1
|
Dong L, Mu L, Huang X. Exploring lipid remodeling and antioxidant responses in Chlorella pyrenoidosa exposed to streptomycin sulfate stress. Food Chem 2025; 478:143565. [PMID: 40086213 DOI: 10.1016/j.foodchem.2025.143565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/09/2025] [Accepted: 02/21/2025] [Indexed: 03/16/2025]
Abstract
Microalgae, particularly Chlorella pyrenoidosa, are valuable for bioactive compounds and biofuel production, but antibiotic use in large-scale cultivation can impact growth and biochemical productivity. This study examines the physiological and molecular responses of C. pyrenoidosa to streptomycin sulfate (STRS) stress. STRS exposure significantly reduced cell density (15.31 × 106 to 11.20 × 106 cells/mL, p < 0.001) and photosynthetic efficiency (Fv/fm from 0.45 to 0.15). Multi-omics analysis revealed a dual adaptive strategy: (1) activation of antioxidant defenses, including upregulated superoxide dismutase (SOD, 19-fold) and ascorbate peroxidase (APX, 32-fold); (2) lipid remodeling, with increased α-linolenic acid (ALA) content (17.43 % to 21.25 %, p < 0.001) due to β-oxidation downregulation. These findings enhance understanding of microalgal stress adaptation and highlight potential applications in biofuel and food/feed industries. Future studies should optimize genetic and cultivation strategies to enhance these adaptive traits while ensuring ecological sustainability.
Collapse
Affiliation(s)
- Linyinxue Dong
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China; Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, China
| | - Liangliang Mu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222006, China
| | - Xuxiong Huang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology(Shanghai),Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
2
|
Ke X, Wu Q, Cai S, Wang C, Lu T, Sun Z, Tian X, Wu X, Wang B, Sun B. Dl-3-n-Butylphthalide enhances the survival of rat bone marrow stem cells via a reactive oxygen species mediated Erk1/2 signaling pathway. Brain Res 2025; 1855:149551. [PMID: 40086743 DOI: 10.1016/j.brainres.2025.149551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Survival of bone marrow stem cells (BMSCs) is crucial for successful bone marrow transplantation. However, the underlying molecular mechanisms remain inadequately understood. Our previous research has demonstrated that dl-3-n-butylphthalide (NBP) can protect rat BMSCs (rBMSCs) from cell death via its antioxidative properties and by activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. The findings suggest that the PI3K/Akt pathway may be one of the primary targets through which NBP exert its protective effects. In this study, we explored an additional signaling pathway to further elucidate the molecular mechanisms involved in NBP-mediated protection against oxidative stress injury in rBMSCs. Oxidative stress was induced in rBMSCs using hydrogen peroxide (H2O2), imitating the cerebral ischemia microenvironment surrounding transplanted cells in vitro. The protective effects of NBP on rBMSCs against apoptosis were observed, achieving by decreasing the level of reduce reactive oxygen species (ROS) and malondialdehyde (MDA) while simultaneously increasing the concentration of superoxide dismutase (SOD). Notably, these protective effects were partially inhibited by U0126, an extracellular signal-regulated kinase1/2 (Erk1/2) inhibitor, which enhanced the suppression of NBP's antiapoptotic effects. Our results indicated that NBP could protect rBMSCs from apoptosis through modulation of ROS/Erk pathways. Further investigations are warranted to clarify the unknown mechanisms.
Collapse
Affiliation(s)
- Xianjin Ke
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, PR China
| | - Qianqian Wu
- Department of Electrophysiology Laboratory, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, PR China
| | - Shikun Cai
- Department of Neurology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, PR China
| | - Chengyun Wang
- Department of Neurology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, PR China
| | - Ting Lu
- Department of Neurology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, PR China
| | - Zhenjie Sun
- Department of Neurology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, PR China
| | - Xiangyang Tian
- Department of Neurology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, PR China
| | - Xian Wu
- Department of Stomatology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, PR China
| | - Bingjian Wang
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, PR China.
| | - Bo Sun
- Department of Neurology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, PR China; Department of Neurology, The Huaian Clinical College of Xuzhou Medical University, Huai'an, Jiangsu 223300, PR China.
| |
Collapse
|
3
|
Adell T, Cebrià F, Abril JF, Araújo SJ, Corominas M, Morey M, Serras F, González-Estévez C. Cell death in regeneration and cell turnover: Lessons from planarians and Drosophila. Semin Cell Dev Biol 2025; 169:103605. [PMID: 40139139 DOI: 10.1016/j.semcdb.2025.103605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025]
Abstract
Programmed cell death plays a crucial role during tissue turnover in all animal species, and it is also essential during regeneration, serving as a key signalling mechanism to promote tissue repair and regrowth. In freshwater planarians, remarkable regenerative abilities are supported by neoblasts, a population of adult stem cells, which enable high somatic cell turnover. Cell death in planarians occurs continuously during regeneration and adult homeostasis, underscoring its critical role in tissue remodeling and repair. However, the exact mechanisms regulating cell death in these organisms remain elusive. In contrast, Drosophila melanogaster serves as a powerful model for studying programmed cell death in development, metamorphosis, and adult tissue maintenance, leveraging advanced genetic tools and visualization techniques. In Drosophila, cell death sculpts tissues, eliminates larval structures during metamorphosis, and supports homeostasis in adulthood. Despite limited regenerative capacity compared to planarians, Drosophila provides unique insights into cell death's regulatory mechanisms. Comparative analysis of these two systems highlights both conserved and divergent roles of programmed cell death in tissue renewal and regeneration. This review synthesizes the latest knowledge of programmed cell death in planarians and Drosophila, aiming to illuminate shared principles and system-specific adaptations, with relevance to tissue repair across biological systems.
Collapse
Affiliation(s)
- Teresa Adell
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain.
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Josep F Abril
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Sofia J Araújo
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Montserrat Corominas
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Marta Morey
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Florenci Serras
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Cristina González-Estévez
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain.
| |
Collapse
|
4
|
Kang Y, Zhang Y, Chen J, Yu Q, Li B, Wang Y, Dong S. Alterations in physiological and biochemical characteristics of Prunus sibirica seedlings raised from spaceflight seeds. PLoS One 2025; 20:e0321147. [PMID: 40273191 DOI: 10.1371/journal.pone.0321147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/02/2025] [Indexed: 04/26/2025] Open
Abstract
The aim was to explore the alterations in growth traits, physiological and biochemical characteristics of Prunus sibirica seedlings raised from spaceflight seeds. The seedlings cultivated by the "Shenzhou XII" spacecraft carrying the seeds of superior clones of P. sibirica were used to observe their growth traits and determine physiological indicators. The results showed that plant height of Prunus sibirica seedlings raised from spaceflight seeds increased by 18-34% and internode length increased by 8-26%, but the number of primary branches, secondary branches, and leaves showed no significant change compared to the ground control. Leaf length and width of Prunus sibirica seedlings raised from spaceflight seeds were significantly higher than those of the ground control, with leaf length, width, and area increasing to 1.21-1.80 times higher than that of the ground control. Furthermore, the antioxidant and osmoregulatory capacities of P. sibirica seedlings raised from spaceflight seeds were altered. The peroxidase (POD) activity and Malondialdehyde (MDA) content were increased in ST28, ST207, and ST507, while they were reduced in ST1 and ST453. Compared with the ground control, the content of soluble sugar(SS), starch (St), and free proline (Pro) were significantly or highly significantly increased in all lines. The content of soluble protein (SP) was significantly increased in ST1, ST28, ST207, and ST507, while there was no significant change in ST453. P. sibirica seedlings raised from spaceflight seeds exhibited increased leaf pigment content, the interstitial CO2 concentration (Ci), net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr). In conclusion, compared with the ground control, the growth indexes and physiological characteristics of Prunus sibirica seedlings raised from spaceflight seeds were changed, and the direction of change was different for different lines. This provided a foundation for subsequent germplasm improvement and variety selection.
Collapse
Affiliation(s)
- Ying Kang
- Key Laboratory of Tree Genetics, Breeding and Cultivation in Liaoning Province, Shenyang, Liaoning, China
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yuncheng Zhang
- Liaoning Kazuo County Forestry Seedling Management Station, Chaoyang, Liaoning, China
| | - Jianhua Chen
- Key Laboratory of Tree Genetics, Breeding and Cultivation in Liaoning Province, Shenyang, Liaoning, China
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Qingfu Yu
- Liaoning Kazuo County Forestry Seedling Management Station, Chaoyang, Liaoning, China
| | - Biao Li
- Key Laboratory of Tree Genetics, Breeding and Cultivation in Liaoning Province, Shenyang, Liaoning, China
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yijin Wang
- Key Laboratory of Tree Genetics, Breeding and Cultivation in Liaoning Province, Shenyang, Liaoning, China
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Shengjun Dong
- Key Laboratory of Tree Genetics, Breeding and Cultivation in Liaoning Province, Shenyang, Liaoning, China
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Liu L, Hao Z, Yang X, Li Y, Wang S, Li L. Metabolic reprogramming in T cell senescence: a novel strategy for cancer immunotherapy. Cell Death Discov 2025; 11:161. [PMID: 40204707 PMCID: PMC11982223 DOI: 10.1038/s41420-025-02468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
The complex interplay between cancer progression and immune senescence is critically influenced by metabolic reprogramming in T cells. As T cells age, especially within the tumor microenvironment, they undergo significant metabolic shifts that may hinder their proliferation and functionality. This manuscript reviews how metabolic alterations contribute to T cell senescence in cancer and discusses potential therapeutic strategies aimed at reversing these metabolic changes. We explore interventions such as mitochondrial enhancement, glycolytic inhibition, and lipid metabolism adjustments that could rejuvenate senescent T cells, potentially restoring their efficacy in tumor suppression. This review also focuses on the significance of metabolic interventions in T cells with aging and further explores the future direction of the metabolism-based cancer immunotherapy in senescent T cells.
Collapse
Affiliation(s)
- Li Liu
- The Operation Room, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhanying Hao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xi Yang
- Department of General Surgery, Sanya People's Hospital, Sanya, China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Siyang Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Linze Li
- The Operation Room, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Wang M, Pu Z, Zhang J, Wang P, Chen Y, Zhu Y, Ruan H, Ji D, Zou W, Cheng H, Ding Z, Cao Y, Liu Y, Liang D. Melatonin mediates the BMP4/MAPK signaling pathway to alleviate zearalenone-induced abnormal embryonic development in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118068. [PMID: 40120487 DOI: 10.1016/j.ecoenv.2025.118068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Zearalenone (ZEA) is a common mycotoxin found in crops that poses a threat to human health, particularly the female reproductive system. Here, we show that exposing mouse zygotes to ZEA in vitro significantly impairs embryo development, leading to embryo arrest. Remarkably, treatment of ZEA-exposed mouse embryos with melatonin significantly improved the blastocyst rates from approximately 40 % to nearly 80 %. Furthermore, melatonin effectively mitigates the harmful effects of ZEA exposure by reducing reactive oxygen species (ROS) levels, preventing mitochondrial dysfunction, and decreasing cell apoptosis. Following embryo transplantation, the birth rate of offspring increased markedly from 7.2 % to 23.62 %. Further research revealed that the abnormal elevation of bone morphogenetic protein 4 (BMP4) signaling induced by ZEA exposure, coupled with the inhibition of the downstream mitogen-activated protein kinase (MAPK) signaling pathway, contributes to developmental blockade in ZEA-exposed mouse embryos. Melatonin rescued ZEA-induced defects in mouse embryo development by inhibiting BMP4 signaling and regulating the MAPK pathway. Moreover, the Bmp4 inhibitor Noggin or its receptor inhibitor DMH-1 could also effectively ameliorate the ZEA-induced impairment of embryo development. Taken together, these findings underscore the potential of melatonin as a therapeutic intervention for addressing the adverse effects of ZEA exposure on mouse embryos.
Collapse
Affiliation(s)
- Mengyao Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Zhixin Pu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Peiwen Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Yaxin Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Yating Zhu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Hongzhen Ruan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Engineering Research Center of Biopreservation and Artifical Organs, Ministry of Education, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui 230032, China
| | - Weiwei Zou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Engineering Research Center of Biopreservation and Artifical Organs, Ministry of Education, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui 230032, China
| | - Huiru Cheng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Zhiming Ding
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei, Anhui 230032, China.
| | - Yajing Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei, Anhui 230032, China.
| | - Dan Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China; Engineering Research Center of Biopreservation and Artifical Organs, Ministry of Education, Hefei, Anhui 230032, China.
| |
Collapse
|
7
|
Fedoreyeva LI, Kononenko NV. Peptides and Reactive Oxygen Species Regulate Root Development. Int J Mol Sci 2025; 26:2995. [PMID: 40243669 PMCID: PMC11989010 DOI: 10.3390/ijms26072995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Like phytohormones, peptide hormones participate in many cellular processes, participate in intercellular communications, and are involved in signal transmission. The system of intercellular communications based on peptide-receptor interactions plays a critical role in the development and functioning of plants. One of the most important molecules are reactive oxygen species (ROS). ROS participate in signaling processes and intercellular communications, including the development of the root system. ROS are recognized as active regulators of cell division and differentiation, which depend on the oxidation-reduction balance. The stem cell niche and the size of the root meristem are maintained by the intercellular interactions and signaling networks of peptide hormone and ROS. Therefore, peptides and ROS can interact with each other both directly and indirectly and function as regulators of cellular processes. Peptides and ROS regulate cell division and stem cell differentiation through a negative feedback mechanism. In this review, we focused on the molecular mechanisms regulating the development of the main root, lateral roots, and nodules, in which peptides and ROS participate.
Collapse
|
8
|
Ishida H, Sasaki Y, Shibata T, Sasaki H, Chhunchha B, Singh DP, Kubo E. Topical Instillation of N-Acetylcysteine and N-Acetylcysteine Amide Impedes Age-Related Lens Opacity in Mice. Biomolecules 2025; 15:442. [PMID: 40149978 PMCID: PMC11940285 DOI: 10.3390/biom15030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Cataracts, the leading cause of blindness globally, are caused by oxidative stress and inflammation, which disrupt lens transparency due to increased accumulation of reactive oxygen species (ROS) as well as protein and DNA damage during aging. Using in vitro, ex vivo, and in vivo models, we determined the protective efficacy of N-acetylcysteine amide (NACA) against oxidative stress-induced and aging-induced cataractogenesis. We found that lens epithelial cells exposed to the oxidative stress inducers hydrogen peroxide (H2O2) or tert-butyl hydroperoxide showed significant ROS accumulation and reduced cellular viability. These effects were inhibited by NACA via the suppression of ROS and thioredoxin-interacting protein (Txnip) expression, a regulator of oxidative stress-related cellular damage and inflammation. In ex vivo lens experiments, NACA significantly reduced H2O2-induced lens opacity and preserved lens integrity. Similarly to NACA-treated lenses ex vivo, the integrity and opacity of aged mouse lenses, when topically instilled with NACA, were preserved and reduced, respectively, and are directly related to reduced Txnip and increased thioredoxin (Trx) expression levels. Overall, our findings demonstrated the protective ability of NACA to abate aberrant redox-active pathways, particularly the ROS/TRX/TXNIP axis, thereby preventing cataractogenesis and preserving eye lens integrity and ultimately impeding aging-related cataracts.
Collapse
Affiliation(s)
- Hidetoshi Ishida
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200293, Japan; (H.I.); (Y.S.); (T.S.); (H.S.)
| | - Yu Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200293, Japan; (H.I.); (Y.S.); (T.S.); (H.S.)
| | - Teppei Shibata
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200293, Japan; (H.I.); (Y.S.); (T.S.); (H.S.)
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200293, Japan; (H.I.); (Y.S.); (T.S.); (H.S.)
| | - Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.C.); (D.P.S.)
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.C.); (D.P.S.)
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200293, Japan; (H.I.); (Y.S.); (T.S.); (H.S.)
| |
Collapse
|
9
|
Baro MR, Das M, Das L, Dutta A. Molecular docking, dynamics simulations, and in vivo studies of gallic acid in adenine-induced chronic kidney disease: targeting KIM-1 and NGAL. J Comput Aided Mol Des 2025; 39:11. [PMID: 40087213 DOI: 10.1007/s10822-025-00590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Gallic acid (GA), a naturally occurring compound with antioxidant, anti-inflammatory, anti-apoptotic, and regenerative properties, has gained attention for its potential protective role against kidney dysfunction and diseases, though its therapeutic efficacy in this context remains underexplored. The primary objective of this study was to explore the therapeutic effects of GA in treating adenine-induced chronic kidney disease (CKD) in male Wistar rats. The study evaluated GA's therapeutic potential against CKD, along with its pharmacokinetic and drug-likeness properties through a comprehensive analysis. It also assessed GA's inhibitory effects on key kidney proteins, KIM-1 and NGAL, using gene expression analysis, molecular docking, and molecular dynamics simulations. The results demonstrated a range of positive effects, including significant improvement in adenine-induced kidney damage, as shown by changes in urine and serum markers, as well as oxidative stress biomarkers, following GA treatment. The study revealed that GA effectively suppresses the adenine-induced gene expression of KIM-1 and NGAL. Furthermore, GA adhered to Lipinski's Rule of Five, and molecular docking analysis indicated strong interactions and low binding energies between GA and the target proteins KIM-1 and NGAL, further supporting its efficacy in targeting these markers. Additionally, 100 ns molecular dynamics simulations showed that gallic acid has a stronger binding affinity for NGAL than for KIM-1, with higher binding energy, stability, and stronger hydrogen bonds, suggesting that it primarily influences NGAL interactions. This study underscores gallic acid's potential in reducing adenine-induced kidney damage and improving kidney function, with computational evidence supporting its promise as a treatment for CKD.
Collapse
Affiliation(s)
- Momita Rani Baro
- Animal Physiology and Biochemistry Laboratory, Department of Zoology, Gauhati University, Guwahati, Assam, 781014, India
| | - Manas Das
- Animal Physiology and Biochemistry Laboratory, Department of Zoology, Gauhati University, Guwahati, Assam, 781014, India.
| | - Leena Das
- Animal Physiology and Biochemistry Laboratory, Department of Zoology, Gauhati University, Guwahati, Assam, 781014, India
| | - Aashis Dutta
- Animal Physiology and Biochemistry Laboratory, Department of Zoology, Gauhati University, Guwahati, Assam, 781014, India
| |
Collapse
|
10
|
Amegashie EA, Kwayisi-Darkwah CK, Adusei-Poku M, Sikeola RO, Ativi LAE, Ahene A, Atampugbire G, Tagoe EA, Paintsil E, Torpey K, Quaye O. Lipid Peroxidation and Glutathione Levels Among People Living With HIV Co-infected With Human Coronaviruses in Ghana. J Med Virol 2025; 97:e70301. [PMID: 40110873 DOI: 10.1002/jmv.70301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/09/2025] [Indexed: 03/22/2025]
Abstract
Human immunodeficiency virus (HIV) and human coronaviruses (hCoVs) pose two different threats to human health, globally. Oxidative stress is induced during infection by both HIV and hCoVs and contributes to disease severity. The study aims to determine the oxidative stress marker, malondialdehyde (MDA), and antioxidant, glutathione (GSH), levels among PLWH co-infected with human coronaviruses (HIV+/hCoVs+) in Ghana. This is a prospective cross-sectional study that recruited 300 PLWH at three hospitals in Ghana. RNA extraction and PCR were carried out on naso- and oro-pharyngeal swabs taken from three groups of participants: HIV+/hCoVs+, HIV ART-experienced individuals who tested negative for hCoVs (HIV+/hCoVs-), and HIV-negative individuals who tested negative for hCoVS (HIV-/hCoVs-). MDA and GSH levels were determined in the participants using plasma samples. MDA levels of HIV+/hCoVs+ were significantly higher than that of HIV+/hCoVs- and HIV-/hCoVs- p < 0.0001. Reduced GSH levels among the HIV+/hCoVs+ was significantly lower than that of HIV+/hCoVs-, but significantly higher than that of HIV-/hCoVs-. Age group 51+ years showed an increased MDA levels among the HIV+/hCoVs+ group compared to the mono-infected and control group. Among the co-infected HIV+/hCoVs+ group, Abacavir + Lamivudine + Dolutegravir (A + L + D) usage had significantly higher MDA levels than those on Tenoforvir-disoproxil + Lamivudine + Dolutegravir, and there was an association between MDA and GSH levels among those on ART for 1-2 years compared to > 5 years. The study underscores the significant influence of HIV co-infection with human coronaviruses on oxidative stress, emphasizing the need for tailored monitoring and treatment strategies for Ghanaian patients.
Collapse
Affiliation(s)
- Esimebia Adjovi Amegashie
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Caleb Koranteng Kwayisi-Darkwah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Mildred Adusei-Poku
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ruth Oyawole Sikeola
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Lawrencia Ami Emefa Ativi
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Abigail Ahene
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Gabriel Atampugbire
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Emmanuel Ayitey Tagoe
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Elijah Paintsil
- Department of Pediatrics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Kwasi Torpey
- Department of Population, Family and Reproductive Health, School of Public Health, University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| |
Collapse
|
11
|
Wiesenthal AA, Timm S, Sokolova IM. Osmotolerance reflected in mitochondrial respiration of Mytilus populations from three different habitat salinities. MARINE ENVIRONMENTAL RESEARCH 2025; 205:106968. [PMID: 39883997 DOI: 10.1016/j.marenvres.2025.106968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Mussels from the Mytilus edulis species complex experience a salinity gradient from the North Sea into the Baltic Proper ranging from 32 to 5. As osmoconformers, they adjust their internal osmolarity to match that of their surroundings, which presents a significant challenge to the metabolic machinery, including their mitochondria. We hypothesized that the osmotic optima for the mitochondrial function of mussels matches the prevailing habitat salinity and is accompanied by a population specific metabolite profile. To test this hypothesis, mussels from three populations along the salinity gradient were assessed. We found a population specific shift in the optimal osmolarities for maximal mitochondrial respiration capacity that mirrored the populations' habitat salinity. So, mitochondria from North Sea mussels reached their highest capacity at higher osmotic concentrations than their Baltic Sea congeners. Additionally, Baltic Sea populations appear to have traded off an adaptation to low salinities for a narrower mitochondrial tolerance range resulting in a more specialized mitochondrial phenotype, while North Sea populations have mitochondria with a more general functioning phenotype. The local adaptation to a low salinity habitat was supported by the analysis of gill tissue metabolites via LC-MS/MS. Abundances of metabolites involved in energy generation, osmotic homeostasis or the urea cycle were similar between North Sea and southern Baltic Sea mussels, while northern Baltic Sea mussels seem to follow a different metabolic strategy, which may allow them to inhabit very low salinities. Thus, northern Baltic Sea mussels have adapted to low salinities on a mitochondrial and metabolic level.
Collapse
Affiliation(s)
- Amanda A Wiesenthal
- Marine Biology, Institute for Biological Sciences, University of Rostock, Albert-Einstein-Strasse 3, D - 18059, Rostock, Germany.
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, Albert-Einstein-Strasse 3, D-18059, Rostock, Germany
| | - Inna M Sokolova
- Marine Biology, Institute for Biological Sciences, University of Rostock, Albert-Einstein-Strasse 3, D - 18059, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Strasse 21, D-18059, Rostock, Germany
| |
Collapse
|
12
|
Xie E, Yuan Z, Chen Q, Hu J, Li J, Li K, Wang H, Ma J, Meng B, Zhang R, Mao H, Liang T, Wang L, Liu C, Li B, Han F. Programmed Transformation of Osteogenesis Microenvironment by a Multifunctional Hydrogel to Enhance Repair of Infectious Bone Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409683. [PMID: 39840502 PMCID: PMC11904992 DOI: 10.1002/advs.202409683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/01/2025] [Indexed: 01/23/2025]
Abstract
Repair of infectious bone defects remains a serious problem in clinical practice owing to the high risk of infection and excessive reactive oxygen species (ROS) during the early stage, and the residual bacteria and delayed Osseo integrated interface in the later stage, which jointly creates a complex and dynamic microenvironment and leads to bone non-union. The melatonin carbon dots (MCDs) possess antibacterial and osteogenesis abilities, greatly simplifying the composition of a multifunctional material. Therefore, a multifunctional hydrogel containing MCDs (GH-MCD) is developed to meet the multi-stage and complex repair needs of infectious bone injury in this study. The GH-MCD can intelligently release MCDs responding to the acidic microenvironment to scavenge intracellular ROS and exhibit good antibacterial activity by inducing the production of ROS in bacteria and inhibiting the expression of secA2. Moreover, it has high osteogenesis and long-lasting antimicrobial activity during bone repair. RNA-seq results reveal that the hydrogels promote the repair of infected bone healing by enhancing cellular resistance to bacteria, balancing osteogenesis and osteoclastogenesis, and regulating the immune microenvironment. In conclusion, the GH-MCD can promote the repair of infectious bone defects through the programmed transformation of the microenvironment, providing a novel strategy for infectious bone defects.
Collapse
Affiliation(s)
- En Xie
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Zhangqin Yuan
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Qianglong Chen
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Jie Hu
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Jiaying Li
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Kexin Li
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Huan Wang
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Jinjin Ma
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Bin Meng
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Ruoxi Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, P. R. China
| | - Ting Liang
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Lijie Wang
- Sanitation & Environment Technology Institute of Soochow University Ltd., Suzhou, Jiangsu, 215000, P. R. China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bin Li
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Fengxuan Han
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| |
Collapse
|
13
|
Jurčacková Z, Hrčková G, Mudroňová D, Matiašová AA, Biedermann D. Flavonolignans silybin, silychristin and 2,3-dehydrosilybin showed differential cytoprotective, antioxidant and anti-apoptotic effects on splenocytes from Balb/c mice. Sci Rep 2025; 15:5631. [PMID: 39955331 PMCID: PMC11830019 DOI: 10.1038/s41598-025-89824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
Silymarin is an extract obtained from the seeds of milk thistle (Sylibum marianum L., Asteraceae) and contains several structurally related flavonolignans and a small family of flavonoids. Mouse spleen cells represent highly sensitive primary cells suitable for studying the pharmacological potential and biofunctional properties of natural substances. Cultivation of splenocytes for 24 h under standard culture conditions (humidity, 37 °C, 5% CO2, atmospheric oxygen) resulted in decreased viability of splenocytes compared to intact cells. A cytoprotective effect of silybin (SB), silychristin (SCH) and 2,3-dehydrosilybin (DHSB) was observed at concentrations as low as 5 µmol/ml. At 50 µmol/ml, these substances restored and/or stimulated viability and mitochondrial membrane potential and had anti-apoptotic effect in the order SB > DHSB > SCH. The substances demonstrated a concentration-dependent activity in restoring the redox balance based on the changes in the concentration of reactive oxygen species (ROS), hydrogen peroxide (H2O2) and nitric oxide. This was in the order DHSB > SCH > SB, which correlated with the suppressed expression of nuclear factor erythroid 2-related factor 2 (Nrf2), catalase and glutathione peroxidase. The strong stimulation of the superoxide dismutase 1 gene converting ROS to H2O2 points to its dominant role in the maintaining redox homeostasis in splenocytes, which was disrupted by oxidative stress due to non-physiological culture conditions. Our study showed significant differences in the cytoprotective, antioxidant and anti-apoptotic activities of SB, SCH, and DHSB on splenocytes exposed to mild and AAPH-induced oxidative stress.
Collapse
Affiliation(s)
- Zuzana Jurčacková
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001, Kosice, Slovakia
| | - Gabriela Hrčková
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001, Kosice, Slovakia.
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Anna Alexovič Matiašová
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Kosice, Slovakia
| | - David Biedermann
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
14
|
Ma Y, Hui KL, Ambaw YA, Walther TC, Farese RV, Lengyel M, Gelashvili Z, Lu D, Niethammer P. DHRS7 Integrates NADP +/NADPH Redox Sensing with Inflammatory Lipid Signalling via the Oxoeicosanoid Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636725. [PMID: 39975387 PMCID: PMC11839141 DOI: 10.1101/2025.02.05.636725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
During the innate immune response at epithelial wound sites, oxidative stress acts microbicidal and-mechanistically less well understood-as an immune and resilience signal. The reversible sulfhydryl (SH) oxidation of kinases, phosphatases, and transcription factors constitute the perhaps best-known redox signalling paradigm, whereas mechanisms that transduce metabolic redox cues, such as redox cofactor balance, remain little explored. Here, using mammalian cells, microsomes, and live zebrafish, we identify DHRS7, a short-chain fatty acid dehydrogenase/reductase (SDR), as conserved, 5-hydroxyeicosanoid dehydrogenase (5-HEDH). Under oxidative stress, DHRS7 consumes NADP+ to convert arachidonic acid (AA)-derived 5(S)-HETE into the inflammatory lipid 5-KETE, which activates leukocyte chemotaxis via the OXER1 receptor. While Dhrs7 acts as a NADPH-dependent 5-KETE sink in unstressed, healthy tissue, it promotes rapid, 5-KETE dependent leukocytic inflammation in wounded zebrafish skin. Thus, DHRS7 epitomizes an underappreciated mode of redox signalling-beyond classic SH oxidation-that leverages NADPH metabolism to generate or quench a paracrine lipid signal. Metabolic redox sensors like DHRS7 might be promising therapeutic targets in diseases characterized by disturbed redox balance.
Collapse
Affiliation(s)
- Yanan Ma
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - King Lam Hui
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yohannes A. Ambaw
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tobias C. Walther
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Robert V. Farese
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Miklos Lengyel
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zaza Gelashvili
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Dajun Lu
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
15
|
Lin Y, Dervisevic M, Yoh HZ, Guo K, Voelcker NH. Tailoring Design of Microneedles for Drug Delivery and Biosensing. Mol Pharm 2025; 22:678-707. [PMID: 39813711 DOI: 10.1021/acs.molpharmaceut.4c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Microneedles (MNs) are emerging as versatile tools for both therapeutic drug delivery and diagnostic monitoring. Unlike hypodermic needles, MNs achieve these applications with minimal or no pain and customizable designs, making them suitable for personalized medicine. Understanding the key design parameters and the challenges during contact with biofluids is crucial to optimizing their use across applications. This review summarizes the current fabrication techniques and design considerations tailored to meet the distinct requirements for drug delivery and biosensing applications. We further underscore the current state of theranostic MNs that integrate drug delivery and biosensing and propose future directions for advancing MNs toward clinical use.
Collapse
Affiliation(s)
- Yuexi Lin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Muamer Dervisevic
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Hao Zhe Yoh
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Keying Guo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Faculty of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Materials Science and Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
16
|
dos Anjos MM, de Paula GR, Yokomizo DN, Costa CB, Bertozzi MM, Verri WA, Alfieri AA, Morotti F, Seneda MM. Effect of Alpha-Lipoic Acid on the Development, Oxidative Stress, and Cryotolerance of Bovine Embryos Produced In Vitro. Vet Sci 2025; 12:120. [PMID: 40005881 PMCID: PMC11860579 DOI: 10.3390/vetsci12020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/10/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Oxidative stress (OS) induced by an imbalance in reactive oxygen species (ROS) levels in vitro impairs embryonic development. Here, we assessed the effects of alpha-lipoic acid (ALA) in in vitro production media on OS reduction, embryonic development, and cryotolerance of bovine embryos. We evaluated the effects of adding different concentrations of ALA (2.5, 5, 10, and 25 μM) to in vitro maturation (IVM) or in vitro culture (IVC) medium on embryonic development. We also determined the effects of adding ALA (25 μM) to the IVM and IVC medium in the same routine on the development and quality of embryos, ROS levels, and cryotolerance. Embryos were produced in vitro using conventional protocols for each treatment. The inclusion of ALA in the IVM and IVC media did not affect the development or quality of embryos; however, it reduced ROS levels in grade II embryos and increased hatching after 12 h on day 7 in grade I embryos and on day 8 in grade II embryos after warming. These findings prompt questions regarding the potential of ALA in improving embryo metabolism, considering the initial embryo recovery in the first few hours of embryo warming.
Collapse
Affiliation(s)
- Mariana Moreira dos Anjos
- Laboratory of Animal Reproduction, University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (M.M.d.A.); (G.R.d.P.); (D.N.Y.); (C.B.C.); (F.M.)
| | - Gabriela Rodrigues de Paula
- Laboratory of Animal Reproduction, University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (M.M.d.A.); (G.R.d.P.); (D.N.Y.); (C.B.C.); (F.M.)
| | - Deborah Nakayama Yokomizo
- Laboratory of Animal Reproduction, University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (M.M.d.A.); (G.R.d.P.); (D.N.Y.); (C.B.C.); (F.M.)
| | - Camila Bortoliero Costa
- Laboratory of Animal Reproduction, University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (M.M.d.A.); (G.R.d.P.); (D.N.Y.); (C.B.C.); (F.M.)
| | - Mariana Marques Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology, and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (M.M.B.)
| | - Waldiceu Aparecido Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology, and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (M.M.B.)
| | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology, University of Londrina (UEL), Londrina 86057-970, PR, Brazil
| | - Fábio Morotti
- Laboratory of Animal Reproduction, University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (M.M.d.A.); (G.R.d.P.); (D.N.Y.); (C.B.C.); (F.M.)
| | - Marcelo Marcondes Seneda
- Laboratory of Animal Reproduction, University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (M.M.d.A.); (G.R.d.P.); (D.N.Y.); (C.B.C.); (F.M.)
| |
Collapse
|
17
|
Ashfaq R, Kovács A, Berkó S, Budai-Szűcs M. Smart biomaterial gels for periodontal therapy: A novel approach. Biomed Pharmacother 2025; 183:117836. [PMID: 39832427 DOI: 10.1016/j.biopha.2025.117836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Periodontitis, a chronic inflammatory condition of the oral cavity, is characterized by the progressive destruction of the supporting structures of the teeth. The pathogenic effects of periodontopathogens extend beyond the local periodontal environment, contributing to systemic health complications, thereby underscoring the need for effective therapeutic strategies. Current standard treatments, which involve mechanical debridement coupled with systemic anti-inflammatory and antibiotic therapies, are often associated with limited efficacy, adverse effects, and the emergence of antibiotic resistance. Recent advancements in localized drug delivery systems present an innovative alternative, offering site-specific targeting with sustained therapeutic action. Smart drug delivery platforms, designed to respond to the unique microenvironment of periodontal pockets, undergo physicochemical transformations such as gelation or controlled drug release, enhancing treatment efficacy. This review comprehensively explores the etiological and prognostic factors of periodontitis, critical diagnostic biomarkers, and an in-depth analysis of stimuli-responsive biomacromolecule-based gels. These systems are evaluated for their structural properties, biological compatibility, and therapeutic potential while addressing their limitations and barriers to clinical translation. By integrating insights into the interplay between material properties and biological performance, this review highlights the future role of these advanced delivery systems in overcoming challenges in periodontal healthcare. Such approaches aim to bridge the gap between bench-side innovation and bedside application, offering the transformative potential to enhance therapeutic outcomes and improve patient quality of life in managing periodontal diseases.
Collapse
Affiliation(s)
- Rabia Ashfaq
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary.
| |
Collapse
|
18
|
Saito Y, Sugiura Y, Sakaguchi A, Sada T, Nishiyama C, Maeda R, Kaneko M, Kiyonari H, Kimura W. Redox-dependent purine degradation triggers postnatal loss of cardiac regeneration potential. Redox Biol 2025; 79:103442. [PMID: 39637598 PMCID: PMC11664147 DOI: 10.1016/j.redox.2024.103442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/13/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024] Open
Abstract
Postnatal cardiomyocyte cell cycle withdrawal is a critical step wherein the mammalian heart loses regenerative potential after birth. Here, we conducted interspecies multi-omic comparisons between the mouse heart and that of the opossum, which have different postnatal time-windows for cardiomyocyte cell cycle withdrawal. Xanthine metabolism was activated in both postnatal hearts in parallel with cardiomyocyte cell cycle arrest. The pentose phosphate pathway (PPP) which produces NADPH was found to decrease simultaneously. Postnatal myocardial tissues became oxidized accordingly, and administration of antioxidants to neonatal mice altered the PPP and suppressed the postnatal activation of cardiac xanthine metabolism. These results suggest a redox-driven postnatal switch from purine synthesis to degradation in the heart. Importantly, inhibition of xanthine metabolism in the postnatal heart extended postnatal duration of cardiomyocyte proliferation and maintained postnatal heart regeneration potential in mice. These findings highlight a novel role of xanthine metabolism as a redox-dependent metabolic regulator of cardiac regeneration potential.
Collapse
Affiliation(s)
- Yuichi Saito
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yuki Sugiura
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan; Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University School of Medicine, Tokyo, Japan
| | - Akane Sakaguchi
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Tai Sada
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Chihiro Nishiyama
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Rae Maeda
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Wataru Kimura
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
19
|
Mahdei Nasir Mahalleh N, Hemmati M, Biyabani A, Pirouz F. The Interplay Between Obesity and Aging in Breast Cancer and Regulatory Function of MicroRNAs in This Pathway. DNA Cell Biol 2025; 44:55-81. [PMID: 39653363 DOI: 10.1089/dna.2024.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Breast cancer (BC) is a significant contributor to cancer-related deaths in women, and it has complex connections with obesity and aging. This review explores the interaction between obesity and aging in relation to the development and progression of BC, focusing on the controlling role of microRNAs (miRNAs). Obesity, characterized by excess adipose tissue, contributes to a proinflammatory environment and metabolic dysregulation, which are important in tumor development. Aging, associated with cellular senescence and systemic changes, further exacerbates these conditions. miRNAs, small noncoding RNAs that regulate gene expression, play key roles in these processes, impacting pathways involved in cell proliferation, apoptosis, and cancer metastasis, either as tumor suppressors or oncogenes. Importantly, specific miRNAs are implicated in mediating the impact of obesity and aging on BC. Exploring the regulatory networks controlled by miRNAs provides valuable information on new targets for therapy and predictive markers, demonstrating the potential for using miRNA-based interventions to treat BC in obese and elderly individuals. This review emphasizes the importance of integrated research strategies to understand the complex connections between obesity, aging, and miRNA regulation in BC.
Collapse
Affiliation(s)
- Nima Mahdei Nasir Mahalleh
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mina Hemmati
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arezou Biyabani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Pirouz
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
20
|
Satrialdi, Pratiwi C, Khaeranny RN, Mudhakir D. The development of mitochondria-targeted quercetin for rescuing Sertoli cells from oxidative stress. Res Pharm Sci 2025; 20:109-120. [PMID: 40190824 PMCID: PMC11972021 DOI: 10.4103/rps.rps_226_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/11/2024] [Accepted: 06/02/2024] [Indexed: 04/09/2025] Open
Abstract
Background and purpose The imbalance between reactive oxygen species (ROS) production and endogenous antioxidant capacity leads to oxidative stress, which may damage several cellular functions, particularly spermatogenesis. This condition is a leading cause of male infertility, so controlling ROS levels is crucial. The ROS level can be controlled by supporting the endogenous antioxidant system through antioxidant therapy. Mitochondria are the prime target for antioxidant therapy due to the majority of endogenous ROS produced in mitochondria and their critical role in providing energy during fertilization. This research aimed to develop mitochondria-targeted hybrid nanoplatforms by combining liposomes with dequalinium's mitochondriotropic agent (DQ) to deliver quercetin for targeted antioxidant therapy to mitochondria. Experimental approach The quercetin-loaded nanocarrier was constructed using the hydration method. We varied the concentration of DQ to investigate its impact on physical characteristics, encapsulation efficiency, intracellular trafficking, and in vitro antioxidant activity. Findings/Results The impact of different DQ densities on particle size, encapsulation efficiency, and mitochondria targeting was insignificant. However, lowering the DQ density reduced the zeta potential. Minimizing oxidative stress on TM4 cells was only achieved with low-density DQ (Q-LipoDQ LD), while high-density DQ (Q-LipoDQ HD) failed to mitigate the negative impact. Conclusion and implications According to the findings, LipoDQ LD preserves a promising potential as mitochondria-targeted nanoplatforms and validates the importance of mitochondria as a target for antioxidant therapy.
Collapse
Affiliation(s)
- Satrialdi
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Indonesia
| | - Cellina Pratiwi
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Indonesia
| | - Ryan Novia Khaeranny
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Indonesia
| | - Diky Mudhakir
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Indonesia
| |
Collapse
|
21
|
Wang W, Tan Q, Wang Q, Wang J, Zhang F, Zheng X, Yun J, Zhang W, Zhao F. Glutathione peroxidase gene regulates substrate development and prevents strain aging in Volvariella volvacea. Int J Biol Macromol 2025; 289:138835. [PMID: 39689802 DOI: 10.1016/j.ijbiomac.2024.138835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/19/2024]
Abstract
Degradation of Volvariella volvacea is associated with the accumulation of reactive oxygen species (ROS), and glutathione peroxidase (GPX) is one of the key antioxidant enzyme. The purpose of this research is to uncover the importance of the gpx gene in the degradation and revitalization of V. volvacea. In this study, a gpx-silenced strain of the primordial strain T0 and an overexpression strain of the degraded strain T19 of V. volvacea were constructed, and their antioxidant properties, matrix degradation ability, and production traits were determined. The results showed that the expression level of gpx altered the homeostasis of the V. volvacea redox system and affected the substrate degradation ability of V. volvacea, which altered the physiological traits of the V. volvacea mycelium. Most importantly, the primordial strain T0 was unable to produce fruiting bodies due to the silence of the gpx gene. On the other hand, the gpx gene overexpression promoted the regrowth of fruiting bodies in degenerated strains of V. volvacea T19. This study provides a new biotechnological strategy to control the degeneration of V. volvacea and other edible fungi.
Collapse
Affiliation(s)
- Wenpei Wang
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China; Lanzhou Institute of Biological Products Limited Liability Company, Lanzhou 730046, China
| | - Qiangfei Tan
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiaoli Wang
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China; Kangle County Special Agricultural Development Center, Linxia 731599, China
| | - Jing Wang
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China
| | - Fanhong Zhang
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China
| | - Xue Zheng
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianmin Yun
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenwei Zhang
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China
| | - Fengyun Zhao
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
22
|
Castellani S, Basiricò L, Maggiolino A, Lecchi C, De Palo P, Bernabucci U. Effects of milk extracellular vesicles from Holstein Friesian and Brown Swiss heat-stressed dairy cows on bovine mammary epithelial cells. J Dairy Sci 2025; 108:1978-1991. [PMID: 39662803 DOI: 10.3168/jds.2024-25133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/24/2024] [Indexed: 12/13/2024]
Abstract
The increase in ambient temperature is responsible for a behavioral, physiological, and metabolic responses known as heat stress, which affects dairy cows' general well-being, health, reproduction, and productivity. Focusing on the functioning of the mammary gland, attention has been recently paid to a new method of cell-cell communication mediated by extracellular vesicles, which with their cargo can affect the target cells' phenotypic traits, behavior, and biological functions. This study investigated whether the small extracellular vesicles (sEV) isolated from milk of heat-stressed Holstein Friesian (H) and Brown Swiss (B) cows affect the cellular response of a bovine mammary epithelial cell line (BME-UV1). To this purpose, 8 mid lactation cows, 4 of each breed fed the same diet and kept in the same barn, which experienced the same hyperthermia during a natural heat wave, were chosen to collect 2 milk different samples: under thermoneutrality (TN, d1) and under heat stress (HS, d 8) conditions. The sEV were isolated from skim milk samples through differential centrifugations, characterized for size and concentration by nanoparticle tracking analysis. Integrity of the milk sEV membranes was evaluated by transmission electron microscopy and presence of EV markers through western blotting. Then BME-UV1 cells were incubated for 24 h with different pooled milk sEVs (H-TN, H-HS, B-TN, B-HS). Cell viability and apoptosis assay, reactive oxygen species production, and mRNA expression of heat shock proteins and antioxidant genes by reverse transcription and real time PCR were determined. In vivo results showed an increase in rectal temperature and respiration rate, a reduction in milk yield both for H and B dairy cows, with a lowest decrease observed in B cows compared with H cows. In vitro results of BME-UV1 cells treated with milk sEV H-HS and B-HS showed an alteration of the cell viability and metabolic activity, by reducing or increasing reactive oxygen species accumulation, and suppressing or increasing the expression of stress-associated genes thereby modulating the response of BME-UV1 according to the animals' thermal condition and the breed. These findings indicated that the small vesicles of Brown milk triggered cellular defense against heat stress, supporting the Brown Swiss breed's thermotolerance.
Collapse
Affiliation(s)
- S Castellani
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - L Basiricò
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - A Maggiolino
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - C Lecchi
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, 26900 Lodi, Italy
| | - P De Palo
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - U Bernabucci
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
23
|
Fujii J, Ochi H, Yamada S. A comprehensive review of peroxiredoxin 4, a redox protein evolved in oxidative protein folding coupled with hydrogen peroxide detoxification. Free Radic Biol Med 2025; 227:336-354. [PMID: 39643136 DOI: 10.1016/j.freeradbiomed.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Peroxiredoxin (PRDX) primarily employs electrons from thioredoxin in order to reduce peroxides. PRDX4 mainly resides either in the endoplasmic reticulum (ER) lumen or in extracellular spaces. Due to the usage of alternative promoters, a first exon is transcribed from different regions of the Prdx4 gene, which results in two types of mRNAs. The first type is designated as Prdx4. It is translated with a cleavable, hydrophobic signal sequence and is expressed in most cells throughout the body. The second type is designated as Prdx4t. The peroxidase activity of PRDX4 is involved in both the reduction of hydrogen peroxides and in the oxidative folding of nascent proteins in the ER. Prdx4 appears to have evolved from an ancestral gene in Eutherians simultaneously with the evolution of sperm protamine to cysteine-rich peptides, and, therefore, the testis-specific PRDX4t is likely involved in spermatogenesis through the oxidative folding of protamine. The dysfunction of PRDX4 leads to oxidative damage and ER stress, and is related to various diseases including diabetes and cancer. In this review article we refer to the results of biological and medical research in order to unveil the functional consequences of this unique member of the PRDX family.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan.
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Sohsuke Yamada
- Departments of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
24
|
Abdelmawgood IA, Kotb MA, Hassan HS, Mahana NA, Rochdi AM, Sayed NH, Elsafoury RH, Saber AM, Youssef MN, Waheeb NG, Al-Rifai MWA, Badr AM, Abdelkader AE. Gentisic acid attenuates ovalbumin-induced airway inflammation, oxidative stress, and ferroptosis through the modulation of Nrf2/HO-1 and NF-κB signaling pathways. Int Immunopharmacol 2025; 146:113764. [PMID: 39689597 DOI: 10.1016/j.intimp.2024.113764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
Asthma, a lung disorder that causes impaired respiratory function, is characterized by an apparent infiltration of inflammatory cells. Gentisic acid (GA), a phenolic acid common in food ingredients, has antioxidant, antibacterial, and anti-inflammatory properties. Its potential application in mitigating asthma, however, remains unexplored. The current investigation studies GA's therapeutic potential for allergic asthma. BALB/c mice were challenged and sensitized to ovalbumin (OVA) to establish the animal model. We investigated how GA affected asthmatic behavior, leukocyte infiltration, histopathological alterations, oxidative stress, immunoglobulin E (IgE) production, and airway inflammation. ELISA and immunohistochemistry (IHC) techniques were employed to measure Nrf2, HO-1, and NF-κB's expression. To investigate the protein-ligand interaction between GA and Keap1, molecular docking analysis was utilized. The GA treatment significantly reduced nasal scratching, oxidative stress in the lungs, the infiltration of inflammatory cells, IgE content, iron accumulation, and NF-κB activation. It also upregulated Nrf2 and HO-1. Additionally, in silico studies revealed GA and Keap1 binding to activate Nrf2 by disrupting the Keap1-Nrf2 interaction. The study at hand is the first to investigate and report on the immunomodulatory impacts of GA on induced asthma in BALB/c mice. Our findings reveal that GA can be utilized as an anti-asthmatic agent via Nrf2/HO-1 and NF-κB pathway regulation.
Collapse
Affiliation(s)
| | - Mohamed A Kotb
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | | | - Noha A Mahana
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Ahmed M Rochdi
- Biotechnology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Nader Hassan Sayed
- Biotechnology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Reem H Elsafoury
- Biotechnology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Amal M Saber
- Biotechnology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | | | - Nancy George Waheeb
- Biotechnology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Mohamed W A Al-Rifai
- Al-Makassed Islamic Charitable, East Jerusalem, Biet Jala Hospital, Biet Jala, Palestine
| | - Abeer Mahmoud Badr
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.
| | | |
Collapse
|
25
|
Khan T, Nagarajan M, Kang I, Wu C, Wangpaichitr M. Targeting Metabolic Vulnerabilities to Combat Drug Resistance in Cancer Therapy. J Pers Med 2025; 15:50. [PMID: 39997327 PMCID: PMC11856717 DOI: 10.3390/jpm15020050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Drug resistance remains a significant barrier to effective cancer therapy. Cancer cells evade treatment by reprogramming their metabolism, switching from glycolysis to oxidative phosphorylation (OXPHOS), and relying on alternative carbon sources such as glutamine. These adaptations not only enable tumor survival but also contribute to immune evasion through mechanisms such as reactive oxygen species (ROS) generation and the upregulation of immune checkpoint molecules like PD-L1. This review explores the potential of targeting metabolic weaknesses in drug-resistant cancers to enhance therapeutic efficacy. Key metabolic pathways involved in resistance, including glycolysis, glutamine metabolism, and the kynurenine pathway, are discussed. The combination of metabolic inhibitors with immune checkpoint inhibitors (ICIs), particularly anti-PD-1/PD-L1 therapies, represents a promising approach to overcoming both metabolic and immune evasion mechanisms. Clinical trials combining metabolic and immune therapies have shown early promise, but further research is needed to optimize treatment combinations and identify biomarkers for patient selection. In conclusion, targeting cancer metabolism in combination with immune checkpoint blockade offers a novel approach to overcoming drug resistance, providing a potential pathway to improved outcomes in cancer therapy. Future directions include personalized treatments based on tumor metabolic profiles and expanding research to other tumor types.
Collapse
Affiliation(s)
- Taranatee Khan
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
| | - Manojavan Nagarajan
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Irene Kang
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
- South Florida VA Foundation for Research and Education, Miami, FL 33125, USA
| | - Chunjing Wu
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
| | - Medhi Wangpaichitr
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
- South Florida VA Foundation for Research and Education, Miami, FL 33125, USA
- Department of Surgery, Division of Thoracic Surgery, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
26
|
Kulshrestha M, Nandy A, Banerjee S, Tothadi S, Ramachandran CN, Sadhu KK. Hydroxyl Radical-π Interaction in a Single Crystal. JACS AU 2025; 5:61-66. [PMID: 39886575 PMCID: PMC11775668 DOI: 10.1021/jacsau.4c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025]
Abstract
Numerous attempts for organic radical stability mostly entail steric hindrance, spin-delocalization, supramolecular interaction with the host, π-π interactions, and hydrogen bonding. To date, there is no report of single crystals containing a hydroxyl radical (•OH). In this work, we have stabilized •OH in the crystal, which has been obtained from the filtrate after separating the precipitate of the chromenopyridine radical (DCP(2)•) from the reaction mixture. DCP(2)• abstracts a hydrogen atom from dissolved water in the ethanolic filtrate to grow the single crystal containing DCPH(2) and •OH in the asymmetric unit. The crystal packing and computational studies suggest that π-•OH and •OH···N hydrogen-bonding interactions are responsible for stabilizing •OH. The presence of •OH has been further confirmed by mass analysis with the 2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) adduct. Solid-state electron paramagnetic resonance (EPR), solution state nitroblue tetrazolium (NBT) assay, and spin trapping with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in the presence of super oxide dismutase suggest •OH formation in the single crystal.
Collapse
Affiliation(s)
- Mohit Kulshrestha
- Department
of Chemistry, Indian Institute of Technology
Roorkee, Roorkee 247667, Uttarakhand, India
| | - Abhijit Nandy
- Department
of Chemistry, Indian Institute of Science
Education and Research Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Shibdas Banerjee
- Department
of Chemistry, Indian Institute of Science
Education and Research Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Srinu Tothadi
- Analytical
and Environmental Sciences Division and Centralized Instrumentation
Facility, CSIR- Central Salt and Marine
Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Bhavnagar − 364002, India
| | - C. N. Ramachandran
- Department
of Chemistry, Indian Institute of Technology
Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kalyan K. Sadhu
- Department
of Chemistry, Indian Institute of Technology
Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
27
|
Wang K, Liu Y, Li S, Zhao N, Qin F, Tao Y, Song Z. Unveiling the therapeutic potential and mechanisms of stanniocalcin-1 in retinal degeneration. Surv Ophthalmol 2025; 70:106-120. [PMID: 39270826 DOI: 10.1016/j.survophthal.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
Retinal degeneration (RD) is a group of ocular diseases characterized by progressive photoreceptor apoptosis and visual impairment. Mitochondrial malfunction, excessive oxidative stress, and chronic activation of neuroglia collectively contribute to the development of RD. Currently, there is a lack of efficacious therapeutic interventions for RD. Stanniocalcin-1 (STC-1) is a promising candidate molecule to decelerate photoreceptor cell death. STC-1 is a secreted calcium/phosphorus regulatory protein that exerts diverse protective effects. Accumulating evidence suggests that STC-1 protects retinal cells from ischemic injury, oxidative stress, and excessive apoptosis through enhancing the expression of uncoupling protein-2 (UCP-2). Furthermore, STC-1 exerts its antiinflammatory effects by inhibiting the activation of microglia and macrophages, as well as the synthesis and secretion of proinflammatory cytokines, such as TNF-α, IL-1, and IL-6. By employing these mechanisms, STC-1 effectively shields the retinal photoreceptors and optic nerve, thereby slowing down the progression of RD. We summarize the STC-1-mediated therapeutic effects on the degenerating retina, with a particular focus on its underlying mechanisms. These findings highlight that STC-1 may act as a versatile molecule to treat degenerative retinopathy. Further research on STC-1 is imperative to establish optimal protocols for its clinical use.
Collapse
Affiliation(s)
- Kexin Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Yashuang Liu
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Na Zhao
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Fangyuan Qin
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Ye Tao
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China.
| | - Zongming Song
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China.
| |
Collapse
|
28
|
Nandha SR, Checker R, Patwardhan RS, Sharma D, Sandur SK. Anti-oxidants as therapeutic agents for oxidative stress associated pathologies: future challenges and opportunities. Free Radic Res 2025; 59:61-85. [PMID: 39764687 DOI: 10.1080/10715762.2025.2450504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/13/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects. However, these trials failed to establish anti-oxidants as therapeutic agents due to lack of efficacy. This is attributed to the fact that living systems are under dynamic redox control wherein their redox behavior is compartmentalized and simple aggregation of redox couples, distributed throughout the system, is of miniscule importance while determining their overall redox state. Further, free radical metabolism is intriguingly complex as they play plural roles segregated in a spatio-temporal manner. Depending on quality, quantity and site of generation, free radicals exhibit beneficial or harmful effects. Use of nonspecific, non-targeted, general ROS scavengers lead to systemic elimination of all types of ROS and interferes in cellular signaling. Failure of anti-oxidants to act as therapeutic agents lies in this oversimplification of extremely dynamic cellular redox environment as a static and non-compartmentalized redox state. Rather than generalizing the term "oxidative stress" if we can identify the "type of oxidative stress" in different types of diseases, a targeted and more specific anti-oxidant therapy may be developed. In this review, we discuss the concept of redox dynamics, role and type of oxidative stress in disease conditions, and current status of anti-oxidants as therapeutic agents. Further, we probe the possibility of developing novel, targeted and efficacious anti-oxidants with drug-like properties.
Collapse
Affiliation(s)
- Shivani R Nandha
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Rahul Checker
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Raghavendra S Patwardhan
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
29
|
Maity S, Bhuyan T, Jewell C, Kawakita S, Sharma S, Nguyen HT, Najafabadi AH, Ermis M, Falcone N, Chen J, Mandal K, Khorsandi D, Yilgor C, Choroomi A, Torres E, Mecwan M, John JV, Akbari M, Wang Z, Moniz-Garcia D, Quiñones-Hinojosa A, Jucaud V, Dokmeci MR, Khademhosseini A. Recent Developments in Glioblastoma-On-A-Chip for Advanced Drug Screening Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405511. [PMID: 39535474 PMCID: PMC11719323 DOI: 10.1002/smll.202405511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/08/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma (GBM) is an aggressive form of cancer, comprising ≈80% of malignant brain tumors. However, there are no effective treatments for GBM due to its heterogeneity and the presence of the blood-brain barrier (BBB), which restricts the delivery of therapeutics to the brain. Despite in vitro models contributing to the understanding of GBM, conventional 2D models oversimplify the complex tumor microenvironment. Organ-on-a-chip (OoC) models have emerged as promising platforms that recapitulate human tissue physiology, enabling disease modeling, drug screening, and personalized medicine. There is a sudden increase in GBM-on-a-chip models that can significantly advance the knowledge of GBM etiology and revolutionize drug development by reducing animal testing and enhancing translation to the clinic. In this review, an overview of GBM-on-a-chip models and their applications is reported for drug screening and discussed current challenges and potential future directions for GBM-on-a-chip models.
Collapse
Affiliation(s)
- Surjendu Maity
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
- Department of Orthopedic Surgery, Duke University School of
Medicine, Duke University, Durham, NC 27705
| | - Tamanna Bhuyan
- Department of Applied Biology, School of Biological
Sciences, University of Science & Technology Meghalaya, Meghalaya, 793101,
India
| | - Christopher Jewell
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Saurabh Sharma
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Huu Tuan Nguyen
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | | | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
- Center of Excellence in Biomaterials and Tissue
Engineering, Middle East Technical University, Ankara, Turkey
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Junjie Chen
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Can Yilgor
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Auveen Choroomi
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Emily Torres
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Johnson V. John
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
- Laboratoryfor Innovations in Micro Engineering (LiME),
Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2,
Canada
- Biotechnology Center, Silesian University of Technology,
Akademicka 2A, 44-100 Gliwice, Poland
| | - Zhaohui Wang
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | | | | | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| |
Collapse
|
30
|
Li YS, Fujihara H, Fujisawa K, Kawai K. Effect of circadian rhythm disruption induced by time-restricted feeding and exercise on oxidative stress and immune in mice. J Clin Biochem Nutr 2025; 76:35-41. [PMID: 39896158 PMCID: PMC11782776 DOI: 10.3164/jcbn.24-126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/17/2024] [Indexed: 02/04/2025] Open
Abstract
Frequent or long-term circadian disorders can lead to a range of health problems, including chronic insomnia, depression, chronic diseases, and cancer. It has also been shown that altering the feeding time of mice from night to day can result in circadian disorder. Recent studies have revealed complex interactions between circadian rhythm and oxidative stress. However, little is known about the impact of circadian rhythm disorders caused by time-restricted feeding on mental state, immune function, and oxidative DNA damage. In this study, we investigated the effects of circadian rhythm disruption by controlling the timing of feeding and exercise on oxidative DNA damage and immune responses in 8-week-old mice for 14 days. Body weight, daytime running wheel activity, serum interleukin-6 levels, urinary 8-hydroxy-2'-deoxyguanosine levels, and nuclear DNA (liver, lung, testes, and pancreas) were significantly increased in the night-restricted group compared with the control group. Additionally, the mice in the night-restricted group exhibited anxiety-like behavior. These results indicated that the circadian rhythm disruption due to abnormal dietary timing can lead to obesity, mental state dysregulation, immune function changes and oxidative DNA damage in mice. This oxidative DNA damage may contribute to the initiation and increased risk of cancer.
Collapse
Affiliation(s)
- Yun-Shan Li
- Department of Environmental Oncology, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka 807-8555, Japan
- Center for Stress-related Disease Control and Prevention, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka 807-8555, Japan
| | - Hiroaki Fujihara
- Department of Ergonomics, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka 807-8555, Japan
| | - Koichi Fujisawa
- Department of Environmental Oncology, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka 807-8555, Japan
| | - Kazuaki Kawai
- Department of Environmental Oncology, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka 807-8555, Japan
| |
Collapse
|
31
|
Mishra AP, Kumar R, Harilal S, Nigam M, Datta D, Singh S, Waranuch N, Chittasupho C. Demystifying the management of cancer through smart nano-biomedicine via regulation of reactive oxygen species. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:497-532. [PMID: 39480523 DOI: 10.1007/s00210-024-03469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 11/02/2024]
Abstract
Advancements in therapeutic strategies and combinatorial approaches for cancer management have led to the majority of cancers in the initial stages to be regarded as treatable and curable. However, certain high-grade cancers in the initial stages are still regarded as chronic and difficult to manage, requiring novel therapeutic strategies. In this era of targeted and precision therapy, novel strategies for targeted delivery of drug and synergistic therapies, integrating nanotherapeutics, polymeric materials, and modulation of the tumor microenvironment are being developed. One such strategy is the study and utilization of smart-nano biomedicine, which refers to stimuli-responsive polymeric materials integrated with the anti-cancer drug that can modulate the reactive oxygen species (ROS) in the tumor microenvironment or can be ROS responsive for the mitigation as well as management of various cancers. The article explores in detail the ROS, its types, and sources; the antioxidant system, including scavengers and their role in cancer; the ROS-responsive targeted polymeric materials, including synergistic therapies for the treatment of cancer via modulating the ROS in the tumor microenvironment, involving therapeutic strategies promoting cancer cell death; and the current landscape and future prospects.
Collapse
Affiliation(s)
- Abhay Prakash Mishra
- Cosmetics and Natural Products Research Centre, Department of Pharmaceutical Technology, Naresuan University, Phitsanulok, 65000, Thailand
| | - Rajesh Kumar
- Faculty of Pharmaceutical Sciences, Kerala University of Health Sciences, Kerala, 680596, India.
| | - Seetha Harilal
- Faculty of Pharmaceutical Sciences, Kerala University of Health Sciences, Kerala, 680596, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal Karnataka, 576104, India
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Neti Waranuch
- Cosmetics and Natural Products Research Centre, Department of Pharmaceutical Technology, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
32
|
Mattos LMM, Silva RN, Santos LG, Giovanini L, Cruz VS, Barreto NMB, Perrone D, Santos ALS, Pereira MD. Harnessing H 2O 2-induced susceptibility in Galleria mellonella larvae: A robust model for exploring oxidative stress and biomarkers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104596. [PMID: 39608595 DOI: 10.1016/j.etap.2024.104596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Oxidative stress plays a crucial role in various pathological conditions. This study introduces an enhanced model using hydrogen peroxide (H2O2)-induced stress in Galleria mellonella larvae, offering a cost-effective and ethically sound alternative for oxidative stress research. The model bridges in vitro and in vivo studies to identify biomarkers like lipid peroxidation, protein carbonylation, hemocyte count, and antioxidant enzyme activities. Our results show that while G. mellonella larvae tolerated high doses of H2O2, increased susceptibility occurred with prolonged toxicosis and higher concentrations. Acute H2O2 exposure (5.0 M/1st day) led to elevated lipid and protein oxidation and decreased superoxide dismutase activity and hemocyte count, while catalase activity and total antioxidant capacity increased. Despite these defenses, the larvae's antioxidant capacity was insufficient under severe oxidative stress, reducing survival. This study highlights G. mellonella larvae as a promising model for examining reactive oxygen species (ROS)-induced oxidative stress.
Collapse
Affiliation(s)
- L M M Mattos
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Rede de Micologia RJ - FAPERJ, Brazil.
| | - R N Silva
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - L G Santos
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - L Giovanini
- Rede de Micologia RJ - FAPERJ, Brazil; Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - V S Cruz
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - N M B Barreto
- Laboratório de Bioquímica Nutricional e de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil
| | - D Perrone
- Laboratório de Bioquímica Nutricional e de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil
| | - A L S Santos
- Rede de Micologia RJ - FAPERJ, Brazil; Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - M D Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Rede de Micologia RJ - FAPERJ, Brazil.
| |
Collapse
|
33
|
Choi S, Shin M, Kim WY. Targeting the DNA damage response (DDR) of cancer cells with natural compounds derived from Panax ginseng and other plants. J Ginseng Res 2025; 49:1-11. [PMID: 39872282 PMCID: PMC11764321 DOI: 10.1016/j.jgr.2024.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 01/30/2025] Open
Abstract
DNA damage is a driver of cancer formation, leading to the impairment of repair mechanisms in cancer cells and rendering them susceptible to DNA-damaging therapeutic approaches. The concept of "synthetic lethality" in cancer clinics has emerged, particularly with the use of PARP inhibitors and the identification of DNA damage response (DDR) mutation biomarkers, emphasizing the significance of targeting DDR in cancer therapy. Novel approaches aimed at genome maintenance machinery are under development to further enhance the efficacy of cancer treatments. Natural compounds from traditional medicine, renowned for their anti-aging and anticarcinogenic properties, have garnered attention. Ginseng-derived compounds, in particular, exhibit anti-carcinogenic effects by suppressing reactive oxygen species (ROS) and protecting cells from DNA damage-induced carcinogenesis. However, the anticancer therapeutic effect of ginseng compounds has also been demonstrated by inducing DNA damage and blocking DDR. This review concentrates on the biphasic effects of ginseng compounds on DNA mutations-both inhibiting mutation accumulation and impairing DNA repair. Additionally, it explores other natural compounds targeting DDR directly, providing potential insights into enhancing cancer therapy efficacy.
Collapse
Affiliation(s)
- SeokGyeong Choi
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Minwook Shin
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Woo-Young Kim
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
- Muscle Physiome Research Center, Sookmyung Women's University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
34
|
Slezák J, Ravingerová T, Kura B. New possibilities of the prevention and treatment of cardiovascular pathologies. the potential of molecular hydrogen in the reduction of oxidative stress and its consequences. Physiol Res 2024; 73:S671-S684. [PMID: 39808170 PMCID: PMC11827053 DOI: 10.33549/physiolres.935491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/16/2024] [Indexed: 01/18/2025] Open
Abstract
Disproportion between reactive oxygen species (ROS) production and the body's antioxidant system can cause oxidative stress, which is considered a common denominator in various pathological conditions, including cardiovascular diseases, aging, and cognitive disorders. The generation of free radicals, which occurs through partial reduction of oxygen, can quickly overwhelm the endogenous antioxidant system capacity of the cell. This causes lipid, protein, DNA and RNA damage, inflammation, and overall cell degeneration, which can be mitigated by various antioxidants. However, their use in human medicine did not bring the expected effect. Molecular hydrogen (H2), due to its unique physical and chemical properties, provides a number of benefits for alleviating oxidative stress. H2 is superior to conventional antioxidants as it can selectively reduce (.)OH radicals while preserving important ROS that are otherwise used for normal cell signaling. Key words Oxidative stress, Cardiovascular diseases, Molecular hydrogen, ROS, Inflammation.
Collapse
Affiliation(s)
- J Slezák
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
35
|
Zhou S, Cai H, Tang Z, Lu S. Carbon dots encapsulated zeolitic imidazolate framework-8 as an enhanced multi-antioxidant for efficient cytoprotection to HK-2 cells. J Colloid Interface Sci 2024; 676:726-738. [PMID: 39059279 DOI: 10.1016/j.jcis.2024.07.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Excessive reactive oxygen species (ROS) can lead to the imbalance of antioxidant system in the body and cause oxidative damage to cells. It is imperative to rationally design nanomaterials with high catalytic activity and multiple antioxidant activities. Here, line peppers-derived carbon dots (CDs) is encapsulated into zeolitic imidazolate framework-8 (CDs@ZIF-8) to achieve enhanced antioxidant activities for improved protective effect on cells. This nanosystem has a broad spectrum of antioxidant properties, which can effectively remove a variety of intracellular ROS and protect cells from ROS-induced death and cytoskeleton damage. In addition, CDs@ZIF-8 can reduce malondialdehyde (MDA) level and increase the enzyme activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), as well as the level of glutathione (GSH) in human kidney proximal tubular epithelial cells (HK-2) cells. Mechanism studies demonstrated that CDs@ZIF-8 can up-regulate the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), allowing the regulation of antioxidant enzymes to further achieve antioxidant effect. Besides, CDs@ZIF-8 inhibited the secretion of proinflammatory cytokines. This work demonstrates that the constructed CDs@ZIF-8 with multi-antioxidant activity can act as a highly efficient intracellular ROS scavenger and provide potential for the application in related oxidative stress-induced diseases.
Collapse
Affiliation(s)
- Shuwen Zhou
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Huijuan Cai
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Siyu Lu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
36
|
O'Reilly A, Zhao W, Wickström S, Arnér ESJ, Kiessling R. Reactive oxygen species: Janus-faced molecules in the era of modern cancer therapy. J Immunother Cancer 2024; 12:e009409. [PMID: 39645234 PMCID: PMC11629020 DOI: 10.1136/jitc-2024-009409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024] Open
Abstract
Oxidative stress, that is, an unbalanced increase in reactive oxygen species (ROS), contributes to tumor-induced immune suppression and limits the efficacy of immunotherapy. Cancer cells have inherently increased ROS production, intracellularly through metabolic perturbations and extracellularly through activation of NADPH oxidases, which promotes cancer progression. Further increased ROS production or impaired antioxidant systems, induced, for example, by chemotherapy or radiotherapy, can preferentially kill cancer cells over healthy cells. Inflammatory cell-derived ROS mediate immunosuppressive effects of myeloid-derived suppressor cells and activated granulocytes, hampering antitumor effector cells such as T cells and natural killer (NK) cells. Cancer therapies modulating ROS levels in tumors may thus have entirely different consequences when targeting cancer cells versus immune cells. Here we discuss the possibility of developing more efficient cancer therapies based on reduction-oxidation modulation, as either monotherapies or in combination with immunotherapy. Short-term, systemic administration of antioxidants or drugs blocking ROS production can boost the immune system and act in synergy with immunotherapy. However, prolonged use of antioxidants can instead enhance tumor progression. Alternatives to systemic antioxidant administration are under development where gene-modified or activated T cells and NK cells are shielded ex vivo against the harmful effects of ROS before the infusion to patients with cancer.
Collapse
Affiliation(s)
- Aine O'Reilly
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, University College Cork, Cork, Ireland
- The Christie NHS Foundation Trust, Manchester, UK
| | - Wenchao Zhao
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stina Wickström
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Patient area Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Selenoprotein Research and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Patient area Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
37
|
Föller S, Regett N, Lataster L, Radziwill G, Takors R. Optimum blue light exposure: a means to increase cell-specific productivity in Chinese hamster ovary cells. Appl Microbiol Biotechnol 2024; 108:530. [PMID: 39636393 PMCID: PMC11621146 DOI: 10.1007/s00253-024-13363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Research for biopharmaceutical production processes with mammalian cells steadily aims to enhance the cell-specific productivity as a means for optimizing total productivities of bioreactors. Whereas current technologies such as pH, temperature, and osmolality shift require modifications of the cultivation medium, the use of optogenetic switches in recombinant producer cells might be a promising contact-free alternative. However, the proper application of optogenetically engineered cells requires a detailed understanding of basic cellular responses of cells that do not yet contain the optogenetic switches. The knowhow of ideal light exposure to enable the optimum use of related approaches is missing so far. Consequently, the current study set out to find optimum conditions for IgG1 producing Chinese hamster ovary (CHO) cells which were exposed to blue LED light. Growth characteristics, cell-specific productivity using enzyme-linked immunosorbent assay, as well as cell cycle distribution using flow cytometry were analyzed. Whereas too harsh light exposure causes detrimental growth effects that could be compensated with antioxidants, a surprising boost of cell-specific productivity by 57% occurred at optimum high light doses. The increase coincided with an increased number of cells in the G1 phase of the cell cycle after 72 h of illumination. The results present a promising new approach to boost biopharmaceutical productivity of mammalian cells simply by proper light exposure without any further optogenetic engineering. KEY POINTS: • Blue LED light hinders growth in CHO DP-12 cells • Antioxidants protect to a certain degree from blue light effects • Illumination with blue LED light raises cell-specific productivity.
Collapse
Affiliation(s)
- Stefanie Föller
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| | - Niklas Regett
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Levin Lataster
- Institute of Biology II, University of Freiburg, 79098, Freiburg, Germany
| | - Gerald Radziwill
- Institute of Biology II, University of Freiburg, 79098, Freiburg, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
38
|
Oksana R, Anatoly K, Anastasia E, Lyudmila B, Yana P, Natalia S, Irina B, Elena R, Ludmila K. Evaluation of safety and biomedical potential of water-soluble oat lignin Avena sativa L. Int J Biol Macromol 2024; 283:137609. [PMID: 39542292 DOI: 10.1016/j.ijbiomac.2024.137609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/18/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The study of the value of lignin for biomedical use is generating growing interest. For the first time, the safety and biological efficacy of lignin from the stems of the oat Avena sativa L. were studied, necessary for a preliminary assessment of its biomedical potential, have been studied. In vitro experiments, a sample of oat lignin exhibited cytotoxicity to the HeLa, A549, and HT-29 cancer cell lines, depending on the concentration. At maximum concentrations 125 and 150 μg/ml, it reduced their survival and increased the level of reactive oxygen species. In vivo experiments, a sample of oat lignin, with acute (from 5 to 250 mg/kg body weight) and chronic (300, 1200 and 2000 mg/kg body weight) administration, did not have a toxic or genotoxic effect on the organs of mice. The biological efficacy of the oat lignin was manifested in activation of repair processes in bone marrow and thyroid gland, a decrease in the level of abnormal spermatozoa in males, stimulation of reproductive performance of females and in increase in research activity and a decrease in the level of anxiety in animals. The results indicate the prospects for further study of the medical and biological potential lignin of the oat.
Collapse
Affiliation(s)
- Raskosha Oksana
- Institute of Biology of the Komi Science Center UB RAS, Kommunisticheskaya st. 28, Syktyvkar 167982, Republic of Komi, Russia.
| | - Karmanov Anatoly
- Institute of Biology of the Komi Science Center UB RAS, Kommunisticheskaya st. 28, Syktyvkar 167982, Republic of Komi, Russia
| | - Ermakova Anastasia
- Institute of Biology of the Komi Science Center UB RAS, Kommunisticheskaya st. 28, Syktyvkar 167982, Republic of Komi, Russia
| | - Bashlykova Lyudmila
- Institute of Biology of the Komi Science Center UB RAS, Kommunisticheskaya st. 28, Syktyvkar 167982, Republic of Komi, Russia
| | - Pylina Yana
- Institute of Biology of the Komi Science Center UB RAS, Kommunisticheskaya st. 28, Syktyvkar 167982, Republic of Komi, Russia
| | - Starobor Natalia
- Institute of Biology of the Komi Science Center UB RAS, Kommunisticheskaya st. 28, Syktyvkar 167982, Republic of Komi, Russia
| | - Bodnar Irina
- Institute of Biology of the Komi Science Center UB RAS, Kommunisticheskaya st. 28, Syktyvkar 167982, Republic of Komi, Russia
| | - Rasova Elena
- Institute of Biology of the Komi Science Center UB RAS, Kommunisticheskaya st. 28, Syktyvkar 167982, Republic of Komi, Russia
| | - Kocheva Ludmila
- Institute of Geology of the Komi Science Center UB RAS, Pervomaiskaya st. 54, Syktyvkar 167982, Republic of Komi, Russia
| |
Collapse
|
39
|
Shamapari R, Nagaraj K. Upregulation of ACSL, ND75, Vha26 and sesB genes by antiepileptic drugs resulted in genotoxicity in drosophila. Toxicol Res (Camb) 2024; 13:tfae180. [PMID: 39507589 PMCID: PMC11535366 DOI: 10.1093/toxres/tfae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/13/2024] [Indexed: 11/08/2024] Open
Abstract
Clobazam (CLB) and Vigabatrin (VGB) are commonly used antiepileptic drugs (AEDs) in the treatment of epilepsy. Here, we have examined the genotoxic effect of these AEDs in Drosophila melanogaster. The Drosophila larvae were exposed to different concentrations of CLB and VGB containing food media. The assessment encompassed oxidative stress, DNA damage, protein levels, and gene expression profiles. In the CLB-treated group, a reduction in reactive oxygen species (ROS) and lipid peroxidation (LPO) levels was observed, alongside increased levels of superoxide dismutase (SOD), catalase (CAT), and nitric oxide (NO). Conversely, the VGB-treated group displayed contrasting results, with increased ROS and LPO and decreased SOD, CAT, and NO levels. However, both CLB and VGB induced DNA damage in Drosophila. Proteomic analysis (SDS-PAGE and OHRLCMS) in the CLB and VGB groups identified numerous proteins, including Acyl-CoA synthetase long-chain, NADH-ubiquinone oxidoreductase 75 kDa subunit, V-type proton ATPase subunit E, ADP/ATP carrier protein, malic enzyme, and DNA-binding protein modulo. These proteins were found to be associated with pathways like growth promotion, notch signaling, Wnt signaling, neuromuscular junction (NMJ) signaling, bone morphogenetic protein (BMP) signaling, and other GABAergic mechanisms. Furthermore, mRNA levels of ACSL, ND75, Vha26, sesB, and Men genes were upregulated in both CLB and VGB-treated groups. These findings suggest that CLB and VGB could have the potential to induce genotoxicity and post-transcriptional modifications in humans, highlighting the importance of monitoring their effects when used as AEDs.
Collapse
Affiliation(s)
- R Shamapari
- Department of PG Studies and Research in Applied Zoology, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Karnataka 577451, India
| | - K Nagaraj
- Department of PG Studies and Research in Applied Zoology, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Karnataka 577451, India
| |
Collapse
|
40
|
Deviers J, Cailliez F, de la Lande A, Kattnig DR. Avian cryptochrome 4 binds superoxide. Comput Struct Biotechnol J 2024; 26:11-21. [PMID: 38204818 PMCID: PMC10776438 DOI: 10.1016/j.csbj.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Flavin-binding cryptochromes are blue-light sensitive photoreceptors that have been implicated with magnetoreception in some species. The photocycle involves an intra-protein photo-reduction of the flavin cofactor, generating a magnetosensitive radical pair, and its subsequent re-oxidation. Superoxide (O2 • - ) is generated in the re-oxidation with molecular oxygen. The resulting O2 • - -containing radical pairs have also been hypothesised to underpin various magnetosensitive traits, but due to fast spin relaxation when tumbling in solution would require immobilisation. We here describe our insights in the binding of superoxide to cryptochrome 4 from C. livia based on extensive all-atom molecular dynamics studies and density-functional theory calculations. The positively charged "crypt" region that leads to the flavin binding pocket transiently binds O2 • - at 5 flexible binding sites centred on arginine residues. Typical binding times amounted to tens of nanoseconds, but exceptional binding events extended to several hundreds of nanoseconds and slowed the rotational diffusion, thereby realising rotational correlation times as large as 1 ns. The binding sites are particularly efficient in scavenging superoxide escaping from a putative generation site close to the flavin-cofactor, possibly implying a functional relevance. We discuss our findings in view of a potential magnetosensitivity of biological flavin semiquinone/superoxide radical pairs.
Collapse
Affiliation(s)
- Jean Deviers
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France
| | - Fabien Cailliez
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France
| | - Aurélien de la Lande
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France
| | - Daniel R. Kattnig
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom
| |
Collapse
|
41
|
Zeng C, Liu F, Huang Y, Liang Q, He X, Li L, Xie Y. Drosophila: An Important Model for Exploring the Pathways of Inflammatory Bowel Disease (IBD) in the Intestinal Tract. Int J Mol Sci 2024; 25:12742. [PMID: 39684456 PMCID: PMC11641265 DOI: 10.3390/ijms252312742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurring lifelong condition, the exact etiology of which remains obscure. However, an increasing corpus of research underscores the pivotal role of cellular signaling pathways in both the instigation and management of intestinal inflammation. Drosophila, owing to its prodigious offspring, abbreviated life cycle, and the conservation of signaling pathways with mammals, among other advantages, has become a model organism for IBD research. This review will expound on the feasibility of utilizing Drosophila as an IBD model, comparing its intestinal architecture with that of mammals, its inflammatory responses, and signaling pathways. Furthermore, it will deliberate on the role of natural products across various biological models of IBD pathways, elucidating the viability of fruit flies as IBD models and the modus operandi of cellular signaling pathways in the context of IBD.
Collapse
Affiliation(s)
- Chuisheng Zeng
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (C.Z.); (F.L.); (Y.H.); (Q.L.); (X.H.); (L.L.)
| | - Fengying Liu
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (C.Z.); (F.L.); (Y.H.); (Q.L.); (X.H.); (L.L.)
| | - Yuhan Huang
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (C.Z.); (F.L.); (Y.H.); (Q.L.); (X.H.); (L.L.)
| | - Qianqian Liang
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (C.Z.); (F.L.); (Y.H.); (Q.L.); (X.H.); (L.L.)
| | - Xiaohong He
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (C.Z.); (F.L.); (Y.H.); (Q.L.); (X.H.); (L.L.)
| | - Lingzhi Li
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (C.Z.); (F.L.); (Y.H.); (Q.L.); (X.H.); (L.L.)
- Jinfeng Laboratory, Chongqing 400065, China
| | - Yongfang Xie
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (C.Z.); (F.L.); (Y.H.); (Q.L.); (X.H.); (L.L.)
| |
Collapse
|
42
|
Zhang J, Gao Z, Yang Y, Li Z, Wu B, Fan C, Zheng Y, Yang R, Zhang F, Lin X, Zheng D. SNF2L maintains glutathione homeostasis by initiating SLC7A11 transcription through chromatin remodeling. Cell Death Dis 2024; 15:820. [PMID: 39532848 PMCID: PMC11557580 DOI: 10.1038/s41419-024-07221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
SNF2L encodes an ISWI chromatin remodeling factor that promotes gene transcription and is consistently elevated in cancers. Previous studies have shown that inhibiting SNF2L expression in cancer cells leads to significant growth suppression, DNA damage, and cell death. However, the underlying mechanisms remain poorly understood. In this study, we demonstrated that cancer cells lacking SNF2L show significantly decreased glutathione (GSH) levels, leading to elevated reactive oxygen species (ROS) and increased oxidative stress. SNF2L deficiency also heightened the sensitivity of cancer cells to APR-246, a drug that depletes GSH and induces oxidative stress, consequently decreasing cell viability and increasing ROS levels, regardless of p53 status. Mechanistically, we found that NRF2 recruits SNF2L to the SLC7A11 promoter, leading to increased chromatin accessibility and facilitating SLC7A11 transcription. This results in decreased cystine uptake and impaired GSH biosynthesis. These findings suggest that targeting the SNF2L/SLC7A11 axis could enhance the effectiveness of APR-246 by depleting GSH and increasing ROS level in cancer cells, highlighting SNF2L as a promising therapeutic target.
Collapse
Affiliation(s)
- Jiaguan Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zeshou Gao
- Department of Urology, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhenhao Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Binjie Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chunxin Fan
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuyan Zheng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ruohan Yang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fangrong Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaohuang Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Daoshan Zheng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
43
|
Bażanów B, Michalczyk K, Kafel A, Chełmecka E, Skrzep-Poloczek B, Chwirot A, Nikiel K, Olejnik A, Suchocka A, Kukla M, Bogielski B, Jochem J, Stygar D. The Effects of Different Respiratory Viruses on the Oxidative Stress Marker Levels in an In Vitro Model: A Pilot Study. Int J Mol Sci 2024; 25:12088. [PMID: 39596156 PMCID: PMC11593713 DOI: 10.3390/ijms252212088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Respiratory viruses are among the most common causes of human infections. Examining pathological processes linked to respiratory viral infections is essential for diagnosis, treatment strategies, and developing novel therapeutics. Alterations in oxidative stress levels and homeostasis are significant processes associated with respiratory viral infections. The study aimed to compare selected oxidative stress markers: total oxidative status (TOS), total antioxidant capacity (TAC), and the oxidative stress index (OSI) levels and glutathione peroxidase (GPx) and glutathione reductase (GR) activities in normal (MRC5 cell line) and tumor (A549 cell line) lung cells infected with human coronaviruses (HCoV) OC43 and 229E, human adenovirus type 5 (HAdV5), or human rhinovirus A (HRV A). We observed that a respiratory viral infection more significantly affected non-enzymatic oxidative stress markers in a lung adenocarcinoma model (A549 cells), while human lung fibroblasts (MRC-5 cell line) presented changes in enzymatic and non-enzymatic oxidative stress markers. We suggest that further detailed research is required to analyze this phenomenon.
Collapse
Affiliation(s)
- Barbara Bażanów
- Faculty of Veterinary Medicine, Department of Pathology, Division of Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Katarzyna Michalczyk
- Department of Physiology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Alina Kafel
- Department of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Elżbieta Chełmecka
- Department of Medical Statistics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Bronisława Skrzep-Poloczek
- Department of Physiology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Aleksandra Chwirot
- Faculty of Veterinary Medicine, Department of Pathology, Division of Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Kamil Nikiel
- Department of Physiology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Aleksander Olejnik
- Department of Physiology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Alicja Suchocka
- Department of Physiology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Michał Kukla
- Department of Internal Medicine and Geriatrics, Faculty of Medicine, Jagiellonian University Medical College, 31-688 Kraków, Poland
- Department of Endoscopy, University Hospital, 30-688 Kraków, Poland
| | - Bartosz Bogielski
- Department of Physiology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Jerzy Jochem
- Department of Physiology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Dominika Stygar
- Department of Physiology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| |
Collapse
|
44
|
Liu F, Liu L, Wei P, Yi T. A reactive oxygen species-triggerable theranostic prodrug system. J Control Release 2024; 376:961-971. [PMID: 39476874 DOI: 10.1016/j.jconrel.2024.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/08/2024] [Accepted: 10/27/2024] [Indexed: 11/09/2024]
Abstract
Abnormally elevated levels of reactive oxygen species (ROS) are considered one of the characteristics of tumors and have been extensively employed in the construction of tumor-activated prodrugs. However, ideal ROS-activated molecular triggers that possess high sensitivity and easy functionalization for tailoring specific prodrugs, remain scarce. In this work, we developed a highly reactive oxygen species (hROS, such as •OH, ONOO- and HOCl)-responsive molecular trigger (namely FDROS-4) through the conjunction of methylene blue (MB) and 2, 6-bis (hydroxymethyl) aniline via urea bond, integrating imaging and therapeutic functions. FDROS-4 could be readily modified as multifunctional prodrugs and efficiently activated by hROS, leading to the release of near-infrared emissive MB and parent drugs. By using chlorambucil as a model drug and incorporating varying numbers of galactose as liver-targeting ligands, we designed and synthesized a series of prodrugs named FDROS-6, FDROS-7, and FDROS-8. The optimal prodrug, FDROS-7, could self-assemble into monocomponent nanoparticles, exhibiting enhanced biocompatibility and therapeutic efficacy compared to the parent drug. This hROS-activated molecular trigger holds promise for the development of stimulus-responsive prodrugs in chemotherapy.
Collapse
Affiliation(s)
- Feiyang Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Guangxi Key Laboratory of Special Biomedicine; School of Medicine, Guangxi University, Nanning 530004, China
| | - Lingyan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
45
|
Fedoreyeva LI. ROS as Signaling Molecules to Initiate the Process of Plant Acclimatization to Abiotic Stress. Int J Mol Sci 2024; 25:11820. [PMID: 39519373 PMCID: PMC11546855 DOI: 10.3390/ijms252111820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
During their life cycle, plants constantly respond to environmental changes. Abiotic stressors affect the photosynthetic and respiratory processes of plants. Reactive oxygen species (ROS) are produced during aerobic metabolism and play an important role as regulatory mediators in signaling processes, activating the plant's protective response to abiotic stress and restoring "oxidation-reduction homeostasis". Cells develop normally if the rates of ROS production and the ability to neutralize them are balanced. To implement oxidation-reduction signaling, this balance must be disrupted either by an increase in ROS concentration or a decrease in the activity of one or more antioxidant systems. Under abiotic stress, plants accumulate excessive amounts of ROS, and if the ROS content exceeds the threshold amount dangerous for living organisms, it can lead to damage to all major cellular components. Adaptive resistance of plants to abiotic stressors depends on a set of mechanisms of adaptation to them. The accumulation of ROS in the cell depends on the type of abiotic stress, the strength of its impact on the plant, the duration of its impact, and the recovery period. The aim of this review is to provide a general understanding of the processes occurring during ROS homeostasis in plants, oxidation-reduction processes in cellular compartments in response to abiotic stress, and the participation of ROS in signaling processes activating adaptation processes to abiotic stress.
Collapse
|
46
|
Baral J, Shrestha D, Devkota HP, Adhikari A. Potent ROS inhibitors from Zanthoxylum armatumDC of Nepali origin. Nat Prod Res 2024; 38:3753-3761. [PMID: 37787048 DOI: 10.1080/14786419.2023.2261608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/16/2023] [Indexed: 10/04/2023]
Abstract
A bioassay-guided isolation on the plant Zanthoxylum armatum DC yielded compounds tambulin (1), and prudomestin (2), from ethyl acetate fraction which showed the highest ROS inhibiting activity (IC50 = 17.8 ± 1.1 µg/mL). Structure elucidation of pure compounds was done using mass and NMR spectroscopic techniques. Compounds 1 and 2 revealed potent ROS inhibition with IC50 = 7.5 ± 0.3 and 1.5 ± 0.3 µg/mL, respectively, as compared to standard ibuprofen (IC50 = 11.2 ± 1.9 µg/mL). Likewise, both compounds 1 and 2 showed potent antioxidant activity with IC50 = 32.65 ± 0.31 and 26.96 ± 0.19 µg/mL, respectively. In vitro studies were supported by molecular docking and drug-likeliness properties. In silico studies of 1 and 2 with cyclooxygenase-2 (COX-2) showed perfect binding affinity with binding energies of -8.4 and -8.6 kcal/mol, respectively, comparable to standard ibuprofen (-7.7 kcal/mol). Drug likeness and ADMET showed higher gastrointestinal absorption of 1 and 2 and no toxic impact.
Collapse
Affiliation(s)
- Janaki Baral
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Dipesh Shrestha
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Achyut Adhikari
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
47
|
Martínez-Flores A, Montoya B, Torres R. An immune challenge induces a decline in parental effort and compensation by the mate. Behav Ecol 2024; 35:arae086. [PMID: 39539571 PMCID: PMC11558233 DOI: 10.1093/beheco/arae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/10/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Immune defense is fundamental to diminish the negative effects of the attack of infectious agents, yet the activation of the immune system entails costs and may compromise other life-history traits such as reproduction. In reproductive brown booby pairs (Sula leucogaster), we experimentally imposed an immune challenge during incubation, by intraperitoneally injecting Escherichia coli lipopolysaccharide (LPS), in either the male or the female. We aimed to test whether activation of the immune response results in (1) an increase in oxidative stress parameters, (2) a decline in post-hatching parental care in the treated individual, and (3) a compensation of the post-hatching parental effort by the nontreated mate. We found that activation of the immune response during incubation did not increase oxidative damage to lipids or total antioxidant capacity. However, mounting an immune response compromised parental effort during the chick-rearing period: compared to controls, LPS-treated parents showed roughly a 50% decline in the rate of preening and offspring feeding in response to begging. Interestingly, mates of LPS-treated parents increased their feeding rate suggesting parental care compensation. According to a scenario of full compensation, the decline in parental effort of LPS-treated parents did not result in poorer offspring growth or immune response, or increased levels of oxidative stress parameters. These findings suggest that in a long-lived species with long-lasting biparental care, an immune challenge compromises parental care, favoring parental compensation as a strategy to mitigate costs in terms of offspring success.
Collapse
Affiliation(s)
- Alejandro Martínez-Flores
- Laboratorio de Conducta Animal, Departamento de Ecología Evolutiva, Instituto de Ecología Universidad Nacional Autónoma de México, Circuito exterior Jardín Botánico, Ciudad de México, CP 04510, México
- Programa de Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Bibiana Montoya
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta (CTBC), Universidad Autónoma de Tlaxcala, Tlaxcala, CP 90070, México
| | - Roxana Torres
- Laboratorio de Conducta Animal, Departamento de Ecología Evolutiva, Instituto de Ecología Universidad Nacional Autónoma de México, Circuito exterior Jardín Botánico, Ciudad de México, CP 04510, México
| |
Collapse
|
48
|
Xu L, Meng L, Xiang W, Wang X, Yang J, Shu C, Zhao XH, Rong Z, Ye Y. Prohibitin 2 confers NADPH oxidase 1-mediated cytosolic oxidative signaling to promote gastric cancer progression by ERK activation. Free Radic Biol Med 2024; 224:130-143. [PMID: 39182738 DOI: 10.1016/j.freeradbiomed.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Oxidative signaling plays a dual role in tumor initiation and progression to malignancy; however, the regulatory mechanisms of oxidative stress in gastric cancer remain to be explored. In this study, we discovered that Prohibitin 2 (PHB2) specifically regulates cytosolic reactive oxygen species production in gastric cancer and facilitates its malignant progression. Previously, we found that PHB2 is upregulated in gastric cancer, correlating with increased tumorigenicity of gastric cancer cells and poor patient prognosis. Here, we discovered that PHB2 expression correlates with the activation of the ERK/MAPK cascade, positively regulating the top gene NADPH oxidase 1 (NOX1) within this pathway. Further mechanistic investigation reveals that PHB2 enhances NOX1 transcription by interacting with the transcription factor C/EBP-beta and promoting its translocation into the nucleus, resulting in elevated intracellular oxidative signaling driven by NOX1, which subsequently activates ERK. Therefore, we propose that targeting PHB2-C/EBP-beta-NOX1-mediated cytosolic oxidative stress could offer a promising therapeutic avenue for combating gastric cancer malignant progression.
Collapse
Affiliation(s)
- Liang Xu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Li Meng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; Department of Prenatal Diagnostic Center, People's Hospital of Puyang, Puyang, 457001, China
| | - Wanying Xiang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xinyue Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jiezhen Yang
- Department of Pathology, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen, 361015, China
| | - Chang Shu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Ziye Rong
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yan Ye
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
49
|
Mohammadi N, Franchin M, Girotto Pressete C, Maria Greggi Antunes L, Granato D. Green recovery and application of berry anthocyanins in functional gummies: Stability study, plasma and cellular antioxidant and anti-inflammatory activity. Food Res Int 2024; 196:115128. [PMID: 39614523 DOI: 10.1016/j.foodres.2024.115128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 12/01/2024]
Abstract
This study investigates the comprehensive effects of extraction parameters, freeze-drying, and formulation on the chemical composition, colour properties, antioxidant and anti-inflammatory activities, and reactive oxygen species (ROS) generation of blackberry (BB) and elderberry (EB) extracts, as well as their incorporation into gummies. Using response surface methodology, optimal extraction conditions were identified: BB extracts showed optimal results at 325 W and 7.5 min, while EB extracts were optimal at 400 W and 5 min. The EB extracts consistently exhibited higher total phenolic content, total anthocyanin content, and antioxidant capacity than the BB extracts. Over 120 min, BB extracts demonstrated superior antioxidant potential to mitigate human plasma lipid oxidation. Both extracts displayed pH-dependent colour variations and antioxidant capacities, with EB extracts showing greater stability across a broader pH range. Freeze-drying effectively preserved antioxidant capacity, with EB extracts maintaining higher values than BB extracts. In a cellular model of oxidative stress using THP-1, both extracts were non-cytotoxic and reduced intracellular ROS generation, with EB extracts also more effectively inhibiting IL-6 secretion. When incorporated into gummies, these extracts resulted in higher phenolic and anthocyanin content than commercial counterparts, with EB gummies demonstrating superior antioxidant capacity. Sensory evaluations indicated no significant differences in taste, texture, or overall acceptability among the gummy formulations, though colour preferences tended to favour commercial gummies. This study addresses a gap by providing detailed chemical, biological, and sensory assessments of BB and EB extracts in food applications.
Collapse
Affiliation(s)
- Nima Mohammadi
- Bioactivity & Applications Laboratory, Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland
| | - Marcelo Franchin
- Bioactivity & Applications Laboratory, Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland
| | - Carolina Girotto Pressete
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniel Granato
- Bioactivity & Applications Laboratory, Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland; Bernal Institute. University of Limerick, V94 T9PX Limerick, Ireland.
| |
Collapse
|
50
|
Wu X, Peng X, Zhang Y, Peng W, Lu X, Deng T, Nie G. New application of ombuoside in protecting auditory cells from cisplatin-induced ototoxicity via the apoptosis pathway. Heliyon 2024; 10:e39166. [PMID: 39640804 PMCID: PMC11620119 DOI: 10.1016/j.heliyon.2024.e39166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Hearing loss is caused by many factors including ototoxic drug-induced hair cell damage. Ombuoside, an antioxidant isolated from Gynostemma pentaphyllum, has been suggested to serve as a new neuroprotective drug. However, the role of ombuoside in protecting inner ear hair cells from ototoxic drug-induced damage has not been investigated. Here, we demonstrated the protective potential of ombuoside in mitigating drug-induced ototoxicity in vivo and in vitro. We used cisplatin, a highly ototoxic anti-tumor drug, to induce hair cell damage. Our results showed that ombuoside significantly increased the survival of cisplatin-treated HEI-OC1 cells. Further mechanism research suggested that ombuoside protects HEI-OCI cells from cisplatin-induced apoptosis by reducing the cisplatin-induced upregulation of apoptosis-promoting proteins Bax, Bak, as well as apoptosis indicator proteins cytochrome C and cleaved-caspase-3, and the downregulation of apoptosis-inhibiting proteins Bcl-2. Ombuoside also protects the cells from the excessive ROS production and mitochondrial membrane depolarization triggered by cisplatin. These results demonstrated the potential for ombuoside in protecting hair cells from cisplatin by suppressing ROS generation and the mitochondrial apoptotic cascade. Ombuoside showed promise in protecting hair cells from cisplatin-induced apoptosis by suppressing ROS generation and the mitochondrial apoptotic cascade. Furthermore, ombuoside co-treatment in mouse cochlear explants and zebrafish lateral neuromasts rescued the decreased number and deformed morphology of hair cells resulting from cisplatin exposure. These findings further validated our conclusions and indicated that ombuoside is a potential protector against hearing loss caused by ototoxicity as a clinical side effect of cisplatin.
Collapse
Affiliation(s)
- Xingxing Wu
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518035, China
| | - Xixia Peng
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yue Zhang
- Department of Otolaryngology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Wanjun Peng
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518035, China
| | - Xiaochan Lu
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Tingting Deng
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518035, China
| | - Guohui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518035, China
| |
Collapse
|