1
|
Van Bruggen S, Jarrot PA, Thomas E, Sheehy CE, Silva CMS, Hsu AY, Cunin P, Nigrovic PA, Gomes ER, Luo HR, Waterman CM, Wagner DD. NLRP3 is essential for neutrophil polarization and chemotaxis in response to leukotriene B4 gradient. Proc Natl Acad Sci U S A 2023; 120:e2303814120. [PMID: 37603754 PMCID: PMC10468616 DOI: 10.1073/pnas.2303814120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/21/2023] [Indexed: 08/23/2023] Open
Abstract
Neutrophil recruitment to sites of infection and inflammation is an essential process in the early innate immune response. Upon activation, a subset of neutrophils rapidly assembles the multiprotein complex known as the NLRP3 inflammasome. The NLRP3 inflammasome forms at the microtubule organizing center, which promotes the formation of interleukin (IL)-1β and IL-18, essential cytokines in the immune response. We recently showed that mice deficient in NLRP3 (NLRP3-/-) have reduced neutrophil recruitment to the peritoneum in a model of thioglycolate-induced peritonitis. Here, we tested the hypothesis that this diminished recruitment could be, in part, the result of defects in neutrophil chemotaxis. We find that NLRP3-/- neutrophils show loss of cell polarization, as well as reduced directionality and velocity of migration toward increasing concentrations of leukotriene B4 (LTB4) in a chemotaxis assay in vitro, which was confirmed through intravital microscopy of neutrophil migration toward a laser-induced burn injury of the liver. Furthermore, pharmacologically blocking NLRP3 inflammasome assembly with MCC950 in vitro reduced directionality but preserved nondirectional movement, indicating that inflammasome assembly is specifically required for polarization and directional chemotaxis, but not cell motility per se. In support of this, pharmacological breakdown of the microtubule cytoskeleton via nocodazole treatment induced cell polarization and restored nondirectional cell migration in NLRP3-deficient neutrophils in the LTB4 gradient. Therefore, NLRP3 inflammasome assembly is required for establishment of cell polarity to guide the directional chemotactic migration of neutrophils.
Collapse
Affiliation(s)
- Stijn Van Bruggen
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Whitman Center, Marine Biological Laboratory, Chicago University, Woods Hole, MA02543
| | - Pierre-André Jarrot
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
| | - Eline Thomas
- Department of Life Science Technology, Imec, Leuven3001, Belgium
- Department of Biophysics, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Casey E. Sheehy
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Camila M. S. Silva
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
| | - Alan Y. Hsu
- Department of Pathology, Harvard Medical School, Boston, MA02115
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Boston, MA02115
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Pierre Cunin
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
| | - Peter A. Nigrovic
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Edgar R. Gomes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon1649-028, Portugal
| | - Hongbo R. Luo
- Department of Pathology, Harvard Medical School, Boston, MA02115
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Boston, MA02115
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Clare M. Waterman
- Whitman Center, Marine Biological Laboratory, Chicago University, Woods Hole, MA02543
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute of the NIH, Bethesda, MD20892
| | - Denisa D. Wagner
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Whitman Center, Marine Biological Laboratory, Chicago University, Woods Hole, MA02543
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA02115
| |
Collapse
|
2
|
Krapp S, Schuy C, Greiner E, Stephan I, Alberter B, Funk C, Marschall M, Wege C, Bailer SM, Kleinow T, Krenz B. Begomoviral Movement Protein Effects in Human and Plant Cells: Towards New Potential Interaction Partners. Viruses 2017; 9:E334. [PMID: 29120369 PMCID: PMC5707541 DOI: 10.3390/v9110334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 01/07/2023] Open
Abstract
Geminiviral single-stranded circular DNA genomes replicate in nuclei so that the progeny DNA has to cross both the nuclear envelope and the plasmodesmata for systemic spread within plant tissues. For intra- and intercellular transport, two proteins are required: a nuclear shuttle protein (NSP) and a movement protein (MP). New characteristics of ectopically produced Abutilon mosaic virus (AbMV) MP (MPAbMV), either authentically expressed or fused to a yellow fluorescent protein or epitope tags, respectively, were determined by localization studies in mammalian cell lines in comparison to plant cells. Wild-type MPAbMV and the distinct MPAbMV: reporter protein fusions appeared as curled threads throughout mammalian cells. Co-staining with cytoskeleton markers for actin, intermediate filaments, or microtubules identified these threads as re-organized microtubules. These were, however, not stabilized by the viral MP, as demonstrated by nocodazole treatment. The MP of a related bipartite New World begomovirus, Cleome leaf crumple virus (ClLCrV), resulted in the same intensified microtubule bundling, whereas that of a nanovirus did not. The C-terminal section of MPAbMV, i.e., the protein's oligomerization domain, was dispensable for the effect. However, MP expression in plant cells did not affect the microtubules network. Since plant epidermal cells are quiescent whilst mammalian cells are proliferating, the replication-associated protein RepAbMV protein was then co-expressed with MPAbMV to induce cell progression into S-phase, thereby inducing distinct microtubule bundling without MP recruitment to the newly formed threads. Co-immunoprecipitation of MPAbMV in the presence of RepAbMV, followed by mass spectrometry identified potential novel MPAbMV-host interaction partners: the peptidyl-prolyl cis-trans isomerase NIMA-interacting 4 (Pin4) and stomatal cytokinesis defective 2 (SCD2) proteins. Possible roles of these putative interaction partners in the begomoviral life cycle and cytoskeletal association modes are discussed.
Collapse
Affiliation(s)
- Susanna Krapp
- Department Biologie, Lehrstuhl Biochemie, Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany.
| | - Christian Schuy
- Department Biologie, Lehrstuhl Biochemie, Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany.
| | - Eva Greiner
- Department Biologie, Lehrstuhl Biochemie, Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany.
| | - Irina Stephan
- Abteilung Molekularbiologie und Virologie der Pflanzen, Institut für Biomaterialien und Biomolekulare Systeme, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Barbara Alberter
- Abteilung Molekularbiologie und Virologie der Pflanzen, Institut für Biomaterialien und Biomolekulare Systeme, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Christina Funk
- Institute for Interfacial Engineering and Plasma Technology IGVP, Universität Stuttgart, Nobelstrasse 12, 70569 Stuttgart, Germany.
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Christina Wege
- Abteilung Molekularbiologie und Virologie der Pflanzen, Institut für Biomaterialien und Biomolekulare Systeme, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Susanne M Bailer
- Institute for Interfacial Engineering and Plasma Technology IGVP, Universität Stuttgart, Nobelstrasse 12, 70569 Stuttgart, Germany.
| | - Tatjana Kleinow
- Abteilung Molekularbiologie und Virologie der Pflanzen, Institut für Biomaterialien und Biomolekulare Systeme, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Björn Krenz
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7 B, 38124 Braunschweig, Germany.
| |
Collapse
|
3
|
Kravets EA, Yemets AI, Blume YB. Cytoskeleton and nucleoskeleton involvement in processes of cytomixis in plants. Cell Biol Int 2017; 43:999-1009. [DOI: 10.1002/cbin.10842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/12/2017] [Indexed: 12/13/2022]
Affiliation(s)
| | - Alla Ivanovna Yemets
- Institute of Food Biotechnology and GenomicsNatl. Academy of Sciences of UkraineKyiv Ukraine
| | | |
Collapse
|
4
|
Voelzmann A, Liew YT, Qu Y, Hahn I, Melero C, Sánchez-Soriano N, Prokop A. Drosophila Short stop as a paradigm for the role and regulation of spectraplakins. Semin Cell Dev Biol 2017; 69:40-57. [DOI: 10.1016/j.semcdb.2017.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 02/07/2023]
|
5
|
Abstract
During an innate immune response, myeloid cells undergo complex morphological adaptations in response to inflammatory cues, which allow them to exit the vasculature, enter the tissues, and destroy invading pathogens. The actin and microtubule cytoskeletons are central to many of the most essential cellular functions including cell division, cell morphology, migration, intracellular trafficking, and signaling. Cytoskeletal structure and regulation are crucial for many myeloid cell functions, which require rapid and dynamic responses to extracellular signals. In this chapter, we review the roles of the actin and microtubule cytoskeletons in myeloid cells, focusing primarily on their roles in chemotaxis and phagocytosis. The role of myeloid cell cytoskeletal defects in hematological disorders is highlighted throughout.
Collapse
|
6
|
|
7
|
Chen XM, Feng MJ, Shen CJ, He B, Du XF, Yu YB, Liu J, Chu HM. A novel approach to select differential pathways associated with hypertrophic cardiomyopathy based on gene co‑expression analysis. Mol Med Rep 2017; 16:773-777. [PMID: 28586052 PMCID: PMC5482204 DOI: 10.3892/mmr.2017.6667] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 03/20/2017] [Indexed: 02/02/2023] Open
Abstract
The present study was designed to develop a novel method for identifying significant pathways associated with human hypertrophic cardiomyopathy (HCM), based on gene co-expression analysis. The microarray dataset associated with HCM (E-GEOD-36961) was obtained from the European Molecular Biology Laboratory-European Bioinformatics Institute database. Informative pathways were selected based on the Reactome pathway database and screening treatments. An empirical Bayes method was utilized to construct co-expression networks for informative pathways, and a weight value was assigned to each pathway. Differential pathways were extracted based on weight threshold, which was calculated using a random model. In order to assess whether the co-expression method was feasible, it was compared with traditional pathway enrichment analysis of differentially expressed genes, which were identified using the significance analysis of microarrays package. A total of 1,074 informative pathways were screened out for subsequent investigations and their weight values were also obtained. According to the threshold of weight value of 0.01057, 447 differential pathways, including folding of actin by chaperonin containing T-complex protein 1 (CCT)/T-complex protein 1 ring complex (TRiC), purine ribonucleoside monophosphate biosynthesis and ubiquinol biosynthesis, were obtained. Compared with traditional pathway enrichment analysis, the number of pathways obtained from the co-expression approach was increased. The results of the present study demonstrated that this method may be useful to predict marker pathways for HCM. The pathways of folding of actin by CCT/TRiC and purine ribonucleoside monophosphate biosynthesis may provide evidence of the underlying molecular mechanisms of HCM, and offer novel therapeutic directions for HCM.
Collapse
Affiliation(s)
- Xiao-Min Chen
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Ming-Jun Feng
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Cai-Jie Shen
- Department of Cardiology, Ningbo Seventh Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Bin He
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Xian-Feng Du
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Yi-Bo Yu
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Jing Liu
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Hui-Min Chu
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
8
|
Myers KA, He Y, Hasaka TP, Baas PW. Microtubule Transport in the Axon: Re-thinking a Potential Role for the Actin Cytoskeleton. Neuroscientist 2016; 12:107-18. [PMID: 16514008 DOI: 10.1177/1073858405283428] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microtubules are transported down the axon as short pieces by molecular motor proteins. One popular idea is that these microtubules are transported by forces generated against the actin cytoskeleton. The motor for such transport is thought to be cytoplasmic dynein. Here, the authors review this model and discuss recent studies that sought to test it. These studies suggest that the model is valid but incomplete. Microtubule transport is bidirectional and can utilize either actin filaments or longer microtubules as a substrate in the anterograde direction but only longer microtubules in the retrograde direction. Cytoplasmic dynein is one participating motor but not the only one. The authors speculate that the category of anterograde microtubule transport that involves actin filaments may have specialized functions. The relevant forces that transport short microtubules may also be crucial for the manner by which the longer immobile microtubules interact with actin filaments during events such as axonal retraction and growth cone turning.
Collapse
Affiliation(s)
- Kenneth A Myers
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | |
Collapse
|
9
|
Yang Y, Zhao B, Ji Z, Zhang G, Zhang J, Li S, Guo G, Lin H. CRMPs colocalize and interact with cytoskeleton in hippocampal neurons. Int J Clin Exp Med 2015; 8:22337-22344. [PMID: 26885211 PMCID: PMC4729997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/05/2015] [Indexed: 06/05/2023]
Abstract
CRMP family proteins (CRMPs) are widely expressed in the developing neurons, mediating a variety of fundamental functions such as growth cone guidance, neuronal polarity and axon elongation. However, whether all the CRMP proteins interact with cytoskeleton remains unknown. In this study, we found that in cultured hippocampal neurons, CRMPs mainly colocalized with tubulin and actin network in neurites. In growth cones, CRMPs colocalized with tubulinmainly in the central (C-) domain and transition zone (T-zone), less in the peripheral (P-) domain and colocalized with actin in all the C-domain, T-zone and P-domain. The correlation efficiency of CRMPs between actin was significantly higher than that between tubulin, especially in growth cones. We successfully constructed GST-CRMPs plasmids, expressed and purified the GST-CRMP proteins. By GST-pulldown assay, all the CRMP family proteins were found to beinteracted with cytoskeleton proteins. Taken together, we revealed that CRMPs were colocalized with cytoskeleton in hippocampal neurons, especially in growth cones. CRMPs can interact with both tubulin and actin, thus mediating neuronal development.
Collapse
Affiliation(s)
- Yuhao Yang
- Department of Orthopedics, The First Affiliated Hospital of Jinan UniversityGuangzhou 510630, China
- Department of Anatomy, Medical College of Jinan UniversityGuangzhou 510630, China
| | - Bo Zhao
- Department of Anatomy, Medical College of Jinan UniversityGuangzhou 510630, China
| | - Zhisheng Ji
- Department of Orthopedics, The First Affiliated Hospital of Jinan UniversityGuangzhou 510630, China
- Department of Anatomy, Medical College of Jinan UniversityGuangzhou 510630, China
| | - Guowei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan UniversityGuangzhou 510630, China
| | - Jifeng Zhang
- Department of Anatomy, Medical College of Jinan UniversityGuangzhou 510630, China
| | - Sumei Li
- Department of Anatomy, Medical College of Jinan UniversityGuangzhou 510630, China
| | - Guoqing Guo
- Department of Anatomy, Medical College of Jinan UniversityGuangzhou 510630, China
| | - Hongsheng Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan UniversityGuangzhou 510630, China
| |
Collapse
|
10
|
Gong X, Tan M, Gao Y, Chen K, Guo G. CRMP‑5 interacts with actin to regulate neurite outgrowth. Mol Med Rep 2015; 13:1179-85. [PMID: 26677106 PMCID: PMC4732841 DOI: 10.3892/mmr.2015.4662] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 10/29/2015] [Indexed: 11/17/2022] Open
Abstract
CRMP family proteins (CRMPs) are abundantly expressed in the developing nervous system mediating growth cone guidance, neuronal polarity and axon elongation. CRMP-5 has been indicated to serve a critical role in neurite outgrowth. However, the detailed mechanisms of how CRMP-5 regulates neurite outgrowth remain unclear. In the current study, co-immunoprecipitation was used to identify the fact that CRMP-5 interacted with the actin and tubulin cytoskeleton networks in the growth cones of developing hippocampal neurons. CRMP-5 exhibited increased affinity towards actin when compared with microtubules. Immunocytochemistry was used to identify the fact that CRMP-5 colocalized with actin predominantly in the C-domain and T-zone in growth cones. In addition, genetic inhibition of CRMP-5 by siRNA suppressed the expression of actin, growth cone development and neurite outgrowth. Overexpression of CRMP-5 promoted the interaction with actin, growth cone development and hippocampal neurite outgrowth. Taken together, these data suggest that CRMP-5 is able to interact with the actin cytoskeleton network in the growth cone and affect growth cone development and neurite outgrowth via this interaction in developing hippocampal neurons.
Collapse
Affiliation(s)
- Xiaobing Gong
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Minghui Tan
- Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Yuan Gao
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Keen Chen
- Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Guoqing Guo
- Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
11
|
Yang H, Lau WB, Lau B, Xuan Y, Zhou S, Zhao L, Luo Z, Lin Q, Ren N, Zhao X, Wei Y. A mass spectrometric insight into the origins of benign gynecological disorders. MASS SPECTROMETRY REVIEWS 2015; 36:450-470. [PMID: 26633258 DOI: 10.1002/mas.21484] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 11/06/2015] [Indexed: 02/05/2023]
Abstract
Applications of mass spectrometry (MS) are rapidly expanding and encompass molecular and cellular biology. MS aids in the analysis of in vivo global molecular alterations, identifying potential biomarkers which may improve diagnosis and treatment of various pathologies. MS has added new dimensionality to medical research. Pioneering gynecologists now study molecular mechanisms underlying female reproductive pathology with MS-based tools. Although benign gynecologic disorders including endometriosis, adenomyosis, leiomyoma, and polycystic ovarian syndrome (PCOS) carry low mortality rates, they cause significant physical, mental, and social detriments. Additionally, some benign disorders are unfortunately associated with malignancies. MS-based technology can detect malignant changes in formerly benign proteomes and metabolomes with distinct advantages of speed, sensitivity, and specificity. We present the use of MS in proteomics and metabolomics, and summarize the current understanding of the molecular pathways concerning female reproductive anatomy. Highlight discoveries of novel protein and metabolite biomarkers via MS-based technology, we underscore the clinical application of these techniques in the diagnosis and management of benign gynecological disorders. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:450-470, 2017.
Collapse
Affiliation(s)
- Huiliang Yang
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.,Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, 19107
| | - Bonnie Lau
- Department of Surgery, Emergency Medicine, Kaiser Santa Clara Medical Center, Affiliate of Stanford University, Stanford, CA, 94305
| | - Yu Xuan
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Shengtao Zhou
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Linjie Zhao
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zhongyue Luo
- College of Biological Sciences, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Qiao Lin
- College of Biological Sciences, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Ning Ren
- College of Biological Sciences, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yuquan Wei
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
12
|
Abstract
The cytoskeleton is a dynamic network of filamentous protein polymers required for virtually all cellular processes. It consists of three major classes, filamentous actin (F-actin), intermediate filaments, and microtubules, all displaying characteristic structural properties, functions, cellular distributions, and sets of interacting regulatory proteins. One unique class of proteins, the spectraplakins, bind, regulate, and integrate the functions of all three classes of cytoskeleton proteins. Spectraplakins are giant, evolutionary conserved multidomain proteins (spanning up to 9000 aa) that are true members of the plakin, spectrin, and Gas2-like protein families. They have OMIM-listed disease links to epidermolysis bullosa and hereditary sensory and autonomic neuropathy. Their role in disease is likely underrepresented since studies in model animal systems have revealed critical roles in polarity, morphogenesis, differentiation and maintenance, migration, signaling, and intracellular trafficking in a variety of tissues. This enormous diversity of spectraplakin function is consistent with the numerous isoforms produced from single genomic loci that combine different sets of functional domains in distinct cellular contexts. To study the broad range of functions and complexity of these proteins, Drosophila is a powerful model. Thus, the fly spectraplakin Short stop (Shot) acts as an actin-microtubule linker and plays important roles in many developmental processes, which provide experimentally amenable and relevant contexts in which to study spectraplakin functions. For these studies, a versatile range of relevant experimental resources that facilitate genetics and transgenic approaches, highly refined genomics tools, and an impressive set of spectraplakin-specific genetic and molecular tools are readily available. Here, we use the example of Shot to illustrate how the various tools and strategies available for Drosophila can be employed to decipher and dissect cellular roles and molecular mechanisms of spectraplakins.
Collapse
|
13
|
CRMP4 and CRMP2 Interact to Coordinate Cytoskeleton Dynamics, Regulating Growth Cone Development and Axon Elongation. Neural Plast 2015; 2015:947423. [PMID: 26064693 PMCID: PMC4442009 DOI: 10.1155/2015/947423] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 11/18/2022] Open
Abstract
Cytoskeleton dynamics are critical phenomena that underpin many fundamental cellular processes. Collapsin response mediator proteins (CRMPs) are highly expressed in the developing nervous system, mediating growth cone guidance, neuronal polarity, and axonal elongation. However, whether and how CRMPs associate with microtubules and actin coordinated cytoskeletal dynamics remain unknown. In this study, we demonstrated that CRMP2 and CRMP4 interacted with tubulin and actin in vitro and colocalized with the cytoskeleton in the transition-zone in developing growth cones. CRMP2 and CRMP4 also interacted with one another coordinately to promote growth cone development and axonal elongation. Genetic silencing of CRMP2 enhanced, whereas overexpression of CRMP2 suppressed, the inhibitory effects of CRMP4 knockdown on axonal development. In addition, knockdown of CRMP2 or overexpression of truncated CRMP2 reversed the promoting effect of CRMP4. With the overexpression of truncated CRMP2 or CRMP4 lacking the cytoskeleton interaction domain, the promoting effect of CRMP was suppressed. These data suggest a model in which CRMP2 and CRMP4 form complexes to bridge microtubules and actin and thus work cooperatively to regulate growth cone development and axonal elongation.
Collapse
|
14
|
Conacci-Sorrell M, Ngouenet C, Anderson S, Brabletz T, Eisenman RN. Stress-induced cleavage of Myc promotes cancer cell survival. Genes Dev 2014; 28:689-707. [PMID: 24696454 PMCID: PMC4015487 DOI: 10.1101/gad.231894.113] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evasion of apoptosis is critical in Myc-induced tumor progression. Here we report that cancer cells evade death under stress by activating calpain-mediated proteolysis of Myc. This generates Myc-nick, a cytoplasmic, transcriptionally inactive cleavage product of Myc. We found conversion of Myc into Myc-nick in cell lines and tissues derived from multiple cancers. In colon cancer, the production of Myc-nick is enhanced under stress conditions such as hypoxia and nutrient deprivation. Under these conditions, ectopic expression of Myc-nick promotes anchorage-independent growth and cell survival at least in part by promoting autophagy. Myc-nick also delays colon cancer cell death after treatment with chemotherapeutic drugs such as etoposide, cisplatin, and imatinib. Furthermore, colon cancer cells expressing a cleavage-resistant form of Myc undergo extensive apoptosis but are rescued by overexpression of Myc-nick. We also found that ectopic expression of Myc-nick results in the induction of the actin-bundling protein fascin, formation of filopodia, and increased cell motility-all mediators of tumor metastasis. Myc-nick-induced survival, autophagy, and motility require Myc box II (MBII), a region of Myc-nick that recruits acetyltransferases that in turn modify cytoplasmic proteins, including α-tubulin and ATG3. Our results suggest that Myc-nick-induced survival and motility contribute to colon cancer progression and metastasis.
Collapse
Affiliation(s)
- Maralice Conacci-Sorrell
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
15
|
Engel U, Zhan Y, Long JB, Boyle SN, Ballif BA, Dorey K, Gygi SP, Koleske AJ, Vanvactor D. Abelson phosphorylation of CLASP2 modulates its association with microtubules and actin. Cytoskeleton (Hoboken) 2014; 71:195-209. [PMID: 24520051 PMCID: PMC4054870 DOI: 10.1002/cm.21164] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 12/21/2013] [Accepted: 12/30/2013] [Indexed: 11/20/2022]
Abstract
The Abelson (Abl) non-receptor tyrosine kinase regulates the cytoskeleton during multiple stages of neural development, from neurulation, to the articulation of axons and dendrites, to synapse formation and maintenance. We previously showed that Abl is genetically linked to the microtubule (MT) plus end tracking protein (+TIP) CLASP in Drosophila. Here we show in vertebrate cells that Abl binds to CLASP and phosphorylates it in response to serum or PDGF stimulation. In vitro, Abl phosphorylates CLASP with a Km of 1.89 µM, indicating that CLASP is a bona fide substrate. Abl-phosphorylated tyrosine residues that we detect in CLASP by mass spectrometry lie within previously mapped F-actin and MT plus end interaction domains. Using purified proteins, we find that Abl phosphorylation modulates direct binding between purified CLASP2 with both MTs and actin. Consistent with these observations, Abl-induced phosphorylation of CLASP2 modulates its localization as well as the distribution of F-actin structures in spinal cord growth cones. Our data suggest that the functional relationship between Abl and CLASP2 is conserved and provides a means to control the CLASP2 association with the cytoskeleton. © 2014 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ulrike Engel
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts; Nikon Imaging Center, the University of Heidelberg, Bioquant, 69120, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Prokop A, Beaven R, Qu Y, Sánchez-Soriano N. Using fly genetics to dissect the cytoskeletal machinery of neurons during axonal growth and maintenance. J Cell Sci 2013; 126:2331-41. [PMID: 23729743 DOI: 10.1242/jcs.126912] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The extension of long slender axons is a key process of neuronal circuit formation, both during brain development and regeneration. For this, growth cones at the tips of axons are guided towards their correct target cells by signals. Growth cone behaviour downstream of these signals is implemented by their actin and microtubule cytoskeleton. In the first part of this Commentary, we discuss the fundamental roles of the cytoskeleton during axon growth. We present the various classes of actin- and microtubule-binding proteins that regulate the cytoskeleton, and highlight the important gaps in our understanding of how these proteins functionally integrate into the complex machinery that implements growth cone behaviour. Deciphering such machinery requires multidisciplinary approaches, including genetics and the use of simple model organisms. In the second part of this Commentary, we discuss how the application of combinatorial genetics in the versatile genetic model organism Drosophila melanogaster has started to contribute to the understanding of actin and microtubule regulation during axon growth. Using the example of dystonin-linked neuron degeneration, we explain how knowledge acquired by studying axonal growth in flies can also deliver new understanding in other aspects of neuron biology, such as axon maintenance in higher animals and humans.
Collapse
Affiliation(s)
- Andreas Prokop
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | |
Collapse
|
17
|
Darido C, Jane SM. Golgi Feels Its Own Wound. Adv Wound Care (New Rochelle) 2013; 2:87-92. [PMID: 24527331 DOI: 10.1089/wound.2011.0352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Indexed: 01/28/2023] Open
Abstract
SIGNIFICANCE The Golgi apparatus is essential for protein processing, sorting, and transport. Processing includes carbohydrate modifications and proteolytic cleavage, and transport can involve secretion from the cell or relocation to a specific cellular compartment. Rapid and synchronized reorientation of the Golgi in migrating cells is thought to facilitate polarized secretion, providing membrane and secreted products to the proximal plasma membrane. This function is a fundamental process in cell motility. Whether the Golgi structure and positioning is functionally required for directed secretion and polarity in cell migration responses, such as wound healing, is yet to be elucidated. RECENT ADVANCES : Exciting recent analysis examined the effects of perturbed Golgi positioning without disruption of microtubular or actin cytoskeleton assembly or protein secretion, in the context of cellular polarity and directional migration in wound repair. This was achieved by Yadav et al. (2009) through depletion of Golgin-160 or GMAP210 (Golgi microtubule associated protein of 210 kDa), which resulted in fragmentation and dispersal of Golgi without altering secretion kinetics. As a consequence, the direction of secretion, cell polarization, and cell migration in response to wounding were severely impaired. Thus, in response to a scratch wound, cell polarity requires peri-centrosomal positioning of the Golgi apparatus, implying that after initiation by a polarity cue there is a dependence on the Golgi's directed secretion to maintain the polarized state that facilitates cell migration. CRITICAL ISSUES Golgi peri-centrosomal positioning can now be included among the growing list of cellular processes and signaling pathways that are critical for establishment of cellular polarity in response to external stimuli-a key feature of wound repair. FUTURE DIRECTIONS A complete understanding of the function of Golgi components in motility merits attractive avenues for future investigations that will ultimately bring regulators of Golgi into the clinic whereby treatment of skin-related disorders will greatly benefit.
Collapse
Affiliation(s)
| | - Stephen M. Jane
- Alfred Hospital, Prahran, Australia
- Department of Medicine, Monash University Central Clinical School, Prahran, Australia
| |
Collapse
|
18
|
Multiparametric analysis of CLASP-interacting protein functions during interphase microtubule dynamics. Mol Cell Biol 2013; 33:1528-45. [PMID: 23382075 DOI: 10.1128/mcb.01442-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microtubule (MT) plus-end tracking protein (+TIP) CLASP mediates dynamic cellular behaviors and interacts with numerous cytoplasmic proteins. While the influence of some CLASP interactors on MT behavior is known, a comprehensive survey of the proteins in the CLASP interactome as MT regulators is missing. Ultimately, we are interested in understanding how CLASP collaborates with functionally linked proteins to regulate MT dynamics. Here, we utilize multiparametric analysis of time-lapse MT +TIP imaging data acquired in Drosophila melanogaster S2R+ cells to assess the effects on individual microtubule dynamics for RNA interference-mediated depletion of 48 gene products previously identified to be in vivo genetic CLASP interactors. While our analysis corroborates previously described functions of several known CLASP interactors, its multiparametric resolution reveals more detailed functional profiles (fingerprints) that allow us to precisely classify the roles that CLASP-interacting genes play in MT regulation. Using these data, we identify subnetworks of proteins with novel yet overlapping MT-regulatory roles and also uncover subtle distinctions between the functions of proteins previously thought to act via similar mechanisms.
Collapse
|
19
|
Immuno EM–OM correlative microscopy in solution by atmospheric scanning electron microscopy (ASEM). J Struct Biol 2012; 180:259-70. [DOI: 10.1016/j.jsb.2012.08.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 08/01/2012] [Accepted: 08/07/2012] [Indexed: 12/12/2022]
|
20
|
Müller M, Mazur AJ, Behrmann E, Diensthuber RP, Radke MB, Qu Z, Littwitz C, Raunser S, Schoenenberger CA, Manstein DJ, Mannherz HG. Functional characterization of the human α-cardiac actin mutations Y166C and M305L involved in hypertrophic cardiomyopathy. Cell Mol Life Sci 2012; 69:3457-79. [PMID: 22643837 PMCID: PMC11115188 DOI: 10.1007/s00018-012-1030-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/22/2012] [Accepted: 05/07/2012] [Indexed: 11/25/2022]
Abstract
Inherited cardiomyopathies are caused by point mutations in sarcomeric gene products, including α-cardiac muscle actin (ACTC1). We examined the biochemical and cell biological properties of the α-cardiac actin mutations Y166C and M305L identified in hypertrophic cardiomyopathy (HCM). Untagged wild-type (WT) cardiac actin, and the Y166C and M305L mutants were expressed by the baculovirus/Sf9-cell system and affinity purified by immobilized gelsolin G4-6. Their correct folding was verified by a number of assays. The mutant actins also displayed a disturbed intrinsic ATPase activity and an altered polymerization behavior in the presence of tropomyosin, gelsolin, and Arp2/3 complex. Both mutants stimulated the cardiac β-myosin ATPase to only 50 % of WT cardiac F-actin. Copolymers of WT and increasing amounts of the mutant actins led to a reduced stimulation of the myosin ATPase. Transfection of established cell lines revealed incorporation of EGFP- and hemagglutinin (HA)-tagged WT and both mutant actins into cytoplasmic stress fibers. Adenoviral vectors of HA-tagged WT and Y166C actin were successfully used to infect adult and neonatal rat cardiomyocytes (NRCs). The expressed HA-tagged actins were incorporated into the minus-ends of NRC thin filaments, demonstrating the ability to form hybrid thin filaments with endogenous actin. In NRCs, the Y166C mutant led after 72 h to a shortening of the sarcomere length when compared to NRCs infected with WT actin. Thus our data demonstrate that a mutant actin can be integrated into cardiomyocyte thin filaments and by its reduced mode of myosin interaction might be the basis for the initiation of HCM.
Collapse
Affiliation(s)
- Mirco Müller
- Institute for Biophysical Chemistry, OE 4350, Hannover Medical School, 30625 Hannover, Germany
| | - Antonina Joanna Mazur
- Department of Anatomy and Molecular Embryology, Ruhr-University, Universitätsstrasse 150, 44780 Bochum, Germany
- Present Address: Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 51-148 Wroclaw, Poland
| | - Elmar Behrmann
- Department of Physical Biochemistry, Max-Planck-Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Ralph P. Diensthuber
- Institute for Biophysical Chemistry, OE 4350, Hannover Medical School, 30625 Hannover, Germany
| | - Michael B. Radke
- Institute for Biophysical Chemistry, OE 4350, Hannover Medical School, 30625 Hannover, Germany
| | - Zheng Qu
- Department of Anatomy and Molecular Embryology, Ruhr-University, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Christoph Littwitz
- Department of Physiology, Stritch School of Medicine, Loyola University Chicago, Chicago, USA
| | - Stefan Raunser
- Department of Physical Biochemistry, Max-Planck-Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Cora-Ann Schoenenberger
- Maurice E. Müller Institute for Structural Biology, Biozentrum, University of Basel, 4046 Basel, Switzerland
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, OE 4350, Hannover Medical School, 30625 Hannover, Germany
| | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology, Ruhr-University, Universitätsstrasse 150, 44780 Bochum, Germany
- Department of Physical Biochemistry, Max-Planck-Institute for Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
21
|
Felkl M, Tomas K, Smid M, Mattes J, Windoffer R, Leube RE. Monitoring the cytoskeletal EGF response in live gastric carcinoma cells. PLoS One 2012; 7:e45280. [PMID: 23028903 PMCID: PMC3459943 DOI: 10.1371/journal.pone.0045280] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/15/2012] [Indexed: 01/05/2023] Open
Abstract
Altered cell motility is considered to be a key factor in determining tumor invasion and metastasis. Epidermal growth factor (EGF) signaling has been implicated in this process by affecting cytoskeletal organization and dynamics in multiple ways. To sort the temporal and spatial regulation of EGF-dependent cytoskeletal re-organization in relation to a cell's motile behavior time-lapse microscopy was performed on EGF-responsive gastric carcinoma-derived MKN1 cells co-expressing different fluorescently labeled cytoskeletal filaments and focal adhesion components in various combinations. The experiments showed that EGF almost instantaneously induces a considerable increase in membrane ruffling and lamellipodial activity that can be inhibited by Cetuximab EGF receptor antibodies and is not elicited in non-responsive gastric carcinoma Hs746T cells. The transient cell extensions are rich in actin but lack microtubules and keratin intermediate filaments. We show that this EGF-induced increase in membrane motility can be measured by a simple image processing routine. Microtubule plus-ends subsequently invade growing cell extensions, which start to accumulate focal complexes at the lamellipodium-lamellum junction. Such paxillin-positive complexes mature into focal adhesions by tyrosine phosphorylation and recruitment of zyxin. These adhesions then serve as nucleation sites for keratin filaments which are used to enlarge the neighboring peripheral keratin network. Focal adhesions are either disassembled or give rise to stable zyxin-rich fibrillar adhesions which disassemble in the presence of EGF to support formation of new focal adhesion sites in the cell periphery. Taken together the results serve as a basis for modeling the early cytoskeletal EGF response as a tightly coordinated and step-wise process which is relevant for the prediction of the effectiveness of anti-EGF receptor-based tumor therapy.
Collapse
Affiliation(s)
- Marco Felkl
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Kazmar Tomas
- Software Competence Center Hagenberg GmbH, Hagenberg, Austria
| | - Matej Smid
- Software Competence Center Hagenberg GmbH, Hagenberg, Austria
| | - Julian Mattes
- Software Competence Center Hagenberg GmbH, Hagenberg, Austria
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Rudolf E. Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
- * E-mail:
| |
Collapse
|
22
|
Martins GG, Kolega J. A role for microtubules in endothelial cell protrusion in three-dimensional matrices. Biol Cell 2012; 104:271-86. [PMID: 22211516 DOI: 10.1111/boc.201100088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/28/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND INFORMATION Most cells reside in vivo in a three-dimensional (3D) environment surrounded by extracellular matrix and other neighbouring cells, conditions that are different from those found by cells cultured in vitro on two-dimensional (2D) substrata. Cell morphology and behaviour are very different under these two different conditions, but the structural basis for these differences is still not understood, especially the role of microtubules (MTs). To address this issue, we studied the early spreading behaviour of bovine aortic endothelial cells (BAECs) cultured in 3D collagen matrices and on 2D substrata, in the presence of MT-disrupting drugs. RESULTS We found that depolymerisation of MTs greatly reduces the ability of BAECs to form large and stable protrusions inside 3D collagen matrices, an effect that is less pronounced when the cells are cultured on 2D substrata. Colcemid-treated BAECs inside 3D matrices begin assembling protrusions and pull on the matrix, but they fail to extend those protrusions deep into the matrix. It has been previously reported that MT disruption affects Rho signalling which may result in increased cell rigidity and adhesiveness to 2D matrices. Accordingly, we demonstrate that colcemid treatment indeed leads to activation of Rho-kinase (ROCK) targets, which in turn results in activation of regulatory myosin light chains, and that blocking of ROCK mitigates some of the effects of MT disruption in cell spreading in 3D. CONCLUSIONS Our results show that MT depolymerisation is particularly disruptive when cells interact with pliable 3D matrices, suggesting a role for MTs and the Rho pathway in the fine-tuning of contractile and adhesive forces necessary to sustain cell motility in vivo.
Collapse
Affiliation(s)
- Gabriel G Martins
- Centro de Biologia Ambiental/Departamento de Biologia Animal, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisbon, Portugal.
| | | |
Collapse
|
23
|
The Fc receptor-cytoskeleton complex from human neutrophils. J Proteomics 2011; 75:450-68. [PMID: 21911091 DOI: 10.1016/j.jprot.2011.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/12/2011] [Accepted: 08/14/2011] [Indexed: 11/23/2022]
Abstract
The Fc receptor complex and its associated phagocytic cytoskeleton machinery were captured from the surface of live cells by IgG coated microbeads and identified by mass spectrometry. The random and independently sampled intensity values of peptides were similar in the control and IgG samples. After log transformation, the parent and fragment intensity values showed a normal distribution where ≥99.9% of the data was well above the background noise. Some proteins showed significant differences in intensity between the IgG and control samples by ANOVA followed by the Tukey-Kramer honestly significant difference test. However many proteins were specific to the IgG beads or the control beads. The set of detected cytoskeleton proteins, binding proteins and enzymes detected on the IgG beads were used to predict the network of actin-associated regulatory factors. Signaling factors/proteins such as PIK3, PLC, GTPases (such CDC42, Rho GAPs/GEFs), annexins and inositol triphosphate receptors were all identified as being specific to the activated receptor complex by mass spectrometry. In addition, the tyrosine kinase Fak was detected with the IgG coated beads. Hence, an activated receptor cytoskeleton complex and its associated regulatory proteins were captured from the surface of live human primary leukocytes.
Collapse
|
24
|
Saadi I, Alkuraya FS, Gisselbrecht SS, Goessling W, Cavallesco R, Turbe-Doan A, Petrin AL, Harris J, Siddiqui U, Grix AW, Hove HD, Leboulch P, Glover TW, Morton CC, Richieri-Costa A, Murray JC, Erickson RP, Maas RL. Deficiency of the cytoskeletal protein SPECC1L leads to oblique facial clefting. Am J Hum Genet 2011; 89:44-55. [PMID: 21703590 PMCID: PMC3135813 DOI: 10.1016/j.ajhg.2011.05.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 03/29/2011] [Accepted: 05/24/2011] [Indexed: 11/27/2022] Open
Abstract
Genetic mutations responsible for oblique facial clefts (ObFC), a unique class of facial malformations, are largely unknown. We show that loss-of-function mutations in SPECC1L are pathogenic for this human developmental disorder and that SPECC1L is a critical organizer of vertebrate facial morphogenesis. During murine embryogenesis, Specc1l is expressed in cell populations of the developing facial primordial, which proliferate and fuse to form the face. In zebrafish, knockdown of a SPECC1L homolog produces a faceless phenotype with loss of jaw and facial structures, and knockdown in Drosophila phenocopies mutants in the integrin signaling pathway that exhibit cell-migration and -adhesion defects. Furthermore, in mammalian cells, SPECC1L colocalizes with both tubulin and actin, and its deficiency results in defective actin-cytoskeleton reorganization, as well as abnormal cell adhesion and migration. Collectively, these data demonstrate that SPECC1L functions in actin-cytoskeleton reorganization and is required for proper facial morphogenesis.
Collapse
Affiliation(s)
- Irfan Saadi
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gutierrez O, Berciano MT, Lafarga M, Fernandez-Luna JL. A novel pathway of TEF regulation mediated by microRNA-125b contributes to the control of actin distribution and cell shape in fibroblasts. PLoS One 2011; 6:e17169. [PMID: 21347262 PMCID: PMC3037971 DOI: 10.1371/journal.pone.0017169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 01/24/2011] [Indexed: 02/02/2023] Open
Abstract
Background Thyrotroph embryonic factor (TEF), a member of the PAR bZIP family of transcriptional regulators, has been involved in neurotransmitter homeostasis, amino acid metabolism, and regulation of apoptotic proteins. In spite of its relevance, nothing is known about the regulation of TEF. Principal Findings p53-dependent genotoxic agents have been shown to be much more harmful for PAR bZIP-deficient mice as compared to wild type animals. Here we demonstrate that TEF expression is controlled by p53 through upregulation of microRNA-125b, as determined by both regulating the activity of p53 and transfecting cells with microRNA-125b precursors. We also describe a novel role for TEF in controlling actin distribution and cell shape in mouse fibroblasts. Lack of TEF is accompanied by dramatic increase of cell area and decrease of elongation (bipolarity) and dispersion (multipolarity). Staining of actin cytoskeleton also showed that TEF (−/−) cells are characterized by appearance of circumferential actin bundles and disappearance of straight fibers. Interestingly, transfection of TEF (−/−) fibroblasts with TEF induced a wild type-like phenotype. Consistent with our previous findings, transfection of wild type fibroblasts with miR-125b promoted a TEF (−/−)-like phenotype, and a similar but weaker effect was observed following exogenous expression of p53. Conclusions/Significance These findings provide the first evidence of TEF regulation, through a miR-125b-mediated pathway, and describes a novel role of TEF in the maintenance of cell shape in fibroblasts.
Collapse
Affiliation(s)
- Olga Gutierrez
- Unidad de Genetica Molecular, Hospital Universitario Marques de Valdecilla, Instituto de Formacion e Investigacion Marques de Valdecilla, Servicio Cantabro de Salud, Santander, Spain
| | - Maria T. Berciano
- Departamento de Anatomia y Biologia Celular, Universidad de Cantabria, Santander, Spain
| | - Miguel Lafarga
- Departamento de Anatomia y Biologia Celular, Universidad de Cantabria, Santander, Spain
| | - Jose L. Fernandez-Luna
- Unidad de Genetica Molecular, Hospital Universitario Marques de Valdecilla, Instituto de Formacion e Investigacion Marques de Valdecilla, Servicio Cantabro de Salud, Santander, Spain
- * E-mail:
| |
Collapse
|
26
|
Caddy J, Wilanowski T, Darido C, Dworkin S, Ting SB, Zhao Q, Rank G, Auden A, Srivastava S, Papenfuss TA, Murdoch JN, Humbert PO, Boulos N, Weber T, Zuo J, Cunningham JM, Jane SM. Epidermal wound repair is regulated by the planar cell polarity signaling pathway. Dev Cell 2010; 19:138-47. [PMID: 20643356 PMCID: PMC2965174 DOI: 10.1016/j.devcel.2010.06.008] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/12/2010] [Accepted: 05/03/2010] [Indexed: 02/07/2023]
Abstract
The mammalian PCP pathway regulates diverse developmental processes requiring coordinated cellular movement, including neural tube closure and cochlear stereociliary orientation. Here, we show that epidermal wound repair is regulated by PCP signaling. Mice carrying mutant alleles of PCP genes Vangl2, Celsr1, PTK7, and Scrb1, and the transcription factor Grhl3, interact genetically, exhibiting failed wound healing, neural tube defects, and disordered cochlear polarity. Using phylogenetic analysis, ChIP, and gene expression in Grhl3(-)(/-) mice, we identified RhoGEF19, a homolog of a RhoA activator involved in PCP signaling in Xenopus, as a direct target of GRHL3. Knockdown of Grhl3 or RhoGEF19 in keratinocytes induced defects in actin polymerization, cellular polarity, and wound healing, and re-expression of RhoGEF19 rescued these defects in Grhl3-kd cells. These results define a role for Grhl3 in PCP signaling and broadly implicate this pathway in epidermal repair.
Collapse
Affiliation(s)
- Jacinta Caddy
- Rotary Bone Marrow Research Laboratories, c/o Royal Melbourne Hospital Post Office, Grattan Street, Parkville, VIC 3050, Australia
| | - Tomasz Wilanowski
- Rotary Bone Marrow Research Laboratories, c/o Royal Melbourne Hospital Post Office, Grattan Street, Parkville, VIC 3050, Australia
| | - Charbel Darido
- Rotary Bone Marrow Research Laboratories, c/o Royal Melbourne Hospital Post Office, Grattan Street, Parkville, VIC 3050, Australia
| | - Sebastian Dworkin
- Rotary Bone Marrow Research Laboratories, c/o Royal Melbourne Hospital Post Office, Grattan Street, Parkville, VIC 3050, Australia
| | - Stephen B. Ting
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia
| | - Quan Zhao
- Rotary Bone Marrow Research Laboratories, c/o Royal Melbourne Hospital Post Office, Grattan Street, Parkville, VIC 3050, Australia
| | - Gerhard Rank
- Rotary Bone Marrow Research Laboratories, c/o Royal Melbourne Hospital Post Office, Grattan Street, Parkville, VIC 3050, Australia
| | - Alana Auden
- Rotary Bone Marrow Research Laboratories, c/o Royal Melbourne Hospital Post Office, Grattan Street, Parkville, VIC 3050, Australia
| | - Seema Srivastava
- Rotary Bone Marrow Research Laboratories, c/o Royal Melbourne Hospital Post Office, Grattan Street, Parkville, VIC 3050, Australia
| | - Tony A. Papenfuss
- Division of Bioinformatics, The Walter and Eliza Hall Institute, Parkville, VIC 3050, Australia
| | | | - Patrick O. Humbert
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia
| | - Nidal Boulos
- Department of Pediatrics, University of Chicago, Chicago IL, 60637 USA
| | - Thomas Weber
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis TN, 38105 USA
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis TN, 38105 USA
| | | | - Stephen M. Jane
- Rotary Bone Marrow Research Laboratories, c/o Royal Melbourne Hospital Post Office, Grattan Street, Parkville, VIC 3050, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
27
|
Parallel genetic and proteomic screens identify Msps as a CLASP-Abl pathway interactor in Drosophila. Genetics 2010; 185:1311-25. [PMID: 20498300 DOI: 10.1534/genetics.110.115626] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of cytoskeletal structure and dynamics is essential for multiple aspects of cellular behavior, yet there is much to learn about the molecular machinery underlying the coordination between the cytoskeleton and its effector systems. One group of proteins that regulate microtubule behavior and its interaction with other cellular components, such as actin-regulatory proteins and transport machinery, is the plus-end tracking proteins (MT+TIPs). In particular, evidence suggests that the MT+TIP, CLASP, may play a pivotal role in the coordination of microtubules with other cellular structures in multiple contexts, although the molecular mechanism by which it functions is still largely unknown. To gain deeper insight into the functional partners of CLASP, we conducted parallel genetic and proteome-wide screens for CLASP interactors in Drosophila melanogaster. We identified 36 genetic modifiers and 179 candidate physical interactors, including 13 that were identified in both data sets. Grouping interactors according to functional classifications revealed several categories, including cytoskeletal components, signaling proteins, and translation/RNA regulators. We focused our initial investigation on the MT+TIP Minispindles (Msps), identified among the cytoskeletal effectors in both genetic and proteomic screens. Here, we report that Msps is a strong modifier of CLASP and Abl in the retina. Moreover, we show that Msps functions during axon guidance and antagonizes both CLASP and Abl activity. Our data suggest a model in which CLASP and Msps converge in an antagonistic balance in the Abl signaling pathway.
Collapse
|
28
|
Preparation of BFV Gag antiserum and preliminary study on cellular distribution of BFV. Virol Sin 2010; 25:115-22. [PMID: 20960308 DOI: 10.1007/s12250-010-3110-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 12/16/2009] [Indexed: 10/19/2022] Open
Abstract
Viruses (e.g. Human immunodeficiency virus, Human simplex virus and Prototype foamy virus) are obligate intracellular parasites and therefore depend on the cellular machinery for cellular trafficking. Bovine foamy virus (BFV) is a member of the Spumaretrovirinae subfamily of Retroviruses, however, details of its cellular trafficking remain unknown. In this study, we cloned the BFV gag gene into prokaryotic expression vector pET28a and purified the denaturalized Gag protein. The protein was used to immunize BALB/c mouse to produce antiserum, which could specifically recognize the BFV Gag protein in BFV-infected cells through western blot assay. Additionally, these results demonstrated that both the optimal and suboptimal cleavage of Gag protein occur in BFV-infected cells. Subsequently, the Gag antiserum was used to investigate subcellular localization of BFV. In immunofluorescence microscopy assays, colocalization microtubules (MTs) and assembling viral particles were clearly observed, which implied that BFV may transport along cellular MTs in host cells. Furthermore, MTs-depolymerizing assay indicated MTs were required for the efficient replication of BFV. In conclusion, our study suggests that BFV has evolved the mechanism to hijack the cellular cytoskeleton for its replication.
Collapse
|
29
|
Olk S, Turchinovich A, Grzendowski M, Stühler K, Meyer HE, Zoidl G, Dermietzel R. Proteomic analysis of astroglial connexin43 silencing uncovers a cytoskeletal platform involved in process formation and migration. Glia 2010; 58:494-505. [PMID: 19795503 DOI: 10.1002/glia.20942] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Connexin43 (Cx43) is the most abundant gap junction protein of the brain, where it is predominantly expressed in astrocytes. Recent studies imply a role of Cx43 in the regulation of important cellular processes, including migration, proliferation, and shape formation. These processes are assumed to be reflected by the proteome of the Cx43 expressing cells. To analyze the influence of Cx43 on the astrocytic proteome, we used RNA interference to downregulate the expression of this connexin in cultures of mouse astrocytes. We applied difference gel electrophoresis (DIGE) to compare silenced astrocytes with control cells. The differential proteome analysis revealed 15 significantly regulated proteins (between 1.2- and 1.6-fold), of which six are known to belong to a group of cytoskeletal proteins involved in cortical platform formation. Astrocytes treated with Cx43 small interfering (si)RNA showed an increased expression of the cytoskeletal proteins: actin, tropomyosin, microtubule-associated protein RP/EB1, transgelin, and GFAP, and a decreased expression of cofilin-1. Quantitative immunocytochemistry and Western blotting revealed similar results showing an upregulation of actin, tubulin, tropomyosin, EB1, transgelin and GFAP, and a downregulation of Ser-3-phosphorylated cofilin. Furthermore, Cx43 silencing led to phenotypical changes in cell morphology, migratory activity, and cell adhesion. Our results provide mechanistic clues for an understanding of Cx43 interaction with cellular motor activities such as migration and process formation in astrocytes.
Collapse
Affiliation(s)
- Stephan Olk
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Rai P, Kota V, Sundaram CS, Deendayal M, Shivaji S. Proteome of human endometrium: Identification of differentially expressed proteins in proliferative and secretory phase endometrium. Proteomics Clin Appl 2009; 4:48-59. [DOI: 10.1002/prca.200900094] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 09/11/2009] [Accepted: 09/16/2009] [Indexed: 12/26/2022]
|
31
|
Sanchez-Soriano N, Travis M, Dajas-Bailador F, Gonçalves-Pimentel C, Whitmarsh AJ, Prokop A. Mouse ACF7 and drosophila short stop modulate filopodia formation and microtubule organisation during neuronal growth. J Cell Sci 2009; 122:2534-42. [PMID: 19571116 PMCID: PMC2704885 DOI: 10.1242/jcs.046268] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2009] [Indexed: 12/17/2022] Open
Abstract
Spectraplakins are large actin-microtubule linker molecules implicated in various processes, including gastrulation, wound healing, skin blistering and neuronal degeneration. Expression data for the mammalian spectraplakin ACF7 and genetic analyses of the Drosophila spectraplakin Short stop (Shot) suggest an important role during neurogenesis. Using three parallel neuronal culture systems we demonstrate that, like Shot, ACF7 is essential for axon extension and describe, for the first time, their subcellular functions during axonal growth. Firstly, both ACF7 and Shot regulate the organisation of neuronal microtubules, a role dependent on both the F-actin- and microtubule-binding domains. This role in microtubule organisation is probably the key mechanism underlying the roles of Shot and ACF7 in growth cone advance. Secondly, we found a novel role for ACF7 and Shot in regulating the actin cytoskeleton through their ability to control the formation of filopodia. This function in F-actin regulation requires EF-hand motifs and interaction with the translational regulator Krasavietz/eIF5C, indicating that the underlying mechanisms are completely different from those used to control microtubules. Our data provide the basis for the first mechanistic explanation for the role of Shot and ACF7 in the developing nervous system and demonstrate their ability to coordinate the organisation of both actin and microtubule networks during axonal growth.
Collapse
Affiliation(s)
- Natalia Sanchez-Soriano
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
32
|
Autonomous regulation of osteosarcoma cell invasiveness by Wnt5a/Ror2 signaling. Oncogene 2009; 28:3197-208. [PMID: 19561643 DOI: 10.1038/onc.2009.175] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The receptor tyrosine kinase Ror2 regulates cell migration by acting as a receptor or co-receptor for Wnt5a. Although Wnt5a has been implicated in the invasiveness of several types of tumors, the role of Ror2 in tumor invasion remains elusive. Here we show that osteosarcoma cell lines SaOS-2 and U2OS show invasive properties in vitro by activating Wnt5a/Ror2 signaling in a cell-autonomous manner. The suppressed expression of either Wnt5a or Ror2 in osteosarcoma cells inhibits cell invasiveness accompanying decreased invadopodia formation. Gene-expression profiling identified matrix metalloproteinase 13 (MMP-13) as one of the genes whose expression is downregulated in SaOS-2 cells following suppression of Ror2 expression. Reduced expression or activity of MMP-13 suppresses invasiveness of SaOS-2 cells. Moreover, expression of MMP-13 and cell invasiveness by Wnt5a/Ror2 signaling can be abrogated by an inhibitor of the Src-family protein tyrosine kinases (SFKs), suggesting the role of the SFKs in MMP-13 expression through Wnt5a/Ror2 signaling. We further show that activation of an SFK is inhibited by the suppressed expression of Ror2. Collectively, these results indicate that Wnt5a/Ror2 signaling involves the activation of a SFK, leading to MMP-13 expression, and that constitutively active Wnt5a/Ror2 signaling confers invasive properties on osteosarcoma cells in a cell-autonomous manner.
Collapse
|
33
|
Tomar A, Lim ST, Lim Y, Schlaepfer DD. A FAK-p120RasGAP-p190RhoGAP complex regulates polarity in migrating cells. J Cell Sci 2009; 122:1852-62. [PMID: 19435801 DOI: 10.1242/jcs.046870] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Directional motility is a complex process requiring the spatiotemporal integration of signals that regulate cytoskeletal changes, and the establishment of an anteroposterior or polarized cell axis. Focal adhesion kinase (FAK) promotes cell migration, but a molecular role for FAK in promoting cell polarity remains undefined. Here, using wound healing and Golgi-reorientation analyses, we show that fibroblast, endothelial and carcinoma polarity during cell migration requires FAK and is associated with a complex between FAK, p120RasGAP and p190RhoGAP (p190A), leading to p190A tyrosine phosphorylation. Fibronectin-integrin-mediated FAK activation and phosphorylation promote SH2-mediated binding of p120RasGAP to FAK and FAK-mediated p190A tyrosine phosphorylation. The association of p120RasGAP with FAK facilitates the formation of a FAK-p120RasGAP-p190A complex targeted to leading-edge focal adhesions by FAK. Knockdown of p120RasGAP, mutation of FAK Y397 or inhibition of FAK activity prevent the association of FAK with p190A and subsequent tyrosine phosphorylation of p190A, and result in the loss of cell polarity. Because reconstitution of FAK-null fibroblasts with FAK or a Pyk2-FAK chimera restore the normal decrease in RhoA GTP binding upon cell spreading on fibronectin, our studies support a model whereby FAK activity facilitates the recruitment and stabilization of a p120RasGAP-p190A complex at leading-edge focal adhesions connected to the transient inhibition of RhoA activity and the regulation of cell polarity.
Collapse
Affiliation(s)
- Alok Tomar
- University of California San Diego, Moores Cancer Center, Department of Reproductive Medicine, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
34
|
Marcos S, Moreau J, Backer S, Job D, Andrieux A, Bloch-Gallego E. Tubulin tyrosination is required for the proper organization and pathfinding of the growth cone. PLoS One 2009; 4:e5405. [PMID: 19404406 PMCID: PMC2672595 DOI: 10.1371/journal.pone.0005405] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 03/18/2009] [Indexed: 12/03/2022] Open
Abstract
Background During development, neuronal growth cones integrate diffusible and contact guidance cues that are conveyed to both actin and microtubule (MT) cytoskeletons and ensure axon outgrowth and pathfinding. Although several post-translational modifications of tubulin have been identified and despite their strong conservation among species, their physiological roles during development, especially in the nervous sytem, are still poorly understood. Methodology/Findings Here, we have dissected the role of a post-translational modification of the last amino acid of the α-tubulin on axonal growth by analyzing the phenotype of precerebellar neurons in Tubulin tyrosin ligase knock-out mice (TTL−/−) through in vivo, ex vivo and in vitro analyses. TTL−/− neurons are devoid of tyrosinated tubulin. Their pathway shows defects in vivo, ex vivo, in hindbrains open-book preparations or in vitro, in a collagen matrix. Their axons still orient toward tropic cues, but they emit supernumerary branches and their growth cones are enlarged and exhibit an emission of mis-oriented filopodia. Further analysis of the TTL−/− growth cone intracellular organization also reveals that the respective localization of actin and MT filaments is disturbed, with a decrease in the distal accumulation of Myosin IIB, as well as a concomitant Rac1 over-activation in the hindbrain. Pharmacological inhibition of Rac1 over-activation in TTL−/− neurons can rescue Myosin IIB localization. Conclusions/Significance In the growth cone, we propose that tubulin tyrosination takes part in the relative arrangement of actin and MT cytoskeletons, in the regulation of small GTPases activity, and consequently, in the proper morphogenesis, organization and pathfinding of the growth cone during development.
Collapse
Affiliation(s)
- Séverine Marcos
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
- Inserm, U567, Département Génétique et Développement, Paris, France
| | - Julie Moreau
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
- Inserm, U567, Département Génétique et Développement, Paris, France
| | - Stéphanie Backer
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
- Inserm, U567, Département Génétique et Développement, Paris, France
| | - Didier Job
- Grenoble Institut des Neurosciences, Centre de Recherche Inserm U.836 – UJF-CEA-CHU, Bâtiment Edmond J. Safra, Université Joseph Fourier, Site Santé à La Tronche, Grenoble, France
| | - Annie Andrieux
- Grenoble Institut des Neurosciences, Centre de Recherche Inserm U.836 – UJF-CEA-CHU, Bâtiment Edmond J. Safra, Université Joseph Fourier, Site Santé à La Tronche, Grenoble, France
| | - Evelyne Bloch-Gallego
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
- Inserm, U567, Département Génétique et Développement, Paris, France
- * E-mail:
| |
Collapse
|
35
|
Abstract
The activation of lipid-modifying enzymes generally involves a physical change in their interactions with the membrane substrate. For sphingosine kinase, a predominantly cytosolic enzyme in resting cells, activation is accompanied by translocation to specific subsets of cellular membranes where catalysis occurs. As all eukaryotic membranes have a tightly associated filamentous actin skeleton, we investigated potential regulatory interactions between sphingosine kinase and actin. Sphingosine kinase 1 (SK1) exhibited constitutive- and stimulus-enhanced association with actin filaments and F-actin-enriched membrane fractions in both intact macrophages and an in vitro reconstitution assay, whereas SK1 bound G-actin only under stimulated conditions. Actin inhibitors disrupted SK1 localization and increased its enzymatic activity. Both the localization and the activity of SK1 were coordinately regulated with the actin cytoskeleton. The association of enzymes with the actin cytoskeleton and how this regulates their activities and functions are subjects of intense interest. Here, we describe the approach we used to investigate regulation of SK1. This provides general methods that can be used to examine the role of actin in regulating enzyme activity in macrophages and other myeloid cells.
Collapse
Affiliation(s)
- Shankar S Iyer
- Physiology and Biophysics, and the Graduate Program in Immunology, University of Iowa Carver College of Medicine and Iowa City Veterans Affairs Medical Centre, Iowa City, IA, USA
| | | |
Collapse
|
36
|
Molecular Mechanisms of Axonal Growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 621:1-16. [DOI: 10.1007/978-0-387-76715-4_1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Wu X, Kodama A, Fuchs E. ACF7 regulates cytoskeletal-focal adhesion dynamics and migration and has ATPase activity. Cell 2008; 135:137-48. [PMID: 18854161 PMCID: PMC2703712 DOI: 10.1016/j.cell.2008.07.045] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 07/02/2008] [Accepted: 07/30/2008] [Indexed: 11/17/2022]
Abstract
Coordinated interactions between microtubule (MT) and actin cytoskeletons are involved in many polarized cellular processes. Spectraplakins are enormous (>500 kDa) proteins able to bind both MTs and actin filaments (F-actin) directly. To elucidate the physiological significance and functions of mammalian spectraplakin ACF7, we've conditionally targeted it in skin epidermis. Intriguingly, ACF7 deficiency compromises the targeting of microtubules along F-actin to focal adhesions (FAs), stabilizes FA-actin networks, and impairs epidermal migration. Exploring underlying mechanisms, we show that ACF7's binding domains for F-actin, MTs, and MT plus-end proteins are not sufficient to rescue the defects in FA-cytoskeletal dynamics and migration functions of ACF7 null keratinocytes. We've uncovered an intrinsic actin-regulated ATPase domain in ACF7 and demonstrate that it is both functional and essential for these roles. Our findings provide insight into the functions of this important cytoskeletal crosslinking protein in regulating dynamic interactions between MTs and F-actin to sustain directional cell movement.
Collapse
Affiliation(s)
- Xiaoyang Wu
- The Howard Hughes Medical Institute and Laboratory of Mammalian Cell Biology and Development, Rockefeller University, New York, NY 10065, USA
| | - Atsuko Kodama
- The Howard Hughes Medical Institute and Laboratory of Mammalian Cell Biology and Development, Rockefeller University, New York, NY 10065, USA
| | - Elaine Fuchs
- The Howard Hughes Medical Institute and Laboratory of Mammalian Cell Biology and Development, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
38
|
Loufrani L, Henrion D. Role of the cytoskeleton in flow (shear stress)-induced dilation and remodeling in resistance arteries. Med Biol Eng Comput 2008; 46:451-60. [PMID: 18246377 DOI: 10.1007/s11517-008-0306-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 01/10/2008] [Indexed: 11/28/2022]
Abstract
Cytoskeletal proteins determine cell shape and integrity and membrane-bound structures connected to extracellular components allow tissue integrity. These structural elements have an active role in the interaction of blood vessels with their environment. Shear stress due to blood flow is the most important force stimulating the endothelium. The role of cytoskeletal proteins in endothelial responses to flow has been studied in resistance arteries using pharmacological tools and transgenic models. Shear stress activates extracellular "flow sensing" elements associated with a thick glycocalyx communicating the signal to membrane-bound complexes (integrins and/or dystrophin-dystroglycans) and to eNOS through a pathway involving the intermediate filament vimentin, the microtubule network and actin. When blood flow increases chronically the endothelium triggers diameter enlargement and medial hypertrophy. This is facilitated by the genetic absence of the intermediate filaments, vimentin and desmin suggesting that these elements oppose the process.
Collapse
Affiliation(s)
- Laurent Loufrani
- Department of Integrated Neurovascular Biology, INSERM, CNRS, CHU d'Angers, France
| | | |
Collapse
|
39
|
Nomachi A, Nishita M, Inaba D, Enomoto M, Hamasaki M, Minami Y. Receptor tyrosine kinase Ror2 mediates Wnt5a-induced polarized cell migration by activating c-Jun N-terminal kinase via actin-binding protein filamin A. J Biol Chem 2008; 283:27973-27981. [PMID: 18667433 DOI: 10.1074/jbc.m802325200] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The receptor tyrosine kinase Ror2 has recently been shown to act as an alternative receptor or coreceptor for Wnt5a and to mediate Wnt5a-induced migration of cultured cells. However, little is known about the molecular mechanism underlying this migratory process. Here we show by wound-healing assays that Ror2 plays critical roles in Wnt5a-induced cell migration by regulating formation of lamellipodia and reorientation of microtubule-organizing center (MTOC). Wnt5a stimulation induces activation of the c-Jun N-terminal kinase JNK at the wound edge in a Ror2-dependent manner, and inhibiting JNK activity abrogates Wnt5a-induced lamellipodia formation and MTOC reorientation. Additionally, the association of Ror2 with the actin-binding protein filamin A is required for Wnt5a-induced JNK activation and polarized cell migration. We further show that Wnt5a-induced JNK activation and MTOC reorientation can be suppressed by inhibiting PKCzeta. Taken together, our findings indicate that Wnt5a/Ror2 activates JNK, through a process involving filamin A and PKCzeta, to regulate polarized cell migration.
Collapse
Affiliation(s)
- Akira Nomachi
- Physiology and Cell Biology, Kobe University, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Michiru Nishita
- Physiology and Cell Biology, Kobe University, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Daisuke Inaba
- Physiology and Cell Biology, Kobe University, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Masahiro Enomoto
- Physiology and Cell Biology, Kobe University, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; Pediatrics, Graduate School of Medicine, Kobe University, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Mayumi Hamasaki
- Physiology and Cell Biology, Kobe University, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yasuhiro Minami
- Physiology and Cell Biology, Kobe University, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| |
Collapse
|
40
|
Alves-Silva J, Hahn I, Huber O, Mende M, Reissaus A, Prokop A. Prominent actin fiber arrays in Drosophila tendon cells represent architectural elements different from stress fibers. Mol Biol Cell 2008; 19:4287-97. [PMID: 18667532 PMCID: PMC2555930 DOI: 10.1091/mbc.e08-02-0182] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tendon cells are specialized cells of the insect epidermis that connect basally attached muscle tips to the cuticle on their apical surface via prominent arrays of microtubules. Tendon cells of Drosophila have become a useful genetic model system to address questions with relevance to cell and developmental biology. Here, we use light, confocal, and electron microscopy to present a refined model of the subcellular organization of tendon cells. We show that prominent arrays of F-actin exist in tendon cells that fully overlap with the microtubule arrays, and that type II myosin accumulates in the same area. The F-actin arrays in tendon cells seem to represent a new kind of actin structure, clearly distinct from stress fibers. They are highly resistant to F-actin-destabilizing drugs, to the application of myosin blockers, and to loss of integrin, Rho1, or mechanical force. They seem to represent an important architectural element of tendon cells, because they maintain a connection between apical and basal surfaces even when microtubule arrays of tendon cells are dysfunctional. Features reported here and elsewhere for tendon cells are reminiscent of the structural and molecular features of support cells in the inner ear of vertebrates, and they might have potential translational value.
Collapse
Affiliation(s)
- Juliana Alves-Silva
- Faculty of Life Sciences, Wellcome Trust Centre of Cell-Matrix Research, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | |
Collapse
|
41
|
Yu Z, Bhandari A, Mannik J, Pham T, Xu X, Andersen B. Grainyhead-like factor Get1/Grhl3 regulates formation of the epidermal leading edge during eyelid closure. Dev Biol 2008; 319:56-67. [PMID: 18485343 PMCID: PMC2494567 DOI: 10.1016/j.ydbio.2008.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 03/03/2008] [Accepted: 04/02/2008] [Indexed: 11/29/2022]
Abstract
Grainyhead transcription factors play an evolutionarily conserved role in regulating epidermal terminal differentiation. One such factor, the mammalian Grainyhead-like epithelial transactivator (Get1/Grhl3), is important for epidermal barrier formation. In addition to a role in barrier formation, Grainyhead genes play roles in closure of several structures such as the mouse neural tube and Drosophila wounds. Consistent with these observations, we found that Get1 knockout mice have an eye-open at birth phenotype. The failure of eyelid closure appears to be due to critical functions of Get1 in promoting F-actin polymerization, filopodia formation, and the cell shape changes that are required for migration of the keratinocytes at the leading edge during eyelid closure. The expression of TGFalpha, a known regulator of leading edge formation, is decreased in the eyelid tip of Get1(-/-) mice. Levels of phospho-EGFR and phospho-ERK are also decreased at the leading edge tip. Furthermore, in an organ culture model, TGFalpha can increase levels of phospho-EGFR and promote cell shape changes as well as leading edge formation in Get1(-/-) eyelids, indicating that in eyelid closure Get1 acts upstream of TGFalpha in the EGFR/ERK pathway.
Collapse
Affiliation(s)
- Zhengquan Yu
- Departments of Medicine and Biological Chemistry, University of California, Irvine, California 92697-4030
| | - Ambica Bhandari
- Departments of Medicine and Biological Chemistry, University of California, Irvine, California 92697-4030
| | - Jaana Mannik
- Departments of Medicine and Biological Chemistry, University of California, Irvine, California 92697-4030
| | - Thu Pham
- Departments of Medicine and Biological Chemistry, University of California, Irvine, California 92697-4030
| | - Xiaoman Xu
- Departments of Medicine and Biological Chemistry, University of California, Irvine, California 92697-4030
| | - Bogi Andersen
- Departments of Medicine and Biological Chemistry, University of California, Irvine, California 92697-4030
| |
Collapse
|
42
|
Valenzuela-Fernández A, Cabrero JR, Serrador JM, Sánchez-Madrid F. HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol 2008; 18:291-7. [PMID: 18472263 DOI: 10.1016/j.tcb.2008.04.003] [Citation(s) in RCA: 396] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 04/02/2008] [Accepted: 04/03/2008] [Indexed: 11/26/2022]
Abstract
Histone deacetylase 6 (HDAC6) is a cytoplasmic enzyme that regulates many important biological processes, including cell migration, immune synapse formation, viral infection, and the degradation of misfolded proteins. HDAC6 deacetylates tubulin, Hsp90 and cortactin, and forms complexes with other partner proteins. Although HDAC6 enzymatic activity seems to be required for the regulation of cell morphology, the role of HDAC6 in lymphocyte chemotaxis is independent of its tubulin deacetylase activity. The diverse functions of HDAC6 suggest that it is a potential therapeutic target for the treatment of a range of diseases. This review examines the biological actions of HDAC6, focusing on its deacetylase activity and its potential scaffold functions in the regulation of cell migration and other key biological processes in which the cytoskeleton plays an important role.
Collapse
Affiliation(s)
- Agustín Valenzuela-Fernández
- Departamento de Medicina Física y Farmacología, Facultad de Medicina and Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | | | | | | |
Collapse
|
43
|
Tsvetkov AS, Samsonov A, Akhmanova A, Galjart N, Popov SV. Microtubule-binding proteins CLASP1 and CLASP2 interact with actin filaments. ACTA ACUST UNITED AC 2007; 64:519-30. [PMID: 17342765 DOI: 10.1002/cm.20201] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell morphogenesis requires dynamic communication between actin filaments and microtubules which is mediated, at least in part, by direct structural links between the two cytoskeletal systems. Here, we examined interaction between the CLIP-associated proteins (CLASP) CLASP1 and CLASP2, and actin filaments. We demonstrate that, in addition to a well-established association with the distal ends of microtubules, CLASP2alpha co-localizes with stress fibers, and that both CLASP1alpha and CLASP2alpha co-immunoprecipitate with actin. GFP-CLASP2alpha exhibits retrograde flow in the lamellipodia of Xenopus primary fibroblasts and in the filopodia of Xenopus spinal cord neurons. A deletion mapping analysis reveals that both the microtubule-binding domain of CLASP2 (which is homologous between all CLASPs) and the N-terminal dis1/TOG domain of CLASP2alpha (which is homologous between alpha isoforms) possess actin-binding activity. Fluorescence resonance energy transfer experiments demonstrate significant energy transfer between YFP-CLASP2alpha and CFP-actin. Our results indicate that CLASPs function as actin/microtubule crosslinkers in interphase cells. We propose that CLASPs facilitate recognition of actin filaments by the plus ends of growing microtubules at the initial stages of actin-microtubule interaction. Cell Motil.
Collapse
Affiliation(s)
- Andrey S Tsvetkov
- Department of Physiology and Biophysics M/C 901, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
44
|
Kusner DJ, Thompson CR, Melrose NA, Pitson SM, Obeid LM, Iyer SS. The Localization and Activity of Sphingosine Kinase 1 Are Coordinately Regulated with Actin Cytoskeletal Dynamics in Macrophages. J Biol Chem 2007; 282:23147-62. [PMID: 17519232 DOI: 10.1074/jbc.m700193200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The physiologic and pathologic functions of sphingosine kinase (SK) require translocation to specific membrane compartments. We tested the hypothesis that interactions with actin filaments regulate the localization of SK1 to membrane surfaces, including the plasma membrane and phagosome. Macrophage activation is accompanied by a marked increase in association of SK1 with actin filaments. Catalytically-inactive (CI)- and phosphorylation-defective (PD)-SK1 mutants exhibited reductions in plasma membrane translocation, colocalization with cortical actin filaments, membrane ruffling, and lamellipodia formation, compared with wild-type (WT)-SK1. However, translocation of CI- and PD-SK1 to phagosomes were equivalent to WT-SK1. SK1 exhibited constitutive- and stimulus-enhanced association with actin filaments and F-actin-enriched membrane fractions in both intact macrophages and a novel in vitro assay. In contrast, SK1 bound G-actin only under stimulated conditions. Actin inhibitors disrupted SK1 localization and modulated its activity. Conversely, reduction of SK1 levels or activity via RNA interference or specific chemical inhibition resulted in dysregulation of actin filaments. Thus, the localization and activity of SK1 are coordinately regulated with actin dynamics during macrophage activation.
Collapse
Affiliation(s)
- David J Kusner
- Inflammation Program, Division of Infectious Diseases, Department of Internal Medicine, University of Iowa Carver College of Medicine and Veterans Affairs Medical Center, Iowa City, Iowa 52245, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Ren N, Charlton J, Adler PN. The flare gene, which encodes the AIP1 protein of Drosophila, functions to regulate F-actin disassembly in pupal epidermal cells. Genetics 2007; 176:2223-34. [PMID: 17565945 PMCID: PMC1950627 DOI: 10.1534/genetics.107.072959] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adult Drosophila are decorated with several types of polarized cuticular structures, such as hairs and bristles. The morphogenesis of these takes place in pupal cells and is mediated by the actin and microtubule cytoskeletons. Mutations in flare (flr) result in grossly abnormal epidermal hairs. We report here that flr encodes the Drosophila actin interacting protein 1 (AIP1). In other systems this protein has been found to promote cofilin-mediated F-actin disassembly. In Drosophila cofilin is encoded by twinstar (tsr). We show that flr mutations result in increased levels of F-actin accumulation and increased F-actin stability in vivo. Further, flr is essential for cell proliferation and viability and for the function of the frizzled planar cell polarity system. All of these phenotypes are similar to those seen for tsr mutations. This differs from the situation in yeast where cofilin is essential while aip1 mutations result in only subtle defects in the actin cytoskeleton. Surprisingly, we found that mutations in flr and tsr also result in greatly increased tubulin staining, suggesting a tight linkage between the actin and microtubule cytoskeleton in these cells.
Collapse
Affiliation(s)
- Nan Ren
- Biology Department, Institute for Morphogenesis and Regenerative Medicine and Cancer Center, University of Virginia, Charlottesville, VA 22903, USA
| | | | | |
Collapse
|
46
|
Braun GS, Kretzler M, Heider T, Floege J, Holzman LB, Kriz W, Moeller MJ. Differentially spliced isoforms of FAT1 are asymmetrically distributed within migrating cells. J Biol Chem 2007; 282:22823-33. [PMID: 17500054 DOI: 10.1074/jbc.m701758200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cadherin FAT1 is localized along the leading edge of mammalian cells and is necessary for polarization and directed migration. It is essential for maintenance of the complex cytoarchitecture of the glomerular filtration barrier within the kidney. In this study, three novel splice isoforms of FAT1 with important functional differences in comparison with wild-type FAT1, FAT1(WT), were identified. The novel variants contained additional short peptide sequences at a specific site of the cytoplasmic domain (+12 or +32 or +8 amino acids, the latter resulting in a premature stop codon). FAT1(+12) was expressed in all peripheral tissues together with FAT1(WT), whereas FAT1(+32) and -(+8TR) were brain-specific. At the subcellular level, exclusively FAT1(WT) was localized along the cellular leading edge, whereas spliced FAT1 isoforms were confined to intercellular junctions. A shift of FAT1(WT) expression toward a predominance of FAT1(+12) was observed in migratory versus quiescent cells. A similar shift was observed in vivo when glomeruli from healthy individuals were compared with those from patients affected by glomerulonephritis. At the molecular level, the differential subcellular localization of FAT1 isoforms was mediated by a novel region harboring a phosphotyrosine-binding-like motif (DN_XYH), which was disrupted by the peptide inserts in the alternative splice variants. Overexpression of FAT1(WT) or specific knockdown of spliced FAT1 isoforms resulted in formation of cellular protrusions or increased wound healing, respectively. In summary, FAT1(WT) is the only FAT1 isoform located along the cellular leading edge. Only FAT1(WT) is up-regulated in migration, induces cellular process formation when overexpressed, and is necessary for efficient wound healing.
Collapse
Affiliation(s)
- Gerald S Braun
- Institute for Anatomy and Cell Biology 1, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Choi JH, Yang YR, Lee SK, Kim IS, Ha SH, Kim EK, Bae YS, Ryu SH, Suh PG. Phospholipase C-gamma1 potentiates integrin-dependent cell spreading and migration through Pyk2/paxillin activation. Cell Signal 2007; 19:1784-96. [PMID: 17531443 DOI: 10.1016/j.cellsig.2007.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 03/29/2007] [Accepted: 04/05/2007] [Indexed: 11/25/2022]
Abstract
Phospholipase C-gamma1 (PLC-gamma1), which generates two second messengers, namely, inositol-1, 4, 5-trisphosphate and diacylglycerol, is implicated in growth factor-mediated chemotaxis. However, the exact role of PLC-gamma1 in integrin-mediated cell adhesion and migration remains poorly understood. In this study, we demonstrate that PLC-gamma1 is required for actin cytoskeletal organization and cell motility through the regulation of Pyk2 and paxillin activation. After fibronectin stimulation, PLC-gamma1 directly interacted with the cytoplasmic tail of integrin beta1. In PLC-gamma1-silenced cells, integrin-induced Pyk2 and paxillin phosphorylation were significantly reduced and PLC-gamma1 potentiated the integrin-induced Pyk2/paxillin activation in its enzymatic activity-dependent manner. In addition, specific knock-down of PLC-gamma1 resulted in a failure to form focal adhesions dependent on fibronectin stimulation, which appeared to be caused by the suppression of Pyk2 and paxillin phosphorylation. Interestingly, PLC-gamma1 potentiated the activations of Rac, thus integrin-induced lamellipodia formation was up-regulated. Consequently, the strength of cell-substratum interaction and cell motility were profoundly up-regulated by PLC-gamma1. Taken together, these results suggest that PLC-gamma1 is a key player in integrin-mediated cell spreading and motility achieved by the activation of Pyk2/paxillin/Rac signaling.
Collapse
Affiliation(s)
- Jang Hyun Choi
- Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk, 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chmielowiec J, Borowiak M, Morkel M, Stradal T, Munz B, Werner S, Wehland J, Birchmeier C, Birchmeier W. c-Met is essential for wound healing in the skin. ACTA ACUST UNITED AC 2007; 177:151-62. [PMID: 17403932 PMCID: PMC2064119 DOI: 10.1083/jcb.200701086] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wound healing of the skin is a crucial regenerative process in adult mammals. We examined wound healing in conditional mutant mice, in which the c-Met gene that encodes the receptor of hepatocyte growth factor/scatter factor was mutated in the epidermis by cre recombinase. c-Met-deficient keratinocytes were unable to contribute to the reepithelialization of skin wounds. In conditional c-Met mutant mice, wound closure was slightly attenuated, but occurred exclusively by a few (5%) keratinocytes that had escaped recombination. This demonstrates that the wound process selected and amplified residual cells that express a functional c-Met receptor. We also cultured primary keratinocytes from the skin of conditional c-Met mutant mice and examined them in scratch wound assays. Again, closure of scratch wounds occurred by the few remaining c-Met-positive cells. Our data show that c-Met signaling not only controls cell growth and migration during embryogenesis but is also essential for the generation of the hyperproliferative epithelium in skin wounds, and thus for a fundamental regenerative process in the adult.
Collapse
Affiliation(s)
- Jolanta Chmielowiec
- Department of Cancer Biology, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rhee S, Jiang H, Ho CH, Grinnell F. Microtubule function in fibroblast spreading is modulated according to the tension state of cell-matrix interactions. Proc Natl Acad Sci U S A 2007; 104:5425-30. [PMID: 17369366 PMCID: PMC1838480 DOI: 10.1073/pnas.0608030104] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mechanical and physical features of the extracellular environment dramatically impact cell shape. Fibroblasts interacting with 3D relaxed collagen matrices appear much different from cells on 2D collagen-coated surfaces and form dendritic cell extensions that contain microtubule cores and actin-rich tips. We found that interfering with cellular microtubules caused cells in relaxed matrices to remain round and unable to form dendritic extensions, whereas fibroblasts on coverslips formed lamellipodial extensions and were spread completely without microtubules but were unable to become polarized. Fibroblasts in relaxed collagen matrices lack stress fibers, focal adhesions, and focal adhesion signaling. Fibroblasts on collagen-coated coverslips that were unable to develop stress fibers and focal adhesions, because of either adding blebbistatin to the cells or use of soft coverslips, also formed microtubule-dependent dendritic extensions. Conversely, fibroblasts interacting with precontracted collagen matrices developed stress fibers and lamellipodial extensions and required microtubules for polarization but not spreading. Our findings demonstrate an unexpected relationship between the role of microtubules in cell spreading and the tension state of cell-matrix interactions. At a low tension state (absence of stress fibers and focal adhesions) typical of fibroblasts in relaxed collagen matrices, cells spread with dendritic extensions whose formation requires microtubules; at a high tension state (stress fibers and focal adhesions) typical of cells on coverslips, cells spread with lamellipodial extensions and microtubules are required for cell polarization but not for spreading.
Collapse
Affiliation(s)
- Sangmyung Rhee
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039
| | - Hongmei Jiang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039
| | - Chin-Han Ho
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039
| | - Frederick Grinnell
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Schober JM, Komarova YA, Chaga OY, Akhmanova A, Borisy GG. Microtubule-targeting-dependent reorganization of filopodia. J Cell Sci 2007; 120:1235-44. [PMID: 17356063 DOI: 10.1242/jcs.003913] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Interaction between the microtubule system and actin cytoskeleton has emerged as a fundamental process required for spatial regulation of cell protrusion and retraction activities. In our current studies, analysis of digital fluorescence images revealed targeting of microtubules to filopodia in B16F1 melanoma cells and fibroblasts. We investigated the functional consequence of targeting on filopodia reorganization and examined mechanisms by which microtubules may be guided to, or interact with, filopodia. Live cell imaging studies show that targeting events in lamellipodia wings temporally correlated with filopodia turning toward the lamellipodium midline and with filopodia merging. Rapid uncoupling of targeting with nocodazole decreased filopodia merging events and increased filopodia density. Total internal reflection fluorescence microscopy identified microtubules near the ventral surface and upward movement of targeted filopodia. The role of adhesion sites and microtubule plus-end proteins in targeting was investigated. Correlation of adhesion sites with microtubule targeting to filopodia was not observed and depletion of microtubule plus-end proteins did not significantly alter targeting frequency. We propose that microtubules target filopodia, independent of focal adhesions and plus-end proteins, causing filopodia movement and microtubules regulate filopodia density in lamellipodia wings through filopodia merging events.
Collapse
Affiliation(s)
- Joseph M Schober
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|