1
|
Chunduru K, A R M, Poornima S, Narasimhaswamy N, Bairy I, M M, Hande H M, Shastry S, Devaki R, M Varghese G, Saravu K. Persistence of scrub typhus IgM and IgG antibodies among patients from Karnataka, India. Ann Med 2025; 57:2468258. [PMID: 40029044 DOI: 10.1080/07853890.2025.2468258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND The longevity of scrub typhus IgM and IgG are not clear. A region-specific diagnostic cut-off for enzyme-linked immunosorbent assay (ELISA) is a necessity for improved diagnosis. OBJECTIVES To determine a region-specific optical density (OD) value cut-off for scrub typhus IgM and IgG ELISA and to study the persistence of these antibodies. METHODS A prospective cohort study was conducted among patients diagnosed with scrub typhus admitted to Kasturba Hospital, Manipal, Karnataka, India from August 2019 to April 2023. An equal number of scrub typhus patients and healthy volunteers were enrolled to determine region-specific scrub typhus IgM and IgG ELISA OD value cut-off. A receiver operating characteristic (ROC) curve analysis was performed to determine the OD value cut-off with an optimal combination of sensitivity and specificity. The patients were followed up prospectively at varying time points up to 18 months and scrub typhus IgM and IgG ELISA were performed in all the collected samples. RESULTS The ROC curve analysis of scrub typhus IgM revealed an optimal OD value cut-off of 1.309 with a sensitivity and specificity of 98.7% (95% CI: 93.1%-100%). The ROC curve analysis of scrub typhus IgG revealed an optimal OD value cut-off of 0.9 with a sensitivity of 71.7% (95% CI: 60.5%-81.4%) and specificity of 93.5% (95% CI: 85.7%-97.9%). At 18 months of follow-up, scrub typhus IgM (OD value > 1.309) and IgG (OD value > 0.9) were above the newly derived diagnostic cut-off in 17 (32%) and 40 (75.4%) patients, respectively. CONCLUSION Scrub typhus IgM and IgG antibodies were persistent above the newly derived regional diagnostic cut-off for up to 18 months.
Collapse
Affiliation(s)
- Kiran Chunduru
- Department of Infectious Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manoj A R
- Department of Infectious Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subhadra Poornima
- Department of Genetics and Molecular Medicine, Kamineni Life Sciences, Hyderabad, Telangana, India
| | | | - Indira Bairy
- Department of Microbiology, G.R. Medical College, Mangalore, Karnataka, India
| | - Mridula M
- Department of Microbiology, KS Hegde Medical Academy (KSHEMA), NITTE, Mangalore, Karnataka, India
| | - Manjunatha Hande H
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shamee Shastry
- Department of Immunohaematology & Blood transfusion, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ramakrishna Devaki
- Department of Biochemistry, Kamineni Academy of Medical Sciences and Research Centre, Hyderabad, Telangana, India
| | - George M Varghese
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - Kavitha Saravu
- Department of Infectious Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
2
|
Tang C, Huang Y, Wang G, Xue L, Hu X, Peng R, Du J, Yang J, Niu Y, Deng W, Jia Y, Guo Y, Chen S, Ge N, Zhang L, Wang F, Du Y, Wang Y, Sun L, Chan JFW, Yuen KY, Wu B, Yin F. Patient-centric analysis of Orientia tsutsugamushi spatial diversity patterns across Hainan Island, China. PLoS Negl Trop Dis 2025; 19:e0012909. [PMID: 40100922 PMCID: PMC11918436 DOI: 10.1371/journal.pntd.0012909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Scrub typhus, traditionally caused by Orientia tsutsugamushi, is a re-emerging public health concern within the Tsutsugamushi Triangle. Despite growing awareness, prevention strategies remain inadequate on Hainan Island, China, where scrub typhus poses a significant threat, especially in field-related environments. METHODOLOGY/PRINCIPAL FINDINGS Gene flow analysis of the tsa56 gene and multilocus sequence typing (MLST) were conducted on 156 previously confirmed scrub typhus cases from 2018 to 2021 across Hainan Island. By integrating published datasets, we identified 12 major sub-genotypes and traced their origins, revealing that these sub-genotypes share origins with isolates from Southeast Asia and coastal provinces and island of China, but also demonstrate unique local adaptations across all isolates. Alpha diversity index analysis was applied across administrative regions to identify hotspot regions. This analysis showed that nine out of the detected fourteen administrative regions, particularly along the northern and western coastlines and inland areas, exhibited relatively high genetic diversity, with the highest incidence observed in Qiongzhong, a centrally located city. Related major sequence types were mapped, and distances between locations were estimated, showing that identical MLST sequence types were observed to transfer across distances of 23 to 125 km between different sites on the island. Pathogen density was analyzed using quantitative real-time PCR targeting the tsa56 gene. Without accounting for potential confounding factors or dataset limitations, the Karp_B_2 sub-genotype showed a significant increasing trend in pathogen density with prolonged fever duration, while Gilliam sub-genotypes exhibited a slower or even declining trend. CONCLUSIONS/SIGNIFICANCE These findings emphasize the urgent need for targeted public health interventions, particularly focusing on vulnerable populations in rural and agricultural areas of nine key administrative regions where high genetic diversity and pathogen spread were observed. Additionally, this study provides valuable insights into the transmission dynamics and infection progression of scrub typhus, using gene flow analysis and multilocus sequence typing to identify major sub-genotypes.
Collapse
Affiliation(s)
- Chuanning Tang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Academician Workstation of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Yi Huang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Academician Workstation of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Gaoyu Wang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Academician Workstation of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Liying Xue
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Academician Workstation of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Xiaoyuan Hu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Academician Workstation of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Ruoyan Peng
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Academician Workstation of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Jiang Du
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinyan Yang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Academician Workstation of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Yi Niu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Academician Workstation of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Wanxin Deng
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Academician Workstation of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Yibo Jia
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Academician Workstation of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Yijia Guo
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Academician Workstation of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Siqi Chen
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Academician Workstation of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Nan Ge
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Academician Workstation of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Liyuan Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Fahui Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yongguo Du
- Department of Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yueping Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Long Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Biao Wu
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
- Hainan Public Health Clinical Center, Haikou, Hainan, China
| | - Feifei Yin
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Academician Workstation of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
- Department of Clinical Laboratory, Center for laboratory Medicine, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
3
|
Minahan NT, Yen TY, Guo YLL, Shu PY, Tsai KH. Concatenated ScaA and TSA56 Surface Antigen Sequences Reflect Genome-Scale Phylogeny of Orientia tsutsugamushi: An Analysis Including Two Genomes from Taiwan. Pathogens 2024; 13:299. [PMID: 38668254 PMCID: PMC11054523 DOI: 10.3390/pathogens13040299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Orientia tsutsugamushi is an obligate intracellular bacterium associated with trombiculid mites and is the causative agent of scrub typhus, a life-threatening febrile disease. Strain typing of O. tsutsugamushi is based on its immunodominant surface antigen, 56-kDa type-specific antigen (TSA56). However, TSA56 gene sequence-based phylogenetic analysis is only partially congruent with core genome-based phylogenetic analysis. Thus, this study investigated whether concatenated surface antigen sequences, including surface cell antigen (Sca) proteins, can reflect the genome-scale phylogeny of O. tsutsugamushi. Complete genomes were obtained for two common O. tsutsugamushi strains in Taiwan, TW-1 and TW-22, and the core genome/proteome was identified for 11 O. tsutsugamushi strains. Phylogenetic analysis was performed using maximum likelihood (ML) and neighbor-joining (NJ) methods, and the congruence between trees was assessed using a quartet similarity measure. Phylogenetic analysis based on 691 concatenated core protein sequences produced identical tree topologies with ML and NJ methods. Among TSA56 and core Sca proteins (ScaA, ScaC, ScaD, and ScaE), TSA56 trees were most similar to the core protein tree, and ScaA trees were the least similar. However, concatenated ScaA and TSA56 sequences produced trees that were highly similar to the core protein tree, the NJ tree being more similar. Strain-level characterization of O. tsutsugamushi may be improved by coanalyzing ScaA and TSA56 sequences, which are also important targets for their combined immunogenicity.
Collapse
Affiliation(s)
- Nicholas T. Minahan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100025, Taiwan; (N.T.M.); (Y.-L.L.G.)
| | - Tsai-Ying Yen
- Centers for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 115210, Taiwan; (T.-Y.Y.); (P.-Y.S.)
| | - Yue-Liang Leon Guo
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100025, Taiwan; (N.T.M.); (Y.-L.L.G.)
- Department of Environmental and Occupational Medicine, National Taiwan University (NTU) College of Medicine and NTU Hospital, Taipei 100025, Taiwan
| | - Pei-Yun Shu
- Centers for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 115210, Taiwan; (T.-Y.Y.); (P.-Y.S.)
| | - Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100025, Taiwan; (N.T.M.); (Y.-L.L.G.)
- Global Health Program, College of Public Health, National Taiwan University, Taipei 100025, Taiwan
| |
Collapse
|
4
|
van Schaik EJ, Fratzke AP, Gregory AE, Dumaine JE, Samuel JE. Vaccine development: obligate intracellular bacteria new tools, old pathogens: the current state of vaccines against obligate intracellular bacteria. Front Cell Infect Microbiol 2024; 14:1282183. [PMID: 38567021 PMCID: PMC10985213 DOI: 10.3389/fcimb.2024.1282183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Obligate intracellular bacteria have remained those for which effective vaccines are unavailable, mostly because protection does not solely rely on an antibody response. Effective antibody-based vaccines, however, have been developed against extracellular bacteria pathogens or toxins. Additionally, obligate intracellular bacteria have evolved many mechanisms to subvert the immune response, making vaccine development complex. Much of what we know about protective immunity for these pathogens has been determined using infection-resolved cases and animal models that mimic disease. These studies have laid the groundwork for antigen discovery, which, combined with recent advances in vaccinology, should allow for the development of safe and efficacious vaccines. Successful vaccines against obligate intracellular bacteria should elicit potent T cell memory responses, in addition to humoral responses. Furthermore, they ought to be designed to specifically induce strong cytotoxic CD8+ T cell responses for protective immunity. This review will describe what we know about the potentially protective immune responses to this group of bacteria. Additionally, we will argue that the novel delivery platforms used during the Sars-CoV-2 pandemic should be excellent candidates to produce protective immunity once antigens are discovered. We will then look more specifically into the vaccine development for Rickettsiaceae, Coxiella burnetti, and Anaplasmataceae from infancy until today. We have not included Chlamydia trachomatis in this review because of the many vaccine related reviews that have been written in recent years.
Collapse
Affiliation(s)
- E J van Schaik
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
| | - A P Fratzke
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
- Charles River Laboratories, Reno, NV, United States
| | - A E Gregory
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Jennifer E Dumaine
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
| | - J E Samuel
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
- Department of Veterinary Pathobiology, School of Veterinary Medicine, Texas A&M University (TAMU), College Station, TX, United States
| |
Collapse
|
5
|
Kim CG, Kim WK, Kim N, Pyung YJ, Park DJ, Lee JC, Cho CS, Chu H, Yun CH. Intranasal Immunization With Nanoparticles Containing an Orientia tsutsugamushi Protein Vaccine Candidate and a Polysorbitol Transporter Adjuvant Enhances Both Humoral and Cellular Immune Responses. Immune Netw 2023; 23:e47. [PMID: 38188601 PMCID: PMC10767547 DOI: 10.4110/in.2023.23.e47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 01/09/2024] Open
Abstract
Scrub typhus, a mite-borne infectious disease, is caused by Orientia tsutsugamushi. Despite many attempts to develop a protective strategy, an effective preventive vaccine has not been developed. The identification of appropriate Ags that cover diverse antigenic strains and provide long-lasting immunity is a fundamental challenge in the development of a scrub typhus vaccine. We investigated whether this limitation could be overcome by harnessing the nanoparticle-forming polysorbitol transporter (PST) for an O. tsutsugamushi vaccine strategy. Two target proteins, 56-kDa type-specific Ag (TSA56) and surface cell Ag A (ScaA) were used as vaccine candidates. PST formed stable nano-size complexes with TSA56 (TSA56-PST) and ScaA (ScaA-PST); neither exhibited cytotoxicity. The formation of Ag-specific IgG2a, IgG2b, and IgA in mice was enhanced by intranasal vaccination with TSA56-PST or ScaA-PST. The vaccines containing PST induced Ag-specific proliferation of CD8+ and CD4+ T cells. Furthermore, the vaccines containing PST improved the mouse survival against O. tsutsugamushi infection. Collectively, the present study indicated that PST could enhance both Ag-specific humoral immunity and T cell response, which are essential to effectively confer protective immunity against O. tsutsugamushi infection. These findings suggest that PST has potential for use in an intranasal vaccination strategy.
Collapse
Affiliation(s)
- Cheol Gyun Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Korea
| | - Won Kyong Kim
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea
| | - Narae Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Young Jin Pyung
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Da-Jeong Park
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeong-Cheol Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyuk Chu
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Institutes of Green-bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
- Interdisciplinary Programs in Agricultural Genomics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
6
|
Bhardwaj P, Behera SP, Nanaware N, Zaman K, Deval H, Kant R, Kulkarni S, Kumar R, Dwivedi GR, Singh R. Phylogenetic and immunological investigations of complete TSA56 ORF of Orientia tsutsugamushi present in acute encephalitis syndrome cases from eastern Uttar Pradesh, India. Arch Microbiol 2023; 205:178. [PMID: 37029825 PMCID: PMC10082565 DOI: 10.1007/s00203-023-03492-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 04/09/2023]
Abstract
Scrub typhus (ST) caused by Orientia tsutsugamushi (OT), has long been known to cause acute encephalitis syndrome (AES) and acute febrile illness (AFI). The immunodominant 56 kDa protein of OT, which is encoded by the 56 kDa gene (1600 bp encoding 516-541 amino acids) is a commonly studied antigen for genotype and serotype assignment. Previous studies from India have utilized partial type specific antigen (TSA) 56 kDa sequences for OT strain characterisation. On the other hand, understanding the antigenic diversity of current OT strains, is critical for developing specific diagnostic tests and vaccines against ST. As a result, the current study analyses antigenic variants using the entire TSA56 ORF of OT from AES cases. Phylogenetic investigation using complete TSA56 ORF sequences revealed Karp and Gilliam were the circulating predominant strains of OT. Furthermore, Immuno-informatical analysis demonstrated that the majority of high-binding affinity CD4 TCEs against the most prevalent Indian human leukocyte antigen alleles were present in the S-VDIII/IV and S-VDIV spacer regions of TSA56 ORF. TSA56 conserved spacer is crucial for OT immunological response investigations. Further, the pathophysiological effects of spacer domains in ST require further investigation. Furthermore, the characterization of the TSA56 spacer region of the OT from different parts of India is critical for developing region-specific ST diagnostic assays and vaccines.
Collapse
Affiliation(s)
- Pooja Bhardwaj
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Sthita Pragnya Behera
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Nikita Nanaware
- ICMR-National AIDS Research Institute, Bhosari, Pune, 411026, India
| | - Kamran Zaman
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnatka, India
| | - Hirawati Deval
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Rajni Kant
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Smita Kulkarni
- ICMR-National AIDS Research Institute, Bhosari, Pune, 411026, India
| | - Rajesh Kumar
- RGSC, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Gaurav Raj Dwivedi
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Rajeev Singh
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India.
| |
Collapse
|
7
|
An Alternative Splicing Variant of the Mixed-Lineage Leukemia 5 Protein Is a Cellular Adhesion Receptor for ScaA of Orientia tsutsugamushi. mBio 2023; 14:e0154322. [PMID: 36541760 PMCID: PMC9973269 DOI: 10.1128/mbio.01543-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Scrub typhus is a mite-borne disease caused by the obligately intracellular bacterium Orientia tsutsugamushi. We previously demonstrated that ScaA, an autotransporter membrane protein of O. tsutsugamushi, is commonly shared in various genotypes and involved in adherence to host cells. Here, we identified a mixed-lineage leukemia 5 (MLL5) mammalian trithorax group protein as a host receptor that interacts with ScaA. MLL5, identified by yeast two-hybrid screening, is an alternative splicing variant of MLL5 (vMLL5) which contains 13 exons with additional intron sequences encoding a tentative transmembrane domain. Indeed, vMLL5 is expressed on the plasma membrane as well as in intracellular compartments in eukaryotic cells and colocalized with adherent O. tsutsugamushi. In addition, ScaA-expressing Escherichia coli showed significantly increased adherence to vMLL5-overexpressing cells compared with vector control cells. We mapped the C-terminal region of the passenger domain of ScaA as a ligand for vMLL5 and determined that the Su(var)3-9, Enhancer of zeste, Trithorax (SET) domain of MLL5 is an essential and sufficient motif for ScaA binding. We observed significant and specific inhibition of bacterial adhesion to host cells in competitive inhibition assays using the C-terminal fragment of ScaA or the SET domain of vMLL5. Moreover, immunization with the C-terminal fragment of ScaA provided neutralizing activity and protective immunity against lethal challenge with O. tsutsugamushi as efficiently as vaccination with the whole passenger domain of ScaA. These results indicate that vMLL5 is a novel cellular receptor for ScaA-mediated adhesion of O. tsutsugamushi and facilitates bacterial adhesion to host cells, thereby enhancing bacterial infection. IMPORTANCE O. tsutsugamushi is a mite-borne pathogen that causes scrub typhus. As an obligately intracellular pathogen, its adhesion to and invasion of host cells are critical steps for bacterial growth. However, the molecular basis of the bacterial ligand and host receptor interaction is poorly defined. Here, we identified a splicing variant of MLL5 (vMLL5) as a cellular adhesion receptor of ScaA, an outer membrane autotransporter protein of O. tsutsugamushi. We mapped the interacting domains in the bacterial ligand and host receptor and confirmed their functional interaction. In addition, immunization with the C-terminal region of ScaA, which involves an interaction with the SET domain of vMLL5, not only induces enhanced neutralizing antibodies but also provides protective immunity against lethal challenge with O. tsutsugamushi.
Collapse
|
8
|
Walker DH, Mendell NL. A scrub typhus vaccine presents a challenging unmet need. NPJ Vaccines 2023; 8:11. [PMID: 36759505 PMCID: PMC9910236 DOI: 10.1038/s41541-023-00605-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Scrub typhus caused by the obligately intracellular bacterium, Orientia tsutsugamushi, is a major cause of life-threatening acute undifferentiated febrile illness in eastern Asia and the islands of the Western Pacific and Indian oceans. Since the estimation of an incidence of 1 million cases annually two decades ago, the number of cases has increased substantially in endemic regions, reappeared where the disease was forgotten, and spread northward. Trombiculid mites are both reservoir and vector. Despite 80 years of efforts to develop a vaccine, there is none. Protective immunity is mediated by antibodies and CD8 and CD4 T cells. Previous efforts have failed because of gaps in understanding immunity to O. tsutsugamushi, particularly the requirements for vaccine-induced immunity, lack of knowledge regarding immune memory in scrub typhus, and lack of attention to addressing the issue of cross-protection between strains. There are numerous strains of O. tsutsugamushi, and modestly durable immunity is strain-specific. Antibodies to the strain that caused infection are protective against challenges with the homologous strain but, despite reactivity with other immunodominant antigens, the immune serum does not protect against heterologous strains. Among the antigens detected by western immunoblot in immune sera (22-, 47-, 56-, 58-, and 110 kDa proteins), only the 56 kDa protein stimulates strong protection. This protein contains four hypervariable regions which are likely, on the basis of limited data, to be the targets of neutralizing antibodies. However, a method that definitively detects neutralizing antibody has yet to be developed. Only one study has used genomic data to pursue the discovery of protective antigens. Three conserved autotransporters were identified, and only immunization with ScaA provided protection against the homologous strain, but only 40% of animals were protected against challenge with a heterologous strain. A multiplex vaccine containing conformational antigens of the hypervariable regions of the 56 kDa protein of the strains of the greatest clinical and epidemiological importance, as well as conserved regions of the 56 kDa protein, ScaA, and other protective antigens identified by future genomic and bioinformatics methods should be developed and tested.
Collapse
Affiliation(s)
- David H. Walker
- grid.176731.50000 0001 1547 9964Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555 USA
| | - Nicole L. Mendell
- grid.176731.50000 0001 1547 9964Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555 USA
| |
Collapse
|
9
|
Chankate P, Kalambaheti T, Kosoltanapiwat N, Tanganuchitcharnchai A, Blacksell SD, Chantratita N, Leaungwutiwong P. A Use of 56-kDa Recombinant Protein of Orientia tsutsugamushi Karp Serotype in Serodiagnosis of Scrub Typhus by Enzyme-Linked Immunosorbent Assay in Thais. Trop Med Infect Dis 2022; 8:10. [PMID: 36668917 PMCID: PMC9865064 DOI: 10.3390/tropicalmed8010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Scrub typhus is a mite-borne disease caused by a Gram-negative obligately intracellular bacillus, Orientia tsutsugamushi. The disease is endemic in the Asia-Australia-Pacific region, including Thailand. Scrub typhus generally manifests as acute undifferentiated febrile fever along with myalgia, rash, and lymphadenopathy. An eschar can be a valuable diagnostic clue, but this skin lesion may be missed in some patients. The disease symptoms resemble those of other febrile illnesses such as leptospirosis, typhoid, murine typhus, malaria, and dengue fever, making a laboratory diagnosis necessary for the definitive diagnosis. In this study, we expressed a recombinant protein derived from 56-kDa type-specific antigen of O. tsutsugamushi Karp serotype and tested its ability to detect and differentiate scrub typhus infection. IgM and IgG antibodies were determined in sera from scrub typhus (n = 92) and other febrile illness patients (murine typhus (n = 25), melioidosis (n = 36), leptospirosis (n = 42), and dengue (n = 35)) from Thailand. Sensitivities of 87.0% and 59.8% with a specified assay cut-off were obtained for IgM and IgG indirect ELISAs, respectively, with a specificity of 100% in both tests. The sensitivity was increased to 95.7% when a combination of IgM and IgG ELISAs results was considered. Our study suggested a potential of the 56-kDa recombinant protein for further development and evaluation for use in scrub typhus serodiagnosis.
Collapse
Affiliation(s)
- Phanita Chankate
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Thareerat Kalambaheti
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Ampai Tanganuchitcharnchai
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Stuart D. Blacksell
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
10
|
Liang Y, Fisher J, Gonzales C, Trent B, Card G, Sun J, Tumanov AV, Soong L. Distinct Role of TNFR1 and TNFR2 in Protective Immunity Against Orientia tsutsugamushi Infection in Mice. Front Immunol 2022; 13:867924. [PMID: 35479068 PMCID: PMC9035742 DOI: 10.3389/fimmu.2022.867924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Infection with Orientia tsutsugamushi, an obligate intracellular bacterium, can cause mild or severe scrub typhus. Some patients develop acute lung injury, multi-organ failure, and fatal infection; however, little is known regarding key immune mediators that mediate infection control or disease pathogenesis. Using murine models of scrub typhus, we demonstrated in this study the requirement of TNF-TNFR signaling in protective immunity against this infection. Mice lacking both TNF receptors (TNFR1 and TNFR2) were highly susceptible to O. tsutsugamushi infection, displaying significantly increased tissue bacterial burdens and succumbing to infection by day 9, while most wild-type mice survived through day 20. This increased susceptibility correlated with poor activation of cellular immunity in inflamed tissues. Flow cytometry of lung- and spleen-derived cells revealed profound deficiencies in total numbers and activation status of NK cells, neutrophils, and macrophages, as well as CD4 and CD8 T cells. To define the role of individual receptors in O. tsutsugamushi infection, we used mice lacking either TNFR1 or TNFR2. While deficiency in either receptor alone was sufficient to increase host susceptibility to the infection, TNFR1 and TNFR2 played a distinct role in cellular responses. TNF signaling through TNFR1 promoted inflammatory responses and effector T cell expansion, while TNFR2 signaling was associated with anti-inflammatory action and tissue homeostasis. Moreover, TNFRs played an intrinsic role in CD8+ T cell activation, revealing an indispensable role of TNF in protective immunity against O. tsutsugamushi infection.
Collapse
Affiliation(s)
- Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - James Fisher
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Casey Gonzales
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandon Trent
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Galen Card
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Alexei V. Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
11
|
Vaccine Design and Vaccination Strategies against Rickettsiae. Vaccines (Basel) 2021; 9:vaccines9080896. [PMID: 34452021 PMCID: PMC8402588 DOI: 10.3390/vaccines9080896] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022] Open
Abstract
Rickettsioses are febrile, potentially lethal infectious diseases that are a serious health threat, especially in poor income countries. The causative agents are small obligate intracellular bacteria, rickettsiae. Rickettsial infections are emerging worldwide with increasing incidence and geographic distribution. Nonetheless, these infections are clearly underdiagnosed because methods of diagnosis are still limited and often not available. Another problem is that the bacteria respond to only a few antibiotics, so delayed or wrong antibiotic treatment often leads to a more severe outcome of the disease. In addition to that, the development of antibiotic resistance is a serious threat because alternative antibiotics are missing. For these reasons, prophylactic vaccines against rickettsiae are urgently needed. In the past years, knowledge about protective immunity against rickettsiae and immunogenic determinants has been increasing and provides a basis for vaccine development against these bacterial pathogens. This review provides an overview of experimental vaccination approaches against rickettsial infections and perspectives on vaccination strategies.
Collapse
|
12
|
Musa TH, Ahmad T, Wana MN, Li W, Musa HH, Sharun K, Tiwari R, Dhama K, Chaicumpa W, Campbell MC, Wei P. The epidemiology, diagnosis and management of scrub typhus disease in China. Hum Vaccin Immunother 2021; 17:3795-3805. [PMID: 34124995 DOI: 10.1080/21645515.2021.1934355] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Thirty-nine years ago, scrub typhus (ST), a disease, was not among the China's notifiable diseases. However, ST has reemerged to become a growing public health issue in the southwest part of China. The major factors contributing to an increased incidence and prevalence of this disease include rapid globalization, urbanization, expansion of humans into previously uninhabited areas, and climate change. The clinical manifestation of ST also consists of high fever, headache, weakness, myalgia, rash, and an eschar. In severe cases, complications (e.g. multi-organ failure, jaundice, acute renal failure, pneumonitis, myocarditis, and even death) can occur. The diagnosis of ST is mainly based on serological identification by indirect immunofluorescence assay and other molecular methods. Furthermore, several groups of antibiotics (e.g. tetracycline, chloramphenicol, macrolides, and rifampicin) are currently effective in treating this disease. This fact suggests the need for robust early diagnostic techniques, increased surveillance, and prompt treatment, and develop future vaccine.
Collapse
Affiliation(s)
- Taha Hussein Musa
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China.,Biomedical Research Institute (BRI), Darfur College, Nyala, Sudan
| | - Tauseef Ahmad
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Mohammed Nasiru Wana
- Department of Biological Sciences, Faculty of Science, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Wei Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Hassan Hussein Musa
- Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Pingmin Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
13
|
Nguyen YTH, Kim C, Kim Y, Jeon K, Kim HI, Ha NY, Cho NH. The Orientia tsutsugamushi ScaB Autotransporter Protein Is Required for Adhesion and Invasion of Mammalian Cells. Front Microbiol 2021; 12:626298. [PMID: 33613493 PMCID: PMC7890071 DOI: 10.3389/fmicb.2021.626298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/05/2021] [Indexed: 01/08/2023] Open
Abstract
Autotransporter proteins are widely present in Gram-negative bacteria. They play a pivotal role in processes related to bacterial pathogenesis, including adhesion, invasion, colonization, biofilm formation, and cellular toxicity. Bioinformatics analysis revealed that Orientia tsutsugamushi, the causative agent of scrub typhus, encodes six different autotransporter genes (scaA-scaF). Although four of these genes (scaA, scaC, scaD, and scaE) are present in diverse strains, scaB and scaF have been detected in only a limited number of strains. Previous studies have demonstrated that ScaA and ScaC are involved in the adherence of host cells. However, the putative function of other O. tsutsugamushi Sca proteins has not been studied yet. In this study, we show that scaB is transcribed and expressed on the surface of O. tsutsugamushi Boryong strain. Using a heterologous Escherichia coli expression system, we demonstrated that ScaB-expressing E. coli can successfully mediate adherence to and invasion into non-phagocytic cells, including epithelial and endothelial cells. In addition, pretreatment with a recombinant ScaB polypeptide inhibits the entry of O. tsutsugamushi into cultured mammalian cells. Finally, we also identified the scaB gene in the Kuroki and TA686 strains and observed high levels of sequence variation in the passenger domains. Here, we propose that the ScaB protein of O. tsutsugamushi can mediate both adhesion to and invasion into host cells in the absence of other O. tsutsugamushi genes and may play important roles in bacterial pathogenesis.
Collapse
Affiliation(s)
- Yen Thi Hai Nguyen
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Chaewon Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Yuri Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Endemic Diseases, Seoul National University Medical Research Center and Bundang Hospital, Seoul, South Korea
| | - Kyeongseok Jeon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Hong-Il Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Na-Young Ha
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Endemic Diseases, Seoul National University Medical Research Center and Bundang Hospital, Seoul, South Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Endemic Diseases, Seoul National University Medical Research Center and Bundang Hospital, Seoul, South Korea
| |
Collapse
|
14
|
Park SM, Gu MJ, Ju YJ, Cheon IS, Hwang KJ, Gill B, Shim BS, Jeong HJ, Son YM, Choi S, Jeung W, Han SH, Chu H, Yun CH. Intranasal Vaccination with Outer-Membrane Protein of Orientia tsutsugamushi induces Protective Immunity Against Scrub Typhus. Immune Netw 2020; 21:e14. [PMID: 33996170 PMCID: PMC8099613 DOI: 10.4110/in.2021.21.e14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 12/01/2022] Open
Abstract
Scrub typhus develops after the individual is bitten by a trombiculid mite infected with Orientia tsutsugamushi. Since it has been reported that pneumonia is frequently observed in patients with scrub typhus, we investigated whether intranasal (i.n.) vaccination with the outer membrane protein of O. tsutsugamushi (OMPOT) would induce a protective immunity against O. tsutsugamushi infection. It was particular interest that when mice were infected with O. tsutsugamushi, the bacteria disseminated into the lungs, causing pneumonia. The i.n. vaccination with OMPOT induced IgG responses in serum and bronchoalveolar lavage (BAL) fluid. The anti-O. tsutsugamushi IgA Abs in BAL fluid after the vaccination showed a high correlation of the protection against O. tsutsugamushi. The vaccination induced strong Ag-specific Th1 and Th17 responses in the both spleen and lungs. In conclusion, the current study demonstrated that i.n. vaccination with OMPOT elicited protective immunity against scrub typhus in mouse with O. tsutsugamushi infection causing subsequent pneumonia.
Collapse
Affiliation(s)
- Sung-Moo Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Min Jeong Gu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Young-Jun Ju
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - In Su Cheon
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Laboratory Sciences Division, International Vaccine Institute, Seoul 08826, Korea
| | - Kyu-Jam Hwang
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea
| | - Byoungchul Gill
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea
| | - Byoung-Shik Shim
- Laboratory Sciences Division, International Vaccine Institute, Seoul 08826, Korea
| | - Hang-Jin Jeong
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea
| | - Young Min Son
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sangho Choi
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea
| | - Woonhee Jeung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Korea
| | - Hyuk Chu
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
15
|
Oli AN, Obialor WO, Ifeanyichukwu MO, Odimegwu DC, Okoyeh JN, Emechebe GO, Adejumo SA, Ibeanu GC. Immunoinformatics and Vaccine Development: An Overview. Immunotargets Ther 2020; 9:13-30. [PMID: 32161726 PMCID: PMC7049754 DOI: 10.2147/itt.s241064] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/25/2020] [Indexed: 12/11/2022] Open
Abstract
The use of vaccines have resulted in a remarkable improvement in global health. It has saved several lives, reduced treatment costs and raised the quality of animal and human lives. Current traditional vaccines came empirically with either vague or completely no knowledge of how they modulate our immune system. Even at the face of potential vaccine design advance, immune-related concerns (as seen with specific vulnerable populations, cases of emerging/re-emerging infectious disease, pathogens with complex lifecycle and antigenic variability, need for personalized vaccinations, and concerns for vaccines' immunological safety -specifically vaccine likelihood to trigger non-antigen-specific responses that may cause autoimmunity and vaccine allergy) are being raised. And these concerns have driven immunologists toward research for a better approach to vaccine design that will consider these challenges. Currently, immunoinformatics has paved the way for a better understanding of some infectious disease pathogenesis, diagnosis, immune system response and computational vaccinology. The importance of this immunoinformatics in the study of infectious diseases is diverse in terms of computational approaches used, but is united by common qualities related to host–pathogen relationship. Bioinformatics methods are also used to assign functions to uncharacterized genes which can be targeted as a candidate in vaccine design and can be a better approach toward the inclusion of women that are pregnant into vaccine trials and programs. The essence of this review is to give insight into the need to focus on novel computational, experimental and computation-driven experimental approaches for studying of host–pathogen interactions and thus making a case for its use in vaccine development.
Collapse
Affiliation(s)
- Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Wilson Okechukwu Obialor
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Martins Ositadimma Ifeanyichukwu
- Department of Immunology, College of Health Sciences, Faculty of Medicine, Nnamdi Azikiwe University, Anambra, Nigeria.,Department of Medical Laboratory Science,Faculty of Health Science and Technology, College of Health Sciences, Nnamdi Azikiwe University,Nnewi Campus, Nnewi, Nigeria
| | - Damian Chukwu Odimegwu
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka, Enugu, Nigeria
| | - Jude Nnaemeka Okoyeh
- Department of Biology and Clinical Laboratory Science, Division of Arts and Sciences, Neumann University, Aston, PA 19014-1298, USA
| | - George Ogonna Emechebe
- Department of Pediatrics, Faculty of Clinical Medicine, Chukwuemeka Odumegwu Ojukwu University, Awka, Nigeria
| | - Samson Adedeji Adejumo
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Gordon C Ibeanu
- Department of Pharmaceutical Science, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|