1
|
Adams JC, Tucker RP. The evolution of tenascins. BMC Ecol Evol 2024; 24:121. [PMID: 39277743 PMCID: PMC11401434 DOI: 10.1186/s12862-024-02306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND The evolution of extracellular matrix is tightly linked to the evolution of organogenesis in metazoans. Tenascins are extracellular matrix glycoproteins of chordates that participate in integrin-signaling and morphogenetic events. Single tenascins are encoded by invertebrate chordates, and multiple tenascin paralogs are found in vertebrates (designated tenascin-C, tenascin-R, tenascin-W and tenascin-X) yet, overall, the evolution of this family has remained unclear. RESULTS This study examines the genomes of hemichordates, cephalochordates, tunicates, agnathans, cartilaginous fishes, lobe-finned fishes, ray-finned fishes and representative tetrapods to identify predicted tenascin proteins. We comprehensively assess their evolutionary relationships by sequence conservation, molecular phylogeny and examination of conservation of synteny of the encoding genes. The resulting new evolutionary model posits the origin of tenascin in an ancestral chordate, with tenascin-C-like and tenascin-R-like paralogs emerging after a whole genome duplication event in an ancestral vertebrate. Tenascin-X appeared following a second round of whole genome duplication in an ancestral gnathostome, most likely from duplication of the gene encoding the tenascin-R homolog. The fourth gene, encoding tenascin-W (also known as tenascin-N), apparently arose from a local duplication of tenascin-R. CONCLUSIONS The diversity of tenascin paralogs observed in agnathans and gnathostomes has evolved through selective retention of novel genes that arose from a combination of whole genome and local duplication events. The evolutionary appearance of specific tenascin paralogs coincides with the appearance of vertebrate-specific cell and tissue types where the paralogs are abundantly expressed, such as the endocranium and facial skeleton (tenascin-C), an expanded central nervous system (tenascin-R), and bone (tenascin-W).
Collapse
Affiliation(s)
| | - Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Noro J, Vilaça-Faria H, Reis RL, Pirraco RP. Extracellular matrix-derived materials for tissue engineering and regenerative medicine: A journey from isolation to characterization and application. Bioact Mater 2024; 34:494-519. [PMID: 38298755 PMCID: PMC10827697 DOI: 10.1016/j.bioactmat.2024.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Biomaterial choice is an essential step during the development tissue engineering and regenerative medicine (TERM) applications. The selected biomaterial must present properties allowing the physiological-like recapitulation of several processes that lead to the reestablishment of homeostatic tissue or organ function. Biomaterials derived from the extracellular matrix (ECM) present many such properties and their use in the field has been steadily increasing. Considering this growing importance, it becomes imperative to provide a comprehensive overview of ECM biomaterials, encompassing their sourcing, processing, and integration into TERM applications. This review compiles the main strategies used to isolate and process ECM-derived biomaterials as well as different techniques used for its characterization, namely biochemical and chemical, physical, morphological, and biological. Lastly, some of their applications in the TERM field are explored and discussed.
Collapse
Affiliation(s)
- Jennifer Noro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Helena Vilaça-Faria
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rogério P. Pirraco
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
3
|
Halper J. Basic Components of Connective Tissues and Extracellular Matrix: Fibronectin, Fibrinogen, Laminin, Elastin, Fibrillins, Fibulins, Matrilins, Tenascins and Thrombospondins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:105-126. [PMID: 34807416 DOI: 10.1007/978-3-030-80614-9_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Collagens are the most abundant components of the extracellular matrix (ECM) and many types of soft tissues. Elastin is another major component of certain soft tissues, such as arterial walls and ligaments. It is an insoluble polymer of the monomeric soluble precursor tropoelastin, and the main component of elastic fibers in matrix tissue where it provides elastic recoil and resilience to a variety of connective tissues, e.g., aorta and ligaments. Elastic fibers regulate activity of transforming growth factors β (TGFβ) through their association with fibrillin microfibrils. Elastin also plays a role in cell adhesion, cell migration, and has the ability to participate in cell signaling. Mutations in the elastin gene lead to cutis laxa. Many other molecules, though lower in quantity, function as essential, structural and/or functional components of the extracellular matrix in soft tissues. Some of these are reviewed in this chapter. Besides their basic structure, biochemistry and physiology, their roles in disorders of soft tissues are discussed only briefly as most chapters in this volume deal with relevant individual compounds. Fibronectin with its multidomain structure plays a role of "master organizer" in matrix assembly as it forms a bridge between cell surface receptors, e.g., integrins, and compounds such collagen, proteoglycans and other focal adhesion molecules. It also plays an essential role in the assembly of fibrillin-1 into a structured network. Though the primary role of fibrinogen is in clot formation, after conversion to fibrin by thrombin it also binds to a variety of compounds, particularly to various growth factors, and as such, fibrinogen is a player in cardiovascular and extracellular matrix physiology. Laminins contribute to the structure of the ECM and modulate cellular functions such as adhesion, differentiation, migration, stability of phenotype, and resistance towards apoptosis. Fibrillins represent the predominant core of microfibrils in elastic as well as non-elastic extracellular matrixes, and interact closely with tropoelastin and integrins. Not only do microfibrils provide structural integrity of specific organ systems, but they also provide basis for elastogenesis in elastic tissues. Fibrillin is important for the assembly of elastin into elastic fibers. Mutations in the fibrillin-1 gene are closely associated with Marfan syndrome. Latent TGFβ binding proteins (LTBPs) are included here as their structure is similar to fibrillins. Several categories of ECM components described after fibrillins are sub-classified as matricellular proteins, i.e., they are secreted into ECM, but do not provide structure. Rather they interact with cell membrane receptors, collagens, proteases, hormones and growth factors, communicating and directing cell-ECM traffic. Fibulins are tightly connected with basement membranes, elastic fibers and other components of extracellular matrix and participate in formation of elastic fibers. Matrilins have been emerging as a new group of supporting actors, and their role in connective tissue physiology and pathophysiology has not been fully characterized. Tenascins are ECM polymorphic glycoproteins found in many connective tissues in the body. Their expression is regulated by mechanical stress both during development and in adulthood. Tenascins mediate both inflammatory and fibrotic processes to enable effective tissue repair and play roles in pathogenesis of Ehlers-Danlos, heart disease, and regeneration and recovery of musculo-tendinous tissue. One of the roles of thrombospondin 1 is activation of TGFβ. Increased expression of thrombospondin and TGFβ activity was observed in fibrotic skin disorders such as keloids and scleroderma. Cartilage oligomeric matrix protein (COMP) or thrombospondin-5 is primarily present in the cartilage. High levels of COMP are present in fibrotic scars and systemic sclerosis of the skin, and in tendon, especially with physical activity, loading and post-injury. It plays a role in vascular wall remodeling and has been found in atherosclerotic plaques as well.
Collapse
Affiliation(s)
- Jaroslava Halper
- Department of Pathology, College of Veterinary Medicine, and Department of Basic Sciences, AU/UGA Medical Partnership, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Aravilli RK, Vikram SL, Kohila V. The Functional Impact of Alternative Splicing and Single Nucleotide Polymorphisms in Rheumatoid Arthritis. Curr Pharm Biotechnol 2021; 22:1014-1029. [PMID: 33001009 DOI: 10.2174/1389201021666201001142416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022]
Abstract
Advances in genomics and proteomics aid the identification of genes associated with various diseases. Genome-Wide Association Studies (GWAS) have identified multiple loci as risk alleles for susceptibility to Rheumatoid Arthritis (RA). A bisection of RA risk can be attributed to genetic factors. Over 100 associated genetic loci that encompass immune regulatory factors have been found to be linked with RA. Aberrant Single Nucleotide Polymorphisms (SNPs) and alternative splicing mechanisms in such loci induce RA. These aberrations are viewed as potential therapeutic targets due to their association with a multitude of diseases. This review presents a few imperious genes whose alterations can cause severe bone deformities culminating in RA.
Collapse
Affiliation(s)
- R Kowshik Aravilli
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| | - S Laveen Vikram
- Department of Computer Science and Engineering, Alagappa University, Karaikudi, India
| | - V Kohila
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| |
Collapse
|
5
|
Saranathan V, Finet C. Cellular and developmental basis of avian structural coloration. Curr Opin Genet Dev 2021; 69:56-64. [PMID: 33684846 DOI: 10.1016/j.gde.2021.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Vivid structural colors in birds are a conspicuous and vital part of their phenotype. They are produced by a rich diversity of integumentary photonic nanostructures in skin and feathers. Unlike pigmentary coloration, whose genetic basis is being elucidated, little is known regarding the pathways underpinning organismal structural coloration. Here, we review available data on the development of avian structural colors. In particular, feather photonic nanostructures are understood to be intracellularly self-assembled by physicochemical forces typically seen in soft colloidal systems. We identify promising avenues for future research that can address current knowledge gaps, which are also highly relevant for the sustainable engineering of advanced bioinspired and biomimetic materials.
Collapse
Affiliation(s)
- Vinodkumar Saranathan
- Division of Science, Yale-NUS College, 10 College Avenue West, 138609, Singapore; NUS Nanotechnology and Nanoscience Initiative, National University of Singapore, 117581, Singapore.
| | - Cédric Finet
- Division of Science, Yale-NUS College, 10 College Avenue West, 138609, Singapore
| |
Collapse
|
6
|
Imanaka-Yoshida K, Matsumoto KI. Multiple Roles of Tenascins in Homeostasis and Pathophysiology of Aorta. Ann Vasc Dis 2018; 11:169-180. [PMID: 30116408 PMCID: PMC6094038 DOI: 10.3400/avd.ra.17-00118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tenascins are a family of large extracellular matrix (ECM) glycoproteins. Four family members (tenascin-C, -R, -X, and -W) have been identified to date. Each member consists of the same types of structural domains and exhibits time- and tissue-specific expression patterns, suggesting their specific roles in embryonic development and tissue remodeling. Among them, the significant involvement of tenascin-C (TNC) and tenascin-X (TNX) in the progression of vascular diseases has been examined in detail. TNC is strongly up-regulated under pathological conditions, induced by a number of inflammatory mediators and mechanical stress. TNC has diverse functions, particularly in the regulation of inflammatory responses. Recent studies suggest that TNC is involved in the pathophysiology of aneurysmal and dissecting lesions, in part by protecting the vascular wall from destructive mechanical stress. TNX is strongly expressed in vascular walls, and its distribution is often reciprocal to that of TNC. TNX is involved in the stability and maintenance of the collagen network and elastin fibers. A deficiency in TNX results in a form of Ehlers–Danlos syndrome (EDS). Although their exact roles in vascular diseases have not yet been elucidated, TNC and TNX are now being recognized as promising biomarkers for diagnosis and risk stratification of vascular diseases.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie, Japan.,Mie University Research Center for Matrix Biology, Tsu, Mie, Japan
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Shimane, Japan
| |
Collapse
|
7
|
Valcourt U, Alcaraz LB, Exposito JY, Lethias C, Bartholin L. Tenascin-X: beyond the architectural function. Cell Adh Migr 2015; 9:154-65. [PMID: 25793578 PMCID: PMC4422802 DOI: 10.4161/19336918.2014.994893] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tenascin-X is the largest member of the tenascin (TN) family of evolutionary conserved extracellular matrix glycoproteins, which also comprises TN-C, TN-R and TN-W. Among this family, TN-X is the only member described so far to exert a crucial architectural function as evidenced by a connective tissue disorder (a recessive form of Ehlers-Danlos syndrome) resulting from a loss-of-function of this glycoprotein in humans and mice. However, TN-X is more than an architectural protein, as it displays features of a matricellular protein by modulating cell adhesion. However, the cellular functions associated with the anti-adhesive properties of TN-X have not yet been revealed. Recent findings indicate that TN-X is also an extracellular regulator of signaling pathways. Indeed, TN-X has been shown to regulate the bioavailability of the Transforming Growth Factor (TGF)-β and to modulate epithelial cell plasticity. The next challenges will be to unravel whether the signaling functions of TN-X are functionally linked to its matricellular properties.
Collapse
Key Words
- ECM, extracellular matrix
- EDS, Ehlers-Danlos syndrome
- EGF, epidermal growth factor
- EMT, epithelial-to-mesenchymal transition
- Ehlers-Danlos syndrome (EDS)
- FAK, focal adhesion kinase
- FBG, fibrinogen-like domain
- FNIII, fibronectin type III module
- LAP, latency associated peptide
- MMP, matrix metalloproteinase
- SLC, small latent complex
- TGF-β
- TGF-β activation
- TN, tenascin
- TSP-1, thrombospondin-1
- VEGF, vascular endothelial growth factor
- cell signaling
- epithelial-to-mesenchymal transition (EMT)
- integrin α11β1
- matricellular protein
- tenascin-X
- transforming growth factor-β
Collapse
Affiliation(s)
- Ulrich Valcourt
- a Inserm U1052, Centre de Recherche en Cancérologie de Lyon , Lyon , France
| | | | | | | | | |
Collapse
|
8
|
Imanaka-Yoshida K, Aoki H. Tenascin-C and mechanotransduction in the development and diseases of cardiovascular system. Front Physiol 2014; 5:283. [PMID: 25120494 PMCID: PMC4114189 DOI: 10.3389/fphys.2014.00283] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/10/2014] [Indexed: 12/14/2022] Open
Abstract
Living tissue is composed of cells and extracellular matrix (ECM). In the heart and blood vessels, which are constantly subjected to mechanical stress, ECM molecules form well-developed fibrous frameworks to maintain tissue structure. ECM is also important for biological signaling, which influences various cellular functions in embryonic development, and physiological/pathological responses to extrinsic stimuli. Among ECM molecules, increased attention has been focused on matricellular proteins. Matricellular proteins are a growing group of non-structural ECM proteins highly up-regulated at active tissue remodeling, serving as biological mediators. Tenascin-C (TNC) is a typical matricellular protein, which is highly expressed during embryonic development, wound healing, inflammation, and cancer invasion. The expression is tightly regulated, dependent on the microenvironment, including various growth factors, cytokines, and mechanical stress. In the heart, TNC appears in a spatiotemporal-restricted manner during early stages of development, sparsely detected in normal adults, but transiently re-expressed at restricted sites associated with tissue injury and inflammation. Similarly, in the vascular system, TNC is strongly up-regulated during embryonic development and under pathological conditions with an increase in hemodynamic stress. Despite its intriguing expression pattern, cardiovascular system develops normally in TNC knockout mice. However, deletion of TNC causes acute aortic dissection (AAD) under strong mechanical and humoral stress. Accumulating reports suggest that TNC may modulate the inflammatory response and contribute to elasticity of the tissue, so that it may protect cardiovascular tissue from destructive stress responses. TNC may be a key molecule to control cellular activity during development, adaptation, or pathological tissue remodeling.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine Tsu, Japan ; Mie University Research Center for Matrix Biology Tsu, Japan
| | - Hiroki Aoki
- Cardiovascular Research Institute, Kurume University Kurume, Japan
| |
Collapse
|
9
|
Jakovcevski I, Miljkovic D, Schachner M, Andjus PR. Tenascins and inflammation in disorders of the nervous system. Amino Acids 2012; 44:1115-27. [DOI: 10.1007/s00726-012-1446-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/10/2012] [Indexed: 12/20/2022]
|
10
|
Burgess JK, Weckmann M. Matrikines and the lungs. Pharmacol Ther 2012; 134:317-37. [PMID: 22366287 DOI: 10.1016/j.pharmthera.2012.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 02/03/2012] [Indexed: 01/09/2023]
Abstract
The extracellular matrix is a complex network of fibrous and nonfibrous molecules that not only provide structure to the lung but also interact with and regulate the behaviour of the cells which it surrounds. Recently it has been recognised that components of the extracellular matrix proteins are released, often through the action of endogenous proteases, and these fragments are termed matrikines. Matrikines have biological activities, independent of their role within the extracellular matrix structure, which may play important roles in the lung in health and disease pathology. Integrins are the primary cell surface receptors, characterised to date, which are used by the matrikines to exert their effects on cells. However, evidence is emerging for the need for co-factors and other receptors for the matrikines to exert their effects on cells. The potential for matrikines, and peptides derived from these extracellular matrix protein fragments, as therapeutic agents has recently been recognised. The natural role of these matrikines (including inhibitors of angiogenesis and possibly inflammation) make them ideal targets to mimic as therapies. A number of these peptides have been taken forward into clinical trials. The focus of this review will be to summarise our current understanding of the role, and potential for highly relevant actions, of matrikines in lung health and disease.
Collapse
Affiliation(s)
- Janette K Burgess
- Cell Biology, Woolcock Institute of Medical Research, Sydney, NSW, Australia.
| | | |
Collapse
|
11
|
Mosher DF, Adams JC. Adhesion-modulating/matricellular ECM protein families: a structural, functional and evolutionary appraisal. Matrix Biol 2012; 31:155-61. [PMID: 22265890 DOI: 10.1016/j.matbio.2012.01.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 12/26/2011] [Accepted: 12/28/2011] [Indexed: 11/15/2022]
Abstract
The thrombospondins are a family of secreted, oligomeric glycoproteins that interact with cell surfaces, multiple components of the extracellular matrix, growth factors and proteases. These interactions underlie complex roles in cell interactions and tissue homeostasis in animals. Thrombospondins have been grouped functionally with SPARCs, tenascins and CCN proteins as adhesion-modulating or matricellular components of the extracellular milieu. Although all these multi-domain proteins share various commonalities of domains, the grouping is not based on structural homologies. Instead, the terms emphasise the general observations that these proteins do not form large-scale ECM structures, yet act at cell surfaces and function in coordination with the structural ECM and associated extracellular proteins. The designation of adhesion-modulation thus depends on observed tissue and cell culture ECM distributions and on experimentally identified functional properties. To date, the evolutionary relationships of these proteins have not been critically compared: yet, knowledge of their evolutionary histories is clearly relevant to any consideration of functional similarities. In this article, we survey briefly the structural and functional knowledge of these protein families, consider the evolution of each family, and outline a perspective on their functional roles.
Collapse
Affiliation(s)
- Deane F Mosher
- Department of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI 57706, USA
| | | |
Collapse
|
12
|
Chiquet-Ehrismann R, Tucker RP. Tenascins and the importance of adhesion modulation. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004960. [PMID: 21441591 DOI: 10.1101/cshperspect.a004960] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tenascins are a family of extracellular matrix proteins that evolved in early chordates. There are four family members: tenascin-X, tenascin-R, tenascin-W, and tenascin-C. Tenascin-X associates with type I collagen, and its absence can cause Ehlers-Danlos Syndrome. In contrast, tenascin-R is concentrated in perineuronal nets. The expression of tenascin-C and tenascin-W is developmentally regulated, and both are expressed during disease (e.g., both are associated with cancer stroma and tumor blood vessels). In addition, tenascin-C is highly induced by infections and inflammation. Accordingly, the tenascin-C knockout mouse has a reduced inflammatory response. All tenascins have the potential to modify cell adhesion either directly or through interaction with fibronectin, and cell-tenascin interactions typically lead to increased cell motility. In the case of tenascin-C, there is a correlation between elevated expression and increased metastasis in several types of tumors.
Collapse
Affiliation(s)
- Ruth Chiquet-Ehrismann
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland.
| | | |
Collapse
|
13
|
Guttery DS, Shaw JA, Lloyd K, Pringle JH, Walker RA. Expression of tenascin-C and its isoforms in the breast. Cancer Metastasis Rev 2011; 29:595-606. [PMID: 20814719 DOI: 10.1007/s10555-010-9249-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tenascin-C (TNC) is an extracellular matrix glycoprotein which is frequently up-regulated in a variety of pathological conditions including chronic inflammation and cancer. TNC has been implicated in the modulation of cell migration, proliferation, invasion and angiogenesis. Multiple isoforms of TNC can be generated through the alternative splicing of nine exons located in the fibronectin type III region of the molecule. The profile of isoforms expressed differs between cancers and normal breast, with the fully truncated TNC isoform being predominant in normal and benign tissues and higher molecular weight isoforms induced predominantly in cancer. The addition of extra domains within the fibronectin type III repeat domain greatly affects TNC function with multiple exon combinations available for splicing. Exons 14 and 16 are considered to be tumour-associated and have been shown to affect breast cell line invasion and growth in vitro to a greater extent than the full-length TNC isoform. This mini review will provide a summary of the literature to date regarding the expression of TNC isoforms in the breast and also discuss more recent developments in the field regarding exon AD1.
Collapse
Affiliation(s)
- David S Guttery
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, UK.
| | | | | | | | | |
Collapse
|
14
|
Brellier F, Tucker RP, Chiquet-Ehrismann R. Tenascins and their implications in diseases and tissue mechanics. Scand J Med Sci Sports 2009. [DOI: 10.1111/j.1600-0838.2009.00916.x doi:dx.doi.org] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Brellier F, Tucker RP, Chiquet-Ehrismann R. Tenascins and their implications in diseases and tissue mechanics. Scand J Med Sci Sports 2009; 19:511-9. [PMID: 19422658 DOI: 10.1111/j.1600-0838.2009.00916.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tenascins are glycoproteins found in the extracellular matrix (ECM) of many tissues. Their role is not only to support the tissue structurally but also to regulate the fate of the different cell types populating the ECM. For instance, tenascins are required when active tissue modeling during embryogenesis or re-modeling after injury occurs. Interestingly, the four members of the tenascin family, tenascin-C, -X, -R and -W, show different and often mutually exclusive expression patterns. As a consequence, these structurally related proteins display distinct functions and are associated with distinct pathologies. The present review aims at presenting the four members of the tenascin family with respect to their structure, expression patterns and implications in diseases and tissue mechanics.
Collapse
Affiliation(s)
- F Brellier
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland
| | | | | |
Collapse
|
16
|
Kato A, Endo T, Abiko S, Ariga H, Matsumoto KI. Induction of truncated form of tenascin-X (XB-S) through dissociation of HDAC1 from SP-1/HDAC1 complex in response to hypoxic conditions. Exp Cell Res 2008; 314:2661-73. [DOI: 10.1016/j.yexcr.2008.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 05/23/2008] [Accepted: 05/30/2008] [Indexed: 11/25/2022]
|
17
|
Epithelial tenascin predicts obliterative airway disease. J Heart Lung Transplant 2008; 27:400-7. [PMID: 18374876 DOI: 10.1016/j.healun.2008.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 11/27/2007] [Accepted: 01/02/2008] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Epithelial cell injury, inflammation, fibrosis and airway obliteration result in remodeling of terminal bronchi in post-transplant obliterative bronchiolitis. Tenascin as an extracellular matrix glycoprotein is expressed in several remodeling processes. METHODS Heterotopic bronchial allografts of pigs were studied to assess tenascin expression during development of post-transplant obliterative bronchiolitis. A total of 157 allografts or autograft controls were serially obtained 2 to 28 days after transplantation and processed for histology and immunocytochemistry for tenascin, CD4, CD8 and macrophages. Epithelial tenascin index was calculated by multiplying the percentage of positive cells by the grade of tenascin intensity (1 to 3). RESULTS Epithelial tenascin expression occurred during the initial ischemic damage to the respiratory epithelium. After partial recovery and before total epithelial loss and subsequent airway obliteration, tenascin expression peaked in allografts (p < 0.001). Epithelial tenascin index on Day 7 was predictive of subsequent epithelial damage, bronchial wall inflammation and the number of (CD4(+) and CD8(+)) cells, fibroproliferation, and obliteration of the bronchial lumen (R > or = 0.47, p < or = 0.01). Tenascin expression in the bronchial wall was more intense in allografts (p < 0.001), paralleling proliferation of fibroblasts and influx of inflammatory cells, and was predictive of inflammatory alterations also in the early obliterative lesions (R > or = 0.45, p < 0.05). Expression decreased during maturation of fibrosis (p < 0.05). CONCLUSIONS Epithelial tenascin was predictive of features observed in post-transplant obliterative bronchiolitis, demonstrating a role for tenascin in the development of obliterative bronchiolitis. Tenascin may have relevant properties in serving as a clinical marker for early obliterative bronchiolitis.
Collapse
|
18
|
Chiquet M, Tunç-Civelek V, Sarasa-Renedo A. Gene regulation by mechanotransduction in fibroblasts. Appl Physiol Nutr Metab 2008; 32:967-73. [PMID: 18059623 DOI: 10.1139/h07-053] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mechanical forces are important for connective tissue homeostasis. How do fibroblasts sense mechanical stress and how do they translate this information into an adaptive remodeling of the extracellular matrix (ECM)? Tenascin-C is rapidly induced in vivo by loading muscles and in vitro by stretching fibroblasts. Regulation of tenascin-C expression by mechanical signals occurs at the transcriptional level. Integrin receptors physically link the ECM to the cytoskeleton and act as force transducers: intracellular signals are triggered when integrins engage with ECM, and later when forces are applied. We found that cyclic strain does not induce tenascin-C messenger ribonucleic acid (mRNA) in fibroblasts lacking the beta1-integrin chain. An important link in integrin-dependent mechanotransduction is the small guanosine 5'-triphosphatase. RhoA and its target kinase, ROCK. In fibroblasts, cyclic strain activates RhoA and thereby induces ROCK-dependent actin assembly. Interestingly, tenascin-C mRNA induction by cyclic strain was suppressed by relaxing the cytoskeleton with a ROCK inhibitor or by actin depolymerization. Conversely, chemical activators of RhoA enhanced the effect of strain both on actin dynamics and on tenascin-C expression. Thus, RhoA/ROCK-controlled actin dynamics are required for the induction of specific ECM genes by mechanical stress. These findings have implications for the understanding of regeneration and for tissue engineering.
Collapse
Affiliation(s)
- Matthias Chiquet
- ITI Research Institute for Dental and Skeletal Biology, University of Bern, Murtenstrasse 35, CH-3010 Bern, Switzerland.
| | | | | |
Collapse
|
19
|
Meloty-Kapella CV, Degen M, Chiquet-Ehrismann R, Tucker RP. Avian tenascin-W: expression in smooth muscle and bone, and effects on calvarial cell spreading and adhesion in vitro. Dev Dyn 2007; 235:1532-42. [PMID: 16534782 DOI: 10.1002/dvdy.20731] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Tenascins are glycoproteins found primarily in the embryonic extracellular matrix. Here we have characterized the fourth and final member of the tenascin family in birds: tenascin-W. Avian tenascin-W has 3.5 epidermal growth factor-like repeats, 6 fibronectin type III domains, and a C-terminal fibrinogen-related domain. Immunohistochemistry reveals that avian tenascin-W is expressed transiently in developing smooth muscle, tendons, and ligaments, but the primary site of tenascin-W expression during development is in the extracellular matrix of bone and the cellular periosteum. In bony matrix, tenascin-W-coated fibrils partly overlap with fibrils that contain tenascin-C. The anti-tenascin-W also labels fibrils in cultures of osteogenic embryonic chicken calvarial cells. Primary calvarial cells cultured on purified tenascin-W become rounded, and fewer of these cells spread on fibronectin when tenascin-W is added to the medium when compared with calvarial cells cultured on fibronectin alone. Moreover, tenascin-W reduces the adhesion of calvarial cells to collagen type I in a shear force assay. We conclude that tenascin-W is likely to play a phylogenetically conserved role in developing bone and that it shares some of the basic anti-adhesive and matrix modulatory properties as tenascin-C.
Collapse
Affiliation(s)
- Caroline V Meloty-Kapella
- Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, California 95616-8643, USA
| | | | | | | |
Collapse
|
20
|
Egging D, van Vlijmen-Willems I, van Tongeren T, Schalkwijk J, Peeters A. Wound healing in tenascin-X deficient mice suggests that tenascin-X is involved in matrix maturation rather than matrix deposition. Connect Tissue Res 2007; 48:93-8. [PMID: 17453911 DOI: 10.1080/03008200601166160] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tenascin-X (TNX) is an extracellular matrix glycoprotein whose absence in humans leads to a recessive form of Ehlers-Danlos Syndrome (EDS). TNX deficient patients have hypermobile joints and fragile skin, but unlike the classical type of EDS, no atrophic scars were observed. Anecdotal evidence suggested that wound healing in TNX deficient patients is abnormal, but no detailed study has been performed so far. To address the role of TNX in wound healing, we analyzed skin wound morphology and mechanical properties of scars in TNX knockout (KO) mice. Breaking strength of unwounded skin of KO mice is significantly lower (<50%) than that of wild-type (WT) mice. In the early stage of wound healing when TNX is hardly expressed in WT wounds (day 7), WT and KO skin are of similar strength. After 14 days, when TNX starts to be expressed at moderate levels in wounds of WT mice, the WT scars gain a further increase in breaking strength, whereas KO scars do not progress beyond the mechanical strength of uninjured KO skin. No obvious differences between KO and WT mice were noted in the rate of wound closure, or in expression of fibrillar collagens during wound healing. We conclude that TNX is unlikely to be involved in matrix deposition in the early phase of wound healing, but it is required in the later phase when remodeling and maturation of the matrix establishes and improves its biomechanical properties.
Collapse
Affiliation(s)
- David Egging
- Department of Dermatology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands.
| | | | | | | | | |
Collapse
|
21
|
Abstract
The interstitial extracellular matrix tenascin-X (iTNX), which has a molecular mass of roughly 450 kDa, is expressed at high levels in muscular tissues and skin. In this study, we identified the serum form of TNX (sTNX) with a molecular mass of 200 kDa in the mouse. Western blot analysis with specific antibodies against fibronectin type III-like (FNIII) repeats of TNX and N-terminal sequence analysis of 200-kDa sTNX revealed that the N-terminus of sTNX is located in the juncture between the 16th FNIII (M16) and 17th FNIII (M17) repeats of iTNX. The 200-kDa sTNX contains 15 FNIII repeats and a fibrinogen domain identical to the Cterminal portion of the iTNX. TNX-deficient mice lacked not only iTNX but also sTNX. Furthermore, 200-kDa sTNX was generated by cleavage of the spleen iTNX by spleen homogenate, and its generation was inhibited by protease inhibitors. These results suggest that sTNX is generated by proteolytic cleavage of iTNX.
Collapse
Affiliation(s)
- Ken-ichi Matsumoto
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | | | | | | |
Collapse
|
22
|
Tucker RP, Drabikowski K, Hess JF, Ferralli J, Chiquet-Ehrismann R, Adams JC. Phylogenetic analysis of the tenascin gene family: evidence of origin early in the chordate lineage. BMC Evol Biol 2006; 6:60. [PMID: 16893461 PMCID: PMC1578592 DOI: 10.1186/1471-2148-6-60] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 08/07/2006] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Tenascins are a family of glycoproteins found primarily in the extracellular matrix of embryos where they help to regulate cell proliferation, adhesion and migration. In order to learn more about their origins and relationships to each other, as well as to clarify the nomenclature used to describe them, the tenascin genes of the urochordate Ciona intestinalis, the pufferfish Tetraodon nigroviridis and Takifugu rubripes and the frog Xenopus tropicalis were identified and their gene organization and predicted protein products compared with the previously characterized tenascins of amniotes. RESULTS A single tenascin gene was identified in the genome of C. intestinalis that encodes a polypeptide with domain features common to all vertebrate tenascins. Both pufferfish genomes encode five tenascin genes: two tenascin-C paralogs, a tenascin-R with domain organization identical to mammalian and avian tenascin-R, a small tenascin-X with previously undescribed GK repeats, and a tenascin-W. Four tenascin genes corresponding to tenascin-C, tenascin-R, tenascin-X and tenascin-W were also identified in the X. tropicalis genome. Multiple sequence alignment reveals that differences in the size of tenascin-W from various vertebrate classes can be explained by duplications of specific fibronectin type III domains. The duplicated domains are encoded on single exons and contain putative integrin-binding motifs. A phylogenetic tree based on the predicted amino acid sequences of the fibrinogen-related domains demonstrates that tenascin-C and tenascin-R are the most closely related vertebrate tenascins, with the most conserved repeat and domain organization. Taking all lines of evidence together, the data show that the tenascins referred to as tenascin-Y and tenascin-N are actually members of the tenascin-X and tenascin-W gene families, respectively. CONCLUSION The presence of a tenascin gene in urochordates but not other invertebrate phyla suggests that tenascins may be specific to chordates. Later genomic duplication events led to the appearance of four family members in vertebrates: tenascin-C, tenascin-R, tenascin-W and tenascin-X.
Collapse
Affiliation(s)
- RP Tucker
- Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, CA 95616, USA
| | - K Drabikowski
- Friedrich Miescher Institute, Novartis Research Foundation, Basel, Switzerland
- Institute of Biology 3, University of Freiburg, Freiburg, Germany
| | - JF Hess
- Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, CA 95616, USA
| | - J Ferralli
- Friedrich Miescher Institute, Novartis Research Foundation, Basel, Switzerland
| | - R Chiquet-Ehrismann
- Friedrich Miescher Institute, Novartis Research Foundation, Basel, Switzerland
| | - JC Adams
- Dept. of Cell Biology, Lerner Research Institute and Dept. of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, OH 44118, USA
| |
Collapse
|
23
|
Veit G, Hansen U, Keene DR, Bruckner P, Chiquet-Ehrismann R, Chiquet M, Koch M. Collagen XII interacts with avian tenascin-X through its NC3 domain. J Biol Chem 2006; 281:27461-70. [PMID: 16861231 DOI: 10.1074/jbc.m603147200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Large oligomeric proteins often contain several binding sites for different molecules and can therefore induce formation of larger protein complexes. Collagen XII, a multidomain protein with a small collagenous region, interacts with fibrillar collagens through its C-terminal region. However, no interactions to other extracellular proteins have been identified involving the non-collagenous N-terminal NC3 domain. To further elucidate the components of protein complexes present close to collagen fibrils, different extracellular matrix proteins were tested for interaction in a solid phase assay. Binding to the NC3 domain of collagen XII was found for the avian homologue of tenascin-X that in humans is linked to Ehlers-Danlos disease. The binding was further characterized by surface plasmon resonance spectroscopy and supported by immunohistochemical co-localization in chick and mouse tissue. On the ultrastructural level, detection of collagen XII and tenascin-X by immunogold labeling confirmed this finding.
Collapse
Affiliation(s)
- Guido Veit
- Center for Biochemistry, Department of Dermatology, Medical Faculty, University of Cologne, D-50931 Cologne, Germany, and Shriners Hospital for Children Research Center, Portland, Oregon 97239, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Wu YJ, La Pierre DP, Wu J, Yee AJ, Yang BB. The interaction of versican with its binding partners. Cell Res 2005; 15:483-94. [PMID: 16045811 DOI: 10.1038/sj.cr.7290318] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Versican belongs to the family of the large aggregating chondroitin sulfate proteoglycans located primarily within the extracellular matrix (ECM). Versican, like other members of its family, has unique N- and C-terminal globular regions, each with multiple motifs. A large glycosaminoglycan-binding region lies between them. This review will begin by outlining these structures, in the context of ECM proteoglycans. The diverse binding partners afforded to versican by virtue of its modular design will then be examined. These include ECM components, such as hyaluronan, type I collagen, tenascin-R, fibulin-1, and -2, fibrillin-1, fibronectin, P- and L-selectins, and chemokines. Versican also binds to the cell surface proteins CD44, integrin beta 1, epidermal growth factor receptor, and P-selectin glycoprotein ligand-1. These multiple interactors play important roles in cell behaviour, and the roles of versican in modulating such processes are discussed.
Collapse
Affiliation(s)
- Yao Jiong Wu
- Sunnybrook and Women's College Health Sciences Centre, 2075 Bayview Avenue, Toronto M4N 3M5 Canada
| | | | | | | | | |
Collapse
|
25
|
Maruoka T, Tanabe H, Chiba M, Kasahara M. Chicken CD1 genes are located in the MHC: CD1 and endothelial protein C receptor genes constitute a distinct subfamily of class-I-like genes that predates the emergence of mammals. Immunogenetics 2005; 57:590-600. [PMID: 16133451 DOI: 10.1007/s00251-005-0016-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 06/20/2005] [Indexed: 10/25/2022]
Abstract
Mammals have several major histocompatibility complex (MHC) class-I-like genes. Although some of them are assumed to have originated before the emergence of mammals, the origin of class-I-like genes is poorly understood. We analyzed here the recently released chicken draft genome sequence and identified two families of class-I-like genes: CD1 and PROCR (the gene for the endothelial protein C receptor). Chickens have two CD1 genes, designated CD1.1 and CD1.2, located in tandem approximately 840 bp apart from each other. Chicken CD1.1 and CD1.2 are neither group 1- nor group 2-like, indicating that the two groups of CD1 emerged in a mammalian lineage. Although the database provides no information as to their chromosomal localization, we found that chicken CD1 genes are located adjacent to the previously characterized MHC B system contig on chromosome 16. We confirmed the linkage of CD1 to the B system by dual-color fluorescence in situ hybridization. Chickens have a single copy of PROCR. Among known class-I-like genes, PROCR is most closely related to CD1, indicating that CD1 and PROCR constitute a distinct subfamily of class-I-like genes that predates the emergence of mammals.
Collapse
Affiliation(s)
- Takako Maruoka
- Department of Pathology, Division of Pathophysiological Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Henry C Hsia
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
27
|
Minamitani T, Ikuta T, Saito Y, Takebe G, Sato M, Sawa H, Nishimura T, Nakamura F, Takahashi K, Ariga H, Matsumoto KI. Modulation of collagen fibrillogenesis by tenascin-X and type VI collagen. Exp Cell Res 2004; 298:305-15. [PMID: 15242785 DOI: 10.1016/j.yexcr.2004.04.030] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 04/15/2004] [Indexed: 11/20/2022]
Abstract
Tenascin-X (TNX) is an extracellular matrix glycoprotein. We previously demonstrated that TNX regulates the expression of type VI collagen. In this study, we investigated the binding of TNX to type I collagen as well as to type VI collagen and the effects of these proteins on fibrillogenesis of type I collagen. Full-length recombinant TNX, which is expressed in and purified from mammalian cell cultures, and type VI collagen purified from bovine placenta were used. Solid-phase assays revealed that TNX or type VI collagen bound to type I collagen, although TNX did not bind to type VI collagen, fibronectin, or laminin. The rate of collagen fibril formation and its quantity, measured as increased turbidity, was markedly increased by the presence of TNX, whereas type VI collagen did not increase the quantity but accelerated the rate of collagen fibril formation. Combined treatment of both had an additive effect on the rate of collagen fibril formation. Furthermore, deletion of the epidermal growth factor-like (EGF) domain or fibrinogen-like domain of TNX attenuated the initial rate of collagen fibril formation. Finally, we observed abnormally large collagen fibrils by electron microscopy in the skin from TNX-deficient (TNX-/-) mice during development. These findings demonstrate a fundamental role for TNX and type VI collagen in regulation of collagen fibrillogenesis in vivo and in vitro.
Collapse
Affiliation(s)
- Takeharu Minamitani
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Minamitani T, Ariga H, Matsumoto KI. Deficiency of tenascin-X causes a decrease in the level of expression of type VI collagen. Exp Cell Res 2004; 297:49-60. [PMID: 15194424 DOI: 10.1016/j.yexcr.2004.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 03/01/2004] [Indexed: 11/29/2022]
Abstract
Tenascin-X (TNX) is an extracellular matrix glycoprotein. We previously demonstrated that TNX-null fibroblasts exhibit decreased cell-matrix and cell-cell adhesion. In this study, we used a differential display technique to determine the genes involved in this process. Differential display analysis of wild-type and TNX-null fibroblasts revealed that mRNA expression level of type VI collagen alpha3 is predominantly decreased in TNX-null fibroblasts. Expression levels of mRNAs of other subunits of type VI collagen, alpha2 and alpha3 chains, were also remarkably decreased in TNX-null fibroblasts. The protein level of alpha3 chain of type VI collagen was also reduced in TNX-null fibroblasts. However, the organization of type VI collagen in the extracellular matrix of TNX-null fibroblasts was similar to that of wild-type fibroblasts. Transient expression of TNX in Balb3T3 cells caused an increase in the level of mRNA of type VI collagen compared with that in vector control and increased the promoter activity of type VI collagen alpha1 subunit gene. In addition, the expression levels of type I collagen and other collagen fibril-associated molecules such as type XII and type XIV collagens, decorin, lumican and fibromodulin in wild-type and TNX-null fibroblasts were compared. It was found that the mRNA expression levels of type I collagen and collagen fibril-associated molecules other than decorin were decreased and that the expression level of decorin was increased in TNX-null fibroblasts. The results suggest the possibility that TNX mediates not only cell-cell and cell-matrix interactions but also fibrillogenesis via collagen fibril-associated molecules.
Collapse
Affiliation(s)
- Takeharu Minamitani
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | |
Collapse
|
29
|
Matsumoto KI, Minamitani T, Orba Y, Sato M, Sawa H, Ariga H. Induction of matrix metalloproteinase-2 by tenascin-X deficiency is mediated through the c-Jun N-terminal kinase and protein tyrosine kinase phosphorylation pathway. Exp Cell Res 2004; 297:404-14. [PMID: 15212943 DOI: 10.1016/j.yexcr.2004.03.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 03/23/2004] [Indexed: 10/26/2022]
Abstract
The results of our previous study showed that tumor invasion and metastasis are promoted in extracellular matrix (ECM) tenascin-X-deficient (TNX-/-) mice via increased expression of matrix metalloproteinases (MMPs). However, little is known about the relationship between TNX deficiency and activation of MMP genes. In this study, we investigated the molecular mechanism by which TNX deficiency activates the MMP-2 gene. We examined the intracellular signaling pathways that regulate gene expression of the proteinase in isolated fibroblasts. Results of gelatin zymography showed that MMP-2 was induced to a greater extent in TNX-/- fibroblasts embedded in type I collagen than in wild-type fibroblasts. RT-PCR analysis revealed that the increased level of MMP-2 expression was caused at the transcription level. Conversely, stable overexpression of TNX in a fibroblast cell line reduced MMP-2 expression and suppressed MMP-2 promoter activity. In addition, treatment of TNX-/- fibroblasts with SP600125, a c-Jun N-terminal kinase (JNK) inhibitor, and genistein, a tyrosine kinase inhibitor, suppressed the increased level of proMMP-2 and increased MMP-2 promoter activity in TNX-/- fibroblasts. Furthermore, increased activation of JNK and tyrosine phosphorylation of certain proteins were observed in TNX-/- fibroblasts. These findings suggest that induction of MMP-2 by TNX deficiency is mediated, at least in part, through the JNK and protein tyrosine kinase phosphorylation pathway.
Collapse
Affiliation(s)
- Ken-Ichi Matsumoto
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita, Sapporo 060-0812, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Matsumoto KI, Sato T, Oka S, Orba Y, Sawa H, Kabayama K, Inokuchi JI, Ariga H. Triglyceride accumulation and altered composition of triglyceride-associated fatty acids in the skin of tenascin-X-deficient mice. Genes Cells 2004; 9:737-48. [PMID: 15298681 DOI: 10.1111/j.1356-9597.2004.00755.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tenascin-X (TNX) is a member of the tenascin family of glycoproteins of the extracellular matrix. Here, we observed abnormalities in the skin of TNX-deficient mice in comparison with that of wild-type mice. Histological analysis with Oil Red O staining demonstrated that there was considerable accumulation of lipid in the skin of TNX-deficient (TNX-/-) mice. By thin-layer chromatography of total lipids, it was found that the level of triglyceride was significantly increased in TNX-/- mice. The mRNA levels of most of the lipogenic enzyme genes examined were remarkably increased in TNX-/- mice. By gas chromatography-mass spectrometry analysis of triglyceride-associated fatty acids in the skin, saturated fatty acid palmitoic acid was decreased, whereas unsaturated fatty acids palmitoleic acid and oleic acid were increased in TNX-/- mice compared with those in wild-type mice. Conversely, fibroblast cell lines transfected with TNX showed a significant decrease in the amount of triglyceride. An increase in the saturated fatty acid stearic acid and decreases in the unsaturated fatty acids palmitoleic acid, oleic acid and linoleic acid, compared to those in mock-transfected cells were also caused by over-expression of TNX. These results indicate that TNX is involved in the regulation of triglyceride synthesis and the regulation of composition of triglyceride-associated fatty acids.
Collapse
Affiliation(s)
- Ken-ichi Matsumoto
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Scherberich A, Tucker RP, Samandari E, Brown-Luedi M, Martin D, Chiquet-Ehrismann R. Murine tenascin-W: a novel mammalian tenascin expressed in kidney and at sites of bone and smooth muscle development. J Cell Sci 2004; 117:571-81. [PMID: 14709716 DOI: 10.1242/jcs.00867] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We cloned and characterized a novel member of the tenascin family of extracellular matrix proteins--the murine orthologue of zebrafish tenascin-W. Full-length recombinant tenascin-W was expressed and purified from mammalian cell cultures. Rotary shadowing followed by electron microscopy showed that tenascin-W forms hexabrachions. We studied its expression during development and in the adult by immunohistochemistry, in situ hybridization and immunoblotting. Tenascin-W is expressed during palate formation, osteogenesis and smooth muscle development. In the adult, tenascin-W is found in the kidney, cardiac semilunar valves, corneal limbus and periosteum. Tenascin-W and tenascin-C expression overlap in many of these areas. Bone-morphogenic-protein-2 treated C2C12 cells secrete tenascin-W and are able to adhere to and to extend actin-rich processes on a tenascin-W substratum. In vitro, cells bind to tenascin-W in an RGD-dependent manner. This adhesion is increased by transfection of alpha8 integrin, which localizes with tenascin-W in the periosteum and kidney.
Collapse
Affiliation(s)
- A Scherberich
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
32
|
Putthoff P, Akyüz N, Kutsche M, Zardi L, Borgmeyer U, Schachner M. Structure of the murine tenascin-R gene and functional characterisation of the promoter. Biochem Biophys Res Commun 2003; 308:940-9. [PMID: 12927810 DOI: 10.1016/s0006-291x(03)01506-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The tenascin-R (TN-R) gene encodes a multidomain extracellular matrix glycoprotein belonging to the tenascin family. It is detectable mainly in oligodendrocytes and neuronal subpopulations of the central nervous system. In this report, we describe the structure of the 5'-region of the mouse TN-R gene and characterise the activity of its promoter. By in silico cloning and genome walking, we have deduced the organisation of the gene and identified the promoter sequence by 5'-RACE technology. TN-R transcripts in adult mouse brain contain non-coding exons 1 and 2 as demonstrated by the reverse transcriptase-polymerase chain reaction. The promoter displays its activity in cultured cells of neural origin, but not in a fibroblast-like cell line or an undifferentiated teratocarcimoma cell line. As for the human and rat genes, the elements required for the full and cell type-specific activity of the promoter are contained in exon 1 and 167 bp upstream of this exon. The mouse TN-R promoter sequence is similar to that of rat and human in that it displays similarly unusual features: it lacks any classical TATA-box or CAAT-box, GC-rich regions or initiator elements. The promoter contains consensus sequences for binding of a variety of transcription factors, notably p53/p73 and glucocorticoid receptors.
Collapse
MESH Headings
- Animals
- Base Sequence
- Brain/embryology
- Cell Differentiation
- Cloning, Molecular
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- Exons
- Fibroblasts/metabolism
- Genes, Tumor Suppressor
- Genome
- Humans
- Mice
- Mice, Inbred C57BL
- Models, Genetic
- Molecular Sequence Data
- Neurons/metabolism
- Nuclear Proteins/metabolism
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/metabolism
- Rats
- Receptors, Glucocorticoid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Species Specificity
- Tenascin/genetics
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
- Tumor Protein p73
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- Peggy Putthoff
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, Hamburg D-20246, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Chiquet-Ehrismann R, Chiquet M. Tenascins: regulation and putative functions during pathological stress. J Pathol 2003; 200:488-99. [PMID: 12845616 DOI: 10.1002/path.1415] [Citation(s) in RCA: 401] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED In this review, we discuss the structure and function of the extracellular matrix protein family of tenascins with emphasis on their involvement in human pathologies. The article is divided into the following sections: INTRODUCTION the tenascin family of extracellular matrix proteins; Structural roles: tenascin-X deficiency and Ehlers-Danlos syndrome; Tenascins as modulators of cell adhesion, migration, and growth; Role of tenascin-C in inflammation; Regulation of tenascins by mechanical stress: implications for wound healing and regeneration; Association of tenascin-C with cancer: antibodies as diagnostic and therapeutic tools; Conclusion and perspectives.
Collapse
Affiliation(s)
- Ruth Chiquet-Ehrismann
- Friedrich Miescher Institute, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
34
|
Chiquet M, Renedo AS, Huber F, Flück M. How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biol 2003; 22:73-80. [PMID: 12714044 DOI: 10.1016/s0945-053x(03)00004-0] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mechanical forces are important regulators of connective tissue homeostasis. Our recent experiments in vivo indicate that externally applied mechanical load can lead to the rapid and sequential induction of distinct extracellular matrix (ECM) components in fibroblasts, rather than to a generalized hypertrophic response. Thus, ECM composition seems to be adapted specifically to changes in load. Mechanical stress can regulate the production of ECM proteins indirectly, by stimulating the release of a paracrine growth factor, or directly, by triggering an intracellular signalling pathway that activates the gene. We have evidence that tenascin-C is an ECM component directly regulated by mechanical stress: induction of its mRNA in stretched fibroblasts is rapid both in vivo and in vitro, does not depend on prior protein synthesis, and is not mediated by factors released into the medium. Fibroblasts sense force-induced deformations (strains) in their ECM. Findings by other researchers indicate that integrins within cell-matrix adhesions can act as 'strain gauges', triggering MAPK and NF-kappaB pathways in response to changes in mechanical stress. Our results indicate that cytoskeletal 'pre-stress' is important for mechanotransduction to work: relaxation of the cytoskeleton (e.g. by inhibiting Rho-dependent kinase) suppresses induction of the tenascin-C gene by cyclic stretch, and hence desensitizes the fibroblasts to mechanical signals. On the level of the ECM genes, we identified related enhancer sequences that respond to static stretch in both the tenascin-C and the collagen XII promoter. In the case of the tenascin-C gene, different promoter elements might be involved in induction by cyclic stretch. Thus, different mechanical signals seem to regulate distinct ECM genes in complex ways.
Collapse
Affiliation(s)
- Matthias Chiquet
- ITI-Research Institute for Dental and Skeletal Biology, University of Bern, P.O. Box 54, Switzerland.
| | | | | | | |
Collapse
|
35
|
Minamitani T, Ariga H, Matsumoto KI. Adhesive defect in extracellular matrix tenascin-X-null fibroblasts: a possible mechanism of tumor invasion. Biol Pharm Bull 2002; 25:1472-5. [PMID: 12419962 DOI: 10.1248/bpb.25.1472] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular matrix tenascin-X (TNX)-null mice, generated by disruption of the Tnx gene, display augmented invasion and metastasis of B16-BL6 melanoma tumor cells due to increased activities of matrix metalloproteinase (MMP)-2 and MMP-9. In this study, we investigated cell-matrix and cell-cell adhesions using TNX-null fibroblasts and wild-type fibroblasts. TNX-null fibroblasts exhibited a decreased attachment to fibronectin compared with that of wild-type fibroblasts. B16 melanoma cells were cocultured with wild-type or TNX-null fibroblasts, and the adhesion of B16 melanoma to the fibroblasts was assessed. B16 melanoma cells on wild-type fibroblasts proliferated and spread out in a horizontal direction, whereas those on TNX-null fibroblasts overlapped each other rather than migrating horizontally. These overlapping B16 melanoma cells on TNX-null fibroblasts peeled off faster than those on wild-type fibroblasts. To determine whether the decreased cell-matrix and cell-cell adhesions on TNX-null fibroblasts were due to increased MMP activity, the activities of MMPs in wild-type and TNX-null fibroblasts were compared by gelatinolytic assays. The analysis of MMPs from conditioned media demonstrated that almost the same levels of MMP activities were detected between wild-type and TNX-null fibroblasts. However, contrary to our expectations the activities of MMPs from conditioned media of B16 melanoma cells cocultured on TNX-null fibroblasts were rather reduced than those of B16 melanoma cells cocultured on wild-type. We concluded that the absence of TNX in the extracellular environment might play an important role in enhancement of the detachment of B16 melanoma cells.
Collapse
Affiliation(s)
- Takeharu Minamitani
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
36
|
Impairment of L-type Ca2+ channel-dependent forms of hippocampal synaptic plasticity in mice deficient in the extracellular matrix glycoprotein tenascin-C. J Neurosci 2002. [PMID: 12177213 DOI: 10.1523/jneurosci.22-16-07177.2002] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The extracellular matrix glycoprotein tenascin-C (TN-C) has been suggested to play important functional roles during neural development, axonal regeneration, and synaptic plasticity. We generated a constitutively TN-C-deficient mouse mutant from embryonic stem cells with a floxed tn-C allele, representing a standard for future analysis of conditionally targeted mice. The gross morphology of the CNS was not detectably affected, including no evidence for perturbed nerve cell migration, abnormal oligodendrocyte distribution, or defective myelination. Despite the apparent normal histology of the hippocampus and normal performance in the water maze, theta-burst stimulation (TBS) of Schaffer collaterals elicited reduced long-term potentiation (LTP) in the CA1 region of TN-C-deficient mutants, as compared with wild-type littermates. However, high-frequency stimulation evoked normal LTP not only in CA1, but also at mossy fiber-CA3 and medial and lateral perforant path-granule cell synapses in the dentate gyrus. Low-frequency stimulation failed to induce long-term depression in the CA1 region of TN-C-deficient animals. Recordings of TBS-induced LTP in the presence of nifedipine, an antagonist of L-type voltage-dependent Ca2+ channels (VDCCs), did not affect LTP in TN-C-deficient mice, but reduced LTP in wild-type mice to the levels seen in mutants. Furthermore, chemical induction of a L-type VDCC-dependent LTP in the CA1 region by application of the K+ channel blocker tetraethylammonium resulted in impaired LTP in TN-C mutants. Thus, reduction in L-type VDCC-mediated signaling appears to mediate the deficits in certain forms of synaptic plasticity in constitutively TN-C-deficient mice.
Collapse
|
37
|
Matsumoto KI, Takahashi K, Yoshiki A, Kusakabe M, Ariga H. Invasion of melanoma in double knockout mice lacking tenascin-X and tenascin-C. Jpn J Cancer Res 2002; 93:968-75. [PMID: 12359049 PMCID: PMC5927135 DOI: 10.1111/j.1349-7006.2002.tb02472.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The roles of extracellular matrix glycoproteins belonging to the tenascin family in the regulation of tumor cell proliferation, invasion, and metastasis are not known. To address this issue, we generated tenascin-X (TNX) and tenascin-C (TNC) double knockout mice and compared findings in these mice with those in single knockout (TNX + / + TNC - / - and TNX - / - TNC + / +) mice. We investigated the proliferation and invasion of B16-BL6 melanoma cells after these cells had been injected into the footpads of mice in each group. The primary tumor size and invasion to the ankle adjacent to the primary tumor site were examined at 35 days after injection of the melanoma cells. The primary tumor size in TNX - / - TNC + / + mice was significantly larger than that in wild-type mice, but those of TNX + / + TNC - / - and double knockout mice were comparable to that in the wild-type mice. On the other hand, invasion to the ankle was obviously promoted in TNX - / - TNC + / + and double knockout mice compared with that in the wild-type mice, but invasion to the ankle in TNX + / + TNC - / - mice was only slightly promoted. Gelatin zymography confirmed increased matrix metalloproteinase (MMP)-9 activity in the dorsal skin of TNX - / - TNC + / +, TNX + / + TNC - / - and double knockout mice. However, the amounts of MMP-9 mRNA in the dorsal skins of all mice were almost the same, indicating that the increased activity of MMP-9 in the single and double knockout mice is regulated at the MMP-9 processing level. These results indicate that MMP-9 is activated in all TN-deficient mice, but that TNX exerts a greater effect on tumor invasion than does TNC.
Collapse
Affiliation(s)
- Ken-Ichi Matsumoto
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | | | | | | | | |
Collapse
|
38
|
Strekalova T, Sun M, Sibbe M, Evers M, Dityatev A, Gass P, Schachner M. Fibronectin domains of extracellular matrix molecule tenascin-C modulate hippocampal learning and synaptic plasticity. Mol Cell Neurosci 2002; 21:173-87. [PMID: 12359159 DOI: 10.1006/mcne.2002.1172] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The extracellular matrix molecule tenascin-C (TN-C) has been shown to be involved in hippocampal synaptic plasticity in vitro. Here, we describe a deficit in hippocampus-dependent contextual memory in TN-C-deficient mice using the step-down avoidance paradigm. We further show that a fragment of TN-C containing the fibronectin type-III repeats 6-8 (FN6-8), but not a fragment containing repeats 3-5, bound to pyramidal and granule cell somata in the hippocampal formation of C57BL/6J mice and repelled axons of pyramidal neurons when presented as a border in vitro. Injection of the FN6-8 fragment into the hippocampus inhibited retention of memory in the step-down paradigm and reduced levels of long-term potentiation in the CA1 region of the hippocampus. In summary, our data show that TN-C is involved in hippocampus-dependent contextual memory and synaptic plasticity and identify the FN6-8 domain as one of molecular determinants mediating these functions.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Matsumoto K, Takayama N, Ohnishi J, Ohnishi E, Shirayoshi Y, Nakatsuji N, Ariga H. Tumour invasion and metastasis are promoted in mice deficient in tenascin-X. Genes Cells 2001; 6:1101-11. [PMID: 11737270 DOI: 10.1046/j.1365-2443.2001.00482.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Tenascin-X (TNX) is a member of the tenascin family of large oligomeric glycoproteins of the extracellular matrix (ECM). To determine whether TNX plays a part in tumour invasion and metastasis and to disclose its normal physiological role, we disrupted its gene in mouse embryonic stem cells by homologous recombination and created mice deficient in TNX. RESULTS TNX-null mutant (TNX-/-) mice arose at normal frequency and showed no obvious defects during their adult life. However, when TNX-/- mice were subcutaneously inoculated in foot-pads with a highly invasive and metastatic cell line, B16-BL6 melanoma cells, the primary tumour size at 30 days after inoculation in the TNX-/- mice had increased by 1.2-fold compared with that in wild-type mice, and the invasion to the ankle and pulmonary metastasis in TNX-/- mice were also augmented by 2.2-fold and 6.8-fold, respectively, compared to those in wild-type mice. To disclose the molecular mechanism(s) of the promotion of tumour invasion and metastasis in TNX-/- mice, we measured the protein levels of matrix metalloproteinases (MMPs), which are recognized as playing a key role in these events, in the foot-pad homogenates of TNX-/- mice prior to the inoculation of melanoma cells. Gelatin zymography showed that the activities of proMMP-2, active MMP-2 and proMMP-9 were significantly higher in TNX-/- mice than in wild-type mice. Furthermore, a Northern blot analysis demonstrated that this increased activity of MMP-2 in TNX-/- mice was due to the induced expression of MMP-2 at the transcriptional level. The elevated expression of MMP-2 and MMP-9 resulted in decreased laminin levels, to less than half that of wild-type mice in the homogenates of TNX-/- mice. CONCLUSIONS TNX deficiency led to an increase in the production of MMPs, and the increased activity of MMPs may result in the degradation of laminin. Consequently, the melanoma cells inoculated in TNX-/- mice might facilitate invasion and metastasis. These results imply that TNX is required for impeding the invasion and metastasis of tumour cells.
Collapse
Affiliation(s)
- K Matsumoto
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | | | | | | | | | | | | |
Collapse
|
40
|
Ikuta T, Ariga H, Matsumoto KI. Effect of tenascin-X together with vascular endothelial growth factor A on cell proliferation in cultured embryonic hearts. Biol Pharm Bull 2001; 24:1320-3. [PMID: 11725972 DOI: 10.1248/bpb.24.1320] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tenascin-X (TNX) is a large glycoprotein that appears in extracellular matrices. Previously, we demonstrated that TNX binds to vascular endothelial growth factors A and B (VEGF-A and -B) and that VEGF-B in combination with TNX induces DNA synthesis in endothelial cells via increased signals mediated by the VEGFR-1 receptor. In this study, we investigated the effect of TNX with VEGF-A on the cell proliferation in embryonic mouse heart explants from either wild-type (TNX+/+) or TNX-deficient (TNX-/-) mice. The addition of VEGF-A to the explants from TNX+/+ mice increased cell proliferation by 1.5 fold compared with that in TNX-/- mice, indicating that TNX with VEGF family member plays an important role in the control of endothelial cell proliferation in vivo.
Collapse
Affiliation(s)
- T Ikuta
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
41
|
Tucker RP, Hagios C, Santiago A, Chiquet-Ehrismann R. Tenascin-Y is concentrated in adult nerve roots and has barrier properties in vitro. J Neurosci Res 2001; 66:439-47. [PMID: 11746361 DOI: 10.1002/jnr.1236] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several molecules have been identified as potential sources of the barriers to glial cell mixing and sensory regeneration that exist at the boundary between the peripheral and central nervous systems, including tenascin-C, tenascin-R, chondroitin sulfate proteoglycans, and NG2. Here we show that tenascin-Y, the avian homologue of tenascin-X, is concentrated in the proximal portions of peripheral nerves in the chicken. In vitro analyses of cultures enriched for Schwann cells demonstrate that recombinant tenascin-Y has dose-dependent effects on glial cell attachment, spreading, and migration. In addition, nanomolar concentrations of tenascin-Y cause the rapid collapse of sensory growth cones cultured on fibronectin, and regenerating sensory neurites preferentially migrate on fibronectin and avoid tenascin-Y in microstripe assays. We conclude that the expression pattern of tenascin-Y and its properties in vitro are consistent with a role as an inhibitor of glial cell migration and sensory regeneration in nerve roots.
Collapse
Affiliation(s)
- R P Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
42
|
Sahlberg C, Aukhil I, Thesleff I. Tenascin-C in developing mouse teeth: expression of splice variants and stimulation by TGFbeta and FGF. Eur J Oral Sci 2001; 109:114-24. [PMID: 11347655 DOI: 10.1034/j.1600-0722.2001.00990.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tenascin-C is a protein of the extracellular matrix which has been suggested to regulate organogenesis. We have analysed the expression of tenascin-C mRNA during mouse tooth development. We show that it is transiently expressed during epithelial budding in the condensed dental mesenchyme, and that it reappears later in the dental papilla mesenchyme where it persists in the dental pulp but is downregulated in odontoblasts. Probes corresponding to the domains A4, B, and D of the differentially spliced and domain 7 of the constant region of the FNIII-like domain show similar patterns of hybridization. Dental epithelium has been shown to induce tenascin-C in early dental mesenchyme, and we show that growth factors in the transforming growth factor beta (TGFbeta) and fibroblast growth factor (FGF) families can mimic this effect. FGF-4, -8 and TGFbeta-1 proteins were applied locally by beads on dissected dental mesenchyme, and tenascin-C expression was analysed after 24 h culture by reverse transcriptase-polymerase chain reaction (RT-PCR) in situ hybridization, and immunohistochemistry. FGF-4 and TGFbeta-1 stimulated tenascin-C expression in E12 dental mesenchymes. RT-PCR showed induction of several tenascin-C isoforms by both TGFbeta-1 and FGFs. We conclude that several splice forms are expressed during mouse tooth development, and that TGFbeta- and FGF-family growth factors may act as epithelial signals inducing tenascin expression in the dental mesenchyme.
Collapse
Affiliation(s)
- C Sahlberg
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland.
| | | | | |
Collapse
|
43
|
Lethias C, Elefteriou F, Parsiegla G, Exposito JY, Garrone R. Identification and characterization of a conformational heparin-binding site involving two fibronectin type III modules of bovine tenascin-X. J Biol Chem 2001; 276:16432-8. [PMID: 11278641 DOI: 10.1074/jbc.m010210200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tenascin-X is known as a heparin-binding molecule, but the localization of the heparin-binding site has not been investigated until now. We show here that, unlike tenascin-C, the recombinant fibrinogen-like domain of tenascin-X is not involved in heparin binding. On the other hand, the two contiguous fibronectin type III repeats b10 and b11 have a predicted positive charge at physiological pH, hence a set of recombinant proteins comprising these domains was tested for interaction with heparin. Using solid phase assays and affinity chromatography, we found that interaction with heparin was conformational and involved both domains 10 and 11. Construction of a three-dimensional model of domains 10 and 11 led us to predict exposed residues that were then submitted to site-directed mutagenesis. In this way, we identified the basic residues within each domain that are crucial for this interaction. Blocking experiments using antibodies against domain 10 were performed to test the efficiency of this site within intact tenascin-X. Binding was significantly reduced, arguing for the activity of a heparin-binding site involving domains 10 and 11 in the whole molecule. Finally, the biological significance of this site was tested by cell adhesion studies. Heparan sulfate cell surface receptors are able to interact with proteins bearing domains 10 and 11, suggesting that tenascin-X may activate different signals to regulate cell behavior.
Collapse
Affiliation(s)
- C Lethias
- Institut de Biologie et Chimie des Protéines, CNRS UMR 5086, Université Claude Bernard, 7 passage du Vercors, 69367 Lyon Cedex 07, France.
| | | | | | | | | |
Collapse
|
44
|
Abstract
The tenascins are a family of large extracellular matrix glycoproteins that comprise five known members. Three of these, tenascin-C (TN-C) tenascin-R (TN-R) and tenascin-Y (TN-Y) are expressed in specific patterns during nervous system development and are down-regulated after maturation. The expression of TN-C, the best studied member of the family, persists in restricted areas of the nervous system that exhibit neuronal plasticity and is reexpressed after lesion. Numerous studies in vitro suggest specific roles for tenascins in the nervous system involving precursor cell migration, axon growth and guidance. TN-C has been shown to occur in a large number of isoform variants generated by combinatorial variation of alternatively spliced fibronectin type III (FNIII) repeats. This finding indicates that TN-C might specify neural microenvironments, a hypothesis supported by recent analysis of TN-C knockout animals, which has begun to reveal subtle nervous system dysfunctions.
Collapse
Affiliation(s)
- A Joester
- Department of Neurobiology, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | | |
Collapse
|
45
|
Geffrotin C, Horak V, Créchet F, Tricaud Y, Lethias C, Vincent-Naulleau S, Vielh P. Opposite regulation of tenascin-C and tenascin-X in MeLiM swine heritable cutaneous malignant melanoma. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1524:196-202. [PMID: 11113568 DOI: 10.1016/s0304-4165(00)00158-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interactions between tumour cells and surrounding extracellular matrix (ECM) influence the growth of tumour cells and their ability to metastasise. It is thus interesting to compare ECM composition in tumours and healthy tissues. Using the recently described MeLiM miniature pig model of heritable cutaneous malignant melanoma, we studied the expression of two ECM glycoproteins, the tenascin-C (TN-C) and tenascin-X (TN-X), in normal skin and melanoma. Using semiquantitative RT-PCR, we observed a 3.6-fold mean increase of TN-C RNAs in melanoma compared to normal skin. Both stromal and tumour cells synthesise TN-C. On the contrary, TN-X RNAs decreased 30-fold on average in melanoma. This opposite regulation of TN-C and TN-X RNAs was confirmed at the protein level by indirect immunofluorescence. Whereas pig normal skin displayed a discrete TN-C signal at the dermo-epidermal junction, around blood vessels and hair bulbs, the swine tumour showed enhanced expression of TN-C in these areas and around stromal and tumour cells. In contrast, normal skin showed a strong TN-X staining at the dermo-epidermal junction and in the dermis, whereas this signal almost completely disappeared in the tumour. The results presented here describe a dramatic alteration of the ECM composition in swine malignant melanoma which might have a large influence on tumourigenesis or invasion and metastasis of melanoma cells.
Collapse
Affiliation(s)
- C Geffrotin
- Laboratoire de Radiobiologie et d'Etude du Génome, Jouy-en-Josas, France.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Tenascin-C (TN-C) is a modular and multifunctional extracellular matrix (ECM) glycoprotein that is exquisitely regulated during embryonic development and in adult tissue remodeling. TN-C gene transcription is controlled by intracellular signals that are generated by multiple soluble factors, integrins and mechanical forces. These external cues are interpreted by particular DNA control elements that interact with different classes of transcription factors to activate or repress TN-C expression in a cell type- and differentiation-dependent fashion. Among the transcriptional regulators of the TN-C gene that have been identified, the homeobox family of proteins has emerged as a major player. Downstream from TN-C, intracellular signals that are relayed via specific cell surface receptors often impart contrary cellular functions, even within the same cell type. A key to understanding this behavior may lie in the dual ability of TN-C-enriched extracellular matrices to generate intracellular signals, and to define unique cellular morphologies that modulate these signal transduction pathways. Thus, despite the contention that TN-C null mice appear to develop and act normally, TN-C biology continues to provide a wealth of information regarding the complex nature of the ECM in development and disease.
Collapse
Affiliation(s)
- P L Jones
- Pediatric Cardiology Research, Abramson Research Center, Children's Hospital of Philadelphia & The University of Pennsylvania School of Medicine, 34th Street and Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | | |
Collapse
|
47
|
The Role of the Tenascin Family in Penetrating Keratoplasty. Cornea 2000. [DOI: 10.1097/00003226-200011003-00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
|
49
|
Ikuta T, Ariga H, Matsumoto K. Extracellular matrix tenascin-X in combination with vascular endothelial growth factor B enhances endothelial cell proliferation. Genes Cells 2000; 5:913-927. [PMID: 11122379 DOI: 10.1046/j.1365-2443.2000.00376.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND An extracellular matrix tenascin-X (TNX) is highly expressed in muscular tissues, especially heart and skeletal muscle, and is also prominent around blood vessels. The precise in vivo role of TNX remains to be elucidated. To identify proteins that interact with TNX in the extracellular environment, we searched for TNX-binding proteins using a yeast two-hybrid system. RESULTS We used mouse TNX-specific fibronectin type III repeats (mTNX/FNIII13-25) as a bait for the screening. We found that vascular endothelial growth factor B (VEGF-B) binds to mTNX/FNIII13-25. This interaction was confirmed by pull-down assays and co-immunoprecipitation assays. The full-length mTNX, as well as mTNX/FNIII13-25, interacted with both alternative splice isoforms VEGF-B186 and VEGF-B167. Furthermore, the full-length mTNX also bound to VEGF-A. The minimal region of TNX that interacts with VEGF-B was mapped to the FNIII repeats (FNIII13-25) but not to the other characteristic domains of TNX. The TNX-binding site of VEGF-B was located in the N-terminal 115-amino acid region. mTNX/FNIII13-25 did not prevent the interaction of VEGF-B with VEGFR-1 (VEGF receptor 1), and VEGF-B could simultaneously bind to both mTNX/FNIII13-25 and VEGFR-1. A conditioned medium from transfected 293T cells coexpressing full-length TNX and VEGF-B could promote DNA synthesis in bovine endothelial cells in which VEGFR-1 were expressed. VEGFR-1 phosphorylation triggered by VEGF-B186 were increased in cells plated with mTNX/FNIII13-25 or full-length mTNX, compared with cells plated with VEGF-B186 alone. CONCLUSION TNX interacts with VEGF-B and enhances the ability of VEGF-B to stimulate cell proliferation. This enhanced mitogenecity is caused by increased signals mediated by the VEGFR-1 receptor. This finding suggests a role for TNX in the regulation of the development of blood vessels such as vasculogenesis and angiogenesis.
Collapse
Affiliation(s)
- T Ikuta
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
50
|
Flück M, Tunc-Civelek V, Chiquet M. Rapid and reciprocal regulation of tenascin-C and tenascin-Y expression by loading of skeletal muscle. J Cell Sci 2000; 113 ( Pt 20):3583-91. [PMID: 11017874 DOI: 10.1242/jcs.113.20.3583] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tenascin-C and tenascin-Y are two structurally related extracellular matrix glycoproteins that in many tissues show a complementary expression pattern. Tenascin-C and the fibril-associated minor collagen XII are expressed in tissues bearing high tensile stress and are located in normal skeletal muscle, predominantly at the myotendinous junction that links muscle fibers to tendon. In contrast, tenascin-Y is strongly expressed in the endomysium surrounding single myofibers, and in the perimysial sheath around fiber bundles. We previously showed that tenascin-C and collagen XII expression in primary fibroblasts is regulated by changes in tensile stress. Here we have tested the hypothesis that the expression of tenascin-C, tenascin-Y and collagen XII in skeletal muscle connective tissue is differentially modulated by mechanical stress in vivo. Chicken anterior latissimus dorsi muscle (ALD) was mechanically stressed by applying a load to the left wing. Within 36 hours of loading, expression of tenascin-C protein was ectopically induced in the endomysium along the surface of single muscle fibers throughout the ALD, whereas tenascin-Y protein expression was barely affected. Expression of tenascin-C protein stayed elevated after 7 days of loading whereas tenascin-Y protein was reduced. Northern blot analysis revealed that tenascin-C mRNA was induced in ALD within 4 hours of loading while tenascin-Y mRNA was reduced within the same period. In situ hybridization indicated that tenascin-C mRNA induction after 4 hours of loading was uniform throughout the ALD muscle in endomysial fibroblasts. In contrast, the level of tenascin-Y mRNA expression in endomysium appeared reduced within 4 hours of loading. Tenascin-C mRNA and protein induction after 4–10 hours of loading did not correlate with signs of macrophage infiltration. Tenascin-C protein decreased again with removal of the load and nearly disappeared after 5 days. Furthermore, loading was also found to induce expression of collagen XII mRNA and protein, but to a markedly lower level, with slower kinetics and only partial reversibility. The results suggest that mechanical loading directly and reciprocally controls the expression of extracellular matrix proteins of the tenascin family in skeletal muscle.
Collapse
Affiliation(s)
- M Flück
- M. E. Müller-Institute for Biomechanics, Murtenstrasse 35, PO Box 30, CH-3010 Bern.
| | | | | |
Collapse
|