1
|
Melssen MM, Fisher CT, Slingluff CL, Melief CJM. Peptide emulsions in incomplete Freund's adjuvant create effective nurseries promoting egress of systemic CD4 + and CD8 + T cells for immunotherapy of cancer. J Immunother Cancer 2022; 10:jitc-2022-004709. [PMID: 36939214 PMCID: PMC9472143 DOI: 10.1136/jitc-2022-004709] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/26/2022] Open
Abstract
Water-in-oil emulsion incomplete Freund's adjuvant (IFA) has been used as an adjuvant in preventive and therapeutic vaccines since its development. New generation, highly purified modulations of the adjuvant, Montanide incomplete seppic adjuvant (ISA)-51 and Montanide ISA-720, were developed to reduce toxicity. Montanide adjuvants are generally considered to be safe, with adverse events largely consisting of antigen and adjuvant dose-dependent injection site reactions (ISRs). Peptide vaccines in Montanide ISA-51 or ISA-720 are capable of inducing both high antibody titers and durable effector T cell responses. However, an efficient T cell response depends on the affinity of the peptide to the presenting major histocompatibility complex class I molecule, CD4+ T cell help and/or the level of co-stimulation. In fact, in the therapeutic cancer vaccine setting, presence of a CD4+ T cell epitope seems crucial to elicit a robust and durable systemic T cell response. Additional inclusion of a Toll-like receptor ligand can further increase the magnitude and durability of the response. Use of extended peptides that need a processing step only accomplished effectively by dendritic cells (DCs) can help to avoid antigen presentation by nucleated cells other than DC. Based on recent clinical trial results, therapeutic peptide-based cancer vaccines using emulsions in adjuvant Montanide ISA-51 can elicit robust antitumor immune responses, provided that sufficient tumor-specific CD4+ T cell help is given in addition to CD8+ T cell epitopes. Co-treatment with PD-1 T cell checkpoint inhibitor, chemotherapy or other immunomodulatory drugs may address local and systemic immunosuppressive mechanisms, and further enhance efficacy of therapeutic cancer peptide vaccines in IFA and its modern variants. Blinded randomized placebo-controlled trials are critical to definitively prove clinical efficacy. Mineral oil-based adjuvants for preventive vaccines, to tackle spread and severity of infectious disease, induce immune responses, but require more studies to reduce toxicity.
Collapse
Affiliation(s)
- Marit M Melssen
- Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
2
|
Abstract
This review discusses peptide epitopes used as antigens in the development of vaccines in clinical trials as well as future vaccine candidates. It covers peptides used in potential immunotherapies for infectious diseases including SARS-CoV-2, influenza, hepatitis B and C, HIV, malaria, and others. In addition, peptides for cancer vaccines that target examples of overexpressed proteins are summarized, including human epidermal growth factor receptor 2 (HER-2), mucin 1 (MUC1), folate receptor, and others. The uses of peptides to target cancers caused by infective agents, for example, cervical cancer caused by human papilloma virus (HPV), are also discussed. This review also provides an overview of model peptide epitopes used to stimulate non-specific immune responses, and of self-adjuvanting peptides, as well as the influence of other adjuvants on peptide formulations. As highlighted in this review, several peptide immunotherapies are in advanced clinical trials as vaccines, and there is great potential for future therapies due the specificity of the response that can be achieved using peptide epitopes.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|
3
|
Wang X, Yu Z, Liu W, Tang H, Yi D, Wei M. Recent progress on MHC-I epitope prediction in tumor immunotherapy. Am J Cancer Res 2021; 11:2401-2416. [PMID: 34249407 PMCID: PMC8263640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/13/2021] [Indexed: 06/13/2023] Open
Abstract
Tumor immunotherapy has now become one of the most potential therapy for those intractable cancer diseases. The antigens on the cancer cell surfaces are the keys for the immune system to recognize and eliminate them. As reported, the immunogenicity of the tumor antigens could be determined by the binding between the key epitope peptides and MHC molecules. In recent years, the approaches to anticipate the peptides from the candidate epitopes have gradually changed into more efficient methods. Including the improved conventional methods, more diverse methods were coming into view. Here we review the anticipated methods of the tumor associated epitopes that specifically bind with major histocompatibility complex (MHC) class I molecules, and the recent advances and applications of those epitope prediction methods.
Collapse
Affiliation(s)
- Xiangyi Wang
- Department of Pharmacology, School of Pharmacy, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
| | - Wensi Liu
- Department of Pharmacology, School of Pharmacy, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
| | - Haichao Tang
- Department of Pharmacology, School of Pharmacy, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
| | - Dongxu Yi
- The Affiliated Reproductive Hospital of China Medical UniversityNo. 10 Puhe Street, Huanggu District Shenyang, Liaoning, P. R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
| |
Collapse
|
4
|
Morita D, Iwashita C, Mizutani T, Mori N, Mikami B, Sugita M. Crystal structure of the ternary complex of TCR, MHC class I and lipopeptides. Int Immunol 2020; 32:805-810. [PMID: 32720986 DOI: 10.1093/intimm/dxaa050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/22/2020] [Indexed: 11/12/2022] Open
Abstract
The covalent conjugation of a 14-carbon fatty acid (myristic acid) to the N-terminal Gly residue, termed N-myristoylation, occurs in some viral proteins to dictate their pathological function. This protein lipidation reaction, however, is monitored by host cytotoxic T lymphocytes that are capable of recognizing N-terminal lipopeptide fragments in the context of major histocompatibility complex (MHC) class I molecules. In a rhesus model of human AIDS, for example, the classical MHC class I allomorph, Mamu-B*05104, was shown to bind SIV Nef-derived 4-mer lipopeptides (myristic acid-Gly-Gly-Ala-Ile; C14nef4) and present them to the CD8+ T-cell line, SN45. These lipopeptides accommodated in MHC class I molecules expose much shorter peptide chains than conventional MHC class I-presented 8-10-mer peptides, and the molecular mechanisms by which αβ T-cell receptors (TCRs) recognize lipopeptides currently remain unclear. An X-ray crystallographic analysis of the SN45 TCR α and β heterodimer in a form that was co-crystallized with the C14nef4-bound Mamu-B*05104 complex indicated that the amide group of the N-myristoylated glycine residue offered a primary T-cell epitope by establishing a sole hydrogen bond between its nitrogen atom and the side chain of Glu at position 101 of CDR3β. Accordingly, the Glu to Ala mutation at this position resulted in the loss of lipopeptide recognition. On the other hand, TCRs were positioned remotely from the peptide portion of C14nef4, and strong interactions were not observed. Thus, these observations provide novel structural insights into lipopeptide recognition by TCRs, which contrast sharply with the general molecular principle of peptide recognition.
Collapse
Affiliation(s)
- Daisuke Morita
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Chieri Iwashita
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Tatsuaki Mizutani
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Naoki Mori
- Laboratory of Chemical Ecology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Masahiko Sugita
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
5
|
Chen X, Yang J, Wang L, Liu B. Personalized neoantigen vaccination with synthetic long peptides: recent advances and future perspectives. Theranostics 2020; 10:6011-6023. [PMID: 32483434 PMCID: PMC7255011 DOI: 10.7150/thno.38742] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Therapeutic cancer vaccines are one of the most promising strategies of immunotherapy. Traditional vaccines consisting of tumor-associated antigens have met with limited success. Recently, neoantigens derived from nonsynonymous mutations in tumor cells have emerged as alternatives that can improve tumor-specificity and reduce on-target off-tumor toxicity. Synthetic peptides are a common platform for neoantigen vaccines. It has been suggested that extending short peptides into long peptides can overcome immune tolerance and induce both CD4+ and CD8+ T cell responses. This review will introduce the history of long peptide-based neoantigen vaccines, discuss their advantages, summarize current preclinical and clinical developments, and propose future perspectives.
Collapse
|
6
|
Ma M, Liu J, Jin S, Wang L. Development of tumour peptide vaccines: From universalization to personalization. Scand J Immunol 2020; 91:e12875. [PMID: 32090366 DOI: 10.1111/sji.12875] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 12/19/2022]
Abstract
In recent years, relying on the human immune system to kill tumour cells has become an effective means of cancer treatment. The development of peptide vaccines, which not only break the immune tolerance of a tumour but also attack malignant cells via specific antitumour immunity, has received increased attention in tumour immunization therapy due to their safety and easy preparation. The use of large-scale sequencing technology enables the continuous discovery of new tumour antigens. With improved accuracy of epitope prediction by computer simulation and the usage of a tetramer assay, cytotoxic lymphocyte epitopes can be screened and identified more easily. Transmembrane peptide and nanoparticle technologies promote more effective intake and delivery of antigens. Consequently, considerable evolution from universal to personalized peptide vaccines has taken place, and such vaccines induce an efficient and specific immune response targeting tumour neoantigens. Recently, genomic analysis and bioinformatics approaches have greatly facilitated the breakthrough of personalized peptide vaccines targeting neoantigens, resulting in a renewed interest in this field. Further, the combination of tumour peptide vaccines with checkpoint blockades may improve patient outcomes. In this review, we discuss the development of tumour peptide vaccines and the new technological progress, from universalization to personalization, to highlight the substantial promise of tumour peptide vaccines in clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Minjun Ma
- Department of Gastrology, The First People's Hospital of Fuyang of Hangzhou, Hangzhou, China
| | - Jingwen Liu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shenghang Jin
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lan Wang
- Linhai Center for Disease Control and Prevention, Linhai, China
| |
Collapse
|
7
|
Zeng W, Horrocks KJ, Tan ACL, Wong CY, Chua BY, Jackson DC. Modular platforms for the assembly of self-adjuvanting lipopeptide-based vaccines for use in an out-bred population. Vaccine 2020; 38:597-607. [PMID: 31740096 DOI: 10.1016/j.vaccine.2019.10.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 01/08/2023]
Abstract
To facilitate the preparation of synthetic epitope-based self-adjuvanting vaccines capable of eliciting antibody responses in an out-bred population, we have developed two modular approaches. In the first, the Toll-like receptor 2 agonist Pam2Cys and the target antibody epitope are assembled as a module which is then coupled to a carrier protein as a source of antigens to stimulate T cell help. A vaccine candidate made in this way was shown to induce a specific immune response in four different strains of mice without the need for extraneous adjuvant. In the second approach, three vaccine components in the form of a target antibody epitope, a T helper cell epitope and Pam2Cys, were prepared separately each carrying different chemical functional groups. By using pH-mediated chemo-selective ligations, the vaccine was assembled in a one-pot procedure. Using this approach, a number of vaccine constructs including a lipopeptide-protein conjugate were made and also shown to elicit immune responses in different strains of mice. These two modular approaches thus constitute a powerful platform for the assembly of self-adjuvanting lipopeptide-based vaccines that can potentially be used to induce robust antibody responses in an outbred population. Finally, our study of the impact of chemical linkages on immunogenicity of a lipopeptide vaccine shows that a stable covalent bond between Pam2Cys and a B cell epitope, rather than between Pam2Cys and T helper cell epitope is critical for the induction of antibody responses and biological efficacy, indicating that Pam2Cys functions not only as an adjuvant but also participates in processing and presentation of the immunogen.
Collapse
Affiliation(s)
- Weiguang Zeng
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia.
| | - Kylie J Horrocks
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Amabel C L Tan
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Chinn Yi Wong
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - David C Jackson
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
8
|
Cai Y, Ran W, Zhai Y, Wang J, Zheng C, Li Y, Zhang P. Recent progress in supramolecular peptide assemblies as virus mimics for cancer immunotherapy. Biomater Sci 2020; 8:1045-1057. [DOI: 10.1039/c9bm01380f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Supramolecular peptide assemblies can mimic natural viruses and serve as well-defined, dynamic and multifunctional nanoplatforms for cancer immunotherapy, where the peptide segments act as antigens, adjuvants and carriers.
Collapse
Affiliation(s)
- Ying Cai
- State Key Laboratory of Drug Research & Center of Pharmaceutics
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Wei Ran
- State Key Laboratory of Drug Research & Center of Pharmaceutics
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Yihui Zhai
- State Key Laboratory of Drug Research & Center of Pharmaceutics
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Junyang Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Chao Zheng
- State Key Laboratory of Drug Research & Center of Pharmaceutics
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| |
Collapse
|
9
|
Surenaud M, Lacabaratz C, Zurawski G, Lévy Y, Lelièvre JD. Development of an epitope-based HIV-1 vaccine strategy from HIV-1 lipopeptide to dendritic-based vaccines. Expert Rev Vaccines 2018; 16:955-972. [PMID: 28879788 DOI: 10.1080/14760584.2017.1374182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Development of a safe, effective and globally affordable Human Immunodeficiency Virus strain 1 (HIV-1) vaccine offers the best hope for future control of the HIV-1 pandemic. However, with the exception of the recent RV144 trial, which elicited a modest level of protection against infection, no vaccine candidate has shown efficacy in preventing HIV-1 infection or in controlling virus replication in humans. There is also a great need for a successful immunotherapeutic vaccine since combination antiretroviral therapy (cART) does not eliminate the reservoir of HIV-infected cells. But to date, no vaccine candidate has proven to significantly alter the natural history of an individual with HIV-1 infection. Areas covered: For over 25 years, the ANRS (France Recherche Nord&Sud Sida-HIV hépatites) has been committed to an original program combining basic science and clinical research developing an epitope-based vaccine strategy to induce a multiepitopic cellular response against HIV-1. This review describes the evolution of concepts, based on strategies using HIV-1 lipopeptides towards the use of dendritic cell (DC) manipulation. Expert commentary: Understanding the crucial role of DCs in immune responses allowed moving from the non-specific administration of HIV-1 sequences with lipopeptides to DC-based vaccines. These DC-targeting strategies should improve HIV-1 vaccine efficacy.
Collapse
Affiliation(s)
- Mathieu Surenaud
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France
| | - Christine Lacabaratz
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France
| | - Gérard Zurawski
- a INSERM, U955 , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France.,d Baylor Institute for Immunology Research , Dallas , TX , USA
| | - Yves Lévy
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France.,e AP-HP, Hôpital H. Mondor - A. Chenevier, Service d'Immunologie Clinique et Maladies Infectieuses , Créteil , France
| | - Jean-Daniel Lelièvre
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France.,e AP-HP, Hôpital H. Mondor - A. Chenevier, Service d'Immunologie Clinique et Maladies Infectieuses , Créteil , France
| |
Collapse
|
10
|
Hos BJ, Tondini E, van Kasteren SI, Ossendorp F. Approaches to Improve Chemically Defined Synthetic Peptide Vaccines. Front Immunol 2018; 9:884. [PMID: 29755468 PMCID: PMC5932164 DOI: 10.3389/fimmu.2018.00884] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022] Open
Abstract
Progress made in peptide-based vaccinations to induce T-cell-dependent immune responses against cancer has invigorated the search for optimal vaccine modalities. Design of new vaccine strategies intrinsically depends on the knowledge of antigen handling and optimal epitope presentation in both major histocompatibility complex class I and -II molecules by professional antigen-presenting cells to induce robust CD8 and CD4 T-cell responses. Although there is a steady increase in the understanding of the underlying mechanisms that bridges innate and adaptive immunology, many questions remain to be answered. Moreover, we are in the early stage of exploiting this knowledge to clinical advantage. Several adaptations of peptide-based vaccines like peptide-adjuvant conjugates have been explored and showed beneficial outcomes in preclinical models; but in the clinical trials conducted so far, mixed results were obtained. A major limiting factor to unravel antigen handling mechanistically is the lack of tools to efficiently track peptide vaccines at the molecular and (sub)cellular level. In this mini-review, we will discuss options to develop molecular tools for improving, as well as studying, peptide-based vaccines.
Collapse
Affiliation(s)
- Brett J Hos
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Elena Tondini
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Sander I van Kasteren
- Leiden Institute of Chemistry, The Institute for Chemical Immunology, Leiden University, Leiden, Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
11
|
Reginald K, Chan Y, Plebanski M, Poh CL. Development of Peptide Vaccines in Dengue. Curr Pharm Des 2018; 24:1157-1173. [PMID: 28914200 PMCID: PMC6040172 DOI: 10.2174/1381612823666170913163904] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022]
Abstract
Dengue is one of the most important arboviral infections worldwide, infecting up to 390 million people and causing 25,000 deaths annually. Although a licensed dengue vaccine is available, it is not efficacious against dengue serotypes that infect people living in South East Asia, where dengue is an endemic disease. Hence, there is an urgent need to develop an efficient dengue vaccine for this region. Data from different clinical trials indicate that a successful dengue vaccine must elicit both neutralizing antibodies and cell mediated immunity. This can be achieved by designing a multi-epitope peptide vaccine comprising B, CD8+ and CD4+ T cell epitopes. As recognition of T cell epitopes are restricted by human leukocyte antigens (HLA), T cell epitopes which are able to recognize several major HLAs will be preferentially included in the vaccine design. While peptide vaccines are safe, biocompatible and cost-effective, it is poorly immunogenic. Strategies to improve its immunogenicity by the use of long peptides, adjuvants and nanoparticle delivery mechanisms are discussed.
Collapse
Affiliation(s)
| | | | | | - Chit Laa Poh
- Address correspondence to this author at the Research Centre for Biomedical Sciences, School of Science and Technology, Sunway University, 5 Jalan University, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Tel: +60-3-7491 8622 ext. 7338; E-mail:
| |
Collapse
|
12
|
Cárdenas-Vargas A, Elizondo-Quiroga D, Gutierrez-Ortega A, Charles-Niño C, Pedroza-Roldán C. Evaluation of the Immunogenicity of a Potyvirus-Like Particle as an Adjuvant of a Synthetic Peptide. Viral Immunol 2016; 29:557-564. [PMID: 27834623 DOI: 10.1089/vim.2016.0087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Improvement of current vaccines is highly necessary to increase immunogenicity levels and protection against several pathogens. Virus-like particles (VLPs) are promising approaches for vaccines because they emulate infectious virus structure, but lack any genetic material needed for replication. Plant viruses have emerged as a potential framework for VLP design, mainly because there is no preexisting immunity in mammals. In this study, we evaluated the scaffold of the papaya ringspot virus (PRSV) as a VLP adjuvant for a short synthetic peptide derived from the Hemagglutinin protein of AH1 N1 influenza virus-hemagglutinin (VLP-HA). Our results demonstrated that the adjuvant property of this VLP is highly similar to the trivalent influenza vaccine, showing comparable levels of IgG- and IgA-specific antibodies to HA-derived peptide in serum and feces of vaccinated mice, respectively. Furthermore, VLP-HA-immunized mice showed Th1-biased immune response as suggested by measuring IgG subclasses in comparison with the predominance of Th2-biased immune response in trivalent influenza vaccine dose-vaccinated mice. VLP-HA administration in mice induced comparable levels of activated CD4+- and CD8+-specific T lymphocytes for the HA-derived peptide. These results suggest the potential adjuvant capacity of the PRSV-VLP as a carrier for short synthetic peptides.
Collapse
Affiliation(s)
- Albertina Cárdenas-Vargas
- 1 Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco , Guadalajara, México .,2 Departamento de Fisiología, Centro Universitario de Ciencias de la Salud , Guadalajara, México
| | - Darwin Elizondo-Quiroga
- 1 Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco , Guadalajara, México
| | - Abel Gutierrez-Ortega
- 1 Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco , Guadalajara, México
| | - Claudia Charles-Niño
- 3 Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara, México
| | - César Pedroza-Roldán
- 4 Departamento de Medicina Veterinaria, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara , Zapopan, México
| |
Collapse
|
13
|
Sultan H, Fesenkova VI, Addis D, Fan AE, Kumai T, Wu J, Salazar AM, Celis E. Designing therapeutic cancer vaccines by mimicking viral infections. Cancer Immunol Immunother 2016; 66:203-213. [PMID: 27052572 DOI: 10.1007/s00262-016-1834-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/23/2016] [Indexed: 12/25/2022]
Abstract
The design of efficacious and cost-effective therapeutic vaccines against cancer remains both a research priority and a challenge. For more than a decade, our laboratory has been involved in the development of synthetic peptide-based anti-cancer therapeutic vaccines. We first dedicated our efforts in the identification and validation of peptide epitopes for both CD8 and CD4 T cells from tumor-associated antigens (TAAs). Because of suboptimal immune responses and lack of therapeutic benefit of peptide vaccines containing these epitopes, we have focused our recent efforts in optimizing peptide vaccinations in mouse tumor models using numerous TAA epitopes. In this focused research review, we describe how after taking lessons from the immune system's way of dealing with acute viral infections, we have designed peptide vaccination strategies capable of generating very high numbers of therapeutically effective CD8 T cells. We also discuss some of the remaining challenges to translate these findings into the clinical setting.
Collapse
Affiliation(s)
- Hussein Sultan
- Augusta University GRU Cancer Center, CN-4121, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Valentyna I Fesenkova
- Augusta University GRU Cancer Center, CN-4121, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA
| | - Diane Addis
- Augusta University GRU Cancer Center, CN-4121, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA
| | - Aaron E Fan
- Augusta University GRU Cancer Center, CN-4121, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA
| | - Takumi Kumai
- Augusta University GRU Cancer Center, CN-4121, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Juan Wu
- Augusta University GRU Cancer Center, CN-4121, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA
| | | | - Esteban Celis
- Augusta University GRU Cancer Center, CN-4121, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA.
- Departments of Medicine and Biochemistry, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
14
|
Lee Y, Lee YS, Cho SY, Kwon HJ. Perspective of Peptide Vaccine Composed of Epitope Peptide, CpG-DNA, and Liposome Complex Without Carriers. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 99:75-97. [PMID: 26067817 DOI: 10.1016/bs.apcsb.2015.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The magnitude and specificity of cell-mediated and humoral immunity are critically determined by peptide sequences; peptides corresponding to the B- or T-cell receptor epitopes are sufficient to induce an effective immune response if delivered properly. Therefore, studies on the screening and application of peptide-based epitopes have been done extensively for the development of therapeutic antibodies and prophylactic vaccines. However, the efficacy of immune response and antibody production by peptide-based immunization is too limited for human application at the present. To improve the efficacy of vaccines, researchers formulated adjuvants such as alum, water-in-oil emulsion, and Toll-like receptor agonists. They also employed liposomes as delivering vehicles to stimulate immune responses. Here, we review our recent studies providing a potent method of epitope screening and antibody production without conventional carriers. We adopted Lipoplex(O), comprising a natural phosphodiester bond CpG-DNA and a specific liposome complex, as an adjuvant. Lipoplex(O) induces potent stimulatory activity in humans as well as in mice, and immunization of mice with several peptides along with Lipoplex(O) without general carriers induces significant production of each peptide-specific IgG2a. Immunization of peptide vaccines against virus-associated antigens in mice has protective effects against the viral infection. A peptide vaccine against carcinoma-associated antigen and the peptide-specific monoclonal antibody has functional effects against cancer cells in mouse models. In conclusion, we improved the efficacy of peptide vaccines in mice. Our strategy can be applied in development of therapeutic antibodies or in defense against pandemic infectious diseases through rapid screening of potent B-cell epitopes.
Collapse
Affiliation(s)
- Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, South Korea
| | - Young Seek Lee
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, South Korea
| | - Soo Young Cho
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Research Institute for Veterinary Science BK21, Program for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Hyung-Joo Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea; Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, South Korea.
| |
Collapse
|
15
|
Omabe M, Ahmed S, Sami A, Xie Y, Tao M, Xiang J. HER2-Specific Vaccines for HER2-Positive Breast Cancer Immunotherapy. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/wjv.2015.52013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Masuko K, Wakita D, Togashi Y, Kita T, Kitamura H, Nishimura T. Artificially synthesized helper/killer-hybrid epitope long peptide (H/K-HELP): preparation and immunological analysis of vaccine efficacy. Immunol Lett 2014; 163:102-12. [PMID: 25479286 DOI: 10.1016/j.imlet.2014.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022]
Abstract
To elucidate the immunologic mechanisms of artificially synthesized helper/killer-hybrid epitope long peptide (H/K-HELP), which indicated a great vaccine efficacy in human cancers, we prepared ovalbumin (OVA)-H/K-HELP by conjugating killer and helper epitopes of OVA-model tumor antigen via a glycine-linker. Vaccination of C57BL/6 mice with OVA-H/K-HELP (30 amino acids) but not with short peptides mixture of class I-binding peptide (8 amino-acids) and class II-binding peptide (17 amino-acids) combined with adjuvant CpG-ODN (cytosine-phosphorothioate-guanine oligodeoxynucleotides), induced higher numbers of OVA-tetramer-positive CTL with concomitant activation of IFN-γ-producing CD4(+) Th1 cells. However, replacement of glycine-linker of OVA-H/K-HELP with other peptide-linker caused a significant decrease of vaccine efficacy of OVA-H/K-HELP. In combination with adjuvant CpG-ODN, OVA-H/KHELP exhibited greater vaccine efficacy compared with short peptides vaccine, in both preventive and therapeutic vaccine models against OVA-expressing EG-7 tumor. The elevated vaccine efficacy of OVAH/K-HELP might be derived from the following mechanisms: (i) selective presentation by only professional dendritic cells (DC) in vaccinated draining lymph node (dLN); (ii) a long-term sustained antigen presentation exerted by DC to stimulate both CTL and Th1 cells; (iii) formation of three cells interaction among DC, Th and CTL. In comparative study, H/K-HELP indicated stronger therapeutic vaccine efficacy compared with that of extended class I synthetic long peptide, indicating that both the length of peptide and the presence of Th epitope peptide were crucial aspects for preparing artificially synthesized H/K-HELP vaccine.
Collapse
Affiliation(s)
- Kazutaka Masuko
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Daiko Wakita
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | | | - Toshiyuki Kita
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan; Division of ROYCE' Health Bioscience, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Hidemitsu Kitamura
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Takashi Nishimura
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan; Division of ROYCE' Health Bioscience, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| |
Collapse
|
17
|
Peptide Vaccine: Progress and Challenges. Vaccines (Basel) 2014; 2:515-36. [PMID: 26344743 PMCID: PMC4494216 DOI: 10.3390/vaccines2030515] [Citation(s) in RCA: 473] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 12/17/2022] Open
Abstract
Conventional vaccine strategies have been highly efficacious for several decades in reducing mortality and morbidity due to infectious diseases. The bane of conventional vaccines, such as those that include whole organisms or large proteins, appear to be the inclusion of unnecessary antigenic load that, not only contributes little to the protective immune response, but complicates the situation by inducing allergenic and/or reactogenic responses. Peptide vaccines are an attractive alternative strategy that relies on usage of short peptide fragments to engineer the induction of highly targeted immune responses, consequently avoiding allergenic and/or reactogenic sequences. Conversely, peptide vaccines used in isolation are often weakly immunogenic and require particulate carriers for delivery and adjuvanting. In this article, we discuss the specific advantages and considerations in targeted induction of immune responses by peptide vaccines and progresses in the development of such vaccines against various diseases. Additionally, we also discuss the development of particulate carrier strategies and the inherent challenges with regard to safety when combining such technologies with peptide vaccines.
Collapse
|
18
|
Rosendahl Huber S, van Beek J, de Jonge J, Luytjes W, van Baarle D. T cell responses to viral infections - opportunities for Peptide vaccination. Front Immunol 2014; 5:171. [PMID: 24795718 PMCID: PMC3997009 DOI: 10.3389/fimmu.2014.00171] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/31/2014] [Indexed: 12/22/2022] Open
Abstract
An effective immune response against viral infections depends on the activation of cytotoxic T cells that can clear infection by killing virus-infected cells. Proper activation of these T cells depends on professional antigen-presenting cells, such as dendritic cells (DCs). In this review, we will discuss the potential of peptide-based vaccines for prevention and treatment of viral diseases. We will describe features of an effective response against both acute and chronic infections, such as an appropriate magnitude, breadth, and quality and discuss requirements for inducing such an effective antiviral immune response. We will address modifications that affect presentation of vaccine components by DCs, including choice of antigen, adjuvants, and formulation. Furthermore, we will describe differences in design between preventive and therapeutic peptide-based vaccines. The ultimate goal in the design of preventive vaccines is to develop a universal vaccine that cross-protects against multiple strains of the virus. For therapeutic vaccines, cross-protection is of less importance, but enhancing existing T cell responses is essential. Although peptide vaccination is successful in inducing responses in human papillomavirus (HPV) infected patients, there are still several challenges such as choosing the right target epitopes, choosing safe adjuvants that improve immunogenicity of these epitopes, and steering the immune response in the desired direction. We will conclude with an overview of the current status of peptide vaccination, hurdles to overcome, and prospects for the future.
Collapse
Affiliation(s)
- Sietske Rosendahl Huber
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Josine van Beek
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Jørgen de Jonge
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Willem Luytjes
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Debbie van Baarle
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
19
|
Baz A, Jackson DC, Kienzle N, Kelso A. Memory cytolytic T-lymphocytes: induction, regulation and implications for vaccine design. Expert Rev Vaccines 2014; 4:711-23. [PMID: 16221072 DOI: 10.1586/14760584.4.5.711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The design of vaccines that protect against intracellular infections or cancer remains a challenge. In many cases, immunity depends on the development of antigen-specific memory CD8+ T-cells that can express cytokines and kill antigen-bearing cells when they encounter the pathogen or tumor. Here, the authors review current understanding of the signals and cells that lead to memory CD8+ T-cell differentiation, the relationship between the primary CD8+ T-cell response and the memory response and the regulation of memory CD8+ T-cell survival and function. The implications of this new knowledge for vaccine design are discussed, and recent progress in the development of lipidated peptide vaccines as a promising approach for vaccination against intracellular infections and cancer is reviewed.
Collapse
Affiliation(s)
- Adriana Baz
- Cooperative Research Centre for Vaccine Technology, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | |
Collapse
|
20
|
Cloning CD8⁺ cytolytic T lymphocytes. Methods Mol Biol 2013. [PMID: 23329494 DOI: 10.1007/978-1-62703-218-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
CD8(+) T lymphocyte cloning has resulted in many fundamental advances: structural elucidation of peptide-MHC recognition, spatiotemporal dissection of the thymic positive and negative selection processes and is further expected, TCRs being the key molecules controlling T cell activation, to provide us with molecular tools of immuno-therapeutical interest for infectious, tumor, and autoimmune diseases. However, cloning CD8(+) T lymphocytes remains a relatively difficult enterprise. Cloning mouse CD8(+) T lymphocytes that will be first consider is to some extend facilitated by our complete control of the in vivo priming process and the unlimited access we usually have to perfectly suited (syngeneic) antigen presenting cells. Cloning human CD8(+) T lymphocytes is more difficult largely but not exclusively for ethical reasons.
Collapse
|
21
|
Apte SH, Groves PL, Skwarczynski M, Fujita Y, Chang C, Toth I, Doolan DL. Vaccination with lipid core peptides fails to induce epitope-specific T cell responses but confers non-specific protective immunity in a malaria model. PLoS One 2012; 7:e40928. [PMID: 22936972 PMCID: PMC3427299 DOI: 10.1371/journal.pone.0040928] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/15/2012] [Indexed: 11/29/2022] Open
Abstract
Vaccines against many pathogens for which conventional approaches have failed remain an unmet public health priority. Synthetic peptide-based vaccines offer an attractive alternative to whole protein and whole organism vaccines, particularly for complex pathogens that cause chronic infection. Previously, we have reported a promising lipid core peptide (LCP) vaccine delivery system that incorporates the antigen, carrier, and adjuvant in a single molecular entity. LCP vaccines have been used to deliver several peptide subunit-based vaccine candidates and induced high titre functional antibodies and protected against Group A streptococcus in mice. Herein, we have evaluated whether LCP constructs incorporating defined CD4+ and/or CD8+ T cell epitopes could induce epitope-specific T cell responses and protect against pathogen challenge in a rodent malaria model. We show that LCP vaccines failed to induce an expansion of antigen-specific CD8+ T cells following primary immunization or by boosting. We further demonstrated that the LCP vaccines induced a non-specific type 2 polarized cytokine response, rather than an epitope-specific canonical CD8+ T cell type 1 response. Cytotoxic responses of unknown specificity were also induced. These non-specific responses were able to protect against parasite challenge. These data demonstrate that vaccination with lipid core peptides fails to induce canonical epitope-specific T cell responses, at least in our rodent model, but can nonetheless confer non-specific protective immunity against Plasmodium parasite challenge.
Collapse
Affiliation(s)
- Simon H. Apte
- Infectious Diseases Programme, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Penny L. Groves
- Infectious Diseases Programme, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Yoshio Fujita
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Chenghung Chang
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
- School of Pharmacy, University of Queensland, St Lucia, Queensland, Australia
| | - Denise L. Doolan
- Infectious Diseases Programme, Queensland Institute of Medical Research, Herston, Queensland, Australia
- School of Medicine, University of Queensland, Herston, Queensland, Australia
- * E-mail:
| |
Collapse
|
22
|
Sun Z, Zhu P, Li L, Wan Z, Zhao Z, Li R. Adoptive immunity mediated by HLA-A*0201 restricted Asp f16 peptides-specific CD8+ T cells against Aspergillus fumigatus infection. Eur J Clin Microbiol Infect Dis 2012; 31:3089-96. [DOI: 10.1007/s10096-012-1670-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/30/2012] [Indexed: 12/31/2022]
|
23
|
van Hall T, van der Burg SH. Mechanisms of peptide vaccination in mouse models: tolerance, immunity, and hyperreactivity. Adv Immunol 2012; 114:51-76. [PMID: 22449778 DOI: 10.1016/b978-0-12-396548-6.00003-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of synthetic peptide vaccines capable of inducing strong and protective T-cell immunity has taken more than 20 years. Peptide vaccines come in many flavors and although their design is simple, their use is more complicated as the success of a particular peptide vaccine is influenced by many parameters. In fact, peptide vaccination may lead to tolerance, immunity or even hyper-reactivity causing death of the animals. Here we systematically dissect the parameters that influence the final outcome of peptide vaccines as examined in mouse models and this will guide the rational design of new vaccines in the future.
Collapse
Affiliation(s)
- Thorbald van Hall
- Department of Clinical Oncology, Experimental Cancer Immunology and Therapy, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
24
|
Ulanova TI, Obriadina AP, Talekar G, Burkov AN, Fields HA, Khudyakov YE. A new artificial antigen of the hepatitis E virus. J Immunoassay Immunochem 2009; 30:18-39. [PMID: 19117200 DOI: 10.1080/15321810802570269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An artificial antigen composed of 12 small antigenic regions derived from the ORF2 and ORF3 HEV proteins was designed. The gene encoding for this artificial antigen was assembled from synthetic oligonucleotides by a new method called Restriction Enzyme-Assisted Ligation (REAL). The diagnostic relevance of this second generation HEV mosaic protein (HEV MA-II) was demonstrated by testing this antigen against a panel of 142 well defined anti-HEV positive and anti-HEV negative serum samples. The data obtained in this study support the substantial diagnostic potential of this HEV mosaic antigen.
Collapse
Affiliation(s)
- T I Ulanova
- RPC Diagnostic Systems, Nizhniy, Novgorod, Russia
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Advances in the engineering of peptides, adjuvants and delivery systems have renewed the enthusiasm for peptide-based vaccination regimens in the setting of cancer, and there are a variety of clinical trials being conducted by pharmaceutical companies based on the use of peptides. The challenges to successful cancer immunotherapy are common to all immunotherapeutic strategies and not unique to peptide-based vaccination regimens. This review will describe the advances in the identification, design and delivery of peptides, the challenges to successful immunotherapy and will discuss potential options for the future.
Collapse
Affiliation(s)
- Shreya Kanodia
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, NRT 7517, University of Southern California, 1450 Biggy Street, Los Angeles, CA 90033, USA.
| | | |
Collapse
|
26
|
Melief CJM, van der Burg SH. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat Rev Cancer 2008; 8:351-60. [PMID: 18418403 DOI: 10.1038/nrc2373] [Citation(s) in RCA: 447] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This Review deals with recent progress in the immunotherapy of established (pre)malignant disease of viral or non-viral origin by synthetic vaccines capable of inducing robust T-cell responses. The most attractive vaccine compounds are synthetic long peptides (SLP) corresponding to the sequence of tumour viral antigens or tumour-associated non-viral antigens. Crucial to induction of therapeutic T-cell immunity is the capacity of SLP to deliver specific cargo to professional antigen-presenting cells (dendritic cells (DC)). Proper DC activation then induces the therapeutic CD4+ and CD8+ T-cell responses that are associated with regression of established (pre)malignant lesions, including those induced by high-risk human papilloma virus.
Collapse
Affiliation(s)
- Cornelis J M Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | | |
Collapse
|
27
|
Bijker MS, van den Eeden SJF, Franken KL, Melief CJM, Offringa R, van der Burg SH. CD8+ CTL priming by exact peptide epitopes in incomplete Freund's adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. THE JOURNAL OF IMMUNOLOGY 2007; 179:5033-40. [PMID: 17911588 DOI: 10.4049/jimmunol.179.8.5033] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Therapeutic vaccination trials, in which patients with cancer were vaccinated with minimal CTL peptide in oil-in-water formulations, have met with limited success. Many of these studies were based on the promising data of mice studies, showing that vaccination with a short synthetic peptide in IFA results in protective CD8(+) T cell immunity. By use of the highly immunogenic OVA CTL peptide in IFA as a model peptide-based vaccine, we investigated why minimal CTL peptide vaccines in IFA performed so inadequately to allow full optimization of peptide vaccination. Injection of the minimal MHC class I-binding OVA(257-264) peptide in IFA transiently activated CD8(+) effector T cells, which eventually failed to undergo secondary expansion or to kill target cells, as a result of a sustained and systemic presentation of the CTL peptides gradually leaking out of the IFA depot without systemic danger signals. Complementation of this vaccine with the MHC class II-binding Th peptide (OVA(323-339)) restored both secondary expansion and in vivo effector functions of CD8(+) T cells. Simply extending the CTL peptide to a length of 30 aa also preserved these CD8(+) T cell functions, independent of T cell help, because the longer CTL peptide was predominantly presented in the locally inflamed draining lymph node. Importantly, these functional differences were reproduced in two additional model Ag systems. Our data clearly show why priming of CTL with minimal peptide epitopes in IFA is suboptimal, and demonstrate that the use of longer versions of these CTL peptide epitopes ensures the induction of sustained effector CD8(+) T cell reactivity in vivo.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Freund's Adjuvant/administration & dosage
- Freund's Adjuvant/immunology
- Freund's Adjuvant/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Ovalbumin/administration & dosage
- Ovalbumin/immunology
- Ovalbumin/metabolism
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Time Factors
- Vaccination
Collapse
Affiliation(s)
- Martijn S Bijker
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
Doherty PC, Tripp RA, Sixbey JW. Evasion of host immune responses by tumours and viruses. CIBA FOUNDATION SYMPOSIUM 2007; 187:245-56; discussion 256-60. [PMID: 7796674 DOI: 10.1002/9780470514672.ch16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Viruses and tumours use various mechanisms to avoid immune surveillance. Oncogenic viruses have achieved a balance with the immune system through evolutionary time to ensure long-term persistence. Mutations that promote escape mechanisms favouring tumour growth to the detriment of host survival through reproductive age offer no selective advantage and will not generally be maintained in the viral genome that persists in nature. Conventional (non-oncogenic) and tumour viruses interact with various immune mediators and T cells in different ways. Oncogenic viruses cannot operate solely in the context of a lytic cycle, though this may be characteristic of the initial phase of infection that is limited by the acute immune response. Some oncogenic viruses interact with normal cellular growth control and signalling mechanisms. Synthesis of key viral proteins may be tightly controlled in replicating cells that are subject to T cell surveillance, such as basal epithelia, while productive infection occurs in non-proliferating progeny that are lost under normal physiological conditions, such as desquamating epithelia. Tumorigenesis may be an aberrant consequence of the molecular mechanisms needed to maintain this pattern of viral growth regulation in the context of the cell cycle. Vaccines designed to limit the acute phase of infection with cell-free oncogenic viruses should be as effective as those for conventional viruses.
Collapse
Affiliation(s)
- P C Doherty
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38104, USA
| | | | | |
Collapse
|
29
|
Bijker MS, Melief CJM, Offringa R, van der Burg SH. Design and development of synthetic peptide vaccines: past, present and future. Expert Rev Vaccines 2007; 6:591-603. [PMID: 17669012 DOI: 10.1586/14760584.6.4.591] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Synthetic peptide vaccines aiming at the induction of a protective CD8(+) T-cell response against infectious or malignant diseases are widely used in the clinic but, despite their success in animal models, they do not yet live up to their promise in humans. This review assesses the development of synthetic peptide vaccines, weighs it against the immunological concepts that have emerged, and identifies the key issues that play a role in the failure or success of a synthetic peptide vaccine. The current state-of-the-art peptide vaccine is a complete synthetic inflammatory product that is ingested by professional antigen-presenting cells and stimulates both CD4(+) and CD8(+) T cells.
Collapse
Affiliation(s)
- Martijn S Bijker
- Leiden University Medical Center, Department of Immunohematology, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
30
|
Fayolle C, Bauche C, Ladant D, Leclerc C. Bordetella pertussis adenylate cyclase delivers chemically coupled CD8+ T-cell epitopes to dendritic cells and elicits CTL in vivo. Vaccine 2004; 23:604-14. [PMID: 15542180 DOI: 10.1016/j.vaccine.2004.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 07/12/2004] [Indexed: 11/22/2022]
Abstract
The adenylate cyclase (CyaA) produced by Bordetella pertussis is able to deliver CD8+ and CD4+ T-cell epitopes genetically grafted within the catalytic domain of the molecule into antigen presenting cells in vivo. We develop now a new approach in which peptides containing CD8+ epitopes are chemically linked to CyaA. We show that CTL responses were induced in mice immunized with CyaA bearing these CD8+ epitopes. Moreover, we demonstrate that the OVA257-264 CD8+ epitope chemically grafted to CyaA is presented to CD8+ T cells by a mechanism requiring (1) proteasome processing, (2) TAP and (3) neosynthesis of MHC class I molecules. Thus, this novel strategy represents a very versatile system as a single CyaA carrier protein could be easily and rapidly coupled to any desired synthetic peptide.
Collapse
Affiliation(s)
- Catherine Fayolle
- Unité de Biologie des Régulations Immunitaires, INSERM E 352, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
31
|
Regner M, Martinez X, Belnoue E, Sun CM, Boisgerault F, Lambert PH, Leclerc C, Siegrist CA. Partial activation of neonatal CD11c+ dendritic cells and induction of adult-like CD8+ cytotoxic T cell responses by synthetic microspheres. THE JOURNAL OF IMMUNOLOGY 2004; 173:2669-74. [PMID: 15294984 DOI: 10.4049/jimmunol.173.4.2669] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neonatal cytotoxic T cell responses have only been elicited to date with immunogens or delivery systems inducing potent direct APC activation. To define the minimal activation requirements for the induction of neonatal CD8(+) cytotoxic responses, we used synthetic microspheres (MS) coated with a single CD8(+) T cell peptide from lymphocytic choriomeningitis virus (LCMV) or HIV-1. Unexpectedly, a single injection of peptide-conjugated MS without added adjuvant induced CD4-dependent Ag-specific neonatal murine cytotoxic responses with adult-like CTL precursor frequency, avidity for Ag, and frequency of IFN-gamma-secreting CD8(+) splenocytes. Neonatal CD8(+) T cell responses to MS-LCMV were elicited within 2 wk of a single immunization and, upon challenge, provided similar protection from viral replication as adult CTLs, demonstrating their in vivo competence. As previously reported, peptide-coated MS elicited no detectable activation of adult CD11c(+) dendritic cells (DC). In contrast, CTL responses were associated with a partial activation of neonatal CD11c(+) DC, reflected by the up-regulation of CD80 and CD86 expression but no concurrent changes in MHC class II or CD40 expression. However, this partial activation of neonatal DC was not sufficient to circumvent the requirement for CD4(+) T cell help. The effective induction of neonatal CD8(+) T cell responses by this minimal Ag delivery system demonstrates that neonatal CD11c(+) DC may mature sufficiently to stimulate naive CD8(+) neonatal T cells, even in the absence of strong maturation signals.
Collapse
Affiliation(s)
- Matthias Regner
- World Health Organization Collaborating Center for Neonatal Vaccinology, Department of Pathology, University of Geneva Medical School, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bansal-Pakala P, Halteman BS, Cheng MHY, Croft M. Costimulation of CD8 T Cell Responses by OX40. THE JOURNAL OF IMMUNOLOGY 2004; 172:4821-5. [PMID: 15067059 DOI: 10.4049/jimmunol.172.8.4821] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The persistence of functional CD8 T cell responses is dependent on checkpoints established during priming. Although naive CD8 cells can proliferate with a short period of stimulation, CD4 help, inflammation, and/or high peptide affinity are necessary for the survival of CTL and for effective priming. Using OX40-deficient CD8 cells specific for a defined Ag, and agonist and antagonist OX40 reagents, we show that OX40/OX40 ligand interactions can determine the extent of expansion of CD8 T cells during responses to conventional protein Ag and can provide sufficient signals to confer CTL-mediated protection against tumor growth. OX40 signaling primarily functions to maintain CTL survival during the initial rounds of cell division after Ag encounter. Thus, OX40 is one of the costimulatory molecules that can contribute signals to regulate the accumulation of Ag-reactive CD8 cells during immune responses.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/transplantation
- Cell Aggregation/immunology
- Cell Division/genetics
- Cell Division/immunology
- Cell Survival/genetics
- Cell Survival/immunology
- Cytotoxicity, Immunologic/genetics
- Immunity, Cellular/genetics
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Lymphopenia/genetics
- Lymphopenia/immunology
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- OX40 Ligand
- Peritoneal Neoplasms/genetics
- Peritoneal Neoplasms/immunology
- Peritoneal Neoplasms/pathology
- Receptors, OX40
- Receptors, Tumor Necrosis Factor/deficiency
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor/physiology
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- Tumor Necrosis Factors
Collapse
Affiliation(s)
- Pratima Bansal-Pakala
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
33
|
Purcell AW, Zeng W, Mifsud NA, Ely LK, Macdonald WA, Jackson DC. Dissecting the role of peptides in the immune response: theory, practice and the application to vaccine design. J Pept Sci 2003; 9:255-81. [PMID: 12803494 DOI: 10.1002/psc.456] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Analytical biochemistry and synthetic peptide based chemistry have helped to reveal the pivotal role that peptides play in determining the specificity, magnitude and quality of both humoral (antibody) and cellular (cytotoxic and helper T cell) immune responses. In addition, peptide based technologies are now at the forefront of vaccine design and medical diagnostics. The chemical technologies used to assemble peptides into immunogenic structures have made great strides over the past decade and assembly of highly pure peptides which can be incorporated into high molecular weight species, multimeric and even branched structures together with non-peptidic material is now routine. These structures have a wide range of applications in designer vaccines and diagnostic reagents. Thus the tools of the peptide chemist are exquisitely placed to answer questions about immune recognition and along the way to provide us with new and improved vaccines and diagnostics.
Collapse
Affiliation(s)
- Anthony W Purcell
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | |
Collapse
|
34
|
Martinez X, Regner M, Kovarik J, Zarei S, Hauser C, Lambert PH, Leclerc C, Siegrist CA. CD4-independent protective cytotoxic T cells induced in early life by a non-replicative delivery system based on virus-like particles. Virology 2003; 305:428-35. [PMID: 12573588 DOI: 10.1006/viro.2002.1775] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The relative immaturity of the neonatal immune system limits CD4(+) Th1 and cytotoxic T lymphocyte (CTL) responses, and represents a significant challenge for the development of vaccines against intracellular pathogens. In this report, we demonstrate the ability of a non-replicative delivery system based on parvovirus-like particles (VLP) to induce CTL responses in the neonatal period. A single immunization of 1-week-old BALB/c mice with recombinant VLP carrying a CD8(+) T cell determinant from lymphocytic choriomeningitis virus (VLP-LCMV) induced antigen-specific CD8(+) cytotoxic T cells that were similar to those elicited by adult immunization, as assessed by cytotoxic activity, interferon (IFN)-gamma secretion, cytotoxic precursor cell frequencies, in vitro avidity for antigen and protective activity against viral challenge. These CTL responses are elicited within 2 weeks of a single immunization, in the absence of adjuvant and independently of the presence and help of CD4(+) T cells, highlighting the potential of VLP as candidate vaccine vectors in early life.
Collapse
Affiliation(s)
- Xavier Martinez
- W.H.O. Collaborating Center for Neonatal Vaccinology, Department of Pathology, University of Geneva Medical School, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Romero P, Valmori D, Pittet MJ, Zippelius A, Rimoldi D, Lévy F, Dutoit V, Ayyoub M, Rubio-Godoy V, Michielin O, Guillaume P, Batard P, Luescher IF, Lejeune F, Liénard D, Rufer N, Dietrich PY, Speiser DE, Cerottini JC. Antigenicity and immunogenicity of Melan-A/MART-1 derived peptides as targets for tumor reactive CTL in human melanoma. Immunol Rev 2002; 188:81-96. [PMID: 12445283 DOI: 10.1034/j.1600-065x.2002.18808.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Some cancer patients mount spontaneous T- and B-cell responses against their tumor cells. Autologous tumor reactive CD8 cytolytic T lymphocyte (CTL) and CD4 T-cell clones as well as antibodies from these patients have been used for the identification of genes encoding the target antigens. This knowledge opened the way for new approaches to the immunotherapy of cancer. In this review, we describe the characterization of the structure-function properties of the melanocyte/melanoma tumor antigen Melan-A/MART-1, the assessment of the T-cell repertoire available against this antigen in healthy individuals, and the analysis of naturally acquired and/or vaccine-induced CTL responses to this antigen in patients with metastatic melanoma.
Collapse
Affiliation(s)
- Pedro Romero
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne branch, University Hospital (CHUV), Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- J L Whitton
- Department of Neuropharmacology, CVN-9, Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
37
|
BenMohamed L, Wechsler SL, Nesburn AB. Lipopeptide vaccines--yesterday, today, and tomorrow. THE LANCET. INFECTIOUS DISEASES 2002; 2:425-31. [PMID: 12127354 DOI: 10.1016/s1473-3099(02)00318-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Peptide-based vaccines offer several potential advantages over the conventional whole proteins (or whole gene, in the case of genetic immunisation) in terms of purity and a high specificity in eliciting immune responses. However, concerns about toxic adjuvants, which are critical for immunogenicity of synthetic peptides, still remain. Lipopeptides, a form of peptide vaccine, discovered more then a decade ago, are currently under intensive investigation because they can generate comprehensive immune responses, without the use of adjuvants. In this review, we address the past of lipopeptide vaccines, highlight the progress made toward their optimisation, and stress future challenges and issues related to their synthesis, formulation, and delivery. In particular, the recent development of mucosal application of lipopeptide vaccines may present an ideal strategy against many pathogens that infect mucosal surfaces.
Collapse
Affiliation(s)
- Lbachir BenMohamed
- Ophthalmology Research Laboratories, Burns & Allen Research Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA.
| | | | | |
Collapse
|
38
|
Deliyannis G, Jackson DC, Ede NJ, Zeng W, Hourdakis I, Sakabetis E, Brown LE. Induction of long-term memory CD8(+) T cells for recall of viral clearing responses against influenza virus. J Virol 2002; 76:4212-21. [PMID: 11932386 PMCID: PMC155065 DOI: 10.1128/jvi.76.9.4212-4221.2002] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induction of cytotoxic T-cell-mediated virus-clearing responses by influenza virus T cell determinant-containing peptide immunogens was examined. The most potent synthetic immunogens for eliciting pulmonary viral-clearing responses contained peptides representing determinants for CD4 and CD8 T cells (TH and CTL peptides, respectively) together with two or four palmitic acid (Pal) groups. Inoculated in adjuvant, these Pal2- or Pal4-CTL-TH lipopeptides and the nonlipidated CTL peptide induced equivalent levels of cytolytic activity in the primary effector phase of the response. The ability to recall lytic responses, however, diminished much more rapidly in CTL peptide-primed than in lipopeptide-primed mice. By 15 months postpriming, the recalled lytic activity in lipopeptide-inoculated mice remained potent, but the response induced by the CTL peptide was weak. Enumeration of specific gamma interferon-secreting CD8 T cells revealed that a greater number of these T cells had entered or remained in the memory pool in lipopeptide-primed mice, arguing for a quantitative rather than qualitative enhancement of the response on recall. Addition of either the lipid or the TH peptide to the CTL peptide was not sufficient to provide these long-lived antiviral responses, but inclusion of both components augmented the response. CD4 T cells elicited by the lipopeptides did not influence the rate of viral clearance upon challenge and most likely had a role in induction or maintenance of the memory response. It therefore appears that the lipopeptide immunogens, although not significantly superior at inducing primary effector CD8 T cells, elicit a much more effective memory population, the recall of which may account for their superiority in inducing pulmonary protection after viral challenge.
Collapse
Affiliation(s)
- Georgia Deliyannis
- Cooperative Research Center for Vaccine Technology, Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
39
|
Dadaglio G, Sun CM, Lo-Man R, Siegrist CA, Leclerc C. Efficient in vivo priming of specific cytotoxic T cell responses by neonatal dendritic cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2219-24. [PMID: 11859108 DOI: 10.4049/jimmunol.168.5.2219] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In early life, a high susceptibility to infectious diseases as well as a poor capacity to respond to vaccines are generally observed as compared with observations in adults. The mechanisms underlying immune immaturity have not been fully elucidated and could be due to the immaturity of the T/B cell responses and/or to a defect in the nature and quality of Ag presentation by the APC. This prompted us to phenotypically and functionally characterize early life murine dendritic cells (DC) purified from spleens of 7-day-old mice. We showed that neonatal CD11c(+) DC express levels of costimulatory molecules and MHC molecules similar to those of adult DC and are able to fully maturate after LPS activation. Furthermore, we demonstrated that neonatal DC can efficiently take up, process, and present Ag to T cells in vitro and induce specific CTL responses in vivo. Although a reduced number of these cells was observed in the spleen of neonatal mice as compared with adults, this study clearly shows that neonatal DC have full functional capacity and may well prime Ag-specific naive T cells in vivo.
Collapse
Affiliation(s)
- Gilles Dadaglio
- Unit of Biology of Immune Regulations, Institut Pasteur, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | |
Collapse
|
40
|
Ghosh MK, Dériaud E, Saron MF, Lo-Man R, Henry T, Jiao X, Roy P, Leclerc C. Induction of protective antiviral cytotoxic T cells by a tubular structure capable of carrying large foreign sequences. Vaccine 2002; 20:1369-77. [PMID: 11818155 DOI: 10.1016/s0264-410x(01)00467-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bluetongue virus (BTV) produces large numbers of tubules during infection which are formed by a single virus coded non-structural protein, NS1. The NS1 protein has been fused with full length green fluorescent protein (GFP) and was shown to retain the capacity to form tubules when expressed in heterologous expression systems. Moreover, recombinant purified chimeric tubules were demonstrated to be internalized by macrophages and dendritic cells. The ability of such chimeric tubules to induce protective cytotoxic T lymphocytes (CTL) responses has been assessed by generating chimeric tubules carrying a single CD8(+) T cell epitope from the lymphocytic choriomeningitis virus (LCMV) nucleoprotein. These chimeric tubules were recognized by MHC class I restricted T cell hybridoma in vitro and induced in vivo strong CD8(+) class I-restricted CTL responses in immunized mice. Further, the immunized mice were protected when challenged with a lethal dose of LCMV. This is the first study that demonstrates that the virus derived tubules synthesized by a recombinant non-structural protein carrying a single viral CTL epitope could induce protective immunity against a lethal viral challenge. Since recombinant tubules carrying large inserts can be purified at a large quantity from insect cells, they have potential to develop as safe multi-CTL vaccine delivery systems.
Collapse
Affiliation(s)
- Mrinal K Ghosh
- Division of Geographic Medicine, Department of Medicine, School of Medicine, University of Alabama, Birmingham 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Vogel TU, Beer BE, Zur Megede J, Ihlenfeldt HG, Jung G, Holzammer S, Watkins DI, Altman JD, Kurth R, Norley S. Induction of anti-simian immunodeficiency virus cellular and humoral immune responses in rhesus macaques by peptide immunogens: correlation of CTL activity and reduction of cell-associated but not plasma virus load following challenge. J Gen Virol 2002; 83:81-91. [PMID: 11752704 DOI: 10.1099/0022-1317-83-1-81] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lipopeptides which carry the N-terminal moiety tripalmitoyl-S-glyceryl-cysteinyl-seryl-seryl (P(3)CSS) have been shown to have effective adjuvant and transmembrane carrier properties. To test the ability of these constructs to immunize against simian immunodeficiency virus [(SIV)(mac)] infection, rhesus macaques, prescreened for expression of the Mamu-A*01 MHC class I molecule, were immunized at regular intervals with lipopeptides corresponding to known SIV(mac) CTL epitopes alone or in combination with multiple antigenic peptides corresponding to neutralizing epitopes. Both humoral and CTL responses were elicited and the monkeys, along with non-immunized control animals, were challenged intravenously with 20 MID(50) of the homologous, uncloned SIV(mac251-32H) grown in rhesus monkey PBMC. Although none of the monkeys were protected from infection, most demonstrated an anamnestic CTL response with epitope-specific CTL precursor frequencies reaching as high as 1 in 20 total PBMC as measured by limiting dilution CTL assay or 25% of all CD8(+) T-cells using tetrameric MHC-I/peptide complexes. A significant inverse correlation between the levels of CTLp and the number of infected cells in circulation was observed. However, no such correlation with the plasma viral load (RNA copies/ml) was evident.
Collapse
Affiliation(s)
- Thorsten U Vogel
- Wisconsin Regional Primate Research Center, University of Wisconsin, Madison, WI 53715-1299, USA3
- Paul Ehrlich Institute, 63225 Langen, Germany1
| | | | | | | | - Günther Jung
- Institut für Organische Chemie, University of Tübingen, 72076 Tübingen, Germany2
| | | | - David I Watkins
- Wisconsin Regional Primate Research Center, University of Wisconsin, Madison, WI 53715-1299, USA3
| | - John D Altman
- Emory University Vaccine Center at Yerkes, Atlanta, GA 30329, USA4
| | | | | |
Collapse
|
42
|
Nehete PN, Chitta S, Hossain MM, Hill L, Bernacky BJ, Baze W, Arlinghaus RB, Sastry KJ. Protection against chronic infection and AIDS by an HIV envelope peptide-cocktail vaccine in a pathogenic SHIV-rhesus model. Vaccine 2001; 20:813-25. [PMID: 11738745 DOI: 10.1016/s0264-410x(01)00408-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Based on our prior studies in mouse, monkey, chimpanzee, and human experimental systems, we identified six peptides encoded by highly conserved regions of the human immunodeficiency virus type 1 (HIV-1) envelope gene that selectively induce cellular immune responses in the absence of anti-viral antibody production. We tested a cocktail of the six peptides as a prototype vaccine for protection from simian human immunodeficiency virus (SHIV) infection and acquired immunodeficiency syndrome (AIDS) in a rhesus monkey model. Three monkeys were vaccinated with the peptide cocktail in Freund's adjuvant followed by autologous dendritic cells (DC) pulsed with these peptides. All the vaccinated animals exhibited significant induction of T-cell proliferation and cytotoxic T lymphocytes (CTL) responses, but no neutralizing antibodies. Two control mock-vaccinated monkeys showed no specific immune responses. Upon challenge with the pathogenic SHIV(KU-2), both the control and vaccinated monkeys were infected, but efficient clearance of virus-infected cells was observed in all the three vaccinated animals within 14 weeks. These animals also experienced a boosting of antiviral cellular immune responses after infection, and maintained antigen-specific IFN-gamma-producing cells in circulation beyond 42 weeks post-challenge. In contrast, the two mock-vaccinated monkeys had low to undetectable cellular immune responses and maintained significant levels of viral-infected cells and infectious virus in circulation. Further, in both the control monkeys plasma viremia was detectable beyond 38 weeks post-challenge indicating chronic phase infection. In one control monkey, the CD4+ cells dropped to very low levels by 2 weeks post-challenge and became undetectable by week 39 coinciding with high plasma viremia and AIDS, which included cachexia and ataxia. These results serve as proof of principle for the effectiveness of the HIV envelope peptide cocktail vaccine against chronic infection and AIDS, and support the development of multivalent peptide-based vaccine as a viable strategy to induce cell-mediated immunity (CMI) for protection against HIV and AIDS in humans.
Collapse
Affiliation(s)
- P N Nehete
- Department of Veterinary Sciences, The University of Texas M.D. Anderson Cancer Center, Science Park, 650 Coolwater Drive, Bastrop, TX 78602, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Engler OB, Dai WJ, Sette A, Hunziker IP, Reichen J, Pichler WJ, Cerny A. Peptide vaccines against hepatitis B virus: from animal model to human studies. Mol Immunol 2001; 38:457-65. [PMID: 11741695 DOI: 10.1016/s0161-5890(01)00081-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An estimated 400 million people are chronically infected with the hepatitis B virus (HBV). Chronic viral hepatitis infection incurs serious sequelae such as liver cirrhosis and hepatocellular carcinoma. Prevention and treatment, thus, represent an important target for public health. Preventive vaccines using HBsAg alone or combined with other antigens allow for the generation of neutralizing antibodies which effectively prevent infection in immunocompetent individuals. Cell-mediated immunological mechanisms are thought to be crucial in determining viral persistence or viral elimination. Therapeutic approaches aiming to shift cellular immunity towards viral elimination have been on the research agenda for many years. This paper summarizes pre-clinical and clinical results obtained with the use of immunogenic peptides formulated as vaccines to selectively boost cellular immune responses. Such vaccines are capable of generating cellular immune responses in animal models as well as in humans and represent an important step towards the development of a therapeutic vaccine against chronic hepatitis.
Collapse
Affiliation(s)
- O B Engler
- Clinic of Rheumatology and Clinical Immunology/Allergology, University Hospital, Inselspital Bern, 3010, Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
44
|
Schlecht G, Leclerc C, Dadaglio G. Induction of CTL and nonpolarized Th cell responses by CD8alpha(+) and CD8alpha(-) dendritic cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4215-21. [PMID: 11591742 DOI: 10.4049/jimmunol.167.8.4215] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two distinct dendritic cell (DC) subpopulations have been evidenced in mice on the basis of their differential CD8alpha expression and their localization in lymphoid organs. Several reports suggest that CD8alpha(+) and CD8alpha(-) DC subsets could be functionally different. In this study, using a panel of MHC class I- and/or class II-restricted peptides, we analyzed CD4(+) and CD8(+) T cell responses obtained after i.v. injection of freshly purified peptide-pulsed DC subsets. First, we showed that both DC subsets efficiently induce specific CTL responses and Th1 cytokine production in the absence of CD4(+) T cell priming. Second, we showed that in vivo activation of CD4(+) T cells by CD8alpha(+) or CD8alpha(-) DC, injected i.v., leads to a nonpolarized Th response with production of both Th1 and Th2 cytokines. The CD8alpha(-) subset induced a higher production of Th2 cytokines such as IL-4 and IL-10 than the CD8alpha(+) subset. However, IL-5 was produced by CD4(+) T cells activated by both DC subsets. When both CD4(+) and CD8(+) T cells were primed by DC injected i.v., a similar pattern of cytokines was observed, but, under these conditions, Th1 cytokines were mainly produced by CD8(+) T cells, while Th2 cytokines were produced by CD4(+) T cells. Thus, this study clearly shows that CD4(+) T cell responses do not influence the development of specific CD8(+) T cell cytotoxic responses induced either by CD8alpha(+) or CD8alpha(-) DC subsets.
Collapse
Affiliation(s)
- G Schlecht
- Unité de Biologie des Régulations Immunitaires, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
45
|
Dijkstra JM, Fischer U, Sawamoto Y, Ototake M, Nakanishi T. Exogenous antigens and the stimulation of MHC class I restricted cell-mediated cytotoxicity: possible strategies for fish vaccines. FISH & SHELLFISH IMMUNOLOGY 2001; 11:437-458. [PMID: 11556476 DOI: 10.1006/fsim.2001.0351] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An MHC class I restricted cytotoxic T lymphocyte (CTL) activity assay has recently been established for rainbow trout. MHC class I restricted cytotoxicity probably plays a critical role in immunity to most viral diseases in mammals and may play a similar role in fish. Therefore, it is very important to investigate what types of vaccines can stimulate this immune response. Although logical candidates for vaccine components that can stimulate an MHC class I restricted response are live attenuated viruses and DNA vaccines, these materials are generally not allowed in fish for commercial vaccine use due to potential safety issues. In mammals, however, a number of interesting vaccination strategies based on exogenous antigens that stimulate MHC class I restricted cytotoxicity have been described. Several of these strategies are discussed in this review in the context of fish vaccination.
Collapse
Affiliation(s)
- J M Dijkstra
- Immunology Section, National Research Institute of Aquaculture, Tamaki, Mie, Japan
| | | | | | | | | |
Collapse
|
46
|
Fayolle C, Osickova A, Osicka R, Henry T, Rojas MJ, Saron MF, Sebo P, Leclerc C. Delivery of multiple epitopes by recombinant detoxified adenylate cyclase of Bordetella pertussis induces protective antiviral immunity. J Virol 2001; 75:7330-8. [PMID: 11462005 PMCID: PMC114968 DOI: 10.1128/jvi.75.16.7330-7338.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CyaA, the adenylate cyclase toxin from Bordetella pertussis, can deliver its N-terminal catalytic domain into the cytosol of a large number of eukaryotic cells and particularly into professional antigen-presenting cells. We have previously identified within the primary structure of CyaA several permissive sites at which insertion of peptides does not alter the ability of the toxin to enter cells. This property has been exploited to design recombinant CyaA toxoids capable of delivering major histocompatibility complex (MHC) class I-restricted CD8(+) T-cell epitopes into antigen-presenting cells and to induce specific CD8(+) cytotoxic T-lymphocyte (CTL) responses in vivo. Here we have explored the capacity of the CyaA vector carrying several different CD8(+) T-cell epitopes to prime multiple CTL responses. The model vaccine consisted of a polyepitope made of three CTL epitopes from lymphocytic choriomeningitis virus (LCMV), the V3 region of human immunodeficiency virus gp120, and chicken ovalbumin, inserted at three different sites of the catalytic domain of genetically detoxified CyaA. Each of these epitopes was processed on delivery by CyaA and presented in vitro to specific T-cell hybridomas. Immunization of mice by CyaA toxoids carrying the polyepitope lead to the induction of specific CTL responses for each of the three epitopes, as well as to protection against a lethal viral challenge. Moreover, mice primed against the vector by mock CyaA or a recombinant toxoid were still able to develop strong CTL responses after subsequent immunization with a recombinant CyaA carrying a foreign CD8(+) CTL epitope. These results highlight the potency of the adenylate cyclase vector for induction of protective CTL responses with multiple specificity and/or broad MHC restriction.
Collapse
Affiliation(s)
- C Fayolle
- Unité de Biologie des Régulations Immunitaires, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
BenMohamed L, Krishnan R, Longmate J, Auge C, Low L, Primus J, Diamond DJ. Induction of CTL response by a minimal epitope vaccine in HLA A*0201/DR1 transgenic mice: dependence on HLA class II restricted T(H) response. Hum Immunol 2000; 61:764-79. [PMID: 10980387 DOI: 10.1016/s0198-8859(00)00139-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
CTL play a pivotal role in the immune response during viral infections. In this study, the HLA class II restricted T(H) requirement for optimal in vivo induction of HLA class I restricted CTL responses has been investigated. Towards this goal, transgenic mice expressing both HLA class I (A*0201 or A2.1) and class II (DRB1*0101 or DR1) molecules have been derived. Immunization of these mice with an HLA A*0201-restricted and CMV-specific CTL epitope (pp65(495-503)), and either of three different tetanus toxin-derived MHC class II-binding T(H) epitopes, resulted in a vigorous CTL response. CTL specific for the pp65(495-503) epitope were dramatically enhanced in mice expressing both the HLA-DR1 and HLA-A*0201 transgenes. Notably, preinjection of three TT peptides (TT(639-652), TT(830-843), and TT(947-967)) increased the capability of HLA A*0201/DR1 Tg mice to respond to subsequent immunization with the T(H) + CTL peptide mixture. These results indicate that the use of HLA A*0201/DR1 Tg mice constitute a versatile model system (in lieu of immunizing humans) for the study of both HLA class I and class II restricted T-cell responses. These studies provide a rational model for the design and assessment of new minimal-epitope vaccines based on their in vivo induction of a pathogen-specific CTL response.
Collapse
Affiliation(s)
- L BenMohamed
- Laboratory of Vaccine Research, the Department of Biostatistics, City of Hope National Medical Center, Duarte, California, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Franco A, Tilly DA, Gramaglia I, Croft M, Cipolla L, Meldal M, Grey HM. Epitope affinity for MHC class I determines helper requirement for CTL priming. Nat Immunol 2000; 1:145-50. [PMID: 11248807 DOI: 10.1038/77827] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We show here that priming and memory generation of antigen-specific CD8+ cytotoxic T lymphocytes (CTL) does not require help if the immunogen binds major histocompatibility complex (MHC) class I molecules with high affinity. This conclusion was based on the study of three chemically distinct optimal length CTL epitopes with high affinity for the restriction element Kb. In contrast, when two subdominant epitopes with intermediate MHC binding affinity were studied, either a class II MHC-restricted T helper cell epitope or administration of antibody to CD40 was required to obtain significant CTL priming. Depending on the epitope, one source of help was much more efficient than the other.
Collapse
Affiliation(s)
- A Franco
- Division of Immunochemistry, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Sedlik C, Dadaglio G, Saron MF, Deriaud E, Rojas M, Casal SI, Leclerc C. In vivo induction of a high-avidity, high-frequency cytotoxic T-lymphocyte response is associated with antiviral protective immunity. J Virol 2000; 74:5769-75. [PMID: 10846055 PMCID: PMC112070 DOI: 10.1128/jvi.74.13.5769-5775.2000] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many approaches are currently being developed to deliver exogenous antigen into the major histocompatibility complex class I-restricted antigen pathway, leading to in vivo priming of CD8(+) cytotoxic T cells. One attractive possibility consists of targeting the antigen to phagocytic or macropinocytic antigen-presenting cells. In this study, we demonstrate that strong CD8(+) class I-restricted cytotoxic responses are induced upon intraperitoneal immunization of mice with different peptides, characterized as CD8(+) T-cell epitopes, bound to 1-microm synthetic latex microspheres and injected in the absence of adjuvant. The cytotoxic response induced against a lymphocytic choriomeningitis virus (LCMV) peptide linked to these microspheres was compared to the cytotoxic T-lymphocyte (CTL) response obtained upon immunization with the nonreplicative porcine parvovirus-like particles (PPV:VLP) carrying the same peptide (PPV:VLP-LCMV) previously described (C. Sedlik, M. F. Saron, J. Sarraseca, I. Casal, and C. Leclerc, Proc. Natl. Acad. Sci. USA 94:7503-7508, 1997). We show that the induction of specific CTL activity by peptides bound to microspheres requires CD4(+) T-cell help in contrast to the CTL response obtained with the peptide delivered by viral pseudoparticles. Furthermore, PPV:VLP are 100-fold more efficient than microspheres in generating a strong CTL response characterized by a high frequency of specific T cells of high avidity. Moreover, PPV:VLP-LCMV are able to protect mice against a lethal LCMV challenge whereas microspheres carrying the LCMV epitope fail to confer such protection. This study demonstrates the crucial involvement of the frequency and avidity of CTLs in conferring antiviral protective immunity and highlights the importance of considering these parameters when developing new vaccine strategies.
Collapse
Affiliation(s)
- C Sedlik
- Unité de Biologie des Régulations Immunitaires, 75724 Paris Cedex 15, France, and Ingenasa, 28037 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
50
|
Dadaglio G, Moukrim Z, Lo-Man R, Sheshko V, Sebo P, Leclerc C. Induction of a polarized Th1 response by insertion of multiple copies of a viral T-cell epitope into adenylate cyclase of Bordetella pertussis. Infect Immun 2000; 68:3867-72. [PMID: 10858196 PMCID: PMC101660 DOI: 10.1128/iai.68.7.3867-3872.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenylate cyclase (CyaA) of Bordetella pertussis delivers the N-terminal catalytic domain into the cytosol of a large number of eukaryotic cells, in particular, professional antigen-presenting cells. This allows the delivery of CD8(+) T-cell epitopes to the major histocompatibility complex class I presentation pathway. We have previously shown that immunization of mice with CyaA carrying a single CD8(+) T-cell epitope leads to antiviral protection as well as to protective and therapeutic antitumor immunity associated with the induction of specific cytotoxic T-lymphocyte (CTL) responses. Here, we evaluated the capacity of CyaA carrying one to four copies of the CD8(+) CD4(+) T-cell epitope from the nucleoprotein of the lymphocytic choriomeningitis virus to induce T-cell responses. Both CTL and Th1-like specific responses were detected in mice immunized with recombinant CyaA with or without adjuvant. Although the insertion of the larger peptides resulted in partial loss of the invasive capacity of recombinant CyaA, insertion of several copies of the same epitope led to a strong enhancement of Th1 responses and, to a lesser degree, CTL responses. These results underscore the potency of CyaA for vaccine design with a new impact on diseases in which the Th1 response has been described to have a beneficial effect.
Collapse
Affiliation(s)
- G Dadaglio
- Unité de Biologie des Régulations Immunitaires, Institut Pasteur, Paris, France.
| | | | | | | | | | | |
Collapse
|