1
|
Santos RS, Lee DAB, Barreto MDS, Silva EED, de Jesus PC, Moura PHM, Silva DMRR, de Souza JB, Bezerra TL, Santos POM, Guimarães AG, Santana LADM, Prudencio CR, Borges LP. Rapid antigen detection of severe acute respiratory syndrome coronavirus-2 in stray cats: A cross-sectional study. Vet World 2024; 17:1611-1618. [PMID: 39185047 PMCID: PMC11344112 DOI: 10.14202/vetworld.2024.1611-1618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/28/2024] [Indexed: 08/27/2024] Open
Abstract
Background and Aim Although reverse zoonotic transmission events from humans to domestic cats have been described, there is currently little evidence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) circulation in stray cats. Due to the evidence of natural and experimental infections in cats and the capacity to disseminate the virus among them, this study aimed to identify the SARS-CoV-2 antigen in stray cats from the Federal University of Sergipe in Brazil. Materials and Methods One hundred twenty six stray cats from the university were screened for SARS-CoV-2 antigens by random sampling. Throat swab samples were tested for the virus using rapid antigen detection tests. Results Of the 126 animals tested, 30 (23.60%) were positive for SARS-CoV-2 antigens. To our knowledge, for the first time, this study detected the SARS-CoV-2 antigen in stray cats and confirmed the presence of SARS-CoV-2 infections in Brazil's stray cat population. Conclusion The detection of SARS-CoV-2 in stray cats poses a risk for infected and healthy animals and possibly for humans who attend the university daily. As a limitation of the study, the small sample size necessitates caution when interpreting the results. This underscores the need for further research in this area to help control diseases in stray animals during potential pandemics. This highlights the need for monitoring and controlling the spread of the virus in stray animal populations.
Collapse
Affiliation(s)
| | - Daniel Antônio Braga Lee
- Department of Veterinary Medicine, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | | | | | | | | | | | | - Taynar Lima Bezerra
- Department of Veterinary Medicine, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | | | | | | - Carlos Roberto Prudencio
- Immunology Center, Adolfo Lutz Institute, São Paulo 01246-902, Brazil
- Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05508-000, Brazil
| | - Lysandro Pinto Borges
- Department of Pharmacy, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
2
|
Carossino M, Izadmehr S, Trujillo JD, Gaudreault NN, Dittmar W, Morozov I, Balasuriya UBR, Cordon-Cardo C, García-Sastre A, Richt JA. ACE2 and TMPRSS2 distribution in the respiratory tract of different animal species and its correlation with SARS-CoV-2 tissue tropism. Microbiol Spectr 2024; 12:e0327023. [PMID: 38230954 PMCID: PMC10846196 DOI: 10.1128/spectrum.03270-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024] Open
Abstract
A wide range of animal species show variable susceptibility to SARS-CoV-2; however, host factors associated with varied susceptibility remain to be defined. Here, we examined whether susceptibility to SARS-CoV-2 and virus tropism in different animal species are dependent on the expression and distribution of the virus receptor angiotensin-converting enzyme 2 (ACE2) and the host cell factor transmembrane serine protease 2 (TMPRSS2). We cataloged the upper and lower respiratory tract of multiple animal species and humans in a tissue-specific manner and quantitatively evaluated the distribution and abundance of ACE2 and TMPRSS2 mRNA in situ. Our results show that: (i) ACE2 and TMPRSS2 mRNA are abundant in the conduction portion of the respiratory tract, (ii) ACE2 mRNA occurs at a lower abundance compared to TMPRSS2 mRNA, (iii) co-expression of ACE2-TMPRSS2 mRNAs is highest in those species with the highest susceptibility to SARS-CoV-2 infection (i.e., cats, Syrian hamsters, and white-tailed deer), and (iv) expression of ACE2 and TMPRSS2 mRNA was not altered following SARS-CoV-2 infection. Our results demonstrate that while specific regions of the respiratory tract are enriched in ACE2 and TMPRSS2 mRNAs in different animal species, this is only a partial determinant of susceptibility to SARS-CoV-2 infection.IMPORTANCESARS-CoV-2 infects a wide array of domestic and wild animals, raising concerns regarding its evolutionary dynamics in animals and potential for spillback transmission of emerging variants to humans. Hence, SARS-CoV-2 infection in animals has significant public health relevance. Host factors determining animal susceptibility to SARS-CoV-2 are vastly unknown, and their characterization is critical to further understand susceptibility and viral dynamics in animal populations and anticipate potential spillback transmission. Here, we quantitatively assessed the distribution and abundance of the two most important host factors, angiotensin-converting enzyme 2 and transmembrane serine protease 2, in the respiratory tract of various animal species and humans. Our results demonstrate that while specific regions of the respiratory tract are enriched in these two host factors, they are only partial determinants of susceptibility. Detailed analysis of additional host factors is critical for our understanding of the underlying mechanisms governing viral susceptibility and reservoir hosts.
Collapse
Affiliation(s)
- Mariano Carossino
- Department of Pathobiological Sciences and Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Sudeh Izadmehr
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Wellesley Dittmar
- Department of Pathobiological Sciences and Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences and Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo García-Sastre
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
3
|
Morozov I, Gaudreault NN, Trujillo JD, Indran SV, Cool K, Kwon T, Meekins DA, Balaraman V, Artiaga BL, Madden DW, McDowell C, Njaa B, Retallick J, Hainer N, Millership J, Wilson WC, Tkalcevic G, Vander Horst H, Burakova Y, King V, Hutchinson K, Hardham JM, Schwahn DJ, Kumar M, Richt JA. Preliminary Study on the Efficacy of a Recombinant, Subunit SARS-CoV-2 Animal Vaccine against Virulent SARS-CoV-2 Challenge in Cats. Vaccines (Basel) 2023; 11:1831. [PMID: 38140233 PMCID: PMC10747320 DOI: 10.3390/vaccines11121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The objective of this work was to evaluate the safety and efficacy of a recombinant, subunit SARS-CoV-2 animal vaccine in cats against virulent SARS-CoV-2 challenge. Two groups of cats were immunized with two doses of either a recombinant SARS-CoV-2 spike protein vaccine or a placebo, administered three weeks apart. Seven weeks after the second vaccination, both groups of cats were challenged with SARS-CoV-2 via the intranasal and oral routes simultaneously. Animals were monitored for 14 days post-infection for clinical signs and viral shedding before being humanely euthanized and evaluated for macroscopic and microscopic lesions. The recombinant SARS-CoV-2 spike protein subunit vaccine induced strong serologic responses post-vaccination and significantly increased neutralizing antibody responses post-challenge. A significant difference in nasal and oral viral shedding, with significantly reduced virus load (detected using RT-qPCR) was observed in vaccinates compared to mock-vaccinated controls. Duration of nasal, oral, and rectal viral shedding was also significantly reduced in vaccinates compared to controls. No differences in histopathological lesion scores were noted between the two groups. Our findings support the safety and efficacy of the recombinant spike protein-based SARS-CoV-2 vaccine which induced high levels of neutralizing antibodies and reduced nasal, oral, and rectal viral shedding, indicating that this vaccine will be efficacious as a COVID-19 vaccine for domestic cats.
Collapse
Affiliation(s)
- Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Sabarish V. Indran
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - David A. Meekins
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Velmurugan Balaraman
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Bianca Libanori Artiaga
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Daniel W. Madden
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Chester McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Bradley Njaa
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA; (B.N.)
| | - Jamie Retallick
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA; (B.N.)
| | | | | | - William C. Wilson
- Foreign Arthropod-Borne Animal Disease Research Unit, National Bio and Agro-Defense Facility, United States Department of Agriculture, Manhattan, KS 66506, USA
| | | | | | | | | | | | | | | | | | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| |
Collapse
|
4
|
Gómez-Gonzales W, Chihuantito-Abal LA, Gamarra-Bustillos C, Morón-Valenzuela J, Zavaleta-Oliver J, Gomez-Livias M, Vargas-Pancorbo L, Auqui-Canchari ME, Mejía-Zambrano H. Risk Factors Contributing to Reinfection by SARS-CoV-2: A Systematic Review. Adv Respir Med 2023; 91:560-570. [PMID: 38131876 PMCID: PMC10740414 DOI: 10.3390/arm91060041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
This article aims to systematize the evidence regarding risk factors associated with COVID-19 reinfection. We conducted a systematic review of all the scientific publications available until August 2022. To ensure the inclusion of the most recent and relevant information, we searched the PubMed and Scopus databases. Thirty studies were reviewed, with a significant proportion being analytical observational case-control and cohort studies. Upon qualitative analysis of the available evidence, it appears that the probability of reinfection is higher for individuals who are not fully immunized when exposed to a new variant, females, those with pre-existing chronic diseases, individuals aged over 60, and those who have previously experienced severe symptoms of the disease or are immunocompromised. In conclusion, further analytical observational case-control studies are necessary to gain a better understanding of the risk factors associated with SARS-CoV-2 (COVID-19) reinfection.
Collapse
Affiliation(s)
- Walter Gómez-Gonzales
- Escuela de Medicina, Filial Ica, Universidad Privada San Juan Bautista, Ica 11001, Peru;
| | | | | | - Julia Morón-Valenzuela
- Escuela de Medicina, Filial Ica, Universidad Privada San Juan Bautista, Ica 11001, Peru;
| | - Jenny Zavaleta-Oliver
- Escuela de Medicina Humana, Universidad Privada San Juan Bautista, Lima 15067, Peru; (J.Z.-O.); (H.M.-Z.)
| | - Maria Gomez-Livias
- Escuela de Medicina, Universidad Norbert Wiener, Lima 15046, Peru; (C.G.-B.); (M.G.-L.)
| | | | | | - Henry Mejía-Zambrano
- Escuela de Medicina Humana, Universidad Privada San Juan Bautista, Lima 15067, Peru; (J.Z.-O.); (H.M.-Z.)
| |
Collapse
|
5
|
Maniscalco L, Genovese D, Ravazzolo B, Vella G, Sparacia B, Vitale F, Matranga D, Amodio E. Low Risk of SARS-CoV-2 Reinfection for Fully or Boosted mRNA Vaccinated Subjects in Sicily: A Population-Based Study Using Real-World Data. Vaccines (Basel) 2023; 11:1757. [PMID: 38140163 PMCID: PMC10748171 DOI: 10.3390/vaccines11121757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Background: Reinfections occur as a response to natural infections wanes and novel strains of SARS-CoV-2 emerge. The present research explored the correlation between sex, age, COVID-19 vaccination, prior infection hospitalization, and SARS-CoV-2 reinfection in Sicily, Italy. Materials and Methods: A population-based retrospective cohort study was articulated using the vaccination flux from a regional registry and the Sicilian COVID-19 monitoring system of the Italian Institute of Health. Only adult Sicilians were included in the study, and hazard ratios were calculated using Cox regression. Results: Partial vaccination provided some protection (adj-HR: 0.92), when compared to unvaccinated individuals; furthermore, reinfection risk was reduced by full vaccination (adj-HR: 0.43), and the booster dose (adj-HR: 0.41). Males had a lower risk than females of reinfection with SARS-CoV-2 (adj-HR: 0.75). Reinfection with SARS-CoV-2 was diminished by hospitalization during the first infection (adj-HR: 0.78). Reinfection risk was higher among those aged 30-39 and 40-49 compared to those aged 18-29, whereas those aged 60-69, 70-79, and 80+ were statistically protected. Reinfection was significantly more frequent during the wild-type-Alpha, Delta, Delta-Omicron, and Omicron dominance/codominance waves compared to the wild type. Conclusions: This study establishes a solid base for comprehending the reinfection phenomenon in Sicily by pinpointing the most urgent policy hurdles and identifying some of the major factors. COVID-19 vaccination, one of the most effective public health tools, protects against reinfection, mostly caused by the Omicron strain. Elderly and hospitalized people's lower risk suggests stricter PPE use.
Collapse
Affiliation(s)
- Laura Maniscalco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), University of Palermo, Via del Vespro 133, 90127 Palermo, Italy; (L.M.); (G.V.); (B.S.); (F.V.); (D.M.); (E.A.)
| | - Dario Genovese
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), University of Palermo, Via del Vespro 133, 90127 Palermo, Italy; (L.M.); (G.V.); (B.S.); (F.V.); (D.M.); (E.A.)
| | - Barbara Ravazzolo
- Unità Operativa Complessa di Epidemiologia Clinica con Registro Tumori, Azienda Ospedaliera Universitaria Policlinico “Paolo Giaccone”, 90127 Palermo, Italy;
| | - Giuseppe Vella
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), University of Palermo, Via del Vespro 133, 90127 Palermo, Italy; (L.M.); (G.V.); (B.S.); (F.V.); (D.M.); (E.A.)
| | - Benedetta Sparacia
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), University of Palermo, Via del Vespro 133, 90127 Palermo, Italy; (L.M.); (G.V.); (B.S.); (F.V.); (D.M.); (E.A.)
| | - Francesco Vitale
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), University of Palermo, Via del Vespro 133, 90127 Palermo, Italy; (L.M.); (G.V.); (B.S.); (F.V.); (D.M.); (E.A.)
- Unità Operativa Complessa di Epidemiologia Clinica con Registro Tumori, Azienda Ospedaliera Universitaria Policlinico “Paolo Giaccone”, 90127 Palermo, Italy;
| | - Domenica Matranga
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), University of Palermo, Via del Vespro 133, 90127 Palermo, Italy; (L.M.); (G.V.); (B.S.); (F.V.); (D.M.); (E.A.)
| | - Emanuele Amodio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), University of Palermo, Via del Vespro 133, 90127 Palermo, Italy; (L.M.); (G.V.); (B.S.); (F.V.); (D.M.); (E.A.)
| |
Collapse
|
6
|
Mabry ME, Fanelli A, Mavian C, Lorusso A, Manes C, Soltis PS, Capua I. The panzootic potential of SARS-CoV-2. Bioscience 2023; 73:814-829. [PMID: 38125826 PMCID: PMC10728779 DOI: 10.1093/biosci/biad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
Each year, SARS-CoV-2 is infecting an increasingly unprecedented number of species. In the present article, we combine mammalian phylogeny with the genetic characteristics of isolates found in mammals to elaborate on the host-range potential of SARS-CoV-2. Infections in nonhuman mammals mirror those of contemporary viral strains circulating in humans, although, in certain species, extensive viral circulation has led to unique genetic signatures. As in other recent studies, we found that the conservation of the ACE2 receptor cannot be considered the sole major determinant of susceptibility. However, we are able to identify major clades and families as candidates for increased surveillance. On the basis of our findings, we argue that the use of the term panzootic could be a more appropriate term than pandemic to describe the ongoing scenario. This term better captures the magnitude of the SARS-CoV-2 host range and would hopefully inspire inclusive policy actions, including systematic screenings, that could better support the management of this worldwide event.
Collapse
Affiliation(s)
- Makenzie E Mabry
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States
| | - Angela Fanelli
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Carla Mavian
- Emerging Pathogens Institute and with the Department of Pathology, University of Florida, Gainesville, Florida, United States
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Costanza Manes
- Department of Wildlife Ecology and Conservation and with the One Health Center of Excellence, University of Florida, Gainesville, Florida, United States
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States
| | - Ilaria Capua
- One Health Center of Excellence, University of Florida, Gainesville, Florida, United States
- School of International Advanced Studies, Johns Hopkins University, Bologna, Italy
| |
Collapse
|
7
|
Nooruzzaman M, Diel DG. Infection Dynamics, Pathogenesis, and Immunity to SARS-CoV-2 in Naturally Susceptible Animal Species. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1195-1201. [PMID: 37782853 PMCID: PMC10558081 DOI: 10.4049/jimmunol.2300378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 10/04/2023]
Abstract
SARS-CoV-2, the causative agent of the COVID-19 pandemic, presents a broad host range. Domestic cats and white-tailed deer (WTD) are particularly susceptible to SARS-CoV-2 with multiple variant strains being associated with infections in these species. The virus replicates in the upper respiratory tract and in associated lymphoid tissues, and it is shed through oral and nasal secretions, which leads to efficient transmission of the virus to contact animals. Robust cell-mediated and humoral immune responses are induced upon infection in domestic cats, which curb the progression of clinical disease and are associated with control of infection. In WTD, high levels of neutralizing Abs are detected early upon infection. In this review, the current understanding of the infection dynamics, pathogenesis, and immune responses to SARS-CoV-2 infection in animals, with special focus on naturally susceptible felids and WTD, are discussed.
Collapse
Affiliation(s)
- Mohammed Nooruzzaman
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States of America
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States of America
| |
Collapse
|
8
|
Tinto B, Revel J, Virolle L, Chenet B, Reboul Salze F, Ortega A, Beltrame M, Simonin Y. Monitoring SARS-CoV-2 Seroprevalence in Domestics and Exotic Animals in Southern France. Trop Med Infect Dis 2023; 8:426. [PMID: 37755888 PMCID: PMC10534723 DOI: 10.3390/tropicalmed8090426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Since late 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has emerged as a significant global threat to public health. Responsible for the COVID-19 pandemic, this new coronavirus has prompted extensive scientific research to comprehend its transmission dynamics, especially among humans. However, as our understanding deepens, it becomes increasingly clear that SARS-CoV-2's impact goes beyond human populations. Recent investigations have illuminated the transmission of the virus between humans and various animal species, raising important questions about zoonotic spillover events and their potential implications for both human and animal health. Our study set out to investigate the prevalence of SARS-CoV-2 in domestic animals (dogs and cats) and zoo animals in the south of France in 2021 and 2022, covering pre-Omicron and Omicron waves. We identified evidence of SARS-CoV-2 antibodies not only in domestic dogs and cats but also in several mammals in zoos. This study shows the importance of implementing surveillance measures, including serological studies, to identify and monitor cases of SARS-CoV-2 infection in animals.
Collapse
Affiliation(s)
- Bachirou Tinto
- Centre MURAZ, Institut National de Santé Publique (INSP), Bobo-Dioulasso 01, Burkina Faso;
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, Etablissement Français du Sang, 34394 Montpellier, France;
| | - Justine Revel
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, Etablissement Français du Sang, 34394 Montpellier, France;
| | - Laurie Virolle
- Parc de Lunaret—Zoo de Montpellier, 34090 Montpellier, France; (L.V.); (B.C.)
| | - Baptiste Chenet
- Parc de Lunaret—Zoo de Montpellier, 34090 Montpellier, France; (L.V.); (B.C.)
| | | | - Alix Ortega
- Sigean African Reserve, 11130 Sigean, France; (A.O.)
| | | | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, Etablissement Français du Sang, 34394 Montpellier, France;
| |
Collapse
|
9
|
Lee J, Ko M, Kim S, Lim D, Park G, Lee SE. Household secondary attack rates and risk factors during periods of SARS-CoV-2 Delta and Omicron variant predominance in the Republic of Korea. Osong Public Health Res Perspect 2023; 14:263-271. [PMID: 37652681 PMCID: PMC10493696 DOI: 10.24171/j.phrp.2023.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND The household secondary attack rate (SAR) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important indicator for community transmission. This study aimed to characterize transmission by comparing household SARs and identifying risk factors during the periods of Delta and Omicron variant predominance in Republic of Korea. METHODS We defined the period of Delta variant predominance (Delta period) as July 25, 2021 to January 15, 2022, and the period of Omicron variant predominance (Omicron period) as February 7 to September 3, 2022. The number of index cases included was 214,229 for the Delta period and 5,521,393 for the Omicron period. To identify the household SARs and risk factors for each period, logistic regression was performed to determine the adjusted odds ratio (aOR). RESULTS The SAR was 35.2% for the Delta period and 43.1% for the Omicron period. The aOR of infection was higher in 2 groups, those aged 0 to 18 years and ≥75 years, compared to those aged 19 to 49 years. Unvaccinated individuals (vs. vaccinated individuals) and individuals experiencing initial infection (vs. individuals experiencing a second or third infection) had an increased risk of infection with SARS-CoV-2. CONCLUSION This study analyzed the household SARs and risk factors. We hope that the results can help develop age-specific immunization plans and responses to reduce the SAR in preparation for emerging infectious diseases or potential new variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Jin Lee
- Central Disease Control Headquarters, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Mijeong Ko
- Capital Regional Center for Disease Control and Prevention, Korea Disease Control and Prevention Agency, Seoul, Republic of Korea
| | - Seontae Kim
- Central Disease Control Headquarters, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Dosang Lim
- Bureau of Chronic Disease Prevention and Control, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Gemma Park
- Chungcheong Regional Center for Disease Control and Prevention, Korea Disease Control and Prevention Agency, Daejeon, Republic of Korea
| | - Sang-Eun Lee
- Central Disease Control Headquarters, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| |
Collapse
|
10
|
Tyson GB, Jones S, Montreuil-Spencer C, Logan N, Scott S, Sasvari H, McDonald M, Marshall L, Murcia PR, Willett BJ, Weir W, Hosie MJ. Increase in SARS-CoV-2 Seroprevalence in UK Domestic Felids Despite Weak Immunogenicity of Post-Omicron Variants. Viruses 2023; 15:1661. [PMID: 37632004 PMCID: PMC10458763 DOI: 10.3390/v15081661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Throughout the COVID-19 pandemic, SARS-CoV-2 infections in domestic cats have caused concern for both animal health and the potential for inter-species transmission. Cats are known to be susceptible to the Omicron variant and its descendants, however, the feline immune response to these variants is not well defined. We aimed to estimate the current seroprevalence of SARS-CoV-2 in UK pet cats, as well as characterise the neutralising antibody response to the Omicron (BA.1) variant. A neutralising seroprevalence of 4.4% and an overall seroprevalence of 13.9% was observed. Both purebred and male cats were found to have the highest levels of seroprevalence, as well as cats aged between two and five years. The Omicron variant was found to have a lower immunogenicity in cats than the B.1, Alpha and Delta variants, which reflects previous reports of immune and vaccine evasion in humans. These results further underline the importance of surveillance of SARS-CoV-2 infections in UK cats as the virus continues to evolve.
Collapse
Affiliation(s)
- Grace B. Tyson
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Sarah Jones
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Chloe Montreuil-Spencer
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Sam Scott
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Hagar Sasvari
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Michael McDonald
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Leigh Marshall
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Pablo R. Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Brian J. Willett
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - William Weir
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
11
|
Kwon T, Gaudreault NN, Cool K, McDowell CD, Morozov I, Richt JA. Stability of SARS-CoV-2 in Biological Fluids of Animals. Viruses 2023; 15:v15030761. [PMID: 36992470 PMCID: PMC10058514 DOI: 10.3390/v15030761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Since its first emergence in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to evolve genetically, jump species barriers, and expand its host range. There is growing evidence of interspecies transmission including infection of domestic animals and widespread circulation in wildlife. However, knowledge of SARS-CoV-2 stability in animal biological fluids and their role in transmission is still limited as previous studies focused on human biological fluids. Therefore, this study aimed to determine the SARS-CoV-2 stability in biological fluids from three animal species, cats, sheep and white-tailed deer (WTD). Saliva, feces, 10% fecal suspensions, and urine of cats, sheep, and WTD were mixed with a known concentration of virus and incubated under indoor and three different climatic conditions. Our results show that the virus was stable for up to 1 day in the saliva of cats, sheep, and WTD regardless of the environmental conditions. The virus remained infectious for up to 6 days in feces and 15 days in fecal suspension of WTD, whereas the virus was rather unstable in cat and sheep feces and fecal suspensions. We found the longest survival of SARS-CoV-2 in the urine of cats, sheep, and WTD. Furthermore, side-by-side comparison with different SARS-CoV-2 strains showed that the Alpha, Delta, and Omicron variants of concern were less stable than the ancestral Wuhan-like strain in WTD fecal suspension. The results of our study provide valuable information for assessing the potential role of various animal biological fluids in SARS-CoV-2 transmission.
Collapse
|
12
|
Thieulent CJ, Dittmar W, Balasuriya UBR, Crossland NA, Wen X, Richt JA, Carossino M. Mouse-Adapted SARS-CoV-2 MA10 Strain Displays Differential Pulmonary Tropism and Accelerated Viral Replication, Neurodissemination, and Pulmonary Host Responses in K18-hACE2 Mice. mSphere 2023; 8:e0055822. [PMID: 36728430 PMCID: PMC9942576 DOI: 10.1128/msphere.00558-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
Several models were developed to study the pathogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as the in vivo efficacy of vaccines and therapeutics. Since wild-type mice are naturally resistant to infection by ancestral SARS-CoV-2 strains, several transgenic mouse models expressing human angiotensin-converting enzyme 2 (hACE2) were developed. An alternative approach has been to develop mouse-adapted SARS-CoV-2 strains. Here, we compared the clinical progression, viral replication kinetics and dissemination, pulmonary tropism, and host innate immune response dynamics between the mouse-adapted MA10 strain and its parental strain (USA-WA1/2020) following intranasal inoculation of K18-hACE2 mice, a widely used model. Compared to its parental counterpart, the MA10 strain induced earlier clinical decline with significantly higher viral replication and earlier neurodissemination. Importantly, the MA10 strain also showed a wider tropism, with infection of bronchiolar epithelia. While both SARS-CoV-2 strains induced comparable pulmonary cytokine/chemokine responses, many proinflammatory and monocyte-recruitment chemokines, such as interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), IP-10/CXCL10, and MCP-1/CCL2, showed an earlier peak in MA10-infected mice. Furthermore, both strains induced a similar downregulation of murine Ace2, with only a transient downregulation of Tmprss2 and no alterations in hACE2 expression. Overall, these data demonstrate that in K18-hACE2 mice, the MA10 strain has a pulmonary tropism that more closely resembles SARS-CoV-2 tropism in humans (airways and pneumocytes) than its parental strain. Its rapid replication and neurodissemination and early host pulmonary responses can have a significant impact on the clinical outcomes of infection and are, therefore, critical features to consider for study designs using these strains and mouse model. IMPORTANCE The COVID-19 pandemic, caused by SARS-CoV-2, is still significantly impacting health care systems around the globe. Refined animal models are needed to study SARS-CoV-2 pathogenicity as well as efficacy of vaccines and therapeutics. In line with this, thorough evaluation of animal models and virus strains/variants are paramount for standardization and meaningful comparisons. Here, we demonstrated differences in replication dynamics between the Wuhan-like USA-WA1/2020 strain and the derivative mouse-adapted MA10 strain in K18-hACE2 mice. The MA10 strain showed accelerated viral replication and neurodissemination, differential pulmonary tropism, and earlier pulmonary innate immune responses. The observed differences allow us to better refine experimental designs when considering the use of the MA10 strain in the widely utilized K18-hACE2 murine model.
Collapse
Affiliation(s)
- Côme J. Thieulent
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Wellesley Dittmar
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Nicholas A. Crossland
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Xue Wen
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
13
|
Espinosa-Gómez FC, Bautista E, Palacios-Cruz OE, Téllez-Ramírez A, Vázquez-Briones DB, Flores de Los Ángeles C, Abella-Medrano CA, Escobedo-Straffón JL, Aguirre-Alarcón H, Pérez-Silva NB, Solís-Hernández M, Navarro-López R, Aguirre AA. Host traits, ownership behaviour and risk factors of SARS-CoV-2 infection in domestic pets in Mexico. Zoonoses Public Health 2023; 70:327-340. [PMID: 36757053 DOI: 10.1111/zph.13030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 12/22/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023]
Abstract
SARS-CoV-2 can infect pets under natural conditions, which raises questions about the risk factors related to the susceptibility of these animals to infection. The status of pet infection by SARS-CoV-2 in Mexico is not well-understood. We aimed to estimate the frequency of positive household cats and dogs to viral RNA and antibodies for SARS-CoV-2 during the second wave of human infections in Mexico, and to recognize the major risk factors related to host and pet ownership behaviour. We evaluated two study groups, cats and dogs from COVID-19-infected/-suspected households (n = 44) and those admitted for veterinary care for any reason at several veterinary hospitals in Puebla City, Mexico (n = 91). Using RT-PCR, we identified the presence of SARS-CoV-2 RNA in swabs of four dogs (18.18%) and zero cats in COVID-19-infected/-suspected households; within this group, 31.82% of dogs and 27.27% of cats were tested IgG ELISA-positive; and neutralizing antibodies were detected in one dog (4.55%) and two cats (9.09%). In the random group (pets evaluated at private clinics and veterinary teaching hospital), 25.00% of dogs and 43.59% of cats were ELISA-positive and only one cat showed neutralizing antibodies (2.56%). Older than 4-year-old, other pets at home, and daily cleaning of pet dish, were each associated with an increase in SARS-CoV-2 infection (p < 0.05). Allowing face lick, sharing bed/food with pets and owner tested positive or suspected COVID-19 were not significant risk factors, but more than 4 h the owner spent away from home during the lockdown for COVID-19 (OR = 0.37, p = 0.01), and outdoor pet food tray (OR = 0.32, p = 0.01) significantly decreased the risks of SARS-CoV-2 infection in pets, suggesting that time the owner spends with their pet is an important risk factor.
Collapse
Affiliation(s)
| | - Elizabeth Bautista
- Laboratorio de Biotecnología Médica y Farmacéutica, Facultad de Biotecnología, Universidad Popular y Autónoma del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Oscar Emilio Palacios-Cruz
- Especialidad en Medicina y Cirugía de Perros y Gatos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Alejandra Téllez-Ramírez
- Especialidad en Medicina y Cirugía de Perros y Gatos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Daniela Belem Vázquez-Briones
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla, Mexico
| | - César Flores de Los Ángeles
- Laboratorio de Diagnóstico Molecular, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Carlos Antonio Abella-Medrano
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla, Mexico
| | | | - Héctor Aguirre-Alarcón
- Laboratorio de Biotecnología Médica y Farmacéutica, Facultad de Biotecnología, Universidad Popular y Autónoma del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Nancy Bibiana Pérez-Silva
- Laboratorio de Diagnóstico Molecular, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Mario Solís-Hernández
- Comisión México Estados Unidos para la Prevención de la Fiebre Aftosa y otras Enfermedades Exóticas de los Animales del Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Ciudad de México, Mexico
| | - Roberto Navarro-López
- Comisión México Estados Unidos para la Prevención de la Fiebre Aftosa y otras Enfermedades Exóticas de los Animales del Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Ciudad de México, Mexico
| | - A Alonso Aguirre
- Warner College of Natural Resources, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
14
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Velarde A, Viltrop A, Winckler C, Adlhoch C, Aznar I, Baldinelli F, Boklund A, Broglia A, Gerhards N, Mur L, Nannapaneni P, Ståhl K. SARS-CoV-2 in animals: susceptibility of animal species, risk for animal and public health, monitoring, prevention and control. EFSA J 2023; 21:e07822. [PMID: 36860662 PMCID: PMC9968901 DOI: 10.2903/j.efsa.2023.7822] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The epidemiological situation of SARS-CoV-2 in humans and animals is continually evolving. To date, animal species known to transmit SARS-CoV-2 are American mink, raccoon dog, cat, ferret, hamster, house mouse, Egyptian fruit bat, deer mouse and white-tailed deer. Among farmed animals, American mink have the highest likelihood to become infected from humans or animals and further transmit SARS-CoV-2. In the EU, 44 outbreaks were reported in 2021 in mink farms in seven MSs, while only six in 2022 in two MSs, thus representing a decreasing trend. The introduction of SARS-CoV-2 into mink farms is usually via infected humans; this can be controlled by systematically testing people entering farms and adequate biosecurity. The current most appropriate monitoring approach for mink is the outbreak confirmation based on suspicion, testing dead or clinically sick animals in case of increased mortality or positive farm personnel and the genomic surveillance of virus variants. The genomic analysis of SARS-CoV-2 showed mink-specific clusters with a potential to spill back into the human population. Among companion animals, cats, ferrets and hamsters are those at highest risk of SARS-CoV-2 infection, which most likely originates from an infected human, and which has no or very low impact on virus circulation in the human population. Among wild animals (including zoo animals), mostly carnivores, great apes and white-tailed deer have been reported to be naturally infected by SARS-CoV-2. In the EU, no cases of infected wildlife have been reported so far. Proper disposal of human waste is advised to reduce the risks of spill-over of SARS-CoV-2 to wildlife. Furthermore, contact with wildlife, especially if sick or dead, should be minimised. No specific monitoring for wildlife is recommended apart from testing hunter-harvested animals with clinical signs or found-dead. Bats should be monitored as a natural host of many coronaviruses.
Collapse
|
15
|
Sing A, Berger A. Cats – Revered and Reviled – and Associated Zoonoses. ZOONOSES: INFECTIONS AFFECTING HUMANS AND ANIMALS 2023:837-914. [DOI: 10.1007/978-3-031-27164-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Cool K, Gaudreault NN, Morozov I, Trujillo JD, Meekins DA, McDowell C, Carossino M, Bold D, Mitzel D, Kwon T, Balaraman V, Madden DW, Artiaga BL, Pogranichniy RM, Roman-Sosa G, Henningson J, Wilson WC, Balasuriya UBR, García-Sastre A, Richt JA. Infection and transmission of ancestral SARS-CoV-2 and its alpha variant in pregnant white-tailed deer. Emerg Microbes Infect 2022; 11:95-112. [PMID: 34842046 PMCID: PMC8725908 DOI: 10.1080/22221751.2021.2012528] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/25/2021] [Indexed: 01/21/2023]
Abstract
ABSTRACTSARS-CoV-2 was first reported circulating in human populations in December 2019 and has since become a global pandemic. Recent history involving SARS-like coronavirus outbreaks have demonstrated the significant role of intermediate hosts in viral maintenance and transmission. Evidence of SARS-CoV-2 natural infection and experimental infections of a wide variety of animal species has been demonstrated, and in silico and in vitro studies have indicated that deer are susceptible to SARS-CoV-2 infection. White-tailed deer (WTD) are amongst the most abundant and geographically widespread wild ruminant species in the US. Recently, WTD fawns were shown to be susceptible to SARS-CoV-2. In the present study, we investigated the susceptibility and transmission of SARS-CoV-2 in adult WTD. In addition, we examined the competition of two SARS-CoV-2 isolates, representatives of the ancestral lineage A and the alpha variant of concern (VOC) B.1.1.7 through co-infection of WTD. Next-generation sequencing was used to determine the presence and transmission of each strain in the co-infected and contact sentinel animals. Our results demonstrate that adult WTD are highly susceptible to SARS-CoV-2 infection and can transmit the virus through direct contact as well as vertically from doe to fetus. Additionally, we determined that the alpha VOC B.1.1.7 isolate of SARS-CoV-2 outcompetes the ancestral lineage A isolate in WTD, as demonstrated by the genome of the virus shed from nasal and oral cavities from principal infected and contact animals, and from the genome of virus present in tissues of principal infected deer, fetuses and contact animals.
Collapse
Affiliation(s)
- Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - David A. Meekins
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Chester McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Dana Mitzel
- United States Department of Agriculture, Foreign Arthropod-Borne Animal Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS, USA
| | - Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Velmurugan Balaraman
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Daniel W. Madden
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Bianca Libanori Artiaga
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Roman M. Pogranichniy
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Gleyder Roman-Sosa
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - William C. Wilson
- United States Department of Agriculture, Foreign Arthropod-Borne Animal Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS, USA
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
17
|
Qi F, Qin C. Characteristics of animal models for COVID-19. Animal Model Exp Med 2022; 5:401-409. [PMID: 36301011 PMCID: PMC9610135 DOI: 10.1002/ame2.12278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), the most consequential pandemic of this century, threatening human health and public safety. SARS-CoV-2 has been continuously evolving through mutation of its genome and variants of concern have emerged. The World Health Organization R&D Blueprint plan convened a range of expert groups to develop animal models for COVID-19, a core requirement for the prevention and control of SARS-CoV-2 pandemic. The animal model construction techniques developed during the SARS-CoV and MERS-CoV pandemics were rapidly deployed and applied in the establishment of COVID-19 animal models. To date, a large number of animal models for COVID-19, including mice, hamsters, minks and nonhuman primates, have been established. Infectious diseases produce unique manifestations according to the characteristics of the pathogen and modes of infection. Here we classified animal model resources around the infection route of SARS-CoV-2, and summarized the characteristics of the animal models constructed via transnasal, localized, and simulated transmission routes of infection.
Collapse
Affiliation(s)
- Feifei Qi
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijingChina,National Center of Technology Innovation for Animal ModelBeijingChina
| | - Chuan Qin
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijingChina,National Center of Technology Innovation for Animal ModelBeijingChina
| |
Collapse
|
18
|
Ramanujam H, Palaniyandi K. COVID-19 in animals: A need for One Health approach. Indian J Med Microbiol 2022; 40:485-491. [PMID: 35927142 PMCID: PMC9340561 DOI: 10.1016/j.ijmmb.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND SARS-CoV-2 has been identified as the cause of the COVID-19, which caused a global pandemic. It is a pathogen that causes respiratory disease and can easily navigate the interspecies barrier. A significant number of COVID-19 cases in animals have been reported worldwide, including but not limited to animals in farms, captivity, and household pets. Thus, assessing the affected population and anticipating 'at risk' population becomes essential. OBJECTIVES This article aims to emphasize the zoonotic potential of SARS- CoV-2 and discuss the One Health aspects of the disease. CONTENT This is a narrative review of recently published studies on animals infected with SARS-CoV-2, both experimental and natural. The elucidation of the mechanism of infection by binding SARS-CoV-2 spike protein to the ACE-2 receptor cells in humans has led to bioinformatic analysis that has identified a few other susceptible species in silico. While infections in animals have been extensively reported, no intermediary host has yet been identified for this disease. The articles collected in this review have been grouped into four categories; experimental inoculations, infection in wild animals, infection in farm animals and infection in pet animals, along with a review of literature in each category. The risk of infection transmission between humans and animals and vice versa and the importance of the One Health approach has been discussed at length in this article.
Collapse
Affiliation(s)
- Harini Ramanujam
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India
| | - Kannan Palaniyandi
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India.
| |
Collapse
|
19
|
Carossino M, Del Piero F, Lee J, Needle DB, Levine JM, Riis RR, Maes R, Wise AG, Mullaney K, Ferracone J, Langohr IM. Relationship between Uveal Inflammation and Viral Detection in 30 Cats with Feline Infectious Peritonitis. Pathogens 2022; 11:pathogens11080883. [PMID: 36015004 PMCID: PMC9415852 DOI: 10.3390/pathogens11080883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
Feline infectious peritonitis (FIP) virus is the most common infectious cause of uveitis in cats. Confirmatory diagnosis is usually only reached at postmortem examination. The relationship between the histologic inflammatory pattern, which depends on the stage of the disease, and the likelihood of detection of the viral antigen and/or RNA has not been investigated. We hypothesized that viral detection rate by either immunohistochemistry, in situ hybridization or RT-qPCR is dependent upon the predominant type of uveal inflammatory response (i.e., pyogranulomatous vs. plasmacytic). Thus, the aims of this study were to evaluate cases of FIP-induced uveitis, localize the viral antigen and RNA, and assess the relationship between the inflammatory pattern (macrophage- vs. plasma cell-rich) and the likelihood of detecting the FIP antigen and/or RNA. We evaluated 30 cats with FIP-induced uveitis. The viral antigen and/or RNA were detected within uveal macrophages in 11/30 cases, of which 8 tested positive by RT-qPCR. Correlation analysis determined a weak to moderate but significant negative correlation between the degree of plasmacytic uveal inflammation and the likelihood of detecting the FIP antigen and RNA. This study suggests that predominance of plasmacytic inflammation in cases of FIP uveitis reduces the odds of a confirmatory diagnosis through the viral detection methods available.
Collapse
Affiliation(s)
- Mariano Carossino
- Department of Pathobiological Sciences and Louisiana Animal Disease Diagnostic Laboratory, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
- Correspondence: (M.C.); (I.M.L.); Tel.: +1-(225)-578-9604 (M.C.); +1-(508)-270-2521 (I.M.L.)
| | - Fabio Del Piero
- Department of Pathobiological Sciences and Louisiana Animal Disease Diagnostic Laboratory, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Jeongha Lee
- Department of Pathobiological Sciences and Louisiana Animal Disease Diagnostic Laboratory, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - David B. Needle
- New Hampshire Veterinary Diagnostic Laboratory, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH 03824, USA
| | - Jonathan M. Levine
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845, USA
| | - Ronald R. Riis
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Roger Maes
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Annabel G. Wise
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Keenan Mullaney
- Washtenaw Technical Middle College, Ann Arbor, MI 48105, USA
| | - Jacqueline Ferracone
- PennVet New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, USA
| | - Ingeborg M. Langohr
- Department of Pathobiological Sciences and Louisiana Animal Disease Diagnostic Laboratory, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
- Correspondence: (M.C.); (I.M.L.); Tel.: +1-(225)-578-9604 (M.C.); +1-(508)-270-2521 (I.M.L.)
| |
Collapse
|
20
|
Murphy H, Sanchez S, Ahmed S, Rhaman MM, Di D, Dileepan M, Heinrich D, Liang Y, Ly H. SARS-CoV-2 in companion animals: Do levels of SARS-CoV-2 seroconversion in pets correlate with those of pet's owners and with protection against subsequent SARS-CoV-2 infection? Virulence 2022; 13:1216-1220. [PMID: 35799426 PMCID: PMC9345533 DOI: 10.1080/21505594.2022.2098922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
| | | | | | | | - Da Di
- Department of Veterinary & Biomedical Sciences
| | | | - Daniel Heinrich
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, USA
| | | | - Hinh Ly
- Department of Veterinary & Biomedical Sciences
| |
Collapse
|
21
|
Kim Y, Gaudreault NN, Meekins DA, Perera KD, Bold D, Trujillo JD, Morozov I, McDowell CD, Chang KO, Richt JA. Effects of Spike Mutations in SARS-CoV-2 Variants of Concern on Human or Animal ACE2-Mediated Virus Entry and Neutralization. Microbiol Spectr 2022; 10:e0178921. [PMID: 35638818 PMCID: PMC9241865 DOI: 10.1128/spectrum.01789-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/15/2022] [Indexed: 12/31/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a zoonotic agent capable of infecting humans and a wide range of animal species. Over the duration of the pandemic, mutations in the SARS-CoV-2 spike (S) protein have arisen, culminating in the spread of several variants of concern (VOCs) with various degrees of altered virulence, transmissibility, and neutralizing antibody escape. In this study, we used pseudoviruses that express specific SARS-CoV-2 S protein substitutions and cell lines that express angiotensin-converting enzyme 2 (ACE2) from nine different animal species to gain insights into the effects of VOC mutations on viral entry and antibody neutralization capability. All animal ACE2 receptors tested, except mink, support viral cell entry for pseudoviruses expressing the ancestral prototype S at levels comparable to human ACE2. Most single S substitutions did not significantly change virus entry, although 614G and 484K resulted in a decreased efficiency. Conversely, combinatorial VOC substitutions in the S protein were associated with increased entry of pseudoviruses. Neutralizing titers in sera from various animal species were significantly reduced against pseudoviruses expressing the S proteins of Beta, Delta, or Omicron VOCs compared to the parental S protein. Especially, substitutions in the S protein of the Omicron variant significantly reduced the neutralizing titers of the sera. This study reveals important insights into the host range of SARS-CoV-2 and the effect of recently emergent S protein substitutions on viral entry, virus replication, and antibody-mediated viral neutralization. IMPORTANCE The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to have devastating impacts on global health and socioeconomics. The recent emergence of SARS-CoV-2 variants of concern, which contain mutations that can affect the virulence, transmission, and effectiveness of licensed vaccines and therapeutic antibodies, are currently becoming the common strains circulating in humans worldwide. In addition, SARS-CoV-2 has been shown to infect a wide variety of animal species, which could result in additional mutations of the SARS-CoV-2 virus. In this study, we investigate the effect of mutations present in SARS-CoV-2 variants of concern and determine the effects of these mutations on cell entry, virulence, and antibody neutralization activity in humans and a variety of animals that might be susceptible to SARS-CoV-2 infection. This information is essential to understand the effects of important SARS-CoV-2 mutations and to inform public policy to create better strategies to control the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yunjeong Kim
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - David A. Meekins
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Krishani D. Perera
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Chester D. McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
22
|
Balasuriya UB, Go YY, Carossino M. Coronaviridae and Tobaniviridae. Vet Microbiol 2022. [DOI: 10.1002/9781119650836.ch61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Bold D, Roman-Sosa G, Gaudreault NN, Zayat B, Pogranichniy RM, Richt JA. Development of an Indirect ELISA for the Detection of SARS-CoV-2 Antibodies in Cats. Front Vet Sci 2022; 9:864884. [PMID: 35754530 PMCID: PMC9226769 DOI: 10.3389/fvets.2022.864884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Companion animals are susceptible to a variety of coronaviruses, and recent studies show that felines are highly susceptible to SARS-CoV-2 infection. RT-PCR diagnostic is currently the method of choice to detect the presence of SARS-CoV-2-specific viral nucleic acids in animal samples during an active infection; however, serological assays are critical to determine whether animals were exposed to the virus and to determine the seroprevalence of SARS-CoV-2-specific antibodies in a defined population. In this study, we utilized recombinant nucleocapsid (N) protein and the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 expressed in E. coli (N) and mammalian cells (N, RBD) to develop indirect ELISA (iELISA) tests using well-characterized SARS-CoV-2-positive and -negative cat serum panels from previous experimental cat challenge studies. The optimal conditions for the iELISA tests were established based on checkerboard dilutions of antigens and antibodies. The diagnostic sensitivity for the detection of feline antibodies specific for the N or RBD proteins of the iELISA tests was between 93.3 and 97.8%, respectively, and the diagnostic specificity 95.5%. The iELISAs developed here can be used for high-throughput screening of cat sera for both antigens. The presence of SARS-CoV-2-specific antibodies in a BSL-2 biocontainment environment, unlike virus neutralization tests with live virus which have to be performed in BSL-3 laboratories.
Collapse
Affiliation(s)
- Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Gleyder Roman-Sosa
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
- Institut für Virologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Batsukh Zayat
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Roman M. Pogranichniy
- Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
24
|
SARS CoV-2 (Delta Variant) Infection Kinetics and Immunopathogenesis in Domestic Cats. Viruses 2022; 14:v14061207. [PMID: 35746678 PMCID: PMC9230585 DOI: 10.3390/v14061207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Continued emergence of SARS-CoV-2 variants highlights the critical need for adaptable and translational animal models for acute COVID-19. Limitations to current animal models for SARS CoV-2 (e.g., transgenic mice, non-human primates, ferrets) include subclinical to mild lower respiratory disease, divergence from clinical COVID-19 disease course, and/or the need for host genetic modifications to permit infection. We therefore established a feline model to study COVID-19 disease progression and utilized this model to evaluate infection kinetics and immunopathology of the rapidly circulating Delta variant (B.1.617.2) of SARS-CoV-2. In this study, specific-pathogen-free domestic cats (n = 24) were inoculated intranasally and/or intratracheally with SARS CoV-2 (B.1.617.2). Infected cats developed severe clinical respiratory disease and pulmonary lesions at 4- and 12-days post-infection (dpi), even at 1/10 the dose of previously studied wild-type SARS-CoV-2. Infectious virus was isolated from nasal secretions of delta-variant infected cats in high amounts at multiple timepoints, and viral antigen was co-localized in ACE2-expressing cells of the lungs (pneumocytes, vascular endothelium, peribronchial glandular epithelium) and strongly associated with severe pulmonary inflammation and vasculitis that were more pronounced than in wild-type SARS-CoV-2 infection. RNA sequencing of infected feline lung tissues identified upregulation of multiple gene pathways associated with cytokine receptor interactions, chemokine signaling, and viral protein–cytokine interactions during acute infection with SARS-CoV-2. Weighted correlation network analysis (WGCNA) of differentially expressed genes identified several distinct clusters of dysregulated hub genes that are significantly correlated with both clinical signs and lesions during acute infection. Collectively, the results of these studies help to delineate the role of domestic cats in disease transmission and response to variant emergence, establish a flexible translational model to develop strategies to prevent the spread of SARS-CoV-2, and identify potential targets for downstream therapeutic development.
Collapse
|
25
|
Bienzle D, Rousseau J, Marom D, MacNicol J, Jacobson L, Sparling S, Prystajecky N, Fraser E, Weese JS. Risk Factors for SARS-CoV-2 Infection and Illness in Cats and Dogs1. Emerg Infect Dis 2022; 28:1154-1162. [PMID: 35608925 PMCID: PMC9155877 DOI: 10.3201/eid2806.220423] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We tested swab specimens from pets in households in Ontario, Canada, with human COVID-19 cases by quantitative PCR for SARS-CoV-2 and surveyed pet owners for risk factors associated with infection and seropositivity. We tested serum samples for spike protein IgG and IgM in household pets and also in animals from shelters and low-cost neuter clinics. Among household pets, 2% (1/49) of swab specimens from dogs and 7.7% (5/65) from cats were PCR positive, but 41% of dog serum samples and 52% of cat serum samples were positive for SARS-CoV-2 IgG or IgM. The likelihood of SARS-CoV-2 seropositivity in pet samples was higher for cats but not dogs that slept on owners’ beds and for dogs and cats that contracted a new illness. Seropositivity in neuter-clinic samples was 16% (35/221); in shelter samples, 9.3% (7/75). Our findings indicate a high likelihood for pets in households of humans with COVID-19 to seroconvert and become ill.
Collapse
|
26
|
Doliff R, Martens P. Cats and SARS-CoV-2: A Scoping Review. Animals (Basel) 2022; 12:1413. [PMID: 35681877 PMCID: PMC9179433 DOI: 10.3390/ani12111413] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
Since the beginning of the COVID-19 pandemic, various animal species were found to be susceptible to SARS-CoV-2 infection. The close contact that exists between humans and cats warrants special attention to the role of this species. Therefore, a scoping review was performed to obtain a comprehensive overview of the existing literature, and to map key concepts, types of research, and possible gaps in the research. A systematic search of the databases PubMed, Google Scholar, and Scopus and the preprint servers medRxiv and bioRxiv was performed. After a two-step screening process, 27 peer-reviewed articles, 8 scientific communication items, and 2 unpublished pre-prints were included. The main themes discussed were susceptibility to SARS-CoV-2, induced immunity, prevalence of infection, manifestation of infection, interspecies transmission between humans and cats, and lastly, intraspecies transmission between cats. The main gaps in the research identified were a lack of large-scale studies, underrepresentation of stray, feral, and shelter cat populations, lack of investigation into cat-to-cat transmissions under non-experimental conditions, and the relation of cats to other animal species regarding SARS-CoV-2. Overall, cats seemingly play a limited role in the spread of SARS-CoV-2. While cats are susceptible to the virus and reverse zoonotic transmission from humans to cats happens regularly, there is currently no evidence of SARS-CoV-2 circulation among cats.
Collapse
Affiliation(s)
| | - Pim Martens
- University College Venlo, Maastricht University, Nassaustraat 36, 5911 BV Venlo, The Netherlands;
| |
Collapse
|
27
|
Ren X, Zhou J, Guo J, Hao C, Zheng M, Zhang R, Huang Q, Yao X, Li R, Jin Y. Reinfection in patients with COVID-19: a systematic review. Glob Health Res Policy 2022; 7:12. [PMID: 35488305 PMCID: PMC9051013 DOI: 10.1186/s41256-022-00245-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/03/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND With the continuation of the COVID-19 pandemic, some COVID-19 patients have become reinfected with the virus. Viral gene sequencing has found that some of these patients were reinfected by the different and others by same strains. This has raised concerns about the effectiveness of immunity after infection and the reliability of vaccines. To this end, we conducted a systematic review to assess the characteristics of patients with reinfection and possible causes. METHODS A systematic search was conducted across eight databases: PubMed, Embase, Web of Science, The Cochrane Library, CNKI, WanFang, VIP and SinoMed from December 1, 2019 to September 1, 2021. The quality of included studies were assessed using JBI critical appraisal tools and Newcastle-Ottawa Scale. RESULTS This study included 50 studies from 20 countries. There were 118 cases of reinfection. Twenty-five patients were reported to have at least one complication. The shortest duration between the first infection and reinfection was 19 days and the longest was 293 days. During the first infection and reinfection, cough (51.6% and 43.9%) and fever (50% and 30.3%) were the most common symptoms respectively. Nine patients recovered, seven patients died, and five patients were hospitalized, but 97 patients' prognosis were unknown. B.1 is the most common variant strain at the first infection. B.1.1.7, B.1.128 and B.1.351 were the most common variant strains at reinfection. Thirty-three patients were infected by different strains and 9 patients were reported as being infected with the same strain. CONCLUSIONS Our research shows that it is possible for rehabilitated patients to be reinfected by SARS-COV-2. To date, the causes and risk factors of COVID-19 reinfection are not fully understood. For patients with reinfection, the diagnosis and management should be consistent with the treatment of the first infection. The public, including rehabilitated patients, should be fully vaccinated, wear masks in public places, and pay attention to maintaining social distance to avoid reinfection with the virus.
Collapse
Affiliation(s)
- Xiangying Ren
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Nursing and Health, Henan University, Kaifeng, Henan China
| | - Jie Zhou
- School of Nursing, Wuhan University, Wuhan, China
| | - Jing Guo
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunmei Hao
- The First Clinical College of Wuhan University, Wuhan, Hubei China
| | - Mengxue Zheng
- The First Clinical College of Wuhan University, Wuhan, Hubei China
| | - Rong Zhang
- Department of Neurotumor Disease Diagnosis and Treatment Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qiao Huang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaomei Yao
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON Canada
- Center for Clinical Practice Guideline Conduction and Evaluation, Children’s Hospital of Fudan University, Shanghai, China
| | - Ruiling Li
- College of Nursing and Health, Henan University, Kaifeng, Henan China
| | - Yinghui Jin
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Palombieri A, Di Profio F, Fruci P, Sarchese V, Martella V, Marsilio F, Di Martino B. Emerging Respiratory Viruses of Cats. Viruses 2022; 14:663. [PMID: 35458393 PMCID: PMC9030917 DOI: 10.3390/v14040663] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 12/07/2022] Open
Abstract
In recent years, advances in diagnostics and deep sequencing technologies have led to the identification and characterization of novel viruses in cats as protoparviruses and chaphamaparvoviruses, unveiling the diversity of the feline virome in the respiratory tract. Observational, epidemiological and experimental data are necessary to demonstrate firmly if some viruses are able to cause disease, as this information may be confounded by virus- or host-related factors. Also, in recent years, researchers were able to monitor multiple examples of transmission to felids of viruses with high pathogenic potential, such as the influenza virus strains H5N1, H1N1, H7N2, H5N6 and H3N2, and in the late 2019, the human hypervirulent coronavirus SARS-CoV-2. These findings suggest that the study of viral infections always requires a multi-disciplinary approach inspired by the One Health vision. By reviewing the literature, we provide herewith an update on the emerging viruses identified in cats and their potential association with respiratory disease.
Collapse
Affiliation(s)
- Andrea Palombieri
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Federica Di Profio
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Paola Fruci
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Vittorio Sarchese
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Vito Martella
- Laboratory of Infectious Diseases, Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy;
| | - Fulvio Marsilio
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Barbara Di Martino
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| |
Collapse
|
29
|
Zepeda-Cervantes J, Martínez-Flores D, Ramírez-Jarquín JO, Tecalco-Cruz ÁC, Alavez-Pérez NS, Vaca L, Sarmiento-Silva RE. Implications of the Immune Polymorphisms of the Host and the Genetic Variability of SARS-CoV-2 in the Development of COVID-19. Viruses 2022; 14:94. [PMID: 35062298 PMCID: PMC8778858 DOI: 10.3390/v14010094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the current pandemic affecting almost all countries in the world. SARS-CoV-2 is the agent responsible for coronavirus disease 19 (COVID-19), which has claimed millions of lives around the world. In most patients, SARS-CoV-2 infection does not cause clinical signs. However, some infected people develop symptoms, which include loss of smell or taste, fever, dry cough, headache, severe pneumonia, as well as coagulation disorders. The aim of this work is to report genetic factors of SARS-CoV-2 and host-associated to severe COVID-19, placing special emphasis on the viral entry and molecules of the immune system involved with viral infection. Besides this, we analyze SARS-CoV-2 variants and their structural characteristics related to the binding to polymorphic angiotensin-converting enzyme type 2 (ACE2). Additionally, we also review other polymorphisms as well as some epigenetic factors involved in the immunopathogenesis of COVID-19. These factors and viral variability could explain the increment of infection rate and/or in the development of severe COVID-19.
Collapse
Affiliation(s)
- Jesús Zepeda-Cervantes
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Daniel Martínez-Flores
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Josué Orlando Ramírez-Jarquín
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Ángeles C. Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Mexico City 06720, Mexico;
| | - Noé Santiago Alavez-Pérez
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07340, Mexico;
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Rosa Elena Sarmiento-Silva
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
30
|
Frazzini S, Amadori M, Turin L, Riva F. SARS CoV-2 infections in animals, two years into the pandemic. Arch Virol 2022; 167:2503-2517. [PMID: 36207554 PMCID: PMC9543933 DOI: 10.1007/s00705-022-05609-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/19/2022] [Indexed: 12/14/2022]
Abstract
In December 2019, several cases of pneumonia caused by a novel coronavirus, later identified as SARS-CoV-2, were detected in the Chinese city of Wuhan. Due to its rapid worldwide spread, on 11 March 2020 the World Health Organization declared a pandemic state. Since this new virus is genetically similar to the coronaviruses of bats, SARS-CoV-2 was hypothesized to have a zoonotic origin. Within a year of the appearance of SARS-CoV-2, several cases of infection were also reported in animals, suggesting human-to-animal and animal-to-animal transmission among mammals. Natural infection has been found in companion animals as well as captive animals such as lions, tigers, and gorillas. Among farm animals, so far, minks have been found to be susceptible to SARS-CoV-2 infection, whereas not all the relevant studies agree on the susceptibility of pigs. Experimental infections have documented the susceptibility to SARS-CoV-2 of further animal species, including mice, hamsters, cats, dogs, ferrets, raccoon dogs, cattle, and non-human primates. Experimental infections have proven crucial for clarifying the role of animals in transmission and developing models for viral pathogenesis and immunotherapy. On the whole, this review aims to update and critically revise the current information on natural and experimental SARS-CoV-2 infections in animals.
Collapse
Affiliation(s)
- Sara Frazzini
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, Italy
| | | | - Lauretta Turin
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, Italy
| | - Federica Riva
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, Italy
| |
Collapse
|
31
|
The SARS-CoV-2 Reproduction Number R 0 in Cats. Viruses 2021; 13:v13122480. [PMID: 34960749 PMCID: PMC8704225 DOI: 10.3390/v13122480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Domestic cats are susceptible to SARS-CoV-2 virus infection and given that they are in close contact with people, assessing the potential risk cats represent for the transmission and maintenance of SARS-CoV-2 is important. Assessing this risk implies quantifying transmission from humans-to-cats, from cats-to-cats and from cats-to-humans. Here we quantified the risk of cat-to-cat transmission by reviewing published literature describing transmission either experimentally or under natural conditions in infected households. Data from these studies were collated to quantify the SARS-CoV-2 reproduction number R0 among cats. The estimated R0 was significantly higher than one, hence cats could play a role in the transmission and maintenance of SARS-CoV-2. Questions that remain to be addressed are the risk of transmission from humans-to-cats and cats-to-humans. Further data on household transmission and data on virus levels in both the environment around infected cats and their exhaled air could be a step towards assessing these risks.
Collapse
|
32
|
Bi Z, Hong W, Yang J, Lu S, Peng X. Animal models for SARS-CoV-2 infection and pathology. MedComm (Beijing) 2021; 2:548-568. [PMID: 34909757 PMCID: PMC8662225 DOI: 10.1002/mco2.98] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 02/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiology of coronavirus disease 2019 (COVID-19) pandemic. Current variants including Alpha, Beta, Gamma, Delta, and Lambda increase the capacity of infection and transmission of SARS-CoV-2, which might disable the in-used therapies and vaccines. The COVID-19 has now put an enormous strain on health care system all over the world. Therefore, the development of animal models that can capture characteristics and immune responses observed in COVID-19 patients is urgently needed. Appropriate models could accelerate the testing of therapeutic drugs and vaccines against SARS-CoV-2. In this review, we aim to summarize the current animal models for SARS-CoV-2 infection, including mice, hamsters, nonhuman primates, and ferrets, and discuss the details of transmission, pathology, and immunology induced by SARS-CoV-2 in these animal models. We hope this could throw light to the increased usefulness in fundamental studies of COVID-19 and the preclinical analysis of vaccines and therapeutic agents.
Collapse
Affiliation(s)
- Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Shuaiyao Lu
- National Kunming High‐level Biosafety Primate Research CenterInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeYunnanChina
| | - Xiaozhong Peng
- National Kunming High‐level Biosafety Primate Research CenterInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeYunnanChina
| |
Collapse
|
33
|
Murphy HL, Ly H. Understanding the prevalence of SARS-CoV-2 (COVID-19) exposure in companion, captive, wild, and farmed animals. Virulence 2021; 12:2777-2786. [PMID: 34696707 PMCID: PMC8667879 DOI: 10.1080/21505594.2021.1996519] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 10/25/2022] Open
Abstract
Several animal species, including ferrets, hamsters, monkeys, and raccoon dogs, have been shown to be susceptible to experimental infection by the human severe acute respiratory syndrome coronaviruses, such as SARS-CoV and SARS-CoV-2, which were responsible for the 2003 SARS outbreak and the 2019 coronavirus disease (COVID-19) pandemic, respectively. Emerging studies have shown that SARS-CoV-2 natural infection of pet dogs and cats is also possible, but its prevalence is not fully understood. Experimentally, it has been demonstrated that SARS-CoV-2 replicates more efficiently in cats than in dogs and that cats can transmit the virus through aerosols. With approximately 470 million pet dogs and 370 million pet cats cohabitating with their human owners worldwide, the finding of natural SARS-CoV-2 infection in these household pets has important implications for potential zoonotic transmission events during the COVID-19 pandemic as well as future SARS-related outbreaks. Here, we describe some of the ongoing worldwide surveillance efforts to assess the prevalence of SARS-CoV-2 exposure in companion, captive, wild, and farmed animals, as well as provide some perspectives on these efforts including the intra- and inter-species coronavirus transmissions, evolution, and their implications on the human-animal interface along with public health. Some ongoing efforts to develop and implement a new COVID-19 vaccine for animals are also discussed. Surveillance initiatives to track SARS-CoV-2 exposures in animals are necessary to accurately determine their impact on veterinary and human health, as well as define potential reservoir sources of the virus and its evolutionary and transmission dynamics.
Collapse
Affiliation(s)
- Hannah L. Murphy
- Department of Veterinary & Biomedical Sciences, Comparative & Molecular Biosciences Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, Comparative & Molecular Biosciences Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
34
|
Meekins DA, Gaudreault NN, Richt JA. Natural and Experimental SARS-CoV-2 Infection in Domestic and Wild Animals. Viruses 2021; 13:1993. [PMID: 34696423 PMCID: PMC8540328 DOI: 10.3390/v13101993] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 is the etiological agent responsible for the ongoing COVID-19 pandemic, which continues to spread with devastating effects on global health and socioeconomics. The susceptibility of domestic and wild animal species to infection is a critical facet of SARS-CoV-2 ecology, since reverse zoonotic spillover events resulting in SARS-CoV-2 outbreaks in animal populations could result in the establishment of new virus reservoirs. Adaptive mutations in the virus to new animal species could also complicate ongoing mitigation strategies to combat SARS-CoV-2. In addition, animal species susceptible to SARS-CoV-2 infection are essential as standardized preclinical models for the development and efficacy testing of vaccines and therapeutics. In this review, we summarize the current findings regarding the susceptibility of different domestic and wild animal species to experimental SARS-CoV-2 infection and provide detailed descriptions of the clinical disease and transmissibility in these animals. In addition, we outline the documented natural infections in animals that have occurred at the human-animal interface. A comprehensive understanding of animal susceptibility to SARS-CoV-2 is crucial to inform public health, veterinary, and agricultural systems, and to guide environmental policies.
Collapse
Affiliation(s)
- David A. Meekins
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (D.A.M.); (N.N.G.)
- Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (D.A.M.); (N.N.G.)
- Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (D.A.M.); (N.N.G.)
- Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA
| |
Collapse
|
35
|
Valencak TG, Csiszar A, Szalai G, Podlutsky A, Tarantini S, Fazekas-Pongor V, Papp M, Ungvari Z. Animal reservoirs of SARS-CoV-2: calculable COVID-19 risk for older adults from animal to human transmission. GeroScience 2021; 43:2305-2320. [PMID: 34460063 PMCID: PMC8404404 DOI: 10.1007/s11357-021-00444-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
The current COVID-19 pandemic, caused by the highly contagious respiratory pathogen SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has already claimed close to three million lives. SARS-CoV-2 is a zoonotic disease: it emerged from a bat reservoir and it can infect a number of agricultural and companion animal species. SARS-CoV-2 can cause respiratory and intestinal infections, and potentially systemic multi-organ disease, in both humans and animals. The risk for severe illness and death with COVID-19 significantly increases with age, with older adults at highest risk. To combat the pandemic and protect the most susceptible group of older adults, understanding the human-animal interface and its relevance to disease transmission is vitally important. Currently high infection numbers are being sustained via human-to-human transmission of SARS-CoV-2. Yet, identifying potential animal reservoirs and potential vectors of the disease will contribute to stronger risk assessment strategies. In this review, the current information about SARS-CoV-2 infection in animals and the potential spread of SARS-CoV-2 to humans through contact with domestic animals (including dogs, cats, ferrets, hamsters), agricultural animals (e.g., farmed minks), laboratory animals, wild animals (e.g., deer mice), and zoo animals (felines, non-human primates) are discussed with a special focus on reducing mortality in older adults.
Collapse
Affiliation(s)
- Teresa G Valencak
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Gabor Szalai
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Andrej Podlutsky
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vince Fazekas-Pongor
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Magor Papp
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
36
|
Schiaffino F, Ferradas C, Jara LM, Salvatierra G, Dávila-Barclay A, Sanchez-Carrion C, Ulloa A, Mascaro L, Pajuelo MJ, Guevara Sarmiento L, Fernandez M, Zimic M. First Detection and Genome Sequencing of SARS-CoV-2 Lambda (C.37) Variant in Symptomatic Domestic Cats in Lima, Peru. Front Vet Sci 2021; 8:737350. [PMID: 34604373 PMCID: PMC8484519 DOI: 10.3389/fvets.2021.737350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/23/2021] [Indexed: 01/10/2023] Open
Abstract
The role of domestic cats in the dynamics of SARS-CoV-2 remains poorly characterized, especially in epidemiologic contexts of countries with high viral transmission. Here, we report the first evidence of SARS-CoV-2 Lambda variant of interest in symptomatic domestic cats whose owners were diagnosed with COVID-19 in Lima, Peru, providing evidence that transmission of this new variant in domestic cats is occurring. More epidemiological studies are required to further characterize the role of domestic animals in the transmission dynamics of SARS-CoV-2.
Collapse
Affiliation(s)
- Francesca Schiaffino
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Cusi Ferradas
- Unidad de Investigación en Enfermedades Emergentes y Cambio Climático (Emerge), Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Luis M. Jara
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Guillermo Salvatierra
- Unidad de Investigación en Enfermedades Emergentes y Cambio Climático (Emerge), Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | | - Lucero Mascaro
- Laboratorio de Microbiología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Monica J. Pajuelo
- Laboratorio de Microbiología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | - Mirko Zimic
- Farmacologicos Veterinarios (FARVET), Chincha, Peru
- Laboratorio de Bioinformatica, Biologia Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
37
|
Kim Y, Gaudreault NN, Meekins DA, Perera KD, Bold D, Trujillo JD, Morozov I, McDowell CD, Chang KO, Richt JA. Effects of Spike Mutations in SARS-CoV-2 Variants of Concern on Human or Animal ACE2-Mediated Virus Entry and Neutralization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.25.457627. [PMID: 34462749 PMCID: PMC8404895 DOI: 10.1101/2021.08.25.457627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SARS-CoV-2 is a zoonotic agent capable of infecting humans and a wide range of animal species. Over the duration of the pandemic, mutations in the SARS-CoV-2 Spike protein (S) have arisen in circulating viral populations, culminating in the spread of several variants of concern (VOC) with varying degrees of altered virulence, transmissibility, and neutralizing antibody escape. In this study, we employed lentivirus-based pseudotyped viruses that express specific SARS-CoV-2 S protein substitutions and cell lines that stably express ACE2 from nine different animal species to gain insights into the effects of VOC mutations on viral entry and antibody neutralization capability. All animal ACE2 receptors tested, except mink, support viral cell entry for pseudoviruses expressing the parental (prototype Wuhan-1) S at levels comparable to human ACE2. Most single S substitutions (e.g., 452R, 478K, 501Y) did not significantly change virus entry, although 614G and 484K resulted in a decreased efficiency in viral entry. Conversely, combinatorial VOC substitutions in the S protein were associated with significantly increased entry capacity of pseudotyped viruses compared to that of the parental Wuhan-1 pseudotyped virus. Similarly, infection studies using live ancestral (USA-WA1/2020), Alpha, and Beta SARS-CoV-2 viruses in hamsters revealed a higher replication potential for the Beta variant compared to the ancestral prototype virus. Moreover, neutralizing titers in sera from various animal species, including humans, were significantly reduced by single substitutions of 484K or 452R, double substitutions of 501Y-484K, 452R-484K and 452R-478K and the triple substitution of 501Y-484K-417N, suggesting that 484K and 452R are particularly important for evading neutralizing antibodies in human, cat, and rabbit sera. Cumulatively, this study reveals important insights into the host range of SARS-CoV-2 and the effect of recently emergent S protein substitutions on viral entry, virus replication and antibody-mediated viral neutralization. AUTHOR SUMMARY Cells stably expressing ACE2 from various animals and a lentivirus-based SARS-CoV-2 pseudotyped virus assay were established to study SARS-CoV-2 cell entry. The results demonstrated that ACE2 from a wide range of animal species facilitate S-mediated virus entry into cells, which is supported by in silico data as well as natural and experimental infection studies. Pseudotyped viruses containing mutations in the RBD of S representative of the Alpha, Gamma, and especially Beta, variants of concern demonstrated that certain mutations are associated with increased viral entry compared to the parental S. The Beta variant was also observed to have a replicative advantage in vitro and in vivo compared to the prototype virus. Pseudotyped viruses containing combinatorial substitutions of 501Y-484K-417K, 614G-501Y-484K and 614G-501Y-484K-417N increased viral entry via ACE2 across multiple species. The 501Y or 478K single substitution did not significantly affect neutralizing capacity of immune sera compared to the prototype strain, but the addition of 484K or 452R substitutions significantly reduced the neutralizing titers.
Collapse
Affiliation(s)
- Yunjeong Kim
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Natasha N Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - David A. Meekins
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Krishani D Perera
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Chester D. McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
38
|
Rudd JM, Tamil Selvan M, Cowan S, Kao YF, Midkiff CC, Narayanan S, Ramachandran A, Ritchey JW, Miller CA. Clinical and Histopathologic Features of a Feline SARS-CoV-2 Infection Model Are Analogous to Acute COVID-19 in Humans. Viruses 2021; 13:v13081550. [PMID: 34452415 PMCID: PMC8402899 DOI: 10.3390/v13081550] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
The emergence and ensuing dominance of COVID-19 on the world stage has emphasized the urgency of efficient animal models for the development of therapeutics for and assessment of immune responses to SARS-CoV-2 infection. Shortcomings of current animal models for SARS-CoV-2 include limited lower respiratory disease, divergence from clinical COVID-19 disease, and requirements for host genetic modifications to permit infection. In this study, n = 12 specific-pathogen-free domestic cats were infected intratracheally with SARS-CoV-2 to evaluate clinical disease, histopathologic lesions, and viral infection kinetics at 4 and 8 days post-inoculation; n = 6 sham-inoculated cats served as controls. Intratracheal inoculation of SARS-CoV-2 produced a significant degree of clinical disease (lethargy, fever, dyspnea, and dry cough) consistent with that observed in the early exudative phase of COVID-19. Pulmonary lesions such as diffuse alveolar damage, hyaline membrane formation, fibrin deposition, and proteinaceous exudates were also observed with SARS-CoV-2 infection, replicating lesions identified in people hospitalized with ARDS from COVID-19. A significant correlation was observed between the degree of clinical disease identified in infected cats and pulmonary lesions. Viral loads and ACE2 expression were also quantified in nasal turbinates, distal trachea, lungs, and other organs. Results of this study validate a feline model for SARS-CoV-2 infection that results in clinical disease and histopathologic lesions consistent with acute COVID-19 in humans, thus encouraging its use for future translational studies.
Collapse
Affiliation(s)
- Jennifer M. Rudd
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (J.M.R.); (M.T.S.); (S.C.); (Y.-F.K.); (J.W.R.)
| | - Miruthula Tamil Selvan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (J.M.R.); (M.T.S.); (S.C.); (Y.-F.K.); (J.W.R.)
| | - Shannon Cowan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (J.M.R.); (M.T.S.); (S.C.); (Y.-F.K.); (J.W.R.)
| | - Yun-Fan Kao
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (J.M.R.); (M.T.S.); (S.C.); (Y.-F.K.); (J.W.R.)
| | - Cecily C. Midkiff
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Sai Narayanan
- Oklahoma Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (S.N.); (A.R.)
| | - Akhilesh Ramachandran
- Oklahoma Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (S.N.); (A.R.)
| | - Jerry W. Ritchey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (J.M.R.); (M.T.S.); (S.C.); (Y.-F.K.); (J.W.R.)
| | - Craig A. Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (J.M.R.); (M.T.S.); (S.C.); (Y.-F.K.); (J.W.R.)
- Correspondence:
| |
Collapse
|
39
|
Carvallo FR, Martins M, Joshi LR, Caserta LC, Mitchell PK, Cecere T, Hancock S, Goodrich EL, Murphy J, Diel DG. Severe SARS-CoV-2 Infection in a Cat with Hypertrophic Cardiomyopathy. Viruses 2021; 13:1510. [PMID: 34452375 PMCID: PMC8402861 DOI: 10.3390/v13081510] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/26/2022] Open
Abstract
Coronavirus disease 19 (COVID-19), has claimed millions of human lives worldwide since the emergence of the zoonotic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China in December 2019. Notably, most severe and fatal SARS-CoV-2 infections in humans have been associated with underlying clinical conditions, including diabetes, hypertension and heart diseases. Here, we describe a case of severe SARS-CoV-2 infection in a domestic cat (Felis catus) that presented with hypertrophic cardiomyopathy (HCM), a chronic heart condition that has been described as a comorbidity of COVID-19 in humans and that is prevalent in domestic cats. The lung and heart of the affected cat presented clear evidence of SARS-CoV-2 replication, with histological lesions similar to those observed in humans with COVID-19 with high infectious viral loads being recovered from these organs. The study highlights the potential impact of comorbidities on the outcome of SARS-CoV-2 infection in animals and provides important information that may contribute to the development of a feline model with the potential to recapitulate the clinical outcomes of severe COVID-19 in humans.
Collapse
Affiliation(s)
- Francisco R. Carvallo
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA; (F.R.C.); (T.C.)
| | - Mathias Martins
- Animal Health Diagnostic Center, Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, 240 Farrier Rd., AHDC A3-114, Ithaca, NY 14853, USA; (M.M.); (L.R.J.); (L.C.C.); (P.K.M.); (E.L.G.)
| | - Lok R. Joshi
- Animal Health Diagnostic Center, Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, 240 Farrier Rd., AHDC A3-114, Ithaca, NY 14853, USA; (M.M.); (L.R.J.); (L.C.C.); (P.K.M.); (E.L.G.)
| | - Leonardo C. Caserta
- Animal Health Diagnostic Center, Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, 240 Farrier Rd., AHDC A3-114, Ithaca, NY 14853, USA; (M.M.); (L.R.J.); (L.C.C.); (P.K.M.); (E.L.G.)
| | - Patrick K. Mitchell
- Animal Health Diagnostic Center, Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, 240 Farrier Rd., AHDC A3-114, Ithaca, NY 14853, USA; (M.M.); (L.R.J.); (L.C.C.); (P.K.M.); (E.L.G.)
| | - Thomas Cecere
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA; (F.R.C.); (T.C.)
| | - Sandy Hancock
- Laboratory for Neurotoxicity Studies, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Erin L. Goodrich
- Animal Health Diagnostic Center, Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, 240 Farrier Rd., AHDC A3-114, Ithaca, NY 14853, USA; (M.M.); (L.R.J.); (L.C.C.); (P.K.M.); (E.L.G.)
| | - Julia Murphy
- Virginia Department of Health, Division of Surveillance and Investigation, Richmond, VA 23218, USA;
| | - Diego G. Diel
- Animal Health Diagnostic Center, Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, 240 Farrier Rd., AHDC A3-114, Ithaca, NY 14853, USA; (M.M.); (L.R.J.); (L.C.C.); (P.K.M.); (E.L.G.)
| |
Collapse
|
40
|
Giraldo-Ramirez S, Rendon-Marin S, Jaimes JA, Martinez-Gutierrez M, Ruiz-Saenz J. SARS-CoV-2 Clinical Outcome in Domestic and Wild Cats: A Systematic Review. Animals (Basel) 2021; 11:2056. [PMID: 34359182 PMCID: PMC8300124 DOI: 10.3390/ani11072056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, it has been proved that SARS-CoV-2 has the ability to infect multiple species. This work was aimed at identifying the clinical signs of SARS-CoV-2 infection in domestic and wild felids. A PRISMA-based systematic review was performed on case reports on domestic and wild cats, reports on experimental infections, case reports in databases, preprints and published press releases. Descriptive statistical analysis of the data was performed. A total of 256 articles, 63 detailed official reports and 2 press articles on SARS-CoV-2 infection in domestic and wild cats were analyzed, of which 19 articles and 65 reports were finally included. In domestic cats, most cats' infections are likely to be asymptomatic, and 46% of the reported infected animals were symptomatic and predominantly presented respiratory signs such as sneezing and coughing. In wild felines, respiratory clinical signs were most frequent, and up to 96.5% of the reported affected animals presented coughing. It is noteworthy that, to date, symptomatic animals with SARS-CoV-2 infection have been reported to belong to two different subfamilies (Phanterinae and Felinae), with up to five different felid species affected within the Felidae family. Reported results evince that the signs developed in felids show similar progression to those occurring in humans, suggesting a relationship between the viral cycle and target tissues of the virus in different species. While viral transmission to humans in contact with animal populations has not been reported, spill-back could result in the emergence of immune-escape mutants that might pose a risk to public health. Despite the clear results in the identification of the typical clinical picture of SARS-CoV-2 infection in felines, the number of detailed academic reports and papers on the subject is scarce. Therefore, further description of these cases will allow for more accurate and statistically robust clinical approaches in the future.
Collapse
Affiliation(s)
- Sebastian Giraldo-Ramirez
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (S.G.-R.); (S.R.-M.); (M.M.-G.)
| | - Santiago Rendon-Marin
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (S.G.-R.); (S.R.-M.); (M.M.-G.)
| | - Javier A. Jaimes
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA;
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (S.G.-R.); (S.R.-M.); (M.M.-G.)
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín 050012, Colombia
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (S.G.-R.); (S.R.-M.); (M.M.-G.)
| |
Collapse
|
41
|
Goraichuk IV, Arefiev V, Stegniy BT, Gerilovych AP. Zoonotic and Reverse Zoonotic Transmissibility of SARS-CoV-2. Virus Res 2021; 302:198473. [PMID: 34118360 PMCID: PMC8188804 DOI: 10.1016/j.virusres.2021.198473] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) is the first known pandemic caused by a coronavirus. Its causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), appears to be capable of infecting different mammalian species. Recent detections of this virus in pet, zoo, wild, and farm animals have compelled inquiry regarding the zoonotic (animal-to-human) and reverse zoonotic (human-to-animal) transmissibility of SARS-CoV-2 with the potential of COVID-19 pandemic evolving into a panzootic. It is important to monitor the global spread of disease and to assess the significance of genomic changes to support prevention and control efforts during a pandemic. An understanding of the SARS-CoV-2 epidemiology provides opportunities to prevent the risk of repeated re-infection of humans and requires a robust One Health-based investigation. This review paper describes the known properties and the existing gaps in scientific knowledge about the zoonotic and reverse zoonotic transmissibility of the novel virus SARS-CoV-2 and the COVID-19 disease it causes.
Collapse
Affiliation(s)
- Iryna V Goraichuk
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| | - Vasiliy Arefiev
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| | - Borys T Stegniy
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| | - Anton P Gerilovych
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| |
Collapse
|
42
|
Rudd JM, Selvan MT, Cowan S, Kao YF, Midkiff CC, Ritchey JW, Miller CA. Clinicopathologic features of a feline SARS-CoV-2 infection model parallel acute COVID-19 in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.14.439863. [PMID: 33880467 PMCID: PMC8057232 DOI: 10.1101/2021.04.14.439863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The emergence and ensuing dominance of COVID-19 on the world stage has emphasized the urgency of efficient animal models for the development of therapeutics and assessment of immune responses to SARS-CoV-2 infection. Shortcomings of current animal models for SARS-CoV-2 include limited lower respiratory disease, divergence from clinical COVID-19 disease, and requirements for host genetic modifications to permit infection. This study validates a feline model for SARS-CoV-2 infection that results in clinical disease and histopathologic lesions consistent with severe COVID-19 in humans. Intra-tracheal inoculation of concentrated SARS-CoV-2 caused infected cats to develop clinical disease consistent with that observed in the early exudative phase of COVID-19. A novel clinical scoring system for feline respiratory disease was developed and utilized, documenting a significant degree of lethargy, fever, dyspnea, and dry cough in infected cats. In addition, histopathologic pulmonary lesions such as diffuse alveolar damage, hyaline membrane formation, fibrin deposition, and proteinaceous exudates were observed due to SARS-CoV-2 infection, imitating lesions identified in people hospitalized with ARDS from COVID-19. A significant correlation exists between the degree of clinical disease identified in infected cats and pulmonary lesions. Viral loads and ACE2 expression were quantified in nasal turbinates, distal trachea, lung, and various other organs. Natural ACE2 expression, paired with clinicopathologic correlates between this feline model and human COVID-19, encourage use of this model for future translational studies.
Collapse
Affiliation(s)
- Jennifer M. Rudd
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University; Stillwater, OK, USA
| | - Miruthula Tamil Selvan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University; Stillwater, OK, USA
| | - Shannon Cowan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University; Stillwater, OK, USA
| | - Yun-Fan Kao
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University; Stillwater, OK, USA
| | - Cecily C. Midkiff
- Division of Comparative Pathology, National Primate Research Center, Tulane University; Covington, LA, USA
| | - Jerry W. Ritchey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University; Stillwater, OK, USA
| | - Craig A. Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University; Stillwater, OK, USA
| |
Collapse
|
43
|
Prince T, Smith SL, Radford AD, Solomon T, Hughes GL, Patterson EI. SARS-CoV-2 Infections in Animals: Reservoirs for Reverse Zoonosis and Models for Study. Viruses 2021; 13:494. [PMID: 33802857 PMCID: PMC8002747 DOI: 10.3390/v13030494] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022] Open
Abstract
The recent SARS-CoV-2 pandemic has brought many questions over the origin of the virus, the threat it poses to animals both in the wild and captivity, and the risks of a permanent viral reservoir developing in animals. Animal experiments have shown that a variety of animals can become infected with the virus. While coronaviruses have been known to infect animals for decades, the true intermediate host of the virus has not been identified, with no cases of SARS-CoV-2 in wild animals. The screening of wild, farmed, and domesticated animals is necessary to help us understand the virus and its origins and prevent future outbreaks of both COVID-19 and other diseases. There is intriguing evidence that farmed mink infections (acquired from humans) have led to infection of other farm workers in turn, with a recent outbreak of a mink variant in humans in Denmark. A thorough examination of the current knowledge and evidence of the ability of SARS-CoV-2 to infect different animal species is therefore vital to evaluate the threat of animal to human transmission and reverse zoonosis.
Collapse
Affiliation(s)
- Tessa Prince
- NIHR Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7TX, UK; (T.S.); (G.L.H.)
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
| | - Shirley L. Smith
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
| | - Alan D. Radford
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
| | - Tom Solomon
- NIHR Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7TX, UK; (T.S.); (G.L.H.)
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
- Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK
| | - Grant L. Hughes
- NIHR Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7TX, UK; (T.S.); (G.L.H.)
- Centre for Neglected Tropical Disease, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Edward I. Patterson
- Centre for Neglected Tropical Disease, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|