1
|
Soverina S, Gilliland HN, Olive AJ. Pathogenicity and virulence of Mycobacterium abscessus. Virulence 2025; 16:2508813. [PMID: 40415550 PMCID: PMC12118445 DOI: 10.1080/21505594.2025.2508813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 05/07/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025] Open
Abstract
Non-tuberculous mycobacteria (NTM), such as Mycobacterium abscessus (Mab) are an increasing cause of human disease. While the majority of immunocompetent hosts control Mab infections, the robust survival of Mab within the environment has shaped survival in human cells to help drive persistence and cause inflammatory damage in susceptible individuals. With high intrinsic resistance to antibiotics, there is an important need to fully understand how Mab causes infection, define protective host pathways that control disease, and develop new strategies to treat those at high risk. This review will examine the existing literature related to host-Mab interactions with a focus on virulence, the host response, and therapy development. The goal is to highlight key gaps in our understanding and describe novel approaches to encourage new research avenues that better define the pathogenesis and host response against this increasingly important human pathogen.
Collapse
Affiliation(s)
- Soledad Soverina
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Haleigh N. Gilliland
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Andrew J. Olive
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Wang S, Ma S, Li H, Dao M, Li X, Karniadakis GE. Two-component macrophage model for active phagocytosis with pseudopod formation. Biophys J 2024; 123:1069-1084. [PMID: 38532625 PMCID: PMC11079866 DOI: 10.1016/j.bpj.2024.03.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/20/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Macrophage phagocytosis is critical for the immune response, homeostasis regulation, and tissue repair. This intricate process involves complex changes in cell morphology, cytoskeletal reorganization, and various receptor-ligand interactions controlled by mechanical constraints. However, there is a lack of comprehensive theoretical and computational models that investigate the mechanical process of phagocytosis in the context of cytoskeletal rearrangement. To address this issue, we propose a novel coarse-grained mesoscopic model that integrates a fluid-like cell membrane and a cytoskeletal network to study the dynamic phagocytosis process. The growth of actin filaments results in the formation of long and thin pseudopods, and the initial cytoskeleton can be disassembled upon target entry and reconstructed after phagocytosis. Through dynamic changes in the cytoskeleton, our macrophage model achieves active phagocytosis by forming a phagocytic cup utilizing pseudopods in two distinct ways. We have developed a new algorithm for modifying membrane area to prevent membrane rupture and ensure sufficient surface area during phagocytosis. In addition, the bending modulus, shear stiffness, and cortical tension of the macrophage model are investigated through computation of the axial force for the tubular structure and micropipette aspiration. With this model, we simulate active phagocytosis at the cytoskeletal level and investigate the mechanical process during the dynamic interplay between macrophage and target particles.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuhao Ma
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang, China
| | - He Li
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Xuejin Li
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang, China.
| | | |
Collapse
|
3
|
Bamra T, Shafi T, Das S, Kumar M, Das P. Leishmania donovani mevalonate kinase regulates host actin for inducing phagocytosis. Biochimie 2024; 220:31-38. [PMID: 38123120 DOI: 10.1016/j.biochi.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Despite the well-established role of macrophages in phagocytosing Leishmania, the contribution of the parasite to this process is not well understood. Present study provides insights into the mechanism underlying the MVK-induced entry of L. donovani and improve our knowledge of host-pathogen interactions. We have discussed Mevalonate kinase (MVK)-induced actin reorganization, modulation of signaling pathways and host cell functions. Our results show that LdMVK gains access to macrophage cytosol and induces actin assembly modulation through the activation of actin-related proteins: VASP, Src and ERM. We have also demonstrated that LdMVK induces Ca2+ signaling and Akt pathway in macrophages, which are critical components of Leishmania survival and proliferation. Interestingly, we found that antibodies against LdMVK can kill Leishmania-infected macrophages in culture by forming extracellular traps, highlighting the potential of LdMVK in inhibiting parasite death. Overall, LdMVK is a virulent factor in Leishmania that mediates parasite internalization and host modulation by targeting host proteins phosphorylation and calcium homeostasis having significant implications in disease progression.
Collapse
Affiliation(s)
- Tanvir Bamra
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India.
| | - Taj Shafi
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India.
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, 801 507, India.
| | - Manjay Kumar
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India.
| | - Pradeep Das
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India; Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases, Beleghata, Kolkata, West Bengal, 700 010, India.
| |
Collapse
|
4
|
Omer S, Li J, Yang CX, Harrison RE. Ninein promotes F-actin cup formation and inward phagosome movement during phagocytosis in macrophages. Mol Biol Cell 2024; 35:ar26. [PMID: 38117588 PMCID: PMC10916867 DOI: 10.1091/mbc.e23-06-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023] Open
Abstract
Phagocytosis by macrophages is a highly polarized process to destroy large target cells. Binding to particles induces extensive cortical actin-generated forces that drive the formation of elaborate pseudopods around the target particle. Postinternalization, the resultant phagosome is driven toward the cell interior on microtubules (MTs) by cytoplasmic dynein. However, it is unclear whether dynein and cargo-adaptors contribute to the earlier steps of particle internalization and phagosome formation. Here we reveal that ninein, a MT minus-end-associated protein that localizes to the centrosome, is also present at the phagocytic cup in macrophages. Ninein depletion impairs particle internalization by delaying the early F-actin recruitment to sites of particle engagement and cup formation, with no impact on F-actin dynamics beyond this initial step. Ninein forms membrane-bound clusters on phagocytic cups that do not nucleate acentrosomal MTs but instead mediate the assembly of dynein-dynactin complex at active phagocytic membranes. Both ninein depletion and pharmacological inhibition of dynein activity reduced inward displacement of bound particles into macrophages. We found that ninein and dynein motor activity were required for timely retrograde movement of phagosomes and for phagolysosome formation. Taken together, these data show that ninein, alone and with dynein, play significant roles during phagocytosis.
Collapse
Affiliation(s)
- Safia Omer
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4
| | - Jiahao Li
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, Ontario M1C 1A4
| | - Claire X. Yang
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4
| | - Rene E. Harrison
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, Ontario M1C 1A4
| |
Collapse
|
5
|
Lin S, Tao C, Yan Q, Gao H, Qin L, Zhong Y, Yao Q, Zhang P, Yang J, Zou X, Xiao G. Pip5k1c expression in osteocytes regulates bone remodeling in mice. J Orthop Translat 2024; 45:36-47. [PMID: 38495744 PMCID: PMC10943313 DOI: 10.1016/j.jot.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 03/19/2024] Open
Abstract
Research background The role of osteocytes in maintaining bone mass has been progressively emphasized. Pip5k1c is the most critical isoform among PIP5KIs, which can regulate cytoskeleton, biomembrane, and Ca2+ release of cells and participate in many processes, such as cell adhesion, differentiation, and apoptosis. However, its expression and function in osteocytes are still unclear. Materials and methods To determine the function of Pip5k1c in osteocytes, the expression of Pip5k1c in osteocytes was deleted by breeding the 10-kb mouse Dmp1-Cre transgenic mice with the Pip5k1cfl/fl mice. Bone histomorphometry, micro-computerized tomography analysis, immunofluorescence staining and western blotting were used to determine the effects of Pip5k1c loss on bone mass. In vitro, we explored the mechanism by siRNA knockdown of Pip5k1c in MLO-Y4 cells. Results Pip5k1c expression was decreased in osteocytes in senescent and osteoporotic tissues both in humans and mice. Loss of Pip5k1c in osteocytes led to a low bone mass in long bones and spines and impaired biomechanical properties in femur, without changes in calvariae. The loss of Pip5k1c resulted in the reduction of the protein level of type 1 collagen in tibiae and MLO-Y4 cells. Osteocyte Pip5k1c loss reduced the osteoblast and bone formation rate with high expression of sclerostin, impacting the osteoclast activities at the same time. Moreover, Pip5k1c loss in osteocytes reduced expression of focal adhesion proteins and promoted apoptosis. Conclusion Our studies demonstrate the critical role and mechanism of Pip5k1c in osteocytes in regulating bone remodeling. The translational potential of this article Osteocyte has been considered to a key role in regulating bone homeostasis. The present study has demonstrated that the significance of Pip5k1c in bone homeostasis by regulating the expression of collagen, sclerostin and focal adhesion expression, which provided a possible therapeutic target against human metabolic bone disease.
Collapse
Affiliation(s)
- Sixiong Lin
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Chu Tao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Qinnan Yan
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Huanqing Gao
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lei Qin
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Peijun Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Jiaming Yang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| |
Collapse
|
6
|
Sharma P, Venkatachalam K, Binesh A. Decades Long Involvement of THP-1 Cells as a Model for Macrophage Research: A Comprehensive Review. Antiinflamm Antiallergy Agents Med Chem 2024; 23:85-104. [PMID: 38676532 DOI: 10.2174/0118715230294413240415054610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
Over the years, researchers have endeavored to identify dependable and reproducible in vitro models for examining macrophage behavior under controlled conditions. The THP-1 cell line has become a significant and widely employed tool in macrophage research within these models. Originating from the peripheral blood of individuals with acute monocytic leukemia, this human monocytic cell line can undergo transformation into macrophage-like cells, closely mirroring primary human macrophages when exposed to stimulants. Macrophages play a vital role in the innate immune system, actively regulating inflammation, responding to infections, and maintaining tissue homeostasis. A comprehensive understanding of macrophage biology and function is crucial for gaining insights into immunological responses, tissue healing, and the pathogenesis of diseases such as viral infections, autoimmune disorders, and neoplastic conditions. This review aims to thoroughly evaluate and emphasize the extensive history of THP-1 cells as a model for macrophage research. Additionally, it will delve into the significance of THP-1 cells in advancing our comprehension of macrophage biology and their invaluable contributions to diverse scientific domains.
Collapse
Affiliation(s)
- Prakhar Sharma
- Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, 603103, Tamil Nadu, India
| | - Kaliyamurthi Venkatachalam
- Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, 603103, Tamil Nadu, India
| | - Ambika Binesh
- Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, 603103, Tamil Nadu, India
| |
Collapse
|
7
|
Zhang Z, Gaetjens TK, Ou J, Zhou Q, Yu Y, Mallory DP, Abel SM, Yu Y. Propulsive cell entry diverts pathogens from immune degradation by remodeling the phagocytic synapse. Proc Natl Acad Sci U S A 2023; 120:e2306788120. [PMID: 38032935 PMCID: PMC10710034 DOI: 10.1073/pnas.2306788120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Phagocytosis is a critical immune function for infection control and tissue homeostasis. During phagocytosis, pathogens are internalized and degraded in phagolysosomes. For pathogens that evade immune degradation, the prevailing view is that virulence factors are required to disrupt the biogenesis of phagolysosomes. In contrast, we present here that physical forces from motile pathogens during cell entry divert them away from the canonical degradative pathway. This altered fate begins with the force-induced remodeling of the phagocytic synapse formation. We used the parasite Toxoplasma gondii as a model because live Toxoplasma actively invades host cells using gliding motility. To differentiate the effects of physical forces from virulence factors in phagocytosis, we employed magnetic forces to induce propulsive entry of inactivated Toxoplasma into macrophages. Experiments and computer simulations show that large propulsive forces hinder productive activation of receptors by preventing their spatial segregation from phosphatases at the phagocytic synapse. Consequently, the inactivated parasites are engulfed into vacuoles that fail to mature into degradative units, similar to the live motile parasite's intracellular pathway. Using yeast cells and opsonized beads, we confirmed that this mechanism is general, not specific to the parasite used. These results reveal new aspects of immune evasion by demonstrating how physical forces during active cell entry, independent of virulence factors, enable pathogens to circumvent phagolysosomal degradation.
Collapse
Affiliation(s)
- Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| | - Thomas K. Gaetjens
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN37996
| | - Jin Ou
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| | - Qiong Zhou
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| | - Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| | - D. Paul Mallory
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| | - Steven M. Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN37996
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| |
Collapse
|
8
|
Yu Y, Zhang Z, Yu Y. Timing of Phagosome Maturation Depends on Their Transport Switching from Actin to Microtubule Tracks. J Phys Chem B 2023; 127:9312-9322. [PMID: 37871280 PMCID: PMC10759163 DOI: 10.1021/acs.jpcb.3c05647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Phagosomes, specialized membrane compartments responsible for digesting internalized pathogens, undergo sequential dynamic and biochemical changes as they mature from nascent phagosomes to degradative phagolysosomes. Maturation of phagosomes depends on their transport along actin filaments and microtubules. However, the specific quantitative relationship between the biochemical transformation and transport dynamics remains poorly characterized. The autonomous nature of phagosomes, moving and maturing at different rates, makes understanding this relationship challenging. Addressing this challenge, in this study we engineered particle sensors to image and quantify single phagosomes' maturation. We found that as phagosomes move from the actin cortex to microtubule tracks, the timing of their actin-to-microtubule transition governs the duration of the early phagosome stage before acquiring degradative capacities. Prolonged entrapment of phagosomes in the actin cortex extends the early phagosome stage by delaying the dissociation of early endosome markers and phagosome acidification. Conversely, a shortened transition from actin- to microtubule-based movements causes the opposite effect on phagosome maturation. These results suggest that the actin- and microtubule-based transport of phagosomes functions like a "clock" to coordinate the timing of biochemical events during phagosome maturation, which is crucial for effective pathogen degradation.
Collapse
Affiliation(s)
- Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
9
|
Cristovao B, Rodrigues L, Catarino S, Abreu M, Gonçalves T, Domingues N, Girao H. Cx43-mediated hyphal folding counteracts phagosome integrity loss during fungal infection. Microbiol Spectr 2023; 11:e0123823. [PMID: 37733471 PMCID: PMC10581180 DOI: 10.1128/spectrum.01238-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/27/2023] [Indexed: 09/23/2023] Open
Abstract
Phagolysosomes are crucial organelles during the elimination of pathogens by host cells. The maintenance of their membrane integrity is vital during stressful conditions, such as during Candida albicans infection. As the fungal hyphae grow, the phagolysosome membrane expands to ensure that the growing fungus remains entrapped. Additionally, actin structures surrounding the hyphae-containing phagosome were recently described to damage and constrain these pathogens inside the host vacuoles by inducing their folding. However, the molecular mechanism involved in the phagosome membrane adaptation during this extreme expansion process is still unclear. The main goal of this study was to unveil the interplay between phagosomal membrane integrity and folding capacity of C. albicans-infected macrophages. We show that components of the repair machinery are gradually recruited to the expanding phagolysosomal membrane and that their inhibition diminishes macrophage folding capacity. Through an analysis of an RNAseq data set of C. albicans-infected macrophages, we identified Cx43, a gap junction protein, as a putative player involved in the interplay between lysosomal homeostasis and actin-related processes. Our findings further reveal that Cx43 is recruited to expand phagosomes and potentiates the hyphal folding capacity of macrophages, promoting their survival. Additionally, we reveal that Cx43 can act as an anchor for complexes involved in Arp2-mediated actin nucleation during the assembly of actin rings around hyphae-containing phagosomes. Overall, this work brings new insights on the mechanisms by which macrophages cope with C. albicans infection ascribing to Cx43 a new noncanonical regulatory role in phagosome dynamics during pathogen phagocytosis. IMPORTANCE Invasive candidiasis is a life-threatening fungal infection that can become increasingly resistant to treatment. Thus, strategies to improve immune system efficiency, such as the macrophage response during the clearance of the fungal infection, are crucial to ameliorate the current therapies. Engulfed Candida albicans, one of the most common Candida species, is able to quickly transit from yeast-to-hypha form, which can elicit a phagosomal membrane injury and ultimately lead to macrophage death. Here, we extend the understanding of phagosome membrane homeostasis during the hypha expansion and folding process. We found that loss of phagosomal membrane integrity decreases the capacity of macrophages to fold the hyphae. Furthermore, through a bioinformatic analysis, we reveal a new window of opportunities to disclose the mechanisms underlying the hyphal constraining process. We identified Cx43 as a new weapon in the armamentarium to tackle infection by potentiating hyphal folding and promoting macrophage survival.
Collapse
Affiliation(s)
- Beatriz Cristovao
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinical Academic Centre of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Lisa Rodrigues
- Center for Neurosciences and Cell Biology (CNC-UC), University of Coimbra, Coimbra, Portugal
| | - Steve Catarino
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinical Academic Centre of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Monica Abreu
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinical Academic Centre of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Teresa Gonçalves
- Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Center for Neurosciences and Cell Biology (CNC-UC), University of Coimbra, Coimbra, Portugal
| | - Neuza Domingues
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinical Academic Centre of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Henrique Girao
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinical Academic Centre of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
Pan Y, Ikoma K, Matsui R, Nakayama A, Takemura N, Saitoh T. Dasatinib suppresses particulate-induced pyroptosis and acute lung inflammation. Front Pharmacol 2023; 14:1250383. [PMID: 37705538 PMCID: PMC10495768 DOI: 10.3389/fphar.2023.1250383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Background: Humans are constantly exposed to various industrial, environmental, and endogenous particulates that result in inflammatory diseases. After being engulfed by immune cells, viz. Macrophages, such particulates lead to phagolysosomal dysfunction, eventually inducing pyroptosis, a form of cell death accompanied by the release of inflammatory mediators, including members of the interleukin (IL)-1 family. Phagolysosomal dysfunction results in the activation of the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, an immune complex that induces pyroptosis upon exposure to various external stimuli. However, several particulates induce pyroptosis even if the NLRP3 inflammasome is inhibited; this indicates that such inhibition is not always effective in treating diseases induced by particulates. Therefore, discovery of drugs suppressing particulate-induced NLRP3-independent pyroptosis is warranted. Methods: We screened compounds that inhibit silica particle (SP)-induced cell death and release of IL-1α using RAW264.7 cells, which are incapable of NLRP3 inflammasome formation. The candidates were tested for their ability to suppress particulate-induced pyroptosis and phagolysosomal dysfunction using mouse primary macrophages and alleviate SP-induced NLRP3-independent lung inflammation. Results: Several Src family kinase inhibitors, including dasatinib, effectively suppressed SP-induced cell death and IL-1α release. Furthermore, dasatinib suppressed pyroptosis induced by other particulates but did not suppress that induced by non-particulates, such as adenosine triphosphate. Dasatinib reduced SP-induced phagolysosomal dysfunction without affecting phagocytosis of SPs. Moreover, dasatinib treatment strongly suppressed the increase in IL-1α levels and neutrophil counts in the lungs after intratracheal SP administration. Conclusion: Dasatinib suppresses particulate-induced pyroptosis and can be used to treat relevant inflammatory diseases.
Collapse
Affiliation(s)
- Yixi Pan
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kenta Ikoma
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Risa Matsui
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Naoki Takemura
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tatsuya Saitoh
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Osaka, Japan
| |
Collapse
|
11
|
Zhang Z, Gaetjens TK, Yu Y, Paul Mallory D, Abel SM, Yu Y. Propulsive cell entry diverts pathogens from immune degradation by remodeling the phagocytic synapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538287. [PMID: 37162866 PMCID: PMC10168248 DOI: 10.1101/2023.04.25.538287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phagocytosis is a critical immune function for infection control and tissue homeostasis. This process is typically described as non-moving pathogens being internalized and degraded in phagolysosomes. For pathogens that evade immune degradation, the prevailing view is that virulence factors that biochemically disrupt the biogenesis of phagoslysosomes are required. In contrast, here we report that physical forces exerted by pathogens during cell entry divert them away from the canonical phagolysosomal degradation pathway, and this altered intracellular fate is determined at the time of phagocytic synapse formation. We used the eukaryotic parasite Toxoplasma gondii as a model because live Toxoplasma uses gliding motility to actively invade into host cells. To differentiate the effect of physical forces from that of virulence factors in phagocytosis, we developed a strategy that used magnetic forces to induce propulsive entry of inactivated Toxoplasma into macrophage cells. Experiments and computer simulations collectively reveal that large propulsive forces suppress productive activation of receptors by hindering their spatial segregation from phosphatases at the phagocytic synapse. Consequently, the inactivated parasites, instead of being degraded in phagolysosomes, are engulfed into vacuoles that fail to mature into degradative units, following an intracellular pathway strikingly similar to that of the live motile parasite. Using opsonized beads, we further confirmed that this mechanism is general, not specific to the parasite used. These results reveal previously unknown aspects of immune evasion by demonstrating how physical forces exerted during active cell entry, independent of virulence factors, can help pathogens circumvent phagolysosomal degradation.
Collapse
Affiliation(s)
- Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| | - Thomas K. Gaetjens
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996
| | - Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| | - D. Paul Mallory
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| | - Steven M. Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| |
Collapse
|
12
|
Gilliland HN, Beckman OK, Olive AJ. A Genome-Wide Screen in Macrophages Defines Host Genes Regulating the Uptake of Mycobacterium abscessus. mSphere 2023; 8:e0066322. [PMID: 36794958 PMCID: PMC10117111 DOI: 10.1128/msphere.00663-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
The interactions between a host cell and a pathogen can dictate disease outcomes and are important targets for host-directed therapies. Mycobacterium abscessus (Mab) is a highly antibiotic resistant, rapidly growing nontuberculous mycobacterium that infects patients with chronic lung diseases. Mab can infect host immune cells, such as macrophages, which contribute to its pathogenesis. However, our understanding of initial host-Mab interactions remains unclear. Here, we developed a functional genetic approach to define these host-Mab interactions by coupling a Mab fluorescent reporter with a genome-wide knockout library in murine macrophages. We used this approach to conduct a forward genetic screen to define host genes that contribute to the uptake of Mab by macrophages. We identified known regulators of phagocytosis, such as the integrin ITGB2, and uncovered a key requirement for glycosaminoglycan (sGAG) synthesis for macrophages to efficiently take up Mab. CRISPR-Cas9 targeting of three key sGAG biosynthesis regulators, Ugdh, B3gat3, and B4galt7 resulted in reduced uptake of both smooth and rough Mab variants by macrophages. Mechanistic studies suggest that sGAGs function upstream of pathogen engulfment and are required for the uptake of Mab, but not Escherichia coli or latex beads. Further investigation found that the loss of sGAGs reduced the surface expression, but not the mRNA expression, of key integrins, suggesting an important role for sGAGs in modulating surface receptor availability. Together, these studies globally define and characterize important regulators of macrophage-Mab interactions and are a first step to understanding host genes that contribute to Mab pathogenesis and disease. IMPORTANCE Pathogen interactions with immune cells like macrophages contribute to pathogenesis, yet the mechanisms underlying these interactions remain largely undefined. For emerging respiratory pathogens, like Mycobacterium abscessus, understanding these host-pathogen interactions is important to fully understand disease progression. Given that M. abscessus is broadly recalcitrant to antibiotic treatments, new therapeutic approaches are needed. Here, we leveraged a genome-wide knockout library in murine macrophages to globally define host genes required for M. abscessus uptake. We identified new macrophage uptake regulators during M. abscessus infection, including a subset of integrins and the glycosaminoglycan synthesis (sGAG) pathway. While ionic characteristics of sGAGs are known to drive pathogen-cell interactions, we discovered a previously unrecognized requirement for sGAGs to maintain robust surface expression of key uptake receptors. Thus, we developed a flexible forward-genetic pipeline to define important interactions during M. abscessus infection and more broadly identified a new mechanism by which sGAGs control pathogen uptake.
Collapse
Affiliation(s)
- Haleigh N. Gilliland
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Olivia K. Beckman
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Andrew J. Olive
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
13
|
Piskova T, Kozyrina AN, Di Russo J. Mechanobiological implications of age-related remodelling in the outer retina. BIOMATERIALS ADVANCES 2023; 147:213343. [PMID: 36801797 DOI: 10.1016/j.bioadv.2023.213343] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
The outer retina consists of the light-sensitive photoreceptors, the pigmented epithelium, and the choroid, which interact in a complex manner to sustain homeostasis. The organisation and function of these cellular layers are mediated by the extracellular matrix compartment named Bruch's membrane, situated between the retinal epithelium and the choroid. Like many tissues, the retina experiences age-related structural and metabolic changes, which are relevant for understanding major blinding diseases of the elderly, such as age-related macular degeneration. Compared with other tissues, the retina mainly comprises postmitotic cells, making it less able to maintain its mechanical homeostasis over the years functionally. Aspects of retinal ageing, like the structural and morphometric changes of the pigment epithelium and the heterogenous remodelling of the Bruch's membrane, imply changes in tissue mechanics and may affect functional integrity. In recent years, findings in the field of mechanobiology and bioengineering highlighted the importance of mechanical changes in tissues for understanding physiological and pathological processes. Here, we review the current knowledge of age-related changes in the outer retina from a mechanobiological perspective, aiming to generate food for thought for future mechanobiology studies in the outer retina.
Collapse
Affiliation(s)
- Teodora Piskova
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany; Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Aleksandra N Kozyrina
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany; Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Jacopo Di Russo
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany; Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany.
| |
Collapse
|
14
|
Lee JJ, Ramadesikan S, Black AF, Christoffer C, Pacheco AFP, Subramanian S, Hanna CB, Barth G, Stauffacher CV, Kihara D, Aguilar RC. Heterogeneity in Lowe Syndrome: Mutations Affecting the Phosphatase Domain of OCRL1 Differ in Impact on Enzymatic Activity and Severity of Cellular Phenotypes. Biomolecules 2023; 13:615. [PMID: 37189363 PMCID: PMC10135975 DOI: 10.3390/biom13040615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/01/2023] Open
Abstract
Lowe Syndrome (LS) is a condition due to mutations in the OCRL1 gene, characterized by congenital cataracts, intellectual disability, and kidney malfunction. Unfortunately, patients succumb to renal failure after adolescence. This study is centered in investigating the biochemical and phenotypic impact of patient's OCRL1 variants (OCRL1VAR). Specifically, we tested the hypothesis that some OCRL1VAR are stabilized in a non-functional conformation by focusing on missense mutations affecting the phosphatase domain, but not changing residues involved in binding/catalysis. The pathogenic and conformational characteristics of the selected variants were evaluated in silico and our results revealed some OCRL1VAR to be benign, while others are pathogenic. Then we proceeded to monitor the enzymatic activity and function in kidney cells of the different OCRL1VAR. Based on their enzymatic activity and presence/absence of phenotypes, the variants segregated into two categories that also correlated with the severity of the condition they induce. Overall, these two groups mapped to opposite sides of the phosphatase domain. In summary, our findings highlight that not every mutation affecting the catalytic domain impairs OCRL1's enzymatic activity. Importantly, data support the inactive-conformation hypothesis. Finally, our results contribute to establishing the molecular and structural basis for the observed heterogeneity in severity/symptomatology displayed by patients.
Collapse
Affiliation(s)
- Jennifer J. Lee
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (J.J.L.); (A.F.B.); (A.F.P.P.); (S.S.); (C.B.H.); (G.B.); (C.V.S.); (D.K.)
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Swetha Ramadesikan
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (J.J.L.); (A.F.B.); (A.F.P.P.); (S.S.); (C.B.H.); (G.B.); (C.V.S.); (D.K.)
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Adrianna F. Black
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (J.J.L.); (A.F.B.); (A.F.P.P.); (S.S.); (C.B.H.); (G.B.); (C.V.S.); (D.K.)
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Charles Christoffer
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Andres F. Pacheco Pacheco
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (J.J.L.); (A.F.B.); (A.F.P.P.); (S.S.); (C.B.H.); (G.B.); (C.V.S.); (D.K.)
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Sneha Subramanian
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (J.J.L.); (A.F.B.); (A.F.P.P.); (S.S.); (C.B.H.); (G.B.); (C.V.S.); (D.K.)
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Claudia B. Hanna
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (J.J.L.); (A.F.B.); (A.F.P.P.); (S.S.); (C.B.H.); (G.B.); (C.V.S.); (D.K.)
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Gillian Barth
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (J.J.L.); (A.F.B.); (A.F.P.P.); (S.S.); (C.B.H.); (G.B.); (C.V.S.); (D.K.)
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Cynthia V. Stauffacher
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (J.J.L.); (A.F.B.); (A.F.P.P.); (S.S.); (C.B.H.); (G.B.); (C.V.S.); (D.K.)
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (J.J.L.); (A.F.B.); (A.F.P.P.); (S.S.); (C.B.H.); (G.B.); (C.V.S.); (D.K.)
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Ruben Claudio Aguilar
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (J.J.L.); (A.F.B.); (A.F.P.P.); (S.S.); (C.B.H.); (G.B.); (C.V.S.); (D.K.)
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
15
|
Naish E, Wood AJT, Stewart AP, Routledge M, Morris AC, Chilvers ER, Lodge KM. The formation and function of the neutrophil phagosome. Immunol Rev 2023; 314:158-180. [PMID: 36440666 PMCID: PMC10952784 DOI: 10.1111/imr.13173] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neutrophils are the most abundant circulating leukocyte and are crucial to the initial innate immune response to infection. One of their key pathogen-eliminating mechanisms is phagocytosis, the process of particle engulfment into a vacuole-like structure called the phagosome. The antimicrobial activity of the phagocytic process results from a collaboration of multiple systems and mechanisms within this organelle, where a complex interplay of ion fluxes, pH, reactive oxygen species, and antimicrobial proteins creates a dynamic antimicrobial environment. This complexity, combined with the difficulties of studying neutrophils ex vivo, has led to gaps in our knowledge of how the neutrophil phagosome optimizes pathogen killing. In particular, controversy has arisen regarding the relative contribution and integration of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived antimicrobial agents and granule-delivered antimicrobial proteins. Clinical syndromes arising from dysfunction in these systems in humans allow useful insight into these mechanisms, but their redundancy and synergy add to the complexity. In this article, we review the current knowledge regarding the formation and function of the neutrophil phagosome, examine new insights into the phagosomal environment that have been permitted by technological advances in recent years, and discuss aspects of the phagocytic process that are still under debate.
Collapse
Affiliation(s)
- Emily Naish
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Alexander JT Wood
- Medical SchoolUniversity of Western AustraliaPerthAustralia
- Department of Critical CareUniversity of MelbourneMelbourneAustralia
| | | | - Matthew Routledge
- Department of MedicineUniversity of CambridgeCambridgeUK
- Division of Immunology, Department of PathologyUniversity of CambridgeCambridgeUK
| | - Andrew Conway Morris
- Department of MedicineUniversity of CambridgeCambridgeUK
- Division of Immunology, Department of PathologyUniversity of CambridgeCambridgeUK
| | - Edwin R Chilvers
- National Heart and Lung InstituteImperial College LondonLondonUK
| | | |
Collapse
|
16
|
Localisation of Intracellular Signals and Responses during Phagocytosis. Int J Mol Sci 2023; 24:ijms24032825. [PMID: 36769146 PMCID: PMC9917157 DOI: 10.3390/ijms24032825] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Phagocytosis is one of the most polarised of all cellular activities. Both the stimulus (the target for phagocytosis) and the response (its internalisation) are focussed at just one part of the cell. At the locus, and this locus alone, pseudopodia form a phagocytic cup around the particle, the cytoskeleton is rearranged, the plasma membrane is reorganised, and a new internal organelle, the phagosome, is formed. The effect of signals from the stimulus must, thus, both be complex and yet be restricted in space and time to enable an effective focussed response. While many aspects of phagocytosis are being uncovered, the mechanism for the restriction of signalling or the effects of signalling remains obscure. In this review, the details of the problem of restricting chemical intracellular signalling are presented, with a focus on diffusion into the cytosol and of signalling lipids along the plasma membrane. The possible ways in which simple diffusion is overcome so that the restriction of signalling and effective phagocytosis can be achieved are discussed in the light of recent advances in imaging, biophysics, and cell biochemistry which together are providing new insights into this area.
Collapse
|
17
|
Mansat M, Dayam RM, Botelho RJ. Quantitative Immunofluorescence to Study Phagosome Maturation and Resolution. Methods Mol Biol 2023; 2692:121-137. [PMID: 37365465 DOI: 10.1007/978-1-0716-3338-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Cells such as macrophages and neutrophils can internalize a diverse set of particulate matter, illustrated by bacteria and apoptotic bodies through the process of phagocytosis. These particles are sequestered into phagosomes, which then fuse with early and late endosomes and ultimately with lysosomes to mature into phagolysosomes, through a process known as phagosome maturation. Ultimately, after particle degradation, phagosomes then fragment to reform lysosomes through phagosome resolution. As phagosomes change, they acquire and divest proteins that are associated with the various stages of phagosome maturation and resolution. These changes can be assessed at the single-phagosome level by using immunofluorescence methods. Typically, we use indirect immunofluorescence methods that rely on primary antibodies against specific molecular markers that track phagosome maturation. Commonly, progression of phagosomes into phagolysosomes can be determined by staining cells for Lysosomal-Associated Membrane Protein I (LAMP1) and measuring the fluorescence intensity of LAMP1 around each phagosome by microscopy or flow cytometry. However, this method can be used to detect any molecular marker for which there are compatible antibodies for immunofluorescence.
Collapse
Affiliation(s)
- Mélanie Mansat
- Department of Chemistry and Biology and the Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, ON, Canada
| | - Roya M Dayam
- Department of Chemistry and Biology and the Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, ON, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology and the Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, ON, Canada.
| |
Collapse
|
18
|
Barger SR, Vorselen D, Gauthier NC, Theriot JA, Krendel M. F-actin organization and target constriction during primary macrophage phagocytosis is balanced by competing activity of myosin-I and myosin-II. Mol Biol Cell 2022; 33:br24. [PMID: 36129777 PMCID: PMC9727803 DOI: 10.1091/mbc.e22-06-0210] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Phagocytosis requires rapid remodeling of the actin cytoskeleton for extension of membrane protrusions and force generation to ultimately drive the engulfment of targets. The detailed mechanisms of phagocytosis have almost exclusively been studied in immortalized cell lines. Here, we make use of high-resolution imaging and novel biophysical approaches to determine the structural and mechanical features of phagocytosis by primary bone marrow-derived macrophages. We find that the signature behavior of these primary cells is distinct from macrophage-like cell lines; specifically, it is gentle, with only weak target constriction and modest polarization of the F-actin distribution inside the phagocytic cup. We show that long-tailed myosins 1e/f are critical for this organization. Deficiency of myo1e/f causes dramatic shifts in F-actin localization, reducing F-actin at the phagocytic cup base and enhancing F-actin-mediated constriction at the cup rim. Surprisingly, these changes can be almost fully reverted upon inhibition of another myosin motor protein, myosin-II. Hence, we show that the biomechanics and large-scale organization of phagocytic cups is tightly regulated through competing contributions from myosin-Ie/f and myosin-II.
Collapse
Affiliation(s)
- Sarah R Barger
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Daan Vorselen
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195.,Cell Biology and Immunology, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
19
|
Montaño-Rendón F, Walpole GF, Krause M, Hammond GR, Grinstein S, Fairn GD. PtdIns(3,4)P2, Lamellipodin, and VASP coordinate actin dynamics during phagocytosis in macrophages. J Cell Biol 2022; 221:e202207042. [PMID: 36165850 PMCID: PMC9521245 DOI: 10.1083/jcb.202207042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Phosphoinositides are pivotal regulators of vesicular traffic and signaling during phagocytosis. Phagosome formation, the initial step of the process, is characterized by local membrane remodeling and reorganization of the actin cytoskeleton that leads to formation of the pseudopods that drive particle engulfment. Using genetically encoded fluorescent probes, we found that upon particle engagement a localized pool of PtdIns(3,4)P2 is generated by the sequential activities of class I phosphoinositide 3-kinases and phosphoinositide 5-phosphatases. Depletion of this locally generated pool of PtdIns(3,4)P2 blocks pseudopod progression and ultimately phagocytosis. We show that the PtdIns(3,4)P2 effector Lamellipodin (Lpd) is recruited to nascent phagosomes by PtdIns(3,4)P2. Furthermore, we show that silencing of Lpd inhibits phagocytosis and produces aberrant pseudopodia with disorganized actin filaments. Finally, vasodilator-stimulated phosphoprotein (VASP) was identified as a key actin-regulatory protein mediating phagosome formation downstream of Lpd. Mechanistically, our findings imply that a pathway involving PtdIns(3,4)P2, Lpd, and VASP mediates phagocytosis at the stage of particle engulfment.
Collapse
Affiliation(s)
- Fernando Montaño-Rendón
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Glenn F.W. Walpole
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK
| | - Gerald R.V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Gregory D. Fairn
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
20
|
Rotshenker S. Galectin-3 (MAC-2) controls phagocytosis and macropinocytosis through intracellular and extracellular mechanisms. Front Cell Neurosci 2022; 16:949079. [PMID: 36274989 PMCID: PMC9581057 DOI: 10.3389/fncel.2022.949079] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Galectin-3 (Gal-3; formally named MAC-2) is a β-galactoside-binding lectin. Various cell types produce Gal-3 under either normal conditions and/or pathological conditions. Gal-3 can be present in cells' nuclei and cytoplasm, secreted from producing cells, and associated with cells' plasma membranes. This review focuses on how Gal-3 controls phagocytosis and macropinocytosis. Intracellular and extracellular Gal-3 promotes the phagocytosis of phagocytic targets/cargo (e.g., tissue debris and apoptotic cells) in “professional phagocytes” (e.g., microglia and macrophages) and “non-professional phagocytes” (e.g., Schwann cells and astrocytes). Intracellularly, Gal-3 promotes phagocytosis by controlling the “eat me” signaling pathways that phagocytic receptors generate, directing the cytoskeleton to produce the mechanical forces that drive the structural changes on which phagocytosis depends, protrusion and then retraction of filopodia and lamellipodia as they, respectively, engulf and then internalize phagocytic targets. Extracellularly, Gal-3 promotes phagocytosis by functioning as an opsonin, linking phagocytic targets to phagocytic receptors, activating them to generate the “eat me” signaling pathways. Macropinocytosis is a non-selective endocytic mechanism that various cells use to internalize the bulk of extracellular fluid and included materials/cargo (e.g., dissolved nutrients, proteins, and pathogens). Extracellular and intracellular Gal-3 control macropinocytosis in some types of cancer. Phagocytosed and macropinocytosed targets/cargo that reach lysosomes for degradation may rupture lysosomal membranes. Damaged lysosomal membranes undergo either repair or removal by selective autophagy (i.e., lysophagy) that intracellular Gal-3 controls.
Collapse
|
21
|
Yu Y, Zhang Z, Walpole GFW, Yu Y. Kinetics of phagosome maturation is coupled to their intracellular motility. Commun Biol 2022; 5:1014. [PMID: 36163370 PMCID: PMC9512794 DOI: 10.1038/s42003-022-03988-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Immune cells degrade internalized pathogens in phagosomes through sequential biochemical changes. The degradation must be fast enough for effective infection control. The presumption is that each phagosome degrades cargos autonomously with a distinct but stochastic kinetic rate. However, here we show that the degradation kinetics of individual phagosomes is not stochastic but coupled to their intracellular motility. By engineering RotSensors that are optically anisotropic, magnetic responsive, and fluorogenic in response to degradation activities in phagosomes, we monitored cargo degradation kinetics in single phagosomes simultaneously with their translational and rotational dynamics. We show that phagosomes that move faster centripetally are more likely to encounter and fuse with lysosomes, thereby acidifying faster and degrading cargos more efficiently. The degradation rates increase nearly linearly with the translational and rotational velocities of phagosomes. Our results indicate that the centripetal motion of phagosomes functions as a clock for controlling the progression of cargo degradation.
Collapse
Affiliation(s)
- Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Glenn F W Walpole
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA.
| |
Collapse
|
22
|
Efferocytosis requires periphagosomal Ca 2+-signaling and TRPM7-mediated electrical activity. Nat Commun 2022; 13:3230. [PMID: 35680919 PMCID: PMC9184625 DOI: 10.1038/s41467-022-30959-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 05/26/2022] [Indexed: 11/21/2022] Open
Abstract
Efficient clearance of apoptotic cells by phagocytosis, also known as efferocytosis, is fundamental to developmental biology, organ physiology, and immunology. Macrophages use multiple mechanisms to detect and engulf apoptotic cells, but the signaling pathways that regulate the digestion of the apoptotic cell cargo, such as the dynamic Ca2+ signals, are poorly understood. Using an siRNA screen, we identify TRPM7 as a Ca2+-conducting ion channel essential for phagosome maturation during efferocytosis. Trpm7-targeted macrophages fail to fully acidify or digest their phagosomal cargo in the absence of TRPM7. Through perforated patch electrophysiology, we demonstrate that TRPM7 mediates a pH-activated cationic current necessary to sustain phagosomal acidification. Using mice expressing a genetically-encoded Ca2+ sensor, we observe that phagosome maturation requires peri-phagosomal Ca2+-signals dependent on TRPM7. Overall, we reveal TRPM7 as a central regulator of phagosome maturation during macrophage efferocytosis. Efficient removal of apoptotic cells by phagocytosis underlies tissue development, wound repair, host defense and organ homeostasis. Here, authors identify TRPM7 as a regulator of cargo acidification and Ca2+ signaling during apoptotic cell clearance.
Collapse
|
23
|
Jiao M, Li W, Yu Y, Yu Y. Anisotropic presentation of ligands on cargos modulates degradative function of phagosomes. BIOPHYSICAL REPORTS 2022; 2:100041. [PMID: 35382229 PMCID: PMC8978551 DOI: 10.1016/j.bpr.2021.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Anisotropic arrangement of cell wall components is ubiquitous among bacteria and fungi, but how such functional anisotropy affects interactions between microbes and host immune cells is not known. Here we address this question with regard to phagosome maturation, the process used by host immune cells to degrade internalized microbes. We developed two-faced microparticles as model pathogens that display ligands on only one hemisphere and simultaneously function as fluorogenic sensors for probing biochemical reactions inside phagosomes during degradation. The fluorescent indicator on just one hemisphere gives the particle sensors a moon-like appearance. We show that anisotropic presentation of ligands on particles delays the start of acidification and proteolysis in phagosomes, but does not affect their degradative capacity. Our work suggests that the spatial presentation of ligands on pathogens plays a critical role in modulating the degradation process in phagosomes during host-pathogen interactions.
Collapse
Affiliation(s)
- Mengchi Jiao
- Department of Chemistry, Indiana University, Bloomington, Indiana
| | - Wenqian Li
- Department of Chemistry, Indiana University, Bloomington, Indiana
| | - Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana
| |
Collapse
|
24
|
Maguire E, Menzies GE, Phillips T, Sasner M, Williams HM, Czubala MA, Evans N, Cope EL, Sims R, Howell GR, Lloyd-Evans E, Williams J, Allen ND, Taylor PR. PIP2 depletion and altered endocytosis caused by expression of Alzheimer's disease-protective variant PLCγ2 R522. EMBO J 2021; 40:e105603. [PMID: 34254352 PMCID: PMC8408593 DOI: 10.15252/embj.2020105603] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/06/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Variants identified in genome-wide association studies have implicated immune pathways in the development of Alzheimer's disease (AD). Here, we investigated the mechanistic basis for protection from AD associated with PLCγ2 R522, a rare coding variant of the PLCG2 gene. We studied the variant's role in macrophages and microglia of newly generated PLCG2-R522-expressing human induced pluripotent cell lines (hiPSC) and knockin mice, which exhibit normal endogenous PLCG2 expression. In all models, cells expressing the R522 mutation show a consistent non-redundant hyperfunctionality in the context of normal expression of other PLC isoforms. This manifests as enhanced release of cellular calcium ion stores in response to physiologically relevant stimuli like Fc-receptor ligation or exposure to Aβ oligomers. Expression of the PLCγ2-R522 variant resulted in increased stimulus-dependent PIP2 depletion and reduced basal PIP2 levels in vivo. Furthermore, it was associated with impaired phagocytosis and enhanced endocytosis. PLCγ2 acts downstream of other AD-related factors, such as TREM2 and CSF1R, and alterations in its activity directly impact cell function. The inherent druggability of enzymes such as PLCγ2 raises the prospect of PLCγ2 manipulation as a future therapeutic approach in AD.
Collapse
Affiliation(s)
- Emily Maguire
- UK Dementia Research Institute at Cardiff, Cardiff, UK
| | - Georgina E Menzies
- UK Dementia Research Institute at Cardiff, Cardiff, UK.,School of Biosciences, Cardiff University, Cardiff, UK
| | | | | | | | | | - Neil Evans
- UK Dementia Research Institute at Cardiff, Cardiff, UK
| | - Emma L Cope
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Rebecca Sims
- MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff, UK
| | | | | | - Julie Williams
- UK Dementia Research Institute at Cardiff, Cardiff, UK.,MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff, UK
| | | | - Philip R Taylor
- UK Dementia Research Institute at Cardiff, Cardiff, UK.,Systems Immunity University Research Institute, Cardiff, UK
| |
Collapse
|
25
|
Avila Ponce de León MA, Félix B, Othmer HG. A phosphoinositide-based model of actin waves in frustrated phagocytosis. J Theor Biol 2021; 527:110764. [PMID: 34029577 DOI: 10.1016/j.jtbi.2021.110764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022]
Abstract
Phagocytosis is a complex process by which phagocytes such as lymphocytes or macrophages engulf and destroy foreign bodies called pathogens in a tissue. The process is triggered by the detection of antibodies that trigger signaling mechanisms that control the changes of the cellular cytoskeleton needed for engulfment of the pathogen. A mathematical model of the entire process would be extremely complicated, because the signaling and cytoskeletal changes produce large mechanical deformations of the cell. Recent experiments have used a confinement technique that leads to a process called frustrated phagocytosis, in which the membrane does not deform, but rather, signaling triggers actin waves that propagate along the boundary of the cell. This eliminates the large-scale deformations and facilitates modeling of the wave dynamics. Herein we develop a model of the actin dynamics observed in frustrated phagocytosis and show that it can replicate the experimental observations. We identify the key components that control the actin waves and make a number of experimentally-testable predictions. In particular, we predict that diffusion coefficients of membrane-bound species must be larger behind the wavefront to replicate the internal structure of the waves. Our model is a first step toward a more complete model of phagocytosis, and provides insights into circular dorsal ruffles as well.
Collapse
Affiliation(s)
| | - Bryan Félix
- School of Mathematics, University of Minnesota, Minneapolis, MN, USA
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
26
|
Fu YL, Harrison RE. Microbial Phagocytic Receptors and Their Potential Involvement in Cytokine Induction in Macrophages. Front Immunol 2021; 12:662063. [PMID: 33995386 PMCID: PMC8117099 DOI: 10.3389/fimmu.2021.662063] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Phagocytosis is an essential process for the uptake of large (>0.5 µm) particulate matter including microbes and dying cells. Specialized cells in the body perform phagocytosis which is enabled by cell surface receptors that recognize and bind target cells. Professional phagocytes play a prominent role in innate immunity and include macrophages, neutrophils and dendritic cells. These cells display a repertoire of phagocytic receptors that engage the target cells directly, or indirectly via opsonins, to mediate binding and internalization of the target into a phagosome. Phagosome maturation then proceeds to cause destruction and recycling of the phagosome contents. Key subsequent events include antigen presentation and cytokine production to alert and recruit cells involved in the adaptive immune response. Bridging the innate and adaptive immunity, macrophages secrete a broad selection of inflammatory mediators to orchestrate the type and magnitude of an inflammatory response. This review will focus on cytokines produced by NF-κB signaling which is activated by extracellular ligands and serves a master regulator of the inflammatory response to microbes. Macrophages secrete pro-inflammatory cytokines including TNFα, IL1β, IL6, IL8 and IL12 which together increases vascular permeability and promotes recruitment of other immune cells. The major anti-inflammatory cytokines produced by macrophages include IL10 and TGFβ which act to suppress inflammatory gene expression in macrophages and other immune cells. Typically, macrophage cytokines are synthesized, trafficked intracellularly and released in response to activation of pattern recognition receptors (PRRs) or inflammasomes. Direct evidence linking the event of phagocytosis to cytokine production in macrophages is lacking. This review will focus on cytokine output after engagement of macrophage phagocytic receptors by particulate microbial targets. Microbial receptors include the PRRs: Toll-like receptors (TLRs), scavenger receptors (SRs), C-type lectin and the opsonic receptors. Our current understanding of how macrophage receptor stimulation impacts cytokine production is largely based on work utilizing soluble ligands that are destined for endocytosis. We will instead focus this review on research examining receptor ligation during uptake of particulate microbes and how this complex internalization process may influence inflammatory cytokine production in macrophages.
Collapse
Affiliation(s)
- Yan Lin Fu
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Rene E. Harrison
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
27
|
Ernest James Phillips T, Maguire E. Phosphoinositides: Roles in the Development of Microglial-Mediated Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2021; 15:652593. [PMID: 33841102 PMCID: PMC8032904 DOI: 10.3389/fncel.2021.652593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are increasingly recognized as vital players in the pathology of a variety of neurodegenerative conditions including Alzheimer’s (AD) and Parkinson’s (PD) disease. While microglia have a protective role in the brain, their dysfunction can lead to neuroinflammation and contributes to disease progression. Also, a growing body of literature highlights the seven phosphoinositides, or PIPs, as key players in the regulation of microglial-mediated neuroinflammation. These small signaling lipids are phosphorylated derivates of phosphatidylinositol, are enriched in the brain, and have well-established roles in both homeostasis and disease.Disrupted PIP levels and signaling has been detected in a variety of dementias. Moreover, many known AD disease modifiers identified via genetic studies are expressed in microglia and are involved in phospholipid metabolism. One of these, the enzyme PLCγ2 that hydrolyzes the PIP species PI(4,5)P2, displays altered expression in AD and PD and is currently being investigated as a potential therapeutic target.Perhaps unsurprisingly, neurodegenerative conditions exhibiting PIP dyshomeostasis also tend to show alterations in aspects of microglial function regulated by these lipids. In particular, phosphoinositides regulate the activities of proteins and enzymes required for endocytosis, toll-like receptor signaling, purinergic signaling, chemotaxis, and migration, all of which are affected in a variety of neurodegenerative conditions. These functions are crucial to allow microglia to adequately survey the brain and respond appropriately to invading pathogens and other abnormalities, including misfolded proteins. AD and PD therapies are being developed to target many of the above pathways, and although not yet investigated, simultaneous PIP manipulation might enhance the beneficial effects observed. Currently, only limited therapeutics are available for dementia, and although these show some benefits for symptom severity and progression, they are far from curative. Given the importance of microglia and PIPs in dementia development, this review summarizes current research and asks whether we can exploit this information to design more targeted, or perhaps combined, dementia therapeutics. More work is needed to fully characterize the pathways discussed in this review, but given the strength of the current literature, insights in this area could be invaluable for the future of neurodegenerative disease research.
Collapse
Affiliation(s)
| | - Emily Maguire
- UK Dementia Research Institute at Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
28
|
Desale SE, Chinnathambi S. Phosphoinositides signaling modulates microglial actin remodeling and phagocytosis in Alzheimer's disease. Cell Commun Signal 2021; 19:28. [PMID: 33627135 PMCID: PMC7905611 DOI: 10.1186/s12964-021-00715-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease is one of the neurodegenerative diseases, characterized by the accumulation of abnormal protein deposits, which disrupts signal transduction in neurons and other glia cells. The pathological protein in neurodegenerative diseases, Tau and amyloid-β contribute to the disrupted microglial signaling pathways, actin cytoskeleton, and cellular receptor expression. The important secondary messenger lipids i.e., phosphatidylinositols are largely affected by protein deposits of amyloid-β in Alzheimer's disease. Phosphatidylinositols are the product of different phosphatidylinositol kinases and the state of phosphorylation at D3, D4, and D5 positions of inositol ring. Phosphatidylinositol 3,4,5-triphosphate (PI 3, 4, 5-P3) involves in phagocytic cup formation, cell polarization, whereas Phosphatidylinositol 4,5-bisphosphate (PI 4, 5-P2)-mediates the process of phagosomes formation and further its fusion with early endosome.. The necessary activation of actin-binding proteins such as Rac, WAVE complex, and ARP2/3 complex for the actin polymerization in the process of phagocytosis, migration is regulated and maintained by PI 3, 4, 5-P3 and PI 4, 5-P2. The ratio and types of fatty acid intake can influence the intracellular secondary lipid messengers along with the cellular content of phaphatidylcholine and phosphatidylethanolamine. The Amyloid-β deposits and extracellular Tau seeds disrupt phosphatidylinositides level and actin cytoskeletal network that hamper microglial-signaling pathways in AD. We hypothesize that being a lipid species intracellular levels of phosphatidylinositol would be regulated by dietary fatty acids. Further we are interested to understand phosphoinositide-based signaling cascades in phagocytosis and actin remodeling. Video Abstract.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
| |
Collapse
|
29
|
Montaño-Rendón F, Grinstein S, Walpole GFW. Monitoring Phosphoinositide Fluxes and Effectors During Leukocyte Chemotaxis and Phagocytosis. Front Cell Dev Biol 2021; 9:626136. [PMID: 33614656 PMCID: PMC7890364 DOI: 10.3389/fcell.2021.626136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023] Open
Abstract
The dynamic re-organization of cellular membranes in response to extracellular stimuli is fundamental to the cell physiology of myeloid and lymphoid cells of the immune system. In addition to maintaining cellular homeostatic functions, remodeling of the plasmalemma and endomembranes endow leukocytes with the potential to relay extracellular signals across their biological membranes to promote rolling adhesion and diapedesis, migration into the tissue parenchyma, and to ingest foreign particles and effete cells. Phosphoinositides, signaling lipids that control the interface of biological membranes with the external environment, are pivotal to this wealth of functions. Here, we highlight the complex metabolic transitions that occur to phosphoinositides during several stages of the leukocyte lifecycle, namely diapedesis, migration, and phagocytosis. We describe classical and recently developed tools that have aided our understanding of these complex lipids. Finally, major downstream effectors of inositides are highlighted including the cytoskeleton, emphasizing the importance of these rare lipids in immunity and disease.
Collapse
Affiliation(s)
- Fernando Montaño-Rendón
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Glenn F W Walpole
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Wen Y, Vogt VM, Feigenson GW. PI(4,5)P 2 Clustering and Its Impact on Biological Functions. Annu Rev Biochem 2021; 90:681-707. [PMID: 33441034 DOI: 10.1146/annurev-biochem-070920-094827] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Located at the inner leaflet of the plasma membrane (PM), phosphatidyl-inositol 4,5-bisphosphate [PI(4,5)P2] composes only 1-2 mol% of total PM lipids. With its synthesis and turnover both spatially and temporally regulated, PI(4,5)P2 recruits and interacts with hundreds of cellular proteins to support a broad spectrum of cellular functions. Several factors contribute to the versatile and dynamic distribution of PI(4,5)P2 in membranes. Physiological multivalent cations such as Ca2+ and Mg2+ can bridge between PI(4,5)P2 headgroups, forming nanoscopic PI(4,5)P2-cation clusters. The distinct lipid environment surrounding PI(4,5)P2 affects the degree of PI(4,5)P2 clustering. In addition, diverse cellular proteins interacting with PI(4,5)P2 can further regulate PI(4,5)P2 lateral distribution and accessibility. This review summarizes the current understanding of PI(4,5)P2 behavior in both cells and model membranes, with emphasis on both multivalent cation- and protein-induced PI(4,5)P2 clustering. Understanding the nature of spatially separated pools of PI(4,5)P2 is fundamental to cell biology.
Collapse
Affiliation(s)
- Yi Wen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA; , ,
| | - Volker M Vogt
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA; , ,
| | - Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA; , ,
| |
Collapse
|
31
|
Kwon W, Freeman SA. Phagocytosis by the Retinal Pigment Epithelium: Recognition, Resolution, Recycling. Front Immunol 2020; 11:604205. [PMID: 33281830 PMCID: PMC7691529 DOI: 10.3389/fimmu.2020.604205] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Tissue-resident phagocytes are responsible for the routine binding, engulfment, and resolution of their meals. Such populations of cells express appropriate surface receptors that are tailored to recognize the phagocytic targets of their niche and initiate the actin polymerization that drives internalization. Tissue-resident phagocytes also harbor enzymes and transporters along the endocytic pathway that orchestrate the resolution of ingested macromolecules from the phagolysosome. Solutes fluxed from the endocytic pathway and into the cytosol can then be reutilized by the phagocyte or exported for their use by neighboring cells. Such a fundamental metabolic coupling between resident phagocytes and the tissue in which they reside is well-emphasized in the case of retinal pigment epithelial (RPE) cells; specialized phagocytes that are responsible for the turnover of photoreceptor outer segments (POS). Photoreceptors are prone to photo-oxidative damage and their long-term health depends enormously on the disposal of aged portions of the outer segment. The phagocytosis of the POS by the RPE is the sole means of this turnover and clearance. RPE are themselves mitotically quiescent and therefore must resolve the ingested material to prevent their toxic accumulation in the lysosome that otherwise leads to retinal disorders. Here we describe the sequence of events underlying the healthy turnover of photoreceptors by the RPE with an emphasis on the signaling that ensures the phagocytosis of the distal POS and on the transport of solutes from the phagosome that supersedes its resolution. While other systems may utilize different receptors and transporters, the biophysical and metabolic manifestations of such events are expected to apply to all tissue-resident phagocytes that perform regular phagocytic programs.
Collapse
Affiliation(s)
- Whijin Kwon
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Jaumouillé V, Waterman CM. Physical Constraints and Forces Involved in Phagocytosis. Front Immunol 2020; 11:1097. [PMID: 32595635 PMCID: PMC7304309 DOI: 10.3389/fimmu.2020.01097] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023] Open
Abstract
Phagocytosis is a specialized process that enables cellular ingestion and clearance of microbes, dead cells and tissue debris that are too large for other endocytic routes. As such, it is an essential component of tissue homeostasis and the innate immune response, and also provides a link to the adaptive immune response. However, ingestion of large particulate materials represents a monumental task for phagocytic cells. It requires profound reorganization of the cell morphology around the target in a controlled manner, which is limited by biophysical constraints. Experimental and theoretical studies have identified critical aspects associated with the interconnected biophysical properties of the receptors, the membrane, and the actin cytoskeleton that can determine the success of large particle internalization. In this review, we will discuss the major physical constraints involved in the formation of a phagosome. Focusing on two of the most-studied types of phagocytic receptors, the Fcγ receptors and the complement receptor 3 (αMβ2 integrin), we will describe the complex molecular mechanisms employed by phagocytes to overcome these physical constraints.
Collapse
Affiliation(s)
- Valentin Jaumouillé
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
33
|
Uribe-Querol E, Rosales C. Phagocytosis: Our Current Understanding of a Universal Biological Process. Front Immunol 2020; 11:1066. [PMID: 32582172 PMCID: PMC7280488 DOI: 10.3389/fimmu.2020.01066] [Citation(s) in RCA: 354] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
Phagocytosis is a cellular process for ingesting and eliminating particles larger than 0.5 μm in diameter, including microorganisms, foreign substances, and apoptotic cells. Phagocytosis is found in many types of cells and it is, in consequence an essential process for tissue homeostasis. However, only specialized cells termed professional phagocytes accomplish phagocytosis with high efficiency. Macrophages, neutrophils, monocytes, dendritic cells, and osteoclasts are among these dedicated cells. These professional phagocytes express several phagocytic receptors that activate signaling pathways resulting in phagocytosis. The process of phagocytosis involves several phases: i) detection of the particle to be ingested, ii) activation of the internalization process, iii) formation of a specialized vacuole called phagosome, and iv) maturation of the phagosome to transform it into a phagolysosome. In this review, we present a general view of our current understanding on cells, phagocytic receptors and phases involved in phagocytosis.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
34
|
Walpole GFW, Grinstein S. Endocytosis and the internalization of pathogenic organisms: focus on phosphoinositides. F1000Res 2020; 9. [PMID: 32494357 PMCID: PMC7233180 DOI: 10.12688/f1000research.22393.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Despite their comparatively low abundance in biological membranes, phosphoinositides are key to the regulation of a diverse array of signaling pathways and direct membrane traffic. The role of phosphoinositides in the initiation and progression of endocytic pathways has been studied in considerable depth. Recent advances have revealed that distinct phosphoinositide species feature prominently in clathrin-dependent and -independent endocytosis as well as in phagocytosis and macropinocytosis. Moreover, a variety of intracellular and cell-associated pathogens have developed strategies to commandeer host cell phosphoinositide metabolism to gain entry and/or metabolic advantage, thereby promoting their survival and proliferation. Here, we briefly survey the current knowledge on the involvement of phosphoinositides in endocytosis, phagocytosis, and macropinocytosis and highlight several examples of molecular mimicry employed by pathogens to either “hitch a ride” on endocytic pathways endogenous to the host or create an entry path of their own.
Collapse
Affiliation(s)
- Glenn F W Walpole
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
35
|
Doodnauth SA, Grinstein S, Maxson ME. Constitutive and stimulated macropinocytosis in macrophages: roles in immunity and in the pathogenesis of atherosclerosis. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180147. [PMID: 30967001 DOI: 10.1098/rstb.2018.0147] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Macrophages respond to several stimuli by forming florid membrane ruffles that lead to fluid uptake by macropinocytosis. This type of induced macropinocytosis, executed by a variety of non-malignant and malignant cells, is initiated by transmembrane receptors and is involved in nutrient acquisition and mTOR signalling. However, macrophages also perform a unique type of constitutive ruffling and macropinocytosis that is dependent on the presence of extracellular calcium. Calcium-sensing receptors are responsible for this activity. This distinct form of macropinocytosis enables macrophages to continuously sample their microenvironment for antigenic molecules and for pathogen- and danger-associated molecular patterns, as part of their immune surveillance functions. Interestingly, even within the monocyte lineage, there are differences in macropinocytic ability that reflect the polarized functional roles of distinct macrophage subsets. This review discusses the shared and distinct features of both induced and constitutive macropinocytosis displayed by the macrophage lineage and their roles in physiology, immunity and pathophysiology. In particular, we analyse the role of macropinocytosis in the uptake of modified low-density lipoprotein (LDL) and its contribution to foam cell and atherosclerotic plaque formation. We propose a combined role of scavenger receptors and constitutive macropinocytosis in oxidized LDL uptake, a process we have termed 'receptor-assisted macropinocytosis'. This article is part of the Theo Murphy meeting issue 'Macropinocytosis'.
Collapse
Affiliation(s)
- Sasha A Doodnauth
- 1 Princess Margaret Cancer Center, University Health Network , Toronto, ON , Canada M5G 1L7.,2 Department of Medical Biophysics, University of Toronto , Toronto, ON , Canada M5G 1L7
| | - Sergio Grinstein
- 3 Program in Cell Biology, Hospital for Sick Children , 686 Bay Street, Toronto, ON , Canada M5G 0A4.,4 Department of Biochemistry, University of Toronto , 1 King's Circle, Toronto, ON , Canada M5S 1A8.,5 Keenan Research Centre of the Li Ka Shing Knowledge Institute , St. Michael's Hospital, 290 Victoria Street, Toronto, ON , Canada M5C 1N8
| | - Michelle E Maxson
- 3 Program in Cell Biology, Hospital for Sick Children , 686 Bay Street, Toronto, ON , Canada M5G 0A4
| |
Collapse
|
36
|
Abstract
Phagocytosis is a specialized process that enables cellular ingestion and clearance of microbes, dead cells and tissue debris that are too large for other endocytic routes. As such, it is an essential component of tissue homeostasis and the innate immune response, and also provides a link to the adaptive immune response. However, ingestion of large particulate materials represents a monumental task for phagocytic cells. It requires profound reorganization of the cell morphology around the target in a controlled manner, which is limited by biophysical constraints. Experimental and theoretical studies have identified critical aspects associated with the interconnected biophysical properties of the receptors, the membrane, and the actin cytoskeleton that can determine the success of large particle internalization. In this review, we will discuss the major physical constraints involved in the formation of a phagosome. Focusing on two of the most-studied types of phagocytic receptors, the Fcγ receptors and the complement receptor 3 (αMβ2 integrin), we will describe the complex molecular mechanisms employed by phagocytes to overcome these physical constraints.
Collapse
Affiliation(s)
- Valentin Jaumouillé
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
37
|
Barnett KC, Kagan JC. Lipids that directly regulate innate immune signal transduction. Innate Immun 2020; 26:4-14. [PMID: 31180799 PMCID: PMC6901815 DOI: 10.1177/1753425919852695] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/28/2022] Open
Abstract
Pattern Recognition Receptors (PRRs) detect evidence of infection and tissue damage. The activation of these receptors and their downstream signal transduction pathways initiate a protective immune response. These signaling pathways are influenced by their spatial context, and precise subcellular positioning of proteins and protein complexes in these pathways is essential for effective immune responses in vivo . This organization is not limited to transmembrane proteins that reside in specific organelles, but also to proteins that engage membrane lipid head groups for proper positioning. In this review, we focus on the role of cell membranes and protein–lipid interactions in innate immune signal transduction and how their mechanisms of localization regulate the immune response. We will discuss how lipids spatially regulate the sensing of damage or infection, mediate effector activity, and serve as messengers of cell death and tissue damage.
Collapse
Affiliation(s)
- Katherine C Barnett
- Harvard Medical School and Division of
Gastroenterology, Boston Children’s Hospital, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of
Gastroenterology, Boston Children’s Hospital, USA
| |
Collapse
|
38
|
The Role of Membrane Surface Charge in Phagocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1246:43-54. [DOI: 10.1007/978-3-030-40406-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Phosphatidic acid in membrane rearrangements. FEBS Lett 2019; 593:2428-2451. [PMID: 31365767 DOI: 10.1002/1873-3468.13563] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
Abstract
Phosphatidic acid (PA) is the simplest cellular glycerophospholipid characterized by unique biophysical properties: a small headgroup; negative charge; and a phosphomonoester group. Upon interaction with lysine or arginine, PA charge increases from -1 to -2 and this change stabilizes protein-lipid interactions. The biochemical properties of PA also allow interactions with lipids in several subcellular compartments. Based on this feature, PA is involved in the regulation and amplification of many cellular signalling pathways and functions, as well as in membrane rearrangements. Thereby, PA can influence membrane fusion and fission through four main mechanisms: it is a substrate for enzymes producing lipids (lysophosphatidic acid and diacylglycerol) that are involved in fission or fusion; it contributes to membrane rearrangements by generating negative membrane curvature; it interacts with proteins required for membrane fusion and fission; and it activates enzymes whose products are involved in membrane rearrangements. Here, we discuss the biophysical properties of PA in the context of the above four roles of PA in membrane fusion and fission.
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Angela Filograna
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
40
|
Dynamic Podosome-Like Structures in Nascent Phagosomes Are Coordinated by Phosphoinositides. Dev Cell 2019; 50:397-410.e3. [DOI: 10.1016/j.devcel.2019.05.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/10/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
|
41
|
Hansen SD, Huang WYC, Lee YK, Bieling P, Christensen SM, Groves JT. Stochastic geometry sensing and polarization in a lipid kinase-phosphatase competitive reaction. Proc Natl Acad Sci U S A 2019; 116:15013-15022. [PMID: 31278151 PMCID: PMC6660746 DOI: 10.1073/pnas.1901744116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Phosphorylation reactions, driven by competing kinases and phosphatases, are central elements of cellular signal transduction. We reconstituted a native eukaryotic lipid kinase-phosphatase reaction that drives the interconversion of phosphatidylinositol-4-phosphate [PI(4)P] and phosphatidylinositol-4,5-phosphate [PI(4,5)P2] on membrane surfaces. This system exhibited bistability and formed spatial composition patterns on supported membranes. In smaller confined regions of membrane, rapid diffusion ensures the system remains spatially homogeneous, but the final outcome-a predominantly PI(4)P or PI(4,5)P2 membrane composition-was governed by the size of the reaction environment. In larger confined regions, interplay between the reactions, diffusion, and confinement created a variety of differentially patterned states, including polarization. Experiments and kinetic modeling reveal how these geometric confinement effects arise from a mechanism based on stochastic fluctuations in the copy number of membrane-bound kinases and phosphatases. The underlying requirements for such behavior are unexpectedly simple and likely to occur in natural biological signaling systems.
Collapse
Affiliation(s)
- Scott D Hansen
- Department of Chemistry, University of California, Berkeley, CA 94720;
- California Institute for Quantitative Biosciences, Berkeley, CA 94720
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
| | - William Y C Huang
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Young Kwang Lee
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Peter Bieling
- California Institute for Quantitative Biosciences, Berkeley, CA 94720
| | | | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, CA 94720;
- California Institute for Quantitative Biosciences, Berkeley, CA 94720
| |
Collapse
|
42
|
Bae DJ, Seo J, Kim SY, Park SY, Do Yoo J, Pyo JH, Cho W, Cho JY, Kim S, Kim IS. ArhGAP12 plays dual roles in Stabilin-2 mediated efferocytosis: Regulates Rac1 basal activity and spatiotemporally turns off the Rac1 to orchestrate phagosome maturation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1595-1607. [PMID: 31301364 DOI: 10.1016/j.bbamcr.2019.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
The rapid and precise clearance of apoptotic cells (efferocytosis) involves a series of phagocytic processes through which apoptotic cells are recognized, engulfed, and degraded within phagocytes. The Rho-family GTPases critically rearrange the cytoskeleton for these phagocytic processes, but we know little about the mechanisms by which regulatory proteins control the spatiotemporal activities of the Rho-family GTPases. Here, we identify ArhGAP12 as a functional GTPase-activating protein (GAP) of Rac1 during Stabilin-2 mediated efferocytosis. ArhGAP12 constitutively forms a complex with the phosphatidylserine receptor, Stabilin-2, via direct interaction with the downstream protein, GULP, but is released from the complex when Stabilin-2 interacts with apoptotic cells. When the phagocytic cup is closed and the apoptotic cell is surrounded by the phagosomal membrane, ArhGAP12 localizes to the phagocytic cup via a specific interaction with phosphatidylinositol-4,5-bisphosphate, which is transiently biosynthesized in the phagocytic cup. Down-regulation of ArhGAP12 results in sustained Rac1 activity, arrangement of F-actin, and delayed phagosome-lysosome fusion. Our results collectively suggest that ArhGAP12 carries dual roles in Stabilin-2 mediated efferocytosis: it binds to GULP/Stabilin-2 and switches off Rac1 basal activity and switches on the Rac1 by releasing itself from the complex. In addition, the spatiotemporal membrane targeting of ArhGAP12 inactivates Rac1 in a time-specific and spatially coordinated manner to orchestrate phagosome maturation. This may shed light on how other RhoGAPs spatiotemporally inactivate Rac or Cdc42 during phagocytosis by various cells, in different circumstances.
Collapse
Affiliation(s)
- Dong-Jun Bae
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea; ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 138-736, Republic of Korea
| | - Junyoung Seo
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Sang-Yeob Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea; ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 138-736, Republic of Korea; Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju 780-714, Republic of Korea
| | - Jae Do Yoo
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Jae-Hoon Pyo
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Je-Yoel Cho
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Soyoun Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea.
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea; KU-KIST school, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
43
|
Naik U, Nguyen QPH, Harrison RE. Binding and uptake of single and dual-opsonized targets by macrophages. J Cell Biochem 2019; 121:183-199. [PMID: 31172552 DOI: 10.1002/jcb.29043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/03/2019] [Indexed: 12/15/2022]
Abstract
Our current understanding of phagocytosis is largely derived from studies of individual receptor-ligand interactions and their downstream signaling pathways. Because phagocytes are exposed to a variety of ligands on heterogeneous target particles in vivo, it is important to observe the engagement of multiple receptors simultaneously and the triggered involvement of downstream signaling pathways. Potential crosstalk between the two well-characterized opsonic receptors, FcγR and CR3, was briefly explored in the early 1970s, where macrophages were challenged with dual-opsonized targets. However, subsequent studies on receptor crosstalk were primarily restricted to using single opsonins on different targets, typically at saturating opsonin conditions. Beyond validating these initial explorations on receptor crosstalk, we identify the early signaling mechanisms that underlie the binding and phagocytosis during the simultaneous activation of both opsonic receptors, through the presence of a dual-opsonized target (immunoglobulin G [IgG] and C3bi), compared with single receptor activation. For this purpose, we used signaling protein inhibitor studies as well as live cell brightfield and fluorescent imaging to fully understand the role of tyrosine kinases, F-actin dynamics and internalization kinetics for FcγR and CR3. Importantly, opsonic receptors were studied together and in isolation, in the context of sparsely opsonized targets. We observed enhanced particle binding and a synergistic effect on particle internalization during the simultaneous activation of FcγR and CR3 engaged with sparsely opsonized targets. Inhibition of early signaling and cytoskeletal molecules revealed a differential involvement of Src kinase for FcγR- vs CR3- and dual receptor-mediated phagocytosis. Src activity recruits Syk kinase and we observed intermediate levels of Syk phosphorylation in dual-opsonized particles compared with those opsonized with IgG or C3bi alone. These results likely explain the intermediate levels of F-actin that is recruited to sites of dual-opsonized particle uptake and the notoriously delayed internalization of C3bi-opsonized targets by macrophages.
Collapse
Affiliation(s)
- Urja Naik
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Quynh Phuong Hai Nguyen
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Rene E Harrison
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Tanguy E, Tran Nguyen AP, Kassas N, Bader MF, Grant NJ, Vitale N. Regulation of Phospholipase D by Arf6 during FcγR-Mediated Phagocytosis. THE JOURNAL OF IMMUNOLOGY 2019; 202:2971-2981. [DOI: 10.4049/jimmunol.1801019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/11/2019] [Indexed: 12/20/2022]
|
45
|
Jiang N, Rasmussen JP, Clanton JA, Rosenberg MF, Luedke KP, Cronan MR, Parker ED, Kim HJ, Vaughan JC, Sagasti A, Parrish JZ. A conserved morphogenetic mechanism for epidermal ensheathment of nociceptive sensory neurites. eLife 2019; 8:42455. [PMID: 30855229 PMCID: PMC6450671 DOI: 10.7554/elife.42455] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Interactions between epithelial cells and neurons influence a range of sensory modalities including taste, touch, and smell. Vertebrate and invertebrate epidermal cells ensheath peripheral arbors of somatosensory neurons, including nociceptors, yet the developmental origins and functional roles of this ensheathment are largely unknown. Here, we describe an evolutionarily conserved morphogenetic mechanism for epidermal ensheathment of somatosensory neurites. We found that somatosensory neurons in Drosophila and zebrafish induce formation of epidermal sheaths, which wrap neurites of different types of neurons to different extents. Neurites induce formation of plasma membrane phosphatidylinositol 4,5-bisphosphate microdomains at nascent sheaths, followed by a filamentous actin network, and recruitment of junctional proteins that likely form autotypic junctions to seal sheaths. Finally, blocking epidermal sheath formation destabilized dendrite branches and reduced nociceptive sensitivity in Drosophila. Epidermal somatosensory neurite ensheathment is thus a deeply conserved cellular process that contributes to the morphogenesis and function of nociceptive sensory neurons. Humans and other animals perceive and interact with the outside world through their sensory nervous system. Nerve cells, acting as the body’s ‘telegraph wires’, convey signals from sensory organs – like the eyes – to the brain, which then processes this information and tells the body how to respond. There are different kinds of sensory nerve cells that carry different types of information, but they all associate closely with the tissues and organs they connect to the brain. Human skin contains sensory nerve cells, which underpin our senses of touch and pain. There is a highly specialized, complex connection between some of these nerve cells and cells in the skin: the skin cells wrap tightly around the nerve cells’ free ends, forming sheath-like structures. This ‘ensheathment’ process happens in a wide range of animals, including those with a backbone, like fish and humans, and those without, like insects. Ensheathment is thought to be important for the skin’s nerve cells to work properly. Yet it remains unclear how or when these connections first appear. Jiang et al. therefore wanted to determine the developmental origins of ensheathment and to find out if these were also similar in animals with and without backbones. Experiments using fruit fly and zebrafish embryos revealed that nerve cells, not skin cells, were responsible for forming and maintaining the sheaths. In embryos where groups of sensory nerve cells were selectively killed – either using a laser or by making the cells produce a toxin – ensheathment did not occur. Further studies, using a variety of microscopy techniques, revealed that the molecular machinery required to stabilize the sheaths was similar in both fish and flies, and therefore likely to be conserved across different groups of animals. Removing sheaths in fly embryos led to nerve cells becoming unstable; the animals were also less sensitive to touch. This confirmed that ensheathment was indeed necessary for sensory nerve cells to work properly. By revealing how ensheathment first emerges, these findings shed new light on how the sensory nervous system develops and how its activity is controlled. In humans, skin cells ensheath the nerve cells responsible for sensing pain. A better understanding of how ensheathments first arise could therefore lead to new avenues for treating chronic pain and related conditions.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Biology, University of Washington, Seattle, United States
| | - Jeffrey P Rasmussen
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Joshua A Clanton
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Marci F Rosenberg
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Kory P Luedke
- Department of Biology, University of Washington, Seattle, United States
| | - Mark R Cronan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, United States
| | - Edward D Parker
- Department of Opthalmology, University of Washington, Seattle, United States
| | - Hyeon-Jin Kim
- Department of Chemistry, University of Washington, Seattle, United States.,Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Joshua C Vaughan
- Department of Chemistry, University of Washington, Seattle, United States.,Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Alvaro Sagasti
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, United States
| |
Collapse
|
46
|
Jones LO, Stafford JL. Imaging flow cytometry and confocal microscopy-based examination of F-actin and phosphoinositide dynamics during leukocyte immune-type receptor-mediated phagocytic events. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:199-211. [PMID: 30503359 DOI: 10.1016/j.dci.2018.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Cells of the innate immune system rapidly detect and eliminate invading microbes using surface-expressed immunoregulatory receptors that translate extracellular binding events into potent effector responses. Channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs) are a family of immunoregulatory proteins that have been shown to regulate several innate immune cell effector responses including the phagocytic process. The mechanisms by which these receptors regulate phagocytosis are not entirely understood but we have previously shown that different IpLITR-types use ITAM-dependent as well as ITAM-independent pathways for controlling target engulfment. The main objective of this study was to develop and use imaging flow cytometry and confocal microscopy-based assays to further examine both F-actin and phosphoinositide dynamics that occur during the different IpLITR-mediated phagocytic pathways. Results show that the ITAM-dependent IpLITR-induced phagocytic response promotes canonical changes in F-actin polymerization and PI(4,5)P2 redistributions. However, the ITAM-independent IpLITR phagocytic response induced unique patterns of F-actin and PI(4,5)P2 redistributions, which are likely due to its ability to regulate alternative signaling pathways. Additionally, both IpLITR-induced phagocytic pathways induced target internalization into PI(3)P-enriched phagosomes indicative of a maturing phagosome compartment. Overall, this imaging-based platform can be further applied to monitor the recruitment and distribution of signaling molecules during IpLITR-mediated phagocytic processes and may serve as a useful strategy for functional examinations of other immunoregulatory receptor-types in fish.
Collapse
Affiliation(s)
- Lena O Jones
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
47
|
Taruc K, Yin C, Wootton DG, Heit B. Quantification of Efferocytosis by Single-cell Fluorescence Microscopy. J Vis Exp 2018. [PMID: 30176011 DOI: 10.3791/58149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Studying the regulation of efferocytosis requires methods that are able to accurately quantify the uptake of apoptotic cells and to probe the signaling and cellular processes that control efferocytosis. This quantification can be difficult to perform as apoptotic cells are often efferocytosed piecemeal, thus necessitating methods which can accurately delineate between the efferocytosed portion of an apoptotic target versus residual unengulfed cellular fragments. The approach outlined herein utilizes dual-labeling approaches to accurately quantify the dynamics of efferocytosis and efferocytic capacity of efferocytes such as macrophages. The cytosol of the apoptotic cell is labeled with a cell-tracking dye to enable monitoring of all apoptotic cell-derived materials, while surface biotinylation of the apoptotic cell allows for differentiation between internalized and non-internalized apoptotic cell fractions. The efferocytic capacity of efferocytes is determined by taking fluorescent images of live or fixed cells and quantifying the amount of bound versus internalized targets, as differentiated by streptavidin staining. This approach offers several advantages over methods such as flow cytometry, namely the accurate delineation of non-efferocytosed versus efferocytosed apoptotic cell fractions, the ability to measure efferocytic dynamics by live-cell microscopy, and the capacity to perform studies of cellular signaling in cells expressing fluorescently-labeled transgenes. Combined, the methods outlined in this protocol serve as the basis for a flexible experimental approach that can be used to accurately quantify efferocytic activity and interrogate cellular signaling pathways active during efferocytosis.
Collapse
Affiliation(s)
- Kyle Taruc
- Department of Microbiology and Immunology and the Center for Human Immunology, University of Western Ontario
| | - Charles Yin
- Department of Microbiology and Immunology and the Center for Human Immunology, University of Western Ontario
| | - Daniel G Wootton
- Institute of Infection and Global Health, University of Liverpool; Department of Respiratory Research, Aintree University Hospital NHS Foundation Trust
| | - Bryan Heit
- Department of Microbiology and Immunology and the Center for Human Immunology, University of Western Ontario;
| |
Collapse
|
48
|
Schlam D, Grinstein S, Freeman SA. Screening for Rho GTPase Modulators in Actin-Dependent Processes Exemplified by Phagocytosis. Methods Mol Biol 2018; 1821:107-127. [PMID: 30062408 DOI: 10.1007/978-1-4939-8612-5_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Rho GTPases, a family of molecular switches, are essential for the assembly and rearrangement of the cellular actin network. Actin remodeling is a central component of many important biological phenomena including chemotaxis, immunological synapse formation, and phagocytosis. Proper execution of these processes requires careful modulation of Rho GTPase activity in space and time. This is accomplished by delicate coordination of Rho GTPase activation and inactivation by Rho guanine nucleotide exchange factors (RhoGEFs) and Rho GTPase-activating proteins (RhoGAPs), respectively. Elucidating the function of these Rho GTPase modulators is complicated by their diversity, varied expression across different tissues, and multiplicity of substrates. To overcome some of these hurdles, we describe here a systematic and unbiased screening approach consisting of three sequential steps: (1) monitoring the subcellular localization of a library of Rho GTPase modulators; (2) assessing endogenous levels of expression of the suitably localized candidates in the cell type of interest; and (3) validating the functional relevance of the identified candidates by siRNA, followed by determining the effects of gene silencing on Rho GTPase activity and actin polymerization. To this end, we describe the expression and visualization of fluorescent Rho GTPase modulators, and the use of genetically encoded biosensors for active Rac/Cdc42 and of fluorescent probes of polymerized actin. Phagocytosis by macrophages is used in this chapter as an experimental paradigm, but the methods described herein can be easily extended to other cells and actin-dependent processes.
Collapse
Affiliation(s)
- Daniel Schlam
- Division of Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.
| | - Spencer A Freeman
- Division of Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
49
|
Lu SM, Fairn GD. 7-Ketocholesterol impairs phagocytosis and efferocytosis via dysregulation of phosphatidylinositol 4,5-bisphosphate. Traffic 2018; 19:591-604. [PMID: 29693767 DOI: 10.1111/tra.12576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/27/2022]
Abstract
The plasma membrane is inhomogeneously organized containing both highly ordered and disordered nanodomains. 7-Ketocholesterol (7KC), an oxysterol formed from the nonenzymatic oxidation of cholesterol, is a potent disruptor of membrane order. Importantly, 7KC is a component of oxidized low-density lipoprotein and accumulates in macrophage and foam cells found in arterial plaques. Using a murine macrophage cell line, J774, we report that both IgG-mediated and phosphatidylserine-mediated phagocytic pathways are inhibited by the accumulation of 7KC. Examination of the well-studied Fcγ receptor pathway revealed that the cell surface receptor abundance and ligand binding are unaltered while downstream signaling and activation of spleen tyrosine kinase is not affected. However, while the recruitment of phospholipase Cγ1 was unaffected its apparent enzymatic activity was compromised resulting in sustained phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 ] levels and polymerized actin at the base of the phagocytic cup. Additionally, we found that 7KC prevented the activation of PLCβ downstream of the P2Y6 G-protein coupled receptor and that 7KC impaired PLCγ activity in response to a direct elevation of cytosolic calcium induced by ionomycin. Finally, we demonstrate that 7KC partly attenuates the activity of rapamycin recruitable constitutively active PLCβ3. Together, our results demonstrate that the accumulation of 7KC impairs macrophage function by altering PtdIns(4,5)P2 catabolism and, thus, impairing actin depolymerization required for the completion of phagocytosis.
Collapse
Affiliation(s)
- Stella M Lu
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Sciences, St. Michael's Hospital, Toronto, ON, Canada
| | - Gregory D Fairn
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Sciences, St. Michael's Hospital, Toronto, ON, Canada.,Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
50
|
Niedergang F, Grinstein S. How to build a phagosome: new concepts for an old process. Curr Opin Cell Biol 2018; 50:57-63. [DOI: 10.1016/j.ceb.2018.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/16/2018] [Accepted: 01/20/2018] [Indexed: 12/19/2022]
|