FcGR polymorphism on event-free and overall survival was found. Collectively, this study has shown that in-patient functional immunomonitoring is feasible and valuable in contributing to the understanding of anti-cancer combinatorial treatments such as haplo SCT and antibody immunotherapy.
Collapse
Affiliation(s)
- Christian Martin Seitz
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Tim Flaadt
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Markus Mezger
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Anne-Marie Lang
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Sebastian Michaelis
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Marie Katz
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Desireé Syring
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Alexander Joechner
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Cellular Cancer Therapeutics Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Armin Rabsteyn
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Nikolai Siebert
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Sascha Troschke-Meurer
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Maxi Zumpe
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Holger N Lode
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Sile F Yang
- Cellular Cancer Therapeutics Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Daniel Atar
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Anna-Sophia Mast
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Sophia Scheuermann
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Florian Heubach
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Rupert Handgretinger
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Peter Lang
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Patrick Schlegel
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.,Cellular Cancer Therapeutics Unit, Children's Medical Research Institute, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Department of Pediatric Hematology and Oncology, Westmead Children's Hospital, Westmead, NSW, Australia
| |
Collapse
|
18
|
Bahri M, Kailayangiri S, Vermeulen S, Galopin N, Rossig C, Paris F, Fougeray S, Birklé S. SIRPα-specific monoclonal antibody enables antibody-dependent phagocytosis of neuroblastoma cells. Cancer Immunol Immunother 2021; 71:71-83. [PMID: 34023958 DOI: 10.1007/s00262-021-02968-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/12/2021] [Indexed: 12/20/2022]
Abstract
Immunotherapy with anti-GD2 monoclonal antibodies (mAbs) provides some benefits for patients with neuroblastoma (NB). However, the therapeutic efficacy remains limited, and treatment is associated with significant neuropathic pain. Targeting O-acetylated GD2 (OAcGD2) by 8B6 mAb has been proposed to avoid pain by more selective tumor cell targeting. Thorough understanding of its mode of action is necessary to optimize this treatment strategy. Here, we found that 8B6-mediated antibody-dependent cellular phagocytosis (ADCP) performed by macrophages is a key effector mechanism. But efficacy is limited by upregulation of CD47 expression on neuroblastoma cells in response to OAcGD2 mAb targeting, inhibiting 8B6-mediated ADCP. Antibody specific for the CD47 receptor SIRPα on macrophages restored 8B6-induced ADCP of CD47-expressing NB cells and improved the antitumor activity of 8B6 mAb therapy. These results identify ADCP as a critical mechanism for tumor cytolysis by anti-disialoganglioside mAb and support a combination with SIRPα blocking agents for effective neuroblastoma therapy.
Collapse
Affiliation(s)
- Meriem Bahri
- CRCINA, Université de Nantes, 44000, Nantes, France
| | - Sareetha Kailayangiri
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, 48149, Muenster, Germany
| | | | | | - Claudia Rossig
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, 48149, Muenster, Germany
| | | | - Sophie Fougeray
- CRCINA, Université de Nantes, 44000, Nantes, France
- UFR Des Sciences Pharmaceutiques Et Biologiques, Université de Nantes, 44035-01, Nantes, France
| | - Stéphane Birklé
- CRCINA, Université de Nantes, 44000, Nantes, France.
- UFR Des Sciences Pharmaceutiques Et Biologiques, Université de Nantes, 44035-01, Nantes, France.
| |
Collapse
|
19
|
Rettman P, Blunt MD, Fulton RJ, Vallejo AF, Bastidas-Legarda LY, España-Serrano L, Polak ME, Al-Shamkhani A, Retiere C, Khakoo SI. Peptide: MHC-based DNA vaccination strategy to activate natural killer cells by targeting killer cell immunoglobulin-like receptors. J Immunother Cancer 2021; 9:e001912. [PMID: 34016721 PMCID: PMC8141441 DOI: 10.1136/jitc-2020-001912] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Natural killer (NK) cells are increasingly being recognized as agents for cancer immunotherapy. The killer cell immunoglobulin-like receptors (KIRs) are expressed by NK cells and are immunogenetic determinants of the outcome of cancer. In particular, KIR2DS2 is associated with protective responses to several cancers and also direct recognition of cancer targets in vitro. Due to the high homology between activating and inhibitory KIR genes to date, it has been challenging to target individual KIR for therapeutic benefit. METHODS A novel KIR2DS2-targeting therapeutic peptide:MHC DNA vaccine was designed and used to immunize mice transgenic for KIR genes (KIR-Tg). NK cells were isolated from the livers and spleens of vaccinated mice and then analyzed for activation by flow cytometry, RNA profiling and cytotoxicity assays. In vivo assays of NK cell function using a syngeneic cancer model (B16 melanoma) and an adoptive transfer model for human hepatocellular carcinoma (Huh7) were performed. RESULTS Injecting KIR-Tg mice with the vaccine construct activated NK cells in both liver and spleens of mice, with preferential activation of KIR2DS2-positive NK cells. KIR-specific activation was most marked on the CD11b+CD27+ mature subset of NK cells. RNA profiling indicated that the DNA vaccine upregulated genes associated with cellular metabolism and downregulated genes related to histone H3 methylation, which are associated with immune cell maturation and NK cell function. Vaccination led to canonical and cross-reactive peptide:MHC-specific NK cell responses. In vivo, DNA vaccination led to enhanced antitumor responses against B16F10 melanoma cells and also enhanced responses against a tumor model expressing the KIR2DS2 ligand HLA-C*0102. CONCLUSION We show the feasibility of a peptide-based KIR-targeting vaccine strategy to activate NK cells and hence generate functional antitumor responses. This approach does not require detailed knowledge of the tumor peptidomes nor HLA matching with the patient. It therefore offers a novel opportunity for targeting NK cells for cancer immunotherapy.
Collapse
MESH Headings
- Animals
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cytotoxicity, Immunologic/drug effects
- HLA-C Antigens/administration & dosage
- HLA-C Antigens/genetics
- HLA-C Antigens/immunology
- Haplotypes
- Humans
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/metabolism
- Lymphocyte Activation/drug effects
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Mice, Inbred C57BL
- Mice, Transgenic
- Peptides/administration & dosage
- Peptides/genetics
- Peptides/immunology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, KIR/genetics
- Receptors, KIR/immunology
- Receptors, KIR/metabolism
- Skin Neoplasms/drug therapy
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Mice
Collapse
Affiliation(s)
- Pauline Rettman
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Matthew D Blunt
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rebecca J Fulton
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Andres F Vallejo
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Leidy Y Bastidas-Legarda
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Laura España-Serrano
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Marta E Polak
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Aymen Al-Shamkhani
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Salim I Khakoo
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
20
|
Manzanares-Martin B, Cebrián Aranda A, Del Puerto-Nevado L, González R, Solanes S, Gómez-España MA, García-Foncillas J, Aranda E. Improving selection of patients with metastatic colorectal cancer to benefit from cetuximab based on KIR genotypes. J Immunother Cancer 2021; 9:jitc-2020-001705. [PMID: 33833048 PMCID: PMC8039212 DOI: 10.1136/jitc-2020-001705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2021] [Indexed: 12/24/2022] Open
Abstract
AIM Cetuximab is a standard-of-care treatment for KRAS wild-type metastatic colorectal cancer (mCRC), but it may also be effective in a subgroup of KRAS mutant patients by its immunomodulatory activity. Here, we explore if KIR (killer cell immunoglobulin-like receptor) genotyping can provide a significant added value in the clinical outcome of patients with KRAS mutant mCRC based on cetuximab treatment. METHODS We included 69 patients with histologically confirmed mCRC and KRAS mutation, positive EGFR expression, and Eastern Cooperative Oncology Group performance status ≤2. Based on KIR gene content, haplotype (A or B) was defined and genotypes (AA or Bx) were grouped for each patient. RESULTS We demonstrated with new evidence the immunomodulatory activity of cetuximab in patients with KRAS mutant mCRC. Patients with homozygous genotypes (AA or BB) showed shorter 12-month progression-free survival (PFS12) and poorer overall survival (OS) than those with heterozygotes (AB). Moreover, multivariate analysis confirmed stratification of patients based on genotype was an independent marker of PFS12 (HR 2.16) and the centromeric and telomeric distribution of KIRs was an independent predictor of both PFS12 (HR 2.26) and OS (HR 1.93) in patients with mCRC with KRAS mutation treated with cetuximab. CONCLUSIONS Selection of patients with mCRC based on their KIR genotypes opens a therapeutic opportunity for patients with KRAS mutation, and it should be tested in clinical trials in comparison with other alternatives with scarce benefit. TRIAL REGISTRATION NUMBER NCT01450319, EudraCT 2010-023580-18.
Collapse
Affiliation(s)
| | - Arancha Cebrián Aranda
- Oncology, Translational Oncology Division, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Madrid, Spain
| | - Laura Del Puerto-Nevado
- Oncology, Translational Oncology Division, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Madrid, Spain
| | - Rafael González
- Immunology Unit, Reina Sofia University Hospital, Cordoba, Andalucía, Spain
| | - Sonia Solanes
- Oncology, Translational Oncology Division, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Madrid, Spain
| | | | - Jesús García-Foncillas
- Oncology, Translational Oncology Division, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Madrid, Spain
| | - Enrique Aranda
- Medical Oncology, Reina Sofia University Hospital, Cordoba, Andalucía, Spain
| |
Collapse
|
21
|
Ehlert K, Hansjuergens I, Zinke A, Otto S, Siebert N, Henze G, Lode H. Nivolumab and dinutuximab beta in two patients with refractory neuroblastoma. J Immunother Cancer 2021; 8:jitc-2020-000540. [PMID: 32414861 PMCID: PMC7239695 DOI: 10.1136/jitc-2020-000540] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most frequent extracranial solid tumor in children. More than 50% of patients present with widespread (stage M) or refractory disease. In these patients, event-free and overall survival was improved by the addition of the anti-disialoganglioside antibody dinutuximab beta (DB) following multimodal conventional therapy. However, the prognosis of patients with refractory/relapsed NB remains poor. In the past decade, immunotherapy approaches with checkpoint inhibitors were approved for patients with certain malignant diseases such as melanoma or Hodgkin lymphoma. In preclinical models, DB resulted in an upregulation of the programmed cell death protein 1 (PD-1) checkpoint in NB cell lines and a combined treatment of DB with a murine anti-PD-1 checkpoint inhibitor showed a synergistic effect in a NB mouse model. CASE PRESENTATIONS Two patients were admitted with refractory metastatic NB. In the 4-year-old girl, NB was diagnosed in 2013. She completed her first-line therapy with a first remission in 2015, but suffered a relapse in 2017. Treatment with chemotherapy and DB resulted in progressive disease after transient improvement. In the 17-year-old young man, NB was first diagnosed in April 2010. After two local relapses in 2011 and 2014, a metastatic relapse and a large abdominal tumor bulk were found in 2018. Despite transient improvement with multimodal therapy, progressive metastatic disease was observed in May 2019. Both patients had a satisfactory quality of life. Therefore, treatment with DB and nivolumab was performed-in the girl from October 2018 until August 2019, in the young man since June 2019. Tolerance to treatment was excellent. The girl continues to be in complete remission 6 months after therapy was stopped. In the young man, the soft tissue lesions disappeared completely, the skeletal lesions regressed substantially after 9 months of his still ongoing treatment. CONCLUSIONS The combination of DB with the checkpoint inhibitor nivolumab led to complete and a very good partial remission in two patients with relapsed/refractory NB. Prospective trials are warranted to clarify the role of this novel approach in a larger number of patients.
Collapse
Affiliation(s)
- Karoline Ehlert
- Department of Pediatric Hematology and Oncology, Greifswald University Medicine, Greifswald, Germany
| | - Ina Hansjuergens
- Department of Pediatric Hematology and Oncology, Greifswald University Medicine, Greifswald, Germany
| | - Andreas Zinke
- Department of Nuclear Medicine, Greifswald University Medicine, Greifswald, Germany
| | - Sylke Otto
- Institute for Diagnostic Radiology, Greifswald University Medicine, Greifswald, Germany
| | - Nikolai Siebert
- Department of Pediatric Hematology and Oncology, Greifswald University Medicine, Greifswald, Germany
| | - Guenter Henze
- Department of Pediatric Hematology and Oncology, Greifswald University Medicine, Greifswald, Germany.,Department of Pediatric Oncology and Hematology, Charité University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Holger Lode
- Department of Pediatric Hematology and Oncology, Greifswald University Medicine, Greifswald, Germany
| |
Collapse
|
22
|
Yu AL, Gilman AL, Ozkaynak MF, Naranjo A, Diccianni MB, Gan J, Hank JA, Batova A, London WB, Tenney SC, Smith M, Shulkin BL, Parisi M, Matthay KK, Cohn SL, Maris JM, Bagatell R, Park JR, Sondel PM. Long-Term Follow-up of a Phase III Study of ch14.18 (Dinutuximab) + Cytokine Immunotherapy in Children with High-Risk Neuroblastoma: COG Study ANBL0032. Clin Cancer Res 2021; 27:2179-2189. [PMID: 33504555 DOI: 10.1158/1078-0432.ccr-20-3909] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/03/2020] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Previously our randomized phase III trial demonstrated that immunotherapy including dinutuximab, a chimeric anti-GD2 mAb, GM-CSF, and IL2 improved survival for children with high-risk neuroblastoma that had responded to induction and consolidation therapy. These results served as the basis for FDA approval of dinutuximab. We now present long-term follow-up results and evaluation of predictive biomarkers. PATIENTS AND METHODS Patients recieved six cycles of isotretinoin with or without five cycles of immunotherapy which consists of dinutuximab with GM-CSF alternating with IL2. Accrual was discontinued early due to meeting the protocol-defined stopping rule for efficacy, as assessed by 2-year event-free survival (EFS). Plasma levels of dinutuximab, soluble IL2 receptor (sIL2R), and human anti-chimeric antibody (HACA) were assessed by ELISA. Fcγ receptor 2A and 3A genotypes were determined by PCR and direct sequencing. RESULTS For 226 eligible randomized patients, 5-year EFS was 56.6 ± 4.7% for patients randomized to immunotherapy (n = 114) versus 46.1 ± 5.1% for those randomized to isotretinoin only (n = 112; P = 0.042). Five-year overall survival (OS) was 73.2 ± 4.2% versus 56.6 ± 5.1% for immunotherapy and isotretinoin only patients, respectively (P = 0.045). Thirteen of 122 patients receiving dinutuximab developed HACA. Plasma levels of dinutuximab, HACA, and sIL2R did not correlate with EFS/OS, or clinically significant toxicity. Fcγ receptor 2A and 3A genotypes did not correlate with EFS/OS. CONCLUSIONS Immunotherapy with dinutuximab improved outcome for patients with high-risk neuroblastoma. Early stoppage for efficacy resulted in a smaller sample size than originally planned, yet clinically significant long-term differences in survival were observed.
Collapse
Affiliation(s)
- Alice L Yu
- University of California in San Diego, San Diego, California. .,Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | | | | | - Arlene Naranjo
- Children's Oncology Group Statistics and Data Center, University of Florida, Gainesville, Florida
| | | | - Jacek Gan
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | - Jacquelyn A Hank
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | - Ayse Batova
- University of California in San Diego, San Diego, California
| | - Wendy B London
- Dana-Farber/Boston Children's Cancer and Blood Disorder Center, Harvard Medical School, Boston, Massachusetts
| | - Sheena C Tenney
- Children's Oncology Group Statistics and Data Center, University of Florida, Gainesville, Florida
| | | | | | - Marguerite Parisi
- Seattle Children's Hospital and University of Washington School of Medicine, Seattle, Washington
| | - Katherine K Matthay
- University of California School of Medicine and UCSF Children's Hospital, San Francisco, California
| | | | - John M Maris
- Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Rochelle Bagatell
- Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Julie R Park
- Seattle Children's Hospital and University of Washington School of Medicine, Seattle, Washington
| | - Paul M Sondel
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin.
| |
Collapse
|
23
|
Wienke J, Dierselhuis MP, Tytgat GAM, Künkele A, Nierkens S, Molenaar JJ. The immune landscape of neuroblastoma: Challenges and opportunities for novel therapeutic strategies in pediatric oncology. Eur J Cancer 2020; 144:123-150. [PMID: 33341446 DOI: 10.1016/j.ejca.2020.11.014] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Immunotherapy holds great promise for the treatment of pediatric cancers. In neuroblastoma, the recent implementation of anti-GD2 antibody Dinutuximab into the standard of care has improved patient outcomes substantially. However, 5-year survival rates are still below 50% in patients with high-risk neuroblastoma, which has sparked investigations into novel immunotherapeutic approaches. T cell-engaging therapies such as immune checkpoint blockade, antibody-mediated therapy and adoptive T cell therapy have proven remarkably successful in a range of adult cancers but still meet challenges in pediatric oncology. In neuroblastoma, their limited success may be due to several factors. Neuroblastoma displays low immunogenicity due to its low mutational load and lack of MHC-I expression. Tumour infiltration by T and NK cells is especially low in high-risk neuroblastoma and is prognostic for survival. Only a small fraction of tumour-infiltrating lymphocytes shows tumour reactivity. Moreover, neuroblastoma tumours employ a variety of immune evasion strategies, including expression of immune checkpoint molecules, induction of immunosuppressive myeloid and stromal cells, as well as secretion of immunoregulatory mediators, which reduce infiltration and reactivity of immune cells. Overcoming these challenges will be key to the successful implementation of novel immunotherapeutic interventions. Combining different immunotherapies, as well as personalised strategies, may be promising approaches. We will discuss the composition, function and prognostic value of tumour-infiltrating lymphocytes (TIL) in neuroblastoma, reflect on challenges for immunotherapy, including a lack of TIL reactivity and tumour immune evasion strategies, and highlight opportunities for immunotherapy and future perspectives with regard to state-of-the-art developments in the tumour immunology space.
Collapse
Affiliation(s)
- Judith Wienke
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | | | | | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
24
|
Zahavi D, Weiner L. Monoclonal Antibodies in Cancer Therapy. Antibodies (Basel) 2020; 9:E34. [PMID: 32698317 PMCID: PMC7551545 DOI: 10.3390/antib9030034] [Citation(s) in RCA: 383] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibody-based immunotherapy is now considered to be a main component of cancer therapy, alongside surgery, radiation, and chemotherapy. Monoclonal antibodies possess a diverse set of clinically relevant mechanisms of action. In addition, antibodies can directly target tumor cells while simultaneously promoting the induction of long-lasting anti-tumor immune responses. The multifaceted properties of antibodies as a therapeutic platform have led to the development of new cancer treatment strategies that will have major impacts on cancer care. This review focuses on the known mechanisms of action, current clinical applications for the treatment of cancer, and mechanisms of resistance of monoclonal antibody therapy. We further discuss how monoclonal antibody-based strategies have moved towards enhancing anti-tumor immune responses by targeting immune cells instead of tumor antigens as well as some of the current combination therapies.
Collapse
Affiliation(s)
- David Zahavi
- Tumor Biology Training Program, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, USA;
| | - Louis Weiner
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, USA
| |
Collapse
|
25
|
Monitoring Immune Responses in Neuroblastoma Patients during Therapy. Cancers (Basel) 2020; 12:cancers12020519. [PMID: 32102342 PMCID: PMC7072382 DOI: 10.3390/cancers12020519] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma (NBL) is the most common extracranial solid tumor in childhood. Despite intense treatment, children with this high-risk disease have a poor prognosis. Immunotherapy showed a significant improvement in event-free survival in high-risk NBL patients receiving chimeric anti-GD2 in combination with cytokines and isotretinoin after myeloablative consolidation therapy. However, response to immunotherapy varies widely, and often therapy is stopped due to severe toxicities. Objective markers that help to predict which patients will respond or develop toxicity to a certain treatment are lacking. Immunotherapy guided via immune monitoring protocols will help to identify responders as early as possible, to decipher the immune response at play, and to adjust or develop new treatment strategies. In this review, we summarize recent studies investigating frequency and phenotype of immune cells in NBL patients prior and during current treatment protocols and highlight how these findings are related to clinical outcome. In addition, we discuss potential targets to improve immunogenicity and strategies that may help to improve therapy efficacy. We conclude that immune monitoring during therapy of NBL patients is essential to identify predictive biomarkers to guide patients towards effective treatment, with limited toxicities and optimal quality of life.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW We aim to review the most recent findings in the use of NK cells in childhood cancers. RECENT FINDINGS Natural killer cells are cytotoxic to tumor cells. In pediatric leukemias, adoptive transfer of NK cells can bridge children not in remission to transplant. Interleukins (IL2, IL15) can enhance NK cell function. NK cell-CAR therapy has advantages of shorter life span that lessens chronic toxicities, lower risk of graft versus host disease when using allogeneic cells, ability of NK cells to recognize tumor cells that have downregulated MHC to escape T cells, and possibly less likelihood of cytokine storm. Cytotoxicity to solid tumors (rhabdomyosarcoma, Ewing's sarcoma, neuroblastoma) is seen with graft versus tumor effect in transplant and in combination with antibodies. Challenges lie in the microenvironment which is suppressive for NK cells. NK cell immunotherapy in childhood cancers is promising and recent works aim to overcome challenges.
Collapse
|
27
|
Troschke-Meurer S, Siebert N, Marx M, Zumpe M, Ehlert K, Mutschlechner O, Loibner H, Ladenstein R, Lode HN. Low CD4⁺/CD25⁺/CD127⁻ regulatory T cell- and high INF-γ levels are associated with improved survival of neuroblastoma patients treated with long-term infusion of ch14.18/CHO combined with interleukin-2. Oncoimmunology 2019; 8:1661194. [PMID: 31741754 PMCID: PMC6844328 DOI: 10.1080/2162402x.2019.1661194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/25/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022] Open
Abstract
Immunotherapy with the anti-GD2 antibody (Ab) ch14.18/CHO in combination with interleukin 2 (IL-2) has improved survival of high-risk neuroblastoma (NB) patients. Here, we report immunotherapy-related effects on circulating NK cells, regulatory T cells (Tregs), granulocytes as well as on Ab-dependent cell-mediated cytotoxicity (ADCC) and cytokines IFN-γ, IL-6, IL-10, IL-18 and CCL2 and their association with progression-free survival (PFS). In a closed single-center program, 53 patients received five cycles of 6 × 106 IU/m2 subcutaneous IL-2 (d1-5; 8–12) combined with long-term infusion (LTI) of 100 mg/m2 ch14.18/CHO (d8-18). Immune cells and cytokines were analyzed by flow cytometry and ADCC by calcein-AM-based cytotoxicity assay. IL-2 administration increased cytotoxic NK cell-, eosinophil- and Treg counts in cycle 1 (2.9-, 3.1- and 20.7-fold, respectively) followed by further increase in subsequent cycles, whereas neutrophil levels were elevated only after the ch14.18/CHO infusion (2.4-fold change). Serum concentrations of IFN-γ, IL-6, IL-10, IL-18 and CCL2 in cycle 1 were increased during the combinatorial therapy (peak levels of 3,656 ± 655 pg/ml, 162 ± 38 pg/ml, 20.91 ± 4.74 pg/ml, 1,584 ± 196 pg/ml and 2,159 ± 252 pg/ml, respectively). Surprisingly, we did not observe any correlation between NK-, eosinophil- or neutrophil levels and PFS. In contrast, patients with low Tregs showed significantly improved PFS compared to those who had high levels. Treg counts negatively correlated with INF-γ serum concentrations and patients with high INF-γ and IL-18 had significantly improved survival compared to those with low levels. In conclusion, LTI of ch14.18/CHO in combination with IL-2 resulted in Treg induction that inversely correlated with IFN-γ levels and PFS.
Collapse
Affiliation(s)
- Sascha Troschke-Meurer
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Nikolai Siebert
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Madlen Marx
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Maxi Zumpe
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Karoline Ehlert
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | | | | | - Ruth Ladenstein
- St. Anna Children's Hospital and Children's Cancer Research Institute (CCRI), Department of Pediatrics, Medical University, Vienna, Austria
| | - Holger N Lode
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
28
|
Morgenstern DA, Bagatell R, Cohn SL, Hogarty MD, Maris JM, Moreno L, Park JR, Pearson AD, Schleiermacher G, Valteau-Couanet D, London WB, Irwin MS. The challenge of defining "ultra-high-risk" neuroblastoma. Pediatr Blood Cancer 2019; 66:e27556. [PMID: 30479064 DOI: 10.1002/pbc.27556] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/08/2018] [Accepted: 10/27/2018] [Indexed: 12/17/2022]
Abstract
Given the biological and clinical heterogeneity of neuroblastoma, risk stratification is vital to determining appropriate treatment. Historically, most patients with high-risk neuroblastoma (HR-NBL) have been treated uniformly without further stratification. Attempts have been made to identify factors that can be used to risk stratify these patients and to characterize an "ultra-high-risk" (UHR) subpopulation with particularly poor outcome. However, among published data, there is a lack of consensus in the definition of the UHR population and heterogeneity in the endpoints and statistical methods used. This review summarizes our current understanding of stratification of HR-NBL and discusses the complex issues in defining UHR neuroblastoma.
Collapse
Affiliation(s)
| | - Rochelle Bagatell
- Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | | | - Michael D Hogarty
- Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - John M Maris
- Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Lucas Moreno
- Hospital Universitario Niño Jesus, Madrid, Spain
| | - Julie R Park
- Seattle Children's Hospital and University of Washington School of Medicine, Seattle, Washington
| | - Andrew D Pearson
- Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey, UK
| | | | | | - Wendy B London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Meredith S Irwin
- Hospital for Sick Children and University of Toronto, Toronto, Canada
| |
Collapse
|
29
|
Erbe AK, Wang W, Carmichael L, Hoefges A, Grzywacz B, Reville PK, Ranheim EA, Hank JA, Kim K, Seo S, Mendonca EA, Song Y, Kenkre VP, Hong F, Gascoyne RD, Paietta E, Horning SJ, Miller JS, Kahl B, Sondel PM. Follicular lymphoma patients with KIR2DL2 and KIR3DL1 and their ligands (HLA-C1 and HLA-Bw4) show improved outcome when receiving rituximab. J Immunother Cancer 2019; 7:70. [PMID: 30871628 PMCID: PMC6419437 DOI: 10.1186/s40425-019-0538-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The ECOG-ACRIN Cancer Research Group evaluated rituximab treatment schedules for patients with newly-diagnosed low-tumor-burden follicular-lymphoma (FL). All patients received 4-weekly rituximab treatments as induction therapy. Clinically-responding patients were randomized to receive rituximab every 13 weeks ("maintenance") vs. no additional rituximab until progression ("non-maintenance"). Based on "time-to-rituximab-failure (TTRF)", the study-committee reported there was no overall-benefit for maintenance rituximab in this setting. Tumor-reactive mAbs, like rituximab, trigger natural killer (NK) cells. NK-cell responses are regulated, in part, by interactions between killer immunoglobulin-like receptors (KIRs) on NK cells and their interactions with KIR-ligands. In a separate study of children with neuroblastoma treated with a different mAb, we found certain KIR/KIR-ligand genotypes associated with improved outcome. Here, we assessed whether a subset of FL patients show improved outcome from the maintenance rituximab based on these same KIR/KIR-ligand genotypes. METHODS Genotypes for KIR/KIR-ligand were determined and assessed for associations with outcome [duration of response, TTRF and % tumor shrinkage] as a post-hoc analysis of this phase III trial. Our primary objective was to assess specific KIR/KIR-ligand genotype associations, followed by separate prespecified KIR/KIR-ligand genotype associations in follow-up analyses. Statistical analyses for association of genotype with clinical outcome included: Log-rank tests and Cox proportional hazards regression models to assess duration of response and TTRF; analysis of variance (ANOVA) was used for assessment of % tumor shrinkage. RESULTS We found that patients inheriting KIR2DL2 and its ligand (HLA-C1) along with KIR3DL1 and its ligand (HLA-Bw4) had improved outcome over patients without this genotype. In addition, patients with KIR2DL2 and HLA-C1 along with KIR3DL1 and HLA-Bw4 also showed improved duration of response and tumor shrinkage if they received maintenance, while patients without this genotype showed no such improvement when receiving maintenance. CONCLUSIONS The data presented here indicate that a subset of FL patients, identified by certain KIRs/KIR-ligands, have improved outcome and may benefit from additional rituximab treatment. Taken together, this suggests that the efficacy of tumor-reactive mAb treatment for some patients is influenced by KIRs on NK cells. However, prior to considering these genotypes in a clinically-actionable manner, these findings need independent validation in other studies.
Collapse
Affiliation(s)
- Amy K Erbe
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Wei Wang
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Lakeesha Carmichael
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Anna Hoefges
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Bartosz Grzywacz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Patrick K Reville
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Erik A Ranheim
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Jacquelyn A Hank
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Songwon Seo
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Eneida A Mendonca
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - Yiqiang Song
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | | | - Fangxin Hong
- Department of Biostatistics, Harvard University, Dana Farber Cancer Institute, Boston, MA, USA
| | - Randy D Gascoyne
- Department of Pathology and Laboratory Medicine, Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Elisabeth Paietta
- Montefiore Medical Center-North Division, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Brad Kahl
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA.
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA.
- University of Wisconsin-Madison, 1111 Highland Avenue, 4159 WIMR Bldg, Madison, WI, 53705, USA.
| |
Collapse
|
30
|
Borrero-Palacios A, Cebrián A, Gómez Del Pulgar MT, García-Carbonero R, Garcia-Alfonso P, Aranda E, Elez E, López-López R, Cervantes A, Valladares M, Nadal C, Viéitez JM, Guillén-Ponce C, Rodríguez J, Hernández I, García JL, Vega-Bravo R, Puime-Otin A, Martínez-Useros J, Del Puerto-Nevado L, Rincón R, Rodríguez-Remírez M, Rojo F, García-Foncillas J. Combination of KIR2DS4 and FcγRIIa polymorphisms predicts the response to cetuximab in KRAS mutant metastatic colorectal cancer. Sci Rep 2019; 9:2589. [PMID: 30796344 PMCID: PMC6385198 DOI: 10.1038/s41598-019-39291-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/13/2018] [Indexed: 12/20/2022] Open
Abstract
Cetuximab is a standard-of-care treatment for RAS wild-type metastatic colorectal cancer (mCRC) but not for those harbor a KRAS mutation since MAPK pathway is constitutively activated. Nevertheless, cetuximab also exerts its effect by its immunomodulatory activity despite the presence of RAS mutation. The aim of this study was to determine the impact of polymorphism FcγRIIIa V158F and killer immunoglobulin-like receptor (KIR) genes on the outcome of mCRC patients with KRAS mutations treated with cetuximab. This multicenter Phase II clinical trial included 70 mCRC patients with KRAS mutated. We found KIR2DS4 gene was significantly associated with OS (HR 2.27; 95% CI, 1.08–4.77; P = 0.03). In non-functional receptor homozygotes the median OS was 2.6 months longer than in carriers of one copy of full receptor. Multivariate analysis confirmed KIR2DS4 as a favorable prognostic marker for OS (HR 6.71) in mCRC patients with KRAS mutation treated with cetuximab. These data support the potential therapeutic of cetuximab in KRAS mutated mCRC carrying non-functional receptor KIR2DS4 since these patients significantly prolong their OS even after heavily treatment. KIR2DS4 typing could be used as predictive marker for identifying RAS mutated patients that could benefit from combination approaches of anti-EGFR monoclonal antibodies and other immunotherapies to overcome the resistance mediated by mutation in RAS.
Collapse
Affiliation(s)
- A Borrero-Palacios
- Translational Oncology Division, Oncohealth Institute, Hospital Universitario "Fundación Jimenez Diaz", Madrid, Spain
| | - A Cebrián
- Translational Oncology Division, Oncohealth Institute, Hospital Universitario "Fundación Jimenez Diaz", Madrid, Spain.
| | - M T Gómez Del Pulgar
- Translational Oncology Division, Oncohealth Institute, Hospital Universitario "Fundación Jimenez Diaz", Madrid, Spain
| | | | - P Garcia-Alfonso
- Medical Oncology Department, Hospital Gral. Univ. Gregorio Marañón, Madrid, Spain
| | - E Aranda
- Medical Oncology Department, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - E Elez
- Medical Oncology Department, Hospital Vall d'Hebrón, Barcelona, Spain
| | - R López-López
- Medical Oncology Department, Complexo Hospitalario Universitario Santiago de Compostela, Galicia, Spain
| | - A Cervantes
- Medical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - M Valladares
- Medical Oncology Department, Complejo Hospitalario Universitario A Coruña, Galicia, Spain
| | - C Nadal
- Medical Oncology Department, Hospital Clínic i Provincial de Barcelona, Barcelona, Spain
| | - J M Viéitez
- Medical Oncology Department, Hospital Universitario Central de Asturias, Asturias, Spain
| | - C Guillén-Ponce
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - J Rodríguez
- Medical Oncology Department, Clínica Universitaria de Navarra, Navarra, Spain
| | - I Hernández
- Medical Oncology Department, Complejo Hospitalario de Navarra, Navarra, Spain
| | - J L García
- Oncology, Medical Unit, Merck S.L, an affiliate of Merck KGaA, Darmstadt, Germany
| | - R Vega-Bravo
- Anatomopathology Department, Hospital Universitario "Fundación Jimenez Diaz", Madrid, Spain
| | - A Puime-Otin
- Anatomopathology Department, Hospital Universitario "Fundación Jimenez Diaz", Madrid, Spain
| | - J Martínez-Useros
- Translational Oncology Division, Oncohealth Institute, Hospital Universitario "Fundación Jimenez Diaz", Madrid, Spain
| | - L Del Puerto-Nevado
- Translational Oncology Division, Oncohealth Institute, Hospital Universitario "Fundación Jimenez Diaz", Madrid, Spain
| | - R Rincón
- Translational Oncology Division, Oncohealth Institute, Hospital Universitario "Fundación Jimenez Diaz", Madrid, Spain
| | - M Rodríguez-Remírez
- Translational Oncology Division, Oncohealth Institute, Hospital Universitario "Fundación Jimenez Diaz", Madrid, Spain
| | - F Rojo
- Anatomopathology Department, Hospital Universitario "Fundación Jimenez Diaz", Madrid, Spain
| | - J García-Foncillas
- Translational Oncology Division, Oncohealth Institute, Hospital Universitario "Fundación Jimenez Diaz", Madrid, Spain.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Our understanding of the biologic basis of neuroblastoma, the genetic heterogeneity of this malignancy and the role of host factors has expanded significantly in recent years. In this review, we highlight current and future risk-based treatment approaches and discuss the opportunities and challenges of selecting optimal therapies for specific patient subsets. RECENT FINDINGS Significant progress has been made in understanding neuroblastoma predisposition and new approaches have been taken to treatment of this disease. Although survival remains poor for patients with high-risk neuroblastoma, current-era therapy has improved outcomes. Integration of new prognostic markers into neuroblastoma classification systems will allow more precise risk classification and refined treatment assignment. Promising treatments that include targeted therapies as well as immunotherapeutics are being evaluated in clinical trials, and new predictive biomarkers are being developed. SUMMARY As our understanding of neuroblastoma biology deepens, our approaches to therapy for this disease continue to evolve. Improved risk stratification and the use of predictive biomarkers will aid in treatment selection for patients with neuroblastoma, and it is expected that future treatments will be associated with greater efficacy and less toxicity.
Collapse
|
32
|
Keyel ME, Reynolds CP. Spotlight on dinutuximab in the treatment of high-risk neuroblastoma: development and place in therapy. Biologics 2018; 13:1-12. [PMID: 30613134 PMCID: PMC6306059 DOI: 10.2147/btt.s114530] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neuroblastoma (NB) is a pediatric cancer of the sympathetic nervous system which accounts for 8% of childhood cancers. Most NBs express high levels of the disialoganglioside GD2. Several antibodies have been developed to target GD2 on NB, including the human/mouse chimeric antibody ch14.18, known as dinutuximab. Dinutuximab used in combination with granulocyte-macrophage colony-stimulating factor, interleukin-2, and isotretinoin (13-cis-retinoic acid) has a US Food and Drug Administration (FDA)-registered indication for treating high-risk NB patients who achieved at least a partial response to prior first-line multi-agent, multimodality therapy. The FDA registration resulted from a prospective randomized trial assessing the benefit of adding dinutuximab + cytokines to post-myeloablative maintenance therapy for high-risk NB. Dinutuximab has also shown promising antitumor activity when combined with temozolomide and irinotecan in treating NB progressive disease. Clinical activity of dinutuximab and other GD2-targeted therapies relies on the presence of the GD2 antigen on NB cells. Some NBs have been reported as GD2 low or negative, and such tumor cells could be nonresponsive to anti-GD2 therapy. As dinutuximab relies on complement and effector cells to mediate NB killing, factors affecting those components of patient response may also decrease dinutuximab effectiveness. This review summarizes the development of GD2 antibody-targeted therapy, the use of dinutuximab in both up-front and salvage therapy for high-risk NB, and the potential mechanisms of resistance to dinutuximab.
Collapse
Affiliation(s)
| | - C Patrick Reynolds
- Cancer Center,
- Department of Pediatrics,
- Department of Internal Medicine,
- Department of Cell Biology & Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA,
| |
Collapse
|
33
|
Zahavi D, AlDeghaither D, O'Connell A, Weiner LM. Enhancing antibody-dependent cell-mediated cytotoxicity: a strategy for improving antibody-based immunotherapy. Antib Ther 2018; 1:7-12. [PMID: 33928217 PMCID: PMC7990127 DOI: 10.1093/abt/tby002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 05/25/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
The targeting of surface antigens expressed on tumor cells by monoclonal antibodies (mAbs) has revolutionized cancer therapeutics. One mechanism of action of antibody-based immunotherapy is the activation of immune effector cells to mediate antibody-dependent cell-mediated cytotoxicity (ADCC). This review will summarize the process of ADCC, its important role in the efficacy of mAb therapy, how to measure it, and finally future strategies for antibody design that can take advantage of it to improve clinical performance.
Collapse
Affiliation(s)
- David Zahavi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center,3800 Reservoir Rd NW, Washington, DC 20007, USA
| | - Dalal AlDeghaither
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center,3800 Reservoir Rd NW, Washington, DC 20007, USA
| | - Allison O'Connell
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center,3800 Reservoir Rd NW, Washington, DC 20007, USA
| | - Louis M Weiner
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center,3800 Reservoir Rd NW, Washington, DC 20007, USA
| |
Collapse
|
34
|
Nakagawara A, Li Y, Izumi H, Muramori K, Inada H, Nishi M. Neuroblastoma. Jpn J Clin Oncol 2018; 48:214-241. [PMID: 29378002 DOI: 10.1093/jjco/hyx176] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is one of the most common solid tumors in children and has a diverse clinical behavior that largely depends on the tumor biology. Neuroblastoma exhibits unique features, such as early age of onset, high frequency of metastatic disease at diagnosis in patients over 1 year of age and the tendency for spontaneous regression of tumors in infants. The high-risk tumors frequently have amplification of the MYCN oncogene as well as segmental chromosome alterations with poor survival. Recent advanced genomic sequencing technology has revealed that mutation of ALK, which is present in ~10% of primary tumors, often causes familial neuroblastoma with germline mutation. However, the frequency of gene mutations is relatively small and other aberrations, such as epigenetic abnormalities, have also been proposed. The risk-stratified therapy was introduced by the Japan Neuroblastoma Study Group (JNBSG), which is now moving to the Neuroblastoma Committee of Japan Children's Cancer Group (JCCG). Several clinical studies have facilitated the reduction of therapy for children with low-risk neuroblastoma disease and the significant improvement of cure rates for patients with intermediate-risk as well as high-risk disease. Therapy for patients with high-risk disease includes intensive induction chemotherapy and myeloablative chemotherapy, followed by the treatment of minimal residual disease using differentiation therapy and immunotherapy. The JCCG aims for better cures and long-term quality of life for children with cancer by facilitating new approaches targeting novel driver proteins, genetic pathways and the tumor microenvironment.
Collapse
Affiliation(s)
| | - Yuanyuan Li
- Laboratory of Molecular Biology, Life Science Research Institute, Saga Medical Center Koseikan
| | - Hideki Izumi
- Laboratory of Molecular Biology, Life Science Research Institute, Saga Medical Center Koseikan
| | | | - Hiroko Inada
- Department of Pediatrics, Saga Medical Center Koseikan
| | - Masanori Nishi
- Department of Pediatrics, Saga University, Saga 849-8501, Japan
| |
Collapse
|
35
|
Llosa NJ, Cooke KR, Chen AR, Gamper CJ, Klein OR, Zambidis ET, Luber B, Rosner G, Siegel N, Holuba MJ, Robey N, Hayashi M, Jones RJ, Fuchs E, Holdhoff M, Loeb DM, Symons HJ. Reduced-Intensity Haploidentical Bone Marrow Transplantation with Post-Transplant Cyclophosphamide for Solid Tumors in Pediatric and Young Adult Patients. Biol Blood Marrow Transplant 2017; 23:2127-2136. [PMID: 28807769 PMCID: PMC5986177 DOI: 10.1016/j.bbmt.2017.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/09/2017] [Indexed: 11/21/2022]
Abstract
High-risk, recurrent, or refractory solid tumors in pediatric, adolescent, and young adult (AYA) patients have an extremely poor prognosis despite current intensive treatment regimens. We piloted an allogeneic bone marrow transplant platform using reduced-intensity conditioning (RIC) and partially HLA-mismatched (haploidentical) related donors for this population of pediatric and AYA solid tumor patients. Sixteen patients received fludarabine, cyclophosphamide, melphalan, and low-dose total body irradiation RIC haploidentical BMT (haploBMT) followed by post-transplantation cyclophosphamide (PTCy), mycophenolate mofetil, and sirolimus. All assessable patients were full donor chimeras on day 30 with a median neutrophil recovery of 19 days and platelet recovery of 21 days. One patient (7%) exhibited secondary graft failure associated with concomitant infection. The median follow-up time was 15 months. Overall survival was 88%, 56%, and 21% at 6, 12, and 24 months, respectively. Median survival from transplant date was 14 months with a median progression-free survival 7 months. We observed limited graft-versus-host disease in 3 patients and nonrelapse mortality in 1 patient. We demonstrated that RIC haploBMT with PTCy is feasible and has acceptable toxicities in patients with incurable pediatric and AYA solid tumors; thus, this approach serves as a platform for post-transplant strategies to prevent relapse and optimize progression-free survival.
Collapse
Affiliation(s)
- Nicolas J Llosa
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland.
| | - Kenneth R Cooke
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Allen R Chen
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Christopher J Gamper
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Orly R Klein
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Elias T Zambidis
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Brandon Luber
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Gary Rosner
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Nicholas Siegel
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Mary Jo Holuba
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Nancy Robey
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Masanori Hayashi
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Richard J Jones
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Ephraim Fuchs
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Matthias Holdhoff
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - David M Loeb
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Heather J Symons
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
36
|
Cabo M, Offringa R, Zitvogel L, Kroemer G, Muntasell A, Galluzzi L. Trial Watch: Immunostimulatory monoclonal antibodies for oncological indications. Oncoimmunology 2017; 6:e1371896. [PMID: 29209572 PMCID: PMC5706611 DOI: 10.1080/2162402x.2017.1371896] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
The goal of cancer immunotherapy is to establish new or boost pre-existing anticancer immune responses that eradicate malignant cells while generating immunological memory to prevent disease relapse. Over the past few years, immunomodulatory monoclonal antibodies (mAbs) that block co-inhibitory receptors on immune effectors cells - such as cytotoxic T lymphocyte-associated protein 4 (CTLA4), programmed cell death 1 (PDCD1, best known as PD-1) - or their ligands - such as CD274 (best known as PD-L1) - have proven very successful in this sense. As a consequence, many of such immune checkpoint blockers (ICBs) have already entered the clinical practice for various oncological indications. Considerable attention is currently being attracted by a second group of immunomodulatory mAbs, which are conceived to activate co-stimulatory receptors on immune effector cells. Here, we discuss the mechanisms of action of these immunostimulatory mAbs and summarize recent progress in their preclinical and clinical development.
Collapse
Affiliation(s)
- Mariona Cabo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Rienk Offringa
- Department of General Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
- DKFZ-Bayer Joint Immunotherapeutics Laboratory, German Cancer Research Center, Heidelberg, Germany
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France
- Université Pierre et Marie Curie/Paris VI, Paris
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; Paris, France
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, France
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
37
|
Siebert N, Zumpe M, Jüttner M, Troschke-Meurer S, Lode HN. PD-1 blockade augments anti-neuroblastoma immune response induced by anti-GD 2 antibody ch14.18/CHO. Oncoimmunology 2017; 6:e1343775. [PMID: 29123953 DOI: 10.1080/2162402x.2017.1343775] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022] Open
Abstract
Immunotherapy with anti-GD2 antibody (Ab) ch14.18/CHO is effective for treatment of high-risk neuroblastoma (NB) patients and is mainly based on GD2-specific Ab-dependent cellular cytotoxicity (ADCC). Strategies to further enhance the efficacy are important and currently explored in prospective clinical trials randomizing ch14.18/CHO ± IL-2. Recently, expression of programmed death 1 (PD-1) inhibitory receptor by effector cells and its ligand (PD-L1) by tumor cells has been shown. Here, we report for the first time effects of PD-1 blockade on ch14.18/CHO-based immunotherapy and mechanisms involved. Expression of PD-1 and PD-L1 on NB and effector cells was analyzed by RT-PCR and flow cytometry in the presence of ch14.18/CHO and/or IL-2. The effect of PD-1 blockade on ch14.18/CHO-mediated anti-NB immune response was evaluated using anti-PD-1 Ab both in vitro (Nivolumab) and in a syngeneic PD-L1+/GD2+ NB mouse model (anti-mouse PD-1). Culture of NB cells LA-N-1 (low PD-L1 baseline expression) with leukocytes and subtherapeutic ch14.18/CHO concentrations for 24 h induced strong upregulation of PD-L1, which was further increased by IL-2 resulting in complete inhibition of ch14.18/CHO-mediated ADCC. Importantly, blockade with Nivolumab reversed the PD-L1-dependent inhibition of ADCC. Similarly, co-incubation with anti-CD11b Ab abrogated the PD-L1 upregulation and restored ADCC. Mice treated with ch14.18/CHO in combination with PD-1 blockade showed a strong reduction of tumor growth, prolonged survival and the highest cytotoxicity against NB cells. In conclusion, ch14.18/CHO-mediated effects upregulate the inhibitory immune checkpoint PD-1/PD-L1, and combination of ch14.18/CHO with PD-1 blockade results in synergistic treatment effects in mice representing a new effective treatment strategy against GD2-positive cancers.
Collapse
Affiliation(s)
- Nikolai Siebert
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Maxi Zumpe
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Madlen Jüttner
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Sascha Troschke-Meurer
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Holger N Lode
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|