1
|
Warrick KA, Vallez CN, Meibers HE, Pasare C. Bidirectional Communication Between the Innate and Adaptive Immune Systems. Annu Rev Immunol 2025; 43:489-514. [PMID: 40279312 PMCID: PMC12120936 DOI: 10.1146/annurev-immunol-083122-040624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Effective bidirectional communication between the innate and adaptive immune systems is crucial for tissue homeostasis and protective immunity against infections. The innate immune system is responsible for the early sensing of and initial response to threats, including microbial ligands, toxins, and tissue damage. Pathogen-related information, detected primarily by the innate immune system via dendritic cells, is relayed to adaptive immune cells, leading to the priming and differentiation of naive T cells into effector and memory lineages. Memory T cells that persist long after pathogen clearance are integral for durable protective immunity. In addition to rapidly responding to reinfections, memory T cells also directly instruct the interacting myeloid cells to induce innate inflammation, which resembles microbial inflammation. As such, memory T cells act as newly emerging activators of the innate immune system and function independently of direct microbial recognition. While T cell-mediated activation of the innate immune system likely evolved as a protective mechanism to combat reinfections by virulent pathogens, the detrimental outcomes of this mechanism manifest in the forms of autoimmunity and other T cell-driven pathologies. Here, we review the complexities and layers of regulation at the interface between the innate and adaptive immune systems to highlight the implications of adaptive instruction of innate immunity in health and disease.
Collapse
Affiliation(s)
- Kathrynne A Warrick
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA ;
| | - Charles N Vallez
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA ;
| | - Hannah E Meibers
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA ;
| | - Chandrashekhar Pasare
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA ;
| |
Collapse
|
2
|
Carroll SL, Pasare C, Barton GM. Control of adaptive immunity by pattern recognition receptors. Immunity 2024; 57:632-648. [PMID: 38599163 PMCID: PMC11037560 DOI: 10.1016/j.immuni.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
One of the most significant conceptual advances in immunology in recent history is the recognition that signals from the innate immune system are required for induction of adaptive immune responses. Two breakthroughs were critical in establishing this paradigm: the identification of dendritic cells (DCs) as the cellular link between innate and adaptive immunity and the discovery of pattern recognition receptors (PRRs) as a molecular link that controls innate immune activation as well as DC function. Here, we recount the key events leading to these discoveries and discuss our current understanding of how PRRs shape adaptive immune responses, both indirectly through control of DC function and directly through control of lymphocyte function. In this context, we provide a conceptual framework for how variation in the signals generated by PRR activation, in DCs or other cell types, can influence T cell differentiation and shape the ensuing adaptive immune response.
Collapse
Affiliation(s)
- Shaina L Carroll
- Division of Immunology & Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| | - Chandrashekhar Pasare
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH USA
| | - Gregory M Barton
- Division of Immunology & Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720 USA.
| |
Collapse
|
3
|
Lu Y, Godbout K, Lamothe G, Tremblay JP. CRISPR-Cas9 delivery strategies with engineered extracellular vesicles. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102040. [PMID: 37842166 PMCID: PMC10571031 DOI: 10.1016/j.omtn.2023.102040] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Therapeutic genome editing has the potential to cure diseases by directly correcting genetic mutations in tissues and cells. Recent progress in the CRISPR-Cas9 systems has led to breakthroughs in gene editing tools because of its high orthogonality, versatility, and efficiency. However, its safe and effective administration to target organs in patients is a major hurdle. Extracellular vesicles (EVs) are endogenous membranous particles secreted spontaneously by all cells. They are key actors in cell-to-cell communication, allowing the exchange of select molecules such as proteins, lipids, and RNAs to induce functional changes in the recipient cells. Recently, EVs have displayed their potential for trafficking the CRISPR-Cas9 system during or after their formation. In this review, we highlight recent developments in EV loading, surface functionalization, and strategies for increasing the efficiency of delivering CRISPR-Cas9 to tissues, organs, and cells for eventual use in gene therapies.
Collapse
Affiliation(s)
- Yaoyao Lu
- Centre de Recherche du CHU de Québec -Université Laval, Québec city, QC G1V4G2, Canada
| | - Kelly Godbout
- Centre de Recherche du CHU de Québec -Université Laval, Québec city, QC G1V4G2, Canada
| | - Gabriel Lamothe
- Centre de Recherche du CHU de Québec -Université Laval, Québec city, QC G1V4G2, Canada
| | - Jacques P. Tremblay
- Centre de Recherche du CHU de Québec -Université Laval, Québec city, QC G1V4G2, Canada
| |
Collapse
|
4
|
Jerzy Kupiec-Weglinski, MD, PhD. Transplantation 2021; 105:275-277. [PMID: 33953140 DOI: 10.1097/tp.0000000000003409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Jafari D, Malih S, Eslami SS, Jafari R, Darzi L, Tarighi P, Samadikuchaksaraei A. The relationship between molecular content of mesenchymal stem cells derived exosomes and their potentials: Opening the way for exosomes based therapeutics. Biochimie 2019; 165:76-89. [PMID: 31302163 DOI: 10.1016/j.biochi.2019.07.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022]
Abstract
At least, more than half of our understanding of extracellular vesicles owes to the studies conducted over the past few years. When it became clear that the exosomes have various potentials in medicine, extensive research has focused on these potentials in a variety of areas including cancer, drug delivery and regenerative medicine. The growing understanding of molecular structure and functions of exosomes causes the vision to become brighter in the exosomes complexity, and our attitude toward these vesicles has undergone changes accordingly. Proteomic and transcriptomic studies on exosomes have highlighted their molecular diversity. In this review, we explicitly examine the exosomes composition, molecular structure and their therapeutic potentials in some diseases. Due to the very heterogeneous nature of exosomes, the process of their use as a therapeutic agent in the clinic has been challenged. We are still at the beginning of recognizing the molecular composition of exosomes and mechanisms that affect their physiology and biology. The growing trend of engineering of exosomes has shown a promising future to further utilize them in a different field. Molecular profiling of exosomes and their content for their related potentials in regenerative medicine should be done exactly for further defining a minimum content for specific therapeutic potentials.
Collapse
Affiliation(s)
- Davod Jafari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Malih
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Seyed Sadegh Eslami
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasool Jafari
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Leila Darzi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Abstract
ABSTRACT
The aim of this review is to provide a coherent framework for understanding dendritic cells (DCs). It has seven sections. The introduction provides an overview of the immune system and essential concepts, particularly for the nonspecialist reader. Next, the “History” section outlines the early evolution of ideas about DCs and highlights some sources of confusion that still exist today. The “Lineages” section then focuses on five different populations of DCs: two subsets of “classical” DCs, plasmacytoid DCs, monocyte-derived DCs, and Langerhans cells. It highlights some cellular and molecular specializations of each, and also notes other DC subsets that have been proposed. The following “Tissues” section discusses the distribution and behavior of different DC subsets within nonlymphoid and secondary lymphoid tissues that are connected by DC migration pathways between them. In the “Tolerance” section, the role of DCs in central and peripheral tolerance is considered, including their ability to drive the differentiation of different populations of regulatory T cells. In contrast, the “Immunity” section considers the roles of DCs in sensing of infection and tissue damage, the initiation of primary responses, the T-cell effector phase, and the induction of immunological memory. The concluding section provides some speculative ideas about the evolution of DCs. It also revisits earlier concepts of generation of diversity and clonal selection in terms of DCs driving the evolution of T-cell responses. Throughout, this review highlights certain areas of uncertainty and suggests some avenues for future investigation.
Collapse
|
7
|
Gonzalez NK, Wennhold K, Balkow S, Kondo E, Bölck B, Weber T, Garcia-Marquez M, Grabbe S, Bloch W, von Bergwelt-Baildon M, Shimabukuro-Vornhagen A. In vitro and in vivo imaging of initial B-T-cell interactions in the setting of B-cell based cancer immunotherapy. Oncoimmunology 2015; 4:e1038684. [PMID: 26405608 DOI: 10.1080/2162402x.2015.1038684] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 01/19/2023] Open
Abstract
There has been a growing interest in the use of B cells for cancer vaccines, since they have yielded promising results in preclinical animal models. Contrary to dendritic cells (DCs), we know little about the migration behavior of B cells in vivo. Therefore, we investigated the interactions between CD40-activated B (CD40B) cells and cytotoxic T cells in vitro and the migration behavior of CD40B cells in vivo. Dynamic interactions of human antigen-presenting cells (APCs) and T cells were observed by time-lapse video microscopy. The migratory and chemoattractant potential of CD40B cells was analyzed in vitro and in vivo using flow cytometry, standard transwell migration assays, and imaging of fluorescently labeled murine CD40B cells. Murine CD40B cells show migratory features similar to human CD40B cells. They express important lymph node homing receptors which were functional and induced chemotaxis of T cells in vitro. Striking differences were observed with regard to interactions of human APCs with T cells. CD40B cells differ from DCs by displaying a rapid migratory pattern undergoing highly dynamic, short-lived and sequential interactions with T cells. In vivo, CD40B cells are home to the secondary lymphoid organs where they accumulate in the B cell zone before traveling to the B/T cell boundary. Moreover, intravenous (i.v.) administration of murine CD40B cells induced an antigen-specific cytotoxic T cell response. Taken together, this data show that CD40B cells home secondary lymphoid organs where they physically interact with T cells to induce antigen-specific T cell responses, thus underscoring their potential as cellular adjuvant for cancer immunotherapy.
Collapse
Affiliation(s)
- Nela Klein Gonzalez
- Department of Hematology; Vall d'Hebron University Hospital; VHIR; Universitat Autónoma de Barcelona ; Barcelona, Spain ; Cologne Interventional Immunology (CII); University Hospital of Cologne ; Cologne, Germany ; Department I of Internal Medicine; University Hospital of Cologne ; Cologne, Germany
| | - Kerstin Wennhold
- Cologne Interventional Immunology (CII); University Hospital of Cologne ; Cologne, Germany ; Department I of Internal Medicine; University Hospital of Cologne ; Cologne, Germany
| | - Sandra Balkow
- Department of Dermatology and Research Center for Immunology (FZI); University Medical Center Mainz ; Mainz, Germany
| | - Eisei Kondo
- Department of General Medicine; Okayama University ; Okayama, Japan
| | - Birgit Bölck
- Institute of Cardiology and Sports Medicine; Department of Molecular and Cellular Sport Medicine; German Sport University Cologne ; Cologne, Germany
| | - Tanja Weber
- Cologne Interventional Immunology (CII); University Hospital of Cologne ; Cologne, Germany ; Department I of Internal Medicine; University Hospital of Cologne ; Cologne, Germany
| | - Maria Garcia-Marquez
- Cologne Interventional Immunology (CII); University Hospital of Cologne ; Cologne, Germany ; Department I of Internal Medicine; University Hospital of Cologne ; Cologne, Germany
| | - Stephan Grabbe
- Department of Dermatology and Research Center for Immunology (FZI); University Medical Center Mainz ; Mainz, Germany
| | - Wilhelm Bloch
- Institute of Cardiology and Sports Medicine; Department of Molecular and Cellular Sport Medicine; German Sport University Cologne ; Cologne, Germany
| | - Michael von Bergwelt-Baildon
- Cologne Interventional Immunology (CII); University Hospital of Cologne ; Cologne, Germany ; Department I of Internal Medicine; University Hospital of Cologne ; Cologne, Germany
| | - Alexander Shimabukuro-Vornhagen
- Cologne Interventional Immunology (CII); University Hospital of Cologne ; Cologne, Germany ; Department I of Internal Medicine; University Hospital of Cologne ; Cologne, Germany
| |
Collapse
|
8
|
Wiklander OPB, Nordin JZ, O'Loughlin A, Gustafsson Y, Corso G, Mäger I, Vader P, Lee Y, Sork H, Seow Y, Heldring N, Alvarez-Erviti L, Smith CIE, Le Blanc K, Macchiarini P, Jungebluth P, Wood MJA, Andaloussi SE. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles 2015; 4:26316. [PMID: 25899407 PMCID: PMC4405624 DOI: 10.3402/jev.v4.26316] [Citation(s) in RCA: 1166] [Impact Index Per Article: 116.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in a diverse range of biological processes. For future therapeutic applications and for EV biology research in general, understanding the in vivo fate of EVs is of utmost importance. Here we studied biodistribution of EVs in mice after systemic delivery. EVs were isolated from 3 different mouse cell sources, including dendritic cells (DCs) derived from bone marrow, and labelled with a near-infrared lipophilic dye. Xenotransplantation of EVs was further carried out for cross-species comparison. The reliability of the labelling technique was confirmed by sucrose gradient fractionation, organ perfusion and further supported by immunohistochemical staining using CD63-EGFP probed vesicles. While vesicles accumulated mainly in liver, spleen, gastrointestinal tract and lungs, differences related to EV cell origin were detected. EVs accumulated in the tumour tissue of tumour-bearing mice and, after introduction of the rabies virus glycoprotein-targeting moiety, they were found more readily in acetylcholine-receptor-rich organs. In addition, the route of administration and the dose of injected EVs influenced the biodistribution pattern. This is the first extensive biodistribution investigation of EVs comparing the impact of several different variables, the results of which have implications for the design and feasibility of therapeutic studies using EVs.
Collapse
Affiliation(s)
| | - Joel Z Nordin
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aisling O'Loughlin
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Ylva Gustafsson
- Advanced Centre for Translational Regenerative Medicine, Department for Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Giulia Corso
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Institute of Technology, University of Tartu, Tartu, Estonia
| | - Pieter Vader
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Yi Lee
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Helena Sork
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yiqi Seow
- Molecular Engineering Laboratory, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Nina Heldring
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lydia Alvarez-Erviti
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - C I Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Le Blanc
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Haematology Centre, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Macchiarini
- Advanced Centre for Translational Regenerative Medicine, Department for Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Philipp Jungebluth
- Advanced Centre for Translational Regenerative Medicine, Department for Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, Heidelberg, Germany
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
9
|
Roberts LL, Robinson CM. Mycobacterium tuberculosis infection of human dendritic cells decreases integrin expression, adhesion and migration to chemokines. Immunology 2014; 141:39-51. [PMID: 23981064 DOI: 10.1111/imm.12164] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 12/25/2022] Open
Abstract
Tuberculosis (TB) remains a major global health problem accounting for millions of deaths annually. Approximately one-third of the world's population is infected with the causative agent Mycobacterium tuberculosis. The onset of an adaptive immune response to M. tuberculosis is delayed compared with other microbial infections. This delay permits bacterial growth and dissemination. The precise mechanism(s) responsible for this delay have remained obscure. T-cell activation is preceded by dendritic cell (DC) migration from infected lungs to local lymph nodes and synapsis with T cells. We hypothesized that M. tuberculosis may impede the ability of DCs to reach lymph nodes and initiate an adaptive immune response. We used primary human DCs to determine the effect of M. tuberculosis on expression of heterodimeric integrins involved in cellular adhesion and migration. We also evaluated the ability of infected DCs to adhere to and migrate through lung endothelial cells, which is necessary to reach lymph nodes. We show by flow cytometry and confocal microscopy that M. tuberculosis-infected DCs exhibit a significant reduction in surface expression of the β(2) (CD18) integrin. Distribution of integrin β(2) is also markedly altered in M. tuberculosis-infected DCs. A corresponding reduction in the αL (CD11a) and αM (CD11b) subunits that associate with integrin β(2) was also observed. Consistent with reduced integrin surface expression, we show a significant reduction in adherence to lung endothelial cell monolayers and migration towards lymphatic chemokines when DCs are infected with M. tuberculosis. These findings suggest that M. tuberculosis modulates DC adhesion and migration to increase the time required to initiate an adaptive immune response.
Collapse
Affiliation(s)
- Lawton L Roberts
- Department of Pathology, Microbiology, & Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | | |
Collapse
|
10
|
Toki S, Omary RA, Wilson K, Gore JC, Peebles RS, Pham W. A comprehensive analysis of transfection-assisted delivery of iron oxide nanoparticles to dendritic cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:1235-44. [PMID: 23747738 DOI: 10.1016/j.nano.2013.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 04/30/2013] [Accepted: 05/25/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED Polylysine (PL) has been used to facilitate dendritic cell (DC) uptake of super paramagnetic iron oxide (SPIO) nanoparticles for use in magnetic resonance imaging (MRI). In this work, we examined the effect of PL on cell toxicity and induction of cell maturation as manifested by the up-regulation of surface molecules. We found that PL became toxic to bone marrow-derived DCs (BMDCs) at the 10 μg/ml threshold. Incubation of BMDCs with 20 μg/ml of PL for 1h resulted in approximately 90% cell death. However, addition of SPIO nanoparticles rescued DCs from PL-induced death as the combination of SPIO with PL did not cause cytotoxicity until the PL concentration was 1000 μg/ml. Prolonged exposure to PL induced BMDC maturation as noted by the expression of surface molecules such as MHC class II, CD40, CCR7 and CD86. However, the combination of SPIO and PL did not induce BMDC maturation at 1h. However prolonged exposure to SPIO nanoparticles induced CD40 expression and protein expression of TNFα and KC. The data suggest that the use of PL to enhance the labeling of DCs with SPIO nanoparticles is a dedicated work. Appropriate calibration of the incubation time and concentrations of PL and SPIO nanoparticles is crucial to the development of MRI technology for noninvasive imaging of DCs in vivo. FROM THE CLINICAL EDITOR The authors of this study present detailed data on toxicity and efficiency of polylysine-facilitated uptake of USPIO-s by dendritic cells for cell-specific MR imaging.
Collapse
Affiliation(s)
- Shinji Toki
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt School of Medicine, Nashville, TN, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
The macrophage (MΦ) has been the focus of causality, research, and therapy of Gaucher disease, but recent evidence casts doubt its solitary role in the disease pathogenesis. The excess of glucosylceramide (GC) in such cells accounts for some of the disease manifestations. Evidence of increased expression of C-C and C-X-C chemokines (i.e., CCL2,CXCL1, CXCL8) in Gaucher disease could be critical for monocyte transformation to inflammatory subsets of macrophages and dendritic cells (DC) as well as neutrophil (PMNs) recruitment to visceral organs. These immune responses could be essential for activation of T- and B-cell subsets, and the induction of numerous cytokines and chemokines that participate in the initiation and propagation of the molecular pathogenesis of Gaucher disease. The association of Gaucher disease with a variety of cellular and humoral immune responses is reviewed here to provide a potential foundation for expanding the complex pathophysiology of Gaucher disease.
Collapse
Affiliation(s)
| | - Gregory A. Grabowski
- Address all correspondence to: Gregory A. Grabowski, M.D., Professor and Director, Division of Human Genetics, Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 4006, Cincinnati, Ohio 45229-3039, Phone: 513-636-7290, Fax 513-636-2261,
| |
Collapse
|
12
|
Differential requirement for ROCK in dendritic cell migration within lymphatic capillaries in steady-state and inflammation. Blood 2012; 120:2249-58. [PMID: 22855606 DOI: 10.1182/blood-2012-03-417923] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dendritic cell (DC) migration via lymphatic vessels to draining lymph nodes (dLNs) is crucial for the initiation of adaptive immunity. We imaged this process by intravital microscopy (IVM) in the ear skin of transgenic mice bearing red-fluorescent vasculature and yellow-fluorescent DCs. DCs within lymphatic capillaries were rarely transported by flow, but actively migrated within lymphatics and were significantly faster than in the interstitium. Pharmacologic blockade of the Rho-associated protein kinase (ROCK), which mediates nuclear contraction and de-adhesion from integrin ligands, significantly reduced DC migration from skin to dLNs in steady-state. IVM revealed that ROCK blockade strongly reduced the velocity of interstitial DC migration, but only marginally affected intralymphatic DC migration. By contrast, during tissue inflammation, ROCK blockade profoundly decreased both interstitial and intralymphatic DC migration. Inhibition of intralymphatic migration was paralleled by a strong up-regulation of ICAM-1 in lymphatic endothelium, suggesting that during inflammation ROCK mediates de-adhesion of DC-expressed integrins from lymphatic-expressed ICAM-1. Flow chamber assays confirmed an involvement of lymphatic-expressed ICAM-1 and DC-expressed ROCK in DC crawling on lymphatic endothelium. Overall, our findings further define the role of ROCK in DC migration to dLNs and reveal a differential requirement for ROCK in intralymphatic DC crawling during steady-state and inflammation.
Collapse
|
13
|
Indrasingh I, Bertha A. Demonstration of Langerhans Cells (Lcs) in the Intra-Follicular and Inter-Follicular Regions of the Human Palatine Tonsil Ultrastructural and Immunohistochemical Study. J ANAT SOC INDIA 2012. [DOI: 10.1016/s0003-2778(12)80006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Gondak RO, Alves DB, Silva LFF, Mauad T, Vargas PA. Depletion of Langerhans cells in the tongue from patients with advanced-stage acquired immune deficiency syndrome: relation to opportunistic infections. Histopathology 2011; 60:497-503. [PMID: 22168427 DOI: 10.1111/j.1365-2559.2011.04068.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To quantify and compare the expression of Langerhans cells (LCs) in the tongue mucosa of AIDS patients with different opportunistic infections, and from acquired immune deficiency syndrome (AIDS) and non-AIDS patients with normal tongues, using autopsy material. METHODS AND RESULTS Human leucocyte antigen D-related (HLA-DR), CD1a and CD83 antibodies were used to identify and quantify LCs by immunohistochemistry in tongue tissue of 40 AIDS patients (10 with lingual candidiasis, 10 with lingual herpes, 10 with oral hairy leukoplakia and 10 with no lesions) and 23 tongues from human immunodeficiency virus (HIV)-negative control patients. Quantification was performed by means of conventional morphometry in four different regions (anterior, middle, posterior and lateral) of the tongue. The results were expressed as positive cells per area of epithelium. The AIDS patients presented a lower density of CD1a(+) cells (P < 0.001), HLA-DR (P < 0.003) and CD83 (P < 0.001) in all regions of the tongue compared to the non-AIDS control group. However, no differences in any of the markers were found when AIDS patients with different opportunistic infections were compared with AIDS patients without tongue infection. CONCLUSIONS Advanced stage AIDS patients showed a depletion of LCs in the tongue mucosa. HIV infection induces cytopathic changes in LCs, contributing to their depletion regardless of the presence of oral infections.
Collapse
Affiliation(s)
- Rogério O Gondak
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | | | | | | | | |
Collapse
|
15
|
Liu G, Swierczewska M, Niu G, Zhang X, Chen X. Molecular imaging of cell-based cancer immunotherapy. MOLECULAR BIOSYSTEMS 2011; 7:993-1003. [PMID: 21308113 PMCID: PMC3063946 DOI: 10.1039/c0mb00198h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cell-based cancer immunotherapy represents a new and powerful weapon in the arsenal of anticancer treatments. Non-invasive monitoring of the disposition, migration and destination of therapeutic cells will facilitate the development of cell based therapy. The therapeutic cells can be modified intrinsically by a reporter gene or labeled extrinsically by introducing imaging probes into the cells or on the cell surface before transplant. Various advanced non-invasive molecular imaging techniques are playing important roles in optimizing cellular therapy by tracking cells and monitoring the therapeutic effects of transplanted cells in vivo. This review will summarize the application of multiple molecular imaging modalities in cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Gang Liu
- Sichuan Key Laboratory of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong 637007, China
- Institute of Materia Medica and Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637007, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 31 Center Dr, 9 Memorial Drive, 9/1W111, 1C22, Bethesda, MD 20892, USA
| | - Magdalena Swierczewska
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 31 Center Dr, 9 Memorial Drive, 9/1W111, 1C22, Bethesda, MD 20892, USA
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 31 Center Dr, 9 Memorial Drive, 9/1W111, 1C22, Bethesda, MD 20892, USA
- Imaging Sciences Training Program, Radiology and Imaging Sciences, Clinical Center and NIBIB, NIH, Bethesda, MD 20892, USA
| | - Xiaoming Zhang
- Sichuan Key Laboratory of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong 637007, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 31 Center Dr, 9 Memorial Drive, 9/1W111, 1C22, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Ottobrini L, Martelli C, Trabattoni DL, Clerici M, Lucignani G. In vivo imaging of immune cell trafficking in cancer. Eur J Nucl Med Mol Imaging 2010; 38:949-68. [PMID: 21170525 DOI: 10.1007/s00259-010-1687-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 11/15/2010] [Indexed: 12/14/2022]
Abstract
Tumour establishment, progression and regression can be studied in vivo using an array of imaging techniques ranging from MRI to nuclear-based and optical techniques that highlight the intrinsic behaviour of different cell populations in the physiological context. Clinical in vivo imaging techniques and preclinical specific approaches have been used to study, both at the macroscopic and microscopic level, tumour cells, their proliferation, metastasisation, death and interaction with the environment and with the immune system. Fluorescent, radioactive or paramagnetic markers were used in direct protocols to label the specific cell population and reporter genes were used for genetic, indirect labelling protocols to track the fate of a given cell subpopulation in vivo. Different protocols have been proposed to in vivo study the interaction between immune cells and tumours by different imaging techniques (intravital and whole-body imaging). In particular in this review we report several examples dealing with dendritic cells, T lymphocytes and macrophages specifically labelled for different imaging procedures both for the study of their physiological function and in the context of anti-neoplastic immunotherapies in the attempt to exploit imaging-derived information to improve and optimise anti-neoplastic immune-based treatments.
Collapse
Affiliation(s)
- Luisa Ottobrini
- Department of Biomedical Sciences and Technologies, University of Milan, Milan, Italy
| | | | | | | | | |
Collapse
|
17
|
Abstract
Non-self cells can circulate in the body of an individual after any sort of contact with an allogeneic source of cells, thus creating a situation of chimerism that can be transient or prolonged over time. This situation may appear after stem cell transplantation, pregnancy, transfusion or transplantation. Concerning transplantation, many hypotheses have been formulated regarding the existence, persistence and role of these circulating cells in the host. We will review the principal hypotheses that have been formulated for years since the first description of non-self circulating cells in mammals to the utilization of artificially induced chimerism protocols for the achievement of tolerance.
Collapse
Affiliation(s)
- Josep-Maria Pujal
- Translational Research Laboratory, Institut Català d'Oncologia, Hospital Duran i Reynals, Avda Gran Via s/n, Km 2.7, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
18
|
Komaru A, Ueda Y, Furuya A, Tanaka S, Yoshida K, Kato T, Kinoh H, Harada Y, Suzuki H, Inoue M, Hasegawa M, Ichikawa T, Yonemitsu Y. Sustained and NK/CD4+ T cell-dependent efficient prevention of lung metastasis induced by dendritic cells harboring recombinant Sendai virus. THE JOURNAL OF IMMUNOLOGY 2009; 183:4211-9. [PMID: 19734206 DOI: 10.4049/jimmunol.0803845] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently demonstrated efficient antitumor immunity against murine tumors using dendritic cells (DCs) activated by recombinant Sendai viruses (rSeVs), and proposed a new concept, "immunostimulatory virotherapy," for cancer immunotherapy. However, there has been little information on the efficacy of this method in preventing metastatic diseases. In this study, we investigated the efficacy of vaccinating DCs activated by fusion gene-deleted nontransmissible rSeV (rSeV/dF) using a murine model of lung metastasis. Bolus and i.v. administration of DCs harboring rSeV/dF-expressing GFP without pulsation of tumor Ag (DC-rSeV/dF-GFP) 2 days before tumor inoculation showed efficient prevention against lung metastasis of c1300 neuroblastoma, but not of RM-9 prostatic cancer. We found that the timing of DC therapy was critical for the inhibition of pulmonary metastasis of RM-9, and that the optimal effect of DCs was seen 28 days before tumor inoculation. Interestingly, the antimetastatic effect was sustained for over 3 mo, even when administered DCs were already cleared from the lung and organs related to the immune system. Although NK cell activity had already declined to baseline at the time of tumor inoculation, Ab-mediated depletion studies revealed that CD4+ cells as well as the presence of, but not the activation of, NK cells were crucial to the prevention of lung metastasis. These results are the first demonstration of efficient inhibition of lung metastasis via bolus administration of virally activated DCs that was sustained and NK/CD4+ cell-dependent, and may suggest a potentially new mechanism of DC-based immunotherapy for advanced malignancies.
Collapse
Affiliation(s)
- Atsushi Komaru
- Department of Gene Therapy, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ruiz A, Nomdedeu M, Ortega M, Lejeune M, Setoain J, Climent N, Fumero E, Plana M, León A, Alós L, Piera C, Lomeña F, Gatell JM, Gallart T, García F. Assessment of migration of HIV-1-loaded dendritic cells labeled with 111In-oxine used as a therapeutic vaccine in HIV-1-infected patients. Immunotherapy 2009; 1:347-54. [DOI: 10.2217/imt.09.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Monocyte-derived dendritic cells (DCs) loaded with heat-inactivated HIV are used in therapeutic immunizations. It is not known whether they migrate in vivo to lymph nodes. We used an 111In-oxine-labeled DC (ILDC) method to visualize the migration of DCs. The activity, time and incubation medium were investigated to obtain the highest cellular viability and radiolabeling yield. A trypan-blue exclusion test was used to determine the cellular viability. In five patients, 2 × 106 ILDCs were injected subcutaneously in the arm. An initial dynamic study was performed during the first 5 min after injection. This was followed by static acquisitions at several time points, using a high-resolution (general electric) γ-camera and quantifying the activity at regions of interest drawn on the injection point. The sensitivity of the γ-camera was evaluated. The highest number of viable DCs (>83%) and the best radiolabeling yield (>70%) were obtained with 1.11 MBq 111In-oxine, after 10 min of incubation at 37°C in sodium chloride solution 0.9%. We did not observe migration of ILDCs to local lymph nodes in any patient. However, focal uptake at the place of injection continued during the study period. We observed a higher than expected loss of activity from the injection point (median At/A0 = 0.60 at day 2), which correlated with an increase in total cytotoxic T lymphocytes (CD8+ and granzyme B+ cells) in the lypmphoid tissue observed after immunization (R2 = 0.92, p = 0.03). If more than 20,000 ILDCs had migrated, they could have been detected. In future trials, a higher number of DCs or alternative methods should be used to assess the migration of DCs to lymph nodes.
Collapse
Affiliation(s)
- Alba Ruiz
- Infectious Diseases Unit, Hospital Clínic, Villarroel, 170, 08036 Barcelona, Spain
| | - Meritxell Nomdedeu
- Infectious Diseases Unit, Hospital Clínic, Villarroel, 170, 08036 Barcelona, Spain
| | - Marisa Ortega
- Infectious Diseases Unit, Hospital Clínic, Villarroel, 170, 08036 Barcelona, Spain
| | - Merylene Lejeune
- Infectious Diseases Unit, Hospital Clínic, Villarroel, 170, 08036 Barcelona, Spain
| | - Javier Setoain
- Infectious Diseases Unit, Hospital Clínic, Villarroel, 170, 08036 Barcelona, Spain
| | - Núria Climent
- Infectious Diseases Unit, Hospital Clínic, Villarroel, 170, 08036 Barcelona, Spain
| | - Emilio Fumero
- Infectious Diseases Unit, Hospital Clínic, Villarroel, 170, 08036 Barcelona, Spain
| | - Montserrat Plana
- Infectious Diseases Unit, Hospital Clínic, Villarroel, 170, 08036 Barcelona, Spain
| | - Agathe León
- Infectious Diseases Unit, Hospital Clínic, Villarroel, 170, 08036 Barcelona, Spain
| | - Llucia Alós
- Infectious Diseases Unit, Hospital Clínic, Villarroel, 170, 08036 Barcelona, Spain
| | - Carlos Piera
- Infectious Diseases Unit, Hospital Clínic, Villarroel, 170, 08036 Barcelona, Spain
| | - Francisco Lomeña
- Infectious Diseases Unit, Hospital Clínic, Villarroel, 170, 08036 Barcelona, Spain
| | - Jose M Gatell
- Infectious Diseases Unit, Hospital Clínic, Villarroel, 170, 08036 Barcelona, Spain
| | - Teresa Gallart
- Infectious Diseases Unit, Hospital Clínic, Villarroel, 170, 08036 Barcelona, Spain
| | - Felipe García
- Infectious Diseases Unit, Hospital Clínic, Villarroel, 170, 08036 Barcelona, Spain
| |
Collapse
|
20
|
Pham W, Kobukai S, Hotta C, Gore JC. Dendritic cells: therapy and imaging. Expert Opin Biol Ther 2009; 9:539-64. [DOI: 10.1517/14712590902867739] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wellington Pham
- Vanderbilt University, Institute of Imaging Science, 1161 21st Avenue South, AA. 1105 MCN, Nashville, TN 37232-2310, USA
| | - Saho Kobukai
- Vanderbilt University, Institute of Imaging Science, 1161 21st Avenue South, AA. 1105 MCN, Nashville, TN 37232-2310, USA
- *These individuals contributed equally to this work
| | - Chie Hotta
- Brigham and Women's Hospital, Harvard Medical School, Center for Neurologic Diseases, 77 Avenue Louis Pasteur, HIM 780, Boston, MA 02115, USA
- *These individuals contributed equally to this work
| | - John C Gore
- Vanderbilt University, Institute of Imaging Science, 1161 21st Avenue South, AA. 1105 MCN, Nashville, TN 37232-2310, USA
| |
Collapse
|
21
|
Jakubzick C, Bogunovic M, Bonito AJ, Kuan EL, Merad M, Randolph GJ. Lymph-migrating, tissue-derived dendritic cells are minor constituents within steady-state lymph nodes. ACTA ACUST UNITED AC 2008; 205:2839-50. [PMID: 18981237 PMCID: PMC2585843 DOI: 10.1084/jem.20081430] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Observations that dendritic cells (DCs) constitutively enter afferent lymphatic vessels in many organs and that DCs in some tissues, such as the lung, turnover rapidly in the steady state have led to the concept that a major fraction of lymph node DCs are derived from migratory DCs that enter the lymph node through upstream afferent lymphatic vessels. We used the lysozyme M–Cre reporter mouse strain to assess the relationship of lymph node and nonlymphoid organ DCs. Our findings challenge the idea that a substantial proportion of lymph node DCs derive from the upstream tissue during homeostasis. Instead, our analysis suggests that nonlymphoid organ DCs comprise a major population of DCs within lymph nodes only after introduction of an inflammatory stimulus.
Collapse
Affiliation(s)
- Claudia Jakubzick
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
22
|
Noh YW, Lim YT, Chung BH. Noninvasive imaging of dendritic cell migration into lymph nodes using near-infrared fluorescent semiconductor nanocrystals. FASEB J 2008; 22:3908-18. [PMID: 18682573 DOI: 10.1096/fj.08-112896] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Effective tracking of immunotherapeutic cells is essential for monitoring the migration of injected cells to the target tissue. Here we report the use of near-infrared (NIR) -emitting fluorescent semiconductor nanocrystals, called quantum dots (QDs), for noninvasive in vivo tracking of dendritic cell (DC) migration into lymph nodes. The effect of QDs on DC viability and maturation was systematically investigated using MTT assays and FACS analysis. We found that the labeling of DCs with QDs had no effect on DC phenotype or maturation potential. Cytokine and migration assays revealed that there were no significant changes in either cytokine production or chemokine-dependent migration of QD-labeled DCs relative to unlabeled cells; in both labeled and unlabeled cells, cytokine production and migratory capacity was increased by stimulation with lipopolysaccharide. Furthermore, QDs did not influence allogenic naive T cell activation or uptake of exogenous antigens. Notably, we also demonstrated that it was possible to track QD-labeled DCs injected into the footpad into popliteal and inguinal lymph nodes using NIR fluorescence. Taken together, our protocols establish the potential of noninvasive in vivo imaging of NIR-emitting QDs for tracking immunotherapeutic cells.
Collapse
Affiliation(s)
- Young-Woock Noh
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, P.O. Box 115, Yuseong, Daejeon, 305-333, South Korea.
| | | | | |
Collapse
|
23
|
Vondenhoff MFR, Desanti GE, Cupedo T, Bertrand JY, Cumano A, Kraal G, Mebius RE, Golub R. Separation of splenic red and white pulp occurs before birth in a LTalphabeta-independent manner. J Leukoc Biol 2008; 84:152-61. [PMID: 18403646 DOI: 10.1189/jlb.0907659] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
For the formation of lymph nodes and Peyer's patches, lymphoid tissue inducer (LTi) cells are crucial in triggering stromal cells to recruit and retain hematopoietic cells. Although LTi cells have been observed in fetal spleen, not much is known about fetal spleen development and the role of LTi cells in this process. Here, we show that LTi cells collect in a periarteriolar manner in fetal spleen at the periphery of the white pulp anlagen. Expression of the homeostatic chemokines can be detected in stromal and endothelial cells, suggesting that LTi cells are attracted by these chemokines. As lymphotoxin (LT)alpha1beta2 can be detected on B cells but not LTi cells in neonatal spleen, starting at 4 days after birth, the earliest formation of the white pulp in fetal spleen occurs in a LTalpha1beta2-independent manner. The postnatal development of the splenic white pulp, involving the influx of T cells, depends on LTalpha1beta2 expressed by B cells.
Collapse
Affiliation(s)
- Mark F R Vondenhoff
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Huck SP, Tang SC, Andrew KA, Yang J, Harper JL, Ronchese F. Activation and route of administration both determine the ability of bone marrow-derived dendritic cells to accumulate in secondary lymphoid organs and prime CD8+ T cells against tumors. Cancer Immunol Immunother 2008; 57:63-71. [PMID: 17609951 PMCID: PMC11030761 DOI: 10.1007/s00262-007-0350-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 05/25/2007] [Indexed: 11/30/2022]
Abstract
AIMS To examine the effects of route of administration and activation status on the ability of dendritic cells (DC) to accumulate in secondary lymphoid organs, and induce expansion of CD8(+) T cells and anti-tumor activity. METHODS DC from bone marrow (BM) cultures were labeled with fluorochromes and injected s.c. or i.v. into naïve mice to monitor their survival and accumulation in vivo. Percentages of specific CD8(+) T cells in blood and delayed tumor growth were used as readouts of the immune response induced by DC immunization. RESULTS The route of DC administration was critical in determining the site of DC accumulation and time of DC persistence in vivo. DC injected s.c. accumulated in the draining lymph node, and DC injected i.v. in the spleen. DC appeared in the lymph node by 24 h after s.c. injection, their numbers peaked at 48 h and declined at 96 h. DC that had spontaneously matured in vitro were better able to migrate compared to immature DC. DC were found in the spleen at 3 h and 24 h after i.v. injection, but their numbers were low and declined by 48 h. Depending on the tumor cell line used, DC injected s.c. were as effective or more effective than DC injected i.v. at inducing anti-tumor responses. Pre-treatment with LPS increased DC accumulation in lymph nodes, but had no detectable effect on accumulation in the spleen. Pre-treatment with LPS also improved the ability of DC to induce CD8(+) T cell expansion and anti-tumor responses, regardless of the route of DC administration. CONCLUSIONS Injection route and activation by LPS independently determine the ability of DC to activate tumor-specific CD8(+) T cells in vivo.
Collapse
Affiliation(s)
- Stephanie P. Huck
- Malaghan Institute of Medical Research, PO Box 7060, Wellington South, New Zealand
| | - Shiau-Choot Tang
- Malaghan Institute of Medical Research, PO Box 7060, Wellington South, New Zealand
| | - Kate A. Andrew
- Malaghan Institute of Medical Research, PO Box 7060, Wellington South, New Zealand
| | - Jianping Yang
- Malaghan Institute of Medical Research, PO Box 7060, Wellington South, New Zealand
| | - Jacquie L. Harper
- Malaghan Institute of Medical Research, PO Box 7060, Wellington South, New Zealand
| | - Franca Ronchese
- Malaghan Institute of Medical Research, PO Box 7060, Wellington South, New Zealand
| |
Collapse
|
25
|
Abstract
Dendritic cells (DCs) are a heterogenous population of bone-marrow-derived immune cells. Although all DCs share a common ability to process and present antigen to naive T cells for the initiation of an immune response, they differ in surface markers, migratory patterns, localization, and cytokine production. DCs were originally considered to be myeloid cells, but recent findings have demonstrated that DCs can develop not only from myeloid- but also from lymphoid-committed progenitors. The common feature of the progenitors capable of developing into DCs is the surface expression of Flt3 receptor. The development of different populations of DCs is differentially regulated by various transcription factors and cytokines. This review summarizes the recent advances made in the field of DC development.
Collapse
Affiliation(s)
- Li Wu
- Immunology Division, The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | |
Collapse
|
26
|
Okada N, Nakagawa S. [Optimization of cancer immunotherapy by controlling immune cell trafficking and biodistribution]. YAKUGAKU ZASSHI 2007; 127:327-39. [PMID: 17268153 DOI: 10.1248/yakushi.127.327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An immunosurveillance system for tumor-associated antigens (TAAs) plays an important role in the elimination of cancer cells during the initial stage. Although cancer immunotherapy targeting TAAs has progressed steadily with the development of various vaccine strategies, excellent therapeutic efficacy, as evidenced by marked tumor regression and complete response, has not been reported in a clinical setting to date. To improve the therapeutic effects of cancer immunotherapy, we are attempting to establish an innovative concept, the "cell delivery system," capable of better controlling the trafficking and biodistribution of immune cells by applying chemokine-chemokine receptor coupling, which regulates leukocytic migration and infiltration of local sites in the living body. This review introduces our approaches that employ an Arg-Gly-Asp (RGD) fiber-mutant adenovirus vector encoding the chemokine or chemokine receptor gene in cancer immunotherapy.
Collapse
Affiliation(s)
- Naoki Okada
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita City, Japan.
| | | |
Collapse
|
27
|
Zhao C, Wood MW, Galyov EE, Höpken UE, Lipp M, Bodmer HC, Tough DF, Carter RW. Salmonella typhimurium infection triggers dendritic cells and macrophages to adopt distinct migration patterns in vivo. Eur J Immunol 2006; 36:2939-50. [PMID: 17048271 DOI: 10.1002/eji.200636179] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The presence of an anti-bacterial T cell response and evidence of bacterial products in inflamed joints of reactive arthritis patients suggests an antigen transportation role in this disease for macrophages and dendritic cells. We have investigated the functional properties and in vivo migration of macrophages and DC after infection with Salmonella enterica serovar Typhimurium (S. typhimurium). BM-derived macrophages and DC displayed enhanced expression of costimulatory molecules (CD40 and CD86) and increased production of pro-inflammatory cytokines (TNF-alpha, IL-6 and IL-12p40) and nitric oxide after infection. Upon adoptive transfer into mice, infected DC migrated to lymphoid tissues and induced an anti-Salmonella T cell response, whereas infected macrophages did not. Infection of DC with S. typhimurium was associated with strong up-regulation of the chemokine receptor CCR7 and acquisition of responsiveness to chemokines acting through this receptor. Moreover, S. typhimurium-infected CCR7-deficient DC were unable to migrate to lymph nodes after adoptive transfer, although they did reach the spleen. Our data demonstrate distinct roles for macrophages and DC as antigen transporters after S. typhimurium infection and a dependence on CCR7 for migration of DC to lymph nodes after bacterial infection.
Collapse
Affiliation(s)
- Chunfang Zhao
- The Edward Jenner Institute for Vaccine Research, Compton, Newbury, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Dendritic cells (DCs) play important roles in the initiation of adaptive immune responses. The transport of antigen from the infection site to the draining lymph node by DCs is a crucial component in this process. Accordingly, immunotherapeutic applications of in vitro-generated DCs require reliable methods experimentally in mice and clinically in patients to monitor the efficiency of their successful lymph node homing after injection. Recent developments of new methods to follow DC migration by non-invasive imaging modalities such as scintigraphy, PET, MRI, or bioluminescence imaging, have gained attraction because of their potential clinical applicability. The current state of the literature and a comparative evaluation of the methods are reported in this review.
Collapse
Affiliation(s)
- Dirk Baumjohann
- Department of Dermatology, University Hospital Erlangen, Hartmannstr. 14, 91052 Erlangen, Germany
| | | |
Collapse
|
29
|
Mueller SN, Jones CM, Stock AT, Suter M, Heath WR, Carbone FR. CD4+ T Cells Can Protect APC from CTL-Mediated Elimination. THE JOURNAL OF IMMUNOLOGY 2006; 176:7379-84. [PMID: 16751382 DOI: 10.4049/jimmunol.176.12.7379] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Professional APC play a central role in generating antiviral CD8(+) CTL immunity. However, the fate of such APC following interaction with these same CTL remains poorly understood. We have shown previously that prolonged Ag presentation persists in the presence of a strong CTL response following HSV infection. In this study, we examined the mechanism of survival of APC in vivo when presenting an immunodominant determinant from HSV. We show that transferred peptide-labeled dendritic cells were eliminated from draining lymph nodes in the presence of HSV-specific CTL. Maturation of dendritic cells with LPS or anti-CD40 before injection protected against CTL lysis in vivo. Furthermore, endogenous APC could be eliminated from draining lymph nodes early after HSV infection by adoptive transfer of HSV-specific CTL, yet the cotransfer of significant virus-specific CD4(+) T cell help promoted prolonged Ag presentation. This suggests that Th cells may assist in prolonging class I-restricted Ag presentation, potentially enhancing CTL recruitment and allowing more efficient T cell priming.
Collapse
Affiliation(s)
- Scott N Mueller
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | | | | | | | | | | |
Collapse
|
30
|
Emmanouilidis N, Guo Z, Dong Y, Newton-West M, Adams AB, Lee EDH, Wang J, Pearson TC, Larsen CP, Newell KA. Immunosuppressive and Trafficking Properties of Donor Splenic and Bone Marrow Dendritic Cells. Transplantation 2006; 81:455-62. [PMID: 16477234 DOI: 10.1097/01.tp.0000195779.01491.4e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Infusion of donor dendritic cells (DC) has been shown to prolong allograft survival in a number of models. However, many regimens that utilize donor DC do not consistently produced tolerance or long-term allograft survival. We hypothesized that one factor limiting the therapeutic effect of donor DC is their relative inability to traffic to recipient peripheral lymph nodes and inhibit the function of resident alloreactive T cells. METHODS Donor strain DC isolated from the spleens or bone marrow of Flt3L-treated mice were transferred intravenously into recipients at the time of skin grafting. Where indicated, recipients were treated with an anti-CD40L antibody and CTLA4-Ig. RESULTS Infusion of donor DC together with costimulatory blockade promoted donor-specific prolongation of skin allograft survival in mice. Perhaps due to their more immature phenotype, bone marrow DC trafficked more effectively to the spleen, bone marrow, and thymus and were associated with significantly longer allograft survival than were splenic DC. Neither population of DC trafficked well to peripheral lymph nodes. Consistent with our hypothesis, splenic but not lymph node T cells from DC-treated recipients displayed donor-specific hyporesponsiveness in vitro. CONCLUSION These data suggest that one factor contributing to rejection following treatment with donor DC plus costimulation blockade is the persistence of donor-reactive T cells within the recipient's secondary lymphoid structures. Strategies to improve DC trafficking to these structures may enhance their therapeutic effect.
Collapse
Affiliation(s)
- Nikos Emmanouilidis
- Emory Transplant Center and Department of Surgery, Emory School of Medicine, Emory University, Atlanta 30322, GA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Angeli V, Ginhoux F, Llodrà J, Quemeneur L, Frenette PS, Skobe M, Jessberger R, Merad M, Randolph GJ. B Cell-Driven Lymphangiogenesis in Inflamed Lymph Nodes Enhances Dendritic Cell Mobilization. Immunity 2006; 24:203-15. [PMID: 16473832 DOI: 10.1016/j.immuni.2006.01.003] [Citation(s) in RCA: 352] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 12/15/2005] [Accepted: 01/12/2006] [Indexed: 12/31/2022]
Abstract
Dendritic cell (DC) migration from the periphery to lymph nodes is regulated by the pattern of genes expressed by DCs themselves and by signals within the surrounding peripheral environment. Here, we report that DC mobilization can also be regulated by signals initiated within the downstream lymph nodes, particularly when lymph nodes enlarge as a consequence of immunization. Lymph node B lymphocytes orchestrate expansion of the lymphatic network within the immunized lymph node. This expanded network in turn supports increased DC migration from the periphery. These results reveal unique relationships between B cells, lymphatic vessels, and migratory DCs. Knowledge that DC migration from the periphery is augmented by B cell-dependent signals reveals new potential strategies to increase DC migration during vaccination.
Collapse
Affiliation(s)
- Véronique Angeli
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kwon YJ, James E, Shastri N, Fréchet JMJ. In vivo targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles. Proc Natl Acad Sci U S A 2005; 102:18264-8. [PMID: 16344458 PMCID: PMC1317987 DOI: 10.1073/pnas.0509541102] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Activating the immune system to trigger a specific response is a major challenge in vaccine development. In particular, activating sufficient cytotoxic T lymphocyte-mediated cellular immunity, which is crucial for the treatment of many diseases including cancer and AIDS, has proven to be especially challenging. In this study, antigens were encapsulated in acid-degradable polymeric particle carriers to cascade cytotoxic T lymphocyte activation. To target dendritic cells, the most potent antigen-presenting cells, the particle carriers, were further conjugated with monoclonal antibodies. A series of ex vivo and in vivo studies have shown increased receptor-mediated uptake of antibody-conjugated particles by dendritic cells as well as migration of particle-carrying dendritic cells to lymph nodes and stimulation of naïve T cells leading to enhanced cellular immune response as confirmed by specific cell lysis and IFN-gamma secretion.
Collapse
Affiliation(s)
- Young Jik Kwon
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
33
|
Cavanagh LL, Bonasio R, Mazo IB, Halin C, Cheng G, van der Velden AWM, Cariappa A, Chase C, Russell P, Starnbach MN, Koni PA, Pillai S, Weninger W, von Andrian UH. Activation of bone marrow-resident memory T cells by circulating, antigen-bearing dendritic cells. Nat Immunol 2005; 6:1029-37. [PMID: 16155571 PMCID: PMC1780273 DOI: 10.1038/ni1249] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 08/08/2005] [Indexed: 11/09/2022]
Abstract
Dendritic cells (DCs) carry antigen from peripheral tissues via lymphatics to lymph nodes. We report here that differentiated DCs can also travel from the periphery into the blood. Circulating DCs migrated to the spleen, liver and lung but not lymph nodes. They also homed to the bone marrow, where they were retained better than in most other tissues. Homing of DCs to the bone marrow depended on constitutively expressed vascular cell adhesion molecule 1 and endothelial selectins in bone marrow microvessels. Two-photon intravital microscopy in bone marrow cavities showed that DCs formed stable antigen-dependent contacts with bone marrow-resident central memory T cells. Moreover, using this previously unknown migratory pathway, antigen-pulsed DCs were able to trigger central memory T cell-mediated recall responses in the bone marrow.
Collapse
Affiliation(s)
- Lois L Cavanagh
- The CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Randolph GJ, Angeli V, Swartz MA. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 2005; 5:617-28. [PMID: 16056255 DOI: 10.1038/nri1670] [Citation(s) in RCA: 829] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Antigen-presenting dendritic cells often acquire foreign antigens in peripheral tissues such as the skin. Optimal encounter with naive T cells for the presentation of these antigens requires that the dendritic cells migrate to draining lymph nodes through lymphatic vessels. In this article, we review important aspects of what is known about dendritic-cell trafficking into and through lymphatic vessels to lymph nodes. We present these findings in the context of information about lymphatic-vessel biology. Gaining a better understanding of the crosstalk between dendritic cells and lymphatic vessels during the migration of dendritic cells to lymph nodes is essential for future advances in manipulating dendritic-cell migration as a means to fine-tune immune responses in clinical settings.
Collapse
Affiliation(s)
- Gwendalyn J Randolph
- Department of Gene and Cell Medicine, Icahn Research Institute, Mount Sinai School of Medicine, 1425 Madison Avenue, Box 1496, New York, New York 10029, USA.
| | | | | |
Collapse
|
35
|
Abstract
Cells, which are the basic unit of life, are the most intelligent particles on earth. Recent advances in life science research encourage the development of cell therapy utilizing specialized functions of highly differentiated cells, the self-renewal and differentiation abilities of stem cells, and signal networks among various types of cells. Although cell therapy including ex vivo gene therapy, cellular immunotherapy, and regenerative therapy is expected to become the next generation of medical care for intractable disorders, the establishment of technology to prepare cells as medical supplies, namely, cytomedicine, is essential for the assurance of efficacy and safety in cell therapy. This review introduces our approach to the design and creation of cytomedicine for application to cell therapy against diabetes mellitus and cancer.
Collapse
Affiliation(s)
- Naoki Okada
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan.
| |
Collapse
|
36
|
Abstract
The migration of dendritic cells (DCs) to lymph nodes (LNs) is pivotal to the establishment of the immune response. DCs have been proved to pass through the afferent lymphatic pathway to enter LNs from the peripheral tissues after they have scanned for self or nonself antigens. In response to danger signals, both myeloid and plasmacytoid DC precursors (mDC and pDC precursors) are rapidly mobilized into the circulation. mDC precursors are recruited to inflamed tissues in response to inflammatory chemokines and then remobilized to regional LNs in response to CCL21. In contrast, pDC precursors directly transmigrate to regional LNs via high endothelial venules in a CXCL9- and E-selectin-dependent manner. Such migration is largely dependent on systemic inflammatory reactions. After accumulating in the LNs through distinct trafficking pathways, DCs interact with lymphocytes temporally and spatially to establish effective immune responses. The inflammation-dependent, chemokine-driven property of DC precursor trafficking is a very sophisticated host defense system.
Collapse
Affiliation(s)
- Hiroyuki Yoneyama
- Department of Molecular Preventive Medicine & SORST, Graduate School of Medicine, The University of Tokyo, Japan.
| | | | | |
Collapse
|
37
|
Burns S, Hardy SJ, Buddle J, Yong KL, Jones GE, Thrasher AJ. Maturation of DC is associated with changes in motile characteristics and adherence. ACTA ACUST UNITED AC 2004; 57:118-32. [PMID: 14691951 DOI: 10.1002/cm.10163] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Migration of dendritic cells (DC) from sentinel sites to lymphoid tissue entails the initiation and coordination of a complex series of cytoskeletal rearrangements resulting in polarised protrusion, formation of new adhesion points, and detachment. Although many diverse receptor-ligand interactions stimulating DC maturation and migration have been identified, the changes that occur in the structure of the actin cytoskeleton during these processes have received little attention. When derived in vitro, immature DC floated in clumps, and upon addition of maturation stimuli such as lipopolysaccharide (LPS), they rapidly adhered, developed polarity, and assembled actin-rich structures known as podosomes at the leading edge of the cell. Podosome assembly was associated with the specific recruitment of beta2 integrins, which in the absence of the Wiskott Aldrich Syndrome protein (WASp), did not occur. As maturation progressed, normal DC once again became rounded and devoid of podosomes. This change in morphology was closely associated with a quantitatively reduced ability to adhere to fibronectin or ICAM-1-coated surfaces. In immature DC, failure to form podosomes or selective inhibition of the CD18 component of podosomes resulted in a similarly reduced ability to adhere to ICAM-1, indicating that podosomes, through CD18, are necessary for tight adhesion to this ligand. We, therefore, propose that podosomes provide an essential link between directional cell protrusion and achievement of DC translocation by establishing new dynamic anchor points at the front of the cell. The temporal regulation of podosome assembly during DC maturation also suggests that they may be most critical for early movement, perhaps during transmigration of lymphatic endothelium.
Collapse
Affiliation(s)
- Siobhan Burns
- Molecular Immunology Unit, Institute of Child Health, University College London, 30 Guilford Street, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
38
|
Aline F, Bout D, Amigorena S, Roingeard P, Dimier-Poisson I. Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against T. gondii infection. Infect Immun 2004; 72:4127-37. [PMID: 15213158 PMCID: PMC427397 DOI: 10.1128/iai.72.7.4127-4137.2004] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was previously demonstrated that immunizing mice with spleen dendritic cells (DCs) that had been pulsed ex vivo with Toxoplasma gondii antigens triggers a systemic Th1-biased specific immune response and induces protection against infection. T. gondii can cause severe sequelae in the fetuses of mothers who acquire the infection during pregnancy, as well as life-threatening neuropathy in immunocompromised patients, in particular those with AIDS. Here, we investigate the efficacy of a novel cell-free vaccine composed of DC exosomes, which are secreted antigen-presenting vesicles that express functional major histocompatibility complex class I and II and T-cell-costimulatory molecules. They have already been shown to induce potent antitumor immune responses. We investigated the potential of DC2.4 cell line-derived exosomes to induce protective immunity against toxoplasmosis. Our data show that most adoptively transferred T. gondii-pulsed DC-derived exosomes were transferred to the spleen, elicited a strong systemic Th1-modulated Toxoplasma-specific immune response in vivo, and conferred good protection against infection. These findings support the possibility that DC-derived exosomes can be used for T. gondii immunoprophylaxis and for immunoprophylaxis against many other pathogens.
Collapse
Affiliation(s)
- Fleur Aline
- UFR des Sciences Pharmaceutiques, 31 Avenue Monge, 37200 Tours, France
| | | | | | | | | |
Collapse
|
39
|
Yoneyama H, Matsuno K, Zhang Y, Nishiwaki T, Kitabatake M, Ueha S, Narumi S, Morikawa S, Ezaki T, Lu B, Gerard C, Ishikawa S, Matsushima K. Evidence for recruitment of plasmacytoid dendritic cell precursors to inflamed lymph nodes through high endothelial venules. Int Immunol 2004; 16:915-28. [PMID: 15159375 DOI: 10.1093/intimm/dxh093] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recruitment of dendritic cells (DCs) to lymph nodes (LNs) is pivotal to the establishment of immune response. Whereas DCs have been proven to undergo afferent lymphatic pathway to enter LNs from peripheral tissues, a question remains if DCs also migrate into LNs directly from the circulation. Here we demonstrate that plasmacytoid DC (pDC) precursors can transmigrate across high endothelial venules (HEVs) of inflamed LNs in mice. Bacterial infection induces a significant number of pDC and myeloid DC (mDC) precursors into the circulation. Both subsets express a common set of chemokine receptors except CXCR3, display parallel mobilization into the blood, but show distinct trafficking pathway to the LNs. In a short-term homing assay, whereas mDC precursors migrate to peripheral tissues and subsequently to draining LNs, pDC precursors directly enter the LNs in a CXCL9 and E-selectin dependent manner. Tumor necrosis factor-alpha controls not only DC precursor mobilization into the blood but also chemokine up-regulation on LN HEVs. A similar trafficking pathway is observed also in viral infection, and CXCR3(-/-) mice-derived pDC precursors show defective trans-HEV migration. This study clarifies the inflammation-dependent, chemokine-driven distinct property of DC precursor trafficking.
Collapse
Affiliation(s)
- Hiroyuki Yoneyama
- Department of Molecular Preventive Medicine & SORST, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Holzmann S, Tripp CH, Schmuth M, Janke K, Koch F, Saeland S, Stoitzner P, Romani N. A Model System Using Tape Stripping for Characterization of Langerhans Cell-Precursors In Vivo. J Invest Dermatol 2004; 122:1165-74. [PMID: 15140219 DOI: 10.1111/j.0022-202x.2004.22520.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Little is known about the immigration of bone marrow-derived progenitors of Langerhans cells (LC) into the epidermis. We developed an in vivo system based on the tape stripping method that allowed us to study the immigration of LC into the epidermis after intradermal injection of bone marrow-derived dendritic cells (DC). Tape stripping induced a mechanical disruption of the epidermal barrier that led to skin inflammation and subsequent emigration of LC and dermal DC from the skin. Emigrating LC and dermal DC were observed in lymphatic vessels, and the numbers of LC and dermal DC in the draining lymph node increased. Up to 500 times more injected precursors migrated into tape-stripped epidermis as compared with unstripped epidermis. Newly immigrated cells were slender with one or two dendrites and acquired a more dendritic morphology after 2-4 days. They were both MHC II-positive and negative and they did not express Langerin/CD207, nor macrophage-mannose receptor/CD206 and Fc-epsilon receptor I. In contrast, all cells that had entered the epidermis expressed CD11c and CCR6, suggesting that they were LC. We conclude that this experimental system may serve as a valuable tool for the further characterization of LC-precursors and the conditions necessary for LC-immigration into the epidermis.
Collapse
Affiliation(s)
- Sandra Holzmann
- Department of Dermatology, University of Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Jones TR, Shirasugi N, Adams AB, Pearson TC, Larsen CP. Intravital microscopy identifies selectins that regulate T cell traffic into allografts. J Clin Invest 2004; 112:1714-23. [PMID: 14660747 PMCID: PMC281648 DOI: 10.1172/jci19391] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
T cell homing to sites of injury and inflammation is a critical step for adaptive immune responses. While much has been learned regarding T cell homing to lymphoid tissues, few studies have directly observed trafficking events during an effector response. In this study, we developed a model that uses intravital fluorescence videomicroscopy to determine the molecules critical to T cell rolling within skin allograft microvasculature during the effector phase of the rejection response. Additional studies were performed to quantify T cell infiltrates as rejection progressed. We found that P-selectin and E-selectin expressed on postcapillary venules play overlapping roles in the recruitment of activated T cells in a SCID reconstitution model of skin graft rejection and are important in T cell accumulation at the graft site. Surprisingly, we also found that naive T cells are recruited and accumulate via constitutive T cell L-selectin and upregulated L-selectin ligands on rejecting allograft vasculature. These data indicated that a specific retinue of molecules is upregulated during the rejection response, and they suggest potential future therapeutic targets.
Collapse
Affiliation(s)
- Thomas R Jones
- Emory Transplant Center and Department of Surgery, Emory Universuty School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
42
|
Jones TR, Adams AB, Shirasugi NJ, Bingaman AW, Durham MM, Pearson TC, Larsen CP. Allogeneic parenchymal and hematopoietic tissues differ in their ability to induce deletion of donor-reactive T cells. Am J Transplant 2003; 3:1520-30. [PMID: 14629282 DOI: 10.1046/j.1600-6135.2003.00262.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The establishment of immune tolerance to self antigen expressed exclusively in the periphery is a crucial yet incompletely understood feature of the immune system. A dominant concept of peripheral tolerance has been that exposure of T cells to signal one, the TCR-MHC interaction, in the absence of signal two, or costimulation, is a major mechanism of peripheral tolerance. This model suggests that any cell type that expresses MHC-peptide complexes, be they of self or foreign origin, should have the capacity to tolerize antigen-specific T cells when critical costimulatory interactions are interrupted. However, a spectrum of responses, from permanent engraftment to rapid rejection, has been observed in various transplantation models utilizing costimulatory blockade. Therefore we undertook a series experiments to directly assess the tolerogenic potential of donor hematopoietic and parenchymal cells. We find that allogeneic tissues differ profoundly in their ability to promote peripheral tolerance concurrent with combined blockade of B7-CD28 and CD40-CD40L pathways. Non-vascularized and vascularized parenchymal grafts as well as donor-specific transfusions promote varying degrees of donor-specific hyporesponsiveness, but fail to induce donor-reactive T-cell deletion; whereas establishment of stable hematopoietic chimerism promotes specific tolerance mediated by deletion of donor-reactive cells in the periphery.
Collapse
Affiliation(s)
- Thomas R Jones
- Emory Transplant Center and Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Eggert AAO, van der Voort R, Torensma R, Moulin V, Boerman OC, Oyen WJG, Punt CJA, Diepstra H, de Boer AJ, Figdor CG, Adema GJ. Analysis of dendritic cell trafficking using EGFP-transgenic mice. Immunol Lett 2003; 89:17-24. [PMID: 12946860 DOI: 10.1016/s0165-2478(03)00105-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dendritic cells (DCs) are professional antigen presenting cells, well equipped to initiate an immune response. For effective induction of an immune response, DC should migrate from the periphery to the lymph node to present the antigen to T lymphocytes. Currently, tumor-antigen loaded DCs are used in clinical vaccination trials in cancer patients. To investigate the migratory capacity of DC in vivo, a variety of fluorescent and radioactive labels have been used. Here we introduce a novel tool to study DC migration in vivo: DCs generated from enhanced green fluorescent protein (EGFP)-transgenic mice. DC from EGFP-transgenic mice display typical DC behavior and can be matured without affecting their autofluorescence in vitro. In addition, the continuously produced cytoplasmic EGFP in living cells functions as a viability marker, since EGFP released from dying cells does not stain DC from C57Bl/6 mice upon coculture. In vivo migration studies using EGFP-DC and indium-111-labeled DC were performed to determine the efficiency of i.d. versus s.c. administered DC to reach the draining lymph node. The analysis demonstrates that i.d. injection increases the amount of EGFP-DC/indium-111-labeled DC in the lymph node compared to s.c. injection. Subsequent quantitative, phenotypical and ultrastuctural analysis demonstrate that DC generated from EGFP-transgenic mice are well suited to study the migratory behavior, distribution and phenotype of DC in vivo.
Collapse
Affiliation(s)
- Andreas A O Eggert
- Tumor Immunology Laboratory, University Medical Center Nijmegen St. Radboud, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dimier-Poisson I, Aline F, Mévélec MN, Beauvillain C, Buzoni-Gatel D, Bout D. Protective mucosal Th2 immune response against Toxoplasma gondii by murine mesenteric lymph node dendritic cells. Infect Immun 2003; 71:5254-65. [PMID: 12933872 PMCID: PMC187296 DOI: 10.1128/iai.71.9.5254-5265.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii, an obligate intracellular parasite pathogen which initially invades the intestinal epithelium before disseminating throughout the body, may cause severe sequelae in fetuses and life-threatening neuropathy in immunocompromised patients. Immune protection is usually thought to be performed through a systemic Th1 response; considering the route of parasite entry it is important to study and characterize the local mucosal immune response to T. gondii. Despite considerable effort, Toxoplasma-targeted vaccines have proven to be elusive using conventional strategies. We report the use of mesenteric lymph node dendritic cells (MLNDCs) pulsed ex vivo with T. gondii antigens (TAg) as a novel investigation approach to vaccination against T. gondii-driven pathogenic processes. Using a murine model, we demonstrate in two genetically distinct mouse strains (C57BL/6 and CBA/J) that adoptively transferred TAg-pulsed MLNDCs elicit a mucosal Toxoplasma-specific Th2-biased immune response in vivo and confer strong protection against infection. We also observe that MLNDCs mostly traffic to the intestine where they enhance resistance by reduction in the mortality and in the number of brain cysts. Thus, ex vivo TAg-pulsed MLNDCs represent a powerful tool for the study of protective immunity to T. gondii, delivered through its natural route of entry. These findings might impact the design of vaccine strategies against other invasive microorganisms known to be delivered through digestive tract.
Collapse
Affiliation(s)
- Isabelle Dimier-Poisson
- UMR Université-INRA d'Immunologie Parasitaire et Vaccinologia, UFR des Sciences Pharmaceutiques, 37200 Tours, France.
| | | | | | | | | | | |
Collapse
|
45
|
Mueller SN, Jones CM, Chen W, Kawaoka Y, Castrucci MR, Heath WR, Carbone FR. The early expression of glycoprotein B from herpes simplex virus can be detected by antigen-specific CD8+ T cells. J Virol 2003; 77:2445-51. [PMID: 12551982 PMCID: PMC141123 DOI: 10.1128/jvi.77.4.2445-2451.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immune response to cutaneous herpes simplex virus type 1 (HSV-1) infection begins with remarkable rapidity. Activation of specific cytotoxic T lymphocytes (CTL) begins within hours of infection, even though the response within the draining lymph nodes peaks nearly 5 days later. HSV gene products are classified into three main groups, alpha, beta, and gamma, based on their kinetics and requirements for expression. In C57BL/6 mice, the immunodominant epitope from HSV is derived from glycoprotein B (gB(498-505)). While gB is considered a gamma or "late" gene product, previous reports have indicated that some level of gene expression may occur soon after infection. Using brefeldin A as a specific inhibitor of viral antigen presentation to major histocompatibility complex class I-restricted CTL, we have formally addressed the timing of gB peptide expression in an immunologically relevant manner following infection. Presentation of gB peptide detected by T-cell activation was first observed within 2 h of infection. Comparison with another viral epitope expressed early during infection, HSV-1 ribonucleotide reductase, demonstrated that gB is presented with the same kinetics as this classical early-gene product. Moreover, this rapidity of gB expression was further illustrated via rapid priming of naïve transgenic CD8(+) T cells in vivo after HSV-1 infection of mice. These results establish that gB is expressed rapidly following HSV-1 infection, at levels capable of effectively stimulating CD8(+) T cells.
Collapse
Affiliation(s)
- Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
46
|
Stevenson PG, Austyn JM, Hawke S. Uncoupling of virus-induced inflammation and anti-viral immunity in the brain parenchyma. J Gen Virol 2002; 83:1735-1743. [PMID: 12075093 DOI: 10.1099/0022-1317-83-7-1735] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Non-neuroadapted influenza virus confined to the brain parenchyma does not induce antigen-specific immunity. Nevertheless, infection in this site upregulated major histocompatibility complex (MHC) class I and MHC class II expression and recruited lymphocytes to a perivascular compartment. T cells recovered from the brain had an activated/memory phenotype but did not respond to viral antigens. In contrast, T cells recovered from the brain after infection in a lateral cerebral ventricle, which is immunogenic, showed virus-specific responses. As with infectious virus, influenza virus-infected dendritic cells elicited virus-specific immunity when inoculated into the cerebrospinal fluid but not when inoculated into the brain parenchyma. Thus, inflammation and dendritic cell function were both uncoupled from immune priming in the microenvironment of the brain parenchyma and neither was sufficient to overcome immunological privilege.
Collapse
Affiliation(s)
- P G Stevenson
- Nuffield Department of Medicine1 and Nuffield Department of Surgery2, John Radcliffe Hospital, Oxford, UK
| | - J M Austyn
- Nuffield Department of Medicine1 and Nuffield Department of Surgery2, John Radcliffe Hospital, Oxford, UK
| | - S Hawke
- Nuffield Department of Medicine1 and Nuffield Department of Surgery2, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
47
|
Duncan SR, Capetanakis NG, Lawson BR, Theofilopoulos AN. Thymic dendritic cells traffic to thymi of allogeneic recipients and prolong graft survival. J Clin Invest 2002. [DOI: 10.1172/jci0212142] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
48
|
Duncan SR, Capetanakis NG, Lawson BR, Theofilopoulos AN. Thymic dendritic cells traffic to thymi of allogeneic recipients and prolong graft survival. J Clin Invest 2002; 109:755-64. [PMID: 11901184 PMCID: PMC150904 DOI: 10.1172/jci12142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We have demonstrated that murine thymic dendritic cells (DCs) isolated from donor mice have the capability to home to thymi of fully allogeneic recipients after intravenous injections, where they induce T cell deletions and prolong donor-strain airway and skin graft survival. In contrast, infused splenic DCs immigrated poorly to thymi, and did not affect graft survival. These findings suggest that preferential homing may be an important mechanistic difference among subpopulations of DCs that mediate immune functions and illustrate a novel methodology that could have utility for induction of specific immunologic nonreactivity to allografts, or other disease-associated antigens.
Collapse
Affiliation(s)
- Steven R Duncan
- Department of Immunology, The Scripps Research Institute, La Jolla, California, USA.
| | | | | | | |
Collapse
|
49
|
Olasz EB, Lang L, Seidel J, Green MV, Eckelman WC, Katz SI. Fluorine-18 labeled mouse bone marrow-derived dendritic cells can be detected in vivo by high resolution projection imaging. J Immunol Methods 2002; 260:137-48. [PMID: 11792384 DOI: 10.1016/s0022-1759(01)00528-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Immunization with ex vivo generated dendritic cells has become a focus for many clinical applications. The optimal site of injection and the migration pattern of these cells remain to be elucidated. We therefore developed a novel method for labeling mouse bone marrow-derived dendritic cells (BMDC) with the positron emitting radioisotope F-18 using N-succinimidyl-4-[F-18]fluorobenzoate, which covalently binds to the lysine residues of cell surface proteins. When we determined the stability of F-18 labeled BMDC, we found that at 4 h only 44+/-10% of the initial cell-bound activity was retained at 37 degrees C, whereas considerably more (91+/-3%) was retained at 4 degrees C. Labeled cells did not exhibit any significant alteration in cell viability or phenotype as determined by trypan blue exclusion and FACS analysis 24 h after radiolabeling. Furthermore, F-18-labeled BMDC stimulated allogeneic T cells in a mixed leukocyte reaction as potently as did sham-treated BMDC and migrated towards secondary lymphoid tissue chemokine (SLC) in a chemotaxis assay in vitro with the same efficiency as sham-treated BMDC. Migration of F-18-labeled BMDC was studied after footpad injection by (1) ex vivo counting of dissected tissues using a gamma counter and (2) in vivo by imaging mice with PiPET, a 2-mm resolution positron projection imager. After 4 h, the ratio between measured activity in draining vs. contralateral (D/C) lymph nodes (LN) was 166+/-96 (n=7) in the case of live cell injections, whereas if we injected heat-killed F-18-labeled BMDC or F-18-labeled macrophages the D/C ratios were 17+/-2 (n=2) and 14+/-4 (n=2), respectively. Injection of cell-free activity in the form of F-18-labeled 4-fluorobenzoic acid resulted in a D/C ratio of 7+/-2 (n=3), suggesting that the activity measured in the draining lymph node was associated with migrated F-18-labeled BMDC. When F-18-labeled live cells were injected into the footpad, 0.18+/-0.04% (n=7) of footpad activity was found in the draining LN within 4 h, whereas none was found in the contralateral LN. Quantitative assessment of cell migration by PET projection imaging of mice confirmed the ex-vivo counting results. These studies indicate that PET imaging offers a new approach for in vivo studies of dendritic cell biodistribution and migration.
Collapse
Affiliation(s)
- Edit B Olasz
- Dermatology Branch, National Cancer Institute, National Institutes of Health, Bldg. 10, Room 12N238, 10 Center Drive, MSC 1908, Bethesda, MD 20892-1908, USA
| | | | | | | | | | | |
Collapse
|
50
|
Bertolino P, McCaughan GW, Bowen DG. Role of primary intrahepatic T-cell activation in the 'liver tolerance effect'. Immunol Cell Biol 2002; 80:84-92. [PMID: 11869365 DOI: 10.1046/j.0818-9641.2001.01048.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
There is accumulating evidence suggesting that hepatic permeability to both naive and activated T lymphocytes may be unique among the solid organs. The possibility that the liver may act as a site of primary activation for CD8+ T lymphocytes is supported by experimental data and may contribute to some of the unique immunological properties of this organ, particularly its ability to induce antigen-specific tolerance. This review discusses the nature of the liver APC inducing primary T-cell activation within the liver: Kupffer cells, liver dendritic cells, liver sinusoidal endothelial cells and hepatocytes are favourably located to allow physical contact with circulating T lymphocytes. Here, we examine the capability of each cell type to act as APC for naive CD4+ or CD8+ T cells and to induce tolerance.
Collapse
Affiliation(s)
- Patrick Bertolino
- Liver Immunobiology Laboratory, TheCentenary Institute Of Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia.
| | | | | |
Collapse
|