1
|
McCullen M, Oltz E. The multifaceted roles of TCF1 in innate and adaptive lymphocytes. Adv Immunol 2024; 164:39-71. [PMID: 39523028 DOI: 10.1016/bs.ai.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The immune system requires a complex network of specialized cell types to defend against a range of threats. The specific roles and destinies of these cell types are enforced by a constellation of gene regulatory programs, which are orchestrated through lineage-specifying transcription factors. T Cell Factor 1 (TCF1) is a central transcription factor in many of these programs, guiding the development and functionality of both adaptive and innate lymphoid cells. This review highlights recent insights into the function of TCF1 in a variety of lymphoid cell subsets and its potential for translational applications in immune disorders and cancer.
Collapse
Affiliation(s)
- Matthew McCullen
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, United States
| | - Eugene Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, United States.
| |
Collapse
|
2
|
LTα, TNF, and ILC3 in Peyer's Patch Organogenesis. Cells 2022; 11:cells11121970. [PMID: 35741098 PMCID: PMC9221848 DOI: 10.3390/cells11121970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023] Open
Abstract
TNF and LTα are structurally related cytokines of the TNF superfamily. Their genes are located in close proximity to each other and to the Ltb gene within the TNF/LT locus inside MHC. Unlike Ltb, transcription of Tnf and of Lta is tightly controlled, with the Tnf gene being an immediate early gene that is rapidly induced in response to various inflammatory stimuli. Genes of the TNF/LT locus play a crucial role in lymphoid tissue organogenesis, although some aspects of their specific contribution remain controversial. Here, we present new findings and discuss the distinct contribution of TNF produced by ILC3 cells to Peyer’s patch organogenesis.
Collapse
|
3
|
Liang Q, Dong J, Wang S, Shao W, Ahmed AF, Zhang Y, Kang W. Immunomodulatory effects of Nigella sativa seed polysaccharides by gut microbial and proteomic technologies. Int J Biol Macromol 2021; 184:483-496. [PMID: 34166694 DOI: 10.1016/j.ijbiomac.2021.06.118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
Cyclophosphamide (CTX) was used to establish the immunosuppressive mice model. The immune organ viscera index, phagocytes vitality, the levels of cytokines in serum, the oxidative stress resistance, proteomics and intestinal flora in mice were investigated to evaluate the effect of immune regulation of Nigella sativa seed polysaccharide (NSSP). The results showed that the high-dose NSSP group could significantly increase the thymus and spleen index. The levels of ACP, LDH, T-AOC, SOD, IL-2, IL-4 and IL-6 were significantly increased and the levels of TNF-α and MDA were reduced. All evidences indicated that NSSP could improve the immune effects of the immunosuppressed mice. Proteomics investigation showed that NSSP could improve the immune by regulating the differential proteins of PI3K and PTEN, and regulating the metabolism-related pathways such as autoimmune diseases and PI3K-Akt signaling pathway. of Gut microbes analysis showed that NSSP could exert immunomodulatory effects by improving the structure of the intestinal flora, increasing the diversity of the flora, and regulating metabolic pathways such as lipid metabolism, polysaccharide synthesis and signal transduction by the prediction of flora metabolic functions. In addition, NSSP could regulate intestinal environment by regulating the content of short chain fatty acids.
Collapse
Affiliation(s)
- Qiongxin Liang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, Henan, China
| | - Jing Dong
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, Henan, China
| | - Senye Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China
| | - Wenjing Shao
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China
| | - Adel F Ahmed
- Medicinal and Aromatic Plants Researches Department, Horticulture Research Institute, Agricultural Research Center, Giza, Egypt.
| | - Yan Zhang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Shijiazhuang 050227, Hebei, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050227, Hebei, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, Henan, China; Functional Food Engineering Technology Research Center, Kaifeng 475004, Henan, China.
| |
Collapse
|
4
|
Alfituri OA, Bradford BM, Paxton E, Morrison LJ, Mabbott NA. Influence of the Draining Lymph Nodes and Organized Lymphoid Tissue Microarchitecture on Susceptibility to Intradermal Trypanosoma brucei Infection. Front Immunol 2020; 11:1118. [PMID: 32582198 PMCID: PMC7283954 DOI: 10.3389/fimmu.2020.01118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Infection of the mammalian host with African trypanosomes begins when the tsetse fly vector injects the parasites into the skin dermis during blood feeding. After injection into the skin, trypanosomes first accumulate in the draining lymph node before disseminating systemically. Whether this early accumulation within the draining lymph node is important for the trypanosomes to establish infection was not known. Lymphotoxin-β-deficient mice (LTβ-/- mice) lack most secondary lymphoid tissues, but retain the spleen and mesenteric lymph nodes. These mice were used to test the hypothesis that the establishment of infection after intradermal (ID) T. brucei infection would be impeded in the absence of the skin draining lymph nodes. However, LTβ-/- mice revealed greater susceptibility to ID T. brucei infection than wild-type mice, indicating that the early accumulation of the trypanosomes in the draining lymph nodes was not essential to establish systemic infection. Although LTβ-/- mice were able to control the first parasitemia wave as effectively as wild-type mice, they were unable to control subsequent parasitemia waves. LTβ-/- mice also lack organized B cell follicles and germinal centers within their remaining secondary lymphoid tissues. As a consequence, LTβ-/- mice have impaired immunoglobulin (Ig) isotype class-switching responses. When the disturbed microarchitecture of the B cell follicles in the spleens of LTβ-/- mice was restored by reconstitution with wild-type bone marrow, their susceptibility to ID T. brucei infection was similar to that of wild-type control mice. This effect coincided with the ability to produce significant serum levels of Ig isotype class-switched parasite-specific antibodies. Thus, our data suggest that organized splenic microarchitecture and the production of parasite-specific Ig isotype class-switched antibodies are essential for the control of ID African trypanosome infections.
Collapse
Affiliation(s)
- Omar A Alfituri
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Barry M Bradford
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Edith Paxton
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Liam J Morrison
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Eckert N, Permanyer M, Yu K, Werth K, Förster R. Chemokines and other mediators in the development and functional organization of lymph nodes. Immunol Rev 2020; 289:62-83. [PMID: 30977201 DOI: 10.1111/imr.12746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/22/2019] [Indexed: 12/28/2022]
Abstract
Secondary lymphoid organs like lymph nodes (LNs) are the main inductive sites for adaptive immune responses. Lymphocytes are constantly entering LNs, scanning the environment for their cognate antigen and get replenished by incoming cells after a certain period of time. As only a minor percentage of lymphocytes recognizes cognate antigen, this mechanism of permanent recirculation ensures fast and effective immune responses when necessary. Thus, homing, positioning, and activation as well as egress require precise regulation within LNs. In this review we discuss the mediators, including chemokines, cytokines, growth factors, and others that are involved in the formation of the LN anlage and subsequent functional organization of LNs. We highlight very recent findings in the fields of LN development, steady-state migration in LNs, and the intranodal processes during an adaptive immune response.
Collapse
Affiliation(s)
- Nadine Eckert
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Marc Permanyer
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kai Yu
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kathrin Werth
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Gamallat Y, Ren X, Meyiah A, Li M, Ren X, Jamalat Y, Song S, Xie L, Ahmad B, Shopit A, Mousa H, Ma Y, Xin Y, Ding D. The immune-modulation and gut microbiome structure modification associated with long-term dietary supplementation of Lactobacillus rhamnosus using 16S rRNA sequencing analysis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
7
|
Bénézech C, Luu NT, Walker JA, Kruglov AA, Loo Y, Nakamura K, Zhang Y, Nayar S, Jones LH, Flores-Langarica A, McIntosh A, Marshall J, Barone F, Besra G, Miles K, Allen JE, Gray M, Kollias G, Cunningham AF, Withers DR, Toellner KM, Jones ND, Veldhoen M, Nedospasov SA, McKenzie ANJ, Caamaño JH. Inflammation-induced formation of fat-associated lymphoid clusters. Nat Immunol 2015; 16:819-828. [PMID: 26147686 PMCID: PMC4512620 DOI: 10.1038/ni.3215] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 06/01/2015] [Indexed: 12/14/2022]
Abstract
Fat-associated lymphoid clusters (FALCs) are a type of lymphoid tissue associated with visceral fat. Here we found that the distribution of FALCs was heterogeneous, with the pericardium containing large numbers of these clusters. FALCs contributed to the retention of B-1 cells in the peritoneal cavity through high expression of the chemokine CXCL13, and they supported B cell proliferation and germinal center differentiation during peritoneal immunological challenges. FALC formation was induced by inflammation, which triggered the recruitment of myeloid cells that expressed tumor-necrosis factor (TNF) necessary for signaling via the TNF receptors in stromal cells. Natural killer T cells (NKT cells) restricted by the antigen-presenting molecule CD1d were likewise required for the inducible formation of FALCs. Thus, FALCs supported and coordinated the activation of innate B cells and T cells during serosal immune responses.
Collapse
Affiliation(s)
- Cécile Bénézech
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nguyet-Thin Luu
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Andrei A Kruglov
- German Rheumatism Research Center, Berlin, Germany
- Engelhardt Institute of Molecular Biology, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Yunhua Loo
- Lymphocyte Signalling and Development Programme, The Babraham Institute, Cambridge, UK
| | - Kyoko Nakamura
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Yang Zhang
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Saba Nayar
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lucy H Jones
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh
| | - Adriana Flores-Langarica
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alistair McIntosh
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jennifer Marshall
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Francesca Barone
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Gurdyal Besra
- College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Katherine Miles
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Judith E Allen
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh
| | - Mohini Gray
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | | | - Adam F Cunningham
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - David R Withers
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kai Michael Toellner
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nick D Jones
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Marc Veldhoen
- Lymphocyte Signalling and Development Programme, The Babraham Institute, Cambridge, UK
| | - Sergei A Nedospasov
- German Rheumatism Research Center, Berlin, Germany
- Engelhardt Institute of Molecular Biology, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | | | - Jorge H Caamaño
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
8
|
Development of Gut-Associated Lymphoid Tissues. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
9
|
Zhu MJ, Du M, Ford SP. CELL BIOLOGY SYMPOSIUM: Impacts of maternal obesity on placental and gut inflammation and health. J Anim Sci 2013; 92:1840-9. [PMID: 24243902 DOI: 10.2527/jas.2013-7106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Obesity in pregnant women is a growing public health concern that negatively affects fetal development and has long-term impacts on offspring health. The placenta plays an essential role in nutrient transport to the fetus and supports fetal growth and development. Maternal obesity (MO) induces an exacerbated proinflammatory milieu in the placenta providing an inflammatory environment for fetuses. The gut is one of the largest immune organs and mainly develops during the fetal stage. Maternal obesity and the corresponding inflammatory uteroplacental environment affect gut development, incurring inflammatory responses in the fetal intestine that further prime or program the offspring gut to enhance inflammation and impair intestinal barrier integrity. This review summarizes the impact of MO on inflammatory responses in placenta and fetal intestine and the long-term effects on offspring intestinal health. Because "leaky gut" is one of the main etiological factors for a number of common diseases, including inflammatory bowel diseases, type I diabetes, and related autoimmune diseases, the adverse effect of MO on the overall health of progeny is further discussed.
Collapse
Affiliation(s)
- M J Zhu
- School of Food Science, Washington State University, Pullman 99164
| | | | | |
Collapse
|
10
|
Nakagawa R, Togawa A, Nagasawa T, Nishikawa SI. Peyer’s Patch Inducer Cells Play a Leading Role in the Formation of B and T Cell Zone Architecture. THE JOURNAL OF IMMUNOLOGY 2013; 190:3309-18. [DOI: 10.4049/jimmunol.1202766] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Coles M, Kioussis D, Veiga-Fernandes H. Cellular and Molecular Requirements in Lymph Node and Peyer's Patch Development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:177-205. [DOI: 10.1016/s1877-1173(10)92008-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
12
|
Transmembrane tumor necrosis factor alpha is required for enteropathy and is sufficient to promote parasite expulsion in gastrointestinal helminth infection. Infect Immun 2009; 77:3879-85. [PMID: 19564380 DOI: 10.1128/iai.01461-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
To study the specific role of transmembrane tumor necrosis factor (tmTNF) in protective and pathological responses against the gastrointestinal helminth Trichinella spiralis, we compared the immune responses of TNF-alpha/lymphotoxin alpha (LTalpha)(-/-) mice expressing noncleavable transgenic tmTNF to those of TNF-alpha/LTalpha(-/-) and wild-type mice. The susceptibility of TNF-alpha/LTalpha(-/-) mice to T. spiralis infection was associated with impaired induction of a protective Th2 response and the lack of mucosal mastocytosis. Although tmTNF-expressing transgenic (tmTNF-tg) mice also had a reduced Th2 response, the mast cell response was greater than that observed in TNF-alpha/LTalpha(-/-) mice and was sufficient to induce the expulsion of the parasite. T. spiralis infection of tmTNF-tg mice resulted in significant intestinal pathology characterized by villus atrophy and crypt hyperplasia comparable to that induced following the infection of wild-type mice, while pathology in TNF-alpha/LTalpha(-/-) mice was significantly reduced. Our data thus indicate a role for tmTNF in host defense against gastrointestinal helminths and in the accompanying enteropathy. Furthermore, they also demonstrate that TNF-alpha is required for the induction of Th2 immune responses related to infection with gastrointestinal helminth parasites.
Collapse
|
13
|
Finke D. Induction of intestinal lymphoid tissue formation by intrinsic and extrinsic signals. Semin Immunopathol 2009; 31:151-69. [PMID: 19506873 DOI: 10.1007/s00281-009-0163-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 05/20/2009] [Indexed: 12/20/2022]
Abstract
Since the discovery of inducer cells as a separate lineage for organogenesis of Peyer's patches in the small intestine of fetal mice, a lot of progress has been made in understanding the molecular pathways involved in the generation of lymphoid tissue and the maintenance of the lymphoid architecture. The findings that inducer cells also exist in adult mice and in humans, have a lineage relationship to natural killer cells, and can be stimulated during infections highlight their possible role in establishing innate and adaptive immune responses. Novel concepts in the development of intestinal lymphoid tissues have been made in the past few years suggesting that lymphoid organs are more plastic as previously thought and depend on antigenic stimulation. In addition, the generation of novel lymphoid organs in the gut under inflammatory conditions indicates a function in chronic diseases. The present review summarizes current knowledge on the basic framework of signals required for developing lymphoid tissue under normal and inflammatory conditions.
Collapse
Affiliation(s)
- Daniela Finke
- Department of Biomedicine, Developmental Immunology, University of Basel, Basel, Switzerland.
| |
Collapse
|
14
|
Bacterial particle endocytosis by epithelial cells is selective and enhanced by tumor necrosis factor receptor ligands. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:397-407. [PMID: 19129472 DOI: 10.1128/cvi.00210-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Bacterial pathogens use virulence strategies to invade epithelial barriers, but active processes of epithelial cells may also contribute to the endocytosis of microbial particles. To focus on the latter, we studied the uptake of fixed and fluorescently labeled bacterial particles in intestinal and bronchoepithelial cell cultures and found it to be enhanced in Caco-2BBe and NCI-H292 cells after treatment with tumor necrosis factor alpha and an agonist antibody against the lymphotoxin beta receptor. Confocal fluorescence microscopy, flow cytometry, and transmission electron microscopy revealed that Staphylococcus aureus and Yersinia enterocolitica were readily endocytosed, although there was scant uptake of Shigella sonnei, Salmonella enterica serovar Typhimurium, and Klebsiella pneumoniae particles. Endocytosed Staphylococcus was often associated with cytoplasmic claudin-4 vesicles; this was not found for Yersinia, suggesting that cytokine treatment upregulated two distinct endocytosis pathways. Interestingly, when Staphylococcus and Yersinia were coincubated with epithelial monolayers, the cells were unlikely to take up Yersinia unless they had also endocytosed large numbers of Staphylococcus particles, although the two bacteria were apparently processed in distinct compartments. Cytokine treatment induced an upregulation and redistribution of beta1 integrin to the apical surface of NCI-H292 cells; consistent with this effect, treatment with anti-beta1 integrin antibody blocked uptake of both Yersinia and Staphylococcus in NCI-H292 and Caco-2BBe cells. Our results suggest that capture of bacterial particles by mucosal epithelial cells is selective and that different endocytic mechanisms are enhanced by proinflammatory cytokines.
Collapse
|
15
|
Wang H, Feng J, Qi C, Morse HC. An ENU-induced mutation in the lymphotoxin alpha gene impairs organogenesis of lymphoid tissues in C57BL/6 mice. Biochem Biophys Res Commun 2008; 370:461-7. [PMID: 18384745 DOI: 10.1016/j.bbrc.2008.03.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 03/22/2008] [Indexed: 10/22/2022]
Abstract
The TNF family is critical for development of lymphoid organs and plays significant roles in regulation of innate and adoptive immune responses. Here, we describe a novel N-ethyl-N-nitrosourea (ENU)-induced mutant strain, HLB382, with a point mutation in the Lta gene, which encodes lymphotoxin (LT) alpha, a member of the TNF family. Mutant mice had no lymph nodes and no Peyer's patches. Microscopically, the spleens had disordered follicles and no germinal centers or discernible marginal zones (MZ). While the development of T cells and follicular B cells was normal, the numbers of NK and MZ B cells were significantly reduced. Interestingly, the numbers of peritoneal B1b cells were significantly increased. Genomic DNA sequences revealed a single base pair insertion in the coding region of Lta resulting in a frame shift and a premature stop codon. This new strain provides opportunities for understanding the full range of Lta gene function on a pure C57BL/6 background.
Collapse
Affiliation(s)
- Hongsheng Wang
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5640 Fishers LN, TB1, Rm 1518, Rockville, MD 20852, USA.
| | | | | | | |
Collapse
|
16
|
Abstract
During evolution, the development of secondary lymphoid organs has evolved as a strategy to promote adaptive immune responses at sites of antigen sequestration. Mesenteric lymph nodes (LNs) and Peyer's patches (PPs) are localized in proximity to mucosal surfaces, and their development is coordinated by a series of temporally and spatially regulated molecular events involving the collaboration between hematopoietic, mesenchymal, and, for PPs, epithelial cells. Transcriptional control of cellular differentiation, production of cytokines as well as adhesion molecules are mandatory for organogenesis, recruitment of mature leukocytes, and lymphoid tissue organization. Similar to fetal and neonatal organogenesis, lymphoid tissue neoformation can occur in adult individuals at sites of chronic stimulation via cytokines and TNF-family member molecules. These molecules represent new therapeutic targets to manipulate the microenvironment during autoimmune diseases.
Collapse
Affiliation(s)
- D Finke
- Center for Biomedicine, Developmental Immunology, Department of Clinical and Biological Sciences (DKBW), University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland.
| | | |
Collapse
|
17
|
Kwa SF, Beverley P, Smith AL. Peyer's patches are required for the induction of rapid Th1 responses in the gut and mesenteric lymph nodes during an enteric infection. THE JOURNAL OF IMMUNOLOGY 2006; 176:7533-41. [PMID: 16751400 DOI: 10.4049/jimmunol.176.12.7533] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Peyer's patches (PP) and mesenteric lymph nodes (MLN) are structural components of the gut-associated lymphoid tissues and contribute to the induction of immune responses toward infection in the gastrointestinal tract. These secondary lymphoid organs provide structural organization for efficient cellular interactions and the initiation of primary adaptive immune responses against infection. Immunity against primary infection with the enteric apicomplexan parasite, Eimeria vermiformis, depends on the rapid induction of local Th1 responses. Lymphotoxin (LT)-deficient mice which have various defects in secondary lymphoid organs were infected with E. vermiformis. The relative susceptibility of LTalpha(-/-), LTbeta(-/-), LTalpha(+/-)beta(+/-) mice and bone marrow chimeras, indicated that rapid protective Th1 responses required both PP and MLN. Moreover, the timing of Th1 induction in both MLN and gut was dependent on the presence of PP suggesting a level of cooperation between immune responses induced in these distinct lymphoid structures. The delay in Th1 induction was attributable to the delayed arrival of a broad range of dendritic cell subsets in the MLN and a substantial reduction of CD8alpha(-)CD11b(high) B220(-) dendritic cells in PP-deficient mice.
Collapse
Affiliation(s)
- Sue-fen Kwa
- Enteric Immunology, Division of Immunology, Institute for Animal Health, Compton, Near Newbury, Berkshire, UK
| | | | | |
Collapse
|
18
|
Browning JL, Allaire N, Ngam-Ek A, Notidis E, Hunt J, Perrin S, Fava RA. Lymphotoxin-beta receptor signaling is required for the homeostatic control of HEV differentiation and function. Immunity 2005; 23:539-50. [PMID: 16286021 DOI: 10.1016/j.immuni.2005.10.002] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 08/25/2005] [Accepted: 10/19/2005] [Indexed: 10/25/2022]
Abstract
The lymphotoxin axis is important for the maintenance of several specialized lymphoid microenvironments in secondary lymphoid tissue. Lymphoid-tissue architecture is highly plastic and requires continual homeostatic signaling to maintain its basal functional state. The cellularity of lymph nodes in adult mice was reduced by systemic blockade of lymphotoxin-beta receptor (LTbeta R) signaling with a soluble decoy receptor both in resting and reactive settings. This reduction in cellularity resulted from greatly impaired lymphocyte entry into lymph nodes due to decreased levels of peripheral lymph node addressing (PNAd) and MAdCAM on high endothelial venules (HEV). LTbeta R signaling was required to maintain normal levels of RNA expression of MAdCAM, and also of PNAd by regulating the expression of key enzymes and scaffold proteins required for its assembly. Thus, the homeostatic maintenance of functional HEV status in adult mice relies largely on LTbeta R signaling.
Collapse
Affiliation(s)
- Jeffrey L Browning
- Department of Immunobiology, Biogen Idec, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Kuprash DV, Tumanov AV, Liepinsh DJ, Koroleva EP, Drutskaya MS, Kruglov AA, Shakhov AN, Southon E, Murphy WJ, Tessarollo L, Grivennikov SI, Nedospasov SA. Novel tumor necrosis factor-knockout mice that lack Peyer's patches. Eur J Immunol 2005; 35:1592-600. [PMID: 15832287 DOI: 10.1002/eji.200526119] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We generated a novel tumor necrosis factor (TNF) null mutation using Cre-loxP technology. Mice homozygous for this mutation differ from their "conventional" counterparts; in particular, they completely lack Peyer's patches (PP) but retain all lymph nodes. Our analysis of these novel TNF-knockout mice supports the previously disputed notion of the involvement of TNF-TNFR1 signaling in PP organogenesis. Availability of TNF-knockout strains both with and without PP enables more definitive studies concerning the roles of TNF and PP in various immune functions and disease conditions. Here, we report that systemic ablation of TNF, but not the presence of PP per se, is critical for protection against intestinal Listeria infection in mice.
Collapse
Affiliation(s)
- Dmitry V Kuprash
- Laboratory of Molecular Immunoregulation, National Cancer Institute, Frederick, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hehlgans T, Pfeffer K. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology 2005; 115:1-20. [PMID: 15819693 PMCID: PMC1782125 DOI: 10.1111/j.1365-2567.2005.02143.x] [Citation(s) in RCA: 572] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 01/17/2004] [Accepted: 01/25/2005] [Indexed: 11/28/2022] Open
Abstract
The members of the tumour necrosis factor (TNF)/tumour necrosis factor receptor (TNFR) superfamily are critically involved in the maintenance of homeostasis of the immune system. The biological functions of this system encompass beneficial and protective effects in inflammation and host defence as well as a crucial role in organogenesis. At the same time, members of this superfamily are responsible for host damaging effects in sepsis, cachexia, and autoimmune diseases. This review summarizes recent progress in the immunobiology of the TNF/TNFR superfamily focusing on results obtained from animal studies using gene targeted mice. The different modes of signalling pathways affecting cell proliferation, survival, differentiation, apoptosis, and immune organ development as well as host defence are reviewed. Molecular and cellular mechanisms that demonstrate a therapeutic potential by targeting individual receptors or ligands for the treatment of chronic inflammatory or autoimmune diseases are discussed.
Collapse
Affiliation(s)
- Thomas Hehlgans
- Institute of Medical Microbiology, University of Düsseldorf, Germany.
| | | |
Collapse
|
21
|
Development and Function of Organized Gut-Associated Lymphoid Tissues. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
Soderberg KA, Linehan MM, Ruddle NH, Iwasaki A. MAdCAM-1 expressing sacral lymph node in the lymphotoxin beta-deficient mouse provides a site for immune generation following vaginal herpes simplex virus-2 infection. THE JOURNAL OF IMMUNOLOGY 2004; 173:1908-13. [PMID: 15265924 DOI: 10.4049/jimmunol.173.3.1908] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The members of the lymphotoxin (LT) family of molecules play a critical role in lymphoid organogenesis. Whereas LT alpha-deficient mice lack all lymph nodes and Peyer's patches, mice deficient in LT beta retain mesenteric lymph nodes and cervical lymph nodes, suggesting that an LT beta-independent pathway exists for the generation of mucosal lymph nodes. In this study, we describe the presence of a lymph node in LT beta-deficient mice responsible for draining the genital mucosa. In the majority of LT beta-deficient mice, a lymph node was found near the iliac artery, slightly misplaced from the site of the sacral lymph node in wild-type mice. The sacral lymph node of the LT beta-deficient mice, as well as that of the wild-type mice, expressed the mucosal addressin cell adhesion molecule-1 similar to the mesenteric lymph node. Following intravaginal infection with HSV type 2, activated dendritic cells capable of stimulating a Th1 response were found in this sacral lymph node. Furthermore, normal HSV-2-specific IgG responses were generated in the LT beta-deficient mice following intravaginal HSV-2 infection even in the absence of the spleen. Therefore, an LT beta-independent pathway exists for the development of a lymph node associated with the genital mucosa, and such a lymph node serves to generate potent immune responses against viral challenge.
Collapse
Affiliation(s)
- Kelly A Soderberg
- Department of Epidemiology and Public Health and Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
23
|
Yamamoto M, Kweon MN, Rennert PD, Hiroi T, Fujihashi K, McGhee JR, Kiyono H. Role of gut-associated lymphoreticular tissues in antigen-specific intestinal IgA immunity. THE JOURNAL OF IMMUNOLOGY 2004; 173:762-9. [PMID: 15240662 DOI: 10.4049/jimmunol.173.2.762] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study assessed the roles of the postnatal lymphotoxin-beta receptor (LTbetaR)-mediated signals in the gut-associated lymphoreticular tissues of mice for subsequent regulation of Ag-specific intestinal IgA responses. Blockade of LTbetaR-dependent events by postnatal administration of the fusion protein of LTbetaR and IgG Fc (LTbetaR-Ig) reduced both the size and numbers of Peyer's patches (PP) without influencing the PP microarchitecture. Interestingly, inhibition of LTbetaR-dependent signaling revealed significant reductions in the formation of follicular dendritic cell clusters in mesenteric lymph nodes (MLN). Furthermore, these postnatal signaling events controlled the development of isolated lymphoid follicles (ILF) because treatment with LTbetaR-Ig eliminated the formation of ILF. LTbetaR-Ig-treated mice with altered microarchitecture of MLN and lacking ILF were still able to produce significant Ag-specific mucosal IgA responses after oral immunization; however, the levels were significantly lower than those seen in control mice. These results imply the importance of ILF for Ag-specific intestinal immunity. However, mice treated with both TNFR55-Ig and LTbetaR-Ig in utero, which lack PP and MLN, but retain intact ILF, failed to induce Ag-specific IgA responses after oral immunization. These findings demonstrate that ILF are not essential for induction of intestinal IgA Ab responses to orally administered Ag. Furthermore, the induction of intestinal IgA Ab responses requires the proper maintenance of the MLN microarchitecture, including a follicular dendritic cell network.
Collapse
Affiliation(s)
- Masafumi Yamamoto
- Department of Oral Medicine, Nihon University School of Dentistry, Matsudo, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Braun A, Takemura S, Vallejo AN, Goronzy JJ, Weyand CM. Lymphotoxin beta-mediated stimulation of synoviocytes in rheumatoid arthritis. ACTA ACUST UNITED AC 2004; 50:2140-50. [PMID: 15248211 DOI: 10.1002/art.20356] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Lymphotoxin beta (LTbeta), a cytokine produced by T cells and B cells, plays a central role in the normal development of lymph nodes and is critical in the formation of ectopic germinal center reactions in rheumatoid synovitis. Because resident fibroblast-like synoviocytes (FLS) express receptors for LTbeta, we examined the consequences of FLS activation by LTbeta. METHODS FLS from patients with rheumatoid arthritis were isolated and examined for the expression of LTbeta receptor. FLS were incubated with LTalpha1beta2 and assayed for the production of cytokines and chemokines and the up-regulation of adhesion molecules. RESULTS Exposure of FLS to recombinant LTalpha1beta2 resulted in the production of multiple inflammatory cytokines and metalloproteinases, implicating FLS as amplifiers of the inflammatory process in the inflamed joint. Additionally, LTalpha1beta2 was found to up-regulate the expression of cell adhesion molecules, rendering FLS to efficient adhesion substrates for T cells. LTalpha1beta2 also induced production of the chemokines CCL2 and CCL5, which elicited transmigration activity of T cells. Upon stimulation with LTalpha1beta2, FLS did not acquire characteristics of follicular dendritic cells. CONCLUSION These data document that FLS are involved in multiple stages of the inflammatory process, including the recruitment and retention of lymphocytes in the synovial microenvironment. We propose that the heterotypic interaction between LTbeta-producing lymphocytes and responding FLS contributes to the establishment of complex lymphoid microstructures, and that this may be one element that defines susceptibility of the synovial membrane to lymphoid organogenesis.
Collapse
Affiliation(s)
- Andrea Braun
- Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
25
|
Tumanov AV, Grivennikov SI, Shakhov AN, Rybtsov SA, Koroleva EP, Takeda J, Nedospasov SA, Kuprash DV. Dissecting the role of lymphotoxin in lymphoid organs by conditional targeting. Immunol Rev 2003; 195:106-16. [PMID: 12969314 DOI: 10.1034/j.1600-065x.2003.00071.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mice with inactivation of lymphotoxin beta receptor (LTbetaR) system have profound defects in the development and maintenance of peripheral lymphoid organs. As surface LT is expressed by lymphocytes, natural killer cells, and lymphoid tissue-initiating cells as well as by some other cell types, we dissected cell type-specific LT contribution into the complex LT-deficient phenotype by conditional gene targeting. B-LTbeta knockout (KO) mice displayed an intermediate phenotype in spleen as compared with mice with complete LTbeta deficiency. In contrast, T-LTbeta KO mice displayed normal structure of the spleen. However, inactivation of LTbeta in both T and B cells resulted in additional defects in the structure of the marginal zone and in the development of follicular dendritic cells in spleen. Structure of lymph nodes (LN) and Peyer's patches (PP) was normal in both B-LTbeta KO and T- and B-LTbeta KO mice, except that PPs were of reduced size. When compared across the panel of lymphocyte-specific LT KOs, the defects in antibody responses to T-cell-dependent antigens correlated with the severity of defects in spleen structure. Expression of CCL21 and CCL19 chemokines was not affected in spleen, LN and PP of B-LTbeta KO and T- and B-LTbeta KO mice, while CXCL13 was slightly reduced only in spleen. Collectively, our data suggest the following: (i). requirements for LT signaling to support architecture of spleen, LN and PP are different; (ii). LT complex expressed by B cells plays a major role in the maintenance of spleen structure, while surface LT expressed by T cells provides a complementary but distinct signal; and (iii). in a non-transgenic model, expression of lymphoid tissue chemokines is only minimally dependent on the expression of surface LT complex on B and T lymphocytes.
Collapse
Affiliation(s)
- Alexei V Tumanov
- Laboratory of Molecular Immunology,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Müller G, Höpken UE, Lipp M. The impact of CCR7 and CXCR5 on lymphoid organ development and systemic immunity. Immunol Rev 2003; 195:117-35. [PMID: 12969315 DOI: 10.1034/j.1600-065x.2003.00073.x] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The development of secondary lymphoid organs is a complex process dependent on a coordinated interaction of cells of hematopoietic and non-hematopoietic origin. In this context, chemokines and cytokines belonging to the tumor necrosis factor (TNF)/lymphotoxin (LT) family are critical signaling molecules during the initial steps of lymph node and Peyer's patch organogenesis. Homeostatic chemokines, such as CXCL13, CCL21, and CCL19, as well as their corresponding receptors, CXCR5 and CCR7, have now been shown to closely cooperate in the development of lymphoid organs and the maintenance of lymphoid tissue microarchitecture. We summarize recent data on the function of CXCR5 and CCR7 and their intricate connection to the TNF/LT system in order to refine the current model of lymphoid organ development.
Collapse
Affiliation(s)
- Gerd Müller
- Department of Molecular Tumor Genetics and Immunogenetics, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | | | | |
Collapse
|
27
|
Tumanov AV, Kuprash DV, Nedospasov SA. The role of lymphotoxin in development and maintenance of secondary lymphoid tissues. Cytokine Growth Factor Rev 2003; 14:275-88. [PMID: 12787565 DOI: 10.1016/s1359-6101(03)00026-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Secondary lymphoid organs provide the necessary microenvironment for the cooperation of antigen-specific T- and B-lymphocytes and antigen-presenting cells in order to initiate an efficient immune response. Remarkable progress in understanding of the mechanisms of lymphoid organogenesis was achieved due to the analysis of various gene-targeted mice. This review primarily focuses on the role of lymphotoxin (LT) in development, maturation and maintenance of secondary lymphoid organs.
Collapse
Affiliation(s)
- Alexei V Tumanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| | | | | |
Collapse
|
28
|
Chen MC, Hwang MJ, Chou YC, Chen WH, Cheng G, Nakano H, Luh TY, Mai SC, Hsieh SL. The role of apoptosis signal-regulating kinase 1 in lymphotoxin-beta receptor-mediated cell death. J Biol Chem 2003; 278:16073-81. [PMID: 12566458 DOI: 10.1074/jbc.m208661200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LIGHT (homologous to lymphotoxins, shows inducible expression, and competes with herpes simplex virus glycoprotein D for herpesvirus entry mediator, a receptor expressed by T lymphocytes) is a member of the tumor necrosis factor superfamily that can interact with lymphotoxin-beta receptor (LTbetaR), herpes virus entry mediator, and decoy receptor (DcR3). In our previous study, we showed that LIGHT is able to induce cell death via the non-death domain containing receptor LTbetaR to activate both caspase-dependent and caspase-independent pathway. In this study, a LIGHT mutein, LIGHT-R228E, was shown to exhibit similar binding specificity as wild type LIGHT to LTbetaR, but lose the ability to interact with herpes virus entry mediator. By using both LIGHT-R228E and agonistic anti-LTbetaR monoclonal antibody, we found that signaling triggered by LTbetaR alone is sufficient to activate both caspase-dependent and caspase-independent pathways. Cross-linking of LTbetaR is able to recruit TRAF3 and TRAF5 to activate ASK1, whereas its activity is inhibited by free radical scavenger carboxyfullerenes. The activation of ASK1 is independent of caspase-3 activation, and kinase-inactive ASK1-KE mutant can inhibit LTbetaR-mediated cell death. This suggests that ASK1 is one of the factors involved in the caspase-independent pathway of LTbetaR-induced cell death.
Collapse
Affiliation(s)
- Mei-Chieh Chen
- Institute and Department of Microbiology and Immunology, National Yang-Ming University, Shih-Pai, Taipei 11221, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The development of lymphoid organs depends on the correct expression of several molecules within a defined timeframe during ontogeny. Although this is an extremely complex process, with each secondary lymphoid tissue requiring subtly different signals, a common framework for lymphoid development is beginning to emerge. Drawing on studies of lymph nodes, Peyer's patches and nasal-associated lymphoid tissue, an integrative model of lymphoid-tissue development, involving adhesion molecules, cytokines and chemokines, which emphasizes the role of interactions between CD3-CD4+CD45+ 'inducer' cells and VCAM1+ICAM1+ stromal 'organizer' cells is presented.
Collapse
Affiliation(s)
- Reina E Mebius
- Department of Molecular Cell Biology, VU University Medical Center, v.d. Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Fukuda K, Yoshida H, Sato T, Furumoto TA, Mizutani-Koseki Y, Suzuki Y, Saito Y, Takemori T, Kimura M, Sato H, Taniguchi M, Nishikawa SI, Nakayama T, Koseki H. Mesenchymal expression of Foxl1, a winged helix transcriptional factor, regulates generation and maintenance of gut-associated lymphoid organs. Dev Biol 2003; 255:278-89. [PMID: 12648490 DOI: 10.1016/s0012-1606(02)00088-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Foxl1 gene, which encodes a winged helix transcriptional regulator, is expressed in the mesenchymal layer of developing and mature gastrointestinal tract. Foxl1-deficient mice exhibit various defects not only in the epithelial layer of the gastrointestinal tract but also in gut-associated lymphoid tissues. In the small intestine of Foxl1-deficient mice, the formation of Peyer's patches is affected, particularly in the caudal region. This alteration is shown to be due to the delayed formation of Peyer's patches organizing centers as revealed by the expressions of VCAM1 and IL-7 receptor alpha-chain at 17.5 days postcoitus. Peyer's patch defects are concordant with the significantly decreased expression of Lymphotoxin beta-receptor in the caudal region of fetal intestine. Foxl1 is suggested to regulate the responsiveness of fetal intestinal mesenchymal cells to inductive signals mediated by Lymphotoxins during Peyer's patch organogenesis. In addition, constitutive outgrowth of colonic patches due to defects in radioresistant stromal components of colonic patches are seen in Foxl1-deficient mice. Because of the functional similarities of hypertrophic colonic patches to those seen in hapten-induced experimental colitis, this hypertrophy is suggested to involve Lymphotoxin beta-receptor signaling. Together, the data suggest that Foxl1 might be involved in cellular responses of gut-associated lymphoid tissues dependent upon the Lymphotoxins/Lymphotoxin beta-receptor axis.
Collapse
Affiliation(s)
- Katsuyuki Fukuda
- Department of Molecular Embryology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hagiwara Y, McGhee JR, Fujihashi K, Kobayashi R, Yoshino N, Kataoka K, Etani Y, Kweon MN, Tamura S, Kurata T, Takeda Y, Kiyono H, Fujihashi K. Protective mucosal immunity in aging is associated with functional CD4+ T cells in nasopharyngeal-associated lymphoreticular tissue. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1754-62. [PMID: 12574339 DOI: 10.4049/jimmunol.170.4.1754] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our previous studies showed that mucosal immunity was impaired in 1-year-old mice that had been orally immunized with OVA and native cholera toxin (nCT) as mucosal adjuvant. In this study, we queried whether similar immune dysregulation was also present in mucosal compartments of mice immunized by the nasal route. Both 1-year-old and young adult mice were immunized weekly with three nasal doses of OVA and nCT or with a nontoxic chimeric enterotoxin (mutant cholera toxin-A E112K/B subunit of native labile toxin) from Brevibacillus choshinensis. Elevated levels of OVA-specific IgG Abs in plasma and secretory IgA Abs in mucosal secretions (nasal washes, saliva, and fecal extracts) were noted in both young adult and 1-year-old mice given nCT or chimeric enterotoxin as mucosal adjuvants. Significant levels of OVA-specific CD4(+) T cell proliferative and OVA-induced Th1- and Th2-type cytokine responses were noted in cervical lymph nodes and spleen of 1-year-old mice. In this regard, CD4(+), CD45RB(+) T cells were detected in greater numbers in the nasopharyngeal-associated lymphoreticular tissues of 1-year-old mice than of young adult mice, but the same did not hold true for Peyer's patches or spleen. One-year-old mice given nasal tetanus toxoid plus the chimeric toxin as adjuvant were protected from lethal challenge with tetanus toxin. This result reinforced our findings that age-associated immune alterations occur first in gut-associated lymphoreticular tissues, and thus nasal delivery of vaccines for nasopharyngeal-associated lymphoreticular tissue-based mucosal immunity offers an attractive possibility to protect the elderly.
Collapse
Affiliation(s)
- Yukari Hagiwara
- Department of Oral Biology, Immunobiology Vaccine Center, University of Alabama, 845 19th Street South, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
In the last 10 years the continuing search for gene function has yielded many mutant mice that unexpectedly showed a complete lack of lymph nodes and/or Peyer's patches. With the realization that all these functionally highly diverse genes are involved at some point in the development of lymphoid organs, the challenge now is to assign a function to the molecules involved in lymphoid organ development. It will be important to determine the sequence of molecular events and assign this to the cellular events that lead to an accumulation of hematopoietic cells in one location, ultimately forming an organized lymphoid organ. Here we will focus on CD45+CD4+CD3- cells that are the early colonizing cells in lymph nodes and Peyer's patches and develop a hypothetical model of their contribution to the creation of organized lymphoid structures.
Collapse
Affiliation(s)
- Tom Cupedo
- VU Medical Center, Department of Molecular Cell Biology, Amsterdam, the Netherlands
| | | | | |
Collapse
|
33
|
Finke D, Acha-Orbea H, Mattis A, Lipp M, Kraehenbuhl J. CD4+CD3- cells induce Peyer's patch development: role of alpha4beta1 integrin activation by CXCR5. Immunity 2002; 17:363-73. [PMID: 12354388 DOI: 10.1016/s1074-7613(02)00395-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CD4+CD3- cells are the predominant hematopoietic cells found in mouse fetal intestine. We prove their role as Peyer's patch (PP)-inducing cells by transfer into neonatal PP-deficient mice. To test the requirement of chemokines and adhesion molecules in induction of PP, we studied mice deficient in CXCR5 and/or alpha4beta1 integrin-mediated adhesion. CXCR5-/- mice have CD4+CD3- cells, which are inefficient in inducing PP formation. We show here that CXCR5/CXCL13 signaling activates alpha4beta1 integrin on CD4+CD3- cells. Blocking of beta1 integrin or VCAM-1, the ligand of alpha4beta1 integrin, inhibits PP formation. This study demonstrates the link between chemokine receptors and adhesion molecules that regulates stromal/hematopoietic cell interaction leading to PP formation.
Collapse
Affiliation(s)
- D Finke
- Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland.
| | | | | | | | | |
Collapse
|
34
|
Schaniel C, Rolink AG, Melchers F. Attractions and migrations of lymphoid cells in the organization of humoral immune responses. Adv Immunol 2001; 78:111-68. [PMID: 11432203 DOI: 10.1016/s0065-2776(01)78003-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- C Schaniel
- Basel Institute for Immunology, CH-4005 Basel, Switzerland.
| | | | | |
Collapse
|
35
|
Fujihashi K, Kato H, van Ginkel FW, Koga T, Boyaka PN, Jackson RJ, Kato R, Hagiwara Y, Etani Y, Goma I, Fujihashi K, Kiyono H, McGhee JR. A revisit of mucosal IgA immunity and oral tolerance. Acta Odontol Scand 2001; 59:301-8. [PMID: 11680650 DOI: 10.1080/000163501750541174] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Induction of mucosal immunity by oral immunization with protein antigen alone is difficult: potent mucosal adjuvants, vectors, or other special delivery systems are required. Cholera toxin (CT) has been shown to be an effective adjuvant for the development of mucosal vaccines and, when given with vaccine, induces both mucosal and systemic immune responses via a Th2 cell-dependent pathway. However, and in addition to potential type-I hypersensitivity, a major concern for use of mucosal adjuvants such as CT is that this molecule is not suitable for use in humans because of its inherent toxicity. When we examined the potential toxicity of CT for the central nervous system, both CT and CT-B accumulated in the olfactory nerves/epithelium and olfactory bulbs of mice when given by the nasal route. The development of effective mucosal vaccines for the elderly is also an important issue; however, only limited information is available. When mucosal adjuvanticity of CT was evaluated in aged mice, an early immune dysregulation was evident in the mucosal immune system. The present review discusses these potential problems for effective mucosal vaccine development. Tolerance represents the most common and important response of the host to environmental antigens, including food and commensal bacterial components, for the maintenance of an appropriate immunological homeostasis. We have examined whether Peyer patches could play a more important role for the maintenance of oral tolerance. Using Peyer patch-null mice, we found that mice lacking this gut-associated lymphoid tissue retained their capability to produce secretory IgA antibodies but did not develop normal oral tolerance to protein antigens.
Collapse
Affiliation(s)
- K Fujihashi
- The Department of Oral Biology, The Immunobiology Vaccine Center, The University of Alabama at Birmingham, 35294-2170, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gardine CA, Kouki T, DeGroot L. Characterization of the T lymphocyte subsets and lymphoid populations involved in the induction of low-dose oral tolerance to human thyroglobulin. Cell Immunol 2001; 212:1-15. [PMID: 11716524 DOI: 10.1006/cimm.2001.1840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using mice deficient in CD8alpha, TCRdelta, CD4, or CD120a, as well as adoptive transfer experiments in wild-type and RAG-1-deficient mice, we characterized the T lymphocyte subsets and lymphoid populations involved in the induction of low-dose oral tolerance to human thyroglobulin (hTg). The oral administration of hTg, but not the intraperitoneal (ip) administration of hTg, generates lymphocytes that can transfer tolerance. Purified CD8alpha+ lymphocytes successfully transfer tolerance, while the depletion of CD8alpha or TCRdelta lymphocytes prevents the transfer of tolerance. Oral tolerance can be induced in CD4-deficient mice and RAG-1-deficient mice reconstituted with cells from CD120a-deficient mice, but not in CD8alpha-, TCRdelta, or CD120a-deficient mice. These findings indicate that CD8alpha and TCRdelta T lymphocytes are necessary for the oral induction and transfer of tolerance to hTg. Additionally, functional Peyer's patches are necessary for the induction of low-dose oral tolerance to hTg.
Collapse
Affiliation(s)
- C A Gardine
- Thyroid Study Unit, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | | | | |
Collapse
|
37
|
Wang EC, Thern A, Denzel A, Kitson J, Farrow SN, Owen MJ. DR3 regulates negative selection during thymocyte development. Mol Cell Biol 2001; 21:3451-61. [PMID: 11313471 PMCID: PMC100267 DOI: 10.1128/mcb.21.10.3451-3461.2001] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
DR3 (Ws1, Apo3, LARD, TRAMP, TNFSFR12) is a member of the death domain-containing tumor necrosis factor receptor (TNFR) superfamily, members of which mediate a variety of developmental events including the regulation of cell proliferation, differentiation, and apoptosis. We have investigated the in vivo role(s) of DR3 by generating mice congenitally deficient in the expression of the DR3 gene. We show that negative selection and anti-CD3-induced apoptosis are significantly impaired in DR3-null mice. In contrast, both superantigen-induced negative selection and positive selection are normal. The pre-T-cell receptor-mediated checkpoint, which is dependent on TNFR signaling, is also unaffected in DR3-deficient mice. These data reveal a nonredundant in vivo role for this TNF receptor family member in the removal of self-reactive T cells in the thymus.
Collapse
Affiliation(s)
- E C Wang
- Imperial Cancer Research Fund, Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | | | | | | | |
Collapse
|
38
|
Spahn TW, Fontana A, Faria AM, Slavin AJ, Eugster HP, Zhang X, Koni PA, Ruddle NH, Flavell RA, Rennert PD, Weiner HL. Induction of oral tolerance to cellular immune responses in the absence of Peyer's patches. Eur J Immunol 2001; 31:1278-87. [PMID: 11298355 DOI: 10.1002/1521-4141(200104)31:4<1278::aid-immu1278>3.0.co;2-a] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Systemic hyporesponsiveness occurs following oral administration of antigen (oral tolerance) and involves the uptake and processing of antigen by the gut-associated lymphoid tissue (GALT), which includes Peyer's patches (PP) lamina propria lymphocytes and mesenteric lymph nodes (MLN). Animals with targeted mutations of genes in the tumor necrosis factor (TNF) family have differential defects in the development of peripheral lymphoid organs including PP and MLN, and provide a unique opportunity to investigate the role of GALT structures in the induction of oral tolerance. Oral tolerance could not be induced in TNF/lymphotoxin (LT) alpha-/- mice, which are devoid of both PP and MLN, although these animals could be tolerized by intraperitoneal administration of antigen, demonstrating the requirement for GALT for oral tolerance induction. LTbeta-/- mice and LTalpha/LTbeta+/- animals do not have PP but could be orally tolerized, as measured by IFN-gamma production and delayed-type hypersensitivity responses by administration of both low or high doses of ovalbumin. To further investigate the requirement for PP, we tested the progeny of LTbeta-receptor-IgG-fusion-protein (LTbetaRigG)-treated mice, which do not form PP but have an otherwise intact immune system. Although these animals had decreased fecal IgA production, they could be orally tolerized. Our results demonstrate that PP are not an absolute requirement for the induction of either high- or low-dose oral tolerance, although oral tolerance could not be induced in animals devoid of both PP and MLN.
Collapse
Affiliation(s)
- T W Spahn
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fujihashi K, Dohi T, Rennert PD, Yamamoto M, Koga T, Kiyono H, McGhee JR. Peyer's patches are required for oral tolerance to proteins. Proc Natl Acad Sci U S A 2001; 98:3310-5. [PMID: 11248075 PMCID: PMC30650 DOI: 10.1073/pnas.061412598] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2000] [Indexed: 11/18/2022] Open
Abstract
To clarify the role of Peyer's patches in oral tolerance induction, BALB/c mice were treated in utero with lymphotoxin beta-receptor Ig fusion protein to generate mice lacking Peyer's patches. When these Peyer's patch-null mice were fed 25 mg of ovalbumin (OVA) before systemic immunization, OVA-specific IgG Ab responses in serum and spleen were seen, in marked contrast to low responses in OVA-fed normal mice. Further, high T-cell-proliferative- and delayed-type hypersensitivity responses were seen in Peyer's patch-null mice given oral OVA before systemic challenge. Higher levels of CD4(+) T-cell-derived IFN-gamma, IL-4, IL-5, and IL-10 syntheses were noted in Peyer's patch-null mice fed OVA, whereas OVA-fed normal mice had suppressed cytokine levels. In contrast, oral administration of trinitrobenzene sulfonic acid (TNBS) to Peyer's patch-null mice resulted in reduced TNBS-specific serum Abs and splenic B cell antitrinitrophenyl Ab-forming cell responses after skin painting with picryl chloride. Further, when delayed-type hypersensitivity and splenic T cell proliferative responses were examined, Peyer's patch-null mice fed TNBS were unresponsive to hapten. Peyer's patch-null mice fed trinitrophenyl-OVA failed to induce systemic unresponsiveness to hapten or protein. These findings show that organized Peyer's patches are required for oral tolerance to proteins, whereas haptens elicit systemic unresponsiveness via the intestinal epithelial cell barrier.
Collapse
Affiliation(s)
- K Fujihashi
- Department of Oral Biology and Microbiology, The Immunobiology Vaccine Center, University of Alabama, Birmingham Medical Center, Birmingham, AL 35294-2170, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
M cells are distinctive epithelial cells that occur only in the follicle-associated epithelia that overlie organized mucosa-associated lymphoid tissues. They are structurally and functionally specialized for transepithelial transport, delivering foreign antigens and microorganisms to organized lymphoid tissues within the mucosae of the small and large intestines, tonsils and adenoids, and airways. M cell transport is a double-edged sword: Certain pathogens exploit the features of M cells that are intended to promote uptake for the purpose of immunological sampling. Eludication of the molecular architecture of M cell apical surfaces is important for understanding the strategies that pathogens use to exploit this pathway and for utilizing M cell transport for delivery of vaccines to the mucosal immune system. This article reviews the functional and biochemical features that distinguish M cells from other intestinal cell types. In addition it synthesizes the available information on development and differentiation of organized lymphoid tissues and the specialized epithelium associated with these immune inductive sites.
Collapse
Affiliation(s)
- J P Kraehenbuhl
- Swiss Institute for Experimental Cancer Research and Institute of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland.
| | | |
Collapse
|
41
|
Yamamoto M, Rennert P, McGhee JR, Kweon MN, Yamamoto S, Dohi T, Otake S, Bluethmann H, Fujihashi K, Kiyono H. Alternate mucosal immune system: organized Peyer's patches are not required for IgA responses in the gastrointestinal tract. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5184-91. [PMID: 10799877 DOI: 10.4049/jimmunol.164.10.5184] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The progeny of mice treated with lymphotoxin (LT)-beta receptor (LTbetaR) and Ig (LTbetaR-Ig) lack Peyer's patches but not mesenteric lymph nodes (MLN). In this study, we used this approach to determine the importance of Peyer's patches for induction of mucosal IgA Ab responses in the murine gastrointestinal tract. Immunohistochemical analysis revealed that LTbetaR-Ig-treated, Peyer's patch null (PP null) mice possessed significant numbers of IgA-positive (IgA+) plasma cells in the intestinal lamina propria. Further, oral immunization of PP null mice with OVA plus cholera toxin as mucosal adjuvant resulted in Ag-specific mucosal IgA and serum IgG Ab responses. OVA-specific CD4+ T cells of the Th2 type were induced in MLN and spleen of PP null mice. In contrast, when TNF and LT-alpha double knockout (TNF/LT-alpha-/-) mice, which lack both Peyer's patches and MLN, were orally immunized with OVA plus cholera toxin, neither mucosal IgA nor serum IgG anti-OVA Abs were induced. On the other hand, LTbetaR-Ig- and TNF receptor 55-Ig-treated normal adult mice elicited OVA- and cholera toxin B subunit-specific mucosal IgA responses, indicating that both LT-alphabeta and TNF/LT-alpha pathways do not contribute for class switching for IgA Ab responses. These results show that the MLN plays a more important role than had been appreciated until now for the induction of both mucosal and systemic Ab responses after oral immunization. Further, organized Peyer's patches are not a strict requirement for induction of mucosal IgA Ab responses in the gastrointestinal tract.
Collapse
Affiliation(s)
- M Yamamoto
- Department of Clinical Pathology, Nihon University School of Dentistry at Matsudo, Chiba, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Force WR, Glass AA, Benedict CA, Cheung TC, Lama J, Ware CF. Discrete signaling regions in the lymphotoxin-beta receptor for tumor necrosis factor receptor-associated factor binding, subcellular localization, and activation of cell death and NF-kappaB pathways. J Biol Chem 2000; 275:11121-9. [PMID: 10753918 DOI: 10.1074/jbc.275.15.11121] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lymphotoxin-beta receptor (LTbetaR), a member of the tumor necrosis factor receptor superfamily, is essential for the development and organization of secondary lymphoid tissue. Wild type and mutant LTbetaR containing successive truncations of the cytoplasmic domain were investigated by retrovirus-mediated gene transfer into HT29.14s and in 293T cells by transfection. Wild type receptors accumulated in perinuclear compartments and enhanced responsiveness to ligand-induced cell death and ligand-independent activation of NFkappaB p50 dimers. Coimmunoprecipitation and confocal microscopy mapped the TRAF3 binding site to amino acids PEEGDPG at position 389. However, LTbetaR truncated at position Pro(379) acted as a dominant positive mutant that down-modulated surface expression and recruited TRAF3 to endogenous LTbetaR. This mutant exhibited ligand-independent cell death and activated NF-kappaB p50 dimers. By contrast, truncation at Gly(359) created a dominant-negative mutant that inhibited ligand-induced cell death and activation of NF-kappaB p50/p65 heterodimers. This mutant also blocked accumulation of wild type receptor into perinuclear compartments, suggesting subcellular localization may be crucial for signal transduction. A cryptic TRAF-independent NF-kappaB activating region was identified. These mutants define discrete subregions of a novel proline-rich domain that is required for subcellular localization and signal transduction by the LTbetaR.
Collapse
Affiliation(s)
- W R Force
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | | | | | | | | | |
Collapse
|
43
|
Lee BJ, Santee S, Von Gesjen S, Ware CF, Sarawar SR. Lymphotoxin-alpha-deficient mice can clear a productive infection with murine gammaherpesvirus 68 but fail to develop splenomegaly or lymphocytosis. J Virol 2000; 74:2786-92. [PMID: 10684295 PMCID: PMC111769 DOI: 10.1128/jvi.74.6.2786-2792.2000] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/1999] [Accepted: 12/02/1999] [Indexed: 02/02/2023] Open
Abstract
Respiratory challenge with murine gammaherpesvirus 68 (MHV-68) leads to an acute productive infection of the lung and a persistent latent infection in B lymphocytes, epithelia, and macrophages. The virus also induces splenomegaly and an increase in the number of activated CD8 T cells in the circulation. Lymphotoxin- alpha-deficient (LTalpha(-/-)) mice have no lymph nodes and have disrupted splenic architecture. Surprisingly, in spite of the severe defect in secondary lymphoid tissue, LTalpha(-/-) mice could clear a productive MHV-68 infection, although with delayed kinetics compared to wild-type mice, and could control latent infection. Cytotoxic T-cell activity was comparable in the lungs and spleens of LTalpha(-/-) and wild-type mice. However, splenic gamma interferon responses were substantially reduced in LTalpha(-/-) mice. Furthermore, LTalpha(-/-) mice failed to develop splenomegaly or lymphocytosis. Although germinal centers were absent, LTalpha(-/-) mice were able to class switch and showed significant virus-specific antibody titers. This work demonstrates that organized secondary lymphoid tissue is not an absolute requirement for the generation of immune responses to viral infections.
Collapse
Affiliation(s)
- B J Lee
- La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | | | | | | | |
Collapse
|
44
|
Kuprash23 DV, Alimzhanov2 MB, Tumanov2 AV, Anderson AO, Pfeffer K, Nedospasov SA. TNF and Lymphotoxin β Cooperate in the Maintenance of Secondary Lymphoid Tissue Microarchitecture But Not in the Development of Lymph Nodes. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.12.6575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Inactivation of genes encoding members of TNF and TNF receptor families reveal their divergent roles in the formation and function of secondary lymphoid organs. Most lymphotoxin α (ltα)- and all lymphotoxin β receptor (ltβr)-deficient mice are completely devoid of lymph nodes (LNs); however, most lymphotoxin β (ltβ)-deficient mice develop mesenteric LNs. Tnf- and tnfrp55-deficient mice develop a complete set of LNs, while ltβ/tnfrp55 double-deficient mice lack all LNs, demonstrating cooperation between LTβ and TNFRp55 in LN development. Now we report that ltβ/tnf double-deficient mice develop the same set of mucosal LNs as do ltβ-deficient mice, suggesting that ligands other than TNF signal through TNFRp55 during LN development. These LNs retain distinct T and B cells areas; however, they lack follicular dendritic cell networks. Structures resembling germinal centers can be found in the LNs from immunized ltβ-deficient mice but not in ltβ/tnf double-deficient mice. Additionally, stromal components of the spleen and LNs appear to be more severely disturbed in ltβ/tnf double-deficient mice as compared with ltβ-deficient mice. We conclude that LTβ and TNF cooperate in the establishment of the correct microarchitecture of lymphoid organs.
Collapse
Affiliation(s)
- Dmitry V. Kuprash23
- *Laboratory of Molecular Immunology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- †Intramural Research Support Program, Science Applications International Corp.-Frederick and Laboratory of Molecular Immunoregulation, Division of Basic Sciences, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, MD, 21702
| | - Marat B. Alimzhanov2
- *Laboratory of Molecular Immunology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- ‡Institute of Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, Munich, Germany
- §Institute for Genetics, University of Cologne, Cologne, Germany; and
| | - Alexei V. Tumanov2
- *Laboratory of Molecular Immunology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- †Intramural Research Support Program, Science Applications International Corp.-Frederick and Laboratory of Molecular Immunoregulation, Division of Basic Sciences, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, MD, 21702
| | - Arthur O. Anderson
- ¶Department of Clinical Pathology, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702
| | - Klaus Pfeffer
- †Intramural Research Support Program, Science Applications International Corp.-Frederick and Laboratory of Molecular Immunoregulation, Division of Basic Sciences, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, MD, 21702
| | - Sergei A. Nedospasov
- *Laboratory of Molecular Immunology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- †Intramural Research Support Program, Science Applications International Corp.-Frederick and Laboratory of Molecular Immunoregulation, Division of Basic Sciences, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, MD, 21702
| |
Collapse
|
45
|
Ito D, Back TC, Shakhov AN, Wiltrout RH, Nedospasov SA. Mice with a Targeted Mutation in Lymphotoxin-α Exhibit Enhanced Tumor Growth and Metastasis: Impaired NK Cell Development and Recruitment. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.5.2809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Mice deficient in lymphotoxin (LT)-α lack peripheral lymph nodes and Peyer’s patches and have profound defects in development of follicular dendritic cell networks, germinal center formation, and T/B cell segregation in the spleen. Although LTα is known to be expressed by NK cells as well as T and B lymphocytes, the requirement of LTα for NK cell functions is largely unknown. To address this issue, we have assessed NK cell functions in LTα-deficient mice by evaluating tumor models with known requirements for NK cells to control their growth and metastasis. Syngeneic B16F10 melanoma cells inoculated s.c. grew more rapidly in LTα−/− mice than in the wild-type littermates, and the formation of experimental pulmonary metastases was significantly enhanced in LTα−/− mice. Although LTα−/− mice exhibited almost a normal total number of NK cells in spleen, they showed an impaired recruitment of NK cells to lung and liver. Additionally, lytic NK cells were not efficiently produced from LTα−/− bone marrow cells in vitro in the presence of IL-2 and IL-15. These data suggest that LTα signaling may be involved in the maturation and recruitment of NK cells and may play an important role in antitumor surveillance.
Collapse
Affiliation(s)
- Daisuke Ito
- *Laboratory of Molecular Immunoregulation and
| | - Timothy C. Back
- ‡Intramural Research Support Program, Science Applications International Corp.-Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21702, and
| | - Alexander N. Shakhov
- *Laboratory of Molecular Immunoregulation and
- ‡Intramural Research Support Program, Science Applications International Corp.-Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21702, and
| | | | - Sergei A. Nedospasov
- *Laboratory of Molecular Immunoregulation and
- ‡Intramural Research Support Program, Science Applications International Corp.-Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21702, and
- §Laboratory of Molecular Immunology, Engelhardt Institute of Molecular Biology and Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| |
Collapse
|
46
|
Matsumoto M, Iwamasa K, Rennert PD, Yamada T, Suzuki R, Matsushima A, Okabe M, Fujita S, Yokoyama M. Involvement of Distinct Cellular Compartments in the Abnormal Lymphoid Organogenesis in Lymphotoxin-α-Deficient Mice and Alymphoplasia ( aly) Mice Defined by the Chimeric Analysis. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.3.1584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Both lymphotoxin-α (LTα)-deficient mice and alymphoplasia (aly) mice, a natural mutant strain, manifest a quite similar phenotype: lack of lymph nodes (LN) and Peyer’s patches (PP), with disturbed spleen architecture. The mechanisms underlying the defective lymphoid organogenesis in these mice were investigated by generating aggregation chimeras; ex vivo fused morulae were implanted into pseudo-pregnant host females and allowed to develop to term. Chimeric mice between LTα-deficient mice and wild-type mice restored LN and PP almost completely, suggesting that LTα expressed by circulating bone marrow-derived cells is essential for lymphoid organogenesis as well as for organization of spleen architecture. By contrast, chimeric mice between aly mice and wild-type mice showed only limited restoration of LN and PP. This suggests that the putative aly gene product does not act as a circulating ligand for lymphoid organogenesis, like LTα. Rather, abnormal development of lymphoid organs in aly mice seems most likely due to the defective development of the incipient stromal cells of the LN and PP. Supporting this hypothesis, up-regulation of VCAM-1 on aly mouse embryonic fibroblasts by signals through LTβR, which is exclusively expressed by nonlymphoid cells, was disturbed. These studies demonstrate that LTα and the putative aly gene product together control lymphoid organogenesis with a close mechanistic relationship in their biochemical pathways through governing the distinct cellular compartments, the former acting as a circulating ligand and the latter as a LTβR-signaling molecule expressed by the stroma of the lymphoid organs.
Collapse
Affiliation(s)
- Mitsuru Matsumoto
- *First Department of Internal Medicine, School of Medicine, Ehime University, Ehime, Japan
- †Division of Informative Cytology, Institute for Enzyme Research, University of Tokushima, Tokushima, Japan
| | - Kikue Iwamasa
- *First Department of Internal Medicine, School of Medicine, Ehime University, Ehime, Japan
| | - Paul D. Rennert
- ‡Department of Immunology and Inflammation, Biogen Inc., Cambridge, MA 02142
| | - Takuji Yamada
- *First Department of Internal Medicine, School of Medicine, Ehime University, Ehime, Japan
| | - Rika Suzuki
- §Reproductive Engineering Section, Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan; and
| | - Akemi Matsushima
- †Division of Informative Cytology, Institute for Enzyme Research, University of Tokushima, Tokushima, Japan
| | - Masaru Okabe
- ¶Genome Information Research Center, Osaka University, Osaka, Japan
| | - Shigeru Fujita
- *First Department of Internal Medicine, School of Medicine, Ehime University, Ehime, Japan
| | - Minesuke Yokoyama
- §Reproductive Engineering Section, Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan; and
| |
Collapse
|
47
|
Abstract
Poxviruses encode several cytokine response modifying (Crm) proteins. The Crm proteins possess sequence homology to several human proteins important in immunity. This homology and the conservation of Crm proteins among poxvirus strains suggest an immunomodulatory function that provides a survival advantage to the virus. Cowpox virus encodes several tumor necrosis factor (TNF) receptor family homologues: CrmB, CrmC, and CrmD. CrmB and CrmD encode a similar approximately 155 amino acid COOH-terminus region distal to their TNF ligand-binding portions. These C-terminus regions contain no significant homology with sequences in public databases. It is not known whether the C-terminus regions have a complementary function to the TNF ligand-binding domains, or an unrelated function. Myxoma virus, a rabbit poxvirus, encodes a protein termed T2 which is homologous to CrmB and CrmD. Deletion of the T2 gene results in decreased pathogenicity of myxoma in rabbits. T2 has also been shown to interfere with TNF-induced apoptosis in vitro. Understanding the role viral TNF receptor homologues play in altering host immune responses may suggest ways to develop specific anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- K M Cunnion
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27705, USA.
| |
Collapse
|
48
|
Berger DP, Naniche D, Crowley MT, Koni PA, Flavell RA, Oldstone MB. Lymphotoxin-beta-deficient mice show defective antiviral immunity. Virology 1999; 260:136-47. [PMID: 10405365 DOI: 10.1006/viro.1999.9811] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lymphotoxin beta (LTbeta), a member of the tumor necrosis factor family, plays an important role in lymphoid organogenesis. In order to determine whether LTbeta is involved in cellular immunity, we investigated the antiviral immune response of LTbeta-deficient (LTbeta -/-) mice to lymphocytic choriomeningitis virus (LCMV). Cytotoxic T lymphocyte (CTL) responses to LCMV were severely diminished, leading to viral persistence in brain and kidney. However, major functions of LTbeta-deficient T lymphocytes and dendritic cells were intact. Reconstitution of irradiated LTbeta +/+ mice with LTbeta -/- bone marrow induced a disorganized splenic structure, accompanied by impairment of the LCMV-specific CTL response. These data indicate that the absence of LTbeta does not affect the intrinsic function of T lymphocytes or of dendritic cells but that the structural integrity of the spleen is strongly associated with generation of antiviral immunity.
Collapse
Affiliation(s)
- D P Berger
- Department of Neuropharmacology, Division of Virology, IMM-6, Department of Immunology, IMM-25, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California, 92037, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
The secondary lymphoid tissues are located at strategic sites where foreign antigens can be efficiently brought together with immune system regulatory and effector cells. The organized structure of the secondary lymphoid tissues is thought to enhance the sensitivity of antigen recognition and to support proper regulation of the activation and maturation of the antigen-responsive lymphoid cells. Although a substantial amount is known about the cellular elements that compose the lymphoid and nonlymphoid components of the secondary lymphoid tissues, information concerning the signals that control the development of the tissues and that maintain the organized tissue microenvironment remain undefined. Studies over the past few years have identified lymphotoxin as a critical signaling molecule not only for the organogenesis of secondary lymphoid tissues but for the maintenance of aspects of their microarchitecture as well. Additional signaling molecules that contribute to the formation of normal lymphoid tissue structure are being identified at an accelerating pace. Analyses of mouse strains with congenital defects in different aspects of secondary lymphoid tissue development are beginning to clarify the role of these tissues in immune responses and host defense. This review focuses on studies defining recently identified crucial signals for the biogenesis of secondary lymphoid organs and for the maintenance of their proper microarchitecture. It also discusses new insights into how the structure of these tissues supports effective immune responses.
Collapse
Affiliation(s)
- Y X Fu
- Department of Pathology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | | |
Collapse
|
50
|
Debard N, Sierro F, Kraehenbuhl JP. Development of Peyer's patches, follicle-associated epithelium and M cell: lessons from immunodeficient and knockout mice. Semin Immunol 1999; 11:183-91. [PMID: 10381864 DOI: 10.1006/smim.1999.0174] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studies with immunodeficient and knockout mice have revealed that the development of mucosa-associated lymphoid tissues (MALT) and peripheral lymphoid nodes share common mechanisms, but also require distinct signals. Gene disruption of lymphotoxins or their cognate receptors affects both Peyer's patch and lymph node organogenesis. Disruption of the osteoprotegerin TNF-family member gene does not impair Peyer's patch development, but prevents formation of peripheral lymph nodes. Peyer's patch do not form in mice with a deleted gene encoding a B lymphocyte-specific chemokine receptor, while most peripheral lymph nodes, except inguinal, are normal in numbers and architecture. In B or T lymphocyte-deficient mice, Peyer's patches, with their overlying follicle-associated epithelium (FAE), are present although reduced in number and size. No Peyer's patches develop in RAG deficient mice. Formation of FAE with typical M cells has not been analyzed in these mice. M cell formation requires the close association of immune cells with differentiated enterocytes and their conversion appears to be transcriptionally regulated. The development of MALT, FAE and probably M cells is a multistep process that requires signalling pathways common to all secondary lymphoid tissues, but also MALT-specific factors.
Collapse
Affiliation(s)
- N Debard
- Swiss Institute for Experimental Cancer Research and Institute of Biochemistry, University of Lausanne, Epalinges, CH-1066, Switzerland
| | | | | |
Collapse
|