1
|
Kurth V, Ogorek I, Münch C, Lopez-Rios J, Ousson S, Lehmann S, Nieweg K, Roebroek AJM, Pietrzik CU, Beher D, Weggen S. Pathogenic Aβ production by heterozygous PSEN1 mutations is intrinsic to the mutant protein and not mediated by conformational hindrance of wild-type PSEN1. J Biol Chem 2023; 299:104997. [PMID: 37394008 PMCID: PMC10413157 DOI: 10.1016/j.jbc.2023.104997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Presenilin-1 (PSEN1) is the catalytic subunit of the intramembrane protease γ-secretase and undergoes endoproteolysis during its maturation. Heterozygous mutations in the PSEN1 gene cause early-onset familial Alzheimer's disease (eFAD) and increase the proportion of longer aggregation-prone amyloid-β peptides (Aβ42 and/or Aβ43). Previous studies had suggested that PSEN1 mutants might act in a dominant-negative fashion by functional impediment of wild-type PSEN1, but the exact mechanism by which PSEN1 mutants promote pathogenic Aβ production remains controversial. Using dual recombinase-mediated cassette exchange (dRMCE), here we generated a panel of isogenic embryonic and neural stem cell lines with heterozygous, endogenous expression of PSEN1 mutations. When catalytically inactive PSEN1 was expressed alongside the wild-type protein, we found the mutant accumulated as a full-length protein, indicating that endoproteolytic cleavage occurred strictly as an intramolecular event. Heterozygous expression of eFAD-causing PSEN1 mutants increased the Aβ42/Aβ40 ratio. In contrast, catalytically inactive PSEN1 mutants were still incorporated into the γ-secretase complex but failed to change the Aβ42/Aβ40 ratio. Finally, interaction and enzyme activity assays demonstrated the binding of mutant PSEN1 to other γ-secretase subunits, but no interaction between mutant and wild-type PSEN1 was observed. These results establish that pathogenic Aβ production is an intrinsic property of PSEN1 mutants and strongly argue against a dominant-negative effect in which PSEN1 mutants would compromise the catalytic activity of wild-type PSEN1 through conformational effects.
Collapse
Affiliation(s)
- Vanessa Kurth
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Isabella Ogorek
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany; Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Carolina Münch
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucia, Sevilla, Spain
| | | | - Sandra Lehmann
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Katja Nieweg
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University, Marburg, Germany
| | | | - Claus U Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | | | - Sascha Weggen
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
2
|
Presenilin 1 Modulates Acetylcholinesterase Trafficking and Maturation. Int J Mol Sci 2023; 24:ijms24021437. [PMID: 36674948 PMCID: PMC9864477 DOI: 10.3390/ijms24021437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
In Alzheimer's disease (AD), the reduction in acetylcholinesterase (AChE) enzymatic activity is not paralleled with changes in its protein levels, suggesting the presence of a considerable enzymatically inactive pool in the brain. In the present study, we validated previous findings, and, since inactive forms could result from post-translational modifications, we analyzed the glycosylation of AChE by lectin binding in brain samples from sporadic and familial AD (sAD and fAD). Most of the enzymatically active AChE was bound to lectins Canavalia ensiformis (Con A) and Lens culinaris agglutinin (LCA) that recognize terminal mannoses, whereas Western blot assays showed a very low percentage of AChE protein being recognized by the lectin. This indicates that active and inactive forms of AChE vary in their glycosylation pattern, particularly in the presence of terminal mannoses in active ones. Moreover, sAD subjects showed reduced binding to terminal mannoses compared to non-demented controls, while, for fAD patients that carry mutations in the PSEN1 gene, the binding was higher. The role of presenilin-1 (PS1) in modulating AChE glycosylation was then studied in a cellular model that overexpresses PS1 (CHO-PS1). In CHO-PS1 cells, binding to LCA indicates that AChE displays more terminal mannoses in oligosaccharides with a fucosylated core. Immunocytochemical assays also demonstrated increased presence of AChE in the trans-Golgi. Moreover, AChE enzymatic activity was higher in plasmatic membrane of CHO-PS1 cells. Thus, our results indicate that PS1 modulates trafficking and maturation of AChE in Golgi regions favoring the presence of active forms in the membrane.
Collapse
|
3
|
Capone R, Tiwari A, Hadziselimovic A, Peskova Y, Hutchison JM, Sanders CR, Kenworthy AK. The C99 domain of the amyloid precursor protein resides in the disordered membrane phase. J Biol Chem 2021; 296:100652. [PMID: 33839158 PMCID: PMC8113881 DOI: 10.1016/j.jbc.2021.100652] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Processing of the amyloid precursor protein (APP) via the amyloidogenic pathway is associated with the etiology of Alzheimer's disease. The cleavage of APP by β-secretase to generate the transmembrane 99-residue C-terminal fragment (C99) and subsequent processing of C99 by γ-secretase to yield amyloid-β (Aβ) peptides are essential steps in this pathway. Biochemical evidence suggests that amyloidogenic processing of C99 occurs in cholesterol- and sphingolipid-enriched liquid-ordered phase membrane rafts. However, direct evidence that C99 preferentially associates with these rafts has remained elusive. Here, we tested this by quantifying the affinity of C99-GFP for raft domains in cell-derived giant plasma membrane vesicles (GPMVs). We found that C99 was essentially excluded from ordered domains in vesicles from HeLa cells, undifferentiated SH-SY5Y cells, or SH-SY5Y-derived neurons; instead, ∼90% of C99 partitioned into disordered domains. The strong association of C99 with disordered domains occurred independently of its cholesterol-binding activity or homodimerization, or of the presence of the familial Alzheimer disease Arctic mutation (APP E693G). Finally, through biochemical studies we confirmed previous results, which showed that C99 is processed in the plasma membrane by α-secretase, in addition to the well-known γ-secretase. These findings suggest that C99 itself lacks an intrinsic affinity for raft domains, implying that either i) amyloidogenic processing of the protein occurs in disordered regions of the membrane, ii) processing involves a marginal subpopulation of C99 found in rafts, or iii) as-yet-unidentified protein-protein interactions with C99 in living cells drive this protein into membrane rafts to promote its cleavage therein.
Collapse
Affiliation(s)
- Ricardo Capone
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ajit Tiwari
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Yelena Peskova
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
| | - James M Hutchison
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
4
|
Class II phosphatidylinositol 3-kinase-C2α is essential for Notch signaling by regulating the endocytosis of γ-secretase in endothelial cells. Sci Rep 2021; 11:5199. [PMID: 33664344 PMCID: PMC7933152 DOI: 10.1038/s41598-021-84548-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/16/2021] [Indexed: 01/09/2023] Open
Abstract
The class II α-isoform of phosphatidylinositol 3-kinase (PI3K-C2α) plays a crucial role in angiogenesis at least in part through participating in endocytosis and, thereby, endosomal signaling of several cell surface receptors including VEGF receptor-2 and TGFβ receptor in vascular endothelial cells (ECs). The Notch signaling cascade regulates many cellular processes including cell proliferation, cell fate specification and differentiation. In the present study, we explored a role of PI3K-C2α in Delta-like 4 (Dll4)-induced Notch signaling in ECs. We found that knockdown of PI3K-C2α inhibited Dll4-induced generation of the signaling molecule Notch intracellular domain 1 (NICD1) and the expression of Notch1 target genes including HEY1, HEY2 and NOTCH3 in ECs but not in vascular smooth muscle cells. PI3K-C2α knockdown did not inhibit Dll4-induced endocytosis of cell surface Notch1. In contrast, PI3K-C2α knockdown as well as clathrin heavy chain knockdown impaired endocytosis of Notch1-cleaving protease, γ-secretase complex, with the accumulation of Notch1 at the perinuclear endolysosomes. Pharmacological blockage of γ-secretase also induced the intracellular accumulation of Notch1. Taken together, we conclude that PI3K-C2α is required for the clathrin-mediated endocytosis of γ-secretase complex, which allows for the cleavage of endocytosed Notch1 by γ-secretase complex at the endolysosomes to generate NICD1 in ECs.
Collapse
|
5
|
Escamilla-Ayala A, Wouters R, Sannerud R, Annaert W. Contribution of the Presenilins in the cell biology, structure and function of γ-secretase. Semin Cell Dev Biol 2020; 105:12-26. [DOI: 10.1016/j.semcdb.2020.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 01/25/2023]
|
6
|
Escamilla-Ayala AA, Sannerud R, Mondin M, Poersch K, Vermeire W, Paparelli L, Berlage C, Koenig M, Chavez-Gutierrez L, Ulbrich MH, Munck S, Mizuno H, Annaert W. Super-resolution microscopy reveals majorly mono- and dimeric presenilin1/γ-secretase at the cell surface. eLife 2020; 9:56679. [PMID: 32631487 PMCID: PMC7340497 DOI: 10.7554/elife.56679] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
γ-Secretase is a multi-subunit enzyme whose aberrant activity is associated with Alzheimer’s disease and cancer. While its structure is atomically resolved, γ-secretase localization in the membrane in situ relies mostly on biochemical data. Here, we combined fluorescent tagging of γ-secretase subunits with super-resolution microscopy in fibroblasts. Structured illumination microscopy revealed single γ-secretase complexes with a monodisperse distribution and in a 1:1 stoichiometry of PSEN1 and nicastrin subunits. In living cells, sptPALM revealed PSEN1/γ-secretase mainly with directed motility and frequenting ‘hotspots’ or high track-density areas that are sensitive to γ-secretase inhibitors. We visualized γ-secretase association with substrates like amyloid precursor protein and N-cadherin, but not with its sheddases ADAM10 or BACE1 at the cell surface, arguing against pre-formed megadalton complexes. Nonetheless, in living cells PSEN1/γ-secretase transiently visits ADAM10 hotspots. Our results highlight the power of super-resolution microscopy for the study of γ-secretase distribution and dynamics in the membrane.
Collapse
Affiliation(s)
- Abril Angélica Escamilla-Ayala
- Laboratory for Membrane Trafficking, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Ragna Sannerud
- Laboratory for Membrane Trafficking, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Magali Mondin
- Bordeaux Imaging Center, UMS 3420, CNRS-University of Bordeaux, US4 INSERM, Bordeaux, France
| | - Karin Poersch
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Wendy Vermeire
- Laboratory for Membrane Trafficking, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Laura Paparelli
- Laboratory for Membrane Trafficking, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,VIB Bio Imaging Core, Leuven, Belgium
| | - Caroline Berlage
- Einstein Center for Neurosciences, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Lucia Chavez-Gutierrez
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Laboratory of Proteolytic Mechanisms in Neurodegeneration, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Maximilian H Ulbrich
- Institute of Internal Medicine IV, Medical Center of the University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Sebastian Munck
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,VIB Bio Imaging Core, Leuven, Belgium
| | - Hideaki Mizuno
- Laboratory of Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, KU Leuven, Heverlee, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Oikawa N, Walter J. Presenilins and γ-Secretase in Membrane Proteostasis. Cells 2019; 8:cells8030209. [PMID: 30823664 PMCID: PMC6468700 DOI: 10.3390/cells8030209] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
The presenilin (PS) proteins exert a crucial role in the pathogenesis of Alzheimer disease (AD) by mediating the intramembranous cleavage of amyloid precursor protein (APP) and the generation of amyloid β-protein (Aβ). The two homologous proteins PS1 and PS2 represent the catalytic subunits of distinct γ-secretase complexes that mediate a variety of cellular processes, including membrane protein metabolism, signal transduction, and cell differentiation. While the intramembrane cleavage of select proteins by γ-secretase is critical in the regulation of intracellular signaling pathways, the plethora of identified protein substrates could also indicate an important role of these enzyme complexes in membrane protein homeostasis. In line with this notion, PS proteins and/or γ-secretase has also been implicated in autophagy, a fundamental process for the maintenance of cellular functions and homeostasis. Dysfunction in the clearance of proteins in the lysosome and during autophagy has been shown to contribute to neurodegeneration. This review summarizes the recent knowledge about the role of PS proteins and γ-secretase in membrane protein metabolism and trafficking, and the functional relation to lysosomal activity and autophagy.
Collapse
Affiliation(s)
- Naoto Oikawa
- Department of Neurology, University of Bonn, 53127 Bonn, Germany.
| | - Jochen Walter
- Department of Neurology, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
8
|
Walter S, Jumpertz T, Hüttenrauch M, Ogorek I, Gerber H, Storck SE, Zampar S, Dimitrov M, Lehmann S, Lepka K, Berndt C, Wiltfang J, Becker-Pauly C, Beher D, Pietrzik CU, Fraering PC, Wirths O, Weggen S. The metalloprotease ADAMTS4 generates N-truncated Aβ4-x species and marks oligodendrocytes as a source of amyloidogenic peptides in Alzheimer's disease. Acta Neuropathol 2019; 137:239-257. [PMID: 30426203 DOI: 10.1007/s00401-018-1929-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/17/2018] [Accepted: 11/04/2018] [Indexed: 02/06/2023]
Abstract
Brain accumulation and aggregation of amyloid-β (Aβ) peptides is a critical step in the pathogenesis of Alzheimer's disease (AD). Full-length Aβ peptides (mainly Aβ1-40 and Aβ1-42) are produced through sequential proteolytic cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. However, studies of autopsy brain samples from AD patients have demonstrated that a large fraction of insoluble Aβ peptides are truncated at the N-terminus, with Aβ4-x peptides being particularly abundant. Aβ4-x peptides are highly aggregation prone, but their origin and any proteases involved in their generation are unknown. We have identified a recognition site for the secreted metalloprotease ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4) in the Aβ peptide sequence, which facilitates Aβ4-x peptide generation. Inducible overexpression of ADAMTS4 in HEK293 cells resulted in the secretion of Aβ4-40 but unchanged levels of Aβ1-x peptides. In the 5xFAD mouse model of amyloidosis, Aβ4-x peptides were present not only in amyloid plaque cores and vessel walls, but also in white matter structures co-localized with axonal APP. In the ADAMTS4-/- knockout background, Aβ4-40 levels were reduced confirming a pivotal role of ADAMTS4 in vivo. Surprisingly, in the adult murine brain, ADAMTS4 was exclusively expressed in oligodendrocytes. Cultured oligodendrocytes secreted a variety of Aβ species, but Aβ4-40 peptides were absent in cultures derived from ADAMTS4-/- mice indicating that the enzyme was essential for Aβ4-x production in this cell type. These findings establish an enzymatic mechanism for the generation of Aβ4-x peptides. They further identify oligodendrocytes as a source of these highly amyloidogenic Aβ peptides.
Collapse
|
9
|
Scholz D, Chernyshova Y, Ückert AK, Leist M. Reduced Aβ secretion by human neurons under conditions of strongly increased BACE activity. J Neurochem 2018; 147:256-274. [PMID: 29804308 DOI: 10.1111/jnc.14467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/06/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
The initial step in the amyloidogenic cascade of amyloid precursor protein (APP) processing is catalyzed by beta-site APP-cleaving enzyme (BACE), and this protease has increased activities in affected areas of Alzheimer's disease brains. We hypothesized that altered APP processing, because of augmented BACE activity, would affect the actions of direct and indirect BACE inhibitors. We therefore compared post-mitotic human neurons (LUHMES) with their BACE-overexpressing counterparts (BLUHMES). Although β-cleavage of APP was strongly increased in BLUHMES, they produced less full-length and truncated amyloid beta (Aβ) than LUHMES. Moreover, low concentrations of BACE inhibitors decreased cellular BACE activity as expected, but increased Aβ1-40 levels. Several other approaches to modulate BACE activity led to a similar, apparently paradoxical, behavior. For instance, reduction in intracellular acidification by bepridil increased Aβ production in parallel with decreased BACE activity. In contrast to BLUHMES, the respective control cells (LUHMES or BLUHMES with catalytically inactive BACE) showed conventional pharmacological responses. Other non-canonical neurochemical responses (so-called 'rebound effects') are well-documented for the Aβ pathway, especially for γ-secretase: a partial block of its activity leads to an increased Aβ secretion by some cell types. We therefore compared LUHMES and BLUHMES regarding rebound effects of γ-secretase inhibitors and found an Aβ rise in LUHMES but not in BLUHMES. Thus, different cellular factors are responsible for the γ-secretase- versus BACE-related Aβ rebound. We conclude that increased BACE activity, possibly accompanied by an altered cellular localization pattern, can dramatically influence Aβ generation in human neurons and affect pharmacological responses to secretase inhibitors. OPEN PRACTICES: Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Diana Scholz
- Chair for in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Yana Chernyshova
- Chair for in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Anna-Katharina Ückert
- Chair for in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Marcel Leist
- Chair for in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| |
Collapse
|
10
|
Gerber H, Wu F, Dimitrov M, Garcia Osuna GM, Fraering PC. Zinc and Copper Differentially Modulate Amyloid Precursor Protein Processing by γ-Secretase and Amyloid-β Peptide Production. J Biol Chem 2017; 292:3751-3767. [PMID: 28096459 DOI: 10.1074/jbc.m116.754101] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/13/2017] [Indexed: 11/06/2022] Open
Abstract
Recent evidence suggests involvement of biometal homeostasis in the pathological mechanisms in Alzheimer's disease (AD). For example, increased intracellular copper or zinc has been linked to a reduction in secreted levels of the AD-causing amyloid-β peptide (Aβ). However, little is known about whether these biometals modulate the generation of Aβ. In the present study we demonstrate in both cell-free and cell-based assays that zinc and copper regulate Aβ production by distinct molecular mechanisms affecting the processing by γ-secretase of its Aβ precursor protein substrate APP-C99. We found that Zn2+ induces APP-C99 dimerization, which prevents its cleavage by γ-secretase and Aβ production, with an IC50 value of 15 μm Importantly, at this concentration, Zn2+ also drastically raised the production of the aggregation-prone Aβ43 found in the senile plaques of AD brains and elevated the Aβ43:Aβ40 ratio, a promising biomarker for neurotoxicity and AD. We further demonstrate that the APP-C99 histidine residues His-6, His-13, and His-14 control the Zn2+-dependent APP-C99 dimerization and inhibition of Aβ production, whereas the increased Aβ43:Aβ40 ratio is substrate dimerization-independent and involves the known Zn2+ binding lysine Lys-28 residue that orientates the APP-C99 transmembrane domain within the lipid bilayer. Unlike zinc, copper inhibited Aβ production by directly targeting the subunits presenilin and nicastrin in the γ-secretase complex. Altogether, our data demonstrate that zinc and copper differentially modulate Aβ production. They further suggest that dimerization of APP-C99 or the specific targeting of individual residues regulating the production of the long, toxic Aβ species, may offer two therapeutic strategies for preventing AD.
Collapse
Affiliation(s)
- Hermeto Gerber
- From the Foundation Eclosion, CH-1228 Plan-Les-Ouates, and Campus Biotech Innovation Park, CH-1202 Geneva, Switzerland.,the Brain Mind Institute and School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland.,the Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland, and
| | - Fang Wu
- the Brain Mind Institute and School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland.,the Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Mitko Dimitrov
- the Brain Mind Institute and School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Guillermo M Garcia Osuna
- the Brain Mind Institute and School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Patrick C Fraering
- From the Foundation Eclosion, CH-1228 Plan-Les-Ouates, and Campus Biotech Innovation Park, CH-1202 Geneva, Switzerland, .,the Brain Mind Institute and School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Höfling C, Morawski M, Zeitschel U, Zanier ER, Moschke K, Serdaroglu A, Canneva F, von Hörsten S, De Simoni M, Forloni G, Jäger C, Kremmer E, Roßner S, Lichtenthaler SF, Kuhn P. Differential transgene expression patterns in Alzheimer mouse models revealed by novel human amyloid precursor protein-specific antibodies. Aging Cell 2016; 15:953-63. [PMID: 27470171 PMCID: PMC5013031 DOI: 10.1111/acel.12508] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2016] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is histopathologically characterized by neurodegeneration, the formation of intracellular neurofibrillary tangles and extracellular Aβ deposits that derive from proteolytic processing of the amyloid precursor protein (APP). As rodents do not normally develop Aβ pathology, various transgenic animal models of AD were designed to overexpress human APP with mutations favouring its amyloidogenic processing. However, these mouse models display tremendous differences in the spatial and temporal appearance of Aβ deposits, synaptic dysfunction, neurodegeneration and the manifestation of learning deficits which may be caused by age-related and brain region-specific differences in APP transgene levels. Consequentially, a comparative temporal and regional analysis of the pathological effects of Aβ in mouse brains is difficult complicating the validation of therapeutic AD treatment strategies in different mouse models. To date, no antibodies are available that properly discriminate endogenous rodent and transgenic human APP in brains of APP-transgenic animals. Here, we developed and characterized rat monoclonal antibodies by immunohistochemistry and Western blot that detect human but not murine APP in brains of three APP-transgenic mouse and one APP-transgenic rat model. We observed remarkable differences in expression levels and brain region-specific expression of human APP among the investigated transgenic mouse lines. This may explain the differences between APP-transgenic models mentioned above. Furthermore, we provide compelling evidence that our new antibodies specifically detect endogenous human APP in immunocytochemistry, FACS and immunoprecipitation. Hence, we propose these antibodies as standard tool for monitoring expression of endogenous or transfected APP in human cells and APP expression in transgenic animals.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul Flechsig Institute for Brain ResearchUniversity of LeipzigLeipzigGermany
| | - Markus Morawski
- Paul Flechsig Institute for Brain ResearchUniversity of LeipzigLeipzigGermany
| | - Ulrike Zeitschel
- Paul Flechsig Institute for Brain ResearchUniversity of LeipzigLeipzigGermany
| | - Elisa R. Zanier
- Department of NeuroscienceIRCCSIstituto di Ricerche Farmacologiche Mario NegriMilanoItaly
| | - Katrin Moschke
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Alperen Serdaroglu
- Institute for Advanced StudyTechnische Universität MünchenGarchingGermany
- Institut für Pathologie und Pathologische AnatomieTechnische Universität MünchenMunichGermany
| | - Fabio Canneva
- Department of Experimental TherapyPräklinisches Experimentelles Tierzentrum (PETZ)Universitätsklinikum ErlangenErlangenGermany
| | - Stephan von Hörsten
- Department of Experimental TherapyPräklinisches Experimentelles Tierzentrum (PETZ)Universitätsklinikum ErlangenErlangenGermany
| | - Maria‐Grazia De Simoni
- Department of NeuroscienceIRCCSIstituto di Ricerche Farmacologiche Mario NegriMilanoItaly
| | - Gianluigi Forloni
- Department of NeuroscienceIRCCSIstituto di Ricerche Farmacologiche Mario NegriMilanoItaly
| | - Carsten Jäger
- Paul Flechsig Institute for Brain ResearchUniversity of LeipzigLeipzigGermany
| | - Elisabeth Kremmer
- Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthInstitute of Molecular ImmunologyMunichGermany
| | - Steffen Roßner
- Paul Flechsig Institute for Brain ResearchUniversity of LeipzigLeipzigGermany
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Institute for Advanced StudyTechnische Universität MünchenGarchingGermany
- Neuroproteomics, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Peer‐Hendrik Kuhn
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Institute for Advanced StudyTechnische Universität MünchenGarchingGermany
- Institut für Pathologie und Pathologische AnatomieTechnische Universität MünchenMunichGermany
- Neuroproteomics, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
| |
Collapse
|
12
|
Kanatsu K, Tomita T. Membrane trafficking and proteolytic activity of γ-secretase in Alzheimer’s disease. Biol Chem 2016; 397:827-35. [DOI: 10.1515/hsz-2016-0146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/04/2016] [Indexed: 12/26/2022]
Abstract
Abstract
γ-Secretase is an intramembrane-cleaving protease that generates various forms of amyloid-β peptides (Aβ) that accumulate in the brains of Alzheimer’s disease (AD) patients. The intracellular trafficking and subcellular localization of γ-secretase are linked to both qualitative and quantitative changes in Aβ production. However, the precise intracellular localization of γ-secretase as well as its detailed regulatory mechanisms have remained elusive. Recent genetic studies on AD provide ample evidence that alteration of the subcellular localization of γ-secretase contributes to the pathogenesis of AD. Here we review our current understanding of the intracellular membrane trafficking of γ-secretase, the association between its localization and proteolytic activity, and the possibility of γ-secretase as a therapeutic target against AD.
Collapse
|
13
|
The Role of Presenilin in Protein Trafficking and Degradation—Implications for Metal Homeostasis. J Mol Neurosci 2016; 60:289-297. [DOI: 10.1007/s12031-016-0826-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022]
|
14
|
Meckler X, Checler F. Presenilin 1 and Presenilin 2 Target γ-Secretase Complexes to Distinct Cellular Compartments. J Biol Chem 2016; 291:12821-12837. [PMID: 27059953 DOI: 10.1074/jbc.m115.708297] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Indexed: 11/06/2022] Open
Abstract
γ-Secretase complexes achieve the production of amyloid peptides playing a key role in Alzheimer disease. These proteases have many substrates involved in important physiological functions. They are composed of two constant subunits, nicastrin and PEN2, and two variable ones, presenilin (PS1 or PS2) and APH1 (APH1aL, APH1aS, or APH1b). Whether the composition of a given γ-secretase complex determines a specific cellular targeting remains unsolved. Here we combined a bidirectional inducible promoter and 2A peptide technology to generate constructs for the temporary, stoichiometric co-expression of six different combinations of the four γ-secretase subunits including EGFP-tagged nicastrin. These plasmids allow for the formation of functional γ-secretase complexes displaying specific activities and maturations. We show that PS1-containing γ-secretase complexes were targeted to the plasma membrane, whereas PS2-containing ones were addressed to the trans-Golgi network, to recycling endosomes, and, depending on the APH1-variant, to late endocytic compartments. Overall, these novel constructs unravel a presenilin-dependent subcellular targeting of γ-secretase complexes. These tools should prove useful to determine whether the cellular distribution of γ-secretase complexes contributes to substrate selectivity and to delineate regulations of their trafficking.
Collapse
Affiliation(s)
- Xavier Meckler
- From the Université de Nice Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR7275, Laboratoire d'Excellence Distalz, Sophia-Antipolis, 06560 Valbonne, France
| | - Frédéric Checler
- From the Université de Nice Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR7275, Laboratoire d'Excellence Distalz, Sophia-Antipolis, 06560 Valbonne, France.
| |
Collapse
|
15
|
Chen AC, Kim S, Shepardson N, Patel S, Hong S, Selkoe DJ. Physical and functional interaction between the α- and γ-secretases: A new model of regulated intramembrane proteolysis. J Cell Biol 2015; 211:1157-76. [PMID: 26694839 PMCID: PMC4687875 DOI: 10.1083/jcb.201502001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 11/11/2015] [Indexed: 12/20/2022] Open
Abstract
Many single-transmembrane proteins are sequentially cleaved by ectodomain-shedding α-secretases and the γ-secretase complex, a process called regulated intramembrane proteolysis (RIP). These cleavages are thought to be spatially and temporally separate. In contrast, we provide evidence for a hitherto unrecognized multiprotease complex containing both α- and γ-secretase. ADAM10 (A10), the principal neuronal α-secretase, interacted and cofractionated with γ-secretase endogenously in cells and mouse brain. A10 immunoprecipitation yielded γ-secretase proteolytic activity and vice versa. In agreement, superresolution microscopy showed that portions of A10 and γ-secretase colocalize. Moreover, multiple γ-secretase inhibitors significantly increased α-secretase processing (r = -0.86) and decreased β-secretase processing of β-amyloid precursor protein. Select members of the tetraspanin web were important both in the association between A10 and γ-secretase and the γ → α feedback mechanism. Portions of endogenous BACE1 coimmunoprecipitated with γ-secretase but not A10, suggesting that β- and α-secretases can form distinct complexes with γ-secretase. Thus, cells possess large multiprotease complexes capable of sequentially and efficiently processing transmembrane substrates through a spatially coordinated RIP mechanism.
Collapse
Affiliation(s)
- Allen C Chen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Sumin Kim
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Nina Shepardson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Sarvagna Patel
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Soyon Hong
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
16
|
Walter J. Twenty Years of Presenilins--Important Proteins in Health and Disease. Mol Med 2015; 21 Suppl 1:S41-8. [PMID: 26605647 DOI: 10.2119/molmed.2015.00163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive decline in cognitive functions associated with depositions of aggregated proteins in the form of extracellular plaques and neurofibrillary tangles in the brain. Extracellular plaques contain characteristic fibrils of amyloid β peptides (Aβ); tangles consist of paired helical filaments of the microtubuli-associated protein tau. Although AD manifests predominantly at ages above 65 years, rare cases show a much earlier onset of disease symptoms with very similar neuropathological characteristics. In 1995, two homologous genes were identified, in which mutations are associated with dominantly inherited familial forms of early onset AD. The genes therefore were dubbed presenilins (PS) and encode polytopic transmembrane proteins. At this time the role of these proteins in the pathogenesis of AD and their biological function in general were completely unknown. However, individuals carrying PS mutations showed alterations in the composition of different length variants of Aβ peptides in blood and cerebrospinal fluid, which indicated the potential involvement of presenilins in the metabolism of Aβ. After 20 years of intense research, the roles of presenilins in Aβ generation as well as important functions in biological processes have been identified. Presenilins represent the catalytic components of protease complexes that directly cleave the amyloid precursor protein (APP) but also many other proteins with important physiological functions. Here, the progress in presenilin research from basic characterization of their cellular functions to the targeting in clinical trials for AD therapy, and potential future directions, will be discussed.
Collapse
Affiliation(s)
- Jochen Walter
- Department of Neurology, University of Bonn, Bonn, Germany
| |
Collapse
|
17
|
Cui J, Wang X, Li X, Wang X, Zhang C, Li W, Zhang Y, Gu H, Xie X, Nan F, Zhao J, Pei G. Targeting the γ-/β-secretase interaction reduces β-amyloid generation and ameliorates Alzheimer's disease-related pathogenesis. Cell Discov 2015; 1:15021. [PMID: 27462420 PMCID: PMC4860824 DOI: 10.1038/celldisc.2015.21] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/18/2015] [Indexed: 12/19/2022] Open
Abstract
Despite decades of intense global effort, no disease-modifying drugs for Alzheimer’s disease have emerged. Molecules targeting catalytic activities of γ-secretase or β-site APP-cleaving enzyme 1 (BACE1) have been beset by undesired side effects. We hypothesized that blocking the interaction between BACE1 and γ-secretase subunit presenilin-1 (PS1) might offer an alternative strategy to selectively suppress Aβ generation. Through high-throughput screening, we discovered that 3-α-akebonoic acid (3AA) interferes with PS1/BACE1 interaction and reduces Aβ production. Structural analogs of 3AA were systematically synthesized and the functional analog XYT472B was identified. Photo-activated crosslinking and biochemical competition assays showed that 3AA and XYT472B bind to PS1, interfere with PS1/BACE1 interaction, and reduce Aβ production, whereas sparing secretase activities. Furthermore, treatment of APP/PS1 mice with XYT472B alleviated cognitive dysfunction and Aβ-related pathology. Together, our results indicate that chemical interference of PS1/BACE1 interaction is a promising strategy for Alzheimer’s disease therapeutics.
Collapse
Affiliation(s)
- Jin Cui
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Xiaoyin Wang
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai, China
| | - Xiaohang Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Xin Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Chenlu Zhang
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai, China
| | - Wei Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Yangming Zhang
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai, China
| | - Haifeng Gu
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai, China
| | - Xin Xie
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai, China
| | - Fajun Nan
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai, China
| | - Jian Zhao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
18
|
Tang W, Tam JHK, Seah C, Chiu J, Tyrer A, Cregan SP, Meakin SO, Pasternak SH. Arf6 controls beta-amyloid production by regulating macropinocytosis of the Amyloid Precursor Protein to lysosomes. Mol Brain 2015; 8:41. [PMID: 26170135 PMCID: PMC4501290 DOI: 10.1186/s13041-015-0129-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/11/2015] [Indexed: 11/15/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the deposition of Beta-Amyloid (Aβ) peptides in the brain. Aβ peptides are generated by cleavage of the Amyloid Precursor Protein (APP) by the β − and γ − secretase enzymes. Although this process is tightly linked to the internalization of cell surface APP, the compartments responsible are not well defined. We have found that APP can be rapidly internalized from the cell surface to lysosomes, bypassing early and late endosomes. Here we show by confocal microscopy and electron microscopy that this pathway is mediated by macropinocytosis. APP internalization is enhanced by antibody binding/crosslinking of APP suggesting that APP may function as a receptor. Furthermore, a dominant negative mutant of Arf6 blocks direct transport of APP to lysosomes, but does not affect classical endocytosis to endosomes. Arf6 expression increases through the hippocampus with the development of Alzheimer’s disease, being expressed mostly in the CA1 and CA2 regions in normal individuals but spreading through the CA3 and CA4 regions in individuals with pathologically diagnosed AD. Disruption of lysosomal transport of APP reduces both Aβ40 and Aβ42 production by more than 30 %. Our findings suggest that the lysosome is an important site for Aβ production and that altering APP trafficking represents a viable strategy to reduce Aβ production.
Collapse
Affiliation(s)
- Weihao Tang
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada. .,Department of Physiology and Pharmacology, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Joshua H K Tam
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada. .,Department of Physiology and Pharmacology, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Claudia Seah
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada.
| | - Justin Chiu
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada. .,Department of Physiology and Pharmacology, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Andrea Tyrer
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada. .,Department of Physiology and Pharmacology, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Sean P Cregan
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada. .,Department of Physiology and Pharmacology, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Susan O Meakin
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada. .,Department of Biochemistry, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Stephen H Pasternak
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada. .,Department of Clinical Neurological Sciences, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada. .,Department of Physiology and Pharmacology, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
19
|
Tam JHK, Seah C, Pasternak SH. The Amyloid Precursor Protein is rapidly transported from the Golgi apparatus to the lysosome and where it is processed into beta-amyloid. Mol Brain 2014; 7:54. [PMID: 25085554 PMCID: PMC4237969 DOI: 10.1186/s13041-014-0054-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/23/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by cerebral deposition of β-amyloid peptide (Aβ). Aβ is produced by sequential cleavage of the Amyloid Precursor Protein (APP) by β- and γ-secretases. Many studies have demonstrated that the internalization of APP from the cell surface can regulate Aβ production, although the exact organelle in which Aβ is produced remains contentious. A number of recent studies suggest that intracellular trafficking also plays a role in regulating Aβ production, but these pathways are relatively under-studied. The goal of this study was to elucidate the intracellular trafficking of APP, and to examine the site of intracellular APP processing. RESULTS We have tagged APP on its C-terminal cytoplasmic tail with photoactivatable Green Fluorescent Protein (paGFP). By photoactivating APP-paGFP in the Golgi, using the Golgi marker Galactosyltranferase fused to Cyan Fluorescent Protein (GalT-CFP) as a target, we are able to follow a population of nascent APP molecules from the Golgi to downstream compartments identified with compartment markers tagged with red fluorescent protein (mRFP or mCherry); including rab5 (early endosomes) rab9 (late endosomes) and LAMP1 (lysosomes). Because γ-cleavage of APP releases the cytoplasmic tail of APP including the photoactivated GFP, resulting in loss of fluorescence, we are able to visualize the cleavage of APP in these compartments. Using APP-paGFP, we show that APP is rapidly trafficked from the Golgi apparatus to the lysosome; where it is rapidly cleared. Chloroquine and the highly selective γ-secretase inhibitor, L685, 458, cause the accumulation of APP in lysosomes implying that APP is being cleaved by secretases in the lysosome. The Swedish mutation dramatically increases the rate of lysosomal APP processing, which is also inhibited by chloroquine and L685, 458. By knocking down adaptor protein 3 (AP-3; a heterotetrameric protein complex required for trafficking many proteins to the lysosome) using siRNA, we are able to reduce this lysosomal transport. Blocking lysosomal transport of APP reduces Aβ production by more than a third. CONCLUSION These data suggests that AP-3 mediates rapid delivery of APP to lysosomes, and that the lysosome is a likely site of Aβ production.
Collapse
Affiliation(s)
- Joshua HK Tam
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, 100 Perth Drive, London N6A 5K8, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, the University of Western Ontario, London N6A 5K8, Ontario, Canada
| | - Claudia Seah
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, 100 Perth Drive, London N6A 5K8, Ontario, Canada
| | - Stephen H Pasternak
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, 100 Perth Drive, London N6A 5K8, Ontario, Canada
- Department of Clinical Neurological Sciences, London N6A 5K8, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, the University of Western Ontario, London N6A 5K8, Ontario, Canada
| |
Collapse
|
20
|
Wolfe MS. Unlocking truths of γ-secretase in Alzheimer's disease: what is the translational potential? FUTURE NEUROLOGY 2014; 9:419-429. [PMID: 26146489 DOI: 10.2217/fnl.14.35] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Considerable evidence, particularly from genetics, points to the aggregation-prone amyloid β-peptide as a pathogenic entity in Alzheimer's disease. Hence, the proteases that produce this peptide from its precursor protein have been prime targets for the development of potential therapeutics. One of these proteases, γ-secretase, has been a particular focus. Many inhibitors and modulators of this membrane-embedded protease complex have been identified, with some brought into late-stage clinical trials, where they have spectacularly failed. The reasons for these failures will be discussed, along with recent findings on the mechanism of γ-secretase and of Alzheimer-causing mutations that may suggest new strategies for targeting this enzyme.
Collapse
Affiliation(s)
- Michael S Wolfe
- Center for Neurologic Disease, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Tel.: +1 617 525 5511
| |
Collapse
|
21
|
Tomita T. Secretase inhibitors and modulators for Alzheimer’s disease treatment. Expert Rev Neurother 2014; 9:661-79. [DOI: 10.1586/ern.09.24] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Sesele K, Thanopoulou K, Paouri E, Tsefou E, Klinakis A, Georgopoulos S. Conditional inactivation of nicastrin restricts amyloid deposition in an Alzheimer's disease mouse model. Aging Cell 2013; 12:1032-40. [PMID: 23826707 DOI: 10.1111/acel.12131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2013] [Indexed: 12/15/2022] Open
Abstract
Production of Aβ by γ-secretase is a key event in Alzheimer's disease (AD). The γ-secretase complex consists of presenilin (PS) 1 or 2, nicastrin (ncstn), Pen-2, and Aph-1 and cleaves type I transmembrane proteins, including the amyloid precursor protein (APP). Although ncstn is widely accepted as an essential component of the complex required for γ-secretase activity, recent in vitro studies have suggested that ncstn is dispensable for APP processing and Aβ production. The focus of this study was to answer this controversy and evaluate the role of ncstn in Aβ generation and the development of the amyloid-related phenotype in the mouse brain. To eliminate ncstn expression in the mouse brain, we used a ncstn conditional knockout mouse that we mated with an established AD transgenic mouse model (5XFAD) and a neuronal Cre-expressing transgenic mouse (CamKIIα-iCre), to generate AD mice (5XFAD/CamKIIα-iCre/ncstn(f/f) mice) where ncstn was conditionally inactivated in the brain. 5XFAD/CamKIIα-iCre/ncstn(f/f) mice at 10 week of age developed a neurodegenerative phenotype with a significant reduction in Aβ production and formation of Aβ aggregates and the absence of amyloid plaques. Inactivation of nctsn resulted in substantial accumulation of APP-CTFs and altered PS1 expression. These results reveal a key role for ncstn in modulating Aβ production and amyloid plaque formation in vivo and suggest ncstn as a target in AD therapeutics.
Collapse
Affiliation(s)
- Katia Sesele
- Department of Cell Biology; Biomedical Research Foundation; Academy of Athens; Athens 115 27 Greece
| | - Kalliopi Thanopoulou
- Department of Cell Biology; Biomedical Research Foundation; Academy of Athens; Athens 115 27 Greece
| | - Evi Paouri
- Department of Cell Biology; Biomedical Research Foundation; Academy of Athens; Athens 115 27 Greece
| | - Eliona Tsefou
- Department of Cell Biology; Biomedical Research Foundation; Academy of Athens; Athens 115 27 Greece
| | - Apostolos Klinakis
- Department of Genetics and Gene Therapy; Biomedical Research Foundation; Academy of Athens; Athens 115 27 Greece
| | - Spiros Georgopoulos
- Department of Cell Biology; Biomedical Research Foundation; Academy of Athens; Athens 115 27 Greece
| |
Collapse
|
23
|
Wunderlich P, Glebov K, Kemmerling N, Tien NT, Neumann H, Walter J. Sequential proteolytic processing of the triggering receptor expressed on myeloid cells-2 (TREM2) protein by ectodomain shedding and γ-secretase-dependent intramembranous cleavage. J Biol Chem 2013; 288:33027-36. [PMID: 24078628 DOI: 10.1074/jbc.m113.517540] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Triggering receptor expressed on myeloid cells-2 (TREM2) and its signaling adaptor protein TYROBP/DAP12 play important roles in signal transduction in dendritic cells, osteoclasts, tissue macrophages, and microglia. Recently, TREM2 variants have been shown to be linked to late onset Alzheimer disease. Here, we demonstrate that TREM2 undergoes sequential proteolytic processing by ectodomain shedding and intramembrane proteolysis. The C-terminal fragment (CTF) of TREM2 generated by ectodomain shedding is cleaved by γ-secretase. Importantly, pharmacologic and genetic γ-secretase inhibition resulted in accumulation of TREM2 CTF at the plasma membrane that also interacts with the signaling adaptor protein DAP12. Thus, the accumulated TREM2 CTF thereby might limit the interaction of DAP12 with the functional full-length receptor, resulting in decreased DAP12 phosphorylation and impaired metabolism of phosphatidylinositol 4,5-bisphosphate. Together, these data demonstrate γ-secretase-mediated intramembranous proteolysis of TREM2 and functionally link two Alzheimer disease-associated proteins in one signaling pathway.
Collapse
Affiliation(s)
- Patrick Wunderlich
- From the Department of Neurology, University of Bonn, 53127 Bonn, Germany and
| | | | | | | | | | | |
Collapse
|
24
|
Morohashi Y, Tomita T. Protein trafficking and maturation regulate intramembrane proteolysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2855-61. [PMID: 23770323 DOI: 10.1016/j.bbamem.2013.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 05/04/2013] [Accepted: 06/03/2013] [Indexed: 12/30/2022]
Abstract
Intramembrane-cleaving proteases (I-CLiPs) are membrane embedded proteolytic enzymes. All substrates identified so far are also membrane proteins, involving a number of critical cellular signaling as well as human diseases. After synthesis and assembly at the endoplasmic reticulum, membrane proteins are exported to the Golgi apparatus and transported to their sites of action. A number of studies have revealed the importance of the intracellular membrane trafficking in i-CLiP-mediated intramembrane proteolysis, not only for limiting the unnecessary encounter between i-CLiPs and their substrate but also for their cleavage site preference. In this review, we will discuss recent advances in our understanding of how each i-CLiP proteolysis is regulated by intracellular vesicle trafficking. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Yuichi Morohashi
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | |
Collapse
|
25
|
Goo JS, Kim YB, Shim SB, Jee SW, Lee SH, Kim JE, Hwang IS, Lee YJ, Kwak MH, Lim CJ, Hong JT, Hwang DY. Nicastrin overexpression in transgenic mice induces aberrant behavior and APP processing. Mol Neurobiol 2013; 48:232-43. [PMID: 23595812 DOI: 10.1007/s12035-013-8453-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/02/2013] [Indexed: 10/27/2022]
Abstract
Nicastrin (NCT) is a component of the presenilin protein complex, which is involved in the cleavage of β-amyloid precursor protein (βAPP) and Notch. The aim of this study was to determine the manner in which overexpression of wild-type human nicastrin (hNCTw) or mutant human nicastrin (hNCTm, D336A/Y337A) regulates brain functions and amyloid precusor protein (APP) processing. For this, we created transgenic (Tg) mice expressing neuron-specific enolase (NSE)-controlled hNCTw or hNCTm and measured their phenotypes as time passed. The NSE/hNCTw and NSE/hNCTm Tg groups exhibited greater behavioral dysfunction from 10 months of age than the non-Tg group, although their severities differed. Further, activity and component levels of the γ-secretase complex were significantly elevated in NSE/hNCTw Tg mice, expect for PEN-2. These alterations induced stimulation of APP processing, resulting in overproduction of Aβ-42 peptide in the NSE/hNCTw Tg group, whereas the NSE/hNCTm Tg group showed a comparatively weaker effect. Furthermore, the highest expression levels of β-secretase and NICD were observed in the NSE/hNCTw Tg group, similar to other phenotypes. Especially, a significances interference on the interaction between NCT and γ-secretase substrates was detected in NSE/hNCTm Tg groups compare with NSE/hNCTw Tg group. These results indicate that hNCTw overexpression in Tg mice promoted active assembly of the γ-secretase complex through modulation of APP processing and behavior, whereas the lesser effect in NSE/hNCTm Tg mice was due to reduced expression of hNCTm. These Tg mice could be useful for the development and application of therapeutic drugs in an animal model of Alzheimer's disease.
Collapse
Affiliation(s)
- Jun Seo Goo
- Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup, Miryang-si, Gyeongsangnam-do, 627-706, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tomita T, Iwatsubo T. Structural biology of presenilins and signal peptide peptidases. J Biol Chem 2013; 288:14673-80. [PMID: 23585568 DOI: 10.1074/jbc.r113.463281] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Presenilin and signal peptide peptidase are multispanning intramembrane-cleaving proteases with a conserved catalytic GxGD motif. Presenilin comprises the catalytic subunit of γ-secretase, a protease responsible for the generation of amyloid-β peptides causative of Alzheimer disease. Signal peptide peptidase proteins are implicated in the regulation of the immune system. Both protease family proteins have been recognized as druggable targets for several human diseases, but their detailed structure still remains unknown. Recently, the x-ray structures of some archaeal GxGD proteases have been determined. We review the recent progress in biochemical and biophysical probing of the structure of these atypical proteases.
Collapse
Affiliation(s)
- Taisuke Tomita
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
27
|
Park HJ, Shabashvili D, Nekorchuk MD, Shyqyriu E, Jung JI, Ladd TB, Moore BD, Felsenstein KM, Golde TE, Kim SH. Retention in endoplasmic reticulum 1 (RER1) modulates amyloid-β (Aβ) production by altering trafficking of γ-secretase and amyloid precursor protein (APP). J Biol Chem 2012; 287:40629-40. [PMID: 23043097 PMCID: PMC3504776 DOI: 10.1074/jbc.m112.418442] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/05/2012] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Aβ production is influenced by intracellular trafficking of secretases and amyloid precursor protein (APP). RESULTS Retention in endoplasmic reticulum 1 (RER1) regulates the trafficking of γ-secretase and APP, thereby influences Aβ production. CONCLUSION RER1, an ER retention/retrieval factor for γ-secretase and APP, modulates Aβ production. SIGNIFICANCE RER1 and its influence on γ-secretase and APP may be implicated for a safe strategy to target Aβ production. The presence of neuritic plaques containing aggregated amyloid-β (Aβ) peptides in the brain parenchyma is a pathological hallmark of Alzheimer disease (AD). Aβ is generated by sequential cleavage of the amyloid β precursor protein (APP) by β- and γ-secretase, respectively. As APP processing to Aβ requires transport through the secretory pathway, trafficking of the substrate and access to the secretases are key factors that can influence Aβ production (Thinakaran, G., and Koo, E. H. (2008) Amyloid precursor protein trafficking, processing, and function. J. Biol. Chem. 283, 29615-29619). Here, we report that retention in endoplasmic reticulum 1 (RER1) associates with γ-secretase in early secretory compartments and regulates the intracellular trafficking of γ-secretase. RER1 overexpression decreases both γ-secretase localization on the cell surface and Aβ secretion and conversely RER1 knockdown increases the level of cell surface γ-secretase and increases Aβ secretion. Furthermore, we find that increased RER1 levels decrease mature APP and increase immature APP, resulting in less surface accumulation of APP. These data show that RER1 influences the trafficking and localization of both γ-secretase and APP, thereby regulating the production and secretion of Aβ peptides.
Collapse
Affiliation(s)
- Hyo-Jin Park
- From the Department of Pharmacology and Therapeutics, and
- the Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | | | | | - Eva Shyqyriu
- From the Department of Pharmacology and Therapeutics, and
| | - Joo In Jung
- the Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Thomas B. Ladd
- the Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Brenda D. Moore
- the Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Kevin M. Felsenstein
- the Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Todd E. Golde
- the Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Seong-Hun Kim
- From the Department of Pharmacology and Therapeutics, and
| |
Collapse
|
28
|
Tanabe C, Maeda T, Zou K, Liu J, Liu S, Nakajima T, Komano H. The ubiquitin ligase synoviolin up-regulates amyloid β production by targeting a negative regulator of γ-secretase, Rer1, for degradation. J Biol Chem 2012; 287:44203-11. [PMID: 23129766 DOI: 10.1074/jbc.m112.365296] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease is characterized by the deposition of Aβ, which is generated from the amyloid precursor protein through its cleavage by β- and γ-secretases. The γ-secretase complex component nicastrin (NCT) plays significant roles in the assembly and proper trafficking of the γ-secretase complex and in the recognition of amyloid precursor protein. NCT is incorporated into the γ-secretase complex in the endoplasmic reticulum (ER) and glycosylated in the Golgi. In contrast, unassembled NCT is retrieved or retained in the ER by the protein Retention in endoplasmic reticulum 1 (Rer1). We reported previously that synoviolin (Syvn), an E3 ubiquitin ligase, degrades NCT and affects the generation of Aβ. Here, we examined in more detail the effect of Syvn on the generation of Aβ. We found that overexpression of a dominant negative form of Syvn (C307A mutant) and a Syvn-RNAi decreased the generation of Aβ. These results indicate that the ubiquitin ligase activity of Syvn up-regulates the generation of Aβ. We hypothesized, therefore, that Syvn regulates the assembly or localization of the γ-secretase complex by ubiquitinating Rer1, resulting in its subsequent degradation. Our findings that the level of Rer1 was increased in Syvn knockout fibroblasts because of inhibition of its degradation support this hypothesis. Moreover, we found that Rer1 interacts with Syvn in the ER, is ubiquitinated by Syvn, and is then degraded via the proteasome or lysosomal pathways. Finally, we showed that localization of mature NCT to the plasma membrane as well as γ-secretase complex levels are decreased in fibroblasts of Syvn knockout mice. Thus, it is likely that Syvn regulates the assembly of the γ-secretase complex via the degradation of Rer1, which results in the generation of Aβ.
Collapse
Affiliation(s)
- Chiaki Tanabe
- Department of Neuroscience, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate 028-3694, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Mo JS, Yoon JH, Hong JA, Kim MY, Ann EJ, Ahn JS, Kim SM, Baek HJ, Lang F, Choi EJ, Park HS. Phosphorylation of nicastrin by SGK1 leads to its degradation through lysosomal and proteasomal pathways. PLoS One 2012; 7:e37111. [PMID: 22590650 PMCID: PMC3349648 DOI: 10.1371/journal.pone.0037111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/13/2012] [Indexed: 12/18/2022] Open
Abstract
The gamma-secretase complex is involved in the intramembranous proteolysis of a variety of substrates, including the amyloid precursor protein and the Notch receptor. Nicastrin (NCT) is an essential component of the gamma-secretase complex and functions as a receptor for gamma-secretase substrates. In this study, we determined that serum- and glucocorticoid-induced protein kinase 1 (SGK1) markedly reduced the protein stability of NCT. The SGK1 kinase activity was decisive for NCT degradation and endogenous SGK1 inhibited gamma-secretase activity. SGK1 downregulates NCT protein levels via proteasomal and lysosomal pathways. Furthermore, SGK1 directly bound to and phosphorylated NCT on Ser437, thereby promoting protein degradation. Collectively, our findings indicate that SGK1 is a gamma-secretase regulator presumably effective through phosphorylation and degradation of NCT.
Collapse
Affiliation(s)
- Jung-Soon Mo
- School of Biological Sciences and Technology, Hormone Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Hye Yoon
- School of Biological Sciences and Technology, Hormone Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Ae Hong
- School of Biological Sciences and Technology, Hormone Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Mi-Yeon Kim
- School of Biological Sciences and Technology, Hormone Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Eun-Jung Ann
- School of Biological Sciences and Technology, Hormone Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Seon Ahn
- School of Biological Sciences and Technology, Hormone Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Su-Man Kim
- School of Biological Sciences and Technology, Hormone Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Hyeong-Jin Baek
- School of Biological Sciences and Technology, Hormone Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Eui-Ju Choi
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hee-Sae Park
- School of Biological Sciences and Technology, Hormone Research Center, Chonnam National University, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
30
|
Haass C, Kaether C, Thinakaran G, Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2012; 2:a006270. [PMID: 22553493 PMCID: PMC3331683 DOI: 10.1101/cshperspect.a006270] [Citation(s) in RCA: 769] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Accumulations of insoluble deposits of amyloid β-peptide are major pathological hallmarks of Alzheimer disease. Amyloid β-peptide is derived by sequential proteolytic processing from a large type I trans-membrane protein, the β-amyloid precursor protein. The proteolytic enzymes involved in its processing are named secretases. β- and γ-secretase liberate by sequential cleavage the neurotoxic amyloid β-peptide, whereas α-secretase prevents its generation by cleaving within the middle of the amyloid domain. In this chapter we describe the cell biological and biochemical characteristics of the three secretase activities involved in the proteolytic processing of the precursor protein. In addition we outline how the precursor protein maturates and traffics through the secretory pathway to reach the subcellular locations where the individual secretases are preferentially active. Furthermore, we illuminate how neuronal activity and mutations which cause familial Alzheimer disease affect amyloid β-peptide generation and therefore disease onset and progression.
Collapse
Affiliation(s)
- Christian Haass
- DZNE-German Center for Neurodegenerative Diseases, 80336 Munich, Germany; Adolf Butenandt-Institute, Biochemistry, Ludwig-Maximilians University, 80336 Munich, Germany.
| | | | | | | |
Collapse
|
31
|
Fluhrer R, Kamp F, Grammer G, Nuscher B, Steiner H, Beyer K, Haass C. The Nicastrin ectodomain adopts a highly thermostable structure. Biol Chem 2012; 392:995-1001. [PMID: 21848507 DOI: 10.1515/bc.2011.169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nicastrin is a type I transmembrane glycoprotein, which is part of the high molecular weight γ-secretase complex. γ-Secretase is one of the key players associated with the generation of Alzheimer's disease pathology, since it liberates the neurotoxic amyloid β-peptide. Four proteins Nicastrin, anterior pharynx-defective-1 (Aph-1), presenilin enhancer-2 (Pen-2) and Presenilin are essential to form the active γ-secretase complex. Recently it has been shown, that Nicastrin has a key function in stabilizing the mature γ-secretase complex and may also be involved in substrate recognition. So far no structural data for the Nicastrin ectodomain or any other γ-secretase component are available. We therefore used Circular Dichroism (CD) spectroscopy to demonstrate that Nicastrin, similar to its homologues, the Streptomyces griseus aminopeptidase (SGAP) and the transferrin receptor (TfR), adopts a thermostable secondary structure. Furthermore, the Nicastrin ectodomain has an exceptionally high propensity to refold after thermal denaturation. These findings provide evidence to further support the hypothesis that Nicastrin may share evolutionary conserved properties with the aminopeptidase and the transferrin receptor family.
Collapse
Affiliation(s)
- Regina Fluhrer
- Adolf-Butenandt-Institute, Biochemistry, Ludwig Maximilians University, Schillerstrasse 44, 80336 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Fassler M, Li X, Kaether C. Polar transmembrane-based amino acids in presenilin 1 are involved in endoplasmic reticulum localization, Pen2 protein binding, and γ-secretase complex stabilization. J Biol Chem 2011; 286:38390-38396. [PMID: 21914807 PMCID: PMC3207410 DOI: 10.1074/jbc.m111.252429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 09/02/2011] [Indexed: 11/06/2022] Open
Abstract
γ-Secretase is composed of the four membrane proteins presenilin, nicastrin, Pen2, and Aph1. These four proteins assemble in a coordinated and regulated manner into a high molecular weight complex. The subunits constitute a total of 19 transmembrane domains (TMD), with many carrying important amino acids involved in catalytic activity, interaction with other subunits, or in ER retention/retrieval of unassembled subunits. We here focus on TMD4 of presenilin 1 (PS1) and show that a number of polar amino acids are critical for γ-secretase assembly and function. An asparagine, a threonine, and an aspartate form a polar interface important for endoplasmic reticulum retention/retrieval. A single asparagine in TMD4 of PS1 is involved in a protein-protein interaction by binding to another asparagine in Pen2. Intriguingly, a charged aspartate in TMD4 is critical for γ-secretase activity, most likely by stabilizing the newly formed complex.
Collapse
Affiliation(s)
- Matthias Fassler
- Leibniz Institut für Altersforschung-Fritz Lipmann Institut, 07743 Jena, Germany
| | - Xiaolin Li
- Leibniz Institut für Altersforschung-Fritz Lipmann Institut, 07743 Jena, Germany
| | - Christoph Kaether
- Leibniz Institut für Altersforschung-Fritz Lipmann Institut, 07743 Jena, Germany.
| |
Collapse
|
33
|
Fraering PC. Structural and Functional Determinants of gamma-Secretase, an Intramembrane Protease Implicated in Alzheimer's Disease. Curr Genomics 2011; 8:531-49. [PMID: 19415127 PMCID: PMC2647162 DOI: 10.2174/138920207783769521] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/27/2007] [Accepted: 12/27/2007] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease is the most common form of neurodegenerative diseases in humans, characterized by the progressive accumulation and aggregation of amyloid-β peptides (Aβ) in brain regions subserving memory and cognition. These 39-43 amino acids long peptides are generated by the sequential proteolytic cleavages of the amyloid-β precursor protein (APP) by β- and γ-secretases, with the latter being the founding member of a new class of intramembrane-cleaving proteases (I-CliPs) characterized by their intramembranous catalytic residues hydrolyzing the peptide bonds within the transmembrane regions of their respective substrates. These proteases include the S2P family of metalloproteases, the Rhomboid family of serine proteases, and two aspartyl proteases: the signal peptide peptidase (SPP) and γ-secretase. In sharp contrast to Rhomboid and SPP that function as a single component, γ-secretase is a multi-component protease with complex assembly, maturation and activation processes. Recently, two low-resolution three-dimensional structures of γ-secretase and three high-resolution structures of the GlpG rhomboid protease have been obtained almost simultaneously by different laboratories. Although these proteases are unrelated by sequence or evolution, they seem to share common functional and structural mechanisms explaining how they catalyze intramembrane proteolysis. Indeed, a water-containing chamber in the catalytic cores of both γ-secretase and GlpG rhomboid provides the hydrophilic environment required for proteolysis and a lateral gating mechanism controls substrate access to the active site. The studies that have identified and characterized the structural determinants critical for the assembly and activity of the γ-secretase complex are reviewed here.
Collapse
Affiliation(s)
- Patrick C Fraering
- Brain Mind Institute and School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
34
|
Neutralization of the γ-secretase activity by monoclonal antibody against extracellular domain of nicastrin. Oncogene 2011; 31:787-798. [PMID: 21725355 DOI: 10.1038/onc.2011.265] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Several lines of evidence suggest that aberrant Notch signaling contributes to the development of several types of cancer. Activation of Notch receptor is executed through intramembrane proteolysis by γ-secretase, which is a multimeric membrane-embedded protease comprised of presenilin, nicastrin (NCT), anterior pharynx defective 1 and PEN-2. In this study, we report the neutralization of the γ-secretase activity by a novel monoclonal antibody A5226A against the extracellular domain of NCT, generated by using a recombinant budded baculovirus as an immunogen. This antibody recognized fully glycosylated mature NCT in the active γ-secretase complex on the cell surface, and inhibited the γ-secretase activity by competing with the substrate binding in vitro. Moreover, A5226A abolished the γ-secretase activity-dependent growth of cancer cells in a xenograft model. Our data provide compelling evidence that NCT is a molecular target for the mechanism-based inhibition of γ-secretase, and that targeting NCT might be a novel therapeutic strategy against cancer caused by aberrant γ-secretase activity and Notch signaling.
Collapse
|
35
|
Marutani T, Maeda T, Tanabe C, Zou K, Araki W, Kokame K, Michikawa M, Komano H. ER-stress-inducible Herp, facilitates the degradation of immature nicastrin. Biochim Biophys Acta Gen Subj 2011; 1810:790-8. [PMID: 21600962 DOI: 10.1016/j.bbagen.2011.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 03/29/2011] [Accepted: 04/29/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND Herp is an endoplasmic reticulum (ER)-stress-inducible membrane protein harboring an ubiquitin-like domain (ULD). However, its biological functions are not fully understood. Here, we examined the role of Herp in the degradation of γ-secretase components. METHODS Effects of ULD-lacking Herp (ΔUb-Herp) expression on the degradation of γ-secretase components were analyzed. RESULTS The cellular expression of ΔUb-Herp was found to inhibit the degradation of overexpressed immature nicastrin and full-length presenilin. The mechanisms underlying Herp-mediated nicastrin degradation was further analyzed. We found that immature nicastrin accumulates in the ER of ΔUb-Herp overexpressing cells or Herp-deficient cells more than that in the ER of wild-type cells. Further, ΔUb-Herp expression inhibited nicastrin ubiquitination, suggesting that the ULD of Herp is likely involved in nicastrin ubiquitination. Co-immunoprecipitation study showed that Herp as well as ΔUb-Herp potentially interacts with nicastrin, mediating nicastrin interaction with p97, which functions in retranslocation of misfolded proteins from the ER to the cytosol. CONCLUSIONS Thus, Herp is likely involved in degradation of immature nicastrin by facilitating p97-dependent nicastrin retranslocation and ubiquitination. GENERAL SIGNIFICANCE We suggest that Herp could play a role in the elimination of the excess unassembled components of a multimeric complex.
Collapse
Affiliation(s)
- Toshihiro Marutani
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lichtenthaler SF, Haass C, Steiner H. Regulated intramembrane proteolysis--lessons from amyloid precursor protein processing. J Neurochem 2011; 117:779-96. [PMID: 21413990 DOI: 10.1111/j.1471-4159.2011.07248.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Regulated intramembrane proteolysis (RIP) controls the communication between cells and the extracellular environment. RIP is essential in the nervous system, but also in other tissues. In the RIP process, a membrane protein typically undergoes two consecutive cleavages. The first one results in the shedding of its ectodomain. The second one occurs within its transmembrane domain, resulting in secretion of a small peptide and the release of the intracellular domain into the cytosol. The proteolytic cleavage fragments act as versatile signaling molecules or are further degraded. An increasing number of membrane proteins undergo RIP. These include growth factors, cytokines, cell adhesion proteins, receptors, viral proteins and signal peptides. A dysregulation of RIP is found in diseases, such as leukemia and Alzheimer's disease. One of the first RIP substrates discovered was the amyloid precursor protein (APP). RIP processing of APP controls the generation of the amyloid β-peptide, which is believed to cause Alzheimer's disease. Focusing on APP as the best-studied RIP substrate, this review describes the function and mechanism of the APP RIP proteases with the goal to elucidate cellular mechanisms and common principles of the RIP process in general.
Collapse
Affiliation(s)
- Stefan F Lichtenthaler
- DZNE-German Center for Neurodegenerative Diseases, Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | | | | |
Collapse
|
37
|
Acevedo KM, Hung YH, Dalziel AH, Li QX, Laughton K, Wikhe K, Rembach A, Roberts B, Masters CL, Bush AI, Camakaris J. Copper promotes the trafficking of the amyloid precursor protein. J Biol Chem 2010; 286:8252-8262. [PMID: 21177866 DOI: 10.1074/jbc.m110.128512] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Accumulation of the amyloid β peptide in the cortical and hippocampal regions of the brain is a major pathological feature of Alzheimer disease. Amyloid β peptide is generated from the sequential protease cleavage of the amyloid precursor protein (APP). We reported previously that copper increases the level of APP at the cell surface. Here we report that copper, but not iron or zinc, promotes APP trafficking in cultured polarized epithelial cells and neuronal cells. In SH-SY5Y neuronal cells and primary cortical neurons, copper promoted a redistribution of APP from a perinuclear localization to a wider distribution, including neurites. Importantly, a change in APP localization was not attributed to an up-regulation of APP protein synthesis. Using live cell imaging and endocytosis assays, we found that copper promotes an increase in cell surface APP by increasing its exocytosis and reducing its endocytosis, respectively. This study identifies a novel mechanism by which copper regulates the localization and presumably the function of APP, which is of major significance for understanding the role of APP in copper homeostasis and the role of copper in Alzheimer disease.
Collapse
Affiliation(s)
| | - Ya Hui Hung
- the Centre for Neuroscience, and; the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and
| | | | - Qiao-Xin Li
- the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and; the Department of Pathology
| | - Katrina Laughton
- the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and; the Department of Pathology
| | - Krutika Wikhe
- the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and
| | - Alan Rembach
- the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and; Commonwealth Scientific and Research Organization (CSIRO) Molecular and Health Technologies, Parkville, Victoria 3052, Australia
| | - Blaine Roberts
- the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and
| | - Colin L Masters
- the Centre for Neuroscience, and; the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and
| | - Ashley I Bush
- the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and
| | | |
Collapse
|
38
|
De Strooper B, Annaert W. Novel Research Horizons for Presenilins and γ-Secretases in Cell Biology and Disease. Annu Rev Cell Dev Biol 2010; 26:235-60. [DOI: 10.1146/annurev-cellbio-100109-104117] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bart De Strooper
- Center for Human Genetics, Katholieke Universiteit Leuven, and Department for Molecular and Developmental Genetics, VIB, Leuven, Belgium; ,
| | - Wim Annaert
- Center for Human Genetics, Katholieke Universiteit Leuven, and Department for Molecular and Developmental Genetics, VIB, Leuven, Belgium; ,
| |
Collapse
|
39
|
Three-amino acid spacing of presenilin endoproteolysis suggests a general stepwise cleavage of gamma-secretase-mediated intramembrane proteolysis. J Neurosci 2010; 30:7853-62. [PMID: 20534834 DOI: 10.1523/jneurosci.1443-10.2010] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Presenilin (PS1 or PS2) is the catalytic component of the gamma-secretase complex, which mediates the final proteolytic processing step leading to the Alzheimer's disease (AD)-characterizing amyloid beta-peptide. PS is cleaved during complex assembly into its characteristic N- and C-terminal fragments. Both fragments are integral components of physiologically active gamma-secretase and harbor the two critical aspartyl residues of the active site domain. While the minimal subunit composition of gamma-secretase has been defined and numerous substrates were identified, the cellular mechanism of the endoproteolytic cleavage of PS is still unclear. We addressed this pivotal question by investigating whether familial AD (FAD)-associated PS1 mutations affect the precision of PS endoproteolysis in a manner similar to the way that such mutations shift the intramembrane cleavage of gamma-secretase substrates. We demonstrate that all FAD mutations investigated still allow endoproteolysis to occur. However, the precision of PS1 endoproteolysis is affected by PS1 mutations. Comparing the cleavage products generated by a variety of PS1 mutants revealed that specifically cleavages at positions 293 and 296 of PS1 are selectively affected. Systematic mutagenesis around the cleavage sites revealed a stepwise three amino acid spaced cleavage mechanism of PS endoproteolysis reminiscent to the epsilon-, zeta-, and gamma-cleavages described for typical gamma-secretase substrates, such as the beta-amyloid precursor protein. Our findings therefore suggest that intramembranous cleavage by gamma-secretase and related intramembrane-cleaving proteases may generally occur via stepwise endoproteolysis.
Collapse
|
40
|
Andreasson U, Portelius E, Andersson ME, Blennow K, Zetterberg H. Aspects of beta-amyloid as a biomarker for Alzheimer's disease. Biomark Med 2010; 1:59-78. [PMID: 20477461 DOI: 10.2217/17520363.1.1.59] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease is an age-related neurodegenerative disorder that results in progressive cognitive impairment and death. The accumulation of beta-amyloid (Abeta) in specific brain regions is believed by many to represent the earliest event in the pathogenesis of the disease. Here, we review the key aspects of Abeta as a biomarker for Alzheimer's disease, including the pathogenicity of Abeta, the possible biological functions of its precursor protein, the Abeta metabolism and homeostasis, the diagnostic performance of different Abeta assays in different settings and the potential usefulness of Abeta as a surrogate marker for treatment efficacy in clinical trials of novel Abeta-targeting drugs against Alzheimer's disease.
Collapse
Affiliation(s)
- Ulf Andreasson
- Sahlgrenska University Hospital/Mölndal, Clinical Neurochemistry Laboratory/Mölndal, S-431 80, Göteborg University, Mölndal, Sweden
| | | | | | | | | |
Collapse
|
41
|
Watanabe N, Image Image II, Takagi S, Image Image II, Tominaga A, Image Image I, Tomita T, Image Image II, Iwatsubo T, Image Image I. Functional analysis of the transmembrane domains of presenilin 1: participation of transmembrane domains 2 and 6 in the formation of initial substrate-binding site of gamma-secretase. J Biol Chem 2010; 285:19738-46. [PMID: 20418378 DOI: 10.1074/jbc.m110.101287] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
gamma-Secretase is a multimeric membrane protein complex composed of presenilin (PS), nicastrin, Aph-1, and Pen-2, which mediates intramembrane proteolysis of a range of type I transmembrane proteins. We previously analyzed the functional roles of the N-terminal transmembrane domains (TMDs) 1-6 of PS1 in the assembly and proteolytic activity of the gamma-secretase using a series of TMD-swap PS1 mutants. Here we applied the TMD-swap method to all the TMDs of PS1 for the structure-function analysis of the proteolytic mechanism of gamma-secretase. We found that TMD2- or -6-swapped mutant PS1 failed to bind the helical peptide-based, substrate-mimic gamma-secretase inhibitor. Cross-linking experiments revealed that both TMD2 and TMD6 of PS1 locate in proximity to the TMD9, the latter being implicated in the initial substrate binding. Taken together, our data suggest that TMD2 and the luminal side of TMD6 are involved in the formation of the initial substrate-binding site of the gamma-secretase complex.
Collapse
Affiliation(s)
- Naoto Watanabe
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lorenzen A, Samosh J, Vandewark K, Anborgh PH, Seah C, Magalhaes AC, Cregan SP, Ferguson SSG, Pasternak SH. Rapid and direct transport of cell surface APP to the lysosome defines a novel selective pathway. Mol Brain 2010; 3:11. [PMID: 20409323 PMCID: PMC2868040 DOI: 10.1186/1756-6606-3-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/21/2010] [Indexed: 12/03/2022] Open
Abstract
Background A central feature of Alzheimer's disease is the cleavage of the amyloid precursor protein (APP) to form beta-amyloid peptide (Aβ) by the β-secretase and γ-secretase enzymes. Although this has been shown to occur after endocytosis of APP from the cell surface, the exact compartments of APP processing are not well defined. We have previously demonstrated that APP and γ-secretase proteins and activity are highly enriched in purified rat liver lysosomes. In order to examine the lysosomal distribution and trafficking of APP in cultured cells, we generated constructs containing APP fused to a C-terminal fluorescent protein tag and N-terminal HA-epitope tag. These were co-transfected with a panel of fluorescent-protein tagged compartment markers. Results Here we demonstrate using laser-scanning confocal microscopy that although APP is present throughout the endosomal/lysosomal system in transfected Cos7 and neuronal SN56 cell lines as well as in immunostained cultured mouse neurons, it is enriched in the lysosome. We also show that the Swedish and London mutations reduce the amount of APP in the lysosome. Surprisingly, in addition to its expected trafficking from the cell surface to the early and then late endosomes, we find that cell-surface labelled APP is transported rapidly and directly from the cell surface to lysosomes in both Cos7 and SN56 cells. This rapid transit to the lysosome is blocked by the presence of either the London or Swedish mutations. Conclusions These results demonstrate the presence of a novel, rapid and specific transport pathway from the cell surface to the lysosomes. This suggests that regulation of lysosomal traffic could regulate APP processing and that the lysosome could play a central role in the pathophysiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Angela Lorenzen
- J, Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, Schulich School of Medicine, the University of Western Ontario, London, Ontario, N6A 5K8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
A GPCR/secretase complex regulates β- and γ-secretase specificity for Aβ production and contributes to AD pathogenesis. Cell Res 2010; 20:138-53. [DOI: 10.1038/cr.2010.3] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
44
|
Fassler M, Zocher M, Klare S, de la Fuente AG, Scheuermann J, Capell A, Haass C, Valkova C, Veerappan A, Schneider D, Kaether C. Masking of transmembrane-based retention signals controls ER export of gamma-secretase. Traffic 2009; 11:250-8. [PMID: 19958468 DOI: 10.1111/j.1600-0854.2009.01014.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
gamma-Secretase is critically involved in the Notch pathway and in Alzheimer's disease. The four subunits of gamma-secretase assemble in the endoplasmic reticulum (ER) and unassembled subunits are retained/retrieved to the ER by specific signals. We here describe a novel ER-retention/retrieval signal in the transmembrane domain (TMD) 4 of presenilin 1, a subunit of gamma-secretase. TMD4 also is essential for complex formation, conferring a dual role for this domain. Likewise, TMD1 of Pen2 is bifunctional as well. It carries an ER-retention/retrieval signal and is important for complex assembly by binding to TMD4. The two TMDs directly interact with each other and mask their respective ER-retention/retrieval signals, allowing surface transport of reporter proteins. Our data suggest a model how assembly of Pen2 into the nascent gamma-secretase complex could mask TMD-based ER-retention/retrieval signals to allow plasma membrane transport of fully assembled gamma-secretase.
Collapse
Affiliation(s)
- Matthias Fassler
- Leibniz Institut für Altersforschung-Fritz Lipmann Institut, 07743 Jena, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Marks N, Berg MJ. BACE and gamma-secretase characterization and their sorting as therapeutic targets to reduce amyloidogenesis. Neurochem Res 2009; 35:181-210. [PMID: 19760173 DOI: 10.1007/s11064-009-0054-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
Secretases are named for enzymes processing amyloid precursor protein (APP), a prototypic type-1 membrane protein. This led directly to discovery of novel Aspartyl proteases (beta-secretases or BACE), a tetramer complex gamma-secretase (gamma-SC) containing presenilins, nicastrin, aph-1 and pen-2, and a new role for metalloprotease(s) of the ADAM family as a alpha-secretases. Recent advances in defining pathways that mediate endosomal-lysosomal-autophagic-exosomal trafficking now provide targets for new drugs to attenuate abnormal production of fibril forming products characteristic of AD. A key to success includes not only characterization of relevant secretases but mechanisms for sorting and transport of key metabolites to abnormal vesicles or sites for assembly of fibrils. New developments we highlight include an important role for an 'early recycling endosome' coated in retromer complex containing lipoprotein receptor LRP-II (SorLA) for switching APP to a non-amyloidogenic pathway for alpha-secretases processing, or to shuttle APP to a 'late endosome compartment' to form Abeta or AICD. LRP11 (SorLA) is of particular importance since it decreases in sporadic AD whose etiology otherwise is unknown.
Collapse
Affiliation(s)
- Neville Marks
- Center for Neurochemistry, Nathan S Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | | |
Collapse
|
46
|
Maeda T, Marutani T, Zou K, Araki W, Tanabe C, Yagishita N, Yamano Y, Amano T, Michikawa M, Nakajima T, Komano H. An E3 ubiquitin ligase, Synoviolin, is involved in the degradation of immature nicastrin, and regulates the production of amyloid beta-protein. FEBS J 2009; 276:5832-40. [PMID: 19725872 DOI: 10.1111/j.1742-4658.2009.07264.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The presenilin complex, consisting of presenilin, nicastrin, anterior pharynx defective-1 and presenilin enhancer-2, constitutes gamma-secretase, which is required for the generation of amyloid beta-protein. In this article, we show that Synoviolin (also called Hrd1), which is an E3 ubiquitin ligase implicated in endoplasmic reticulum-associated degradation, is involved in the degradation of endogenous immature nicastrin, and affects amyloid beta-protein generation. It was found that the level of immature nicastrin was dramatically increased in synoviolin-null cells as a result of the inhibition of degradation, but the accumulation of endogenous presenilin, anterior pharynx defective-1 and presenilin enhancer-2 was not changed. This was abolished by the transfection of exogenous Synoviolin. Moreover, nicastrin was co-immunoprecipitated with Synoviolin, strongly suggesting that nicastrin is the substrate of Synoviolin. Interestingly, amyloid beta-protein generation was increased by the overexpression of Synoviolin, although the nicastrin level was decreased. Thus, Synoviolin-mediated ubiquitination is involved in the degradation of immature nicastrin, and probably regulates amyloid beta-protein generation. Structured digital abstract: * MINT-7255352: Synoviolin (uniprotkb:Q9DBY1) physically interacts (MI:0915) with NCT (uniprotkb:P57716) by anti tag coimmunoprecipitation (MI:0007) * MINT-7255377: Ubiquitin (uniprotkb:P62991) physically interacts (MI:0915) with NCT (uniprotkb:P57716) by anti bait coimmunoprecipitation (MI:0006) * MINT-7255363: NCT (uniprotkb:P57716) physically interacts (MI:0915) with Synoviolin (uniprotkb:Q9DBY1) by anti bait coimmunoprecipitation (MI:0006).
Collapse
Affiliation(s)
- Tomoji Maeda
- Department of Neuroscience, School of Pharmacy, Iwate Medical University, Morioka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hayashi I, Takatori S, Urano Y, Iwanari H, Isoo N, Osawa S, Fukuda MA, Kodama T, Hamakubo T, Li T, Wong PC, Tomita T, Iwatsubo T. Single chain variable fragment against nicastrin inhibits the gamma-secretase activity. J Biol Chem 2009; 284:27838-27847. [PMID: 19684016 DOI: 10.1074/jbc.m109.055061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gamma-secretase is a membrane protein complex that catalyzes intramembrane proteolysis of a variety of substrates including the amyloid beta precursor protein of Alzheimer disease. Nicastrin (NCT), a single-pass membrane glycoprotein that harbors a large extracellular domain, is an essential component of the gamma-secretase complex. Here we report that overexpression of a single chain variable fragment (scFv) against NCT as an intrabody suppressed the gamma-secretase activity. Biochemical analyses revealed that the scFv disrupted the proper folding and the appropriate glycosyl maturation of the endogenous NCT, which are required for the stability of the gamma-secretase complex and the intrinsic proteolytic activity, respectively, implicating the dual role of NCT in the gamma-secretase complex. Our results also highlight the importance of the calnexin cycle in the functional maturation of the gamma-secretase complex. The engineered intrabodies may serve as rationally designed, molecular targeting tools for the discovery of novel actions of the membrane proteins.
Collapse
Affiliation(s)
- Ikuo Hayashi
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sho Takatori
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuomi Urano
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroko Iwanari
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan; Perseus Proteomics, Inc., 4-7-6 Komaba, Meguro-ku, Tokyo 153-0041, Japan
| | - Noriko Isoo
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoko Osawa
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Maiko A Fukuda
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Takao Hamakubo
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Tong Li
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Philip C Wong
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Taisuke Tomita
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Takeshi Iwatsubo
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
48
|
Endocytic regulation of Notch signaling. Curr Opin Genet Dev 2009; 19:323-8. [PMID: 19447603 DOI: 10.1016/j.gde.2009.04.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 04/10/2009] [Indexed: 01/23/2023]
Abstract
Endocytosis and endosomal trafficking have emerged as important cell biological steps in the Notch developmental signaling pathway. Ligand endocytosis helps generate the physical forces needed to dissociate and activate the receptor, and activated receptors enter endosomes to signal productively. Endosomal trafficking is also responsible for downregulating Notch receptors that have not been activated by ligand. Recent studies have provided new insights into these Notch trafficking steps, and have uncovered additional endosomal mechanisms that contribute to asymmetric Notch activation and ligand-independent Notch signaling.
Collapse
|
49
|
Association between promoter polymorphisms of the nicastrin gene and sporadic Alzheimer's disease in North Chinese Han population. Neurosci Lett 2009; 458:136-9. [PMID: 19394408 DOI: 10.1016/j.neulet.2009.04.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/03/2009] [Accepted: 04/21/2009] [Indexed: 11/22/2022]
Abstract
Increasing evidences have shown that nicastrin (NCSTN) plays a crucial role in gamma-cleavage of the amyloid precursor protein (APP). Inhibition of NCSTN demonstrated an altered gamma-cleavage activity, suggesting its potential implication in developing Alzheimer's disease (AD). We detected the NCSTN gene promoter region in 359 sporadic AD (SAD) patients and 331 controls and found three promoter single nucleotide polymorphisms (SNPs): -1216C/A (rs2147471), -796T/G (rs10752637) and -436C/T (rs1324738). For -1216C/A, there were significant differences in the allele and genotype frequency between AD and control subjects (allele P=0.031, genotype P=0.017). The allele and genotype frequencies remained significant before and after APOEvarepsilon4 stratification. The -1216CC carriers increased 2-fold risk for the development of SAD compared to the carriers with -1216CA and AA genotypes (OR=2.049, 95%CI=1.410-2.976, P=0.000). For -796T/G, there were significant differences in the genotype frequency between SAD and control subjects (P=0.009). This trend is still obvious in the subjects without APOEvarepsilon4 allele. The -796GG carriers might decrease the risk compared to the carriers with -796TG and TT genotypes (OR=0.602, 95%CI=0.393-0.932, P=0.022). No significant difference was detected either in genotype or in allele frequencies between SAD and control for -436C/T, even after APOEvarepsilon4 stratification. The haplotype -1216A/-796G may be a protective factor for SAD (OR=0.795, 95%CI=0.636-0.995, P=0.045). Our investigation suggests that -1216C/A and -796T/G are probably related to the development of SAD.
Collapse
|
50
|
An alternative spliced mouse presenilin-2 mRNA encodes a novel gamma-secretase inhibitor. FEBS Lett 2009; 583:1403-8. [PMID: 19376115 DOI: 10.1016/j.febslet.2009.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/02/2009] [Accepted: 04/03/2009] [Indexed: 12/23/2022]
Abstract
The gamma-secretase, composed of presenilin-1 (PS1) or presenilin-2 (PS2), nicastrin (NCT), anterior pharynx-defective phenotype 1 (APH-1), and PEN-2, is critical for the development of Alzheimer's disease (AD). PSs are autoproteolytically cleaved, producing an N-terminal fragment (NTF) and a hydrophilic loop domain-containing C-terminal fragment. However, the role of the loop domain in the gamma-secretase complex assembly remains unknown. Here, we report a novel PS2 isoform generated by alternative splicing, named PS2beta, which is composed of an NTF with a hydrophilic loop domain. PS2beta disturbed the interaction between NCT and APH-1, resulting in the inhibition of amyloid-beta production. We concluded that PS2beta may inhibit gamma-secretase activity by affecting the gamma-secretase complex assembly.
Collapse
|