1
|
Lei X, Xu Z, Huang Y, Huang L, Lang J, Qu M, Liu D. Regulation of Mitochondrial Quality Control of Intestinal Stem Cells in Homeostasis and Diseases. Antioxid Redox Signal 2025; 42:494-511. [PMID: 39225500 DOI: 10.1089/ars.2023.0489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Significance: Intestinal stem cells (ISCs) are crucial for the continuous renewal and regeneration of the small intestinal epithelium. ISC fate decisions are strictly controlled by metabolism. Mitochondria act as the central hubs of energetic metabolism and dynamically remodel their morphology to perform required metabolic functions. Mitochondrial dysfunction is closely associated with a variety of gastrointestinal diseases. Recent Advances: In recent years, several studies have reported that mitochondria are potential therapeutic targets for regulating ISC function to alleviate intestinal diseases. However, how mitochondrial quality control mediates ISCs under physiological conditions and protects against intestinal injury remains to be comprehensively reviewed. Critical Issues: In this review, we summarize the available studies about how mitochondrial metabolism, redox state, dynamics, autophagy, and proteostasis impact ISC proliferation, differentiation, and regeneration, respectively. Future Directions: We propose that remodeling the function of mitochondria in ISCs may be a promising potential future direction for the treatment of intestinal diseases. This review may provide new strategies for therapeutically targeting the mitochondria of ISCs in intestinal diseases. Antioxid. Redox Signal. 42, 494-511.
Collapse
Affiliation(s)
- Xudan Lei
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenni Xu
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yujun Huang
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Lingxiao Huang
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jinyi Lang
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mingyue Qu
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Dengqun Liu
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Zhang R, Perekatt A, Chen L. Metabolic regulation of intestinal homeostasis: molecular and cellular mechanisms and diseases. MedComm (Beijing) 2024; 5:e776. [PMID: 39465140 PMCID: PMC11502721 DOI: 10.1002/mco2.776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolism serves not only as the organism's energy source but also yields metabolites crucial for maintaining tissue homeostasis and overall health. Intestinal stem cells (ISCs) maintain intestinal homeostasis through continuous self-renewal and differentiation divisions. The intricate relationship between metabolic pathways and intestinal homeostasis underscores their crucial interplay. Metabolic pathways have been shown to directly regulate ISC self-renewal and influence ISC fate decisions under homeostatic conditions, but the cellular and molecular mechanisms remain incompletely understood. Understanding the intricate involvement of various pathways in maintaining intestinal homeostasis holds promise for devising innovative strategies to address intestinal diseases. Here, we provide a comprehensive review of recent advances in the regulation of intestinal homeostasis. We describe the regulation of intestinal homeostasis from multiple perspectives, including the regulation of intestinal epithelial cells, the regulation of the tissue microenvironment, and the key role of nutrient metabolism. We highlight the regulation of intestinal homeostasis and ISC by nutrient metabolism. This review provides a multifaceted perspective on how intestinal homeostasis is regulated and provides ideas for intestinal diseases and repair of intestinal damage.
Collapse
Affiliation(s)
- Ruolan Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
| | - Ansu Perekatt
- Department of Chemistry and Chemical BiologyStevens Institute of TechnologyHobokenNew JerseyUSA
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
- Institute of Microphysiological SystemsSoutheast UniversityNanjingChina
| |
Collapse
|
3
|
Shaikh NA, Liu C, Yin Y, Baylink DJ, Tang X. 1,25-Dihydroxyvitamin D Enhances the Regenerative Function of Lgr5 + Intestinal Stem Cells In Vitro and In Vivo. Cells 2024; 13:1465. [PMID: 39273035 PMCID: PMC11394149 DOI: 10.3390/cells13171465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder in the intestines without a cure. Current therapies suppress inflammation to prevent further intestinal damage. However, healing already damaged intestinal epithelia is still an unmet medical need. Under physiological conditions, Lgr5+ intestinal stem cells (ISCs) in the intestinal crypts replenish the epithelia every 3-5 days. Therefore, understanding the regulation of Lgr5+ ISCs is essential. Previous data suggest vitamin D signaling is essential to maintain normal Lgr5+ ISC function in vivo. Our recent data indicate that to execute its functions in the intestines optimally, 1,25(OH)2D requires high concentrations that, if present systemically, can cause hypercalcemia (i.e., blood calcium levels significantly higher than physiological levels), leading to severe consequences. Using 5-bromo-2'-deoxyuridine (BrdU) to label the actively proliferating ISCs, our previous data suggested that de novo synthesized locally high 1,25(OH)2D concentrations effectively enhanced the migration and differentiation of ISCs without causing hypercalcemia. However, although sparse in the crypts, other proliferating cells other than Lgr5+ ISCs could also be labeled with BrdU. This current study used high-purity Lgr5+ ISC lines and a mouse strain, in which Lgr5+ ISCs and their progeny could be specifically tracked, to investigate the effects of de novo synthesized locally high 1,25(OH)2D concentrations on Lgr5+ ISC function. Our data showed that 1,25(OH)2D at concentrations significantly higher than physiological levels augmented Lgr5+ ISC differentiation in vitro. In vivo, de novo synthesized locally high 1,25(OH)2D concentrations significantly elevated local 1α-hydroxylase expression, robustly suppressed experimental colitis, and promoted Lgr5+ ISC differentiation. For the first time, this study definitively demonstrated 1,25(OH)2D's role in Lgr5+ ISCs, underpinning 1,25(OH)2D's promise in IBD therapy.
Collapse
Affiliation(s)
- Nisar Ali Shaikh
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| | - Chenfan Liu
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
- Shandong Public Health Clinical Center, Shandong University, Jinan 250013, China
| | - Yue Yin
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| | - David J. Baylink
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Xiaolei Tang
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
4
|
Wang J, Chang CY, Yang X, Zhou F, Liu J, Bargonetti J, Zhang L, Xie P, Feng Z, Hu W. p53 suppresses MHC class II presentation by intestinal epithelium to protect against radiation-induced gastrointestinal syndrome. Nat Commun 2024; 15:137. [PMID: 38167344 PMCID: PMC10762193 DOI: 10.1038/s41467-023-44390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Radiation-induced gastrointestinal syndrome is a major complication and limiting factor for radiotherapy. Tumor suppressor p53 has a protective role in radiation-induced gastrointestinal toxicity. However, its underlying mechanism remains unclear. Here we report that regulating the IL12-p40/MHC class II signaling pathway is a critical mechanism by which p53 protects against radiation-induced gastrointestinal syndrome. p53 inhibits the expression of inflammatory cytokine IL12-p40, which in turn suppresses the expression of MHC class II on intestinal epithelial cells to suppress T cell activation and inflammation post-irradiation that causes intestinal stem cell damage. Anti-IL12-p40 neutralizing antibody inhibits inflammation and rescues the defects in intestinal epithelial regeneration post-irradiation in p53-deficient mice and prolongs mouse survival. These results uncover that the IL12-p40/MHC class II signaling mediates the essential role of p53 in ensuring intestinal stem cell function and proper immune reaction in response to radiation to protect mucosal epithelium, and suggest a potential therapeutic strategy to protect against radiation-induced gastrointestinal syndrome.
Collapse
Affiliation(s)
- Jianming Wang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Chun-Yuan Chang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Xue Yang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Fan Zhou
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Juan Liu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Jill Bargonetti
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065, USA
| | - Lanjing Zhang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
- Department of Biological Sciences, Rutgers University, Newark, NJ, 07102, USA
- Department of Pathology, Penn Medicine Princeton Medical Center, Plainsboro, NJ, 08536, USA
| | - Ping Xie
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Zhaohui Feng
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA.
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
5
|
Parham LR, Williams PA, Katada K, Nettleford SK, Chatterji P, Acheampong KK, Danan CH, Ma X, Simon LA, Naughton KE, Mizuno R, Karakasheva T, McMillan EA, Whelan KA, Brady DC, Shaffer SM, Hamilton KE. IGF2BP1/IMP1 Deletion Enhances a Facultative Stem Cell State via Regulation of MAP1LC3B. Cell Mol Gastroenterol Hepatol 2023; 17:439-451. [PMID: 38081361 PMCID: PMC10835461 DOI: 10.1016/j.jcmgh.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/02/2024]
Abstract
BACKGROUND & AIMS The intestinal epithelium interfaces with a diverse milieu of luminal contents while maintaining robust digestive and barrier functions. Facultative intestinal stem cells are cells that survive tissue injury and divide to re-establish the epithelium. Prior studies have shown autophagic state as functional marker of facultative intestinal stem cells, but regulatory mechanisms are not known. The current study evaluated a post-transcriptional regulation of autophagy as an important factor for facultative stem cell state and tissue regeneration. METHODS We evaluated stem cell composition, autophagic vesicle content, organoid formation, and in vivo regeneration in mice with intestinal epithelial deletion of the RNA binding protein IGF2 messenger RNA binding protein 1 (IMP1). The contribution of autophagy to resulting in vitro and in vivo phenotypes was evaluated via genetic inactivation of Atg7. Molecular analyses of IMP1 modulation of autophagy at the protein and transcript localization levels were performed using IMP1 mutant studies and single-molecule fluorescent in situ hybridization. RESULTS Epithelial Imp1 deletion reduced leucine rich repeat containing G protein coupled receptor 5 cell frequency but enhanced both organoid formation efficiency and in vivo regeneration after irradiation. We confirmed prior studies showing increased autophagy with IMP1 deletion. Deletion of Atg7 reversed the enhanced regeneration observed with Imp1 deletion. IMP1 deletion or mutation of IMP1 phosphorylation sites enhanced expression of essential autophagy protein microtubule-associated protein 1 light chain 3β. Furthermore, immunofluorescence imaging coupled with single-molecule fluorescent in situ hybridization showed IMP1 colocalization with MAP1LC3B transcripts at homeostasis. Stress induction led to decreased colocalization. CONCLUSIONS Depletion of IMP1 enhances autophagy, which promotes intestinal regeneration via expansion of facultative intestinal stem cells.
Collapse
Affiliation(s)
- Louis R Parham
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Patrick A Williams
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kay Katada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Shaneice K Nettleford
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Priya Chatterji
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kofi K Acheampong
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Charles H Danan
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Xianghui Ma
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Lauren A Simon
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kaitlyn E Naughton
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Rei Mizuno
- Department of Surgery, Uji-Tokushukai Medical Center, Uji, Kyoto, Japan
| | - Tatiana Karakasheva
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Emily A McMillan
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kelly A Whelan
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania; Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Donita C Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sydney M Shaffer
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathryn E Hamilton
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
6
|
Rajbhandari N, Hamilton M, Quintero CM, Ferguson LP, Fox R, Schürch CM, Wang J, Nakamura M, Lytle NK, McDermott M, Diaz E, Pettit H, Kritzik M, Han H, Cridebring D, Wen KW, Tsai S, Goggins MG, Lowy AM, Wechsler-Reya RJ, Von Hoff DD, Newman AM, Reya T. Single-cell mapping identifies MSI + cells as a common origin for diverse subtypes of pancreatic cancer. Cancer Cell 2023; 41:1989-2005.e9. [PMID: 37802055 PMCID: PMC10836835 DOI: 10.1016/j.ccell.2023.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/12/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
Identifying the cells from which cancers arise is critical for understanding the molecular underpinnings of tumor evolution. To determine whether stem/progenitor cells can serve as cells of origin, we created a Msi2-CreERT2 knock-in mouse. When crossed to CAG-LSL-MycT58A mice, Msi2-CreERT2 mice developed multiple pancreatic cancer subtypes: ductal, acinar, adenosquamous, and rare anaplastic tumors. Combining single-cell genomics with computational analysis of developmental states and lineage trajectories, we demonstrate that MYC preferentially triggers transformation of the most immature MSI2+ pancreas cells into multi-lineage pre-cancer cells. These pre-cancer cells subsequently diverge to establish pancreatic cancer subtypes by activating distinct transcriptional programs and large-scale genomic changes, and enforced expression of specific signals like Ras can redirect subtype specification. This study shows that multiple pancreatic cancer subtypes can arise from a common pool of MSI2+ cells and provides a powerful model to understand and control the programs that shape divergent fates in pancreatic cancer.
Collapse
Affiliation(s)
- Nirakar Rajbhandari
- Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Michael Hamilton
- Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Cynthia M Quintero
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York City, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York City, NY, USA
| | - L Paige Ferguson
- Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Raymond Fox
- Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Jun Wang
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Mari Nakamura
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York City, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York City, NY, USA
| | - Nikki K Lytle
- Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Matthew McDermott
- Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Emily Diaz
- Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Hannah Pettit
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York City, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York City, NY, USA
| | - Marcie Kritzik
- Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York City, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York City, NY, USA
| | - Haiyong Han
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Derek Cridebring
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Kwun Wah Wen
- Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Susan Tsai
- Department of Surgery, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael G Goggins
- Departments of Pathology, Medicine and Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Andrew M Lowy
- Department of Surgery, Division of Surgical Oncology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Robert J Wechsler-Reya
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York City, NY, USA; Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Rady Children's Institute for Genomic Medicine, San Diego, CA, USA; Department of Neurology, Columbia University Medical Center, New York City, NY, USA
| | - Daniel D Von Hoff
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Aaron M Newman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tannishtha Reya
- Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York City, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York City, NY, USA.
| |
Collapse
|
7
|
Chen L, Qiu X, Dupre A, Pellon-Cardenas O, Fan X, Xu X, Rout P, Walton KD, Burclaff J, Zhang R, Fang W, Ofer R, Logerfo A, Vemuri K, Bandyopadhyay S, Wang J, Barbet G, Wang Y, Gao N, Perekatt AO, Hu W, Magness ST, Spence JR, Verzi MP. TGFB1 induces fetal reprogramming and enhances intestinal regeneration. Cell Stem Cell 2023; 30:1520-1537.e8. [PMID: 37865088 PMCID: PMC10841757 DOI: 10.1016/j.stem.2023.09.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/03/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
The gut epithelium has a remarkable ability to recover from damage. We employed a combination of high-throughput sequencing approaches, mouse genetics, and murine and human organoids and identified a role for TGFB signaling during intestinal regeneration following injury. At 2 days following irradiation (IR)-induced damage of intestinal crypts, a surge in TGFB1 expression is mediated by monocyte/macrophage cells at the location of damage. The depletion of macrophages or genetic disruption of TGFB signaling significantly impaired the regenerative response. Intestinal regeneration is characterized by the induction of a fetal-like transcriptional signature during repair. In organoid culture, TGFB1 treatment was necessary and sufficient to induce the fetal-like/regenerative state. Mesenchymal cells were also responsive to TGFB1 and enhanced the regenerative response. Mechanistically, pro-regenerative factors, YAP/TEAD and SOX9, are activated in the epithelium exposed to TGFB1. Finally, pre-treatment with TGFB1 enhanced the ability of primary epithelial cultures to engraft into damaged murine colon, suggesting promise for cellular therapy.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China.
| | - Xia Qiu
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Abigail Dupre
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Oscar Pellon-Cardenas
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Xiaojiao Fan
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Xiaoting Xu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Prateeksha Rout
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Katherine D Walton
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Chapel Hill, NC 27695, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ruolan Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Wenxin Fang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Rachel Ofer
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Alexandra Logerfo
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Sheila Bandyopadhyay
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08903, USA
| | - Gaetan Barbet
- Child Health Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08901, USA
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Nan Gao
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Ansu O Perekatt
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08903, USA
| | - Scott T Magness
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Chapel Hill, NC 27695, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason R Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA; Rutgers Cancer Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08903, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University-New Brunswick, New Brunswick, NJ 08901, USA; NIEHS Center for Environmental Exposures and Disease (CEED), Rutgers EOHSI, Piscataway, NJ 08854, USA.
| |
Collapse
|
8
|
Yu L, Qi S, Wei G, Rao X, Luo D, Zou M, Mi Y, Zhang C, Li J. Krüppel-like factor 5 activates chick intestinal stem cell and promotes mucosal repair after impairment. Cell Cycle 2023; 22:2142-2160. [PMID: 37950881 PMCID: PMC10732631 DOI: 10.1080/15384101.2023.2278938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/30/2023] [Indexed: 11/13/2023] Open
Abstract
The mucosal renewal, which depends on the intestinal stem cell (ISC) activity, is the foundation of mucosal repairment. Importantly, activation of reserve ISCs (rISCs) plays a vital role in initiating mucosal repair after injury. However, the underlying regulatory mechanism of rISCs activation in chickens remains unclear. In this study, immediately after lipopolysaccharide (LPS) challenge, mitochondrial morphological destruction and dysfunction appeared in the crypt, accompanied by decreased epithelial secretion (decreased Muc2 mRNA abundance and LYSOZYME protein level). However, immediately after mucosal injury, the mucosal renewal accelerated, as indicated by the increased BrdU positive rate, proliferating cell nuclear antigen (PCNA) protein level and mRNA abundance of cell cycle markers (Ccnd1, Cdk2). Concerning the ISCs activity, during the early period of injury, there appeared a reduction of active ISCs (aISCs) marker Lgr5 mRNA and protein, and an increasing of rISCs marker Hopx mRNA and protein. Strikingly, upon LPS challenge, increased mRNA transcriptional level of Krüppel-like factor 5 (Klf5) was detected in the crypt. Moreover, under LPS treatment in organoids, the KLF5 inhibitor (ML264) would decrease the mRNA and protein levels of Stat5a and Hopx, the STAT5A inhibitor (AC-4-130) would suppress the Lgr5 mRNA and protein levels. Furthermore, the Dual-Luciferase Reporter assay confirmed that, KLF5 would bind to Hopx promoter and activate the rISCs, STAT5A would trigger Lgr5 promoter and activate the aISCs. Collectively, KLF5 was upregulated during the early period of injury, further activate the rISCs directly and activate aISCs via STAT5A indirectly, thus initiate mucosal repair after injury.
Collapse
Affiliation(s)
- Lingzi Yu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Sichao Qi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Hainan Institute of Zhejiang University, Sanya, P.R. China
| | - Guozhen Wei
- Qingliu Animal Husbandry, Veterinary and Aquatic Products Center, Sanming, P.R. China
| | - Xi Rao
- Qingliu Animal Husbandry, Veterinary and Aquatic Products Center, Sanming, P.R. China
| | - Danni Luo
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Minyao Zou
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Hainan Institute of Zhejiang University, Sanya, P.R. China
| | - Yuling Mi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Caiqiao Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Jian Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
9
|
Orzechowska-Licari EJ, Bialkowska AB, Yang VW. Sonic Hedgehog and WNT Signaling Regulate a Positive Feedback Loop Between Intestinal Epithelial and Stromal Cells to Promote Epithelial Regeneration. Cell Mol Gastroenterol Hepatol 2023; 16:607-642. [PMID: 37481204 PMCID: PMC10470419 DOI: 10.1016/j.jcmgh.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND AND AIMS Active intestinal stem cells are prone to injury by ionizing radiation. We previously showed that upon radiation-induced injury, normally quiescent reserve intestinal stem cells (rISCs) (marked by BMI1) are activated by Musashi-1 (MSI1) and exit from the quiescent state to regenerate the intestinal epithelium. This study aims to further establish the mechanism that regulates activation of Bmi1-CreER;Rosa26eYFP (Bmi1-CreER) rISCs following γ radiation-induced injury. METHODS Bmi1-CreER mice were treated with tamoxifen to initiate lineage tracing of BMI1 (eYFP+) cells and exposed to 12 Gy of total body γ irradiation or sham. Intestinal tissues were collected and analyzed by immunofluorescence, Western blot, reverse-transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and chromatin immunoprecipitation real-time polymerase chain reaction. RESULTS After irradiation, increased expression of Msi1 in eYFP+ cells was accompanied by increased expression of Axin2, a WNT marker. Promoter studies of the Msi1 gene indicated that Msi1 is a WNT target gene. Coculture of stromal cells isolated from irradiated mice stimulated Bmi1-CreER-derived organoid regeneration more effectively than those from sham mice. Expression of WNT ligands, including Wnt2b, Wnt4, Wnt5a, and Rspo3, was increased in irradiated stromal cells compared with sham-treated stromal cells. Moreover, expression of the Sonic hedgehog (SHH) effector Gli1 was increased in stromal cells from irradiated mice. This was correlated with an increased expression of SHH in epithelial cells postirradiation, indicating epithelial-stromal interaction. Finally, preinjury treatment with SHH inhibitor cyclopamine significantly reduced intestinal epithelial regeneration and Msi1 expression postirradiation. CONCLUSIONS Upon ionizing radiation-induced injury, intestinal epithelial cells increase SHH secretion, stimulating stromal cells to secrete WNT ligands. WNT activators induce Msi1 expression in the Bmi1-CreER cells. This stromal-epithelial interaction leads to Bmi1-CreER rISCs induction and epithelial regeneration.
Collapse
Affiliation(s)
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York.
| | - Vincent W Yang
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York; Department of Physiology and Biophysics, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York.
| |
Collapse
|
10
|
Danan CH, Katada K, Parham LR, Hamilton KE. Spatial transcriptomics add a new dimension to our understanding of the gut. Am J Physiol Gastrointest Liver Physiol 2023; 324:G91-G98. [PMID: 36472345 PMCID: PMC9870576 DOI: 10.1152/ajpgi.00191.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 01/19/2023]
Abstract
The profound complexity of the intestinal mucosa demands a spatial approach to the study of gut transcriptomics. Although single-cell RNA sequencing has revolutionized our ability to survey the diverse cell types of the intestine, knowledge of cell type alone cannot fully describe the cells that make up the intestinal mucosa. During homeostasis and disease, dramatic gradients of oxygen, nutrients, extracellular matrix proteins, morphogens, and microbiota collectively dictate intestinal cell state, and only spatial techniques can articulate differences in cellular transcriptomes at this level. Spatial transcriptomic techniques assign transcriptomic data to precise regions in a tissue of interest. In recent years, these protocols have become increasingly accessible, and their application in the intestinal mucosa has exploded in popularity. In the gut, spatial transcriptomics typically involve the application of tissue sections to spatially barcoded RNA sequencing or laser capture microdissection followed by RNA sequencing. In combination with single-cell RNA sequencing, these spatial sequencing approaches allow for the construction of spatial transcriptional maps at pseudosingle-cell resolution. In this review, we describe the spatial transcriptomic technologies recently applied in the gut and the previously unattainable discoveries that they have produced.
Collapse
Affiliation(s)
- Charles H Danan
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kay Katada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Louis R Parham
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kathryn E Hamilton
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Yu ZL, Liu J, Ning ZK, Tian HK, Wu X, Huang YF, Wu ZC, Zong Z, Zhou TC. The TGF-β/Smad 2/3 signaling pathway is involved in Musashi2-induced invasion and metastasis of colorectal cancer. Mol Carcinog 2023; 62:261-276. [PMID: 36345938 DOI: 10.1002/mc.23484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 11/11/2022]
Abstract
To identify Musashi2 as an effective biomarker regulated by the TGF-β/Smad2/3 signaling pathway for the precise diagnosis and treatment of colorectal cancer (CRC) through bioinformatic tools and experimental verification. The Cancer Genome Atlas, Timer, and Kaplan-Meier analyses were performed to clarify the expression of Musashi2 and its influence on the prognosis of CRC. Transforming growth factor beta 1 (TGF-β1) was used to activate the TGF-β/Smad2/3 signaling pathway to identify whether it could regulate the expression and function of Musashi2. Western blot analysis and quantitative PCR analyses were conducted to verify the expression of Musashi2. Cell counting kit-8 (CCK8), EdU, wound healing, and Transwell assays were conducted to reveal the role of Musashi2 in the proliferation, migration, and invasion of CRC. Musashi2 was upregulated in CRC and promoted proliferation and metastasis. TGF-β1 increased the expression of Musashi2, while the antagonist inducer of type II TGF-β receptor degradation-1 (ITD-1) decreased the expression. CCK8 and EdU assays demonstrated that inhibition of Musashi2 or use of ITD-1 lowered proliferation ability. The Transwell and wound healing assays showed that the migration and invasion abilities of CRC cells could be regulated by Musashi2. The above functions could be enhanced by TGF-β1 by activating the TGF-β/Smad2/3 signaling pathway and reversed by ITD-1. A positive correlation was found between Musashi2 and the TGF-β/Smad2/3 signaling pathway. TGF-β1 activates the TGF-β/Smad2/3 pathway to stimulate the expression of Musashi2, which promotes the progression of CRC. Musashi2 might become a target gene for the development of new antitumor drugs.
Collapse
Affiliation(s)
- Zhong Lin Yu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiang Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhi Kun Ning
- Department of Day Ward, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hua Kai Tian
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xun Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying Feng Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zi Chun Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tai Cheng Zhou
- Department of Gastroenterological Surgery and Hernia Center, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Coppo R, Kondo J, Iida K, Okada M, Onuma K, Tanaka Y, Kamada M, Ohue M, Kawada K, Obama K, Inoue M. Distinct but interchangeable subpopulations of colorectal cancer cells with different growth fates and drug sensitivity. iScience 2023; 26:105962. [PMID: 36718360 PMCID: PMC9883198 DOI: 10.1016/j.isci.2023.105962] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/22/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Dynamic changes in cell properties lead to intratumor heterogeneity; however, the mechanisms of nongenetic cellular plasticity remain elusive. When the fate of each cell from colorectal cancer organoids was tracked through a clonogenic growth assay, the cells showed a wide range of growth ability even within the clonal organoids, consisting of distinct subpopulations; the cells generating large spheroids and the cells generating small spheroids. The cells from the small spheroids generated only small spheroids (S-pattern), while the cells from the large spheroids generated both small and large spheroids (D-pattern), both of which were tumorigenic. Transition from the S-pattern to the D-pattern occurred by various extrinsic triggers, in which Notch signaling and Musashi-1 played a key role. The S-pattern spheroids were resistant to chemotherapy and transited to the D-pattern upon drug treatment through Notch signaling. As the transition is linked to the drug resistance, it can be a therapeutic target.
Collapse
Affiliation(s)
- Roberto Coppo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jumpei Kondo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keita Iida
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Mariko Okada
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kunishige Onuma
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihisa Tanaka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan,RIKEN Center for Computational Science, HPC- and AI-driven Drug Development Platform Division, Biomedical Computational Intelligence Unit, Hyogo, Japan
| | - Mayumi Kamada
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Ohue
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan,Corresponding author
| |
Collapse
|
13
|
Chen L, Dupre A, Qiu X, Pellon-Cardenas O, Walton KD, Wang J, Perekatt AO, Hu W, Spence JR, Verzi MP. TGFB1 Induces Fetal Reprogramming and Enhances Intestinal Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523825. [PMID: 36711781 PMCID: PMC9882197 DOI: 10.1101/2023.01.13.523825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The adult gut epithelium has a remarkable ability to recover from damage. To achieve cellular therapies aimed at restoring and/or replacing defective gastrointestinal tissue, it is important to understand the natural mechanisms of tissue regeneration. We employed a combination of high throughput sequencing approaches, mouse genetic models, and murine and human organoid models, and identified a role for TGFB signaling during intestinal regeneration following injury. At 2 days following irradiation (IR)-induced damage of intestinal crypts, a surge in TGFB1 expression is mediated by monocyte/macrophage cells at the location of damage. Depletion of macrophages or genetic disruption of TGFB-signaling significantly impaired the regenerative response following irradiation. Murine intestinal regeneration is also characterized by a process where a fetal transcriptional signature is induced during repair. In organoid culture, TGFB1-treatment was necessary and sufficient to induce a transcriptomic shift to the fetal-like/regenerative state. The regenerative response was enhanced by the function of mesenchymal cells, which are also primed for regeneration by TGFB1. Mechanistically, integration of ATAC-seq, scRNA-seq, and ChIP-seq suggest that a regenerative YAP-SOX9 transcriptional circuit is activated in epithelium exposed to TGFB1. Finally, pre-treatment with TGFB1 enhanced the ability of primary epithelial cultures to engraft into damaged murine colon, suggesting promise for the application of the TGFB-induced regenerative circuit in cellular therapy.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Abigail Dupre
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Xia Qiu
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Oscar Pellon-Cardenas
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Katherine D. Walton
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Ansu O. Perekatt
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Jason R. Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA
| | - Michael P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Rutgers University, New Brunswick, NJ, USA
- Member of the NIEHS Center for Environmental Exposures and Disease (CEED), Rutgers EOHSI Piscataway, NJ, USA
- Lead Contact
| |
Collapse
|
14
|
Li N, Xu S, Zhang S, Zhu Q, Meng X, An W, Fu B, Zhong M, Yang Y, Lin Z, Liu X, Xia J, Wang J, You T, Yan C, Tang H, Zhuang G, Peng Z. MSI2 deficiency in ILC3s attenuates DSS-induced colitis by affecting the intestinal microbiota. Front Immunol 2023; 13:963379. [PMID: 36713428 PMCID: PMC9877450 DOI: 10.3389/fimmu.2022.963379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Background The etiology and pathogenesis of inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), are generally believed to be related to immune dysfunction and intestinal microbiota disorder. However, the exact mechanism is not yet fully understood. The pathological changes associated with dextran sodium sulfate (DSS)-induced colitis are similar to those in human UC. As a subgroup of the innate immune system, group 3 innate lymphoid cells (ILC3s) are widely distributed in the lamina propria of the intestinal mucosa, and their function can be regulated by a variety of molecules. Musashi2 (MSI2) is a type of evolutionarily conserved RNA-binding protein that maintains the function of various tissue stem cells and is essential for postintestinal epithelial regeneration. The effect of MSI2 deficiency in ILC3s on IBD has not been reported. Thus, mice with conditional MSI2 knockout in ILC3s were used to construct a DSS-induced colitis model and explore its effects on the pathogenesis of IBD and the species, quantity and function of the intestinal microbiota. Methods Msi2flox/flox mice (Msi2fl/fl ) and Msi2flox/floxRorcCre mice (Msi2ΔRorc ) were induced by DSS to establish the IBD model. The severity of colitis was evaluated by five measurements: body weight percentage, disease activity index, colon shortening degree, histopathological score and routine blood examination. The species, quantity and function of the intestinal microbiota were characterized by high-throughput 16S rRNA gene sequencing of DNA extracted from fecal samples. Results MSI2 was knocked out in the ILC3s of Msi2ΔRorc mice. The Msi2ΔRorc mice exhibited reductions in body weight loss, the disease activity index, degree of colon shortening, tissue histopathological score and immune cells in the peripheral blood compared to those of Msi2fl/fl mice after DSS administration. The 16S rRNA sequencing results showed that the diversity of the intestinal microbiota in DSS-treated Msi2ΔRorc mice changed, with the abundance of Firmicutes increasing and that of Bacteroidetes decreasing. The linear discriminant analysis effect size (LEfSe) approach revealed that Lactobacillaceae could be the key bacteria in the Msi2ΔRorc mouse during the improvement of colitis. Using PICRUST2 to predict the function of the intestinal microbiota, it was found that the functions of differential bacteria inferred by modeling were mainly enriched in infectious diseases, immune system and metabolic functions. Conclusions MSI2 deficiency in ILC3s attenuated DSS-induced colonic inflammation in mice and affected intestinal microbiota diversity, composition, and function, with Lactobacillaceae belonging to the phylum Firmicutes possibly representing the key bacteria. This finding could contribute to our understanding of the pathogenesis of IBD and provide new insights for its clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Nengneng Li
- Department of Organ Transplantation, Xiang’an Hospital, Xiamen University, Xiamen, Fujian, China,Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shiquan Xu
- Department of Organ Transplantation, Xiang’an Hospital, Xiamen University, Xiamen, Fujian, China,Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shuaishuai Zhang
- Department of Organ Transplantation, Xiang’an Hospital, Xiamen University, Xiamen, Fujian, China,Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qiang Zhu
- Department of Organ Transplantation, Xiang’an Hospital, Xiamen University, Xiamen, Fujian, China,Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaole Meng
- Department of Organ Transplantation, Xiang’an Hospital, Xiamen University, Xiamen, Fujian, China,Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wenbin An
- Department of Organ Transplantation, Xiang’an Hospital, Xiamen University, Xiamen, Fujian, China,Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Baoqing Fu
- Department of Organ Transplantation, Xiang’an Hospital, Xiamen University, Xiamen, Fujian, China,Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,Department of Laboratory Medicine, Xiang’an Hospital, Xiamen University, Xiamen, Fujian, China
| | - Mengya Zhong
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan Yang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zeyang Lin
- Department of Pathology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Xueni Liu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junjie Xia
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jie Wang
- Department of Organ Transplantation, Xiang’an Hospital, Xiamen University, Xiamen, Fujian, China,Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Tingting You
- Department of Organ Transplantation, Xiang’an Hospital, Xiamen University, Xiamen, Fujian, China,Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Changxiu Yan
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Huamei Tang
- Department of Pathology, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China,*Correspondence: Zhihai Peng, ; Guohong Zhuang, ; Huamei Tang,
| | - Guohong Zhuang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,*Correspondence: Zhihai Peng, ; Guohong Zhuang, ; Huamei Tang,
| | - Zhihai Peng
- Department of Organ Transplantation, Xiang’an Hospital, Xiamen University, Xiamen, Fujian, China,Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,Organ Transplantation Clinical Medical Center of Xiamen University, Xiamen, Fujian, China,*Correspondence: Zhihai Peng, ; Guohong Zhuang, ; Huamei Tang,
| |
Collapse
|
15
|
Role of Wnt signaling in the maintenance and regeneration of the intestinal epithelium. Curr Top Dev Biol 2023; 153:281-326. [PMID: 36967198 DOI: 10.1016/bs.ctdb.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The intestinal epithelium plays a key role in digestion and protection against external pathogens. This tissue presents a high cellular turnover with the epithelium being completely renewed every 5days, driven by intestinal stem cells (ISCs) residing in the crypt bases. To sustain this dynamic renewal of the intestinal epithelium, the maintenance, proliferation, and differentiation of ISCs must be precisely controlled. One of the central pathways supporting ISC maintenance and dynamics is the Wnt pathway. In this chapter, we examine the role of Wnt signaling in intestinal epithelial homeostasis and tissue regeneration, including mechanisms regulating ISC identity and fine-tuning of Wnt pathway activation. We extensively discuss the contribution of the stem cell niche in maintaining Wnt signaling in the intestinal crypts that support ISC functions. The integration of these findings highlights the complex interplay of multiple niche signals and cellular components sustaining ISC behavior and maintenance, which together supports the immense plasticity of the intestinal epithelium.
Collapse
|
16
|
Siddall NA, Casagranda F, Johanson TM, Dominado N, Heaney J, Sutherland JM, McLaughlin EA, Hime GR. MiMIC analysis reveals an isoform specific role for Drosophila Musashi in follicle stem cell maintenance and escort cell function. Cell Death Dis 2022; 8:455. [DOI: 10.1038/s41420-022-01245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
AbstractThe Drosophila ovary is regenerated from germline and somatic stem cell populations that have provided fundamental conceptual understanding on how adult stem cells are regulated within their niches. Recent ovarian transcriptomic studies have failed to identify mRNAs that are specific to follicle stem cells (FSCs), suggesting that their fate may be regulated post-transcriptionally. We have identified that the RNA-binding protein, Musashi (Msi) is required for maintaining the stem cell state of FSCs. Loss of msi function results in stem cell loss, due to a change in differentiation state, indicated by upregulation of Lamin C in the stem cell population. In msi mutant ovaries, Lamin C upregulation was also observed in posterior escort cells that interact with newly formed germ cell cysts. Mutant somatic cells within this region were dysfunctional, as evidenced by the presence of germline cyst collisions, fused egg chambers and an increase in germ cell cyst apoptosis. The msi locus produces two classes of mRNAs (long and short). We show that FSC maintenance and escort cell function specifically requires the long transcripts, thus providing the first evidence of isoform-specific regulation in a population of Drosophila epithelial cells. We further demonstrate that although male germline stem cells have previously been shown to require Msi function to prevent differentiation this is not the case for female germline stem cells, indicating that these similar stem cell types have different requirements for Msi, in addition to the differential use of Msi isoforms between soma and germline. In summary, we show that different isoforms of the Msi RNA-binding protein are expressed in specific cell populations of the ovarian stem cell niche where Msi regulates stem cell differentiation, niche cell function and subsequent germ cell survival and differentiation.
Collapse
|
17
|
Johnson NM, Parham LR, Na J, Monaghan KE, Kolev HM, Klochkova A, Kim MS, Danan CH, Cramer Z, Simon LA, Naughton KE, Adams‐Tzivelekidis S, Tian Y, Williams PA, Leu NA, Sidoli S, Whelan KA, Li N, Lengner CJ, Hamilton KE. Autophagic state prospectively identifies facultative stem cells in the intestinal epithelium. EMBO Rep 2022; 23:e55209. [PMID: 36120829 PMCID: PMC9638868 DOI: 10.15252/embr.202255209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 01/25/2023] Open
Abstract
The intestinal epithelium exhibits a rapid and efficient regenerative response to injury. Emerging evidence supports a model where plasticity of differentiated cells, particularly those in the secretory lineages, contributes to epithelial regeneration upon ablation of injury-sensitive stem cells. However, such facultative stem cell activity is rare within secretory populations. Here, we ask whether specific functional properties predict facultative stem cell activity. We utilize in vivo labeling combined with ex vivo organoid formation assays to evaluate how cell age and autophagic state contribute to facultative stem cell activity within secretory lineages. Strikingly, we find that cell age (time elapsed since cell cycle exit) does not correlate with secretory cell plasticity. Instead, high autophagic vesicle content predicts plasticity and resistance to DNA damaging injury independently of cell lineage. Our findings indicate that autophagic status prior to injury serves as a lineage-agnostic marker for the prospective identification of facultative stem cells.
Collapse
Affiliation(s)
- Nicolette M Johnson
- Medical Scientist Training Program, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Biomedical Sciences, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Louis R Parham
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of Gastroenterology, Hepatology, and NutritionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Jeeyoon Na
- Department of Biomedical Sciences, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Keara E Monaghan
- Department of Biomedical Sciences, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Hannah M Kolev
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Alena Klochkova
- Fels Institute for Cancer Research & Molecular BiologyLewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvaniaUSA
| | - Melissa S Kim
- Department of Biomedical Sciences, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Charles H Danan
- Medical Scientist Training Program, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of Gastroenterology, Hepatology, and NutritionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Zvi Cramer
- Department of Biomedical Sciences, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Lauren A Simon
- Division of Gastroenterology, Hepatology, and NutritionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Kaitlyn E Naughton
- Division of Gastroenterology, Hepatology, and NutritionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Stephanie Adams‐Tzivelekidis
- Department of Biomedical Sciences, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Yuhua Tian
- Department of Biomedical Sciences, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Patrick A Williams
- Division of Gastroenterology, Hepatology, and NutritionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - N Adrian Leu
- Department of Biomedical Sciences, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Simone Sidoli
- Department of BiochemistryAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Kelly A Whelan
- Fels Institute for Cancer Research & Molecular BiologyLewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvaniaUSA
- Department of Pathology & Laboratory MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvaniaUSA
| | - Ning Li
- Department of Biomedical Sciences, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Regenerative MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Regenerative MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Cell & Developmental Biology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kathryn E Hamilton
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of Gastroenterology, Hepatology, and NutritionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Institute for Regenerative MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
18
|
Giolito MV, Plateroti M. Thyroid hormone signaling in the intestinal stem cells and their niche. Cell Mol Life Sci 2022; 79:476. [PMID: 35947210 PMCID: PMC11072102 DOI: 10.1007/s00018-022-04503-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Several studies emphasized the function of the thyroid hormones in stem cell biology. These hormones act through the nuclear hormone receptor TRs, which are T3-modulated transcription factors. Pioneer work on T3-dependent amphibian metamorphosis showed that the crosstalk between the epithelium and the underlying mesenchyme is absolutely required for intestinal maturation and stem cell emergence. With the recent advances of powerful animal models and 3D-organoid cultures, similar findings have now begun to be described in mammals, where the action of T3 and TRα1 control physiological and cancer-related stem cell biology. In this review, we have summarized recent findings on the multiple functions of T3 and TRα1 in intestinal epithelium stem cells, cancer stem cells and their niche. In particular, we have highlighted the regulation of metabolic functions directly linked to normal and/or cancer stem cell biology. These findings help explain other possible mechanisms by which TRα1 controls stem cell biology, beyond the more classical Wnt and Notch signaling pathways.
Collapse
Affiliation(s)
- Maria Virginia Giolito
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FMTS, 3 Avenue Molière 67200, Strasbourg, France
| | - Michelina Plateroti
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FMTS, 3 Avenue Molière 67200, Strasbourg, France.
| |
Collapse
|
19
|
Liao Z, Hu C, Gao Y. Mechanisms modulating the activities of intestinal stem cells upon radiation or chemical agent exposure. JOURNAL OF RADIATION RESEARCH 2022; 63:149-157. [PMID: 35021216 PMCID: PMC8944320 DOI: 10.1093/jrr/rrab124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/04/2021] [Indexed: 06/14/2023]
Abstract
Intestinal stem cells (ISCs) are essential for the regeneration of intestinal cells upon radiation or chemical agent damage. As for radiation-induced damage, the expression of AIM2, YAP, TLR3, PUMA or BVES can aggravate ISCs depletion, while the stimulation of TLR5, HGF/MET signaling, Ass1 gene, Slit/Robo signaling facilitate the radio-resistance of ISCs. Upon chemical agent treatment, the activation of TRAIL or p53/PUMA pathway exacerbate injury on ISCs, while the increased levels of IL-22, β-arrestin1 can ease the damage. The transformation between reserve ISCs (rISCs) maintaining quiescent states and active ISCs (aISCs) that are highly proliferative has obtained much attention in recent years, in which ISCs expressing high levels of Hopx, Bmi1, mTert, Krt19 or Lrig1 are resistant to radiation injury, and SOX9, MSI2, clusterin, URI are essential for rISCs maintenance. The differentiated cells like Paneth cells and enteroendocrine cells can also obtain stemness driven by radiation injury mediated by Wnt or Notch signaling. Besides, Mex3a-expressed ISCs can survive and then proliferate into intestinal epithelial cells upon chemical agent damage. In addition, the modulation of symbiotic microbes harboring gastrointestinal (GI) tract is also a promising strategy to protect ISCs against radiation damage. Overall, the strategies targeting mechanisms modulating ISCs activities are conducive to alleviating GI injury of patients receiving chemoradiotherapy or victims of nuclear or chemical accident.
Collapse
Affiliation(s)
| | | | - Yue Gao
- Corresponding author. Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine; 27 Taiping Road, Beijing, 100850, People’s Republic of China. E-mail:
| |
Collapse
|
20
|
Lee C, An M, Joung JG, Park WY, Chang DK, Kim YH, Hong SN. TNFα Induces LGR5+ Stem Cell Dysfunction In Patients With Crohn's Disease. Cell Mol Gastroenterol Hepatol 2022; 13:789-808. [PMID: 34700029 PMCID: PMC8783132 DOI: 10.1016/j.jcmgh.2021.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Tumor necrosis factor alpha (TNFα) is considered a major tissue damage-promoting effector in Crohn's disease (CD) pathogenesis. Patient-derived intestinal organoid (enteroid) recapitulates the disease-specific characteristics of the intestinal epithelium. This study aimed to evaluate the intestinal epithelial responses to TNFα in enteroids derived from healthy controls and compare them with those of CD patient-derived enteroids. METHODS Human enteroids derived from patients with CD and controls were treated with TNFα (30 ng/mL), and cell viability and gene expression patterns were evaluated. RESULTS TNFα induced MLKL-mediated necroptotic cell death, which was more pronounced in CD patient-derived enteroids than in control enteroids. Immunohistochemistry and RNA sequencing revealed that treatment with TNFα caused expansion of the intestinal stem cell (ISC) populations. However, expanded ISC subpopulations differed in control and CD patient-derived enteroids, with LGR5+ active ISCs in control enteroids and reserve ISCs, such as BMI1+ cells, in CD patient-derived enteroids. In single-cell RNA sequencing, LGR5+ ISC-enriched cell cluster showed strong expression of TNFRSF1B (TNFR2) and cyclooxygenase-prostaglandin E2 (PGE2) activation. In TNFα-treated CD patient-derived enteroids, exogenous PGE2 (10 nmol/L) induced the expansion of the LGR5+ ISC population and improved organoid-forming efficiency, viability, and wound healing. CONCLUSIONS TNFα increases necroptosis of differentiated cells and induces the expansion of LGR5+ ISCs. In CD patient-derived enteroids, TNFα causes LGR5+ stem cell dysfunction (expansion failure), and exogenous PGE2 treatment restored the functions of LGR5+ stem cells. Therefore, PGE2 can be used to promote mucosal healing in patients with CD.
Collapse
Affiliation(s)
- Chansu Lee
- Department of Medicine, Samsung Medical Center, Seoul, Korea; Stem Cell & Regenerative Medicine Center, Samsung Medical Center, Seoul, Korea
| | - Minae An
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea; Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | | | - Young-Ho Kim
- Department of Medicine, Samsung Medical Center, Seoul, Korea
| | - Sung Noh Hong
- Department of Medicine, Samsung Medical Center, Seoul, Korea; Stem Cell & Regenerative Medicine Center, Samsung Medical Center, Seoul, Korea.
| |
Collapse
|
21
|
The RNA-Binding Protein Musashi1 Regulates a Network of Cell Cycle Genes in Group 4 Medulloblastoma. Cells 2021; 11:cells11010056. [PMID: 35011618 PMCID: PMC8750343 DOI: 10.3390/cells11010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Treatment with surgery, irradiation, and chemotherapy has improved survival in recent years, but patients are frequently left with devastating neurocognitive and other sequelae. Patients in molecular subgroups 3 and 4 still experience a high mortality rate. To identify new pathways contributing to medulloblastoma development and create new routes for therapy, we have been studying oncogenic RNA-binding proteins. We defined Musashi1 (Msi1) as one of the main drivers of medulloblastoma development. The high expression of Msi1 is prevalent in Group 4 and correlates with poor prognosis while its knockdown disrupted cancer-relevant phenotypes. Genomic analyses (RNA-seq and RIP-seq) indicated that cell cycle and division are the main biological categories regulated by Msi1 in Group 4 medulloblastoma. The most prominent Msi1 targets include CDK2, CDK6, CCND1, CDKN2A, and CCNA1. The inhibition of Msi1 with luteolin affected the growth of CHLA-01 and CHLA-01R Group 4 medulloblastoma cells and a synergistic effect was observed when luteolin and the mitosis inhibitor, vincristine, were combined. These findings indicate that a combined therapeutic strategy (Msi1 + cell cycle/division inhibitors) could work as an alternative to treat Group 4 medulloblastoma.
Collapse
|
22
|
Heino S, Fang S, Lähde M, Högström J, Nassiri S, Campbell A, Flanagan D, Raven A, Hodder M, Nasreddin N, Xue HH, Delorenzi M, Leedham S, Petrova TV, Sansom O, Alitalo K. Lef1 restricts ectopic crypt formation and tumor cell growth in intestinal adenomas. SCIENCE ADVANCES 2021; 7:eabj0512. [PMID: 34788095 PMCID: PMC8598008 DOI: 10.1126/sciadv.abj0512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Somatic mutations in APC or CTNNB1 genes lead to aberrant Wnt signaling and colorectal cancer (CRC) initiation and progression via-catenin–T cell factor/lymphoid enhancer binding factor TCF/LEF transcription factors. We found that Lef1 was expressed exclusively in Apc-mutant, Wnt ligand–independent tumors, but not in ligand-dependent, serrated tumors. To analyze Lef1 function in tumor development, we conditionally deleted Lef1 in intestinal stem cells of Apcfl/fl mice or broadly from the entire intestinal epithelium of Apcfl/fl or ApcMin/+ mice. Loss of Lef1 markedly increased tumor initiation and tumor cell proliferation, reduced the expression of several Wnt antagonists, and increased Myc proto-oncogene expression and formation of ectopic crypts in Apc-mutant adenomas. Our results uncover a previously unknown negative feedback mechanism in CRC, in which ectopic Lef1 expression suppresses intestinal tumorigenesis by restricting adenoma cell dedifferentiation to a crypt-progenitor phenotype and by reducing the formation of cancer stem cell niches.
Collapse
Affiliation(s)
- Sarika Heino
- Translational Cancer Medicine Program (CAN-PRO), iCAN Digital Precision Cancer Medicine Flagship and Wihuri Research Institute, Faculty of Medicine, HiLIFE-Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Shentong Fang
- Translational Cancer Medicine Program (CAN-PRO), iCAN Digital Precision Cancer Medicine Flagship and Wihuri Research Institute, Faculty of Medicine, HiLIFE-Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Marianne Lähde
- Translational Cancer Medicine Program (CAN-PRO), iCAN Digital Precision Cancer Medicine Flagship and Wihuri Research Institute, Faculty of Medicine, HiLIFE-Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Jenny Högström
- Translational Cancer Medicine Program (CAN-PRO), iCAN Digital Precision Cancer Medicine Flagship and Wihuri Research Institute, Faculty of Medicine, HiLIFE-Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Sina Nassiri
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Andrew Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, Garscube Estate, Glasgow G61 1QH, UK
| | - Dustin Flanagan
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, Garscube Estate, Glasgow G61 1QH, UK
| | - Alexander Raven
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, Garscube Estate, Glasgow G61 1QH, UK
| | - Michael Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, Garscube Estate, Glasgow G61 1QH, UK
| | - Nadia Nasreddin
- Intestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110, USA
| | - Mauro Delorenzi
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Oncology, University of Lausanne and CHUV, Epalinges, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Epalinges, Switzerland
| | - Simon Leedham
- Intestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne and CHUV, Epalinges, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Epalinges, Switzerland
| | - Owen Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, Garscube Estate, Glasgow G61 1QH, UK
| | - Kari Alitalo
- Translational Cancer Medicine Program (CAN-PRO), iCAN Digital Precision Cancer Medicine Flagship and Wihuri Research Institute, Faculty of Medicine, HiLIFE-Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
23
|
Kadharusman MM, Antarianto RD, Hardiany NS. A Review of the Impact of Calorie Restriction on Stem Cell Potency. Malays J Med Sci 2021; 28:5-13. [PMID: 34512126 PMCID: PMC8407795 DOI: 10.21315/mjms2021.28.4.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/15/2020] [Indexed: 12/29/2022] Open
Abstract
Calorie restriction (CR) prolongs lifespan in various species and also minimises pathologies caused by aging. One of the characteristics seen in age-related pathologies is stem cell exhaustion. Here, we review the various impacts of CR on mammalian health mediated through stem cell potency in various tissues. This study comprised of a literature search through NCBI, Science Direct, Google Scholar and PubMed, focusing on the impact of CR on pluripotency. In the skeletal muscle, CR acts as an anti-inflammatory agent and increases the presence of satellite cells endogenously to improve regeneration, thus causing a metabolic shift to oxidation to meet oxygen demand. In the intestinal epithelium, CR suppresses the mechanistic target of rapamycin complex 1 (mTORC1) signalling in Paneth cells to shift the stem cell equilibrium towards self-renewal at the cost of differentiation. In haematopoiesis, CR prevents deterioration or maintains the function of haematopoietic stem cells (HSCs) depending on the genetic variation of the mice. In skin and hair follicles, CR increases the thickness of the epidermis and hair growth and improves hair retention through stem cells. CR mediates the proliferation and self-renewal of stem cells in various tissues, thus increasing its regenerative ability.
Collapse
Affiliation(s)
| | | | - Novi Silvia Hardiany
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
24
|
Vitamin D Receptor Protects against Radiation-Induced Intestinal Injury in Mice via Inhibition of Intestinal Crypt Stem/Progenitor Cell Apoptosis. Nutrients 2021; 13:nu13092910. [PMID: 34578802 PMCID: PMC8466099 DOI: 10.3390/nu13092910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
It is urgent to seek new potential targets for the prevention or relief of gastrointestinal syndrome in clinical radiation therapy for cancers. Vitamin D, mediated through the vitamin D receptor (VDR), has been identified as a protective nutrient against ionizing radiation (IR)-induced damage. This study investigated whether VDR could inhibit IR-induced intestinal injury and explored underlying mechanism. We first found that vitamin D induced VDR expression and inhibited IR-induced DNA damage and apoptosis in vitro. VDR was highly expressed in intestinal crypts and was critical for crypt stem/progenitor cell proliferation under physiological conditions. Next, VDR-deficient mice exposed to IR significantly increased DNA damage and crypt stem/progenitor cell apoptosis, leading to impaired intestinal regeneration as well as shorter survival time. Furthermore, VDR deficiency activated the Pmaip1-mediated apoptotic pathway of intestinal crypt stem/progenitor cells in IR-treated mice, whereas inhibition of Pmaip1 expression by siRNA transfection protected against IR-induced cell apoptosis. Therefore, VDR protects against IR-induced intestinal injury through inhibition of crypt stem/progenitor cell apoptosis via the Pmaip1-mediated pathway. Our results reveal the importance of VDR level in clinical radiation therapy, and targeting VDR may be a useful strategy for treatment of gastrointestinal syndrome.
Collapse
|
25
|
Frau C, Jamard C, Delpouve G, Guardia GDA, Machon C, Pilati C, Nevé CL, Laurent-Puig P, Guitton J, Galante PAF, Penalva LO, Freund JN, de la Fouchardiere C, Plateroti M. Deciphering the Role of Intestinal Crypt Cell Populations in Resistance to Chemotherapy. Cancer Res 2021; 81:2730-2744. [PMID: 33741693 DOI: 10.1158/0008-5472.can-20-2450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/11/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Intestinal crypts are composed of heterogeneous and highly plastic cell populations. Lgr5high-stem cells (SC) are responsible for homeostatic renewal, but other cells can revert to an SC-like phenotype to maintain epithelial integrity. Despite their distinct roles in orchestrating homeostasis, both populations have been designated as the putative "cell-of-origin" of colorectal cancer. However, their respective involvement in the emergence of drug-resistant cancer SCs (CSC), responsible for tumor relapse and associated with poor outcome of colorectal cancer, remains elusive. In this context, the intestinal SC/progenitor-marker Musashi1 (MSI1) is interesting as it plays important functions in intestinal homeostasis and is frequently overexpressed in human colorectal cancer. Therefore, our aims were: (i) to study the impact of chemotherapy on Lgr5-expressing and MSI1-expressing cell populations, (ii) to explore the effect of increased MSI1 levels in response to treatment, and (iii) to evaluate the relevance in human colorectal cancer. Engineered mouse models treated with the therapeutic agent 5-fluorouracil showed that upon increased MSI1 levels, Lgr5high SCs remain sensitive while Lgr5low progenitors reprogram to a drug-resistant phenotype. This resulted in the expansion of an MSI1-expressing cell subpopulation with improved resistance to DNA damage and increased detoxification, typical properties of dormant-CSCs that can reactivate after chemotherapy. Analysis in patients with colorectal cancer revealed a correlation between MSI1 levels and tumor grading, CSC phenotype, and chemoresistance. Altogether, these results shed new light on the biology and plasticity of normal crypt and cancer cell populations and also open new perspectives to target MSI1 to improve chemotherapy outcome. SIGNIFICANCE: This study unveils paradoxical roles for MSI1, underlining its importance in facilitating intestinal regeneration upon injury but also unraveling its new function in drug-resistant colorectal cancer stem cells.
Collapse
Affiliation(s)
- Carla Frau
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
| | - Catherine Jamard
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
| | - Gaspard Delpouve
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
| | | | - Christelle Machon
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France.,Hospices Civils de Lyon, Service de Biochimie et Pharmaco-toxicologie, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Camilla Pilati
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Clémentine Le Nevé
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Department of Biology, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Jérôme Guitton
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France.,Hospices Civils de Lyon, Service de Biochimie et Pharmaco-toxicologie, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Luiz O Penalva
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Jean-Noel Freund
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, Strasbourg, France
| | | | - Michelina Plateroti
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France.
| |
Collapse
|
26
|
Hageman JH, Heinz MC, Kretzschmar K, van der Vaart J, Clevers H, Snippert HJG. Intestinal Regeneration: Regulation by the Microenvironment. Dev Cell 2021; 54:435-446. [PMID: 32841594 DOI: 10.1016/j.devcel.2020.07.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 01/05/2023]
Abstract
Damage to the intestinal stem cell niche can result from mechanical stress, infections, chronic inflammation or cytotoxic therapies. Progenitor cells can compensate for insults to the stem cell population through dedifferentiation. The microenvironment modulates this regenerative response by influencing the activity of signaling pathways, including Wnt, Notch, and YAP/TAZ. For instance, mesenchymal cells and immune cells become more abundant after damage and secrete signaling molecules that promote the regenerative process. Furthermore, regeneration is influenced by the nutritional state, microbiome, and extracellular matrix. Here, we review how all these components cooperate to restore epithelial homeostasis in the intestine after injury.
Collapse
Affiliation(s)
- Joris H Hageman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Maria C Heinz
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Kai Kretzschmar
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Mildred-Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Jelte van der Vaart
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Hans Clevers
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - Hugo J G Snippert
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
27
|
Kurokawa K, Hayakawa Y, Koike K. Plasticity of Intestinal Epithelium: Stem Cell Niches and Regulatory Signals. Int J Mol Sci 2020; 22:ijms22010357. [PMID: 33396437 PMCID: PMC7795504 DOI: 10.3390/ijms22010357] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
The discovery of Lgr5+ intestinal stem cells (ISCs) triggered a breakthrough in the field of ISC research. Lgr5+ ISCs maintain the homeostasis of the intestinal epithelium in the steady state, while these cells are susceptible to epithelial damage induced by chemicals, pathogens, or irradiation. During the regeneration process of the intestinal epithelium, more quiescent +4 stem cells and short-lived transit-amplifying (TA) progenitor cells residing above Lgr5+ ISCs undergo dedifferentiation and act as stem-like cells. In addition, several recent reports have shown that a subset of terminally differentiated cells, including Paneth cells, tuft cells, or enteroendocrine cells, may also have some degree of plasticity in specific situations. The function of ISCs is maintained by the neighboring stem cell niches, which strictly regulate the key signal pathways in ISCs. In addition, various inflammatory cytokines play critical roles in intestinal regeneration and stem cell functions following epithelial injury. Here, we summarize the current understanding of ISCs and their niches, review recent findings regarding cellular plasticity and its regulatory mechanism, and discuss how inflammatory cytokines contribute to epithelial regeneration.
Collapse
Affiliation(s)
| | - Yoku Hayakawa
- Correspondence: ; Tel.: +81-3-3815-5411; Fax: +81-3-5800-8812
| | | |
Collapse
|
28
|
Chiremba TT, Neufeld KL. Constitutive Musashi1 expression impairs mouse postnatal development and intestinal homeostasis. Mol Biol Cell 2020; 32:28-44. [PMID: 33175598 PMCID: PMC8098822 DOI: 10.1091/mbc.e20-03-0206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Evolutionarily conserved RNA-binding protein Musashi1 (Msi1) can regulate developmentally relevant genes. Here we report the generation and characterization of a mouse model that allows inducible Msi1 overexpression in a temporal and tissue-specific manner. We show that ubiquitous Msi1 induction in ∼5-wk-old mice delays overall growth, alters organ-to-body proportions, and causes premature death. Msi1-overexpressing mice had shortened intestines, diminished intestinal epithelial cell (IEC) proliferation, and decreased growth of small intestine villi and colon crypts. Although Lgr5-positive intestinal stem cell numbers remained constant in Msi1-overexpressing tissue, an observed reduction in Cdc20 expression provided a potential mechanism underlying the intestinal growth defects. We further demonstrated that Msi1 overexpression affects IEC differentiation in a region-specific manner, with ileum tissue being influenced the most. Ilea of mutant mice displayed increased expression of enterocyte markers, but reduced expression of the goblet cell marker Mucin2 and fewer Paneth cells. A higher hairy and enhancer of split 1:mouse atonal homolog 1 ratio in ilea from Msi1-overexpressing mice implicated Notch signaling in inducing enterocyte differentiation. Together, this work implicates Msi1 in mouse postnatal development of multiple organs, with Notch signaling alterations contributing to intestinal defects. This new mouse model will be a useful tool to further elucidate the role of Msi1 in other tissue settings.
Collapse
Affiliation(s)
- Thelma T Chiremba
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Kristi L Neufeld
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| |
Collapse
|
29
|
Sharma A, Akagi K, Pattavina B, Wilson KA, Nelson C, Watson M, Maksoud E, Harata A, Ortega M, Brem RB, Kapahi P. Musashi expression in intestinal stem cells attenuates radiation-induced decline in intestinal permeability and survival in Drosophila. Sci Rep 2020; 10:19080. [PMID: 33154387 PMCID: PMC7644626 DOI: 10.1038/s41598-020-75867-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/17/2020] [Indexed: 11/30/2022] Open
Abstract
Exposure to genotoxic stress by environmental agents or treatments, such as radiation therapy, can diminish healthspan and accelerate aging. We have developed a Drosophila melanogaster model to study the molecular effects of radiation-induced damage and repair. Utilizing a quantitative intestinal permeability assay, we performed an unbiased GWAS screen (using 156 strains from the Drosophila Genetic Reference Panel) to search for natural genetic variants that regulate radiation-induced gut permeability in adult D. melanogaster. From this screen, we identified an RNA binding protein, Musashi (msi), as one of the possible genes associated with changes in intestinal permeability upon radiation. The overexpression of msi promoted intestinal stem cell proliferation, which increased survival after irradiation and rescued radiation-induced intestinal permeability. In summary, we have established D. melanogaster as an expedient model system to study the effects of radiation-induced damage to the intestine in adults and have identified msi as a potential therapeutic target.
Collapse
Affiliation(s)
- Amit Sharma
- SENS Research Foundation, 110 Pioneer Way, Suite J, Mountain View, CA, 94041, USA.
| | - Kazutaka Akagi
- National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan.
| | - Blaine Pattavina
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Kenneth A Wilson
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Christopher Nelson
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Mark Watson
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Elie Maksoud
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Ayano Harata
- National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Mauricio Ortega
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA.
| |
Collapse
|
30
|
Orzechowska EJ, Katano T, Bialkowska AB, Yang VW. Interplay among p21 Waf1/Cip1, MUSASHI-1 and Krüppel-like factor 4 in activation of Bmi1-Cre ER reserve intestinal stem cells after gamma radiation-induced injury. Sci Rep 2020; 10:18300. [PMID: 33110120 PMCID: PMC7591575 DOI: 10.1038/s41598-020-75171-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022] Open
Abstract
Gamma radiation is a commonly used adjuvant treatment for abdominally localized cancer. Since its therapeutic potential is limited due to gastrointestinal (GI) syndrome, elucidation of the regenerative response following radiation-induced gut injury is needed to develop a preventive treatment. Previously, we showed that Krüppel-like factor 4 (KLF4) activates certain quiescent intestinal stem cells (ISCs) marked by Bmi1-CreER to give rise to regenerating crypts following γ irradiation. In the current study, we showed that γ radiation-induced expression of p21Waf1/Cip1 in Bmi1-CreER cells is likely mitigated by MUSASHI-1 (MSI1) acting as a negative regulator of p21Waf1/Cip1 mRNA translation, which promotes exit of the Bmi1-CreER cells from a quiescent state. Additionally, Bmi1-specific Klf4 deletion resulted in decreased numbers of MSI1+ cells in regenerating crypts compared to those of control mice. We showed that KLF4 binds to the Msi1 promoter and activates its expression in vitro. Since MSI1 has been shown to be crucial for crypt regeneration, this finding elucidates a pro-proliferative role of KLF4 during the postirradiation regenerative response. Taken together, our data suggest that the interplay among p21Waf1/Cip1, MSI1 and KLF4 regulates Bmi1-CreER cell survival, exit from quiescence and regenerative potential upon γ radiation-induced injury.
Collapse
Affiliation(s)
- Emilia J Orzechowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.,Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Takahito Katano
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.,Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
| | - Vincent W Yang
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA. .,Department of Physiology and Biophysics, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY, USA.
| |
Collapse
|
31
|
Song Y, Guerrero-Juarez CF, Chen Z, Tang Y, Ma X, Lv C, Bi X, Deng M, Bu L, Tian Y, Liu R, Zhao R, Xu J, Sheng X, Du S, Liu Y, Zhu Y, Shan SJ, Chen HD, Zhao Y, Zhou G, Shuai J, Ren F, Xue L, Ying Z, Dai X, Lengner CJ, Andersen B, Plikus MV, Nie Q, Yu Z. The Msi1-mTOR pathway drives the pathogenesis of mammary and extramammary Paget's disease. Cell Res 2020; 30:854-872. [PMID: 32457396 PMCID: PMC7608215 DOI: 10.1038/s41422-020-0334-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023] Open
Abstract
Mammary and extramammary Paget's Diseases (PD) are a malignant skin cancer characterized by the appearance of Paget cells. Although easily diagnosed, its pathogenesis remains unknown. Here, single-cell RNA-sequencing identified distinct cellular states, novel biomarkers, and signaling pathways - including mTOR, associated with extramammary PD. Interestingly, we identified MSI1 ectopic overexpression in basal epithelial cells of human PD skin, and show that Msi1 overexpression in the epidermal basal layer of mice phenocopies human PD at histopathological, single-cell and molecular levels. Using this mouse model, we identified novel biomarkers of Paget-like cells that translated to human Paget cells. Furthermore, single-cell trajectory, RNA velocity and lineage-tracing analyses revealed a putative keratinocyte-to-Paget-like cell conversion, supporting the in situ transformation theory of disease pathogenesis. Mechanistically, the Msi1-mTOR pathway drives keratinocyte-Paget-like cell conversion, and suppression of mTOR signaling with Rapamycin significantly rescued the Paget-like phenotype in Msi1-overexpressing transgenic mice. Topical Rapamycin treatment improved extramammary PD-associated symptoms in humans, suggesting mTOR inhibition as a novel therapeutic treatment in PD.
Collapse
Affiliation(s)
- Yongli Song
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, Jilin Agricultural Science and Technology College, Changchun, Jilin, 100132, China
| | - Christian F Guerrero-Juarez
- Department of Mathematics, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research, Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
| | | | - Yichen Tang
- Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Xianghui Ma
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Cong Lv
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueyun Bi
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Min Deng
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lina Bu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuhua Tian
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ruiqi Liu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ran Zhao
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiuzhi Xu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaole Sheng
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Sujuan Du
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Yunlu Zhu
- Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Shi-Jun Shan
- Department of Dermatology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Hong-Duo Chen
- Department of Dermatology, No.1 Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yiqiang Zhao
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guangbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianwei Shuai
- Department of Physics and State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian, 361005, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, 100193, China
| | - Lixiang Xue
- Medical Research Center, Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Zhaoxia Ying
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Xing Dai
- Departments of Biological Chemistry and Dermatology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Christopher J Lengner
- Department of Animal Biology, School of Veterinary Medicine, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19082, USA
| | - Bogi Andersen
- Departments of Medicine and Biological Chemistry, University of California, Irvine, CA, 92697, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research, Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
| | - Qing Nie
- Department of Mathematics, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research, Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
32
|
Liu Y, Chen YG. Intestinal epithelial plasticity and regeneration via cell dedifferentiation. CELL REGENERATION 2020; 9:14. [PMID: 32869114 PMCID: PMC7459029 DOI: 10.1186/s13619-020-00053-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022]
Abstract
The intestinal epithelium possesses a great capacity of self-renewal under normal homeostatic conditions and of regeneration upon damages. The renewal and regenerative processes are driven by intestinal stem cells (ISCs), which reside at the base of crypts and are marked by Lgr5. As Lgr5+ ISCs undergo fast cycling and are vulnerable to damages, there must be other types of cells that can replenish the lost Lgr5+ ISCs and then regenerate the damage epithelium. In addition to Lgr5+ ISCs, quiescent ISCs at the + 4 position in the crypt have been proposed to convert to Lgr5+ ISCs during regeneration. However, this “reserve stem cell” model still remains controversial. Different from the traditional view of a hierarchical organization of the intestinal epithelium, recent works support the dynamic “dedifferentiation” model, in which various cell types within the epithelium can de-differentiate to revert to the stem cell state and then regenerate the epithelium upon tissue injury. Here, we provide an overview of the cell identity and features of two distinct models and discuss the possible mechanisms underlying the intestinal epithelial plasticity.
Collapse
Affiliation(s)
- Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
33
|
Arachidonic Acid Promotes Intestinal Regeneration by Activating WNT Signaling. Stem Cell Reports 2020; 15:374-388. [PMID: 32649903 PMCID: PMC7419670 DOI: 10.1016/j.stemcr.2020.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Intestinal regeneration is crucial for functional restoration after injury, and nutritional molecules can play an important role in this process. Here, we found that arachidonic acid (AA) serves as a direct proliferation promoter of intestinal epithelial cells that facilitates small intestinal regeneration in both three-dimensional cultured organoids and mouse models. As shown in the study, during post-irradiation regeneration, AA positively regulates intestinal epithelial cell proliferation by upregulating the expression of Ascl2 and activating WNT signaling, but negatively regulates intestinal epithelial cell differentiation. AA acts as a delicate regulator that efficiently facilitates epithelial tissue repair by activating radiation-resistant Msi1+ cells rather than Lgr5+ cells, which are extensively considered WNT-activated crypt base stem cells. Additionally, short-term AA treatment maintains optimal intestinal epithelial homeostasis under physiological conditions. As a result, AA treatment can be considered a potential therapy for irradiation injury repair and tissue regeneration. AA promotes regeneration of intestinal epithelium after irradiation injury AA triggers Ascl2 expression and activates WNT signaling in intestinal epithelium AA facilitates intestinal repair by activating Msi1+ populations
Collapse
|
34
|
Voutsadakis IA. The pluripotency network in colorectal cancer pathogenesis and prognosis: an update. Biomark Med 2019; 12:653-665. [PMID: 29944017 DOI: 10.2217/bmm-2017-0369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stemness characteristics are defining properties of cancer initiating cells and are associated with the ability to metastasize and survive in hostile environments. Establishment of the stem cell network depends on the action of a set of core transcription factors that work in concert with other ancillary proteins that are also important during embryonic development. New data consolidate the role of core pluripotency transcription factors OCT4, SOX2 and NANOG as adverse prognostic factors in colorectal cancer. mRNA-binding proteins LIN28 and Musashi, that are associated with stemness, and epigenetic modifiers such as de-acetylase SIRT1 may also have prognostic value in colorectal cancer. This paper provides an update of the stem cell factors in the pathogenesis and prognosis of colorectal cancer.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste Marie, Ontario, Canada.,Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| |
Collapse
|
35
|
Chatterji P, Williams PA, Whelan KA, Samper FC, Andres SF, Simon LA, Parham LR, Mizuno R, Lundsmith ET, Lee DS, Liang S, Wijeratne HS, Marti S, Chau L, Giroux V, Wilkins BJ, Wu GD, Shah P, Tartaglia GG, Hamilton KE. Posttranscriptional regulation of colonic epithelial repair by RNA binding protein IMP1/IGF2BP1. EMBO Rep 2019; 20:embr.201847074. [PMID: 31061170 DOI: 10.15252/embr.201847074] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022] Open
Abstract
RNA binding proteins, including IMP1/IGF2BP1, are essential regulators of intestinal development and cancer. Imp1 hypomorphic mice exhibit gastrointestinal growth defects, yet the specific role for IMP1 in colon epithelial repair is unclear. Our prior work revealed that intestinal epithelial cell-specific Imp1 deletion (Imp1 Δ IEC ) was associated with better regeneration in mice after irradiation. Here, we report increased IMP1 expression in patients with Crohn's disease and ulcerative colitis. We demonstrate that Imp1 Δ IEC mice exhibit enhanced recovery following dextran sodium sulfate (DSS)-mediated colonic injury. Imp1 Δ IEC mice exhibit Paneth cell granule changes, increased autophagy flux, and upregulation of Atg5. In silico and biochemical analyses revealed direct binding of IMP1 to MAP1LC3B, ATG3, and ATG5 transcripts. Genetic deletion of essential autophagy gene Atg7 in Imp1 Δ IEC mice revealed increased sensitivity of double-mutant mice to colonic injury compared to control or Atg7 single mutant mice, suggesting a compensatory relationship between Imp1 and the autophagy pathway. The present study defines a novel interplay between IMP1 and autophagy, where IMP1 may be transiently induced during damage to modulate colonic epithelial cell responses to damage.
Collapse
Affiliation(s)
- Priya Chatterji
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Patrick A Williams
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kelly A Whelan
- Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.,Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Fernando C Samper
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sarah F Andres
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lauren A Simon
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Louis R Parham
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rei Mizuno
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Emma T Lundsmith
- Thomas Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - David Sm Lee
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shun Liang
- Department of Genetics, Rutgers University, New Brunswick, NJ, USA
| | | | - Stefanie Marti
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Lillian Chau
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Veronique Giroux
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, QC, Canada
| | - Benjamin J Wilkins
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gary D Wu
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Premal Shah
- Department of Genetics, Rutgers University, New Brunswick, NJ, USA.,Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| | - Gian G Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avanc ats (ICREA), Barcelona, Spain
| | - Kathryn E Hamilton
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
36
|
Gonzalez LM, Stewart AS, Freund J, Kucera CR, Dekaney CM, Magness ST, Blikslager AT. Preservation of reserve intestinal epithelial stem cells following severe ischemic injury. Am J Physiol Gastrointest Liver Physiol 2019; 316:G482-G494. [PMID: 30714814 PMCID: PMC6483022 DOI: 10.1152/ajpgi.00262.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal ischemia is an abdominal emergency with a mortality rate >50%, leading to epithelial barrier loss and subsequent sepsis. Epithelial renewal and repair after injury depend on intestinal epithelial stem cells (ISC) that reside within the crypts of Lieberkühn. Two ISC populations critical to epithelial repair have been described: 1) active ISC (aISC; highly proliferative; leucine-rich-repeat-containing G protein-coupled receptor 5 positive, sex determining region Y-box 9 positive) and 2) reserve ISC [rISC; less proliferative; homeodomain only protein X (Hopx)+]. Yorkshire crossbred pigs (8-10 wk old) were subjected to 1-4 h of ischemia and 1 h of reperfusion or recovery by reversible mesenteric vascular occlusion. This study was designed to evaluate whether ISC-expressing biomarkers of aISCs or rISCs show differential resistance to ischemic injury and different contributions to the subsequent repair and regenerative responses. Our data demonstrate that, following 3-4 h ischemic injury, aISC undergo apoptosis, whereas rISC are preserved. Furthermore, these rISC are retained ex vivo in spheroids in which cell populations are enriched in the rISC biomarker Hopx. These cells appear to go on to provide a proliferative pool of cells during the recovery period. Taken together, these data indicate that Hopx+ cells are resistant to injury and are the likely source of epithelial renewal following prolonged ischemic injury. It is therefore possible that targeting reserve stem cells will lead to new therapies for patients with severe intestinal injury. NEW & NOTEWORTHY The population of reserve less-proliferative intestinal epithelial stem cells appears resistant to injury despite severe epithelial cell loss, including that of the active stem cell population, which results from prolonged mesenteric ischemia. These cells can change to an activated state and are likely indispensable to regenerative processes. Reserve stem cell targeted therapies may improve treatment and outcome of patients with ischemic disease.
Collapse
Affiliation(s)
- Liara M. Gonzalez
- 1Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina,4Center for Gastrointestinal Biologyand Disease, Joint Center at University of North Carolina Chapel Hill and North Carolina State University, Raleigh,North Carolina
| | - Amy Stieler Stewart
- 1Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - John Freund
- 1Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Cecilia Renee Kucera
- 1Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Christopher M. Dekaney
- 2Department of Molecular and Biological Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina,4Center for Gastrointestinal Biologyand Disease, Joint Center at University of North Carolina Chapel Hill and North Carolina State University, Raleigh,North Carolina
| | - Scott T. Magness
- 3University of North Carolina, Chapel Hill, North Carolina,4Center for Gastrointestinal Biologyand Disease, Joint Center at University of North Carolina Chapel Hill and North Carolina State University, Raleigh,North Carolina
| | - Anthony T. Blikslager
- 1Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina,4Center for Gastrointestinal Biologyand Disease, Joint Center at University of North Carolina Chapel Hill and North Carolina State University, Raleigh,North Carolina
| |
Collapse
|
37
|
Parham LR, Williams PA, Chatterji P, Whelan KA, Hamilton KE. RNA regulons are essential in intestinal homeostasis. Am J Physiol Gastrointest Liver Physiol 2019; 316:G197-G204. [PMID: 30520692 PMCID: PMC6383383 DOI: 10.1152/ajpgi.00403.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal epithelial cells are among the most rapidly proliferating cell types in the human body. There are several different subtypes of epithelial cells, each with unique functional roles in responding to the ever-changing environment. The epithelium's ability for rapid and customized responses to environmental changes requires multitiered levels of gene regulation. An emerging paradigm in gastrointestinal epithelial cells is the regulation of functionally related mRNA families, or regulons, via RNA-binding proteins (RBPs). RBPs represent a rapid and efficient mechanism to regulate gene expression and cell function. In this review, we will provide an overview of intestinal epithelial RBPs and how they contribute specifically to intestinal epithelial stem cell dynamics. In addition, we will highlight key gaps in knowledge in the global understanding of RBPs in gastrointestinal physiology as an opportunity for future studies.
Collapse
Affiliation(s)
- Louis R. Parham
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Patrick A. Williams
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Priya Chatterji
- 2Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelly A. Whelan
- 3Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania,4Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Kathryn E. Hamilton
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Bankaitis ED, Ha A, Kuo CJ, Magness ST. Reserve Stem Cells in Intestinal Homeostasis and Injury. Gastroenterology 2018; 155:1348-1361. [PMID: 30118745 PMCID: PMC7493459 DOI: 10.1053/j.gastro.2018.08.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/17/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
Renewal of the intestinal epithelium occurs approximately every week and requires a careful balance between cell proliferation and differentiation to maintain proper lineage ratios and support absorptive, secretory, and barrier functions. We review models used to study the mechanisms by which intestinal stem cells (ISCs) fuel the rapid turnover of the epithelium during homeostasis and might support epithelial regeneration after injury. In anatomically defined zones of the crypt stem cell niche, phenotypically distinct active and reserve ISC populations are believed to support homeostatic epithelial renewal and injury-induced regeneration, respectively. However, other cell types previously thought to be committed to differentiated states might also have ISC activity and participate in regeneration. Efforts are underway to reconcile the proposed relatively strict hierarchical relationships between reserve and active ISC pools and their differentiated progeny; findings from models provide evidence for phenotypic plasticity that is common among many if not all crypt-resident intestinal epithelial cells. We discuss the challenges to consensus on ISC nomenclature, technical considerations, and limitations inherent to methodologies used to define reserve ISCs, and the need for standardized metrics to quantify and compare the relative contributions of different epithelial cell types to homeostatic turnover and post-injury regeneration. Increasing our understanding of the high-resolution genetic and epigenetic mechanisms that regulate reserve ISC function and cell plasticity will help refine these models and could affect approaches to promote tissue regeneration after intestinal injury.
Collapse
Affiliation(s)
- Eric D. Bankaitis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC,Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Andrew Ha
- Department of Medicine, Hematology Division, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305,Department of Biology, Stanford University, Stanford, CA 94305
| | - Calvin J. Kuo
- Department of Medicine, Hematology Division, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305,Co-Corresponding Authors: Calvin J. Kuo: , Scott T. Magness: , Calvin J. Kuo: Stanford University School of Medicine, Lokey Stem Cell Research Building G2034A, 265 Campus Drive, Stanford, CA 94305; Scott T. Magness, University of North Carolina at Chapel Hill, 111 Mason Farm Rd. CB# 7032, MBRB Rm 4337, Chapel Hill, NC, 27599
| | - Scott T. Magness
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC,Joint Departments of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, NC,Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC,Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC,Co-Corresponding Authors: Calvin J. Kuo: , Scott T. Magness: , Calvin J. Kuo: Stanford University School of Medicine, Lokey Stem Cell Research Building G2034A, 265 Campus Drive, Stanford, CA 94305; Scott T. Magness, University of North Carolina at Chapel Hill, 111 Mason Farm Rd. CB# 7032, MBRB Rm 4337, Chapel Hill, NC, 27599
| |
Collapse
|
39
|
Demystifying the Differences Between Tumor-Initiating Cells and Cancer Stem Cells in Colon Cancer. CURRENT COLORECTAL CANCER REPORTS 2018. [DOI: 10.1007/s11888-018-0421-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Burclaff J, Mills JC. Plasticity of differentiated cells in wound repair and tumorigenesis, part II: skin and intestine. Dis Model Mech 2018; 11:11/9/dmm035071. [PMID: 30171151 PMCID: PMC6177008 DOI: 10.1242/dmm.035071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent studies have identified and begun to characterize the roles of regenerative cellular plasticity in many organs. In Part I of our two-part Review, we discussed how cells reprogram following injury to the stomach and pancreas. We introduced the concept of a conserved cellular program, much like those governing division and death, which may allow mature cells to become regenerative. This program, paligenosis, is likely necessary to help organs repair the numerous injuries they face over the lifetime of an organism; however, we also postulated that rounds of paligenosis and redifferentiation may allow long-lived cells to accumulate and store oncogenic mutations, and could thereby contribute to tumorigenesis. We have termed the model wherein differentiated cells can store mutations and then unmask them upon cell cycle re-entry the ‘cyclical hit’ model of tumorigenesis. In the present Review (Part II), we discuss these concepts, and cell plasticity as a whole, in the skin and intestine. Although differentiation and repair are arguably more thoroughly studied in skin and intestine than in stomach and pancreas, it is less clear how mature skin and intestinal cells contribute to tumorigenesis. Moreover, we conclude our Review by discussing plasticity in all four organs, and look for conserved mechanisms and concepts that might help advance our knowledge of tumor formation and advance the development of therapies for treating or preventing cancers that might be shared across multiple organs. Summary: This final installment of a two-part Review discusses how cycles of dedifferentiation and redifferentiation can promote tumorigenesis in the skin and intestine, showing how plasticity in these continuously renewing tissues might contribute to tumorigenesis.
Collapse
Affiliation(s)
- Joseph Burclaff
- Division of Gastroenterology, Departments of Medicine, Pathology & Immunology, and Developmental Biology, Washington University, St Louis, MO 63110, USA
| | - Jason C Mills
- Division of Gastroenterology, Departments of Medicine, Pathology & Immunology, and Developmental Biology, Washington University, St Louis, MO 63110, USA
| |
Collapse
|
41
|
Chatterji P, Hamilton KE, Liang S, Andres SF, Wijeratne HRS, Mizuno R, Simon LA, Hicks PD, Foley SW, Pitarresi JR, Klein-Szanto AJ, Mah AT, Van Landeghem L, Gregory BD, Lengner CJ, Madison BB, Shah P, Rustgi AK. The LIN28B-IMP1 post-transcriptional regulon has opposing effects on oncogenic signaling in the intestine. Genes Dev 2018; 32:1020-1034. [PMID: 30068703 PMCID: PMC6075153 DOI: 10.1101/gad.314369.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
Abstract
RNA-binding proteins (RBPs) are expressed broadly during both development and malignant transformation, yet their mechanistic roles in epithelial homeostasis or as drivers of tumor initiation and progression are incompletely understood. Here we describe a novel interplay between RBPs LIN28B and IMP1 in intestinal epithelial cells. Ribosome profiling and RNA sequencing identified IMP1 as a principle node for gene expression regulation downstream from LIN28B In vitro and in vivo data demonstrate that epithelial IMP1 loss increases expression of WNT target genes and enhances LIN28B-mediated intestinal tumorigenesis, which was reversed when we overexpressed IMP1 independently in vivo. Furthermore, IMP1 loss in wild-type or LIN28B-overexpressing mice enhances the regenerative response to irradiation. Together, our data provide new evidence for the opposing effects of the LIN28B-IMP1 axis on post-transcriptional regulation of canonical WNT signaling, with implications in intestinal homeostasis, regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Priya Chatterji
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Kathryn E Hamilton
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
- Department of Pediatrics, Division of Gastroenterology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Shun Liang
- Department of Genetics, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Sarah F Andres
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - H R Sagara Wijeratne
- Department of Genetics, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Rei Mizuno
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Lauren A Simon
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
- Department of Pediatrics, Division of Gastroenterology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Philip D Hicks
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Shawn W Foley
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Jason R Pitarresi
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Andres J Klein-Szanto
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Amanda T Mah
- Department of Medicine, Hematology Division, Stanford University, Stanford, California 94305, USA
| | - Laurianne Van Landeghem
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Blair B Madison
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Premal Shah
- Department of Genetics, Rutgers University, New Brunswick, New Jersey 08901, USA
- Human Genetics Institute of New Jersey, Piscataway, New Jersey 08854 USA
| | - Anil K Rustgi
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| |
Collapse
|
42
|
Mouse Intestinal Krt15+ Crypt Cells Are Radio-Resistant and Tumor Initiating. Stem Cell Reports 2018; 10:1947-1958. [PMID: 29805107 PMCID: PMC5993649 DOI: 10.1016/j.stemcr.2018.04.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/17/2022] Open
Abstract
Two principal stem cell pools orchestrate the rapid cell turnover in the intestinal epithelium. Rapidly cycling Lgr5+ stem cells are intercalated between the Paneth cells at the crypt base (CBCs) and injury-resistant reserve stem cells reside above the crypt base. The intermediate filament Keratin 15 (Krt15) marks either stem cells or long-lived progenitor cells that contribute to tissue repair in the hair follicle or the esophageal epithelium. Herein, we demonstrate that Krt15 labels long-lived and multipotent cells in the small intestinal crypt by lineage tracing. Krt15+ crypt cells display self-renewal potential in vivo and in 3D organoid cultures. Krt15+ crypt cells are resistant to high-dose radiation and contribute to epithelial regeneration following injury. Notably, loss of the tumor suppressor Apc in Krt15+ cells leads to adenoma and adenocarcinoma formation. These results indicate that Krt15 marks long-lived, multipotent, and injury-resistant crypt cells that may function as a cell of origin in intestinal cancer. Krt15 marks multipotent and self-renewing crypt cells in the mouse small intestine Krt15+ crypt cells are radio-resistant and contribute to regeneration following injury Apc loss in Krt15+ cells leads to intestinal adenoma and adenocarcinoma formation Krt15+ cells may function as a cell of origin in intestinal cancer
Collapse
|
43
|
Chatterji P, Rustgi AK. RNA Binding Proteins in Intestinal Epithelial Biology and Colorectal Cancer. Trends Mol Med 2018; 24:490-506. [PMID: 29627433 DOI: 10.1016/j.molmed.2018.03.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022]
Abstract
The intestinal epithelium is highly proliferative and consists of crypt invaginations that house stem cells and villus projections with differentiated cells. There exists a dynamic equilibrium between proliferation, migration, differentiation, and senescence that is regulated by several factors. Among these are RNA binding proteins (RBPs) that bind their targets in a both context dependent and independent manner. RBP-RNA complexes act as rheostats by regulating expression of RNAs both co- and post-transcriptionally. This is important, especially in response to intestinal injury, to fuel regeneration. The manner in which these RBPs function in the intestine and their interactions with other pivotal pathways in colorectal cancer may provide a framework for new insights and potential therapeutic applications.
Collapse
Affiliation(s)
- Priya Chatterji
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania, Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Anil K Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania, Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Yousefi M, Nakauka-Ddamba A, Berry CT, Li N, Schoenberger J, Bankler-Jukes D, Simeonov KP, Cedeno RJ, Yu Z, Lengner CJ. Calorie Restriction Governs Intestinal Epithelial Regeneration through Cell-Autonomous Regulation of mTORC1 in Reserve Stem Cells. Stem Cell Reports 2018; 10:703-711. [PMID: 29478893 PMCID: PMC5919411 DOI: 10.1016/j.stemcr.2018.01.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/22/2022] Open
Abstract
Aging is a complex process associated with a decline in functionality of adult stem cells affecting tissue homeostasis and regeneration. Calorie restriction (CR) is the only experimental manipulation known to extend lifespan and reduce the incidence of age-related disorders across numerous species. These benefits are likely mediated, at least in part, through the preservation of stem cell function. Here, we show that CR enhances the regenerative capacity of the intestinal epithelium through preservation of an injury-resistant reserve intestinal stem cell (ISC) pool. Cell-autonomous activity of mechanistic target of rapamycin complex 1 (mTORC1) governs the sensitivity of reserve ISCs to injury. CR inhibits mTORC1 in these cells, protecting them against DNA damage, while mTORC1 stimulation, either genetically or through nutrient sensing, sensitizes reserve ISCs to injury, thus compromising regeneration of the epithelium. These data delineate a critical role for mTORC1 in epithelial regeneration and inform clinical strategies based on nutrient modulation.
Collapse
Affiliation(s)
- Maryam Yousefi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Angela Nakauka-Ddamba
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Corbett T Berry
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ning Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jenna Schoenberger
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Devon Bankler-Jukes
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kamen P Simeonov
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan J Cedeno
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
45
|
Odle AK, Beneš H, Melgar Castillo A, Akhter N, Syed M, Haney A, Allensworth-James M, Hardy L, Winter B, Manoharan R, Syed R, MacNicol MC, MacNicol AM, Childs GV. Association of Gnrhr mRNA With the Stem Cell Determinant Musashi: A Mechanism for Leptin-Mediated Modulation of GnRHR Expression. Endocrinology 2018; 159:883-894. [PMID: 29228137 PMCID: PMC5776477 DOI: 10.1210/en.2017-00586] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/01/2017] [Indexed: 12/30/2022]
Abstract
The cyclic expression of pituitary gonadotropin-releasing hormone receptors (GnRHRs) may be an important checkpoint for leptin regulatory signals. Gonadotrope Lepr-null mice have reduced GnRHR levels, suggesting these receptors may be leptin targets. To determine if leptin stimulated GnRHR directly, primary pituitary cultures or pieces were exposed to 1 to 100 nM leptin. Leptin increased GnRHR protein levels and the percentages of gonadotropes that bound biotinylated analogs of gonadotropin-releasing hormone (bio-GnRH) but had no effect on Gnrhr messenger RNA (mRNA). An in silico analysis revealed three consensus Musashi (MSI) binding elements (MBEs) for this translational control protein in the 3' untranslated region (UTR) of Gnrhr mRNA. Several experiments determined that these Gnrhr mRNA MBE were active: (1) RNA electrophoretic mobility shift assay analyses showed that MSI1 specifically bound Gnrhr mRNA 3'-UTR; (2) RNA immunoprecipitation of pituitary fractions with MSI1 antibody pulled down a complex enriched in endogenous MSI protein and endogenous Gnrhr mRNA; and (3) fluorescence reporter assays showed that MSI1 repressed translation of the reporter coupled to the Gnrhr 3'-UTR. In vitro, leptin stimulation of pituitary pieces reduced Msi1 mRNA in female pituitaries, and leptin stimulation of pituitary cultures reduced MSI1 proteins selectively in gonadotropes identified by binding to bio-GnRH. These findings show that leptin's direct stimulatory actions on gonadotrope GnRHR correlate with a direct inhibition of expression of the posttranscriptional regulator MSI1. We also show MSI1 interaction with the 3'-UTR of Gnrhr mRNA. These findings now open the door to future studies of leptin-modulated posttranscriptional pathways.
Collapse
Affiliation(s)
- Angela K. Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Helen Beneš
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Andrea Melgar Castillo
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Noor Akhter
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Mohsin Syed
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Anessa Haney
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Melody Allensworth-James
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Linda Hardy
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Benjamin Winter
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Ragul Manoharan
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Raiyan Syed
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Melanie C. MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Angus M. MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Gwen V. Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
46
|
Young MA, Daly CS, Taylor E, James R, Clarke AR, Reed KR. Subtle Deregulation of the Wnt-Signaling Pathway Through Loss of Apc2 Reduces the Fitness of Intestinal Stem Cells. Stem Cells 2018; 36:114-122. [PMID: 29027285 PMCID: PMC5765519 DOI: 10.1002/stem.2712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 12/31/2022]
Abstract
The importance of the Wnt-signaling pathway on the regulation and maintenance of the intestinal stem cell (ISC) population is well recognized. However, our current knowledge base is founded on models using systems of gross deregulation of the Wnt-signaling pathway. Given the importance of this signaling pathway on intestinal homeostasis, there is a need to explore the role of more subtle alterations in Wnt-signaling levels within this tissue. Herein, we have used a model of Apc2 loss to meet this aim. Apc2 is a homolog of Apc which can also form a destruction complex capable of binding β-catenin, albeit less efficiently than Apc. We show that systemic loss of Apc2 results in an increase in the number of cells displaying nuclear β-catenin at the base of the intestinal crypt. This subsequently impacts the expression levels of several ISC markers and the fitness of ISCs as assessed by organoid formation efficiency. This work provides the first evidence that the function and fitness of ISCs can be altered by even minor misregulation of the Wnt-signaling pathway. Our data highlights the importance of correct maintenance of this crucial signaling pathway in the maintenance and function of the ISC population. Stem Cells 2018;36:114-122.
Collapse
Affiliation(s)
- Madeleine A. Young
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
| | - Carl S. Daly
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
- Department of Health and Applied ScienceUniversity of the West of EnglandBristolUnited Kingdom
| | - Elaine Taylor
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
| | - Rhiannon James
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
| | - Alan Richard Clarke
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
| | - Karen Ruth Reed
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
| |
Collapse
|
47
|
Kim CK, Yang VW, Bialkowska AB. The Role of Intestinal Stem Cells in Epithelial Regeneration Following Radiation-Induced Gut Injury. CURRENT STEM CELL REPORTS 2017; 3:320-332. [PMID: 29497599 PMCID: PMC5818549 DOI: 10.1007/s40778-017-0103-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of Review Intestinal epithelial cells show remarkable plasticity in regenerating the epithelium following radiation injury. In this review, we explore the regenerative capacity and mechanisms of various populations of intestinal stem cells (ISCs) in response to ionizing radiation. Recent Findings Ionizing radiation targets mitotic cells that include “active” ISCs and progenitor cells. Lineage-tracing experiments showed that several different cell types identified by a single or combination of markers are capable of regenerating the epithelium, confirming that ISCs exhibit a high degree of plasticity. However, the identities of the contributing cells marked by various markers require further validation. Summary Following radiation injury, quiescent and/or radioresistant cells become active stem cells to regenerate the epithelium. Looking forward, understanding the mechanisms by which ISCs govern tissue regeneration is crucial to determine therapeutic approaches to promote intestinal epithelial regeneration following injury.
Collapse
Affiliation(s)
- Chang-Kyung Kim
- 1Department of Medicine, Stony Brook University School of Medicine, HSC T-17, Rm. 090, Stony Brook, NY 11794 USA
| | - Vincent W Yang
- 1Department of Medicine, Stony Brook University School of Medicine, HSC T-17, Rm. 090, Stony Brook, NY 11794 USA.,2Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY 11794 USA
| | - Agnieszka B Bialkowska
- 1Department of Medicine, Stony Brook University School of Medicine, HSC T-17, Rm. 090, Stony Brook, NY 11794 USA
| |
Collapse
|
48
|
Cedeno RJ, Nakauka-Ddamba A, Yousefi M, Sterling S, Leu NA, Li N, Pehrson JR, Lengner CJ. The histone variant macroH2A confers functional robustness to the intestinal stem cell compartment. PLoS One 2017; 12:e0185196. [PMID: 28934364 PMCID: PMC5608326 DOI: 10.1371/journal.pone.0185196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/07/2017] [Indexed: 12/20/2022] Open
Abstract
A stem cell's epigenome directs cell fate during development, homeostasis, and regeneration. Epigenetic dysregulation can lead to inappropriate cell fate decisions, aberrant cell function, and even cancer. The histone variant macroH2A has been shown to influence gene expression, guide cell fate, and safeguard against genotoxic stress. Interestingly, mice lacking functional macroH2A histones (hereafter referred to as macroH2A DKO) are viable and fertile; yet suffer from increased perinatal death and reduced weight and size compared to wildtype (WT). Here, we ask whether the ostensible reduced vigor of macroH2A DKO mice extends to intestinal stem cell (ISC) function during homeostasis, regeneration, and oncogenesis. Lgr5-eGFP-IRES-CreERT2 or Hopx-CreERT2::Rosa26-LSL-tdTomato ISC reporter mice or the C57BL/6J-Apcmin/J murine intestinal adenoma model were bred into a macroH2A DKO or strain-matched WT background and assessed for ISC functionality, regeneration and tumorigenesis. High-dose (12Gy) whole-body γ-irradiation was used as an injury model. We show that macroH2A is dispensable for intestinal homeostasis and macroH2A DKO mice have similar numbers of active crypt-base columnar ISCs (CBCs). MacroH2A DKO intestine exhibits impaired regeneration following injury, despite having significantly more putative reserve ISCs. DKO reserve ISCs disproportionately undergo apoptosis compared to WT after DNA damage infliction. Interestingly, a macroH2A DKO background does not significantly increase tumorigenesis in the Apcmin model of intestinal adenoma. We conclude that macroH2A influences reserve ISC number and function during homeostasis and regeneration. These data suggest macroH2A enhances reserve ISC survival after DNA damage and thus confers functional robustness to the intestinal epithelium.
Collapse
Affiliation(s)
- Ryan James Cedeno
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America.,Cell and Molecular Biology Graduate Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| | - Angela Nakauka-Ddamba
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Maryam Yousefi
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America.,Cell and Molecular Biology Graduate Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| | - Stephanie Sterling
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America.,Center for Animal Transgenesis, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Nicolae Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America.,Center for Animal Transgenesis, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ning Li
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - John R Pehrson
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Christopher Joachim Lengner
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America.,Center for Animal Transgenesis, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America.,Center for Molecular Studies in Digestive and Liver Disease, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
49
|
MacNicol MC, Cragle CE, McDaniel FK, Hardy LL, Wang Y, Arumugam K, Rahmatallah Y, Glazko GV, Wilczynska A, Childs GV, Zhou D, MacNicol AM. Evasion of regulatory phosphorylation by an alternatively spliced isoform of Musashi2. Sci Rep 2017; 7:11503. [PMID: 28912529 PMCID: PMC5599597 DOI: 10.1038/s41598-017-11917-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/01/2017] [Indexed: 01/06/2023] Open
Abstract
The Musashi family of RNA binding proteins act to promote stem cell self-renewal and oppose cell differentiation predominantly through translational repression of mRNAs encoding pro-differentiation factors and inhibitors of cell cycle progression. During tissue development and repair however, Musashi repressor function must be dynamically regulated to allow cell cycle exit and differentiation. The mechanism by which Musashi repressor function is attenuated has not been fully established. Our prior work indicated that the Musashi1 isoform undergoes site-specific regulatory phosphorylation. Here, we demonstrate that the canonical Musashi2 isoform is subject to similar regulated site-specific phosphorylation, converting Musashi2 from a repressor to an activator of target mRNA translation. We have also characterized a novel alternatively spliced, truncated isoform of human Musashi2 (variant 2) that lacks the sites of regulatory phosphorylation and fails to promote translation of target mRNAs. Consistent with a role in opposing cell cycle exit and differentiation, upregulation of Musashi2 variant 2 was observed in a number of cancers and overexpression of the Musashi2 variant 2 isoform promoted cell transformation. These findings indicate that alternately spliced isoforms of the Musashi protein family possess distinct functional and regulatory properties and suggest that differential expression of Musashi isoforms may influence cell fate decisions.
Collapse
Affiliation(s)
- Melanie C MacNicol
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA.,University of Arkansas for Medical Science, Center for Translational Neuroscience, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Chad E Cragle
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - F Kennedy McDaniel
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Linda L Hardy
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Yan Wang
- University of Arkansas for Medical Sciences, Department of Pharmaceutical Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA.,Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510182, PR China
| | - Karthik Arumugam
- University of Arkansas for Medical Sciences, Department of Physiology and Biophysics, 4301 W. Markham, Little Rock, 72205, AR, USA.,Center for Genomic Regulation, Department of Gene Regulation, Stem Cells and Cancer, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Yasir Rahmatallah
- University of Arkansas for Medical Sciences, Department of Biomedical Informatics, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Galina V Glazko
- University of Arkansas for Medical Sciences, Department of Biomedical Informatics, 4301 W. Markham, Little Rock, 72205, AR, USA
| | | | - Gwen V Childs
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA.,University of Arkansas for Medical Science, Center for Translational Neuroscience, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Daohong Zhou
- University of Arkansas for Medical Sciences, Department of Pharmaceutical Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Angus M MacNicol
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA. .,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR, 72205, United States.
| |
Collapse
|
50
|
Tian Y, Ma X, Lv C, Sheng X, Li X, Zhao R, Song Y, Andl T, Plikus MV, Sun J, Ren F, Shuai J, Lengner CJ, Cui W, Yu Z. Stress responsive miR-31 is a major modulator of mouse intestinal stem cells during regeneration and tumorigenesis. eLife 2017; 6. [PMID: 28870287 PMCID: PMC5584991 DOI: 10.7554/elife.29538] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/07/2017] [Indexed: 12/15/2022] Open
Abstract
Intestinal regeneration and tumorigenesis are believed to be driven by intestinal stem cells (ISCs). Elucidating mechanisms underlying ISC activation during regeneration and tumorigenesis can help uncover the underlying principles of intestinal homeostasis and disease including colorectal cancer. Here we show that miR-31 drives ISC proliferation, and protects ISCs against apoptosis, both during homeostasis and regeneration in response to ionizing radiation injury. Furthermore, miR-31 has oncogenic properties, promoting intestinal tumorigenesis. Mechanistically, miR-31 acts to balance input from Wnt, BMP, TGFβ signals to coordinate control of intestinal homeostasis, regeneration and tumorigenesis. We further find that miR-31 is regulated by the STAT3 signaling pathway in response to radiation injury. These findings identify miR-31 as a critical modulator of ISC biology, and a potential therapeutic target for a broad range of intestinal regenerative disorders and cancers. Cells lining the inner wall of the gut help to absorb nutrients and to protect the body against harmful microbes and substances. Being on the front line of defense means that these cells often sustain injuries. Specialized cells called intestinal stem cells keep the tissues healthy by replacing the damaged and dying cells. The intestinal stem cells can produce copies of themselves and generate precursors of the gut cells. They also have specific mechanism to protect themselves from cell death. These processes are regulated by different signals that are generated by the cell themselves or the neighboring cells. If these processes get out of control, cells can easily be depleted or develop into cancer cells. Until now, it remained unclear how intestinal stem cells can differentiate between and respond to multiple and simultaneous signals. It is known that short RNA molecules called microRNA play an important role in the signaling pathways of damaged cells and during cancer development. In the gut, different microRNAs, including microRNA-31,help to keep the gut lining intact. However, previous research has shown that bowel cancer cells also contain high amounts of microRNA-31. To see whether microRNA-31 plays a role in controlling the signaling systems in intestinal stem cells, Tian, Ma, Lv et al. looked at genetically modified mice that either had too much microRNA-31 or none. Mice with too much microRNA-31 produced more intestinal stem cells and were able to better repair any cell damage. Mice without microRNA-31 gave rise to fewer intestinal stem cellsand had no damage repair, but were able to stop cancer cells in the gut from growing. The results showed that microRNA-31 in intestinal stem cells helps the cells to divide and to protect themselves from cell death. It controlled and balanced the different types of cell signaling by either repressing or activating various signals. When Tian et al. damaged the stem cells using radiation, the cells increased their microRNA-31 levels as a defense mechanism. This helped the cells to survive and to activate repair mechanisms. Furthermore, Tian et al. discovered that microRNA-31 can enhance the growth of tumors. These results indicate that microRNA-31 plays an important role both in repairing gut linings and furthering tumor development. A next step will be to see whether cancer cells use microRNA-31 to protect themselves from chemo- and radiation therapy. This could help scientists find new ways to render cancerous cells more susceptible to existing cancer therapies.
Collapse
Affiliation(s)
- Yuhua Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xianghui Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Cong Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaole Sheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ran Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongli Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Thomas Andl
- Vanderbilt University Medical Center, Nashville, United States
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, United States
| | - Jinyue Sun
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jianwei Shuai
- Department of Physics and State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States.,Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States
| | - Wei Cui
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Zhengquan Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|