1
|
Mutlu S, Fytianos K, Ferrié C, Scalise M, Mykoniati S, Gazdhar A, Blank F. Adoptive Transfer of T Cells as a Potential Therapeutic Approach in the Bleomycin-Injured Mouse Lung. J Gene Med 2025; 27:e70018. [PMID: 40159455 PMCID: PMC11955259 DOI: 10.1002/jgm.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/21/2025] [Accepted: 03/15/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a lethal disease with an unknown etiology and complex pathophysiology that are not fully understood. The disease involves intricate cellular interplay, particularly among various immune cells. Currently, there is no treatment capable of reversing the fibrotic process or aiding lung regeneration. Hepatocyte growth factor (HGF) has demonstrated antifibrotic properties, whereas the adoptive transfer of modified T cells is a well-established treatment for various malignancies. We aimed to understand the dynamics of T cells in the progression of lung fibrosis and to study the therapeutic benefit of adoptive T cell transfer in a bleomycin-injured mouse lung (BLM) model. METHODS T cells were isolated from the spleen of naïve mice and transfected in vitro with mouse HGF plasmid and were administered intratracheally to the mice lungs 7 days post-bleomycin injury to the lung. Lung tissue and bronchoalveolar lavage were collected and analyzed using flow cytometry, histology, qRT-PCR, ELISA, and hydroxyproline assay. RESULTS Our findings demonstrate the successful T cell therapy of bleomycin-induced lung injury through the adoptive transfer of HGF-transfected T cells in mice. This treatment resulted in decreased collagen deposition and a balancing of immune cell exhaustion and cytokine homeostasis compared with untreated controls. In vitro testing showed enhanced apoptosis in myofibroblasts induced by HGF-overexpressing T cells. CONCLUSIONS Taken together, our data highlight the great potential of adoptive T cell transfer as an emerging therapy to counteract lung fibrosis.
Collapse
Affiliation(s)
- Seyran Mutlu
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR)University of BernBernSwitzerland
- Graduate School for Cellular and Biomedical SciencesUniversity of BernBernSwitzerland
| | - Kleanthis Fytianos
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR)University of BernBernSwitzerland
| | - Céline Ferrié
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR)University of BernBernSwitzerland
| | - Melanie Scalise
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR)University of BernBernSwitzerland
| | | | - Amiq Gazdhar
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR)University of BernBernSwitzerland
| | - Fabian Blank
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR)University of BernBernSwitzerland
| |
Collapse
|
2
|
Vázquez Marrero VR, Doerner J, Wodzanowski KA, Zhang J, Lu A, Boyer FD, Vargas I, Hossain S, Kammann KB, Dresler MV, Shin S. Dendritic cells activate pyroptosis and effector-triggered apoptosis to restrict Legionella infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638189. [PMID: 40027713 PMCID: PMC11870440 DOI: 10.1101/2025.02.13.638189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The innate immune system relies on pattern recognition receptors (PRRs) to detect pathogen-associated molecular patterns (PAMPs) and guard proteins to monitor pathogen disruption of host cell processes. How different immune cell types engage PRR- and guard protein-dependent defenses in response to infection is poorly understood. Here, we show that macrophages and dendritic cells (DCs) respond in distinct ways to bacterial virulence activities. In macrophages, the bacterial pathogen Legionella pneumophila deploys its Dot/Icm type IV secretion system (T4SS) to deliver effector proteins that facilitate its robust intracellular replication. In contrast, T4SS activity triggers rapid DC death that potently restricts Legionella replication within this cell type. Intriguingly, we found that infected DCs exhibit considerable heterogeneity at the single cell level. Initially, a subset of DCs activate caspase-11 and NLRP3 inflammasome-dependent pyroptosis and release IL-1 β early during infection. At later timepoints, a separate DC population undergoes apoptosis driven by T4SS effectors that block host protein synthesis, thereby depleting the levels of the pro-survival proteins Mcl-1 and cFLIP. Together, pyroptosis and effector-triggered apoptosis robustly restrict Legionella replication in DCs. Collectively, our work suggests a model where Mcl-1 and cFLIP guard host translation in DCs, and that macrophages and DCs distinctly employ innate immune sensors and guard proteins to mount divergent responses to Legionella infection.
Collapse
|
3
|
Finn CM, Dhume K, Baffoe E, Kimball LA, Strutt TM, McKinstry KK. Airway-resident memory CD4 T cell activation accelerates antigen presentation and T cell priming in draining lymph nodes. JCI Insight 2024; 10:e182615. [PMID: 39688906 PMCID: PMC11948587 DOI: 10.1172/jci.insight.182615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024] Open
Abstract
Specialized memory CD4 T cells that reside long-term within tissues are critical components of immunity at portals of pathogen entry. In the lung, such tissue-resident memory (Trm) cells are activated rapidly after infection and promote local inflammation to control pathogen levels before circulating T cells can respond. However, optimal clearance of Influenza A virus can require Trm and responses by other virus-specific T cells that reach the lung only several days after their activation in secondary lymphoid organs. Whether local CD4 Trm sentinel activity can affect the efficiency of T cell activation in secondary lymphoid organs is not clear. Here, we found that recognition of antigen by influenza-primed Trm in the airways promoted more rapid migration of highly activated antigen-bearing DC to the draining lymph nodes. This in turn accelerated the priming of naive T cells recognizing the same antigen, resulting in newly activated effector T cells reaching the lungs earlier than in mice not harboring Trm. Our findings, thus, reveal a circuit linking local and regional immunity whereby antigen recognition by Trm improves effector T cell recruitment to the site of infection though enhancing the efficiency of antigen presentation in the draining lymph node.
Collapse
|
4
|
Cinti I, Vezyrgianni K, Denton AE. Unravelling the contribution of lymph node fibroblasts to vaccine responses. Adv Immunol 2024; 164:1-37. [PMID: 39523027 DOI: 10.1016/bs.ai.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Vaccination is one of the most effective medical interventions, saving millions of lives and reducing the morbidity of infections across the lifespan, from infancy to older age. The generation of plasma cells and memory B cells that produce high affinity class switched antibodies is central to this protection, and these cells are the ultimate output of the germinal centre response. Optimal germinal centre responses require different immune cells to interact with one another in the right place and at the right time and this delicate cellular ballet is coordinated by a network of interconnected stromal cells. In this review we will discuss the various types of lymphoid stromal cells and how they coordinate immune cell homeostasis, the induction and maintenance of the germinal centre response, and how this is disorganised in older bodies.
Collapse
Affiliation(s)
- Isabella Cinti
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Kassandra Vezyrgianni
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Alice E Denton
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom.
| |
Collapse
|
5
|
Battistone MA, Elizagaray ML, Barrachina F, Ottino K, Mendelsohn AC, Breton S. Immunoregulatory mechanisms between epithelial clear cells and mononuclear phagocytes in the epididymis. Andrology 2024; 12:949-963. [PMID: 37572347 PMCID: PMC10859549 DOI: 10.1111/andr.13509] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
INTRODUCTION One of the most intriguing aspects of male reproductive physiology is the ability of the epididymis to prevent the mounting of immune responses against the onslaught of foreign antigens carried by spermatozoa while initiating very efficient immune responses versus stressors. Epithelial clear cells are strategically positioned to work in a concerted manner with region-specific heterogeneous subsets of mononuclear phagocytes to survey the epididymal barrier and regulate the balance between inflammation and immune tolerance in the post-testicular environment. OBJECTIVE This review aims to describe how clear cells communicate with mononuclear phagocytes to contribute to the unique immune environment in which sperm mature and are stored in the epididymis. MATERIALS/METHODS A comprehensive systematic review was performed. PubMed was searched for articles specific to clear cells, mononuclear phagocytes, and epididymis. Articles that did not specifically address the target material were excluded. RESULTS In this review, we discuss the unexpected roles of clear cells, including the transfer of new proteins to spermatozoa via extracellular vesicles and nanotubes as they transit along the epididymal tubule; and we summarize the immune phenotype, morphology, and antigen capturing, processing, and presenting abilities of mononuclear phagocytes. Moreover, we present the current knowledge of immunoregulatory mechanisms by which clear cells and mononuclear phagocytes may contribute to the immune-privileged environment optimal for sperm maturation and storage. DISCUSSION AND CONCLUSION Notably, we provide an in-depth characterization of clear cell-mononuclear phagocyte communication networks in the steady-state epididymis and in the presence of injury. This review highlights crucial concepts of mucosal immunology and cellcell interactions, all of which are critical but understudied facets of human male reproductive health.
Collapse
Affiliation(s)
- MA Battistone
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - ML Elizagaray
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - F Barrachina
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - K Ottino
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - AC Mendelsohn
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - S Breton
- Centre Hospitalier Universitaire de Québec-Research Center, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec (Québec), Canada
| |
Collapse
|
6
|
Fowler JWM, Song L, Tam K, Roth Flach RJ. Targeting lymphatic function in cardiovascular-kidney-metabolic syndrome: preclinical methods to analyze lymphatic function and therapeutic opportunities. Front Cardiovasc Med 2024; 11:1412857. [PMID: 38915742 PMCID: PMC11194411 DOI: 10.3389/fcvm.2024.1412857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
The lymphatic vascular system spans nearly every organ in the body and serves as an important network that maintains fluid, metabolite, and immune cell homeostasis. Recently, there has been a growing interest in the role of lymphatic biology in chronic disorders outside the realm of lymphatic abnormalities, lymphedema, or oncology, such as cardiovascular-kidney-metabolic syndrome (CKM). We propose that enhancing lymphatic function pharmacologically may be a novel and effective way to improve quality of life in patients with CKM syndrome by engaging multiple pathologies at once throughout the body. Several promising therapeutic targets that enhance lymphatic function have already been reported and may have clinical benefit. However, much remains unclear of the discreet ways the lymphatic vasculature interacts with CKM pathogenesis, and translation of these therapeutic targets to clinical development is challenging. Thus, the field must improve characterization of lymphatic function in preclinical mouse models of CKM syndrome to better understand molecular mechanisms of disease and uncover effective therapies.
Collapse
Affiliation(s)
| | | | | | - Rachel J. Roth Flach
- Internal Medicine Research Unit, Pfizer Research and Development, Cambridge, MA, United States
| |
Collapse
|
7
|
Rawat K, Tewari A, Li X, Mara AB, King WT, Gibbings SL, Nnam CF, Kolling FW, Lambrecht BN, Jakubzick CV. CCL5-producing migratory dendritic cells guide CCR5+ monocytes into the draining lymph nodes. J Exp Med 2023; 220:213962. [PMID: 36946983 PMCID: PMC10072223 DOI: 10.1084/jem.20222129] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/10/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
Dendritic cells (DCs) and monocytes capture, transport, and present antigen to cognate T cells in the draining lymph nodes (LNs) in a CCR7-dependent manner. Since only migratory DCs express this chemokine receptor, it is unclear how monocytes reach the LN. In steady-state and following inhalation of several PAMPs, scRNA-seq identified LN mononuclear phagocytes as monocytes, resident, or migratory type 1 and type 2 conventional (c)DCs, despite the downregulation of Xcr1, Clec9a, H2-Ab1, Sirpa, and Clec10a transcripts on migratory cDCs. Migratory cDCs, however, upregulated Ccr7, Ccl17, Ccl22, and Ccl5. Migratory monocytes expressed Ccr5, a high-affinity receptor for Ccl5. Using two tracking methods, we observed that both CD88hiCD26lomonocytes and CD88-CD26hi cDCs captured inhaled antigens in the lung and migrated to LNs. Antigen exposure in mixed-chimeric Ccl5-, Ccr2-, Ccr5-, Ccr7-, and Batf3-deficient mice demonstrated that while antigen-bearing DCs use CCR7 to reach the LN, monocytes use CCR5 to follow CCL5-secreting migratory cDCs into the LN, where they regulate DC-mediated immunity.
Collapse
Affiliation(s)
- Kavita Rawat
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Hanover, NH, USA
| | - Anita Tewari
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Hanover, NH, USA
| | - Xin Li
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Hanover, NH, USA
| | - Arlind B Mara
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Hanover, NH, USA
| | - William T King
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Hanover, NH, USA
| | | | - Chinaza F Nnam
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Hanover, NH, USA
| | - Fred W Kolling
- Dartmouth Cancer Center, Dartmouth Geisel School of Medicine , Lebanon, NH, USA
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research , Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University , Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus MC , Rotterdam, Netherlands
| | - Claudia V Jakubzick
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Hanover, NH, USA
| |
Collapse
|
8
|
Trivedi A, Reed HO. The lymphatic vasculature in lung function and respiratory disease. Front Med (Lausanne) 2023; 10:1118583. [PMID: 36999077 PMCID: PMC10043242 DOI: 10.3389/fmed.2023.1118583] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
The lymphatic vasculature maintains tissue homeostasis via fluid drainage in the form of lymph and immune surveillance due to migration of leukocytes through the lymphatics to the draining lymph nodes. Lymphatic endothelial cells (LECs) form the lymphatic vessels and lymph node sinuses and are key players in shaping immune responses and tolerance. In the healthy lung, the vast majority of lymphatic vessels are found along the bronchovascular structures, in the interlobular septa, and in the subpleural space. Previous studies in both mice and humans have shown that the lymphatics are necessary for lung function from the neonatal period through adulthood. Furthermore, changes in the lymphatic vasculature are observed in nearly all respiratory diseases in which they have been analyzed. Recent work has pointed to a causative role for lymphatic dysfunction in the initiation and progression of lung disease, indicating that these vessels may be active players in pathologic processes in the lung. However, the mechanisms by which defects in lung lymphatic function are pathogenic are understudied, leaving many unanswered questions. A more comprehensive understanding of the mechanistic role of morphological, functional, and molecular changes in the lung lymphatic endothelium in respiratory diseases is a promising area of research that is likely to lead to novel therapeutic targets. In this review, we will discuss our current knowledge of the structure and function of the lung lymphatics and the role of these vessels in lung homeostasis and respiratory disease.
Collapse
Affiliation(s)
- Anjali Trivedi
- Weill Cornell Medical Center, New York, NY, United States
| | - Hasina Outtz Reed
- Weill Cornell Medical Center, New York, NY, United States
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Hasina Outtz Reed,
| |
Collapse
|
9
|
Barrachina F, Ottino K, Tu LJ, Soberman RJ, Brown D, Breton S, Battistone MA. CX3CR1 deficiency leads to impairment of immune surveillance in the epididymis. Cell Mol Life Sci 2022; 80:15. [PMID: 36550225 PMCID: PMC9948740 DOI: 10.1007/s00018-022-04664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/09/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Mononuclear phagocytes (MPs) play an active role in the immunological homeostasis of the urogenital tract. In the epididymis, a finely tuned balance between tolerance to antigenic sperm and immune activation is required to maintain epididymal function while protecting sperm against pathogens and stressors. We previously characterized a subset of resident MPs that express the CX3CR1 receptor, emphasizing their role in antigen sampling and processing during sperm maturation and storage in the murine epididymis. Bacteria-associated epididymitis is the most common cause of intrascrotal inflammation and frequently leads to reproductive complications. Here, we examined whether the lack of functional CX3CR1 in homozygous mice (CX3CR1EGFP/EGFP, KO) alters the ability of MPs to initiate immune responses during epididymitis induced by LPS intravasal-epididymal injection. Confocal microscopy revealed that CX3CR1-deficient MPs located in the initial segments of the epididymis displayed fewer luminal-reaching membrane projections and impaired antigen capture activity. Moreover, flow cytometry showed a reduction of epididymal KO MPs with a monocytic phenotype under physiological conditions. In contrast, flow cytometry revealed an increase in the abundance of MPs with a monocytic signature in the distal epididymal segments after an LPS challenge. This was accompanied by the accumulation of CD103+ cells in the interstitium, and the prevention or attenuation of epithelial damage in the KO epididymis during epididymitis. Additionally, CX3CR1 deletion induced downregulation of Gja1 (connexin 43) expression in KO MPs. Together, our study provides evidence that MPs are gatekeepers of the immunological blood-epididymis barrier and reveal the role of the CX3CR1 receptor in epididymal mucosal homeostasis by inducing MP luminal protrusions and by regulating the monocyte population in the epididymis at steady state as well as upon infection. We also uncover the interaction between MPs and CD103+ dendritic cells, presumably through connexin 43, that enhance immune responses during epididymitis. Our study may lead to new diagnostics and therapies for male infertility and epididymitis by identifying immune mechanisms in the epididymis.
Collapse
Affiliation(s)
- F Barrachina
- Program in Membrane Biology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - K Ottino
- Program in Membrane Biology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - L J Tu
- Program in Membrane Biology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - R J Soberman
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - D Brown
- Program in Membrane Biology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - S Breton
- Centre Hospitalier Universitaire de Québec-Research Center, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - M A Battistone
- Program in Membrane Biology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
10
|
Rahimi RA, Cho JL, Jakubzick CV, Khader SA, Lambrecht BN, Lloyd CM, Molofsky AB, Talbot S, Bonham CA, Drake WP, Sperling AI, Singer BD. Advancing Lung Immunology Research: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2022; 67:e1-18. [PMID: 35776495 PMCID: PMC9273224 DOI: 10.1165/rcmb.2022-0167st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The mammalian airways and lungs are exposed to a myriad of inhaled particulate matter, allergens, and pathogens. The immune system plays an essential role in protecting the host from respiratory pathogens, but a dysregulated immune response during respiratory infection can impair pathogen clearance and lead to immunopathology. Furthermore, inappropriate immunity to inhaled antigens can lead to pulmonary diseases. A complex network of epithelial, neural, stromal, and immune cells has evolved to sense and respond to inhaled antigens, including the decision to promote tolerance versus a rapid, robust, and targeted immune response. Although there has been great progress in understanding the mechanisms governing immunity to respiratory pathogens and aeroantigens, we are only beginning to develop an integrated understanding of the cellular networks governing tissue immunity within the lungs and how it changes after inflammation and over the human life course. An integrated model of airway and lung immunity will be necessary to improve mucosal vaccine design as well as prevent and treat acute and chronic inflammatory pulmonary diseases. Given the importance of immunology in pulmonary research, the American Thoracic Society convened a working group to highlight central areas of investigation to advance the science of lung immunology and improve human health.
Collapse
|
11
|
Jayasekhar R, Mathew JKK, Sangi Z, Marconi SD, Rupa V, Rabi S. Immunolocalization of CD1a expressing dendritic cells in sinonasal polyposis. J Immunoassay Immunochem 2022; 43:403-419. [PMID: 35147059 DOI: 10.1080/15321819.2022.2034645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sinonasal polyps are benign projections of edematous nasal mucosa lined by respiratory epithelium. Langerhans cells (LCs) belonging to the dendritic cell family located in respiratory epithelium are involved in antigen presentation and maintenance of local immunological homeostasis. This study aims to elucidate the morphology and distribution of CD1a positive LCs in normal nasal mucosa and compare the same with polypoid nasal mucosa by immunohistochemistry. Normal nasal mucosa (n = 20) was obtained from patients who underwent septoplasty for deviated nasal septum. Polypoid nasal mucosa (n = 22) was obtained from patients with chronic rhinosinusitis (CRS) or allergic fungal rhinosinusitis who underwent excision of nasal polyps. The tissues obtained were processed for immunohistochemistry and stained with CD1a-EP80 Rabbit monoclonal antibody. In the tissues studied, CD1a positive LCs were observed in both the epithelium and lamina propria. Different morphological subtypes of LCs were noted in the epithelium. The cells were distributed adjacent to walls of subepithelial capillaries and cysts. The median number of CD1a positive LCs was significantly higher in polypoid category (13.5 per mm2) as compared with normal nasal mucosa (2.5per mm2) (p = .001). Presence of CD1a positive LCs in polypoid nasal mucosa hints at a critical immunological role in the etiopathogenesis of nasal polyps.
Collapse
Affiliation(s)
- Rachel Jayasekhar
- Department of Anatomy, Christian Medical College, The Tamil Nadu Dr. MGR Medical University Chennai, Vellore, India
| | - John Kandam Kulathu Mathew
- Department of Anatomy, Christian Medical College, The Tamil Nadu Dr. MGR Medical University Chennai, Vellore, India
| | - Zorem Sangi
- Department of Otorhinolaryngology, Christian Medical College, The Tamil Nadu Dr. MGR Medical University Chennai, Vellore, India
| | - Sam David Marconi
- Department of Community Health and Development, Christian Medical College, The Tamil Nadu Dr. MGR Medical University Chennai, Vellore, India
| | - Vedantam Rupa
- Department of Otorhinolaryngology, Christian Medical College, The Tamil Nadu Dr. MGR Medical University Chennai, Vellore, India
| | - Suganthy Rabi
- Department of Anatomy, Christian Medical College, The Tamil Nadu Dr. MGR Medical University Chennai, Vellore, India
| |
Collapse
|
12
|
Alshammary AF, Al-Sulaiman AM. The journey of SARS-CoV-2 in human hosts: a review of immune responses, immunosuppression, and their consequences. Virulence 2021; 12:1771-1794. [PMID: 34251989 PMCID: PMC8276660 DOI: 10.1080/21505594.2021.1929800] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Laboratory findings from a significant number of patients with COVID-19 indicate the occurrence of leukocytopenia, specifically lymphocytopenia. Moreover, infected patients can experience contrasting outcomes depending on lymphocytopenia status. Patients with resolved lymphocytopenia are more likely to recover, whereas critically ill patients with signs of unresolved lymphocytopenia develop severe complications, sometimes culminating in death. Why immunodepression manifests in patients with COVID-19 remains unclear. Therefore, the evaluation of clinical symptoms and laboratory findings from infected patients is critical for understanding the disease course and its consequences. In this review, we take a logical approach to unravel the reasons for immunodepression in patients with COVID-19. Following the footprints of the virus within host tissues, from entry to exit, we extrapolate the mechanisms underlying the phenomenon of immunodepression.
Collapse
Affiliation(s)
- Amal F. Alshammary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
13
|
Lou TL, Ji T, Peng X, Ji WW, Yuan LX, Wang J, Li SM, Zhang S, Shi QY. Extract From Tetrastigma hemsleyanum Leaf Alleviates Pseudomonas aeruginosa Lung Infection: Network Pharmacology Analysis and Experimental Evidence. Front Pharmacol 2021; 12:587850. [PMID: 34349638 PMCID: PMC8326761 DOI: 10.3389/fphar.2021.587850] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
Tetrastigma hemsleyanum Diels & Gilg (T. hemsleyanum) has attracted much attention due to its ability on pneumonia, bronchitis, and immune-related diseases, while its functional components and underlying mechanism of action on pneumonia have not been fully elucidated. Herein, we used a systematic network pharmacology approach to explore the action mechanism of T. hemsleyanum leaf in the treatment of pneumonia. In this study, the results of network pharmacology demonstrated that there were 34 active components and 80 drug-disease targets in T. hemsleyanum leaf, which were strongly in connection with signal transduction, inflammatory response, and the oxidation-reduction process. Subsequently, a mouse model of pneumonia induced by Pseudomonas aeruginosa (P. aeruginosa) was established to validate the predicted results of network pharmacology. In the animal experiments, aqueous extract of T. hemsleyanum leaf (EFT) significantly attenuated the histopathological changes of lung tissue in P. aeruginosa-induced mice and reduced the number of bacterial colonies in BALFs by 96.84% (p < 0.01). Moreover, EFT treatment suppressed the increase of pro-inflammatory cytokines IL-17, IL-6, and TNF-α in lung tissues triggered by P. aeruginosa, which led to the increase of Th17 cells (p < 0.05). High concentration of EFT treatment (2.0 g/kg) obviously increased the anti-inflammatory cytokine levels, accompanied by the enhancement of Treg proportion in a dose-dependent manner and a notable reversal of transcription factor RORγt expression. These findings demonstrated that network pharmacology was a useful tool for TCM research, and the anti-inflammatory effect of EFT was achieved by maintaining Th17/Treg immune homeostasis and thereby suppressing the inflammatory immune response.
Collapse
Affiliation(s)
| | - Tao Ji
- Zhejiang Pharmaceutical College, Ningbo, China
| | - Xin Peng
- Food and Health Branch, Ningbo Research Institute of Zhejiang University, Ningbo, China
| | - Wei-Wei Ji
- Zhejiang Pharmaceutical College, Ningbo, China
| | - Li-Xia Yuan
- Zhejiang Pharmaceutical College, Ningbo, China
| | - Juan Wang
- Zhejiang Pharmaceutical College, Ningbo, China
| | - Shi-Min Li
- Zhejiang Pharmaceutical College, Ningbo, China
| | - Shun Zhang
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Qiao-Yun Shi
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
14
|
Cabeza-Cabrerizo M, Cardoso A, Minutti CM, Pereira da Costa M, Reis E Sousa C. Dendritic Cells Revisited. Annu Rev Immunol 2021; 39:131-166. [PMID: 33481643 DOI: 10.1146/annurev-immunol-061020-053707] [Citation(s) in RCA: 426] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dendritic cells (DCs) possess the ability to integrate information about their environment and communicate it to other leukocytes, shaping adaptive and innate immunity. Over the years, a variety of cell types have been called DCs on the basis of phenotypic and functional attributes. Here, we refocus attention on conventional DCs (cDCs), a discrete cell lineage by ontogenetic and gene expression criteria that best corresponds to the cells originally described in the 1970s. We summarize current knowledge of mouse and human cDC subsets and describe their hematopoietic development and their phenotypic and functional attributes. We hope that our effort to review the basic features of cDC biology and distinguish cDCs from related cell types brings to the fore the remarkable properties of this cell type while shedding some light on the seemingly inordinate complexity of the DC field.
Collapse
Affiliation(s)
- Mar Cabeza-Cabrerizo
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Ana Cardoso
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Carlos M Minutti
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | | | - Caetano Reis E Sousa
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| |
Collapse
|
15
|
Bosteels C, Fierens K, De Prijck S, Van Moorleghem J, Vanheerswynghels M, De Wolf C, Chalon A, Collignon C, Hammad H, Didierlaurent AM, Lambrecht BN. CCR2- and Flt3-Dependent Inflammatory Conventional Type 2 Dendritic Cells Are Necessary for the Induction of Adaptive Immunity by the Human Vaccine Adjuvant System AS01. Front Immunol 2021; 11:606805. [PMID: 33519816 PMCID: PMC7841299 DOI: 10.3389/fimmu.2020.606805] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022] Open
Abstract
The Adjuvant System AS01 contains monophosphoryl lipid A (MPL) and the saponin QS-21 in a liposomal formulation. AS01 is included in recently developed vaccines against malaria and varicella zoster virus. Like for many other adjuvants, induction of adaptive immunity by AS01 is highly dependent on the ability to recruit and activate dendritic cells (DCs) that migrate to the draining lymph node for T and B cell stimulation. The objective of this study was to more precisely address the contribution of the different conventional (cDC) and monocyte-derived DC (MC) subsets in the orchestration of the adaptive immune response after immunization with AS01 adjuvanted vaccine. The combination of MPL and QS-21 in AS01 induced strong recruitment of CD26+XCR1+ cDC1s, CD26+CD172+ cDC2s and a recently defined CCR2-dependent CD64-expressing inflammatory cDC2 (inf-cDC2) subset to the draining lymph node compared to antigen alone, while CD26-CD64+CD88+ MCs were barely detectable. At 24 h post-vaccination, cDC2s and inf-cDC2s were superior amongst the different subsets in priming antigen-specific CD4+ T cells, while simultaneously presenting antigen to CD8+ T cells. Diphtheria toxin (DT) mediated depletion of all DCs prior to vaccination completely abolished adaptive immune responses, while depletion 24 h after vaccination mainly affected CD8+ T cell responses. Vaccinated mice lacking Flt3 or the chemokine receptor CCR2 showed a marked deficit in inf-cDC2 recruitment and failed to raise proper antibody and T cell responses. Thus, the adjuvant activity of AS01 is associated with the potent activation of subsets of cDC2s, including the newly described inf-cDC2s.
Collapse
Affiliation(s)
- Cedric Bosteels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kaat Fierens
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sofie De Prijck
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Caroline De Wolf
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | | | | | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
16
|
Ivanova IG, Stefanov IS. Tryptase- and ghrelin positive mast cells in the interalveolar septa of rat’s lung. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.15547/bjvm.2338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mast cell mediators and distribution of lung mast cells in rats are often discussed in experimental studies on pulmonary fibrotic and allergic processes associated with changes in numbers of these cells, but information on the normal distribution of metachromatic and tryptase-positive mast cells in the interalveolar septa is scarce. There are no data on the presence of ghrelin in lung mast cells as well as the age-specific features of localisation and the number of mast cells in the interalveolar septa in rats of different ages. Therefore, the purpose of the present study was to determine the distribution of metachromatic, tryptase-, and ghrelin-positive mast cells in the interalveolar septa in 20 day-, 3 month- and 1 year-old rats. Tissue sections stained with toluidine blue had been taken from the left lung to visualise metachromasia and immunohistochemical expression of tryptase and ghrelin. The results showed that the amount of metachromatic mast cells in the interalveolar septa was significantly lower than that of tryptase- and ghrelin-positive cells. This allowed suggesting that mast cells were permanent occupants of the rat lung parenchyma and, on the other hand, the expression of ghrelin in their granules was most likely related to the synthesis of this protein. Our study showed that immunohistochemical identification by tryptase expression was more accurate than toluidine blue staining.
Collapse
Affiliation(s)
- I. G. Ivanova
- Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| | - I. S. Stefanov
- Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
17
|
Leach SM, Gibbings SL, Tewari AD, Atif SM, Vestal B, Danhorn T, Janssen WJ, Wager TD, Jakubzick CV. Human and Mouse Transcriptome Profiling Identifies Cross-Species Homology in Pulmonary and Lymph Node Mononuclear Phagocytes. Cell Rep 2020; 33:108337. [PMID: 33147458 PMCID: PMC7673261 DOI: 10.1016/j.celrep.2020.108337] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/15/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022] Open
Abstract
The mononuclear phagocyte (MP) system consists of macrophages, monocytes, and dendritic cells (DCs). MP subtypes play distinct functional roles in steady-state and inflammatory conditions. Although murine MPs are well characterized, their pulmonary and lymph node (LN) human homologs remain poorly understood. To address this gap, we have created a gene expression compendium across 24 distinct human and murine lung and LN MPs, along with human blood and murine spleen MPs, to serve as validation datasets. In-depth RNA sequencing identifies corresponding human-mouse MP subtypes and determines marker genes shared and divergent across species. Unexpectedly, only 13%-23% of the top 1,000 marker genes (i.e., genes not shared across species-specific MP subtypes) overlap in corresponding human-mouse MP counterparts. Lastly, CD88 in both species helps distinguish monocytes/macrophages from DCs. Our cross-species expression compendium serves as a resource for future translational studies to investigate beforehand whether pursuing specific MP subtypes or genes will prove fruitful.
Collapse
Affiliation(s)
- Sonia M Leach
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA; Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Sophie L Gibbings
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - Anita D Tewari
- Department of Microbiology and Immunology, Dartmouth College, Hanover, NH 03756, USA
| | - Shaikh M Atif
- Department of Medicine, Division of Asthma, Allergy, and Clinical Immunology, University of Colorado, Denver, CO 80045, USA
| | - Brian Vestal
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA; Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Thomas Danhorn
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - William J Janssen
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA; Division of Pulmonary Sciences and Critical Care, University of Colorado, Denver, CO 80045, USA
| | - Tor D Wager
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Claudia V Jakubzick
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA; Department of Microbiology and Immunology, Dartmouth College, Hanover, NH 03756, USA; Department of Immunology, University of Colorado, Denver Anschutz Campus, Denver, CO 80045, USA.
| |
Collapse
|
18
|
Rezinciuc S, Bezavada L, Bahadoran A, Duan S, Wang R, Lopez-Ferrer D, Finkelstein D, McGargill MA, Green DR, Pasa-Tolic L, Smallwood HS. Dynamic metabolic reprogramming in dendritic cells: An early response to influenza infection that is essential for effector function. PLoS Pathog 2020; 16:e1008957. [PMID: 33104753 PMCID: PMC7707590 DOI: 10.1371/journal.ppat.1008957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/01/2020] [Accepted: 09/03/2020] [Indexed: 01/19/2023] Open
Abstract
Infection with the influenza virus triggers an innate immune response that initiates the adaptive response to halt viral replication and spread. However, the metabolic response fueling the molecular mechanisms underlying changes in innate immune cell homeostasis remain undefined. Although influenza increases parasitized cell metabolism, it does not productively replicate in dendritic cells. To dissect these mechanisms, we compared the metabolism of dendritic cells to that of those infected with active and inactive influenza A virus and those treated with toll-like receptor agonists. Using quantitative mass spectrometry, pulse chase substrate utilization assays and metabolic flux measurements, we found global metabolic changes in dendritic cells 17 hours post infection, including significant changes in carbon commitment via glycolysis and glutaminolysis, as well as mitochondrial respiration. Influenza infection of dendritic cells led to a metabolic phenotype distinct from that induced by TLR agonists, with significant resilience in terms of metabolic plasticity. We identified c-Myc as one transcription factor modulating this response. Restriction of c-Myc activity or mitochondrial substrates significantly changed the immune functions of dendritic cells, such as reducing motility and T cell activation. Transcriptome analysis of inflammatory dendritic cells isolated following influenza infection showed similar metabolic reprogramming occurs in vivo. Thus, early in the infection process, dendritic cells respond with global metabolic restructuring, that is present in inflammatory lung dendritic cells after infection, and this is important for effector function. These findings suggest metabolic switching in dendritic cells plays a vital role in initiating the immune response to influenza infection. Dendritic cells are critical in mounting an effective immune response to influenza infection by initiating the immune response to influenza and activating the adaptive response to mediate viral clearance and manifest immune memory for protection against subsequent infections. We found dendritic cells undergo a profound metabolic shift after infection. They alter the concentration and location of hundreds of proteins, including c-Myc, facilitating a shift to a highly glycolytic phenotype that is also flexible in terms of fueling respiration. Nonetheless, we found limiting access to specific metabolic pathways or substrates diminished key immune functions. We previously described an immediate, fixed hypermetabolic state in infected respiratory epithelial cells. Here we present data indicating the metabolic response of dendritic cells is increased yet flexible, distinct from what we previously showed for epithelial cells. Additionally, we demonstrate dendritic cells tailor their metabolic response to the pathogen or TLR stimulus. This metabolic reprogramming occurs rapidly in vitro and is sustained in inflammatory dendritic cells in vivo for at least 9 days following influenza infection. These studies introduce the possibility of modulating the immune response to viral infection using customized metabolic therapy to enhance or diminish the function of specific cells.
Collapse
Affiliation(s)
- Svetlana Rezinciuc
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Lavanya Bezavada
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Azadeh Bahadoran
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Susu Duan
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, The Ohio State University School of Medicine, Columbus, Ohio, United States of America
| | - Daniel Lopez-Ferrer
- Chromatography and Mass Spectrometry Division, Thermo Fisher Scientific, CA, United States of America
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Maureen A. McGargill
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Heather S. Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
19
|
Hilligan KL, Ronchese F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell Mol Immunol 2020; 17:587-599. [PMID: 32433540 DOI: 10.1038/s41423-020-0465-0] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/10/2020] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells are powerful antigen-presenting cells that are essential for the priming of T cell responses. In addition to providing T-cell-receptor ligands and co-stimulatory molecules for naive T cell activation and expansion, dendritic cells are thought to also provide signals for the differentiation of CD4+ T cells into effector T cell populations. The mechanisms by which dendritic cells are able to adapt and respond to the great variety of infectious stimuli they are confronted with, and prime an appropriate CD4+ T cell response, are only partly understood. It is known that in the steady-state dendritic cells are highly heterogenous both in phenotype and transcriptional profile, and that this variability is dependent on developmental lineage, maturation stage, and the tissue environment in which dendritic cells are located. Exposure to infectious agents interfaces with this pre-existing heterogeneity by providing ligands for pattern-recognition and toll-like receptors that are variably expressed on different dendritic cell subsets, and elicit production of cytokines and chemokines to support innate cell activation and drive T cell differentiation. Here we review current information on dendritic cell biology, their heterogeneity, and the properties of different dendritic cell subsets. We then consider the signals required for the development of different types of Th immune responses, and the cellular and molecular evidence implicating different subsets of dendritic cells in providing such signals. We outline how dendritic cell subsets tailor their response according to the infectious agent, and how such transcriptional plasticity enables them to drive different types of immune responses.
Collapse
Affiliation(s)
- Kerry L Hilligan
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand.,Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand.
| |
Collapse
|
20
|
Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection. Immunity 2020; 52:1039-1056.e9. [PMID: 32392463 PMCID: PMC7207120 DOI: 10.1016/j.immuni.2020.04.005] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/05/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
The phenotypic and functional dichotomy between IRF8+ type 1 and IRF4+ type 2 conventional dendritic cells (cDC1s and cDC2s, respectively) is well accepted; it is unknown how robust this dichotomy is under inflammatory conditions, when additionally monocyte-derived cells (MCs) become competent antigen-presenting cells (APCs). Using single-cell technologies in models of respiratory viral infection, we found that lung cDC2s acquired expression of the Fc receptor CD64 shared with MCs and of IRF8 shared with cDC1s. These inflammatory cDC2s (inf-cDC2s) were superior in inducing CD4+ T helper (Th) cell polarization while simultaneously presenting antigen to CD8+ T cells. When carefully separated from inf-cDC2s, MCs lacked APC function. Inf-cDC2s matured in response to cell-intrinsic Toll-like receptor and type 1 interferon receptor signaling, upregulated an IRF8-dependent maturation module, and acquired antigens via convalescent serum and Fc receptors. Because hybrid inf-cDC2s are easily confused with monocyte-derived cells, their existence could explain why APC functions have been attributed to MCs. Type I interferon drives differentiation of inf-cDC2s that closely resemble MCs Inf-cDC2s prime CD4+ and CD8+ T cells, whereas MCs lack APC function Inf-cDC2s internalize antibody-complexed antigen via Fc receptors IRF8 controls maturation gene module in inf-cDC2s
Collapse
|
21
|
Lai JF, Thompson LJ, Ziegler SF. TSLP drives acute T H2-cell differentiation in lungs. J Allergy Clin Immunol 2020; 146:1406-1418.e7. [PMID: 32304753 DOI: 10.1016/j.jaci.2020.03.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/14/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) is an epithelial-derived cytokine that is important for the development of type 2 inflammatory responses at mucosal surfaces. OBJECTIVE In humans, TSLP level has been found to be elevated in the lungs of patients with asthma, and in mouse models, TSLP can promote type 2 airway inflammation, primarily through the activation of dendritic cells. However, the mechanisms underlying its role remain unclear. The objective of this study was to provide a mechanistic analysis of TSLP-mediated type 2 airway inflammation METHODS: To dissect the mechanisms of TSLP-mediated type 2 responses, mice were treated with TSLP and antigen to evaluate cellular immune responses. Flow cytometric analyses were used to follow responses in the airways, and conditional deletion of TSLP receptor and adoptive transfer were used to identify the cellular subsets involved in this inflammatory response. RESULTS We showed that TSLP can directly promote TH2-cell differentiation in the lung, independent of the draining lymph nodes. We also identified a population of patrolling monocytes/interstitial macrophages (IMs) (CD11c-expressing IMs) that are both necessary and sufficient for TSLP-mediated TH2-cell differentiation and airway inflammation. TH2-cell-driven airway eosinophilia is attenuated by ablation of CD11c-expressing IMs or by selective deficiency of TSLP receptor signaling in these cells. More importantly, CD11c-expressing IMs are sufficient for the induction of acute TH2-cell responses in the lungs that is independent of dendritic cells and T-cell priming in the draining lymph nodes. CONCLUSION These findings indicate a novel mechanistic role for TSLP and CD11c-expressing IMs in the development of acute TH2-cell-dependent allergic airway inflammation. This work also demonstrates a new role for TSLP in promoting type 2 responses directly in the lung.
Collapse
Affiliation(s)
- Jen-Feng Lai
- Benaroya Research Institute at Virginia Mason, Seattle, Wash
| | | | | |
Collapse
|
22
|
Kimura TFE, Romera LMD, de Almeida SR. Fonsecaea pedrosoi Conidia Induces Activation of Dendritic Cells and Increases CD11c + Cells in Regional Lymph Nodes During Experimental Chromoblastomycosis. Mycopathologia 2020; 185:245-256. [PMID: 32008205 DOI: 10.1007/s11046-020-00429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/21/2020] [Indexed: 10/20/2022]
Abstract
The chromoblastomycosis is a subcutaneous mycosis with a high morbidity rate, Fonsecaea pedrosoi being the largest etiologic agent of this mycosis, usually confined to the skin and subcutaneous tissues. Rarely people get the cure, because the therapies shown to be deficient and few studies report the host-parasite relationship. Dendritic cells (DCs) are specialized in presenting antigens to naïve T lymphocytes inducing primary immune responses. Therefore, we propose to study the migratory capacity of DCs after infection with conidia of F. pedrosoi. The phenotype of DCs was evaluated using cells obtained from footpad and lymph nodes of BALB/c mice after 12, 24 and 72 h of infection. After 24 and 72 h of infection, we found a significant decrease in DCs in footpad and a significant increase in the lymph nodes after 72 h. The expression of surface markers and co-stimulatory molecules were reduced in cells obtained from footpad. To better assess the migratory capacity of DCs migration from footpad, CFSE-stained conidia were injected subcutaneously. We found that after 12 and 72 h, CD11c+ cells were increased in regional lymph nodes, leading us to believe that DCs (CD11c+) were able to phagocytic conidia present in footpad and migrated to regional lymph nodes.
Collapse
Affiliation(s)
- Telma Fátima Emidio Kimura
- Laboratory of Mycology, Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Scienses, Universidade de Sao Paulo, São Paulo, Brazil
| | - Lavínia Maria Dal'Mas Romera
- Laboratory of Mycology, Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Scienses, Universidade de Sao Paulo, São Paulo, Brazil.
| | - Sandro Rogério de Almeida
- Laboratory of Mycology, Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Scienses, Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Daines M, Zhu L, Pereira R, Zhou X, Bondy C, Pryor BM, Zhou J, Chen Y. Alternaria induces airway epithelial cytokine expression independent of protease-activated receptor. Respirology 2019; 25:502-510. [PMID: 31430011 DOI: 10.1111/resp.13675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 04/24/2019] [Accepted: 07/01/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND OBJECTIVE A novel fungal allergen, Alternaria (Alt), has been previously shown to associate with the pathogenesis of allergic rhinitis and bronchial asthma, particularly in arid and semi-arid regions. Airway epithelial cells are among the first to encounter Alt, and epithelial cytokine production and subsequent airway inflammation are early events in the response to Alt exposure. However, the underlying mechanism is unclear. As protease-activated receptor 2 (PAR2) has been implicated in most of the Alt-induced biological events, we investigated the regulation of airway inflammation and epithelial cytokine expression by PAR2. METHODS Wild-type (WT) and Par2 knockout (Par2-KO) mice were used to evaluate the in vivo role of PAR2. Primary human and mouse airway epithelial cells were used to examine the mechanistic basis of epithelial cytokine regulation in vitro. RESULTS Surprisingly, Par2 deficiency had no negative impact on the change of lung function, inflammation and cytokine production in the mouse model of Alt-induced asthma. Alt-induced cytokine production in murine airway epithelial cells from Par2-KO mice was not significantly different from the WT cells. Consistently, PAR2 knockdown in human cells also had no effect on cytokine expression. In contrast, the cytokine expressions induced by synthetic PAR2 agonist or other asthma-related allergens (e.g. cockroach extracts) were indeed mediated via a PAR2-dependent mechanism. Finally, we found that EGFR pathway was responsible for Alt-induced epithelial cytokine expression. CONCLUSION The activation of EGFR, but not PAR2, was likely to drive the airway inflammation and epithelial cytokine production induced by Alt.
Collapse
Affiliation(s)
- Michael Daines
- Department of Internal Medicine, School of Medicine, University of Arizona, Tucson, AZ, USA.,Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Lingxiang Zhu
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Rhea Pereira
- Department of Internal Medicine, School of Medicine, University of Arizona, Tucson, AZ, USA
| | - Xu Zhou
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Cheryl Bondy
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Barry M Pryor
- School of Plant Science, University of Arizona, Tucson, AZ, USA
| | - Jin Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, University of Arizona, Tucson, AZ, USA
| | - Yin Chen
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
24
|
Pejoski D, Ballester M, Auderset F, Vono M, Christensen D, Andersen P, Lambert PH, Siegrist CA. Site-Specific DC Surface Signatures Influence CD4 + T Cell Co-stimulation and Lung-Homing. Front Immunol 2019; 10:1650. [PMID: 31396211 PMCID: PMC6668556 DOI: 10.3389/fimmu.2019.01650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/03/2019] [Indexed: 11/29/2022] Open
Abstract
Dendritic cells (DCs) that drain the gut and skin are known to favor the establishment of T cell populations that home to the original site of DC-antigen (Ag) encounter by providing soluble “imprinting” signals to T cells in the lymph node (LN). To study the induction of lung T cell-trafficking, we used a protein-adjuvant murine intranasal and intramuscular immunization model to compare in vivo-activated Ag+ DCs in the lung and muscle-draining LNs. Higher frequencies of Ag+ CD11b+ DCs were observed in lung-draining mediastinal LNs (MedLN) compared to muscle-draining inguinal LNs (ILN). Ag+ CD11b+ MedLN DCs were qualitatively superior at priming CD4+ T cells, which then expressed CD49a and CXCR3, and preferentially trafficked into the lung parenchyma. CD11b+ DCs from the MedLN expressed higher levels of surface podoplanin, Trem4, GL7, and the known co-stimulatory molecules CD80, CD86, and CD24. Blockade of specific MedLN DC molecules or the use of sorted DC and T cell co-cultures demonstrated that DC surface phenotype influences the ability to prime T cells that then home to the lung. Thus, the density of dLN Ag+ DCs, and DC surface molecule signatures are factors that can influence the output and differentiation of lung-homing CD4+ T cells.
Collapse
Affiliation(s)
- David Pejoski
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,World Health Organization Collaborating Center for Vaccine Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marie Ballester
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,World Health Organization Collaborating Center for Vaccine Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Floriane Auderset
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,World Health Organization Collaborating Center for Vaccine Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Maria Vono
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,World Health Organization Collaborating Center for Vaccine Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Paul-Henri Lambert
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,World Health Organization Collaborating Center for Vaccine Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,World Health Organization Collaborating Center for Vaccine Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
25
|
Jaiswal AK, Sandey M, Suryawanshi A, Cattley RC, Mishra A. Dimethyl fumarate abrogates dust mite-induced allergic asthma by altering dendritic cell function. IMMUNITY INFLAMMATION AND DISEASE 2019; 7:201-213. [PMID: 31264384 PMCID: PMC6688084 DOI: 10.1002/iid3.262] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/12/2022]
Abstract
Introduction Allergic asthma is the most common inflammatory disease of upper airways. Airway dendritic cells (DCs) are key antigen presenting cells that regulate T helper 2 (Th2)‐dependent allergic inflammation. Recent studies have shown critical role of airway DCs in the induction of Th2‐mediated allergic inflammation and are attractive therapeutic targets in asthma. However, molecular signaling mechanism that regulate DCs function to Th2 immune responses are poorly understood. Here we aim to evaluate the immunomodulatory effect of dimethyl fumarate (DMF), an FDA approved small molecule drug, in the house dust mite (HDM)‐induced experimental model of allergic asthma. Methods DMF was administered intranasally in the challenge period of HDM‐induced murine model of experimental asthma. Airway inflammation, airway hyperreactivity, Th2/Th1 cytokine were assessed. The effect of DMF on DC function was further evaluated by adoptive transfer of HDM‐pulsed DMF treated DCs to wild‐type naïve mice. Results DMF treatment significantly reduced HDM‐induced airway inflammation, mucous cell metaplasia, and airway hyperactivity to inhaled methacholine. Mechanistically, DMF interferes with the migration of lung DCs to draining mediastinal lymph nodes, thereby attenuates the induction of allergic sensitization and Th2 immune response. Notably, adoptive transfer of DMF treated DCs to naïve mice with HDM challenge similarly reduces the features of allergic asthma. Conclusion This identifies a novel function of DMF on DC‐mediated adaptive immune responses in the setting of HDM‐induced airway inflammation. Taken together, our results offer a mechanistic rationale for DMF use to target DCs in local lung environment as antiasthmatic therapy.
Collapse
Affiliation(s)
- Anil K Jaiswal
- The Laboratory of Lung Inflammation, College of Veterinary Medicine, Auburn University, Auburn, Alabama.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Russell C Cattley
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Amarjit Mishra
- The Laboratory of Lung Inflammation, College of Veterinary Medicine, Auburn University, Auburn, Alabama.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| |
Collapse
|
26
|
Walsh NM, Botts MR, McDermott AJ, Ortiz SC, Wüthrich M, Klein B, Hull CM. Infectious particle identity determines dissemination and disease outcome for the inhaled human fungal pathogen Cryptococcus. PLoS Pathog 2019; 15:e1007777. [PMID: 31247052 PMCID: PMC6597114 DOI: 10.1371/journal.ppat.1007777] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/22/2019] [Indexed: 01/01/2023] Open
Abstract
The majority of invasive human fungal pathogens gain access to their human hosts via the inhalation of spores from the environment into the lung, but relatively little is known about this infectious process. Among human fungal pathogens the most frequent cause of inhaled fatal fungal disease is Cryptococcus, which can disseminate from the lungs to other tissues, including the brain, where it causes meningoencephalitis. To determine the mechanisms by which distinct infectious particles of Cryptococcus cause disseminated disease, we evaluated two developmental cell types (spores and yeast) in mouse models of infection. We discovered that while both yeast and spores from several strains cause fatal disease, there was a consistently higher fungal burden in the brains of spore-infected mice. To determine the basis for this difference, we compared the pathogenesis of avirulent yeast strains with their spore progeny derived from sexual crosses. Strikingly, we discovered that spores produced by avirulent yeast caused uniformly fatal disease in the murine inhalation model of infection. We determined that this difference in outcome is associated with the preferential dissemination of spores to the lymph system. Specifically, mice infected with spores harbored Cryptococcus in their lung draining lymph nodes as early as one day after infection, whereas mice infected with yeast did not. Furthermore, phagocyte depletion experiments revealed this dissemination to the lymph nodes to be dependent on CD11c+ phagocytes, indicating a critical role for host immune cells in preferential spore trafficking. Taken together, these data support a model in which spores capitalize on phagocytosis by immune cells to escape the lung and gain access to other tissues, such as the central nervous system, to cause fatal disease. These previously unrealized insights into early interactions between pathogenic fungal spores and lung phagocytes provide new opportunities for understanding cryptococcosis and other spore-mediated fungal diseases.
Collapse
Affiliation(s)
- Naomi M. Walsh
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael R. Botts
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrew J. McDermott
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sébastien C. Ortiz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Marcel Wüthrich
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bruce Klein
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christina M. Hull
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
27
|
Abstract
Oral tolerance is a state of systemic unresponsiveness that is the default response to food antigens in the gastrointestinal tract, although immune tolerance can also be induced by other routes, such as the skin or inhalation. Antigen can be acquired directly by intestinal phagocytes, or pass through enterocytes or goblet cell-associated passages prior to capture by dendritic cells (DCs) in the lamina propria. Mucin from goblet cells acts on DCs to render them more tolerogenic. A subset of regulatory DCs expressing CD103 is responsible for delivery of antigen to the draining lymph node and induction of Tregs. These DCs also imprint gastrointestinal homing capacity, allowing the recently primed Tregs to home back to the lamina propria where they interact with macrophages that produce IL-10 and expand. Tregs induced by dietary antigen include Foxp3+ Tregs and Foxp3- Tregs. In addition to Tregs, T cell anergy can also contribute to oral tolerance. The microbiota plays a key role in the development of oral tolerance, through regulation of macrophages and innate lymphoid cells that contribute to the regulatory phenotype of gastrointestinal dendritic cells. Absence of microbiota is associated with a susceptibility to food allergy, while presence of Clostridia strains can suppress development of food allergy through enhancement of Tregs and intestinal barrier function. It is not clear if feeding of antigens can also induce true immune tolerance after a memory immune response has been generated, but mechanistic studies of oral immunotherapy trials demonstrate shared pathways in oral tolerance and oral immunotherapy, with a role for Tregs and anergy. An important role for IgA and IgG antibodies in development of immune tolerance is also supported by studies of oral tolerance in humans. The elucidation of key pathways in oral tolerance could identify new strategies to increase efficacy of immunotherapy treatments for food allergy.
Collapse
Affiliation(s)
- Leticia Tordesillas
- Jaffe Food Allergy Institute, Immunology Institute, Mindich Child Health Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Cecilia Berin
- Jaffe Food Allergy Institute, Immunology Institute, Mindich Child Health Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, Box 1198, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
28
|
Mincham KT, Scott NM, Lauzon-Joset JF, Leffler J, Larcombe AN, Stumbles PA, Robertson SA, Pasquali C, Holt PG, Strickland DH. Transplacental immune modulation with a bacterial-derived agent protects against allergic airway inflammation. J Clin Invest 2018; 128:4856-4869. [PMID: 30153109 DOI: 10.1172/jci122631] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/23/2018] [Indexed: 01/18/2023] Open
Abstract
Chronic allergic inflammatory diseases are a major cause of morbidity, with allergic asthma alone affecting over 300 million people worldwide. Epidemiological studies demonstrate that environmental stimuli are associated with either the promotion or prevention of disease. Major reductions in asthma prevalence are documented in European and US farming communities. Protection is associated with exposure of mothers during pregnancy to microbial breakdown products present in farm dusts and unprocessed foods and enhancement of innate immune competence in the children. We sought to develop a scientific rationale for progressing these findings toward clinical application for primary disease prevention. Treatment of pregnant mice with a defined, clinically approved immune modulator was shown to markedly reduce susceptibility of their offspring to development of the hallmark clinical features of allergic airway inflammatory disease. Mechanistically, offspring displayed enhanced dendritic cell-dependent airway mucosal immune surveillance function, which resulted in more efficient generation of mucosal-homing regulatory T cells in response to local inflammatory challenge. We provide evidence that the principal target for maternal treatment effects was the fetal dendritic cell progenitor compartment, equipping the offspring for accelerated functional maturation of the airway mucosal dendritic cell network following birth. These data provide proof of concept supporting the rationale for developing transplacental immune reprogramming approaches for primary disease prevention.
Collapse
Affiliation(s)
- Kyle T Mincham
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Naomi M Scott
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | | | - Jonatan Leffler
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Alexander N Larcombe
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia.,Health, Safety and Environment, School of Public Health, Curtin University, Perth, Western Australia, Australia
| | - Philip A Stumbles
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia.,School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.,School of Paediatrics and Child Health, University of Western Australia, Subiaco, Western Australia, Australia
| | - Sarah A Robertson
- Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | | | - Patrick G Holt
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Deborah H Strickland
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
29
|
Lu M, Xu C, Zhang Q, Wu X, Tang L, Wang X, Wu J, Wu X. Inhibition of p21-activated kinase 1 attenuates the cardinal features of asthma through suppressing the lymph node homing of dendritic cells. Biochem Pharmacol 2018; 154:464-473. [PMID: 29906467 DOI: 10.1016/j.bcp.2018.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022]
Abstract
Dendritic cell (DC) trafficking from lung to the draining mediastinal lymph nodes (MLNs) is a key step for initiation of T cell responses in allergic asthma. In the present study, we investigate the role of DC-mediated airway inflammation after inhibition of p21-activated kinase-1 (PAK1), an effector of Rac and Cdc42 small GTPases, in the allergen-induced mouse models of asthma. Systemic administration of PAK1 specific inhibitor IPA-3 significantly attenuates not only the airway inflammation but also the airway hyperresponsiveness in a mouse model of ovalbumin-induced asthma. Specifically, intratracheal administration of low dosage of IPA-3 consistently decreases not only the airway inflammation but also the DC trafficking from lung to the MLNs. Importantly, intratracheal instillation of IPA-3-treated and ovalbumin-pulsed DCs behaves largely the same as that of either Rac inhibitor-treated and ovalbumin-pulsed DCs or Cdc42 inhibitor-treated and ovalbumin-pulsed DCs in attenuation of the airway inflammation in ovalbumin-challenged mice. Mechanistically, PAK1 is not involved in the maturation, apoptosis, antigen uptake, and T cell activation of cultured DCs, but PAK1 dose lie on the downstream of Rac and Cdc42 to regulate the DC migration toward the chemokine C-C motif chemokine ligand 19. Taken together, this study demonstrates that inhibition of PAK1 attenuates the cardinal features of asthma through suppressing the DC trafficking from lung to the MLN, and that interfere with DC trafficking by a PAK1 inhibitor thus holds great promise for the therapeutic intervention of allergic diseases.
Collapse
Affiliation(s)
- Meiping Lu
- Department of Allergy immunology and rheumatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| | - Chengyun Xu
- Department of Pharmacology and Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qin Zhang
- Department of Pharmacology and Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiling Wu
- Department of Respiratory Medicine, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Lanfang Tang
- Department of Respiratory Medicine, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Xiangzhi Wang
- Department of Respiratory Medicine, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Junsong Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ximei Wu
- Department of Pharmacology and Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
30
|
Leffler J, Mincham KT, Mok D, Blank F, Holt PG, Stumbles PA, Strickland DH. Functional differences in airway dendritic cells determine susceptibility to IgE-sensitization. Immunol Cell Biol 2018; 96:316-329. [PMID: 29363184 DOI: 10.1111/imcb.12005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/05/2017] [Accepted: 12/23/2017] [Indexed: 01/13/2023]
Abstract
Respiratory IgE-sensitization to innocuous antigens increases the risk for developing diseases such as allergic asthma. Dendritic cells (DC) residing in the airways orchestrate the immune response following antigen exposure and their ability to sample and present antigens to naïve T cells in airway draining lymph nodes contributes to allergen-specific IgE-sensitization. In order to characterize inhaled antigen capture and presentation by DC subtypes in vivo, we used an adjuvant-free respiratory sensitization model using two genetically distinct rat strains, one of which is naturally resistant and the other naturally susceptible to allergic sensitization. Upon multiple exposures to ovalbumin (OVA), the susceptible strain developed OVA-specific IgE and airway inflammation, whereas the resistant strain did not. Using fluorescently tagged OVA and flow cytometry, we demonstrated significant differences in antigen uptake efficiency and presentation associated with either IgE-sensitization or resistance to allergen exposures in respective strains. We further identified CD4+ conventional DC (cDC) as the subset involved in airway antigen sampling in both strains, however, CD4+ cDC in the susceptible strain were less efficient in OVA sampling and displayed increased MHC-II expression compared with the resistant strain. This was associated with generation of an exaggerated Th2 response and a deficiency of airway regulatory T cells in the susceptible strain. These data suggest that subsets of cDC are able to induce either sensitization or resistance to inhaled antigens as determined by genetic background, which may provide an underlying basis for genetically determined susceptibility to respiratory allergic sensitization and IgE production in susceptible individuals.
Collapse
Affiliation(s)
- Jonatan Leffler
- Telethon Kids Institute, The University of Western Australia, Subiaco, WA, Australia
| | - Kyle T Mincham
- Telethon Kids Institute, The University of Western Australia, Subiaco, WA, Australia
| | - Danny Mok
- Telethon Kids Institute, The University of Western Australia, Subiaco, WA, Australia
| | - Fabian Blank
- Department of Clinical Research, Respiratory Medicine, Bern University Hospital, Bern, Switzerland
| | - Patrick G Holt
- Telethon Kids Institute, The University of Western Australia, Subiaco, WA, Australia
| | - Philip A Stumbles
- Telethon Kids Institute, The University of Western Australia, Subiaco, WA, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Subiaco, WA, Australia.,School of Veterinary and Life Sciences, Murdoch University, Subiaco, WA, Australia
| | - Deborah H Strickland
- Telethon Kids Institute, The University of Western Australia, Subiaco, WA, Australia
| |
Collapse
|
31
|
Gibbings SL, Jakubzick CV. A Consistent Method to Identify and Isolate Mononuclear Phagocytes from Human Lung and Lymph Nodes. Methods Mol Biol 2018; 1799:381-395. [PMID: 29956166 DOI: 10.1007/978-1-4939-7896-0_28] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mononuclear phagocytes (MP) consist of macrophages, dendritic cells (DCs), and monocytes. In all organs, including the lung, there are multiple subtypes within these categories. The existence of all these cell types suggest that there is a clear division of labor and delicate balance between the MPs under steady state and inflammatory conditions. Although great strides have been made to understand MPs in the mouse lung, and human blood, little is known about the MPs that exist in the human lung and lung-draining lymph nodes (LNs), and even less is known about their functional roles, studies of which will require a large number of sorted cells. We have comprehensively examined cell surface markers previously used in a variety of organs to identify human pulmonary MPs. In the lung, we consistently identify five extravascular pulmonary MPs and three LN MPs. These MPs were present in over 100 lungs regardless of age or gender. Notably, the human blood CD141+ DCs, as described in the literature, were not observed in non-diseased lungs or their draining LNs. In the lung and draining LNs, expression of CD141 was only observed on HLADR+ CD11c+ CD14+ extravascular monocytes (often confused in the LN as resident DCs based on the level of HLADR expression and mouse LN data). In the human lung and LNs there are at least two DC subtypes expressing HLADR, DEC205 and CD1c, along with circulating monocytes that behave as either antigen-presenting cells or macrophages. Furthermore, we demonstrate how to distinguish between alveolar macrophages and interstitial macrophage subtypes. It still remains unclear how the human pulmonary MPs identified here align with mouse MPs. Clearly, we are now past the stage of cell surface marker characterization, and future studies will need to move toward understanding what these cell types are and how they function. Our hope is that the strategy described here can help the pulmonary community take this next step.
Collapse
Affiliation(s)
| | - Claudia V Jakubzick
- Department of Pediatrics, National Jewish Health, Denver, CO, USA. .,Department of Microbiology and Immunology, University of Colorado, Denver, CO, USA.
| |
Collapse
|
32
|
Gibbings SL, Jakubzick CV. Isolation and Characterization of Mononuclear Phagocytes in the Mouse Lung and Lymph Nodes. Methods Mol Biol 2018; 1809:33-44. [PMID: 29987780 DOI: 10.1007/978-1-4939-8570-8_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
There is a diverse population of mononuclear phagocytes (MPs) in the lungs, comprised of macrophages, dendritic cells (DCs), and monocytes. The existence of these various cell types suggests that there is a clear division of labor and delicate balance between the MPs under steady-state and inflammatory conditions. Here we describe how to identify pulmonary MPs using flow cytometry and how to isolate them via cell sorting. In steady-state conditions, murine lungs contain a uniform population of alveolar macrophages (AMs), three distinct interstitial macrophage (IM) populations, three DC subtypes, and a small number of tissue-trafficking monocytes. During an inflammatory response, the monocyte population is more abundant and complex since it acquires either macrophage-like or DC-like features. All in all, studying how these cell types interact with each other, structural cells, and other leukocytes within the environment will be important to understanding their role in maintaining homeostasis and during the development of disease.
Collapse
Affiliation(s)
| | - Claudia V Jakubzick
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.
- Department of Microbiology and Immunology, University of Colorado, Denver, CO, USA.
| |
Collapse
|
33
|
Phillips BE, Garciafigueroa Y, Trucco M, Giannoukakis N. Clinical Tolerogenic Dendritic Cells: Exploring Therapeutic Impact on Human Autoimmune Disease. Front Immunol 2017; 8:1279. [PMID: 29075262 PMCID: PMC5643419 DOI: 10.3389/fimmu.2017.01279] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022] Open
Abstract
Tolerogenic dendritic cell (tDC)-based clinical trials for the treatment of autoimmune diseases are now a reality. Clinical trials are currently exploring the effectiveness of tDC to treat autoimmune diseases of type 1 diabetes mellitus, rheumatoid arthritis, multiple sclerosis (MS), and Crohn's disease. This review will address tDC employed in current clinical trials, focusing on cell characteristics, mechanisms of action, and clinical findings. To date, the publicly reported human trials using tDC indicate that regulatory lymphocytes (largely Foxp3+ T-regulatory cell and, in one trial, B-regulatory cells) are, for the most part, increased in frequency in the circulation. Other than this observation, there are significant differences in the major phenotypes of the tDC. These differences may affect the outcome in efficacy of recently launched and impending phase II trials. Recent efforts to establish a catalog listing where tDC converge and diverge in phenotype and functional outcome are an important first step toward understanding core mechanisms of action and critical "musts" for tDC to be therapeutically successful. In our view, the most critical parameter to efficacy is in vivo stability of the tolerogenic activity over phenotype. As such, methods that generate tDC that can induce and stably maintain immune hyporesponsiveness to allo- or disease-specific autoantigens in the presence of powerful pro-inflammatory signals are those that will fare better in primary endpoints in phase II clinical trials (e.g., disease improvement, preservation of autoimmunity-targeted tissue, allograft survival). We propose that pre-treatment phenotypes of tDC in the absence of functional stability are of secondary value especially as such phenotypes can dramatically change following administration, especially under dynamic changes in the inflammatory state of the patient. Furthermore, understanding the outcomes of different methods of cell delivery and sites of delivery on functional outcomes, as well as quality control variability in the functional outcomes resulting from the various approaches of generating tDC for clinical use, will inform more standardized ex vivo generation methods. An understanding of these similarities and differences, with a reference point the large number of naturally occurring tDC populations with different immune profiles described in the literature, could explain some of the expected and unanticipated outcomes of emerging tDC clinical trials.
Collapse
Affiliation(s)
- Brett Eugene Phillips
- Allegheny Health Network Institute of Cellular Therapeutics, Allegheny General Hospital, Pittsburgh, PA, United States
| | - Yesica Garciafigueroa
- Allegheny Health Network Institute of Cellular Therapeutics, Allegheny General Hospital, Pittsburgh, PA, United States
| | - Massimo Trucco
- Allegheny Health Network Institute of Cellular Therapeutics, Allegheny General Hospital, Pittsburgh, PA, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Nick Giannoukakis
- Allegheny Health Network Institute of Cellular Therapeutics, Allegheny General Hospital, Pittsburgh, PA, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
34
|
Li Y, Yu Q, Zhao W, Zhang J, Liu W, Huang M, Zeng X. Oligomeric proanthocyanidins attenuate airway inflammation in asthma by inhibiting dendritic cells maturation. Mol Immunol 2017; 91:209-217. [PMID: 28963930 DOI: 10.1016/j.molimm.2017.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 12/23/2022]
Abstract
To date, although a promising anti-inflammatory activity of oligomeric proanthocyanidins (OPCs) has been observed in asthma, the mechanism responsible for these immunomodulatory properties remains obscure. Dendritic cells (DCs) that reside in the airway have been widely perceived as an important contributor to asthma. Our study was to demonstrate OPCs' effects on maturation and immunoregulation of pulmonary CD11c+ dendritic cells (DCs). BALB/c mice were exposed to ovalbumin (OVA) to induce murine model of asthma. In addition, pulmonary DCs and bone marrow-derived DCs (BMDCs) cultures were used to evaluate impacts of OPCs on DCs function. The results obtained here indicated that OPCs treatment dramatically reduced airway inflammation, such as the infiltration of inflammatory cells and the levels of allergen-specific serum IgE and Th2 cytokines. The expression of co-stimulatory molecules especially CD86 distributed on pulmonary DCs and bone marrow-derived DCs (BMDCs) also markedly declined. The phosphorylation of cAMP responsive element-binding protein (CREB) was significantly inhibited while no changes were observed in the expression of cAMP responsive element modulator (CREM). By transferring BMDCs into the airways of naïve mice, we found that OPCs-treated DCs (DC+OVA+OPC) were much less potent in promoting CD4+ T cells proliferation than OVA-pulsed DCs (DC+OVA), followed by the ameliorated eosinophilic inflammation in airway. Our findings tailor a novel profile of OPCs in the regulation of DCs function, shedding new light on the therapeutic potential of OPCs in asthma management.
Collapse
Affiliation(s)
- Yeshan Li
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Qijun Yu
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Wenxue Zhao
- Lung Biology Center, Department of Medicine, University of California San Francisco, San Francisco, California 94143, USA
| | - Jiaxiang Zhang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Wentao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Guangzhou Road, Nanjing, Jiangsu 210017, China
| | - Mao Huang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China.
| | - Xiaoning Zeng
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
35
|
Granot T, Senda T, Carpenter DJ, Matsuoka N, Weiner J, Gordon CL, Miron M, Kumar BV, Griesemer A, Ho SH, Lerner H, Thome JJC, Connors T, Reizis B, Farber DL. Dendritic Cells Display Subset and Tissue-Specific Maturation Dynamics over Human Life. Immunity 2017; 46:504-515. [PMID: 28329707 DOI: 10.1016/j.immuni.2017.02.019] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/23/2016] [Accepted: 02/27/2017] [Indexed: 12/24/2022]
Abstract
Maturation and migration to lymph nodes (LNs) constitutes a central paradigm in conventional dendritic cell (cDC) biology but remains poorly defined in humans. Using our organ donor tissue resource, we analyzed cDC subset distribution, maturation, and migration in mucosal tissues (lungs, intestines), associated lymph nodes (LNs), and other lymphoid sites from 78 individuals ranging from less than 1 year to 93 years of age. The distribution of cDC1 (CD141hiCD13hi) and cDC2 (Sirp-α+CD1c+) subsets was a function of tissue site and was conserved between donors. We identified cDC2 as the major mature (HLA-DRhi) subset in LNs with the highest frequency in lung-draining LNs. Mature cDC2 in mucosal-draining LNs expressed tissue-specific markers derived from the paired mucosal site, reflecting their tissue-migratory origin. These distribution and maturation patterns were largely maintained throughout life, with site-specific variations. Our findings provide evidence for localized DC tissue surveillance and reveal a lifelong division of labor between DC subsets, with cDC2 functioning as guardians of the mucosa.
Collapse
Affiliation(s)
- Tomer Granot
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Takashi Senda
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Dustin J Carpenter
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Nobuhide Matsuoka
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Joshua Weiner
- Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Claire L Gordon
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Michelle Miron
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Brahma V Kumar
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Adam Griesemer
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Siu-Hong Ho
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Joseph J C Thome
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Thomas Connors
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Division of Critical Care, Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Boris Reizis
- Department of Pathology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
36
|
Abstract
Tuberculosis remains one of the greatest threats to human health. The causative bacterium, Mycobacterium tuberculosis, is acquired by the respiratory route. It is exquisitely adapted to humans and is a prototypic intracellular pathogen of macrophages, with alveolar macrophages being the primary conduit of infection and disease. However, M. tuberculosis bacilli interact with and are affected by several soluble and cellular components of the innate immune system which dictate the outcome of primary infection, most commonly a latently infected healthy human host, in whom the bacteria are held in check by the host immune response within the confines of tissue granuloma, the host histopathologic hallmark. Such individuals can develop active TB later in life with impairment in the immune system. In contrast, in a minority of infected individuals, the early host immune response fails to control bacterial growth, and progressive granulomatous disease develops, facilitating spread of the bacilli via infectious aerosols. The molecular details of the M. tuberculosis-host innate immune system interaction continue to be elucidated, particularly those occurring within the lung. However, it is clear that a number of complex processes are involved at the different stages of infection that may benefit either the bacterium or the host. In this article, we describe a contemporary view of the molecular events underlying the interaction between M. tuberculosis and a variety of cellular and soluble components and processes of the innate immune system.
Collapse
|
37
|
Pulmonary immunity to viruses. Clin Sci (Lond) 2017; 131:1737-1762. [PMID: 28667071 DOI: 10.1042/cs20160259] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/28/2022]
Abstract
Mucosal surfaces, such as the respiratory epithelium, are directly exposed to the external environment and therefore, are highly susceptible to viral infection. As a result, the respiratory tract has evolved a variety of innate and adaptive immune defenses in order to prevent viral infection or promote the rapid destruction of infected cells and facilitate the clearance of the infecting virus. Successful adaptive immune responses often lead to a functional state of immune memory, in which memory lymphocytes and circulating antibodies entirely prevent or lessen the severity of subsequent infections with the same virus. This is also the goal of vaccination, although it is difficult to vaccinate in a way that mimics respiratory infection. Consequently, some vaccines lead to robust systemic immune responses, but relatively poor mucosal immune responses that protect the respiratory tract. In addition, adaptive immunity is not without its drawbacks, as overly robust inflammatory responses may lead to lung damage and impair gas exchange or exacerbate other conditions, such as asthma or chronic obstructive pulmonary disease (COPD). Thus, immune responses to respiratory viral infections must be strong enough to eliminate infection, but also have mechanisms to limit damage and promote tissue repair in order to maintain pulmonary homeostasis. Here, we will discuss the components of the adaptive immune system that defend the host against respiratory viral infections.
Collapse
|
38
|
Oriss TB, Raundhal M, Morse C, Huff RE, Das S, Hannum R, Gauthier MC, Scholl KL, Chakraborty K, Nouraie SM, Wenzel SE, Ray P, Ray A. IRF5 distinguishes severe asthma in humans and drives Th1 phenotype and airway hyperreactivity in mice. JCI Insight 2017; 2:91019. [PMID: 28515358 PMCID: PMC5436536 DOI: 10.1172/jci.insight.91019] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/18/2017] [Indexed: 01/07/2023] Open
Abstract
Severe asthma (SA) is a significant problem both clinically and economically, given its poor response to corticosteroids (CS). We recently reported a complex type 1-dominated (IFN-γ-dominated) immune response in more than 50% of severe asthmatics despite high-dose CS treatment. Also, IFN-γ was found to be critical for increased airway hyperreactivity (AHR) in our model of SA. The transcription factor IRF5 expressed in M1 macrophages can induce a Th1/Th17 response in cocultured human T cells. Here we show markedly higher expression of IRF5 in bronchoalveolar lavage (BAL) cells of severe asthmatics as compared with that in cells from milder asthmatics or healthy controls. Using our SA mouse model, we demonstrate that lack of IRF5 in lymph node migratory DCs severely limits their ability to stimulate the generation of IFN-γ- and IL-17-producing CD4+ T cells and IRF5-/- mice subjected to the SA model displayed significantly lower IFN-γ and IL-17 responses, albeit showing a reciprocal increase in Th2 response. However, the absence of IRF5 rendered the mice responsive to CS with suppression of the heightened Th2 response. These data support the notion that IRF5 inhibition in combination with CS may be a viable approach to manage disease in a subset of severe asthmatics.
Collapse
Affiliation(s)
- Timothy B. Oriss
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Mahesh Raundhal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Department of Immunology, and
| | - Christina Morse
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Rachael E. Huff
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Sudipta Das
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Rachel Hannum
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Marc C. Gauthier
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kathryn L. Scholl
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | | | - Seyed M. Nouraie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Sally E. Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Department of Immunology, and
- University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Prabir Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Department of Immunology, and
- University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Department of Immunology, and
- University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
39
|
Baharom F, Rankin G, Blomberg A, Smed-Sörensen A. Human Lung Mononuclear Phagocytes in Health and Disease. Front Immunol 2017; 8:499. [PMID: 28507549 PMCID: PMC5410584 DOI: 10.3389/fimmu.2017.00499] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/11/2017] [Indexed: 12/17/2022] Open
Abstract
The lungs are vulnerable to attack by respiratory insults such as toxins, allergens, and pathogens, given their continuous exposure to the air we breathe. Our immune system has evolved to provide protection against an array of potential threats without causing collateral damage to the lung tissue. In order to swiftly detect invading pathogens, monocytes, macrophages, and dendritic cells (DCs)-together termed mononuclear phagocytes (MNPs)-line the respiratory tract with the key task of surveying the lung microenvironment in order to discriminate between harmless and harmful antigens and initiate immune responses when necessary. Each cell type excels at specific tasks: monocytes produce large amounts of cytokines, macrophages are highly phagocytic, whereas DCs excel at activating naïve T cells. Extensive studies in murine models have established a division of labor between the different populations of MNPs at steady state and during infection or inflammation. However, a translation of important findings in mice is only beginning to be explored in humans, given the challenge of working with rare cells in inaccessible human tissues. Important progress has been made in recent years on the phenotype and function of human lung MNPs. In addition to a substantial population of alveolar macrophages, three subsets of DCs have been identified in the human airways at steady state. More recently, monocyte-derived cells have also been described in healthy human lungs. Depending on the source of samples, such as lung tissue resections or bronchoalveolar lavage, the specific subsets of MNPs recovered may differ. This review provides an update on existing studies investigating human respiratory MNP populations during health and disease. Often, inflammatory MNPs are found to accumulate in the lungs of patients with pulmonary conditions. In respiratory infections or inflammatory diseases, this may contribute to disease severity, but in cancer patients this may improve clinical outcomes. By expanding on this knowledge, specific lung MNPs may be targeted or modulated in order to attain favorable responses that can improve preventive or treatment strategies against respiratory infections, lung cancer, or lung inflammatory diseases.
Collapse
Affiliation(s)
- Faezzah Baharom
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Gregory Rankin
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Anna Smed-Sörensen
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
40
|
Lyons-Cohen MR, Thomas SY, Cook DN, Nakano H. Precision-cut Mouse Lung Slices to Visualize Live Pulmonary Dendritic Cells. J Vis Exp 2017. [PMID: 28448013 DOI: 10.3791/55465] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inhalation of allergens and pathogens elicits multiple changes in a variety of immune cell types in the lung. Flow cytometry is a powerful technique for quantitative analysis of cell surface proteins on immune cells, but it provides no information on the localization and migration patterns of these cells within the lung. Similarly, chemotaxis assays can be performed to study the potential of cells to respond to chemotactic factors in vitro, but these assays do not reproduce the complex environment of the intact lung. In contrast to these aforementioned techniques, the location of individual cell types within the lung can be readily visualized by generating Precision-cut Lung Slices (PCLS), staining them with commercially available, fluorescently tagged antibodies, and visualizing the sections by confocal microscopy. PCLS can be used for both live and fixed lung tissue, and the slices can encompass areas as large as a cross section of an entire lobe. We have used this protocol to successfully visualize the location of a wide variety of cell types in the lung, including distinct types of dendritic cells, macrophages, neutrophils, T cells and B cells, as well as structural cells such as lymphatic, endothelial, and epithelial cells. The ability to visualize cellular interactions, such as those between dendritic cells and T cells, in live, three-dimensional lung tissue, can reveal how cells move within the lung and interact with one another at steady state and during inflammation. Thus, when used in combination with other procedures, such as flow cytometry and quantitative PCR, PCLS can contribute to a comprehensive understanding of cellular events that underlie allergic and inflammatory diseases of the lung.
Collapse
Affiliation(s)
- Miranda R Lyons-Cohen
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH
| | - Seddon Y Thomas
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH
| | - Donald N Cook
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH
| | - Hideki Nakano
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH;
| |
Collapse
|
41
|
Duan MC, Zhang JQ, Liang Y, Liu GN, Xiao J, Tang HJ, Liang Y. Infiltration of IL-17-Producing T Cells and Treg Cells in a Mouse Model of Smoke-Induced Emphysema. Inflammation 2017; 39:1334-44. [PMID: 27150336 DOI: 10.1007/s10753-016-0365-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive and irreversible chronic inflammatory disease associated with the accumulation of activated T cells. To date, there is little information concerning the intrinsic association among Th17, Tc17, and regulatory T (Treg) cells in COPD. The objective of this study was to investigate the variation of lungs CD4(+)Foxp3(+) Treg cells and IL-17-producing CD4 and CD8 (Th17 and Tc17) lymphocytes in mice with cigarette-induced emphysema. Groups of mice were exposed to cigarette smoke or room air. At weeks 12 and 24, mice were sacrificed to observe histological changes by HE stain. The frequencies of Th17 (CD4(+)IL-17(+)T), Tc17 (CD8(+)IL-17(+)T), and Treg (CD4(+)Foxp3(+)T) cells in lungs from these mice were analyzed by flow cytometry. The mRNA levels of orphan nuclear receptor ROR γt and Foxp3 were performed by real-time quantitative polymerase chain reaction. The protein levels of interleukin-17 (IL-17), IL-6, IL-10, and transforming growth factor-beta (TGF-β1) were measured by enzyme-linked immunosorbent assay. Cigarette smoke caused substantial enlargement of the air spaces accompanied by the destruction of the normal alveolar architecture and led to emphysema. The frequencies of Th17 and Tc17 cells, as well as the expressions of IL-6, IL-17, TGF-β1, and ROR γt were greater in the lungs of cigarette smoke (CS)-exposed mice, particularly in the 24-week CS-exposed mice. The frequencies of Treg cells and the expressions of IL-10 and Foxp3 were lower in CS-exposed mice compared to control group. More important, the frequencies of Tregs were negatively correlated with Th17 cells and with Tc17 cells. Interestingly, a significant portion of the cells that infiltrate the lungs was skewed towards a Tc17 phenotype. Our findings suggest the contribution of Th17, Tc17, and Treg cells in the pathogenesis of COPD. Rebalance of these cells will be helpful for developing and refining the new immunological therapies for COPD.
Collapse
Affiliation(s)
- Min-Chao Duan
- Department of Respiratory Medicine, The Eighth People's Hospital of Nanning, Nanning, Guangxi, 530001, China
- Department of Respiratory Medicine, The First Afiltrated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jian-Quan Zhang
- Department of Respiratory Medicine, The First Afiltrated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Yue Liang
- Department of Respiratory Medicine, The Eighth People's Hospital of Nanning, Nanning, Guangxi, 530001, China
| | - Guang-Nan Liu
- Department of Respiratory Medicine, The First Afiltrated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jin Xiao
- Department of Respiratory Medicine, The Eighth People's Hospital of Nanning, Nanning, Guangxi, 530001, China
| | - Hai-Juan Tang
- Department of Respiratory Medicine, The First Afiltrated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yi Liang
- Department of Respiratory Medicine, The First Afiltrated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
42
|
Nakano H, Lyons-Cohen MR, Whitehead GS, Nakano K, Cook DN. Distinct functions of CXCR4, CCR2, and CX3CR1 direct dendritic cell precursors from the bone marrow to the lung. J Leukoc Biol 2017; 101:1143-1153. [PMID: 28148720 DOI: 10.1189/jlb.1a0616-285r] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 12/22/2022] Open
Abstract
Precursors of dendritic cells (pre-DCs) arise in the bone marrow (BM), egress to the blood, and finally migrate to peripheral tissue, where they differentiate to conventional dendritic cells (cDCs). Upon their activation, antigen-bearing cDCs migrate from peripheral tissue to regional lymph nodes (LNs) in a manner dependent on the chemokine receptor, CCR7. To maintain immune homeostasis, these departing cDCs must be replenished by new cDCs that develop from pre-DCs, but the molecular signals that direct pre-DC trafficking from the BM to the blood and peripheral tissues remain poorly understood. In the present study, we found that pre-DCs express the chemokine receptors CXCR4, CCR2, and CX3CR1, and that each of these receptors has a distinct role in pre-DC trafficking. Flow cytometric analysis of pre-DCs lacking CXCR4 revealed that this receptor is required for the retention of pre-DCs in the BM. Analyses of mice lacking CCR2 or CX3CR1, or both, revealed that they promote pre-DC migration to the lung at steady state. CCR2, but not CX3CR1, was required for pre-DC migration to the inflamed lung. Thus, these multiple chemokine receptors cooperate in a step-wise fashion to coordinate the trafficking of pre-DCs from the BM to the circulation and peripheral tissues.
Collapse
Affiliation(s)
- Hideki Nakano
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Miranda R Lyons-Cohen
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Gregory S Whitehead
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Keiko Nakano
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Donald N Cook
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
43
|
Abstract
The respiratory immune response consists of multiple tiers of cellular responses that are engaged in a sequential manner in order to control infections. The stepwise engagement of effector functions with progressively increasing host fitness costs limits tissue damage. In addition, specific mechanisms are in place to promote disease tolerance in response to respiratory infections. Environmental factors, obesity and the ageing process can alter the efficiency and regulation of this tiered response, increasing pathology and mortality as a result. In this Review, we describe the cell types that coordinate pathogen clearance and tissue repair through the serial secretion of cytokines, and discuss how the environment and comorbidity influence this response.
Collapse
|
44
|
A Triple Co-Culture Model of the Human Respiratory Tract to Study Immune-Modulatory Effects of Liposomes and Virosomes. PLoS One 2016; 11:e0163539. [PMID: 27685460 PMCID: PMC5042471 DOI: 10.1371/journal.pone.0163539] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/09/2016] [Indexed: 12/19/2022] Open
Abstract
The respiratory tract with its ease of access, vast surface area and dense network of antigen-presenting cells (APCs) represents an ideal target for immune-modulation. Bio-mimetic nanocarriers such as virosomes may provide immunomodulatory properties to treat diseases such as allergic asthma. In our study we employed a triple co-culture model of epithelial cells, macrophages and dendritic cells to simulate the human airway barrier. The epithelial cell line 16HBE was grown on inserts and supplemented with human blood monocyte-derived macrophages (MDMs) and dendritic cells (MDDCs) for exposure to influenza virosomes and liposomes. Additionally, primary human nasal epithelial cells (PHNEC) and EpCAM+ epithelial progenitor cell mono-cultures were utilized to simulate epithelium from large and smaller airways, respectively. To assess particle uptake and phenotype change, cell cultures were analyzed by flow cytometry and pro-inflammatory cytokine concentrations were measured by ELISA. All cell types internalized virosomes more efficiently than liposomes in both mono- and co-cultures. APCs like MDMs and MDDCs showed the highest uptake capacity. Virosome and liposome treatment caused a moderate degree of activation in MDDCs from mono-cultures and induced an increased cytokine production in co-cultures. In epithelial cells, virosome uptake was increased compared to liposomes in both mono- and co-cultures with EpCAM+ epithelial progenitor cells showing highest uptake capacity. In conclusion, all cell types successfully internalized both nanocarriers with virosomes being taken up by a higher proportion of cells and at a higher rate inducing limited activation of MDDCs. Thus virosomes may represent ideal carrier antigen systems to modulate mucosal immune responses in the respiratory tract without causing excessive inflammatory changes.
Collapse
|
45
|
Kuang LJ, Deng TT, Wang Q, Qiu SL, Liang Y, He ZY, Zhang JQ, Bai J, Li MH, Deng JM, Liu GN, Liu JF, Zhong XN. Dendritic cells induce Tc1 cell differentiation via the CD40/CD40L pathway in mice after exposure to cigarette smoke. Am J Physiol Lung Cell Mol Physiol 2016; 311:L581-9. [PMID: 27448664 DOI: 10.1152/ajplung.00002.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/20/2016] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells and CD8(+) T cells participate in the pathology of chronic obstructive pulmonary disease, including emphysema, but little is known of the involvement of the CD40/CD40L pathway. We investigated the role of the CD40/CD40L pathway in Tc1 cell differentiation induced by dendritic cells in a mouse model of emphysema, and in vitro. C57BL/6J wild-type and CD40(-/-) mice were exposed to cigarette smoke (CS) or not (control), for 24 wk. In vitro experiments involved wild-type and CD40(-/-) dendritic cells treated with CS extract (CSE) or not. Compared with the control groups, the CS mice (both wild type and CD40(-/-)) had a greater percentage of lung dendritic cells and higher levels of major histocompatability complex (MHC) class I molecules and costimulatory molecules CD40 and CD80. Relative to the CS CD40(-/-) mice, the CS wild type showed greater signs of lung damage and Tc1 cell differentiation. In vitro, the CSE-treated wild-type cells evidenced more cytokine release (IL-12/p70) and Tc1 cell differentiation than did the CSE-treated CD40(-/-) cells. Exposure to cigarette smoke increases the percentage of lung dendritic cells and promotes Tc1 cell differentiation via the CD40/CD40L pathway. Blocking the CD40/CD40L pathway may suppress development of emphysema in mice exposed to cigarette smoke.
Collapse
Affiliation(s)
- Liang-Jian Kuang
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Ting-Ting Deng
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Qin Wang
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Shi-Lin Qiu
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Yi Liang
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Zhi-Yi He
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Jian-Quan Zhang
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Jing Bai
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Mei-Hua Li
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Jing-Min Deng
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Guang-Nan Liu
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Ji-Feng Liu
- Department of Respiratory Medicine, Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou, Guangxi, China
| | - Xiao-Ning Zhong
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| |
Collapse
|
46
|
da Costa Souza P, Parra ER, Atanazio MJ, da Silva OB, Noleto GS, Ab'Saber AM, de Morais Fernezlian S, Takagaki T, Capelozzi VL. Different morphology, stage and treatment affect immune cell infiltration and long-term outcome in patients with non-small-cell lung carcinoma. Histopathology 2016; 61:587-96. [PMID: 22716510 DOI: 10.1111/j.1365-2559.2012.04318.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Development of effective immune-based therapies for patients with non-small-cell lung carcinoma (NSCLC) depends on an accurate characterization of complex interactions that occur between immune cells and the tumour environment. METHODS AND RESULTS Innate and adaptive immune responses were evaluated in relation to prognosis in 65 patients with surgically excised NSCLC. Immunohistochemistry and morphometry were used to determine the abundance and distribution of immune cells. We found low numbers of immune cells and levels of cytokines in the tumour environment when compared with surrounding parenchyma. Smoking was associated inversely with the adaptive immune response and directly with innate immunity. We observed a prominent adaptive immune response in squamous cell carcinomas (SCC) but greater innate immune responses in adenocarcinomas and large cell carcinomas. Cox model analysis showed a low risk of death for smoking <41 packs/year, N0 tambour stage, squamous carcinoma, CD4(+) > 16.81% and macrophages/monocytes >4.5%. Collectively, the data indicate that in NSCLC there is not a substantive local immune cell infiltrate within the tumour. CONCLUSION Although immune cell infiltration is limited in NSCLC it appears to have an impact on prognosis and this may be of relevance for new immunotherapeutic approaches.
Collapse
Affiliation(s)
- Paola da Costa Souza
- Department of PathologyDiscipline of Oncology, Faculdade de Medicina da Universidade de São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hilligan KL, Connor LM, Schmidt AJ, Ronchese F. Activation-Induced TIM-4 Expression Identifies Differential Responsiveness of Intestinal CD103+ CD11b+ Dendritic Cells to a Mucosal Adjuvant. PLoS One 2016; 11:e0158775. [PMID: 27379516 PMCID: PMC4933342 DOI: 10.1371/journal.pone.0158775] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/21/2016] [Indexed: 12/23/2022] Open
Abstract
Macrophage and dendritic cell (DC) populations residing in the intestinal lamina propria (LP) are highly heterogeneous and have disparate yet collaborative roles in the promotion of adaptive immune responses towards intestinal antigen. Under steady-state conditions, macrophages are efficient at acquiring antigen but are non-migratory. In comparison, intestinal DC are inefficient at antigen uptake but migrate to the mesenteric lymph nodes (mLN) where they present antigen to T cells. Whether such distinction in the roles of DC and macrophages in the uptake and transport of antigen is maintained under immunostimulatory conditions is less clear. Here we show that the scavenger and phosphatidylserine receptor T cell Immunoglobulin and Mucin (TIM)-4 is expressed by the majority of LP macrophages at steady-state, whereas DC are TIM-4 negative. Oral treatment with the mucosal adjuvant cholera toxin (CT) induces expression of TIM-4 on a proportion of CD103+ CD11b+ DC in the LP. TIM-4+ DC selectively express high levels of co-stimulatory molecules after CT treatment and are detected in the mLN a short time after appearing in the LP. Importantly, intestinal macrophages and DC expressing TIM-4 are more efficient than their TIM-4 negative counterparts at taking up apoptotic cells and soluble antigen ex vivo. Taken together, our results show that CT induces phenotypic changes to migratory intestinal DC that may impact their ability to take up local antigens and in turn promote the priming of mucosal immunity.
Collapse
Affiliation(s)
- Kerry L. Hilligan
- Malaghan Institute of Medical Research, Wellington, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Lisa M. Connor
- Malaghan Institute of Medical Research, Wellington, New Zealand
- * E-mail:
| | | | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
48
|
Steiner S, Bisig C, Petri-Fink A, Rothen-Rutishauser B. Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms. Arch Toxicol 2016; 90:1541-53. [PMID: 27165416 PMCID: PMC4894930 DOI: 10.1007/s00204-016-1736-5] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 04/28/2016] [Indexed: 12/03/2022]
Abstract
Diesel engine emissions are among the most prevalent anthropogenic pollutants worldwide, and with the growing popularity of diesel-fueled engines in the private transportation sector, they are becoming increasingly widespread in densely populated urban regions. However, a large number of toxicological studies clearly show that diesel engine emissions profoundly affect human health. Thus the interest in the molecular and cellular mechanisms underlying these effects is large, especially concerning the nature of the components of diesel exhaust responsible for the effects and how they could be eliminated from the exhaust. This review describes the fundamental properties of diesel exhaust as well as the human respiratory tract and concludes that adverse health effects of diesel exhaust not only emerge from its chemical composition, but also from the interplay between its physical properties, the physiological and cellular properties, and function of the human respiratory tract. Furthermore, the primary molecular and cellular mechanisms triggered by diesel exhaust exposure, as well as the fundamentals of the methods for toxicological testing of diesel exhaust toxicity, are described. The key aspects of adverse effects induced by diesel exhaust exposure described herein will be important for regulators to support or ban certain technologies or to legitimate incentives for the development of promising new technologies such as catalytic diesel particle filters.
Collapse
Affiliation(s)
- Sandro Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Christoph Bisig
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | | |
Collapse
|
49
|
Svedova J, Tsurutani N, Liu W, Khanna KM, Vella AT. TNF and CD28 Signaling Play Unique but Complementary Roles in the Systemic Recruitment of Innate Immune Cells after Staphylococcus aureus Enterotoxin A Inhalation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:4510-21. [PMID: 27183621 PMCID: PMC4875807 DOI: 10.4049/jimmunol.1600113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/27/2016] [Indexed: 01/12/2023]
Abstract
Staphylococcus aureus enterotoxins cause debilitating systemic inflammatory responses, but how they spread systemically and trigger inflammatory cascade is unclear. In this study, we showed in mice that after inhalation, Staphylococcus aureus enterotoxin A rapidly entered the bloodstream and induced T cells to orchestrate systemic recruitment of inflammatory monocytes and neutrophils. To study the mechanism used by specific T cells that mediate this process, a systems approach revealed inducible and noninducible pathways as potential targets. It was found that TNF caused neutrophil entry into the peripheral blood, whereas CD28 signaling, but not TNF, was needed for chemotaxis of inflammatory monocytes into blood and lymphoid tissue. However, both pathways triggered local recruitment of neutrophils into lymph nodes. Thus, our findings revealed a dual mechanism of monocyte and neutrophil recruitment by T cells relying on overlapping and nonoverlapping roles for the noninducible costimulatory receptor CD28 and the inflammatory cytokine TNF. During sepsis, there might be clinical value in inhibiting CD28 signaling to decrease T cell-mediated inflammation and recruitment of innate cells while retaining bioactive TNF to foster neutrophil circulation.
Collapse
Affiliation(s)
- Julia Svedova
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030
| | - Naomi Tsurutani
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030
| | - Wenhai Liu
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030
| | - Kamal M Khanna
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030
| |
Collapse
|
50
|
Papazian D, Würtzen PA, Hansen SWK. Polarized Airway Epithelial Models for Immunological Co-Culture Studies. Int Arch Allergy Immunol 2016; 170:1-21. [PMID: 27240620 DOI: 10.1159/000445833] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Epithelial cells line all cavities and surfaces throughout the body and play a substantial role in maintaining tissue homeostasis. Asthma and other atopic diseases are increasing worldwide and allergic disorders are hypothesized to be a consequence of a combination of dysregulation of the epithelial response towards environmental antigens and genetic susceptibility, resulting in inflammation and T cell-derived immune responses. In vivo animal models have long been used to study immune homeostasis of the airways but are limited by species restriction and lack of exposure to a natural environment of both potential allergens and microflora. Limitations of these models prompt a need to develop new human cell-based in vitro models. A variety of co-culture systems for modelling the respiratory epithelium exist and are available to the scientific community. The models have become increasingly sophisticated and specific care needs to be taken with regard to cell types, culture medium and culture models, depending on the aim of the study. Although great strides have been made, there is still a need for further optimization, and optimally also for standardization, in order for in vitro co-culture models to become powerful tools in the discovery of key molecules dictating immunity and/or tolerance, and for understanding the complex interplay that takes place between mucosa, airway epithelium and resident or infiltrating immune cells. This review focuses on current knowledge and the advantages and limitations of the different cell types and culture methods used in co-culture models of the human airways.
Collapse
Affiliation(s)
- Dick Papazian
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|