1
|
Romero A, Walker BL, Krneta-Stankic V, Gerner-Mauro K, Youmans L, Miller RK. The dynamics of tubulogenesis in development and disease. Development 2025; 152:DEV202820. [PMID: 39959988 PMCID: PMC11883272 DOI: 10.1242/dev.202820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Tubes are crucial for the function of many organs in animals given their fundamental roles in transporting and exchanging substances to maintain homeostasis within an organism. Therefore, the development and maintenance of these tube-like structures within organs is a vital process. Tubes can form in diverse ways, and advances in our understanding of the molecular and cellular mechanisms underpinning these different modes of tubulogenesis have significant impacts in many biological contexts, including development and disease. This Review discusses recent progress in understanding developmental mechanisms underlying tube formation.
Collapse
Affiliation(s)
- Adrian Romero
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Brandy L. Walker
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX 77030, USA
| | - Vanja Krneta-Stankic
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kamryn Gerner-Mauro
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Baylor College of Medicine, Program in Development, Disease Models & Therapeutics, Houston, TX 77030, USA
| | - Lydia Youmans
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Rachel K. Miller
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX 77030, USA
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Molecular and Translational Biology, Houston, TX 77030, USA
| |
Collapse
|
2
|
Zhao B, Ye DM, Li S, Zhang Y, Zheng Y, Kang J, Wang L, Zhao N, Ahmad B, Sun J, Yu T, Wu H. FMNL3 Promotes Migration and Invasion of Breast Cancer Cells via Inhibiting Rad23B-Induced Ubiquitination of Twist1. J Cell Physiol 2025; 240:e31481. [PMID: 39582466 DOI: 10.1002/jcp.31481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024]
Abstract
Breast cancer is a heterogeneous malignant tumor, and its high metastasis rate depends on the abnormal activation of cell dynamics. Formin-like protein 3 (FMNL3) plays an important role in the formation of various cytoskeletons that participate in cell movement. The objective of this study was to explore the function of FMNL3 in breast cancer progression and endeavor to reveal the molecular mechanism of this phenomenon. We found that FMNL3 was abnormally highly expressed in aggressive breast cancer cells and tissues, and it significantly inhibited E-cadherin expression. FMNL3 could specifically interact with Twist1 rather than other epithelial-mesenchymal transition transcription factors (EMT-TFs). We also found that FMNL3 enhanced the repressive effect of Twist1 on CDH1 transcription in breast cancer cells. Further mechanism studies showed that FMNL3 suppressed the ubiquitin degradation of Twist1 by inhibiting the interaction between Twist1 and Rad23B, the ubiquitin transfer protein of Twist1. In vitro functional experiments, it was confirmed that FMNL3 promoted the migration and invasion of breast cancer cells by regulating Twist1. Furthermore, Twist1 could directly bind to the fmnl3 promoter to facilitate FMNL3 transcription. To conclude, this study indicated that FMNL3 acted as a pro-metastasis factor in breast cancer by promoting Twist1 stability to suppress CDH1 transcription.
Collapse
Affiliation(s)
- Binggong Zhao
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| | - Dong-Man Ye
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Shujing Li
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| | - Yong Zhang
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Yang Zheng
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Jie Kang
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| | - Luhong Wang
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| | - Nannan Zhao
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Bashir Ahmad
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| | - Jing Sun
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Huijian Wu
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
3
|
Bullock E, Brunton VG. E-Cadherin-Mediated Cell-Cell Adhesion and Invasive Lobular Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:259-275. [PMID: 39821030 DOI: 10.1007/978-3-031-70875-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
E-cadherin is a transmembrane protein and central component of adherens junctions (AJs). The extracellular domain of E-cadherin forms homotypic interactions with E-cadherin on adjacent cells, facilitating the formation of cell-cell adhesions, known as AJs, between neighbouring cells. The intracellular domain of E-cadherin interacts with α-, β- and p120-catenins, linking the AJs to the actin cytoskeleton. Functional AJs maintain epithelial tissue identity and integrity. Transcriptional downregulation of E-cadherin is the first step in epithelial-to-mesenchymal transition (EMT), a process essential in development and tissue repair, which, in breast cancer, can contribute to tumour progression and metastasis. In addition, loss-of-function mutations in E-cadherin are a defining feature of invasive lobular breast cancer (also known as invasive lobular carcinoma (ILC)), the second most common histological subtype of breast cancer. ILC displays a discohesive, single-file invasive growth pattern due to the loss of functional AJs. Despite being so prevalent, until recently there has been limited ILC-focused research and historically ILC patients have often been excluded from clinical trials. Despite displaying a number of good prognostic indicators, such as low grade and high rates of estrogen receptor positivity, ILC patients tend to have similar or poorer outcomes relative to the most common subtype of breast cancer, invasive ductal carcinoma (IDC). In ILC, E-cadherin loss promotes hyperactivation of growth factor receptors, in particular insulin-like growth factor 1 receptor, anoikis resistance and synthetic lethality with ROS1 inhibition. These features introduce clinical vulnerabilities that could potentially be exploited to improve outcomes for ILC patients, for whom there are currently limited tailored treatments available.
Collapse
Affiliation(s)
- Esme Bullock
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK
| | - Valerie G Brunton
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Wang W, Ye L, Li H, Mao W, Xu X. Targeting esophageal carcinoma: molecular mechanisms and clinical studies. MedComm (Beijing) 2024; 5:e782. [PMID: 39415846 PMCID: PMC11480525 DOI: 10.1002/mco2.782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Esophageal cancer (EC) is identified as a predominant health threat worldwide, with its highest incidence and mortality rates reported in China. The complex molecular mechanisms underlying EC, coupled with the differential incidence of esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) across various regions, highlight the necessity for in-depth research targeting molecular pathogenesis and innovative treatment strategies. Despite recent progress in targeted therapy and immunotherapy, challenges such as drug resistance and the lack of effective biomarkers for patient selection persist, impeding the optimization of therapeutic outcomes. Our review delves into the molecular pathology of EC, emphasizing genetic and epigenetic alterations, aberrant signaling pathways, tumor microenvironment factors, and the mechanisms of metastasis and immune evasion. We further scrutinize the current landscape of targeted therapies, including the roles of EGFR, HER2, and VEGFR, alongside the transformative impact of ICIs. The discussion extends to evaluating combination therapies, spotlighting the synergy between targeted and immune-mediated treatments, and introduces the burgeoning domain of antibody-drug conjugates, bispecific antibodies, and multitarget-directed ligands. This review lies in its holistic synthesis of EC's molecular underpinnings and therapeutic interventions, fused with an outlook on future directions including overcoming resistance mechanisms, biomarker discovery, and the potential of novel drug formulations.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Lisha Ye
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Huihui Li
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Weimin Mao
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiangChina
| | - Xiaoling Xu
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
- Department of Radiation OncologyShanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Haque M, Shyanti RK, Mishra MK. Targeted therapy approaches for epithelial-mesenchymal transition in triple negative breast cancer. Front Oncol 2024; 14:1431418. [PMID: 39450256 PMCID: PMC11499239 DOI: 10.3389/fonc.2024.1431418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is distinguished by negative expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), making it an aggressive subtype of breast cancer and contributes to 15-20% of the total incidence. TNBC is a diverse disease with various genetic variations and molecular subtypes. The tumor microenvironment involves multiple cells, including immune cells, fibroblast cells, extracellular matrix (ECM), and blood vessels that constantly interact with tumor cells and influence each other. The ECM undergoes significant structural changes, leading to induced cell proliferation, migration, adhesion, invasion, and epithelial-to-mesenchymal transition (EMT). The involvement of EMT in the occurrence and development of tumors through invasion and metastasis in TNBC has been a matter of concern. Therefore, EMT markers could be prognostic predictors and potential therapeutic targets in TNBC. Chemotherapy has been one of the primary options for treating patients with TNBC, but its efficacy against TNBC is still limited. Targeted therapy is a critical emerging option with enhanced efficacy and less adverse effects on patients. Various targeted therapy approaches have been developed based on the specific molecules and the signaling pathways involved in TNBC. These include inhibitors of signaling pathways such as TGF-β, Wnt/β-catenin, Notch, TNF-α/NF-κB and EGFR, as well as immune checkpoint inhibitors, such as pembrolizumab, 2laparib, and talazoparib have been widely explored. This article reviews recent developments in EMT in TNBC invasion and metastasis and potential targeted therapy strategies.
Collapse
Affiliation(s)
| | | | - Manoj K. Mishra
- Cancer Research Center, Department of Biological Sciences, Alabama State
University, Montgomery, AL, United States
| |
Collapse
|
6
|
Plunder S, Danesin C, Glise B, Ferreira MA, Merino-Aceituno S, Theveneau E. Modelling variability and heterogeneity of EMT scenarios highlights nuclear positioning and protrusions as main drivers of extrusion. Nat Commun 2024; 15:7365. [PMID: 39198505 PMCID: PMC11358417 DOI: 10.1038/s41467-024-51372-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Epithelial-Mesenchymal Transition (EMT) is a key process in physiological and pathological settings. EMT is often presented as a linear sequence with (i) disassembly of cell-cell junctions, (ii) loss of epithelial polarity and (iii) reorganization of the cytoskeleton leading to basal extrusion from the epithelium. Once out, cells can adopt a migratory phenotype with a front-rear polarity. While this sequence can occur, in vivo observations have challenged it. It is now accepted that multiple EMT scenarios coexist in heterogeneous cell populations. However, the relative importance of each step as well as that of variability and heterogeneity on the efficiency of cell extrusion has not been assessed. Here we used computational modelling to simulate multiple EMT-like scenarios and confronted these data to the EMT of neural crest cells. Overall, our data point to a key role of nuclear positioning and protrusive activity to generate timely basal extrusion.
Collapse
Affiliation(s)
- Steffen Plunder
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Cathy Danesin
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Bruno Glise
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Marina A Ferreira
- CMUC, Department of Mathematics, University of Coimbra, 3000-413, Coimbra, Portugal
| | - Sara Merino-Aceituno
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria.
| | - Eric Theveneau
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France.
| |
Collapse
|
7
|
Perrone MC, Lerner MG, Dunworth M, Ewald AJ, Bader JS. Prioritizing drug targets by perturbing biological network response functions. PLoS Comput Biol 2024; 20:e1012195. [PMID: 38935814 PMCID: PMC11236158 DOI: 10.1371/journal.pcbi.1012195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/10/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Therapeutic interventions are designed to perturb the function of a biological system. However, there are many types of proteins that cannot be targeted with conventional small molecule drugs. Accordingly, many identified gene-regulatory drivers and downstream effectors are currently undruggable. Drivers and effectors are often connected by druggable signaling and regulatory intermediates. Methods to identify druggable intermediates therefore have general value in expanding the set of targets available for hypothesis-driven validation. Here we identify and prioritize potential druggable intermediates by developing a network perturbation theory, termed NetPert, for response functions of biological networks. Dynamics are defined by a network structure in which vertices represent genes and proteins, and edges represent gene-regulatory interactions and protein-protein interactions. Perturbation theory for network dynamics prioritizes targets that interfere with signaling from driver to response genes. Applications to organoid models for metastatic breast cancer demonstrate the ability of this mathematical framework to identify and prioritize druggable intermediates. While the short-time limit of the perturbation theory resembles betweenness centrality, NetPert is superior in generating target rankings that correlate with previous wet-lab assays and are more robust to incomplete or noisy network data. NetPert also performs better than a related graph diffusion approach. Wet-lab assays demonstrate that drugs for targets identified by NetPert, including targets that are not themselves differentially expressed, are active in suppressing additional metastatic phenotypes.
Collapse
Affiliation(s)
- Matthew C. Perrone
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Michael G. Lerner
- Department of Physics, Engineering and Astronomy, Earlham College, Richmond, Indiana, United States of America
| | - Matthew Dunworth
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Andrew J. Ewald
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, United States of America
- Giovanis Institute for Translational Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Joel S. Bader
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, United States of America
- Giovanis Institute for Translational Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
8
|
Zhang G, Hou S, Li S, Wang Y, Cui W. Role of STAT3 in cancer cell epithelial‑mesenchymal transition (Review). Int J Oncol 2024; 64:48. [PMID: 38488027 PMCID: PMC11000535 DOI: 10.3892/ijo.2024.5636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Since its discovery, the role of the transcription factor, signal transducer and activator of transcription 3 (STAT3), in both normal physiology and the pathology of numerous diseases, including cancer, has been extensively studied. STAT3 is aberrantly activated in different types of cancer, fulfilling a critical role in cancer progression. The biological process, epithelial‑mesenchymal transition (EMT), is indispensable for embryonic morphogenesis. During the development of cancer, EMT is hijacked to confer motility, tumor cell stemness, drug resistance and adaptation to changes in the microenvironment. The aim of the present review was to outline recent advances in knowledge of the role of STAT3 in EMT, which may contribute to the understanding of the function of STAT3 in EMT in various types of cancer. Delineating the underlying mechanisms associated with the STAT3‑EMT signaling axis may generate novel diagnostic and therapeutic options for cancer treatment.
Collapse
Affiliation(s)
- Guoan Zhang
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Sen Hou
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Shuyue Li
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yequan Wang
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Wen Cui
- Department of Forensic Pathology, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
9
|
Aksoy A, Varoglu A, Onalan EE, Tektemur A, Artas G, Koc M, Cakmak M, Aydin S, Kilic M, Ulas M. The knockdown of stathmin with si-RNA inhibits invasion of mesothelioma. Tissue Cell 2024; 87:102303. [PMID: 38244401 DOI: 10.1016/j.tice.2024.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND To investigate the mechanism of action of stathmin1 (STMN1) in mesothelioma (MSM) and whether it has any role in its treatment. METHODS STMN1 expression was examined using immunohistochemistry in biopsy tissues taken from MSM patients. The relationships between the levels of STMN1 expression in the pathology preparations of MSM patients, and the clinicopathological characteristics of these patients, and their survival times were investigated. Transfection of STMN1-specific siRNA into SPC212 cells was compared to negative control siRNAs. The mRNA levels of genes that may play a role in invasion, apoptosis, and autophagy were evaluated by RT-PCR. RESULTS The expression of STMN1 was shown to be high in MSM tissues (p < 0.05). It was found that the only independent predictor factor affecting the survival time of MSM patients was the disease stage (p < 0.05). STMN1 was significantly reduced after siRNA intervention (81.5%). STMN1 with specific siRNA has been shown to suppress invasion by reducing the mRNA levels of cadherin-6 (CDH6), fibroblast growth factor-8 (FGF8), hypoxia-inducible factor 1 (HIF1A), matrix metallopeptidase 1-2 (gelatinase A) (MMP1-2), and TIMP metallopeptidase inhibitor 2 (TIMP2), which are important markers for invasion. Although the expression of apoptosis and autophagy-related genes, caspase-2 (Casp2) and LC-3, was reduced by silencing STMN1 with specific siRNA in western blot analysis, this effect was not observed in PCR results. CONCLUSIONS Immunohistochemical analysis of STMN1 may contribute to the differential diagnosis of MSM, and STMN1 may also be considered as a potential therapeutic target in the early invasive stage of MSM therapy.
Collapse
Affiliation(s)
- Asude Aksoy
- Department of Medical Oncology, University of Health Sciences, Fethi Sekin City Hospital SUAM, Elazig, Turkey.
| | - Asuman Varoglu
- Department of Neurology, Medical Faculty, Medeniyet University, Istanbul, Turkey
| | - Ebru Etem Onalan
- Department of Medical Biology and Genetics, Firat University, Elazig, Turkey
| | - Ahmet Tektemur
- Department of Medical Biology and Genetics, Firat University, Elazig, Turkey
| | - Gokhan Artas
- Department of Pathology, Medical Faculty, Firat University, Elazig, Turkey
| | - Mustafa Koc
- Department of Radiology, Medical Faculty, Firat University, Elazig, Turkey
| | - Muharrem Cakmak
- Department of Thoracic Surgery, Medical Faculty, Firat University, Elazig, Turkey
| | - Siyami Aydin
- Department of Thoracic Surgery, Medical Faculty, Firat University, Elazig, Turkey
| | - Murat Kilic
- Department of Thoracic Surgery, Inonu University, Malatya, Turkey
| | - Mustafa Ulas
- Department of Physiology, Medical Faculty, Firat University, Elazig, Turkey
| |
Collapse
|
10
|
Pfannenstein A, Macara IG. A junction-dependent mechanism drives murine mammary cell intercalation for ductal elongation. Dev Cell 2023; 58:1126-1138.e4. [PMID: 37141887 PMCID: PMC10524519 DOI: 10.1016/j.devcel.2023.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 05/06/2023]
Abstract
The luminal epithelium of the mammary gland is organized into monolayers; however, it originates from multilayered terminal end buds (TEBs) during development. Although apoptosis provides a plausible mechanism for cavitation of the ductal lumen, it doesn't account for ductal elongation behind TEBs. Spatial calculations in mice suggest that most TEB cells integrate into the outermost luminal layer to generate elongation. We developed a quantitative cell culture assay that models intercalation into epithelial monolayers. We found that tight junction proteins play a key role in this process. ZO-1 puncta form at the new cellular interface and resolve into a new boundary as intercalation proceeds. Deleting ZO-1 suppresses intercalation both in culture and in cells transplanted into mammary glands via intraductal injection. Cytoskeletal rearrangements at the interface are critical for intercalation. These data identify luminal cell rearrangements necessary for mammary development and suggest a mechanism for integration of cells into an existing monolayer.
Collapse
Affiliation(s)
- Alexander Pfannenstein
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Ian G Macara
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
11
|
Subramani A, Cui W, Zhang Y, Friman T, Zhao Z, Huang W, Fonseca P, Lui WO, Narayanan V, Bobrowska J, Lekka M, Yan J, Conway DE, Holmgren L. Modulation of E-Cadherin Function through the AmotL2 Isoforms Promotes Ameboid Cell Invasion. Cells 2023; 12:1682. [PMID: 37443716 PMCID: PMC10340588 DOI: 10.3390/cells12131682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
The spread of tumor cells and the formation of distant metastasis remain the main causes of mortality in cancer patients. However, the mechanisms governing the release of cells from micro-environmental constraints remain unclear. E-cadherin negatively controls the invasion of epithelial cells by maintaining cell-cell contacts. Furthermore, the inactivation of E-cadherin triggers invasion in vitro. However, the role of E-cadherin is complex, as metastasizing cells maintain E-cadherin expression, which appears to have a positive role in the survival of tumor cells. In this report, we present a novel mechanism delineating how E-cadherin function is modulated to promote invasion. We have previously shown that E-cadherin is associated with p100AmotL2, which is required for radial actin formation and the transmission of mechanical force. Here, we present evidence that p60AmotL2, which is expressed in invading tumor cells, binds to the p100AmotL2 isoform and uncouples the mechanical constraint of radial actin filaments. We show for the first time that the coupling of E-cadherin to the actin cytoskeleton via p100AmotL2 is directly connected to the nuclear membrane. The expression of p60AmotL2 inactivates this connection and alters the properties of the nuclear lamina, potentiating the invasion of cells into micropores of the extracellular matrix. In summary, we propose that the balance of the two AmotL2 isoforms is important in the modulation of E-cadherin function and that an imbalance of this axis promotes ameboid cell invasion.
Collapse
Affiliation(s)
- Aravindh Subramani
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Weiyingqi Cui
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Yuanyuan Zhang
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Tomas Friman
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Zhihai Zhao
- Department of Physics, Faculty of Science: 2 Science Drive 3, S7-01-10, Lower Kent Ridge Road, Singapore 117542, Singapore; (Z.Z.); (W.H.); (J.Y.)
- Mechanobiology Institute (MBI): T-Lab, #10-02, 5A Engineering Drive 1, National University of Singapore, Singapore 117411, Singapore
| | - Wenmao Huang
- Department of Physics, Faculty of Science: 2 Science Drive 3, S7-01-10, Lower Kent Ridge Road, Singapore 117542, Singapore; (Z.Z.); (W.H.); (J.Y.)
- Mechanobiology Institute (MBI): T-Lab, #10-02, 5A Engineering Drive 1, National University of Singapore, Singapore 117411, Singapore
| | - Pedro Fonseca
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Weng-Onn Lui
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Vani Narayanan
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, USA; (V.N.); (D.E.C.)
| | - Justyna Bobrowska
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (J.B.); (M.L.)
| | - Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (J.B.); (M.L.)
| | - Jie Yan
- Department of Physics, Faculty of Science: 2 Science Drive 3, S7-01-10, Lower Kent Ridge Road, Singapore 117542, Singapore; (Z.Z.); (W.H.); (J.Y.)
- Mechanobiology Institute (MBI): T-Lab, #10-02, 5A Engineering Drive 1, National University of Singapore, Singapore 117411, Singapore
| | - Daniel E. Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, USA; (V.N.); (D.E.C.)
| | - Lars Holmgren
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| |
Collapse
|
12
|
Sicairos B, Alam S, Du Y. A comprehensive analysis of different types of databases reveals that CDH1 mRNA and E-cadherin protein are not downregulated in most carcinoma tissues and carcinoma cell lines. BMC Cancer 2023; 23:441. [PMID: 37189027 DOI: 10.1186/s12885-023-10916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/03/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND The CDH1 gene codes for the epithelial-cadherin (E-cad) protein, which is embedded in the plasma membrane of epithelial cells to form adherens junctions. E-cad is known to be essential for maintaining the integrity of epithelial tissues, and the loss of E-cad has been widely considered a hallmark of metastatic cancers enabling carcinoma cells to acquire the ability to migrate and invade nearby tissues. However, this conclusion has come under scrutiny. METHODS To assess how CDH1 and E-cad expression changes during cancer progression, we analyzed multiple large transcriptomics, proteomics, and immunohistochemistry datasets on clinical cancer samples and cancer cell lines to determine the CDH1 mRNA and E-cad protein expression profiles in tumor and normal cells. RESULTS In contrast to the textbook knowledge of the loss of E-cad during tumor progression and metastasis, the levels of CDH1 mRNA and E-cad protein are either upregulated or remain unchanged in most carcinoma cells compared to normal cells. In addition, the CDH1 mRNA upregulation occurs in the early stages of tumor development and the levels remain elevated as tumors progress to later stages across most carcinoma types. Furthermore, E-cad protein levels are not downregulated in most metastatic tumor cells compared to primary tumor cells. The CDH1 mRNA and E-cad protein levels are positively correlated, and the CDH1 mRNA levels are positively correlated to cancer patient's survival. We have discussed potential mechanisms underlying the observed expression changes in CDH1 and E-cad during tumor progression. CONCLUSIONS CDH1 mRNA and E-cadherin protein are not downregulated in most tumor tissues and cell lines derived from commonly occurring carcinomas. The role of E-cad in tumor progression and metastasis may have previously been oversimplified. CDH1 mRNA levels may serve as a reliable biomarker for the diagnosis of some tumors (such as colon and endometrial carcinomas) due to the marked upregulation of CDH1 mRNA in the early stages of tumor development of these carcinomas.
Collapse
Affiliation(s)
- Brihget Sicairos
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Shorna Alam
- Bentonville West High School, Centerton, AR, 72719, USA
- Present address: Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yuchun Du
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
13
|
Lin WH, Cooper LM, Anastasiadis PZ. Cadherins and catenins in cancer: connecting cancer pathways and tumor microenvironment. Front Cell Dev Biol 2023; 11:1137013. [PMID: 37255594 PMCID: PMC10225604 DOI: 10.3389/fcell.2023.1137013] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Cadherin-catenin complexes are integral components of the adherens junctions crucial for cell-cell adhesion and tissue homeostasis. Dysregulation of these complexes is linked to cancer development via alteration of cell-autonomous oncogenic signaling pathways and extrinsic tumor microenvironment. Advances in multiomics have uncovered key signaling events in multiple cancer types, creating a need for a better understanding of the crosstalk between cadherin-catenin complexes and oncogenic pathways. In this review, we focus on the biological functions of classical cadherins and associated catenins, describe how their dysregulation influences major cancer pathways, and discuss feedback regulation mechanisms between cadherin complexes and cellular signaling. We discuss evidence of cross regulation in the following contexts: Hippo-Yap/Taz and receptor tyrosine kinase signaling, key pathways involved in cell proliferation and growth; Wnt, Notch, and hedgehog signaling, key developmental pathways involved in human cancer; as well as TGFβ and the epithelial-to-mesenchymal transition program, an important process for cancer cell plasticity. Moreover, we briefly explore the role of cadherins and catenins in mechanotransduction and the immune tumor microenvironment.
Collapse
|
14
|
Joshi VB, Gutierrez Ruiz OL, Razidlo GL. The Cell Biology of Metastatic Invasion in Pancreatic Cancer: Updates and Mechanistic Insights. Cancers (Basel) 2023; 15:cancers15072169. [PMID: 37046830 PMCID: PMC10093482 DOI: 10.3390/cancers15072169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related mortality worldwide. This is largely due to the lack of routine screening protocols, an absence of symptoms in early-stage disease leading to late detection, and a paucity of effective treatment options. Critically, the majority of patients either present with metastatic disease or rapidly develop metastatic disease. Thus, there is an urgent need to deepen our understanding of metastasis in PDAC. During metastasis, tumor cells escape from the primary tumor, enter the circulation, and travel to a distant site to form a secondary tumor. In order to accomplish this relatively rare event, tumor cells develop an enhanced ability to detach from the primary tumor, migrate into the surrounding matrix, and invade across the basement membrane. In addition, cancer cells interact with the various cell types and matrix proteins that comprise the tumor microenvironment, with some of these factors working to promote metastasis and others working to suppress it. In PDAC, many of these processes are not well understood. The purpose of this review is to highlight recent advances in the cell biology of the early steps of the metastatic cascade in pancreatic cancer. Specifically, we will examine the regulation of epithelial-to-mesenchymal transition (EMT) in PDAC and its requirement for metastasis, summarize our understanding of how PDAC cells invade and degrade the surrounding matrix, and discuss how migration and adhesion dynamics are regulated in PDAC to optimize cancer cell motility. In addition, the role of the tumor microenvironment in PDAC will also be discussed for each of these invasive processes.
Collapse
Affiliation(s)
- Vidhu B Joshi
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Omar L Gutierrez Ruiz
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gina L Razidlo
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Sandilands E, Freckmann EC, Cumming EM, Román-Fernández A, McGarry L, Anand J, Galbraith L, Mason S, Patel R, Nixon C, Cartwright J, Leung HY, Blyth K, Bryant DM. The small GTPase ARF3 controls invasion modality and metastasis by regulating N-cadherin levels. J Cell Biol 2023; 222:e202206115. [PMID: 36880595 PMCID: PMC9997661 DOI: 10.1083/jcb.202206115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/13/2022] [Accepted: 01/20/2023] [Indexed: 03/04/2023] Open
Abstract
ARF GTPases are central regulators of membrane trafficking that control local membrane identity and remodeling facilitating vesicle formation. Unraveling their function is complicated by the overlapping association of ARFs with guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and numerous interactors. Through a functional genomic screen of three-dimensional (3D) prostate cancer cell behavior, we explore the contribution of ARF GTPases, GEFs, GAPs, and interactors to collective invasion. This revealed that ARF3 GTPase regulates the modality of invasion, acting as a switch between leader cell-led chains of invasion or collective sheet movement. Functionally, the ability of ARF3 to control invasion modality is dependent on association and subsequent control of turnover of N-cadherin. In vivo, ARF3 levels acted as a rheostat for metastasis from intraprostatic tumor transplants and ARF3/N-cadherin expression can be used to identify prostate cancer patients with metastatic, poor-outcome disease. Our analysis defines a unique function for the ARF3 GTPase in controlling how cells collectively organize during invasion and metastasis.
Collapse
Affiliation(s)
- Emma Sandilands
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Eva C. Freckmann
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Erin M. Cumming
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Alvaro Román-Fernández
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | | | | | | | | | | | | | | | - Hing Y. Leung
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Karen Blyth
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - David M. Bryant
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| |
Collapse
|
16
|
Basu B, Karmakar S, Basu M, Ghosh MK. USP7 imparts partial EMT state in colorectal cancer by stabilizing the RNA helicase DDX3X and augmenting Wnt/β-catenin signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119446. [PMID: 36791810 DOI: 10.1016/j.bbamcr.2023.119446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Abstract
Epithelial mesenchymal transition (EMT) is a fundamental and highly regulated process that is normally observed during embryonic development and tissue repair but is deregulated during advanced cancer. Classically, through the process of EMT, cancer cells gradually transition from a predominantly epithelial phenotype to a more invasive mesenchymal phenotype. Increasing studies have, however, brought into light the existence of unique intermediary states in EMT, often referred to as partial EMT states. Through our studies we have found the deubiquitinase USP7 to be strongly associated with the development of such a partial EMT state in colon cancer cells, characterized by the acquisition of mesenchymal characteristics but without the reduction in epithelial markers. We found USP7 to be overexpressed in colon adenocarcinomas and to be closely associated with advancing tumor stage. We found that functional inhibition or knockdown of USP7 is associated with a marked reduction in mesenchymal markers and in overall migration potential of cancer cells. Starting off with a proteomics-based approach we were able to identify and later on verify the DEAD box RNA helicase DDX3X to be an interacting partner of USP7. We then went on to show that USP7, through the stabilization of DDX3X, augments Wnt/β-catenin signaling, which has previously been shown to be greatly associated with colorectal cancer cell invasiveness. Our results indicate USP7 as a novel key player in establishing a partial mesenchymal phenotype in colorectal cancer.
Collapse
Affiliation(s)
- Bhaskar Basu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas PIN-743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
17
|
Low RRJ, Fung KY, Gao H, Preaudet A, Dagley LF, Yousef J, Lee B, Emery-Corbin SJ, Nguyen PM, Larsen RH, Kershaw NJ, Burgess AW, Gibbs P, Hollande F, Griffin MDW, Grimmond SM, Putoczki TL. S100 family proteins are linked to organoid morphology and EMT in pancreatic cancer. Cell Death Differ 2023; 30:1155-1165. [PMID: 36828915 PMCID: PMC10154348 DOI: 10.1038/s41418-023-01126-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/26/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a continuum that includes epithelial, partial EMT, and mesenchymal states, each of which is associated with cancer progression, invasive capabilities, and ultimately, metastasis. We used a lineage-traced sporadic model of pancreatic cancer to generate a murine organoid biobank from primary and secondary tumors, including sublines that underwent partial EMT and complete EMT. Using an unbiased proteomics approach, we found that organoid morphology predicts the EMT state, and the solid organoids are associated with a partial EMT signature. We also observed that exogenous TGFβ1 induces solid organoid morphology that is associated with changes in the S100 family, complete EMT, and the formation of high-grade tumors. S100A4 may be a useful biomarker for predicting EMT state, disease progression, and outcome in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Ronnie Ren Jie Low
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3000, Australia
| | - Ka Yee Fung
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Hugh Gao
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3000, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3000, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3800, Australia
| | - Adele Preaudet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jumana Yousef
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Belinda Lee
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Samantha J Emery-Corbin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Paul M Nguyen
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3000, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3000, Australia
| | - Rune H Larsen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Nadia J Kershaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Antony W Burgess
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Peter Gibbs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Frédéric Hollande
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3000, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3000, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3000, Australia
| | - Sean M Grimmond
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3000, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3000, Australia
| | - Tracy L Putoczki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
18
|
Pallarès ME, Pi-Jaumà I, Fortunato IC, Grazu V, Gómez-González M, Roca-Cusachs P, de la Fuente JM, Alert R, Sunyer R, Casademunt J, Trepat X. Stiffness-dependent active wetting enables optimal collective cell durotaxis. NATURE PHYSICS 2022:s41567-022-01835-1. [PMCID: PMC7617391 DOI: 10.1038/s41567-022-01835-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/13/2022] [Indexed: 05/17/2025]
Abstract
The directed migration of cellular clusters enables morphogenesis, wound healing, and collective cancer invasion. Gradients of substrate stiffness are known to direct the migration of cellular clusters in a process called collective durotaxis, but underlying mechanisms remain unclear. Here, we unveil a connection between collective durotaxis and the wetting properties of cellular clusters. We show that clusters of cancer cells dewet soft substrates and wet stiff ones. At intermediate stiffness, at the crossover from low to high wettability, clusters on uniform-stiffness substrates become maximally motile, and clusters on stiffness gradients exhibit optimal durotaxis. Durotactic velocity increases with cluster size, stiffness gradient, and actomyosin activity. We demonstrate this behavior on substrates coated with the cell-cell adhesion protein E-cadherin and then establish its generality on substrates coated with extracellular matrix. We develop a physical model of three-dimensional active wetting that explains this mode of collective durotaxis in terms of a balance between in-plane active traction and tissue contractility, and out-of-plane surface tension. Finally, we show that the distribution of cluster displacements has a heavy tail, with infrequent but large cellular hops that contribute to durotactic migration. Our study demonstrates a physical mechanism of collective durotaxis, through both cell-cell and cell-substrate adhesion ligands, based on the wetting properties of active droplets.
Collapse
Affiliation(s)
- Macià-Esteve Pallarès
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST)08028Barcelona, Spain
| | - Irina Pi-Jaumà
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Isabela Corina Fortunato
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST)08028Barcelona, Spain
| | - Valeria Grazu
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza50009, Spain
- Consejo Superior de Investigaciones Científicas, 50018Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería (CIBER-BBN), 08028Barcelona, Spain
| | - Manuel Gómez-González
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST)08028Barcelona, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST)08028Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona, 08036Barcelona, Spain
| | - Jesus M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza50009, Spain
- Consejo Superior de Investigaciones Científicas, 50018Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería (CIBER-BBN), 08028Barcelona, Spain
| | - Ricard Alert
- Max Planck Institute for the Physics of Complex Systems, 01187Dresden, Germany
- Center for Systems Biology Dresden, 01307Dresden, Germany
| | - Raimon Sunyer
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST)08028Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona, 08036Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), 08010Universitat de Barcelona, Barcelona, Spain
| | - Jaume Casademunt
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST)08028Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería (CIBER-BBN), 08028Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona, 08036Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010Barcelona, Spain
| |
Collapse
|
19
|
Tran PT, Sutera P, Phillips RM, Deek MP, Chmura S. From Idea to Clinical Practice: A Brief History of Oligometastatic Disease. Int J Radiat Oncol Biol Phys 2022; 114:576-580. [DOI: 10.1016/j.ijrobp.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 10/31/2022]
|
20
|
Kuburich NA, den Hollander P, Pietz JT, Mani SA. Vimentin and cytokeratin: Good alone, bad together. Semin Cancer Biol 2022; 86:816-826. [PMID: 34953942 PMCID: PMC9213573 DOI: 10.1016/j.semcancer.2021.12.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 01/27/2023]
Abstract
The cytoskeleton plays an integral role in maintaining the integrity of epithelial cells. Epithelial cells primarily employ cytokeratin in their cytoskeleton, whereas mesenchymal cells use vimentin. During the epithelial-mesenchymal transition (EMT), cytokeratin-positive epithelial cells begin to express vimentin. EMT induces stem cell properties and drives metastasis, chemoresistance, and tumor relapse. Most studies of the functions of cytokeratin and vimentin have relied on the use of either epithelial or mesenchymal cell types. However, it is important to understand how these two cytoskeleton intermediate filaments function when co-expressed in cells undergoing EMT. Here, we discuss the individual and shared functions of cytokeratin and vimentin that coalesce during EMT and how alterations in intermediate filament expression influence carcinoma progression.
Collapse
Affiliation(s)
- Nick A Kuburich
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Petra den Hollander
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Jordan T Pietz
- Department of Creative Services, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.
| |
Collapse
|
21
|
Donmez C, Konac E. Silencing effects of FOXD1 inhibit metastatic potentials of the PCa via N-cadherin - Wnt/β-catenin crosstalk. Gene 2022; 836:146680. [PMID: 35738443 DOI: 10.1016/j.gene.2022.146680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
The elucidation of the mechanisms controlling the metastatic processes is important for the development of new treatment methods to prevent the progression of localized disease to metastasis. Forkhead box D1 (FOXD1) is a member of the FOX transcription factor family and has been reported to play an important role in the development and progression of various cancers. However, its role in prostate cancer (PCa) remains only partially understood. Therefore, we aimed to explore the effects on the associated regulatory signal pathway of FOXD1 in prostate cancer. To clarify the roles of FOXD1 in prostate cancer, we used siRNA to suppress its expression in 22Rv1 cells with relatively higher expression of FOXD1. The effects of FOXD1 silencing on cell proliferation, migration and invasion were determined. WST-1 assays were used to determine cell proliferation. Cell migration and invasion were evaluated through wound healing and transwell assays. The possible underlying mechanism of FOXD1 silencing on 22Rv1 was evaluated by determining the expression of proteins related to EMT and Wnt/β-catenin signaling pathway. Our results showed that FOXD1 was highly expressed in prostate cancer cell lines -PC-3, DU145, LNCaP and 22Rv1- compared to normal prostate epithelial cell line RWPE-1. Additionally, silencing of FOXD1 significantly reduced proliferation, migration and invasion of 22Rv1 cells. Furthermore, silencing of FOXD1 decreased the expression of β-catenin and cyclin D1, which are involved in the Wnt/β-catenin signaling pathway. However, it did not appear to affect the expression of EMT-related proteins other than N-cadherin. Our results suggest that silencing of FOXD1 suppresses metastatic potentials of the PCa via N-cadherin - Wnt/β-catenin crosstalk. Therefore, the expression status of FOXD1 may be a new prognostic factor as well as a potential therapeutic target in prostate cancer treatment.
Collapse
Affiliation(s)
- Cigdem Donmez
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, 06500 Ankara, Turkey; Department of Medical Biology, Faculty of Medicine, Zonguldak Bulent Ecevit University, Esenkoy, Kozlu, 67600 Zonguldak, Turkey
| | - Ece Konac
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, 06500 Ankara, Turkey.
| |
Collapse
|
22
|
Rodriguez-Tirado C, Kale N, Carlini MJ, Shrivastava N, Rodrigues AA, Khalil B, Bravo-Cordero JJ, Hong Y, Alexander M, Ji J, Behbod F, Sosa MS. NR2F1 Is a Barrier to Dissemination of Early-Stage Breast Cancer Cells. Cancer Res 2022; 82:2313-2326. [PMID: 35471456 PMCID: PMC9203932 DOI: 10.1158/0008-5472.can-21-4145] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/09/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022]
Abstract
Cancer cells can disseminate during very early and sometimes asymptomatic stages of tumor progression. Though biological barriers to tumorigenesis have been identified and characterized, the mechanisms that limit early dissemination remain largely unknown. We report here that the orphan nuclear receptor nuclear receptor subfamily 2, group F, member 1 (NR2F1)/COUP-TF1 serves as a barrier to early dissemination. NR2F1 expression was decreased in patient ductal carcinoma in situ (DCIS) samples. High-resolution intravital imaging of HER2+ early-stage cancer cells revealed that loss of function of NR2F1 increased in vivo dissemination and was accompanied by decreased E-cadherin expression, activation of wingless-type MMTV integration site family, member 1 (WNT)-dependent β-catenin signaling, disorganized laminin 5 deposition, and increased expression of epithelial-mesenchymal transition (EMT) genes such as twist basic helix-loop-helix transcription factor 1 (TWIST1), zinc finger E-box binding homeobox 1 (ZEB1), and paired related homeobox 1 (PRRX1). Furthermore, downregulation of NR2F1 promoted a hybrid luminal/basal phenotype. NR2F1 expression was positively regulated by p38α signaling and repressed by HER2 and WNT4 pathways. Finally, early cancer cells with NR2F1LOW/PRRX1HIGH staining were observed in DCIS samples. Together, these findings reveal the existence of an inhibitory mechanism of dissemination regulated by NR2F1 in early-stage breast cancer cells. SIGNIFICANCE During early stages of breast cancer progression, HER2-mediated suppression of NR2F1 promotes dissemination by inducing EMT and a hybrid luminal/basal-like program.
Collapse
Affiliation(s)
- Carolina Rodriguez-Tirado
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nupura Kale
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Present address: UCSF Helen Diller Comprehensive Family Cancer Center, University of California, San Francisco, CA, 94158, USA
| | - Maria J. Carlini
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Present address: Columbia University, NY, 10027, USA
| | - Nitisha Shrivastava
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Present address: Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Alcina A. Rodrigues
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bassem Khalil
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Present address: Western Atlantic University School of Medicine, Plantation FL, USA 33324
| | - Jose J. Bravo-Cordero
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yan Hong
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, USA
| | - Melissa Alexander
- Department of Anatomic Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jiayi Ji
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Population Health Science and Policy, Icahn School of Medicine at Sinai, New York, NY, 10029, USA
- Present address: Rutgers University, NJ, 08854
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, USA
| | - Maria S. Sosa
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
23
|
Transcriptional and post-transcriptional control of epithelial-mesenchymal plasticity: why so many regulators? Cell Mol Life Sci 2022; 79:182. [PMID: 35278142 PMCID: PMC8918127 DOI: 10.1007/s00018-022-04199-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
Abstract
The dynamic transition between epithelial-like and mesenchymal-like cell states has been a focus for extensive investigation for decades, reflective of the importance of Epithelial-Mesenchymal Transition (EMT) through development, in the adult, and the contributing role EMT has to pathologies including metastasis and fibrosis. Not surprisingly, regulation of the complex genetic networks that underlie EMT have been attributed to multiple transcription factors and microRNAs. What is surprising, however, are the sheer number of different regulators (hundreds of transcription factors and microRNAs) for which critical roles have been described. This review seeks not to collate these studies, but to provide a perspective on the fundamental question of whether it is really feasible that so many regulators play important roles and if so, what does this tell us about EMT and more generally, the genetic machinery that controls complex biological processes.
Collapse
|
24
|
The TCM Prescription Yi-Fei-Jie-Du-Tang Inhibit Invasive Migration and EMT of Lung Cancer Cells by Activating Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9160616. [PMID: 35132327 PMCID: PMC8817838 DOI: 10.1155/2022/9160616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 01/07/2023]
Abstract
Yi-Fei-Jie-Du-Tang (YFJDT) is a traditional Chinese medicine formulation. Our previous studies have demonstrated that YFJDT can be used to treat non-small-cell lung cancer (NSCLC), but its protective effect against NSCLC and its mechanisms remain unclear. In the present study, we evaluated the protective effects and potential mechanisms of YFJDT on a tumor-bearing mouse lung cancer model and A549 cell model. Tumor-bearing mice and A549 cells were treated with YFJDT, tumors were measured during the experiment, and tumor tissues and cell supernatants were collected at the end of the experiment to assess the levels of autophagy and epithelial-mesenchymal transition (EMT)-related proteins. The results showed that YFJDT treatment reduced tumor volume and mass, increased the expression of the autophagy marker LC3, and inhibited EMT-related proteins compared with the model group. Cell survival was reduced in the YFJDT-treated groups compared with the model group, and YFJDT also reduced the migration and invasion ability of A549 cells in a dose-dependent manner. Western blotting detected that YFJDT also upregulated FAT4 in the tumor tissue and A549 cells and downregulated the expression of vimentin. Meanwhile, apoptosis in both tissues and cells was greatly increased with treatment of YFJDT. We further interfered with FAT4 expression in cells and found that the inhibitory effect of YFJDT on EMT was reversed, indicating that YFJDT affects EMT by regulating FAT4 expression. Taken together, results of this study suggested that the inhibitory effect of YFJDT on EMT in lung cancer tumors is through upregulating FAT4, promoting autophagy, and thus inhibiting EMT in cancer cells.
Collapse
|
25
|
Tsujita K, Satow R, Asada S, Nakamura Y, Arnes L, Sako K, Fujita Y, Fukami K, Itoh T. Homeostatic membrane tension constrains cancer cell dissemination by counteracting BAR protein assembly. Nat Commun 2021; 12:5930. [PMID: 34635648 PMCID: PMC8505629 DOI: 10.1038/s41467-021-26156-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/16/2021] [Indexed: 01/06/2023] Open
Abstract
Malignancy is associated with changes in cell mechanics that contribute to extensive cell deformation required for metastatic dissemination. We hypothesized that the cell-intrinsic physical factors that maintain epithelial cell mechanics could function as tumor suppressors. Here we show, using optical tweezers, genetic interference, mechanical perturbations, and in vivo studies, that epithelial cells maintain higher plasma membrane (PM) tension than their metastatic counterparts and that high PM tension potently inhibits cancer cell migration and invasion by counteracting membrane curvature sensing/generating BAR family proteins. This tensional homeostasis is achieved by membrane-to-cortex attachment (MCA) regulated by ERM proteins, whose disruption spontaneously transforms epithelial cells into a mesenchymal migratory phenotype powered by BAR proteins. Consistently, the forced expression of epithelial–mesenchymal transition (EMT)-inducing transcription factors results in decreased PM tension. In metastatic cells, increasing PM tension by manipulating MCA is sufficient to suppress both mesenchymal and amoeboid 3D migration, tumor invasion, and metastasis by compromising membrane-mediated mechanosignaling by BAR proteins, thereby uncovering a previously undescribed mechanical tumor suppressor mechanism. Changes in cell mechanics contribute to cancer cell dissemination. Here the authors show that high plasma membrane (PM) tension inhibits cancer dissemination by counteracting mechanosensitive BAR family protein assembly, while restoration of PM tension phenotypically convert malignant cells into a non-motile epithelial cell state.
Collapse
Affiliation(s)
- Kazuya Tsujita
- Biosignal Research Center, Kobe University, Kobe, Hyogo, 657-8501, Japan. .,Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan. .,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| | - Reiko Satow
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Shinobu Asada
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yoshikazu Nakamura
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Luis Arnes
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Keisuke Sako
- National Cerebral and Cardiovascular Center Research Institute, Osaka, 565-8565, Japan
| | - Yasuyuki Fujita
- Division of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Toshiki Itoh
- Biosignal Research Center, Kobe University, Kobe, Hyogo, 657-8501, Japan.,Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
26
|
Luo Z, Zhou X, Mandal K, He N, Wennerberg W, Qu M, Jiang X, Sun W, Khademhosseini A. Reconstructing the tumor architecture into organoids. Adv Drug Deliv Rev 2021; 176:113839. [PMID: 34153370 PMCID: PMC8560135 DOI: 10.1016/j.addr.2021.113839] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Cancer remains a leading health burden worldwide. One of the challenges hindering cancer therapy development is the substantial discrepancies between the existing cancer models and the tumor microenvironment (TME) of human patients. Constructing tumor organoids represents an emerging approach to recapitulate the pathophysiological features of the TME in vitro. Over the past decade, various approaches have been demonstrated to engineer tumor organoids as in vitro cancer models, such as incorporating multiple cellular populations, reconstructing biophysical and chemical traits, and even recapitulating structural features. In this review, we focus on engineering approaches for building tumor organoids, including biomaterial-based, microfabrication-assisted, and synthetic biology-facilitated strategies. Furthermore, we summarize the applications of engineered tumor organoids in basic cancer research, cancer drug discovery, and personalized medicine. We also discuss the challenges and future opportunities in using tumor organoids for broader applications.
Collapse
Affiliation(s)
- Zhimin Luo
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xingwu Zhou
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Na He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wally Wennerberg
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Moyuan Qu
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, and Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xing Jiang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wujin Sun
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| | - Ali Khademhosseini
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, Department of Radiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
27
|
Pedri D, Karras P, Landeloos E, Marine JC, Rambow F. Epithelial-to-mesenchymal-like transition events in melanoma. FEBS J 2021; 289:1352-1368. [PMID: 33999497 DOI: 10.1111/febs.16021] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 11/30/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT), a process through which epithelial tumor cells acquire mesenchymal phenotypic properties, contributes to both metastatic dissemination and therapy resistance in cancer. Accumulating evidence indicates that nonepithelial tumors, including melanoma, can also gain mesenchymal-like properties that increase their metastatic propensity and decrease their sensitivity to therapy. In this review, we discuss recent findings, illustrating the striking similarities-but also knowledge gaps-between the biology of mesenchymal-like state(s) in melanoma and mesenchymal state(s) from epithelial cancers. Based on this comparative analysis, we suggest hypothesis-driven experimental approaches to further deepen our understanding of the EMT-like process in melanoma and how such investigations may pave the way towards the identification of clinically relevant biomarkers for prognosis and new therapeutic strategies.
Collapse
Affiliation(s)
- Dennis Pedri
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium.,Laboratory of Membrane Trafficking, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Ewout Landeloos
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| |
Collapse
|
28
|
What we can learn from embryos to understand the mesenchymal-to-epithelial transition in tumor progression. Biochem J 2021; 478:1809-1825. [PMID: 33988704 DOI: 10.1042/bcj20210083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Epithelial plasticity involved the terminal and transitional stages that occur during epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET), both are essential at different stages of early embryonic development that have been co-opted by cancer cells to undergo tumor metastasis. These processes are regulated at multiple instances, whereas the post-transcriptional regulation of key genes mediated by microRNAs is gaining major attention as a common and conserved pathway. In this review, we focus on discussing the latest findings of the cellular and molecular basis of the less characterized process of MET during embryonic development, with special attention to the role of microRNAs. Although we take in consideration the necessity of being cautious when extrapolating the obtained evidence, we propose some commonalities between early embryonic development and cancer progression that can shed light into our current understanding of this complex event and might aid in the design of specific therapeutic approaches.
Collapse
|
29
|
Agnoletto C, Caruso C, Garofalo C. Heterogeneous Circulating Tumor Cells in Sarcoma: Implication for Clinical Practice. Cancers (Basel) 2021; 13:cancers13092189. [PMID: 34063272 PMCID: PMC8124844 DOI: 10.3390/cancers13092189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The present review is aimed to discuss the relevance of assaying for the presence and isolation of circulating tumor cells (CTCs) in patients with sarcoma. Just a few studies have been performed to detect and enumerate viable CTCs in sarcoma and a majority of them still represent proof-of-concept studies, while more frequently tumor cells have been detected in the circulation by using the PCR-based method. Nevertheless, recent advances in technologies allowed detection of epithelial–mesenchymal transitioned CTCs from patients with mesenchymal malignancies, despite results being mostly preliminary. The possibility to identify CTCs holds a great promise for both applications of liquid biopsy in sarcoma for precision medicine, and for research purposes to pinpoint the mechanism of the metastatic process through the characterization of tumor mesenchymal cells. Coherently, clinical trials in sarcoma have been designed accordingly to detect CTCs, for diagnosis, identification of novel therapeutic targets and resistance mechanisms of systemic therapies, and patient stratification. Abstract Bone and soft tissue sarcomas (STSs) represent a group of heterogeneous rare malignant tumors of mesenchymal origin, with a poor prognosis. Due to their low incidence, only a few studies have been reported addressing circulating tumor cells (CTCs) in sarcoma, despite the well-documented relevance for applications of liquid biopsy in precision medicine. In the present review, the most recent data relative to the detection and isolation of viable and intact CTCs in these tumors will be reviewed, and the heterogeneity in CTCs will be discussed. The relevance of epithelial–mesenchymal plasticity and stemness in defining the phenotypic and functional properties of these rare cells in sarcoma will be highlighted. Of note, the existence of dynamic epithelial–mesenchymal transition (EMT)-related processes in sarcoma tumors has only recently been related to their clinical aggressiveness. Also, the presence of epithelial cell adhesion molecule (EpCAM)-positive CTC in sarcoma has been weakly correlated with poor outcome and disease progression, thus proving the existence of both epithelial and mesenchymal CTC in sarcoma. The advancement in technologies for capturing and enumerating all diverse CTCs phenotype originating from these mesenchymal tumors are presented, and results provide a promising basis for clinical application of CTC detection in sarcoma.
Collapse
|
30
|
Kang X, Li C. A Dimension Reduction Approach for Energy Landscape: Identifying Intermediate States in Metabolism-EMT Network. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003133. [PMID: 34026435 PMCID: PMC8132071 DOI: 10.1002/advs.202003133] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/18/2020] [Indexed: 05/08/2023]
Abstract
Dimension reduction is a challenging problem in complex dynamical systems. Here, a dimension reduction approach of landscape (DRL) for complex dynamical systems is proposed, by mapping a high-dimensional system on a low-dimensional energy landscape. The DRL approach is applied to three biological networks, which validates that new reduced dimensions preserve the major information of stability and transition of original high-dimensional systems. The consistency of barrier heights calculated from the low-dimensional landscape and transition actions calculated from the high-dimensional system further shows that the landscape after dimension reduction can quantify the global stability of the system. The epithelial-mesenchymal transition (EMT) and abnormal metabolism are two hallmarks of cancer. With the DRL approach, a quadrastable landscape for metabolism-EMT network is identified, including epithelial (E), abnormal metabolic (A), hybrid E/M (H), and mesenchymal (M) cell states. The quantified energy landscape and kinetic transition paths suggest that for the EMT process, the cells at E state need to first change their metabolism, then enter the M state. The work proposes a general framework for the dimension reduction of a stochastic dynamical system, and advances the mechanistic understanding of the underlying relationship between EMT and cellular metabolism.
Collapse
Affiliation(s)
- Xin Kang
- School of Mathematical SciencesFudan UniversityShanghai200433China
- Shanghai Center for Mathematical SciencesFudan UniversityShanghai200433China
| | - Chunhe Li
- Shanghai Center for Mathematical SciencesFudan UniversityShanghai200433China
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| |
Collapse
|
31
|
αvβ3 Integrin induces partial EMT independent of TGF-β signaling. Commun Biol 2021; 4:490. [PMID: 33883697 PMCID: PMC8060333 DOI: 10.1038/s42003-021-02003-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) plays a pivotal role for tumor progression. Recent studies have revealed the existence of distinct intermediate states in EMT (partial EMT); however, the mechanisms underlying partial EMT are not fully understood. Here, we demonstrate that αvβ3 integrin induces partial EMT, which is characterized by acquiring mesenchymal phenotypes while retaining epithelial markers. We found αvβ3 integrin to be associated with poor survival in patients with lung adenocarcinoma. Moreover, αvβ3 integrin-induced partial EMT promoted migration, invasion, tumorigenesis, stemness, and metastasis of lung cancer cells in a TGF-β-independent fashion. Additionally, TGF-β1 promoted EMT progression synergistically with αvβ3 integrin, while a TGF-β signaling inhibitor showed no effect on αvβ3 integrin-induced partial EMT. Meanwhile, the microRNA-200 family abolished the αvβ3 integrin-induced partial EMT by suppressing αvβ3 integrin cell surface expression. These findings indicate that αvβ3 integrin is a key inducer of partial EMT, and highlight a new mechanism for cancer progression. Kariya, Oyama et al. propose that αvβ3 can drive a partial EMT phenotype characterized by maintained E-cadherin expression and upregulation of mesenchymal markers. This hybrid EMT state is independent of TGF-β1 signaling and characterised by increased migration, invasion, tumor cell proliferation, stemness and metastatic capacity.
Collapse
|
32
|
Leggett SE, Hruska AM, Guo M, Wong IY. The epithelial-mesenchymal transition and the cytoskeleton in bioengineered systems. Cell Commun Signal 2021; 19:32. [PMID: 33691719 PMCID: PMC7945251 DOI: 10.1186/s12964-021-00713-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 01/04/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is intrinsically linked to alterations of the intracellular cytoskeleton and the extracellular matrix. After EMT, cells acquire an elongated morphology with front/back polarity, which can be attributed to actin-driven protrusion formation as well as the gain of vimentin expression. Consequently, cells can deform and remodel the surrounding matrix in order to facilitate local invasion. In this review, we highlight recent bioengineering approaches to elucidate EMT and functional changes in the cytoskeleton. First, we review transitions between multicellular clusters and dispersed individuals on planar surfaces, which often exhibit coordinated behaviors driven by leader cells and EMT. Second, we consider the functional role of vimentin, which can be probed at subcellular length scales and within confined spaces. Third, we discuss the role of topographical patterning and EMT via a contact guidance like mechanism. Finally, we address how multicellular clusters disorganize and disseminate in 3D matrix. These new technologies enable controlled physical microenvironments and higher-resolution spatiotemporal measurements of EMT at the single cell level. In closing, we consider future directions for the field and outstanding questions regarding EMT and the cytoskeleton for human cancer progression. Video Abstract.
Collapse
Affiliation(s)
- Susan E Leggett
- Department of Chemical and Biological Engineering, Princeton University, William St, Princeton, NJ, 08544, USA
| | - Alex M Hruska
- School of Engineering, Center for Biomedical Engineering, and Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, MIT, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, and Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA.
| |
Collapse
|
33
|
Abstract
The epithelial to mesenchymal transition (EMT) is an enticingly simple mechanism that converts stationary epithelial cells into migratory mesenchymal cells. EMT is meant to provide a unified explanation for phenomena as complex as gastrulation and metastasis. However, cell movements turn out to be diverse, and many are collective. Cells commonly migrate in clusters, strands, sheets, elongating tubes, or in fluid-like masses. Moreover, plenty of cells move without activating the EMT program. Here I propose that EMT can be understood as one of many types of transitions in a broader landscape-or phase space-of cell morphologies and behaviors. Throughout biology, and at multiple scales, complexity arises from the combinatorial deployment of simple, modular components. I propose that diversity of cell shapes and behaviors similarly arises from combinatorial use of modular biomechanical properties.
Collapse
Affiliation(s)
- Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
34
|
Abstract
The evolutionary emergence of the mesenchymal phenotype greatly increased the complexity of tissue architecture and composition in early Metazoan species. At the molecular level, an epithelial-to-mesenchymal transition (EMT) was permitted by the innovation of specific transcription factors whose expression is sufficient to repress the epithelial transcriptional program. The reverse process, mesenchymal-to-epithelial transition (MET), involves direct inhibition of EMT transcription factors by numerous mechanisms including tissue-specific MET-inducing transcription factors (MET-TFs), micro-RNAs, and changes to cell and tissue architecture, thus providing an elegant solution to the need for tight temporal and spatial control over EMT and MET events during development and adult tissue homeostasis.
Collapse
Affiliation(s)
- John-Poul Ng-Blichfeldt
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK.
| | - Katja Röper
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
35
|
Novin A, Suhail Y, Ajeti V, Goyal R, Wali K, Seck A, Jackson A, Kshitiz. Diversity in cancer invasion phenotypes indicates specific stroma regulated programs. Hum Cell 2021; 34:111-121. [PMID: 32935295 PMCID: PMC11019343 DOI: 10.1007/s13577-020-00427-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/03/2020] [Indexed: 12/23/2022]
Abstract
Tumor dissemination into the surrounding stroma is the initial step in a metastatic cascade. Invasion into stroma is a non-autonomous process for cancer, and its progression depends upon the stage of cancer, as well as the cells residing in the stroma. However, a systems framework to understand how stromal fibroblasts resist, collude, or aid cancer invasion has been lacking, limiting our understanding of the role of stromal biology in cancer metastasis. We and others have shown that gene perturbation in stromal fibroblasts can modulate cancer invasion into the stroma, highlighting the active role stroma plays in regulating its own invasion. However, cancer invasion into stroma is a complex higher-order process and consists of various sub-phenotypes that together can result in an invasion. Stromal invasion exhibits a diversity of modalities in vivo. It is not well understood if these diverse modalities are correlated, or they emanate from distinct mechanisms and if stromal biology could regulate these characteristics. These characteristics include the extent of invasion, formation, and persistence of invasive forks by cancer as opposed to a collective frontal invasion, the persistence of invading velocity by leader cells at the tip of invasive forks, etc. We posit that quantifying distinct aspects of collective invasion can provide useful suggestions about the plausible mechanisms regulating these processes, including whether the process is regulated by mechanics or by intercellular communication between stromal cells and cancer. Here, we have identified the sub-characteristics of invasion, which might be indicative of broader mechanisms regulating these processes, developed methods to quantify these metrics, and demonstrated that perturbation of stromal genes can modulate distinct aspects of collective invasion. Our results highlight that the genetic state of stromal fibroblasts can regulate complex phenomena involved in cancer dissemination and suggest that collective cancer invasion into stroma is an outcome of the complex interplay between cancer and stromal fibroblasts.
Collapse
Affiliation(s)
- Ashkan Novin
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Cancer Systems Biology@ Yale, New Haven, CT, USA
| | - Visar Ajeti
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
- Cancer Systems Biology@ Yale, New Haven, CT, USA
| | - Ruchi Goyal
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
| | - Khadija Wali
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
- Department of Biology, Central Connecticut State University, New Britain, CT, USA
| | - Atta Seck
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
- College of Engineering, Technology, and Architecture, University of Hartford, Hartford, CT, USA
| | - Alex Jackson
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA.
- Cancer Systems Biology@ Yale, New Haven, CT, USA.
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
36
|
Dang TT, McIntosh AT, Morales JC, Pearson GW. miR614 Expression Enhances Breast Cancer Cell Motility. Int J Mol Sci 2020; 22:ijms22010112. [PMID: 33374314 PMCID: PMC7801944 DOI: 10.3390/ijms22010112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 01/17/2023] Open
Abstract
Using a data driven analysis of a high-content screen, we have uncovered new regulators of epithelial-to-mesenchymal transition (EMT) induced cell migration. Our results suggest that increased expression of miR614 can alter cell intrinsic gene expression to enhance single cell and collective migration in multiple contexts. Interestingly, miR614 specifically increased the expression of the EMT transcription factor Slug while not altering existing epithelial character or inducing other canonical EMT regulatory factors. Analysis of two different cell lines identified a set of genes whose expression is altered by the miR614 through direct and indirect mechanisms. Prioritization driven by functional testing of 25 of the miR614 suppressed genes uncovered the mitochondrial small GTPase Miro1 and the transmembrane protein TAPT1 as miR614 suppressed genes that inhibit migration. Notably, the suppression of either Miro1 or TAPT1 was sufficient to increase Slug expression and the rate of cell migration. Importantly, reduced TAPT1 expression correlated with an increased risk of relapse in breast cancer patients. Together, our results reveal how increased miR614 expression and the suppression of TAPT1 and Miro1 modulate the EMT state and migratory properties of breast cancer cells.
Collapse
Affiliation(s)
- Tuyen T. Dang
- Department of Neurosurgery and Stephenson Cancer Center, University of Oklahoma Health Science Center, 1122 NE 13th St., Oklahoma City, OK 73117, USA; (T.T.D.); (J.C.M.)
- Simmons Comprehensive Cancer, University of Texas, Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
| | - Alec T. McIntosh
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, 3970 Reservoir Rd. NW, Washington, DC 20057, USA;
| | - Julio C. Morales
- Department of Neurosurgery and Stephenson Cancer Center, University of Oklahoma Health Science Center, 1122 NE 13th St., Oklahoma City, OK 73117, USA; (T.T.D.); (J.C.M.)
| | - Gray W. Pearson
- Simmons Comprehensive Cancer, University of Texas, Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, 3970 Reservoir Rd. NW, Washington, DC 20057, USA;
- Correspondence:
| |
Collapse
|
37
|
Prognostic Significance and Functional Relevance of Olfactomedin 4 in Early-Stage Hepatocellular Carcinoma. Clin Transl Gastroenterol 2020; 11:e00124. [PMID: 31990698 PMCID: PMC7056049 DOI: 10.14309/ctg.0000000000000124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Hepatocellular carcinoma (HCC) is a leading cancer-related cause of death. Unfortunately, recurrence is common even after curative treatment of early-stage patients, and no adjuvant treatment has yet been established. Aberrant expression of OLFM4 in human cancers has been reported; yet, its specific function during tumor development remains poorly understood, and its role in HCC is unknown. The purpose of this study is to examine the prognostic significance of OLFM4 and its functional relevance in determining recurrence in patients with early-stage HCC. METHODS Immunohistochemical staining to assess expression, cellular distribution, and prognostic significance of OLFM4 was performed in a tissue microarray comprising 157 HCC tissues and matched nontumor tissues. In addition, expression of OLFM4-coding mRNA was assessed in a separate patients' cohort. The findings were validated by in vitro functional studies using siRNA directed against OLFM4 to assess its effect on cell motility and proliferation. RESULTS The fraction of HCC samples exhibiting positive OLFM4 staining was higher in comparison with that observed in hepatocytes from matched nontumor tissue (61% vs 39%). However, cytoplasmic-only staining for OLFM4 was associated with vascular invasion (P = 0.048), MMP-7 expression (P = 0.002), and poorer survival (P = 0.008). A multivariate analysis confirmed the independent significance of OLFM4 in determining patients' outcome (5-year survival [58.3% vs 17.3%; HR: 2.135 {95% confidence interval: 1.135-4.015}; P = 0.019]). Correspondingly, inhibition of OLFM4 by siRNA modulated the expression of MMP-7 and E-cadherin, causing inhibition of cell proliferation, motility, and migration. DISCUSSION To the best of our knowledge, we provide the first report on the prognostic significance of OLFM4 in HCC and identify its mechanistic role as crucial mediator of MMP family protein and E-Cadherin in determining cell invasion and metastasis formation.
Collapse
|
38
|
Ambrosini A, Röper K. "Neur"al brain wave: Coordinating epithelial-to-neural stem cell transition in the fly optic lobe. J Cell Biol 2020; 219:e202009040. [PMID: 33057636 PMCID: PMC7568446 DOI: 10.1083/jcb.202009040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the Drosophila larval optic lobe, the generation of neural stem cells involves an epithelial-to-mesenchymal-like transition of a continuous stripe of cells that sweeps across the neuroepithelium, but the dynamics at cell and tissue level were unknown until now. In this issue, Shard et al. (2020. J. Cell Biol.https://doi.org/10.1083/jcb.202005035) identify that Neuralized controls a partial epithelial-to-mesenchymal transition through regulation of the apical Crumbs complex and through the coordination of cell behaviors such as apical constriction and cell alignment.
Collapse
Affiliation(s)
| | - Katja Röper
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
39
|
Saxena K, Jolly MK, Balamurugan K. Hypoxia, partial EMT and collective migration: Emerging culprits in metastasis. Transl Oncol 2020; 13:100845. [PMID: 32781367 PMCID: PMC7419667 DOI: 10.1016/j.tranon.2020.100845] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular biological process involved in migration of primary cancer cells to secondary sites facilitating metastasis. Besides, EMT also confers properties such as stemness, drug resistance and immune evasion which can aid a successful colonization at the distant site. EMT is not a binary process; recent evidence suggests that cells in partial EMT or hybrid E/M phenotype(s) can have enhanced stemness and drug resistance as compared to those undergoing a complete EMT. Moreover, partial EMT enables collective migration of cells as clusters of circulating tumor cells or emboli, further endorsing that cells in hybrid E/M phenotypes may be the 'fittest' for metastasis. Here, we review mechanisms and implications of hybrid E/M phenotypes, including their reported association with hypoxia. Hypoxia-driven activation of HIF-1α can drive EMT. In addition, cyclic hypoxia, as compared to acute or chronic hypoxia, shows the highest levels of active HIF-1α and can augment cancer aggressiveness to a greater extent, including enriching for a partial EMT phenotype. We also discuss how metastasis is influenced by hypoxia, partial EMT and collective cell migration, and call for a better understanding of interconnections among these mechanisms. We discuss the known regulators of hypoxia, hybrid EMT and collective cell migration and highlight the gaps which needs to be filled for connecting these three axes which will increase our understanding of dynamics of metastasis and help control it more effectively.
Collapse
Affiliation(s)
- Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
40
|
Kelppe J, Thorén H, Haglund C, Sorsa T, Hagström J. MMP-7, -8, -9, E-cadherin, and beta-catenin expression in 34 ameloblastoma cases. Clin Exp Dent Res 2020; 7:63-69. [PMID: 32985799 PMCID: PMC7853880 DOI: 10.1002/cre2.331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives Ameloblastoma is a benign, locally aggressive odontogenic tumor with high recurrence rates. Matrix metalloproteinases (MMPs) mediate extracellular integrity in normal and pathological conditions, and exert multiple functions coordinating inflammation and tumor progression. E‐cadherin and beta‐catenin are adherence junction molecules in cell‐to‐cell connections. We investigated the involvement of MMP‐7, ‐8, ‐9, E‐cadherin, and beta‐catenin in ameloblastoma and the surrounding extracellular matrix. Material and methods Our material consisted of 30–34 tissue samples from ameloblastoma patients of Helsinki University Hospital. We used immunohistochemistry to detect the expression of the biomarkers. Two oral pathologists independently scored the immunoexpression intensities and statistical calculations were made based on the results. Results E‐cadherin expression was weaker in the maxillary than in mandibular ameloblastomas. Beta‐catenin was expressed in the ameloblastoma cell membranes. We detected MMP‐8 and ‐9 expression in polymorphonuclear neutrophils in the extracellular area and these MMPs correlated positively with each other. Osteoclasts lining bone margins and multinuclear giant cells expressed MMP‐9. Neither MMP‐8 nor MMP‐9 immunoexpression could be detected in ameloblastoma cells. MMP‐7 expression was seen in some apoptotic cells. Conclusion The fact that E‐cadherin immunoexpression was weaker in maxillary compared to mandibular ameloblastomas might associate to earlier recurrences. It promotes the idea of mandibular and maxillary ameloblastoma exerting differences in their biologies. We detected MMP‐8 and ‐9 in polymorphonuclear neutrophils which relates to these MMPs participating in extracellular remodeling through a mild inflammatory process. Bone degradation around ameloblastoma may be due to MMP‐9 in osteoclasts but this phenomenon might be an independent process and needs further investigations.
Collapse
Affiliation(s)
- Jetta Kelppe
- Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, Helsinki, Finland
| | - Hanna Thorén
- Department of Oral and Maxillofacial Surgery, Institute of Dentistry, University of Turku, Turku, Finland.,Department of Oral and Maxillofacial Diseases, Turku University Hospital, Turku, Finland
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Head and Neck Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Jaana Hagström
- Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, Helsinki, Finland.,Research Programs Unit, Translational Cancer Medicine, University of Helsinki, Helsinki, Finland.,Department of Oral Pathology and Radiology, University of Turku, Turku, Finland
| |
Collapse
|
41
|
Lin B, Luo J, Lehmann R. Collectively stabilizing and orienting posterior migratory forces disperses cell clusters in vivo. Nat Commun 2020; 11:4477. [PMID: 32901019 PMCID: PMC7479147 DOI: 10.1038/s41467-020-18185-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Individual cells detach from cohesive ensembles during development and can inappropriately separate in disease. Although much is known about how cells separate from epithelia, it remains unclear how cells disperse from clusters lacking apical-basal polarity, a hallmark of advanced epithelial cancers. Here, using live imaging of the developmental migration program of Drosophila primordial germ cells (PGCs), we show that cluster dispersal is accomplished by stabilizing and orienting migratory forces. PGCs utilize a G protein coupled receptor (GPCR), Tre1, to guide front-back migratory polarity radially from the cluster toward the endoderm. Posteriorly positioned myosin-dependent contractile forces pull on cell-cell contacts until cells release. Tre1 mutant cells migrate randomly with transient enrichment of the force machinery but fail to separate, indicating a temporal contractile force threshold for detachment. E-cadherin is retained on the cell surface during cell separation and augmenting cell-cell adhesion does not impede detachment. Notably, coordinated migration improves cluster dispersal efficiency by stabilizing cell-cell interfaces and facilitating symmetric pulling. We demonstrate that guidance of inherent migratory forces is sufficient to disperse cell clusters under physiological settings and present a paradigm for how such events could occur across development and disease.
Collapse
Affiliation(s)
- B Lin
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| | - J Luo
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - R Lehmann
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
42
|
Ilina O, Gritsenko PG, Syga S, Lippoldt J, La Porta CAM, Chepizhko O, Grosser S, Vullings M, Bakker GJ, Starruß J, Bult P, Zapperi S, Käs JA, Deutsch A, Friedl P. Cell-cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion. Nat Cell Biol 2020; 22:1103-1115. [PMID: 32839548 PMCID: PMC7502685 DOI: 10.1038/s41556-020-0552-6] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 06/30/2020] [Indexed: 12/25/2022]
Abstract
Plasticity of cancer invasion and metastasis depends on the ability of cancer cells to switch between collective and single-cell dissemination, controlled by cadherin-mediated cell-cell junctions. In clinical samples, E-cadherin-expressing and -deficient tumours both invade collectively and metastasize equally, implicating additional mechanisms controlling cell-cell cooperation and individualization. Here, using spatially defined organotypic culture, intravital microscopy of mammary tumours in mice and in silico modelling, we identify cell density regulation by three-dimensional tissue boundaries to physically control collective movement irrespective of the composition and stability of cell-cell junctions. Deregulation of adherens junctions by downregulation of E-cadherin and p120-catenin resulted in a transition from coordinated to uncoordinated collective movement along extracellular boundaries, whereas single-cell escape depended on locally free tissue space. These results indicate that cadherins and extracellular matrix confinement cooperate to determine unjamming transitions and stepwise epithelial fluidization towards, ultimately, cell individualization.
Collapse
Affiliation(s)
- Olga Ilina
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Pavlo G Gritsenko
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Simon Syga
- Department of Innovative Computing, Centre for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
| | - Jürgen Lippoldt
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Caterina A M La Porta
- Center for Complexity and Biosystems, University of Milan, Milan, Italy
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Biofisica, Milan, Italy
| | - Oleksandr Chepizhko
- Institut für Theoretische Physik, Leopold-Franzens-Universität Innsbruck, Innsbruck, Austria
| | - Steffen Grosser
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Manon Vullings
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gert-Jan Bakker
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jörn Starruß
- Department of Innovative Computing, Centre for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
| | - Peter Bult
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stefano Zapperi
- Center for Complexity and Biosystems, University of Milan, Milan, Italy
- Department of Physics, University of Milan, Milan, Italy
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, Milan, Italy
| | - Josef A Käs
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Andreas Deutsch
- Department of Innovative Computing, Centre for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
- David H. Koch Center for Applied Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Cancer Genomics Centre, Utrecht, the Netherlands.
| |
Collapse
|
43
|
Hoffman MT, Kemp SB, Salas-Escabillas DJ, Zhang Y, Steele NG, The S, Long D, Benitz S, Yan W, Margolskee RF, Bednar F, Pasca di Magliano M, Wen HJ, Crawford HC. The Gustatory Sensory G-Protein GNAT3 Suppresses Pancreatic Cancer Progression in Mice. Cell Mol Gastroenterol Hepatol 2020; 11:349-369. [PMID: 32882403 PMCID: PMC7779788 DOI: 10.1016/j.jcmgh.2020.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDA) initiation and progression are accompanied by an immunosuppressive inflammatory response. Here, we evaluated the immunomodulatory role of chemosensory signaling in metaplastic tuft cells (MTCs) by analyzing the role of GNAT3, a gustatory pathway G-protein expressed by MTCs, during PDA progression. METHODS Gnat3-null (Gnat3-/-) mice were crossbred with animals harboring a Cre-inducible KrasLSL-G12D/+ allele with either Ptf1aCre/+ (KC) or tamoxifen-inducible Ptf1aCreERT/+ (KCERT) mice to drive oncogenic KRAS expression in the pancreas. Ex vivo organoid conditioned medium generated from KC and Gnat3-/-;KC acinar cells was analyzed for cytokine secretion. Experimental pancreatitis was induced in KCERT and Gnat3-/-;KCERT mice to accelerate tumorigenesis, followed by analysis using mass cytometry and single-cell RNA sequencing. To study PDA progression, KC and Gnat3-/-;KC mice were aged to morbidity or 52 weeks. RESULTS Ablation of Gnat3 in KC organoids increased release of tumor-promoting cytokines in conditioned media, including CXCL1 and CXCL2. Analysis of Gnat3-/-;KCERT pancreata found altered expression of immunomodulatory genes in Cxcr2 expressing myeloid-derived suppressor cells (MDSCs) and an increased number of granulocytic MDSCs, a subset of tumor promoting MDSCs. Importantly, expression levels of CXCL1 and CXCL2, known ligands for CXCR2, were also elevated in Gnat3-/-;KCERT pancreata. Consistent with the tumor-promoting role of MDSCs, aged Gnat3-/-;KC mice progressed more rapidly to metastatic carcinoma compared with KC controls. CONCLUSIONS Compromised gustatory sensing, achieved by Gnat3 ablation, enhanced the CXCL1/2-CXCR2 axis to alter the MDSC population and promoted the progression of metastatic PDA.
Collapse
Affiliation(s)
- Megan T Hoffman
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Samantha B Kemp
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Daniel J Salas-Escabillas
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Yaqing Zhang
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Nina G Steele
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Stephanie The
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Daniel Long
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Simone Benitz
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Wei Yan
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - Filip Bednar
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Hui-Ju Wen
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Howard C Crawford
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
44
|
Hacker BC, Rafat M. Organoids as Complex In Vitro Models for Studying Radiation-Induced Cell Recruitment. Cell Mol Bioeng 2020; 13:341-357. [PMID: 32952734 PMCID: PMC7479086 DOI: 10.1007/s12195-020-00625-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/10/2020] [Indexed: 01/01/2023] Open
Abstract
Patients with triple negative breast cancer (TNBC) typically receive chemotherapy, surgery, and radiation therapy. Although this treatment improves prognosis for most patients, some patients continue to experience recurrence within 5 years. Preclinical studies have shown that immune cell infiltration at the irradiated site may play a significant role in tumor cell recruitment; however, little is known about the mechanisms that govern this process. This lack of knowledge highlights the need to evaluate radiation-induced cell infiltration with models that have controllable variables and maintain biological integrity. Mammary organoids are multicellular three-dimensional (3D) in vitro models, and they have been used to examine many aspects of mammary development and tumorigenesis. Organoids are also emerging as a powerful tool to investigate normal tissue radiation damage. In this review, we evaluate recent advances in mammary organoid technology, consider the advantages of using organoids to study radiation response, and discuss future directions for the applications of this technique.
Collapse
Affiliation(s)
- Benjamin C. Hacker
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA
| | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
45
|
Padmanaban V, Grasset EM, Neumann NM, Fraser AK, Henriet E, Matsui W, Tran PT, Cheung KJ, Georgess D, Ewald AJ. Organotypic culture assays for murine and human primary and metastatic-site tumors. Nat Protoc 2020; 15:2413-2442. [PMID: 32690957 PMCID: PMC8202162 DOI: 10.1038/s41596-020-0335-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 04/16/2020] [Indexed: 01/20/2023]
Abstract
Cancer invasion and metastasis are challenging to study in vivo since they occur deep inside the body over extended time periods. Organotypic 3D culture of fresh tumor tissue enables convenient real-time imaging, genetic and microenvironmental manipulation and molecular analysis. Here, we provide detailed protocols to isolate and culture heterogenous organoids from murine and human primary and metastatic site tumors. The time required to isolate organoids can vary based on the tissue and organ type but typically takes <7 h. We describe a suite of assays that model specific aspects of metastasis, including proliferation, survival, invasion, dissemination and colony formation. We also specify comprehensive protocols for downstream applications of organotypic cultures that will allow users to (i) test the role of specific genes in regulating various cellular processes, (ii) distinguish the contributions of several microenvironmental factors and (iii) test the effects of novel therapeutics.
Collapse
Affiliation(s)
- Veena Padmanaban
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Eloise M. Grasset
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Neil M. Neumann
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Andrew K. Fraser
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Elodie Henriet
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - William Matsui
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Phuoc T. Tran
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kevin J. Cheung
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dan Georgess
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA,Department of Natural Sciences, School of Arts & Sciences, Lebanese American University, Beirut, Lebanon
| | - Andrew J. Ewald
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Author for Correspondence: Andrew J. Ewald, 855 N. Wolfe Street, Rangos 452, Baltimore, MD 21205, Tel: 410-614-9288,
| |
Collapse
|
46
|
Gaponova AV, Rodin S, Mazina AA, Volchkov PV. Epithelial-Mesenchymal Transition: Role in Cancer Progression and the Perspectives of Antitumor Treatment. Acta Naturae 2020; 12:4-23. [PMID: 33173593 PMCID: PMC7604894 DOI: 10.32607/actanaturae.11010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
About 90% of all malignant tumors are of epithelial nature. The epithelial tissue is characterized by a close interconnection between cells through cell-cell interactions, as well as a tight connection with the basement membrane, which is responsible for cell polarity. These interactions strictly determine the location of epithelial cells within the body and are seemingly in conflict with the metastatic potential that many cancers possess (the main criteria for highly malignant tumors). Tumor dissemination into vital organs is one of the primary causes of death in patients with cancer. Tumor dissemination is based on the so-called epithelial-mesenchymal transition (EMT), a process when epithelial cells are transformed into mesenchymal cells possessing high mobility and migration potential. More and more studies elucidating the role of the EMT in metastasis and other aspects of tumor progression are published each year, thus forming a promising field of cancer research. In this review, we examine the most recent data on the intracellular and extracellular molecular mechanisms that activate EMT and the role they play in various aspects of tumor progression, such as metastasis, apoptotic resistance, and immune evasion, aspects that have usually been attributed exclusively to cancer stem cells (CSCs). In conclusion, we provide a detailed review of the approved and promising drugs for cancer therapy that target the components of the EMT signaling pathways.
Collapse
Affiliation(s)
- A. V. Gaponova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701 Russia
| | - S. Rodin
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177 Sweden
| | - A. A. Mazina
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701 Russia
| | - P. V. Volchkov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701 Russia
| |
Collapse
|
47
|
Sharma A, Elble RC. From Orai to E-Cadherin: Subversion of Calcium Trafficking in Cancer to Drive Proliferation, Anoikis-Resistance, and Metastasis. Biomedicines 2020; 8:biomedicines8060169. [PMID: 32575848 PMCID: PMC7345168 DOI: 10.3390/biomedicines8060169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/23/2022] Open
Abstract
The common currency of epithelial differentiation and homeostasis is calcium, stored primarily in the endoplasmic reticulum, rationed according to need, and replenished from the extracellular milieu via store-operated calcium entry (SOCE). This currency is disbursed by the IP3 receptor in response to diverse extracellular signals. The rate of release is governed by regulators of proliferation, autophagy, survival, and programmed cell death, the strength of the signal leading to different outcomes. Intracellular calcium acts chiefly through intermediates such as calmodulin that regulates growth factor receptors such as epidermal growth factor receptor (EGFR), actin polymerization, and adherens junction assembly and maintenance. Here we review this machinery and its role in differentiation, then consider how cancer cells subvert it to license proliferation, resist anoikis, and enable metastasis, either by modulating the level of intracellular calcium or its downstream targets or effectors such as EGFR, E-cadherin, IQGAP1, TMEM16A, CLCA2, and TRPA1. Implications are considered for the roles of E-cadherin and growth factor receptors in circulating tumor cells and metastasis. The discovery of novel, cell type-specific modulators and effectors of calcium signaling offers new possibilities for cancer chemotherapy.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Randolph C. Elble
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Correspondence: ; Tel.: +217-545-7381
| |
Collapse
|
48
|
Konrad L, Dietze R, Riaz MA, Scheiner-Bobis G, Behnke J, Horné F, Hoerscher A, Reising C, Meinhold-Heerlein I. Epithelial-Mesenchymal Transition in Endometriosis-When Does It Happen? J Clin Med 2020; 9:E1915. [PMID: 32570986 PMCID: PMC7357060 DOI: 10.3390/jcm9061915] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important process of cell remodeling characterized by the gradual loss of the epithelial phenotype and progressive gain of a mesenchymal phenotype. EMT is not an all-or-nothing process, but instead a transition of epithelial to mesenchymal cells with intermediate cell states. Recently, EMT was described in endometriosis, and many EMT-specific pathways like Twist, Snail, Slug, Zinc finger E-box-binding homeobox 1/2 (ZEB1/2), E/N-cadherin, keratins, and claudins are involved. However, as pointed out in this review, a comparison of the eutopic endometrium of women with and without endometriosis yielded only subtle changes of these EMT markers. Furthermore, only very few alterations in cell-cell contacts could be found but without changes in the epithelial phenotype. This suggests only a partial EMT which is not a prerequisite for the detachment of endometrial cells and, thus, not critical for the first step(s) in the pathogenesis of endometriosis. In contrast, the majority of changes in the EMT-related marker expression were found in the ectopic endometrium, especially in the three endometriotic entities, ovarian, peritoneal, and deep infiltrating endometriosis (DIE), compared with the eutopic endometrium. In this review, we examine the most important EMT pathways described in endometriosis and propose that partial EMT might result from the interaction of endometrial implants with their surrounding microenvironment.
Collapse
Affiliation(s)
- Lutz Konrad
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.H.); (A.H.); (C.R.); (I.M.-H.)
| | - Raimund Dietze
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35037 Marburg, Germany;
| | - Muhammad A. Riaz
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.H.); (A.H.); (C.R.); (I.M.-H.)
| | - Georgios Scheiner-Bobis
- Institute for Veterinary-Physiology and -Biochemistry, School of Veterinary Medicine, Justus-Liebig-University, 35390 Gießen, Germany;
| | - Judith Behnke
- Department of General Pediatrics and Neonatalogy, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany;
| | - Fabian Horné
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.H.); (A.H.); (C.R.); (I.M.-H.)
| | - Alena Hoerscher
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.H.); (A.H.); (C.R.); (I.M.-H.)
| | - Christoph Reising
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.H.); (A.H.); (C.R.); (I.M.-H.)
| | - Ivo Meinhold-Heerlein
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.H.); (A.H.); (C.R.); (I.M.-H.)
| |
Collapse
|
49
|
Organoid models for mammary gland dynamics and breast cancer. Curr Opin Cell Biol 2020; 66:51-58. [PMID: 32535255 DOI: 10.1016/j.ceb.2020.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
The mammary gland is a highly dynamic tissue that undergoes repeated cycles of growth and involution during pregnancy and menstruation. It is also the site from which breast cancers emerge. Organoids provide an in vitro model that preserves several of the cellular, structural, and microenvironmental features that dictate mammary gland function in vivo and have greatly advanced our understanding of glandular biology. Their tractability for genetic manipulation, live imaging, and high throughput screening have facilitated investigation into the mechanisms of glandular morphogenesis, structural maintenance, tumor progression, and invasion. Opportunities remain to enhance cellular and structural complexity of mammary organoid models, including incorporating additional cell types and hormone signaling.
Collapse
|
50
|
Zhao L, Liu Y, Liu Y, Zhang M, Zhang X. Microfluidic Control of Tumor and Stromal Cell Spheroids Pairing and Merging for Three-Dimensional Metastasis Study. Anal Chem 2020; 92:7638-7645. [PMID: 32374153 DOI: 10.1021/acs.analchem.0c00408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three-dimensional cell culture provides an efficient way to simulate the in vivo tumorigenic microenvironment where tumor-stroma interaction intrinsically plays a pivotal role. Conventional three-dimensional (3D) culture is inadequate to address precise coexistential heterogeneous pairing and quantitative measurement in a parallel algorithm format. Herein, we implemented a set of microwell array microfluidic devices to study the cell spheroids-based tumor-stromal metastatic process in vitro. This approach enables accurate one-to-one pairing between tumor and fibroblast spheroid for dissecting 3D tumor invasion in the manner of high-content imaging. On one single device, 240 addressable tumor-stroma pairings can be formed with convenient pipetting and centrifugation within a small area of 1 cm2. Consequential confocal imaging analysis disclosed that the tumor spheroid could envelop the fibroblast spheroid. Specific chemicals can effectively hamper or promote this 3D metastasis. Due to the addressable time-resolved measurements of the merging process of hundreds of doublets, our approach allows us to decipher the metastatic phenotype between different tumor spheroids. Compared with traditional protocols, massive heterogeneous cellular spheroids pairing and merging using this method is well-defined with microfluidic control, which leads to a favorable high-content tumor-stroma doublet metastasis analysis. This simple technique will be a useful tool for investigating heterotypic spheroid-spheroid interactions.
Collapse
Affiliation(s)
- Liang Zhao
- Institute of Precision Medicine and Health, Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China, 100083
| | - Yingying Liu
- Institute of Precision Medicine and Health, Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China, 100083
| | - Yang Liu
- Institute of Precision Medicine and Health, Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China, 100083
| | - Meiqin Zhang
- Institute of Precision Medicine and Health, Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China, 100083
| | - Xueji Zhang
- Institute of Precision Medicine and Health, Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China, 100083
| |
Collapse
|