1
|
Jarjour NN, Dalzell TS, Maurice NJ, Wanhainen KM, Peng C, O'Flanagan SD, DePauw TA, Block KE, Valente WJ, Ashby KM, Masopust D, Jameson SC. Collaboration between interleukin-7 and -15 enables adaptation of tissue-resident and circulating memory CD8 + T cells to cytokine deficiency. Immunity 2025; 58:616-631.e5. [PMID: 40023156 DOI: 10.1016/j.immuni.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/25/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025]
Abstract
Interleukin-7 (IL-7) is considered a critical regulator of memory CD8+ T cell homeostasis. However, this is primarily based on circulating memory populations, and the cell-intrinsic requirement for IL-7 signaling during memory homeostasis has not been directly tested. Here, we addressed the role for IL-7Rα in circulating and resident memory CD8+ T cells (Trm) after their establishment. We found that inducible Il7ra deletion had only a modest effect on persistence of circulating memory and Trm subsets, causing reduced basal proliferation. Loss of IL-15 signaling imposed heightened IL-7Rα dependence on memory CD8+ T cells, including Trm cells described as IL-15 independent. In the absence of IL-15 signaling, IL-7Rα was elevated, and loss of IL-7Rα signaling reduced IL-15-elicited proliferation, suggesting crosstalk between these pathways in memory CD8+ T cells. Thus, across subsets and tissues, IL-7 and IL-15 act in concert to support memory CD8+ T cells, conferring resilience to altered availability of either cytokine.
Collapse
Affiliation(s)
- Nicholas N Jarjour
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Talia S Dalzell
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicholas J Maurice
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kelsey M Wanhainen
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Changwei Peng
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen D O'Flanagan
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Taylor A DePauw
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katharine E Block
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - William J Valente
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - K Maude Ashby
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Masopust
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen C Jameson
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Bhatt B, Kumar K, Shi H, Ganesan D, Anazodo F, Rathakrishnan A, Zhu H, Wanna A, Jiang C, Jayavelu T, Lokeshwar VB, Pacholczyk R, Munn DH, Sheridan BS, Moskophidis D, Li H, Singh N. UFL1 promotes survival and function of virtual memory CD8 T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:vkae042. [PMID: 40073095 PMCID: PMC11952874 DOI: 10.1093/jimmun/vkae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/30/2024] [Indexed: 03/14/2025]
Abstract
In naïve mice, a fraction of CD8 T cells displaying high affinity for self-MHC peptide complexes develop into virtual memory T (TVM) cells. Due to self-reactivity, TVM cells are exposed to persistent antigenic stimulation, a condition known to induce T cell exhaustion. However, TVM cells do not exhibit characteristics similar to exhausted CD8 T (TEX) cells. Here, we tested the role of the UFL1, E3 ligase of the ufmylation pathway in TVM cells. We show that UFL1 prevents the acquisition of epigenetic, transcriptional, and phenotypic changes in TVM cells that are similar to TEX cells and thus promote their survival and function. UFL1-deficient TVM cells failed to protect mice against Listeria infection. Epigenetic analysis showed higher BATF activity in UFL1-deficient TVM cells. Deletion of BATF and not PD1 decreased inhibitory molecules expression and restored the survival and function of UFL1-deficient TVM cells. Our findings demonstrate a key role of UFL1 in inhibiting the exhaustion of TVM cells and promoting their survival and function.
Collapse
Affiliation(s)
- Brinda Bhatt
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Kunal Kumar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Huidong Shi
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Immunology Center of Georgia, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Dhasarathan Ganesan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Francis Anazodo
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Aravind Rathakrishnan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Huabin Zhu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Andrew Wanna
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Chen Jiang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Tamilselvan Jayavelu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Vinata Bal Lokeshwar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Rafal Pacholczyk
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - David H Munn
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Immunology Center of Georgia, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Brian S Sheridan
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Demetrius Moskophidis
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Immunology Center of Georgia, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
3
|
Jarjour NN, Dalzell TS, Maurice NJ, Wanhainen KM, Peng C, DePauw TA, Block KE, Valente WJ, Ashby KM, Masopust D, Jameson SC. Collaboration between IL-7 and IL-15 enables adaptation of tissue-resident and circulating memory CD8 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596695. [PMID: 38895229 PMCID: PMC11185530 DOI: 10.1101/2024.05.31.596695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Interleukin-7 (IL-7) is considered a critical regulator of memory CD8+ T cell homeostasis, but this is primarily based on analysis of circulating and not tissue-resident memory (TRM) subsets. Furthermore, the cell-intrinsic requirement for IL-7 signaling during memory homeostasis has not been directly tested. Using inducible deletion, we found that Il7ra loss had only a modest effect on persistence of circulating memory and TRM subsets and that IL-7Rα was primarily required for normal basal proliferation. Loss of IL-15 signaling imposed heightened IL-7Rα dependence on memory CD8+ T cells, including TRM populations previously described as IL-15-independent. In the absence of IL-15 signaling, IL-7Rα was upregulated, and loss of IL-7Rα signaling reduced proliferation in response to IL-15, suggesting cross-regulation in memory CD8+ T cells. Thus, across subsets and tissues, IL-7 and IL-15 act in concert to support memory CD8+ T cells, conferring resilience to altered availability of either cytokine.
Collapse
Affiliation(s)
- Nicholas N. Jarjour
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Talia S. Dalzell
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicholas J. Maurice
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kelsey M. Wanhainen
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Changwei Peng
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Present address: Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA 02115, USA
| | - Taylor A. DePauw
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katharine E. Block
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - William J. Valente
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - K. Maude Ashby
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Masopust
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen C. Jameson
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Lead contact
| |
Collapse
|
4
|
Lee H, Haque S, Gupta R, Kolitz JE, Allen SL, Rai K, Chiorazzi N, Mongini PKA. BCL2 Protein Progressively Declines during Robust CLL Clonal Expansion: Potential Impact on Venetoclax Clinical Efficacy and Insights on Mechanism. LYMPHATICS 2024; 2:50-78. [PMID: 39664277 PMCID: PMC11632909 DOI: 10.3390/lymphatics2020005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
CLL B cells express elevated pro-survival BCL2, and its selective inhibitor, venetoclax, significantly reduces leukemic cell load, leading to clinical remission. Nonetheless, relapses occur. This study evaluates the hypothesis that progressively diminished BCL2 protein in cycling CLL cells within patient lymph node niches contributes to relapse. Using CFSE-labeled, purified CLL populations known to respond with vigorous cycling in d6 cultures stimulated with TLR9-activating ODN (oligodeoxynucleotide) + IL15, we show that BCL2 protein progressively declines during consecutive cell divisions. In contrast, MCL1 and survivin are maintained/slightly elevated during cycling. Delayed pulsing of quiescent and activated CLL cultures with selective inhibitors of BCL2 or survivin revealed selective targeting of noncycling and cycling populations, respectively, raising implications for therapy. To address the hypothesis that BCL2-repressive miRs (miR15a/miR16-1), encoded in Chr13, are mechanistically involved, we compared BCL2 protein levels within ODN + IL15-stimulated CLL cells, with/without del(13q), yielding results suggesting these miRs contribute to BCL2 reduction. In support, within ODN-primed CLL cells, an IL15-driven STAT5/PI-3K pathway (required for vigorous cycling) triggers elevated p53 TF protein known to directly activate the miR15a/miR16-1 locus. Furthermore, IL15 signaling elicits the repression of BCL2 mRNA within 24 h. Additional comparisons of del(13q)+ and del(13q)-/- cohorts for elevated p53 TF expression during cycling suggest that a documented miR15a/miR16-1-mediated negative feedback loop for p53 synthesis is active during cycling. Findings that robust CLL cycling associates with progressively decreasing BCL2 protein that directly correlates with decreasing venetoclax susceptibility, combined with past findings that these cycling cells have the greatest potential for activation-induced cytosine deaminase (AICDA)-driven mutations, suggest that venetoclax treatment should be accompanied by modalities that selectively target the cycling compartment without eliciting further mutations. The employment of survivin inhibitors might be such an approach.
Collapse
Affiliation(s)
- Hyunjoo Lee
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Shabirul Haque
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Rashmi Gupta
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Jonathan E. Kolitz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Steven L. Allen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kanti Rai
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Northwell Health Cancer Institute, Lake Success, NY 11042, USA
| | - Nicholas Chiorazzi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Northwell Health Cancer Institute, Lake Success, NY 11042, USA
| | - Patricia K. A. Mongini
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
5
|
Sprent J, Boyman O. Optimising IL-2 for Cancer Immunotherapy. Immune Netw 2024; 24:e5. [PMID: 38455463 PMCID: PMC10917570 DOI: 10.4110/in.2024.24.e5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 03/09/2024] Open
Abstract
The key role of T cells in cancer immunotherapy is well established and is highlighted by the remarkable capacity of Ab-mediated checkpoint blockade to overcome T-cell exhaustion and amplify anti-tumor responses. However, total or partial tumor remission following checkpoint blockade is still limited to only a few types of tumors. Hence, concerted attempts are being made to devise new methods for improving tumor immunity. Currently, much attention is being focused on therapy with IL-2. This cytokine is a powerful growth factor for T cells and optimises their effector functions. When used at therapeutic doses for cancer treatment, however, IL-2 is highly toxic. Nevertheless, recent work has shown that modifying the structure or presentation of IL-2 can reduce toxicity and lead to effective anti-tumor responses in synergy with checkpoint blockade. Here, we review the complex interaction of IL-2 with T cells: first during normal homeostasis, then during responses to pathogens, and finally in anti-tumor responses.
Collapse
Affiliation(s)
- Jonathan Sprent
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
- St. Vincent’s Clinical School, University of New South Wales, Sydney 1466, Australia
- Menzies Institute of Medical Research, Hobart 7000, Australia
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Zurich 8091, Switzerland
- Faculty of Medicine and Faculty of Science, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
6
|
Kubota N, Tanaka R, Ichimura Y, Konishi R, Tso JY, Tsurushita N, Nomura T, Okiyama N. Blockade of CD122 on memory T cells in the skin suppresses sclerodermatous graft-versus-host disease. J Dermatol Sci 2023; 109:127-135. [PMID: 36966029 DOI: 10.1016/j.jdermsci.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/05/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND Antigen-stimulated naïve T cells differentiate into effector and memory T cells, of which resident memory T (TRM) cells reside permanently in organ tissues. Involvement of TRM cells has been indicated in pathological conditions of various skin diseases. CD122, which is the β chain subunit of interleukin (IL)- 2 and IL-15 receptors, is expressed on immune cells including TRM cells. OBJECTIVE To investigate whether CD122 signaling in skin CD8+ TRM cells mediates the development of mucocutaneous graft-versus-host disease (GVHD). METHODS We used a genetically modified mouse expressing a membrane-bound form of chicken ovalbumin (OVA) under the control of the keratin 14 promoter, which develops GVHD-like erosive mucocutaneous disease resulting in sclerodermatous disease after transfer of OVA-specific T cell-receptor-transgenic CD8+ OT-I cells. Mice with mucocutaneous GVHD were treated with an anti-CD122 blocking antibody. RESULTS Administration of an anti-CD122 blocking antibody suppresses the development of acute/chronic GVHD-like mucocutaneous disease in our murine model via the reduction of CD122-expressing memory CD8+ T cells, including skin, memory autoaggressive CD8+ T cells. Moreover, blockade of CD122, even after the establishment of acute GVHD, inhibited the development of chronic GVHD-like sclerodermatous disease via the reduction of epidermal and dermal TRM autoaggressive CD8+ T cells. CONCLUSION Skin memory CD8+ T cells in particular mediate the development of mucocutaneous GVHD, and blockade of CD122 may be an effective treatment strategy, especially for sclerodermatous GVHD.
Collapse
Affiliation(s)
- Noriko Kubota
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Japan
| | - Ryota Tanaka
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Japan; Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Yuki Ichimura
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Japan; Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Risa Konishi
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Japan; Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | | | | | - Toshifumi Nomura
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Japan
| | - Naoko Okiyama
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.
| |
Collapse
|
7
|
Choi H, Kim Y, Jung YW. The Function of Memory CD8+ T Cells in Immunotherapy for Human Diseases. Immune Netw 2023; 23:e10. [PMID: 36911798 PMCID: PMC9995995 DOI: 10.4110/in.2023.23.e10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 03/07/2023] Open
Abstract
Memory T (Tm) cells protect against Ags that they have previously contacted with a fast and robust response. Therefore, developing long-lived Tm cells is a prime goal for many vaccines and therapies to treat human diseases. The remarkable characteristics of Tm cells have led scientists and clinicians to devise methods to make Tm cells more useful. Recently, Tm cells have been highlighted for their role in coronavirus disease 2019 vaccines during the ongoing global pandemic. The importance of Tm cells in cancer has been emerging. However, the precise characteristics and functions of Tm cells in these diseases are not completely understood. In this review, we summarize the known characteristics of Tm cells and their implications in the development of vaccines and immunotherapies for human diseases. In addition, we propose to exploit the beneficial characteristics of Tm cells to develop strategies for effective vaccines and overcome the obstacles of immunotherapy.
Collapse
Affiliation(s)
- Hanbyeul Choi
- Department of Pharmacy, Korea University, Sejong 30019, Korea
| | - Yeaji Kim
- Department of Pharmacy, Korea University, Sejong 30019, Korea
| | - Yong Woo Jung
- Department of Pharmacy, Korea University, Sejong 30019, Korea
| |
Collapse
|
8
|
Responsiveness to interleukin-15 therapy is shared between tissue-resident and circulating memory CD8 + T cell subsets. Proc Natl Acad Sci U S A 2022; 119:e2209021119. [PMID: 36260745 PMCID: PMC9618124 DOI: 10.1073/pnas.2209021119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interleukin-15 (IL-15) is often considered a central regulator of memory CD8+ T cells, based primarily on studies of recirculating subsets. However, recent work identified IL-15-independent CD8+ T cell memory populations, including tissue-resident memory CD8+ T cells (TRM) in some nonlymphoid tissues (NLTs). Whether this reflects the existence of IL-15-insensitive memory CD8+ T cells is unclear. We report that IL-15 complexes (IL-15c) stimulate rapid proliferation and expansion of both tissue-resident and circulating memory CD8+ T cell subsets across lymphoid and nonlymphoid tissues with varying magnitude by tissue and memory subset, in some sites correlating with differing levels of the IL-2Rβ. This was conserved for memory CD8+ T cells recognizing distinct antigens and elicited by different pathogens. Following IL-15c-induced expansion, divided cells contracted to baseline numbers and only slowly returned to basal proliferation, suggesting a mechanism to transiently amplify memory populations. Through parabiosis, we showed that IL-15c drive local proliferation of TRM, with a degree of recruitment of circulating cells to some NLTs. Hence, irrespective of homeostatic IL-15 dependence, IL-15 sensitivity is a defining feature of memory CD8+ T cell populations, with therapeutic potential for expansion of TRM and other memory subsets in an antigen-agnostic and temporally controlled fashion.
Collapse
|
9
|
Waldmann TA, Waldmann R, Lin JX, Leonard WJ. The implications of IL-15 trans-presentation on the immune response. Adv Immunol 2022; 156:103-132. [PMID: 36410873 DOI: 10.1016/bs.ai.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Interleukin-15 is a pleiotropic cytokine type I four alpha-helical bundle cytokine that along with IL-2, IL-4, IL-7, IL-9, and IL-21 shares the common cytokine receptor γ chain, γc. IL-15 is vital for the development, survival, and expansion of natural killer cells and for the development of CD8+ memory T cells. Whereas other family γc cytokines signal by directly binding to their target cells, IL-15 is distinctive in that it binds to IL-15Rα, a sushi domain containing binding protein that is expressed on a number of cell types, including monocytes and dendritic cells as well as T cells, and then is trans-presented to responding cells that express IL-2Rβ and γc. This distinctive mechanism for IL-15 relates to its role in signaling in the context of cell-cell interactions and signaling synapses. The actions of IL-15 and ways of manipulating its actions to potential therapeutic benefit are discussed.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
10
|
Tracking fluorescently labeled IL-15 and anti-PD-1 in the tumor microenvironment and draining lymph nodes. J Immunol Methods 2022; 505:113253. [PMID: 35358495 DOI: 10.1016/j.jim.2022.113253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023]
Abstract
Understanding the dynamics of the tumor microenvironment (TME) has become vital in discovering new targets for effective immunotherapies and enhancing current treatments. However, localization and distribution of immune cells and treatment biomolecules are poorly characterized to date. In this study, a murine Luminal B mammary adenocarcinoma model received a combinatorial treatment of fluorescently labeled anti-PD-1-Cy3 and IL-15 complex-Cy5 injected interperitoneally and intratumorally, respectively. Fluorescent labeling allowed for the visualization of the distribution of IL-15 complexes and anti-PD-1, as well as their localization to immune cells in the TME and tumor-draining lymph node. Using fluorescent microscopy and light sheet microscopy of whole-clarified tumors and draining lymph nodes, the localization of IL-15 complexes was found to be distributed around the periphery of the tumor at 4 h post injection and medially located at the center of the tumor at 24 h post injection, corresponding with high densities of CD8 cells in the tumor present at 48 h and 72 h post injection. Anti-PD-1 was distributed around the perimeter of the tumor and colocalized to IL-15 in the draining lymph nodes 24 h post injection. Colocalization of IL-15 was also established with NK cells, CD8+ T cells, and macrophages. This study develops a novel method to spatiotemporally track fluorescently labeled immunotherapeutic biomolecules in vivo, with implications for optimizing and further understanding the pharmacokinetics of clinical immunotherapies.
Collapse
|
11
|
Hangasky JA, Chen W, Dubois SP, Daenthanasanmak A, Müller JR, Reid R, Waldmann TA, Santi DV. A very long-acting IL-15: implications for the immunotherapy of cancer. J Immunother Cancer 2022; 10:e004104. [PMID: 35101947 PMCID: PMC8804710 DOI: 10.1136/jitc-2021-004104] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Interleukin-15 (IL-15) is an important cytokine necessary for proliferation and maintenance of natural killer (NK) and CD8+ T cells, and with great promise as an immuno-oncology therapeutic. However, IL-15 has a very short half-life and a single administration does not provide the sustained exposure required for optimal stimulation of target immune cells. The purpose of this work was to develop a very long-acting prodrug that would maintain IL-15 within a narrow therapeutic window for long periods-similar to a continuous infusion. METHODS We prepared and characterized hydrogel microspheres (MS) covalently attached to IL-15 (MS~IL-15) by a releasable linker. The pharmacokinetics and pharmacodynamics of MS~IL-15 were determined in C57BL/6J mice. The antitumor activity of MS~IL-15 as a single agent, and in combination with a suitable therapeutic antibody, was tested in a CD8+ T cell-driven bilateral transgenic adenocarcinoma mouse prostate (TRAMP)-C2 model of prostatic cancer and a NK cell-driven mouse xenograft model of human ATL (MET-1) murine model of adult T-cell leukemia. RESULTS On subcutaneous administration to mice, the cytokine released from the depot maintained a long half-life of about 168 hours over the first 5 days, followed by an abrupt decrease to about ~30 hours in accordance with the development of a cytokine sink. A single injection of MS~IL-15 caused remarkably prolonged expansions of NK and ɣδ T cells for 2 weeks, and CD44hiCD8+ T cells for 4 weeks. In the NK cell-driven MET-1 murine model of adult T-cell leukemia, single-agent MS~IL-1550 μg or anti-CCR4 provided modest increases in survival, but a combination-through antibody-depedent cellular cytotoxicity (ADCC)-significantly extended survival. In a CD8+ T cell-driven bilateral TRAMP-C2 model of prostatic cancer, single agent subcutaneous MS~IL-15 or unilateral intratumoral agonistic anti-CD40 showed modest growth inhibition, but the combination exhibited potent, prolonged bilateral antitumor activity. CONCLUSIONS Our results show MS~IL-15 provides a very long-acting IL-15 with low Cmax that elicits prolonged expansion of target immune cells and high anticancer activity, especially when administered in combination with a suitable immuno-oncology agent.
Collapse
Affiliation(s)
| | - Wei Chen
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Sigrid P Dubois
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Anusara Daenthanasanmak
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jürgen R Müller
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Ralph Reid
- ProLynx Inc, San Francisco, California, USA
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | |
Collapse
|
12
|
Significance of bystander T cell activation in microbial infection. Nat Immunol 2022; 23:13-22. [PMID: 34354279 DOI: 10.1038/s41590-021-00985-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
During microbial infection, pre-existing memory CD8+ T cells that are not specific for the infecting pathogens can be activated by cytokines without cognate antigens, termed bystander activation. Studies in mouse models and human patients demonstrate bystander activation of memory CD8+ T cells, which exerts either protective or detrimental effects on the host, depending on the infection model or disease. Research has elucidated mechanisms underlying the bystander activation of CD8+ T cells in terms of the responsible cytokines and the effector mechanisms of bystander-activated CD8+ T cells. In this Review, we describe the history of research on bystander CD8+ T cell activation as well as evidence of bystander activation. We also discuss the mechanisms and immunopathological roles of bystander activation in various microbial infections.
Collapse
|
13
|
Seo IH, Eun HS, Kim JK, Lee H, Jeong S, Choi SJ, Lee J, Lee BS, Kim SH, Rou WS, Lee DH, Kim W, Park SH, Shin EC. IL-15 enhances CCR5-mediated migration of memory CD8 + T cells by upregulating CCR5 expression in the absence of TCR stimulation. Cell Rep 2021; 36:109438. [PMID: 34320338 DOI: 10.1016/j.celrep.2021.109438] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/17/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
During microbial infection, bystander CD8+ T cells that are not specific to infecting pathogens can be activated by interleukin (IL)-15. However, the tissue-homing properties of bystander-activated CD8+ T cells have not been elucidated. Here, we examine the effects of IL-15 on the expression of chemokine receptors on CD8+ T cells and their migration. IL-15 upregulates CCR5 in memory CD8+ T cells in the absence of T cell receptor (TCR) stimulation and enhances CCR5-dependent migration. IL-15-induced CCR5 upregulation is abrogated by TCR stimulation, indicating that CCR5 is upregulated in bystander-activated CD8+ T cells. Moreover, CCR5 signals increase proliferation and cytotoxic protein expression in IL-15-treated memory CD8+ T cells, although the increase has a small extent. CCR5 upregulation in bystander-activated CD8+ T cells is associated with severe liver injury in patients with acute hepatitis A. Altogether, the results indicate that CCR5 upregulation by IL-15 mediates the migration of bystander-activated CD8+ T cells.
Collapse
Affiliation(s)
- In-Ho Seo
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyuk Soo Eun
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Ja Kyung Kim
- Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea
| | - Hoyoung Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seongju Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seong Jin Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jeewon Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Byung Seok Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Seok Hyun Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Woo Sun Rou
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Dong Hyeon Lee
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul 07061, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul 07061, Republic of Korea.
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
14
|
Stamova S, Ott-Rötzer B, Smetak H, Schäffler K, Eder R, Fink I, Hoffmann P, Reichert TE, Beckhove P, Spanier G. Characterization and ex vivo expansion of rare in situ cytokine secreting T cell populations from tumor tissue and blood of oral squamous cell carcinoma patients. J Immunol Methods 2021; 496:113086. [PMID: 34146580 DOI: 10.1016/j.jim.2021.113086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022]
Abstract
Rare subpopulations of tumor antigen-reactive memory T cells, which actively secrete type-1 effector cytokines, particularly TNF-α in situ, possess anti-tumor activity and prognostic relevance. These cells are relevant for cancer immunotherapy; however, their low frequencies make them difficult to study and novel protocols for their culture and expansion ex vivo are needed. Here, we studied the presence of T cells secreting type-1 cytokines (Cy+T cells) in the blood and tumors of 24 patients with oral squamous cell carcinomas (OSCC) and explored possibilities for their isolation and expansion. More than 90% of OSCC patients contained enriched numbers Cy+T cells in the blood and tumors compared to healthy donors in which these were hardly detectable. The majority of TNF-α+T cells were CD4+ T helper cells while IFN-γ+TIL were predominantly CD8+. Cy+T helper cells in the blood were early-differentiated memory T cells while Cy+TIL and Cy+CD8+T cells showed advanced-differentiated memory T cell phenotypes. We explored different conditions for their in vitro culture and found that Cy+T cells can be efficiently expanded in vitro to similar levels as Cy-T cells and after expansion maintained their TNF-α secreting capacity. However, for optimal expansion they required specific culture conditions to support the maintenance of stem-like and central memory T cell phenotype. In conclusion, we show that Cy+T cells are enriched in OSCC patients and report a novel cell culture protocol optimized to specifically expand and functionally maintain these cells for further functional characterization or for their exploitation in immunotherapy of OSCC.
Collapse
Affiliation(s)
- Slava Stamova
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany
| | - Birgitta Ott-Rötzer
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany
| | - Heiko Smetak
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany
| | - Katharina Schäffler
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany
| | - Rüdiger Eder
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Irina Fink
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany
| | - Petra Hoffmann
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Torsten E Reichert
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
| | - Gerrit Spanier
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
15
|
Zhao Y, Cai C, Samir J, Palgen JL, Keoshkerian E, Li H, Bull RA, Luciani F, An H, Lloyd AR. Human CD8 T-stem cell memory subsets phenotypic and functional characterization are defined by expression of CD122 or CXCR3. Eur J Immunol 2021; 51:1732-1747. [PMID: 33844287 DOI: 10.1002/eji.202049057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/07/2021] [Accepted: 04/07/2021] [Indexed: 11/12/2022]
Abstract
Long-lived T-memory stem cells (TSCM ) are key to both naturally occurring and vaccine-conferred protection against infection. These cells are characterized by the CD45RA+ CCR7+ CD95+ phenotype. Significant heterogeneity within the TSCM population is recognized, but distinguishing surface markers and functional characterization of potential subsets are lacking. Human CD8 TSCM subsets were identified in healthy subjects who had been previously exposed to CMV or Influenza (Flu) virus in flow cytometry by expression of CD122 or CXCR3, and then characterized in proliferation, multipotency, self-renewal, and intracellular cytokine production (TNF-α, IL-2, IFN-γ), together with transcriptomic profiles. The TSCM CD122hi -expressing subset (versus CD122lo ) demonstrated greater proliferation, greater multipotency, and enhanced polyfunctionality with higher frequencies of triple positive (TNF-α, IL-2, IFN-γ) cytokine-producing cells upon exposure to recall antigen. The TSCM CXCR3lo subpopulation also had increased proliferation and polyfunctional cytokine production. Transcriptomic analysis further showed that the TSCM CD122hi population had increased expression of activation and homing molecules, such as Ccr6, Cxcr6, Il12rb, and Il18rap, and downregulated cell proliferation inhibitors, S100A8 and S100A9. These data reveal that the TSCM CD122hi phenotype is associated with increased proliferation, enhanced multipotency and polyfunctionality with an activated memory-cell like transcriptional profile, and hence, may be favored for induction by immunization and for adoptive immunotherapy.
Collapse
Affiliation(s)
- Yanran Zhao
- Viral Immunology Systems Program (VISP), The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Curtis Cai
- Viral Immunology Systems Program (VISP), The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Jerome Samir
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Jean-Louis Palgen
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Elizabeth Keoshkerian
- Viral Immunology Systems Program (VISP), The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Hui Li
- Viral Immunology Systems Program (VISP), The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Rowena A Bull
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Fabio Luciani
- Viral Immunology Systems Program (VISP), The Kirby Institute, University of New South Wales, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Hongyan An
- Viral Immunology Systems Program (VISP), The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Andrew R Lloyd
- Viral Immunology Systems Program (VISP), The Kirby Institute, University of New South Wales, Sydney, Australia
| |
Collapse
|
16
|
Vacchelli E, Galluzzi L, Eggermont A, Galon J, Tartour E, Zitvogel L, Kroemer G. Trial Watch: Immunostimulatory cytokines. Oncoimmunology 2021; 1:493-506. [PMID: 22754768 PMCID: PMC3382908 DOI: 10.4161/onci.20459] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During the last two decades, a number of approaches for the activation of the immune system against cancer has been developed. These include highly specific interventions, such as monoclonal antibodies, vaccines and cell-based therapies, as well as relatively unselective strategies, such as the systemic administration of adjuvants and immunomodulatory cytokines. Cytokines constitute a huge group of proteins that, taken together, regulate not only virtually all the aspects of innate and cognate immunity, but also several other cellular and organismal functions. Cytokines operate via specific transmembrane receptors that are expressed on the plasma membrane of target cells and, depending on multiple variables, can engage autocrine, paracrine or endocrine signaling pathways. The most appropriate term for defining the cytokine network is “pleiotropic”: cytokines are produced by - and operate on - multiple, often overlapping, cell types, triggering context-depend biological outcomes as diverse as cell proliferation, chemotaxis, differentiation, inflammation, elimination of pathogens and cell death. Moreover, cytokines often induce the release of additional cytokines, thereby engaging self-amplificatory or self-inhibitory signaling cascades. In this Trial Watch, we will summarize the biological properties of cytokines and discuss the progress of ongoing clinical studies evaluating their safety and efficacy as immunomodulatory agents against cancer.
Collapse
Affiliation(s)
- Erika Vacchelli
- INSERM; U848; Villejuif, France ; Université Paris-Sud/Paris XI; Paris, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Netherby-Winslow CS, Ayers KN, Lukacher AE. Balancing Inflammation and Central Nervous System Homeostasis: T Cell Receptor Signaling in Antiviral Brain T RM Formation and Function. Front Immunol 2021; 11:624144. [PMID: 33584727 PMCID: PMC7873445 DOI: 10.3389/fimmu.2020.624144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
Tissue-resident memory (TRM) CD8 T cells provide early frontline defense against regional pathogen reencounter. CD8 TRM are predominantly parked in nonlymphoid tissues and do not circulate. In addition to this anatomic difference, TRM are transcriptionally and phenotypically distinct from central-memory T cells (TCM) and effector-memory T cells (TEM). Moreover, TRM differ phenotypically, functionally, and transcriptionally across barrier tissues (e.g., gastrointestinal tract, respiratory tract, urogenital tract, and skin) and in non-barrier organs (e.g., brain, liver, kidney). In the brain, TRM are governed by a contextual milieu that balances TRM activation and preservation of essential post-mitotic neurons. Factors contributing to the development and maintenance of brain TRM, of which T cell receptor (TCR) signal strength and duration is a central determinant, vary depending on the infectious agent and modulation of TCR signaling by inhibitory markers that quell potentially pathogenic inflammation. This review will explore our current understanding of the context-dependent factors that drive the acquisition of brain (b)TRM phenotype and function, and discuss the contribution of TRM to promoting protective immune responses in situ while maintaining tissue homeostasis.
Collapse
Affiliation(s)
| | - Katelyn N Ayers
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, United States
| | - Aron E Lukacher
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
18
|
Shytikov D, Rohila D, Li D, Wang P, Jiang M, Zhang M, Xu Q, Lu L. Functional Characterization of Ly49 +CD8 T-Cells in Both Normal Condition and During Anti-Viral Response. Front Immunol 2021; 11:602783. [PMID: 33488602 PMCID: PMC7817614 DOI: 10.3389/fimmu.2020.602783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 11/14/2022] Open
Abstract
The role of Ly49+CD8 T-cells in the immune system is not clear. Previously, several papers suggested Ly49+CD8 T-cells as immunosuppressors, while multiple studies also suggested their role as potent participants of the immune response. The mechanism of Ly49 expression on CD8 T-cells is also not clear. We investigated phenotype, functions, and regulation of Ly49 expression on murine CD8 T-cells in both normal state and during LCMV infection. CD8 T-cells express different Ly49 receptors compared with NK-cells. In intact mice, Ly49+CD8 T-cells have a phenotype similar to resting central memory CD8 T-cells and do not show impaired proliferation and cytokine production. Conventional CD8 T-cells upregulate Ly49 receptors during TCR-induced stimulation, and IL-2, as well as IL-15, affect it. At the same time, Ly49+CD8 T-cells change the Ly49 expression profile dramatically upon re-stimulation downregulating inhibitory and upregulating activating Ly49 receptors. We observed the expression of Ly49 receptors on the virus-specific CD8 T-cells during LCMV infection, especially marked in the early stages, and participation of Ly49+CD8 T-cells in the anti-viral response. Thus, CD8 T-cells acquire Ly49 receptors during the T-cell activation and show dynamic regulation of Ly49 receptors during stimulation.
Collapse
Affiliation(s)
- Dmytro Shytikov
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Deepak Rohila
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan Li
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengfei Wang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mei Jiang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mingxu Zhang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Department of Immunology and Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Xu
- Department of Immunology and Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linrong Lu
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Department of Immunology and Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Du Y, Fang Q, Zheng SG. Regulatory T Cells: Concept, Classification, Phenotype, and Biological Characteristics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:1-31. [PMID: 33523440 DOI: 10.1007/978-981-15-6407-9_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Treg) play an indispensable role in maintaining the body's immune nonresponse to self-antigens and suppressing the body's unwarranted and potentially harmful immune responses. Their absence, reduction, dysfunction, transformation, and instability can lead to numerous autoimmune diseases. There are several distinct subtypes of the Treg cells, although they share certain biological characteristics and have unique phenotypes with different regulatory functions, as well as mechanistic abilities. In this book chapter, we introduce the latest advances in Treg cell subtypes pertaining to classification, phenotype, biological characteristics, and mechanisms. We also highlight the relationship between Treg cells and various diseases, including autoimmune, infectious, as well as tumors and organ transplants.
Collapse
Affiliation(s)
- Yang Du
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, Guangxi, China.,Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Qiannan Fang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Song-Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
20
|
Thiele D, La Gruta NL, Nguyen A, Hussain T. Hiding in Plain Sight: Virtually Unrecognizable Memory Phenotype CD8 + T cells. Int J Mol Sci 2020; 21:ijms21228626. [PMID: 33207648 PMCID: PMC7698292 DOI: 10.3390/ijms21228626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Virtual memory T (TVM) cells are a recently described population of conventional CD8+ T cells that, in spite of their antigen inexperience, express markers of T cell activation. TVM cells exhibit rapid responsiveness to both antigen-specific and innate stimuli in youth but acquire intrinsic antigen-specific response defects in the elderly. In this article, we review how the identification of TVM cells necessitates a re-evaluation of accepted paradigms for conventional memory T (TMEM) cells, the potential for heterogeneity within the TVM population, and the defining characteristics of TVM cells. Further, we highlight recent literature documenting the development of TVM cells as a distinct CD8+ T cell lineage as well their biological significance in the context of disease.
Collapse
|
21
|
Silva M, Martin KC, Mondal N, Sackstein R. sLeX Expression Delineates Distinct Functional Subsets of Human Blood Central and Effector Memory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1920-1932. [PMID: 32868410 PMCID: PMC10636707 DOI: 10.4049/jimmunol.1900679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Sialyl Lewis X (sLeX) regulates T cell trafficking from the vasculature into skin and sites of inflammation, thereby playing a critical role in immunity. In healthy persons, only a small proportion of human blood T cells express sLeX, and their function is not fully defined. Using a combination of biochemical and functional studies, we find that human blood sLeX+CD4+T cells comprise a subpopulation expressing high levels of Th2 and Th17 cytokines, chemokine receptors CCR4 and CCR6, and the transcription factors GATA-3 and RORγT. Additionally, sLeX+CD4+T cells exclusively contain the regulatory T cell population (CD127lowCD25high and FOXP3+) and characteristically display immune-suppressive molecules, including the coinhibitor receptors PD-1 and CTLA-4. Among CD8+T cells, sLeX expression distinguishes a subset displaying low expression of cytotoxic effector molecules, perforin and granzyme β, with reduced degranulation and CD57 expression and, consistently, marginal cytolytic capacity after TCR engagement. Furthermore, sLeX+CD8+T cells present a pattern of features consistent with Th cell-like phenotype, including release of pertinent Tc2 cytokines and elevated expression of CD40L. Together, these findings reveal that sLeX display is associated with unique functional specialization of both CD4+ and CD8+T cells and indicate that circulating T cells that are primed to migrate to lesional sites at onset of inflammation are not poised for cytotoxic function.
Collapse
Affiliation(s)
- Mariana Silva
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115
- Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
| | - Kyle C Martin
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115
- Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
- Department of Translational Medicine and Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199; and
| | - Nandini Mondal
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115
- Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
| | - Robert Sackstein
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115;
- Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
- Department of Translational Medicine and Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199; and
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
22
|
Hangasky JA, Waldmann TA, Santi DV. Interleukin 15 Pharmacokinetics and Consumption by a Dynamic Cytokine Sink. Front Immunol 2020; 11:1813. [PMID: 32903632 PMCID: PMC7438588 DOI: 10.3389/fimmu.2020.01813] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin-15 (IL-15) is crucial for the proliferation and survival of NK and CD8+ T memory cells, and of significant interest in immuno-oncology. Immune cell expansion requires continuous IL-15 exposure above a threshold concentration for an extended period. However, the short t1/2 of IL-15 makes this impossible to achieve after a single injection without a high Cmax and toxicities. The most effective way to deliver IL-15 is continuous intra-venous infusion, but this administration mode is impractical. Efforts have been devoted to developing IL-15 agonists which after a single injection maintain the cytokine in a narrow therapeutic window for a long period. Enigmatically, although the half-life extension technologies used often extend the half-life of a protein to 1 or more weeks, the modified IL-15 agonists studied usually have systemic elimination half-lives of only a few hours and rarely much longer than 1 day. These short half-lives—common to all circulating IL-15 agonists thus far reported—can be explained by a dynamic increase in clearance of the agonists that accompanies target immune cell proliferation. What is needed is an IL-15 agonist that is as effective as continuous intravenous infusion, but with the convenience and acceptance of single injections at 1-week or longer intervals.
Collapse
Affiliation(s)
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States
| | | |
Collapse
|
23
|
Sheng H, Marrero I, Maricic I, Fanchiang SS, Zhang S, Sant'Angelo DB, Kumar V. Distinct PLZF +CD8αα + Unconventional T Cells Enriched in Liver Use a Cytotoxic Mechanism to Limit Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2150-2162. [PMID: 31554695 PMCID: PMC6783388 DOI: 10.4049/jimmunol.1900832] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/21/2019] [Indexed: 01/14/2023]
Abstract
Hepatic immune system is uniquely challenged to mount a controlled effector response to pathogens while maintaining tolerance to diet and microbial Ags. We have identified a novel population of innate-like, unconventional CD8αα+TCRαβ+ T cells in naive mice and in human peripheral blood, called CD8αα Tunc, capable of controlling effector T cell responses. They are NK1.1+ (CD161+ in human), express NK-inhibitory receptors, and express the promyelocytic leukemia zinc finger (PLZF) transcription factor that distinguishes them from conventional CD8+ T cells. These cells display a cytotoxic phenotype and use a perforin-dependent mechanism to control Ag-induced or T cell-mediated autoimmune diseases. CD8αα Tunc are dependent upon IL-15/IL-2Rβ signaling and PLZF for their development and/or survival. They are Foxp3-negative and their regulatory activity is associated with a functionally distinct Qa-1b-dependent population coexpressing CD11c and CD244. A polyclonal TCR repertoire, an activated/memory phenotype, and the presence of CD8αα Tunc in NKT- and in MAIT-deficient as well as in germ-free mice indicates that these cells recognize diverse self-protein Ags. Our studies reveal a distinct population of unconventional CD8+ T cells within the natural immune repertoire capable of controlling autoimmunity and also providing a new target for therapeutic intervention.
Collapse
Affiliation(s)
- Huiming Sheng
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Idania Marrero
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Igor Maricic
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Shaohsuan S Fanchiang
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Sai Zhang
- Rutgers University, New Brunswick, NJ 08901
| | | | - Vipin Kumar
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093;
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| |
Collapse
|
24
|
Ibrahim IK, Saba EKA, Saad NLM, Mohammed DYA. Relation of interleukin-15 with the severity of primary knee osteoarthritis. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2019. [DOI: 10.4103/err.err_42_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
25
|
IL-17 constrains natural killer cell activity by restraining IL-15-driven cell maturation via SOCS3. Proc Natl Acad Sci U S A 2019; 116:17409-17418. [PMID: 31405974 DOI: 10.1073/pnas.1904125116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence demonstrates that IL-17A promotes tumorigenesis, metastasis, and viral infection. Natural killer (NK) cells are critical for defending against tumors and infections. However, the roles and mechanisms of IL-17A in regulating NK cell activity remain elusive. Herein, our study demonstrated that IL-17A constrained NK cell antitumor and antiviral activity by restraining NK cell maturation. It was observed that the development and metastasis of tumors were suppressed in IL-17A-deficient mice in the NK cell-dependent manner. In addition, the antiviral activity of NK cells was also improved in IL-17A-deficient mice. Mechanistically, ablation of IL-17A signaling promoted generation of terminally mature CD27-CD11b+ NK cells, whereas constitutive IL-17A signaling reduced terminally mature NK cells. Parabiosis or mixed bone marrow chimeras from Il17a -/- and wild-type (WT) mice could inhibit excessive generation of terminally mature NK cells induced by IL-17A deficiency. Furthermore, IL-17A desensitized NK cell responses to IL-15 and suppressed IL-15-induced phosphorylation of signal transducer and activator of transcription 5 (STAT5) via up-regulation of SOCS3, leading to down-regulation of Blimp-1. Therefore, IL-17A acts as the checkpoint during NK cell terminal maturation, which highlights potential interventions to defend against tumors and viral infections.
Collapse
|
26
|
Chen X, Guo W, Chang Y, Chen J, Kang P, Yi X, Cui T, Guo S, Xiao Q, Jian Z, Li K, Gao T, Li S, Liu L, Li C. Oxidative stress-induced IL-15 trans-presentation in keratinocytes contributes to CD8 + T cells activation via JAK-STAT pathway in vitiligo. Free Radic Biol Med 2019; 139:80-91. [PMID: 31078730 DOI: 10.1016/j.freeradbiomed.2019.05.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 01/06/2023]
Abstract
Oxidative stress and effector memory CD8+ T cells have been greatly implicated in vitiligo pathogenesis. However, the crosstalk between these two crucial pathogenic factors has been merely investigated. IL-15 has been regarded as an important cytokine exerting its facilitative effect on memory CD8+ T cells function in various autoimmune diseases. In the present study, we initially discovered that the IL-15 expression was significantly increased in vitiligo epidermis and highly associated with epidermal H2O2 content. In addition, epidermal IL-15 expression was mainly derived from keratinocytes. Then, we showed that oxidative stress promoted IL-15 and IL-15Rα expression as well as IL-15 trans-presentation by activating NF-κB signaling in keratinocytes. What's more, the trans-presented IL-15, rather than the secreted one, was accounted for the potentiation of CD8+ TEMs activation. We further investigated the mechanism underlying trans-presented IL-15 in potentiating CD8+ TEMs activation and found that the blockage of IL-15-JAK-STAT signaling could be a potent therapeutic approach. Taken together, our results demonstrate that oxidative stress-induced IL-15 trans-presentation in keratinocytes contributes to the activation of CD8+ TEMs, providing a novel mechanism by which oxidative stress initiates autoimmunity in vitiligo.
Collapse
Affiliation(s)
- Xuguang Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuqian Chang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiaxi Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pan Kang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tingting Cui
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qian Xiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhe Jian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kai Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Ling Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
27
|
Pacheco Y, Acosta-Ampudia Y, Monsalve DM, Chang C, Gershwin ME, Anaya JM. Bystander activation and autoimmunity. J Autoimmun 2019; 103:102301. [PMID: 31326230 DOI: 10.1016/j.jaut.2019.06.012] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/18/2022]
Abstract
The interaction over time of genetic, epigenetic and environmental factors (i.e., autoimmune ecology) increases or decreases the liability an individual would have to develop an autoimmune disease (AD) depending on the misbalance between risk and protective effects. Pathogens have been the most common antecedent events studied, but multiple other environmental factors including xenobiotic chemicals, drugs, vaccines, and nutritional factors have been implicated into the development of ADs. Three main mechanisms have been offered to explain the development of autoimmunity: molecular mimicry, epitope spreading, and bystander activation. The latter is characterized by auto-reactive B and T cells that undergo activation in an antigen-independent manner, influencing the development and course of autoimmunity. Activation occurs due to a combination of an inflammatory milieu, co-signaling ligands, and interactions with neighboring cells. In this review, we will discuss the studies performed seeking to define the role of bystander activation in systemic and organ-specific ADs. In all cases, we are cognizant of individual differences between hosts and the variable latency time for clinical expression of disease, all of which have made our understanding of the etiology of loss of immune tolerance difficult and enigmatic.
Collapse
Affiliation(s)
- Yovana Pacheco
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, School of Medicine, Davis, CA, USA; Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, School of Medicine, Davis, CA, USA.
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Clínica del Occidente, Bogotá, Colombia.
| |
Collapse
|
28
|
Kinoshita M, Nakashima M, Nakashima H, Seki S. Immune Mechanisms Underlying Susceptibility to Endotoxin Shock in Aged Hosts: Implication in Age-Augmented Generalized Shwartzman Reaction. Int J Mol Sci 2019; 20:ijms20133260. [PMID: 31269748 PMCID: PMC6651521 DOI: 10.3390/ijms20133260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 01/20/2023] Open
Abstract
In recent decades, the elderly population has been rapidly increasing in many countries. Such patients are susceptible to Gram-negative septic shock, namely endotoxin shock. Mortality due to endotoxin shock remains high despite recent advances in medical care. The generalized Shwartzman reaction is well recognized as an experimental endotoxin shock. Aged mice are similarly susceptible to the generalized Shwartzman reaction and show an increased mortality accompanied by the enhanced production of tumor necrosis factor (TNF). Consistent with the findings in the murine model, the in vitro Shwartzman reaction-like response is also age-dependently augmented in human peripheral blood mononuclear cells, as assessed by enhanced TNF production. Interestingly, age-dependently increased innate lymphocytes with T cell receptor-that intermediate expression, such as that of CD8+CD122+T cells in mice and CD57+T cells in humans, may collaborate with macrophages and induce the exacerbation of the Shwartzman reaction in elderly individuals. However, endotoxin tolerance in mice, which resembles a mirror phenomenon of the generalized Shwartzman reaction, drastically reduces the TNF production of macrophages while strongly activating their bactericidal activity in infection. Importantly, this effect can be induced in aged mice. The safe induction of endotoxin tolerance may be a potential therapeutic strategy for refractory septic shock in elderly patients.
Collapse
Affiliation(s)
- Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| | - Masahiro Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Shuhji Seki
- Department of Immunology and Microbiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| |
Collapse
|
29
|
Mediators of the homeostasis and effector functions of memory Th2 cells as novel drug targets in intractable chronic allergic diseases. Arch Pharm Res 2019; 42:754-765. [DOI: 10.1007/s12272-019-01159-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/23/2019] [Indexed: 12/29/2022]
|
30
|
Leach DG, Young S, Hartgerink JD. Advances in immunotherapy delivery from implantable and injectable biomaterials. Acta Biomater 2019; 88:15-31. [PMID: 30771535 PMCID: PMC6632081 DOI: 10.1016/j.actbio.2019.02.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/10/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
Macroscale biomaterials, such as preformed implantable scaffolds and injectable soft materials, possess powerful synergies with anti-cancer immunotherapies. Immunotherapies on their own typically have poor delivery properties, and often require repeated high-dose injections that result in serious off-tumor effects and/or limited efficacy. Rationally designed biomaterials allow for discrete localization and controlled release of immunotherapeutic agents, and have been shown in a large number of applications to improve outcomes in the treatment of cancers via immunotherapy. Among various strategies, macroscale biomaterial delivery systems can take the form of robust tablet-like scaffolds that are surgically implanted into a tumor resection site, releasing programmed immune cells or immunoregulatory agents. Alternatively they can be developed as soft gel-like materials that are injected into solid tumors or sites of resection to stimulate a potent anti-tumor immune response. Biomaterials synthesized from diverse components such as polymers and peptides can be combined with any immunotherapy in the modern toolbox, from checkpoint inhibitors and stimulatory adjuvants, to cancer antigens and adoptive T cells, resulting in unique synergies and improved therapeutic efficacy. The field is growing rapidly in size as publications continue to appear in the literature, and biomaterial-based immunotherapies are entering clinical trials and human patients. It is unarguably an exciting time for cancer immunotherapy and biomaterial researchers, and further work seeks to understand the most critical design considerations in the development of the next-generation of immunotherapeutic biomaterials. This review will discuss recent advances in the delivery of immunotherapies from localized biomaterials, focusing on macroscale implantable and injectable systems. STATEMENT OF SIGNIFICANCE: Anti-cancer immunotherapies have shown exciting clinical results in the past few decades, yet they suffer from a few distinct limitations, such as poor delivery kinetics, narrow patient response profiles, and systemic side effects. Biomaterial systems are now being developed that can overcome many of these problems, allowing for localized adjuvant delivery, focused dose concentrations, and extended therapy presentation. The field of biocompatible carrier materials is uniquely suited to be combined with immunotherapy, promising to yield significant improvements in treatment outcomes and clinical care. In this review, the first pioneering efforts and most recent advances in biomaterials for immunotherapeutic applications are explored, with a specific focus on implantable and injectable biomaterials such as porous scaffolds, cryogels, and hydrogels.
Collapse
Affiliation(s)
- David G Leach
- Department of Chemistry, Department of Bioengineering, Rice University, Houston, TX 77005, United States
| | - Simon Young
- Department of Oral & Maxillofacial Surgery, University of Texas Health Science Center, Houston, TX 77054, United States
| | - Jeffrey D Hartgerink
- Department of Chemistry, Department of Bioengineering, Rice University, Houston, TX 77005, United States.
| |
Collapse
|
31
|
Cellular therapy approaches harnessing the power of the immune system for personalized cancer treatment. Semin Immunol 2019; 42:101306. [DOI: 10.1016/j.smim.2019.101306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022]
|
32
|
Schlauch KA, Kulick D, Subramanian K, De Meirleir KL, Palotás A, Lombardi VC. Single-nucleotide polymorphisms in a cohort of significantly obese women without cardiometabolic diseases. Int J Obes (Lond) 2019; 43:253-262. [PMID: 30120429 PMCID: PMC6365206 DOI: 10.1038/s41366-018-0181-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/10/2018] [Accepted: 06/15/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND/OBJECTIVES Obesity is an important risk factor for the development of diseases such as diabetes mellitus, hypertension, and dyslipidemia; however, a small number of individuals with long-standing obesity do not present with these cardiometabolic diseases. Such individuals are referred to as metabolically healthy obese (MHO) and potentially represent a subgroup of the general population with a protective genetic predisposition to obesity-related diseases. We hypothesized that individuals who were metabolically healthy, but significantly obese (BMI ≥ 35 kg/m2) would represent a highly homogenous subgroup, with which to investigate potential genetic associations to obesity. We further hypothesized that such a cohort may lend itself well to investigate potential genotypes that are protective with respect to the development of cardiometabolic disease. SUBJECTS/METHODS In the present study, we implemented this novel selection strategy by screening 892 individuals diagnosed as Class 2 or Class 3 obese and identified 38 who presented no manifestations of cardiometabolic disease. We then assessed these subjects for single-nucleotide polymorphisms (SNPs) that associated with this phenotype. RESULTS Our analysis identified 89 SNPs that reach statistical significance (p < 1 × 10-5), some of which are associated with genes of biological pathways that influences dietary behavior; others are associated with genes previously linked to obesity and cardiometabolic disease as well as neuroimmune disease. This study, to the best of our knowledge, represents the first genetic screening of a cardiometabolically healthy, but significantly obese population.
Collapse
Affiliation(s)
- Karen A Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV, USA
- Desert Research Institute, Reno, NV, USA
| | | | | | | | - András Palotás
- Asklepios-Med, Szeged, Hungary.
- Kazan Federal University, Kazan, Russian Federation.
| | - Vincent C Lombardi
- Nevada Center for Biomedical Research, Reno, NV, USA.
- Department of Pathology, University of Nevada, Reno, School of Medicine, Reno, NV, USA.
| |
Collapse
|
33
|
Piccirillo AR, Cattley RT, D'Cruz LM, Hawse WF. Histone acetyltransferase CBP is critical for conventional effector and memory T-cell differentiation in mice. J Biol Chem 2018; 294:2397-2406. [PMID: 30573679 DOI: 10.1074/jbc.ra118.006977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/13/2018] [Indexed: 12/21/2022] Open
Abstract
Compared with naïve T cells, memory CD8+ T cells have a transcriptional landscape and proteome that are optimized to generate a more rapid and robust response to secondary infection. Additionally, rewired kinase signal transduction pathways likely contribute to the superior recall response of memory CD8+ T cells, but this idea has not been experimentally confirmed. Herein, we utilized an MS approach to identify proteins that are phosphorylated on tyrosine residues in response to Listeria-induced T-cell receptor (TCR) stimulation in both naïve and memory CD8+ T cells from mice and separated by fluorescence- and flow cytometry-based cell sorting. This analysis identified substantial differences in tyrosine kinase signaling networks between naïve and memory CD8+ T cells. We also observed that an important axis in memory CD8+ T cells couples Janus kinase 2 (JAK2) hyperactivation to the phosphorylation of CREB-binding protein (CBP). Functionally, JAK2-catalyzed phosphorylation enabled CBP to bind with higher affinity to acetylated histone peptides, indicating a potential epigenetic mechanism that could contribute to rapid initiation of transcriptional programs in memory CD8+ T cells. Moreover, we found that CBP itself is essential for conventional effector and memory CD8+ T-cell formation. These results indicate how signaling pathways are altered to promote CD8+ memory cell formation and rapid responses to and protection from repeat infections.
Collapse
Affiliation(s)
- Ann R Piccirillo
- From the Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Richard T Cattley
- From the Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Louise M D'Cruz
- From the Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - William F Hawse
- From the Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
34
|
Mathews DV, Dong Y, Higginbotham LB, Kim SC, Breeden CP, Stobert EA, Jenkins J, Tso JY, Larsen CP, Adams AB. CD122 signaling in CD8+ memory T cells drives costimulation-independent rejection. J Clin Invest 2018; 128:4557-4572. [PMID: 30222140 PMCID: PMC6159972 DOI: 10.1172/jci95914] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/31/2018] [Indexed: 12/30/2022] Open
Abstract
Interrupting T cell costimulatory signals as a strategy to control undesired immune responses, such as occur in autoimmunity or transplantation, has the potential to alleviate many of the unwanted side effects associated with current immunosuppressive therapies. Belatacept, a high-affinity version of CTLA4-Ig that blocks ligand ligation to CD28, has been approved for use in kidney transplant recipients. Despite the long-term benefits associated with its use, such as improved renal function and lower cardiovascular risk, a subset of patients treated with belatacept experience elevated rates of acute T cell-mediated rejection, tempering enthusiasm for its use. Here we demonstrate that costimulation-independent T cell alloreactivity relies on signaling through CD122, the shared IL-2 and IL-15 receptor β-chain. Combined costimulatory and CD122 blockade improved survival of transplanted tissue in mice and nonhuman primates by controlling proliferation and effector function of CD8+ T cells. The high-affinity IL-2 receptor was dispensable for memory CD8+ T cell responses, whereas signaling through CD122 as a component of the high-affinity IL-15 receptor was critical for costimulation-independent memory CD8+ T cell recall, distinguishing specific roles for IL-2 and IL-15 in T cell activation. These studies outline a novel approach for clinical optimization of costimulatory blockade strategies in transplantation by targeting CD122.
Collapse
Affiliation(s)
- David V. Mathews
- Emory Transplant Center, Emory University, Atlanta, Georgia, USA
| | - Ying Dong
- Emory Transplant Center, Emory University, Atlanta, Georgia, USA
| | | | - Steven C. Kim
- Emory Transplant Center, Emory University, Atlanta, Georgia, USA
| | | | | | | | - J. Yun Tso
- JN Biosciences, Mountain View, California, USA
| | - Christian P. Larsen
- Emory Transplant Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Center, Atlanta, Georgia, USA
| | - Andrew B. Adams
- Emory Transplant Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Center, Atlanta, Georgia, USA
| |
Collapse
|
35
|
Kim J, Lee JY, Cho K, Hong SW, Kim KS, Sprent J, Im SH, Surh CD, Cho JH. Spontaneous Proliferation of CD4 + T Cells in RAG-Deficient Hosts Promotes Antigen-Independent but IL-2-Dependent Strong Proliferative Response of Naïve CD8 + T Cells. Front Immunol 2018; 9:1907. [PMID: 30190718 PMCID: PMC6116856 DOI: 10.3389/fimmu.2018.01907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022] Open
Abstract
The fast and intense proliferative responses have been well documented for naïve T cells adoptively transferred into chronic lymphopenic hosts. This response known as spontaneous proliferation (SP), unlike antigen-independent lymphopenia-induced proliferation (LIP), is driven in a manner dependent on antigens derived from commensal microbiota. However, the precise nature of the SP response and its impact on homeostasis and function for T cells rapidly responding under this lymphopenic condition are still unclear. Here we demonstrate that, when naïve T cells were adoptively transferred into specific pathogen-free (SPF) but not germ-free (GF) RAG-/- hosts, the SP response of these cells substantially affects the intensity and tempo of the responding T cells undergoing LIP. Therefore, the resulting response of these cells in SPF RAG-/- hosts was faster and stronger than the typical LIP response observed in irradiated B6 hosts. Although the intensity and tempo of such augmented LIP in SPF RAG-/- hosts were analogous to those of antigen-dependent SP, the former was independent of antigenic stimulation but most importantly, dependent on IL-2. Similar observations were also apparent in other acute lymphopenic settings where antigen-dependent T cell activation can strongly occur and induce sufficient levels of IL-2 production. Consequently, the resulting T cells undergoing IL-2-driven strong proliferative responses showed the ability to differentiate into functional effector and memory cells that can control infectious pathogens. These findings therefore reveal previously unappreciated role of IL-2 in driving the intense form of T cell proliferative responses in chronic lymphopenic hosts.
Collapse
Affiliation(s)
- Juhee Kim
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, South Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Jun Young Lee
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, South Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Kyungjin Cho
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, South Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Sung-Wook Hong
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, South Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Kwang Soon Kim
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, South Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Jonathan Sprent
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,University of New South Wales, Sydney, NSW, Australia
| | - Sin-Hyeog Im
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, South Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Charles D Surh
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, South Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Jae-Ho Cho
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, South Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
36
|
Description of CD8 + Regulatory T Lymphocytes and Their Specific Intervention in Graft-versus-Host and Infectious Diseases, Autoimmunity, and Cancer. J Immunol Res 2018; 2018:3758713. [PMID: 30155493 PMCID: PMC6098849 DOI: 10.1155/2018/3758713] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/09/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022] Open
Abstract
Gershon and Kondo described CD8+ Treg lymphocytes as the first ones with regulating activity due to their tolerance ability to foreign antigens and their capacity to inhibit the proliferation of other lymphocytes. Regardless, CD8+ Treg lymphocytes have not been fully described-unlike CD4+ Treg lymphocytes-because of their low numbers in blood and the lack of specific and accurate population markers. Still, these lymphocytes have been studied for the past 30 years, even after finding difficulties during investigations. As a result, studies have identified markers that define their subpopulations. This review is focused on the expression of cell membrane markers as CD25, CD122, CD103, CTLA-4, CD39, CD73, LAG-3, and FasL as well as soluble molecules such as FoxP3, IFN-γ, IL-10, TGF-β, IL-34, and IL-35, in addition to the lack of expression of cell activation markers such as CD28, CD127 CD45RC, and CD49d. This work also underlines the importance of identifying some of these markers in infections with several pathogens, autoimmunity, cancer, and graft-versus-host disease as a strategy in their prevention, monitoring, and cure.
Collapse
|
37
|
Abstract
Memory for antigens once encountered is a hallmark of the immune system of vertebrates, providing us with an immunity adapted to pathogens of our environment. Despite its fundamental relevance, the cells and genes representing immunological memory are still poorly understood. Here we discuss the concept of a circulating, proliferating, and ubiquitous population of effector lymphocytes vs concepts of resting and dormant populations of dedicated memory lymphocytes, distinct from effector lymphocytes and residing in defined tissues, particularly in barrier tissues and in the bone marrow. The lifestyle of memory plasma cells of the bone marrow may serve as a paradigm, showing that persistence of memory lymphocytes is not defined by intrinsic "half-lives", but rather conditional on distinct survival signals provided by dedicated niches. These niches are organized by individual mesenchymal stromal cells. They define the capacity of immunological memory and regulate its homeostasis.
Collapse
Affiliation(s)
- Hyun‐Dong Chang
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
| | - Koji Tokoyoda
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
| | - Andreas Radbruch
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
- Charité University MedicineBerlinGermany
| |
Collapse
|
38
|
Raeber ME, Zurbuchen Y, Impellizzieri D, Boyman O. The role of cytokines in T-cell memory in health and disease. Immunol Rev 2018; 283:176-193. [DOI: 10.1111/imr.12644] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Miro E. Raeber
- Department of Immunology; University Hospital Zurich; Zurich Switzerland
| | - Yves Zurbuchen
- Department of Immunology; University Hospital Zurich; Zurich Switzerland
| | | | - Onur Boyman
- Department of Immunology; University Hospital Zurich; Zurich Switzerland
- Faculty of Medicine; University of Zurich; Zurich Switzerland
| |
Collapse
|
39
|
New interleukin-15 superagonist (IL-15SA) significantly enhances graft-versus-tumor activity. Oncotarget 2018; 8:44366-44378. [PMID: 28574833 PMCID: PMC5546486 DOI: 10.18632/oncotarget.17875] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 04/28/2017] [Indexed: 01/14/2023] Open
Abstract
Interleukin-15 (IL-15) is a potent cytokine that increases CD8+ T and NK cell numbers and function in experimental models. However, obstacles remain in using IL-15 therapeutically, specifically its low potency and short in vivo half-life. To help overcome this, a new IL-15 superagonist complex comprised of an IL-15N72D mutation and IL-15RαSu/Fc fusion (IL-15SA, also known as ALT-803) was developed. IL-15SA exhibits a significantly longer serum half-life and increased in vivo activity against various tumors. Herein, we evaluated the effects of IL-15SA in recipients of allogeneic hematopoietic stem cell transplantation. Weekly administration of IL-15SA to transplant recipients significantly increased the number of CD8+ T cells (specifically CD44+ memory/activated phenotype) and NK cells. Intracellular IFN-γ and TNF-α secretion by CD8+ T cells increased in the IL-15SA-treated group. IL-15SA also upregulated NKG2D expression on CD8+ T cells. Moreover, IL-15SA enhanced proliferation and cytokine secretion of adoptively transferred CFSE-labeled T cells in syngeneic and allogeneic models by specifically stimulating the slowly proliferative and nonproliferative cells into actively proliferating cells. We then evaluated IL-15SA's effects on anti-tumor activity against murine mastocytoma (P815) and murine B cell lymphoma (A20). IL-15SA enhanced graft-versus-tumor (GVT) activity in these tumors following T cell infusion. Interestingly, IL-15 SA administration provided GVT activity against A20 lymphoma cells in the murine donor leukocyte infusion (DLI) model without increasing graft versus host disease. In conclusion, IL-15SA could be a highly potent T- cell lymphoid growth factor and novel immunotherapeutic agent to complement stem cell transplantation and adoptive immunotherapy.
Collapse
|
40
|
Abstract
Cytokine-induced killer (CIK) cells form under certain stimulation conditions in cultures of peripheral blood mononuclear cells (PBMCs). They are a heterogeneous immune cell population and contain a high percentage of cells with a mixed T-NK phenotype (CD3+CD56+). The ready availability of a lymphocyte source, together with the high proliferative rate and potent anti-tumor activity of CIK cells, has allowed their use as immunotherapy in a wide variety of neoplasms. Cytotoxicity mediated by CD3+CD56+ T cells depends on the major histocompatibility antigen (MHC)-independent recognition of tumor cells and the activation of signaling pathways through the natural killer group 2 member D (NKG2D) cell-surface receptor. Clinical trials have demonstrated the feasibility and efficacy of CIK cell immunotherapy even in advanced stage cancer patients or those that have not responded to first-line treatment. This review summarizes biological and technical aspects of CIK cells, as well as past and current clinical trials and future trends in this form of immunotherapy.
Collapse
|
41
|
Kim J, Chang DY, Lee HW, Lee H, Kim JH, Sung PS, Kim KH, Hong SH, Kang W, Lee J, Shin SY, Yu HT, You S, Choi YS, Oh I, Lee DH, Lee DH, Jung MK, Suh KS, Hwang S, Kim W, Park SH, Kim HJ, Shin EC. Innate-like Cytotoxic Function of Bystander-Activated CD8 + T Cells Is Associated with Liver Injury in Acute Hepatitis A. Immunity 2018; 48:161-173.e5. [PMID: 29305140 DOI: 10.1016/j.immuni.2017.11.025] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/18/2017] [Accepted: 11/29/2017] [Indexed: 12/23/2022]
Abstract
Acute hepatitis A (AHA) involves severe CD8+ T cell-mediated liver injury. Here we showed during AHA, CD8+ T cells specific to unrelated viruses became activated. Hepatitis A virus (HAV)-infected cells produced IL-15 that induced T cell receptor (TCR)-independent activation of memory CD8+ T cells. TCR-independent activation of non-HAV-specific CD8+ T cells were detected in patients, as indicated by NKG2D upregulation, a marker of TCR-independent T cell activation by IL-15. CD8+ T cells derived from AHA patients exerted innate-like cytotoxicity triggered by activating receptors NKG2D and NKp30 without TCR engagement. We demonstrated that the severity of liver injury in AHA patients correlated with the activation of HAV-unrelated virus-specific CD8+ T cells and the innate-like cytolytic activity of CD8+ T cells, but not the activation of HAV-specific T cells. Thus, host injury in AHA is associated with innate-like cytotoxicity of bystander-activated CD8+ T cells, a result with implications for acute viral diseases.
Collapse
Affiliation(s)
- Jihye Kim
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Republic of Korea
| | - Dong-Yeop Chang
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hyun Woong Lee
- Department of Internal Medicine, Chung-Ang University Hospital, Seoul 06973, Republic of Korea
| | - Hoyoung Lee
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Republic of Korea
| | - Jong Hoon Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Pil Soo Sung
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Kyung Hwan Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Seon-Hui Hong
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Republic of Korea
| | - Wonseok Kang
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jino Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - So Youn Shin
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hee Tae Yu
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Sooseong You
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Yoon Seok Choi
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Insoo Oh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Dong Ho Lee
- Department of Surgery, College of Medicine, The Catholic University of Korea, Daejeon St. Mary's Hospital, Daejeon 34943, Republic of Korea
| | - Dong Hyeon Lee
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Min Kyung Jung
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Kyung-Suk Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Shin Hwang
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Su-Hyung Park
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Republic of Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea.
| | - Hyung Joon Kim
- Department of Internal Medicine, Chung-Ang University Hospital, Seoul 06973, Republic of Korea.
| | - Eui-Cheol Shin
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Republic of Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
42
|
Satooka H, Nagakubo D, Sato T, Hirata T. The ERM Protein Moesin Regulates CD8 + Regulatory T Cell Homeostasis and Self-Tolerance. THE JOURNAL OF IMMUNOLOGY 2017; 199:3418-3426. [PMID: 28978692 DOI: 10.4049/jimmunol.1700074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 09/07/2017] [Indexed: 12/30/2022]
Abstract
The ezrin-radixin-moesin (ERM) proteins are a family of membrane-associated proteins that link membrane proteins with actin filaments in the cell cortex and regulate many cellular processes, including cell shape determination, membrane transport, and signal transduction. Lymphocytes predominantly express two ERM members, ezrin and moesin. Mutations in the moesin gene in humans are associated with primary immunodeficiency with profound lymphopenia, and moesin-deficient mice exhibit a similar lymphopenia phenotype. In this study, we show that aging moesin-deficient mice develop a systemic lupus erythematosus-like autoimmune phenotype, which is characterized by elevated serum autoantibody levels and glomerulonephritis. Younger moesin-deficient mice exhibited elevated basal levels of several Ig isotypes and enhanced Ab affinity maturation upon immunization. Germinal center B cells and follicular helper T cells spontaneously accumulated in unimmunized mice, and CD8+CD44+CD122+Ly49+ regulatory T (CD8+ Tregs) cells, which inhibit the expansion of follicular helper T cells, were severely reduced in these mice. Isolated CD8+ Treg cells from moesin-deficient mice showed impaired proliferation in response to IL-15, which was accompanied by defects in STAT5 activation and IL-15Rα internalization, suggesting that moesin plays a key role in IL-15-mediated signaling. These findings underscore the importance of moesin in IL-15-dependent CD8+ Treg cell homeostasis and, thus, the control of self-tolerance.
Collapse
Affiliation(s)
- Hiroki Satooka
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan; and
| | - Daisuke Nagakubo
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan; and
| | - Tomomi Sato
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan; and.,Department of Pediatrics, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Takako Hirata
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan; and
| |
Collapse
|
43
|
Yeon SM, Halim L, Chandele A, Perry CJ, Kim SH, Kim SU, Byun Y, Yuk SH, Kaech SM, Jung YW. IL-7 plays a critical role for the homeostasis of allergen-specific memory CD4 T cells in the lung and airways. Sci Rep 2017; 7:11155. [PMID: 28894184 PMCID: PMC5593957 DOI: 10.1038/s41598-017-11492-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/25/2017] [Indexed: 12/03/2022] Open
Abstract
Memory T cells respond rapidly to repeated antigen exposure and can maintain their population for extended periods through self-renewal. These characteristics of memory T cells have mainly been studied during viral infections, whereas their existence and functions in allergic diseases have been studied incompletely. Since allergic patients can suffer repeated relapses caused by intermittent allergen exposure, we hypothesized that allergen- specific memory Th2 cells are present and the factors necessary for the maintenance of these cells are provided by the lung and airways. Using a murine model of airway inflammation, we found that allergen-specific CD4 T cells survived longer than 70 days in the lung and airways in an IL-7 dependent fashion. These T cells showing homeostatic proliferation were largely found in the mediastinal lymph node (mLN), rather than the airways; however, cells residing in the lung and airways developed recall responses successfully. We also found that CD4 T cells exhibited differential phenotypes in the mLN and in the lung. Altogether, we believe that allergen-specific memory T cells reside and function in the lung and airways, while their numbers are replenished through homeostatic turnover in the mLNs. Furthermore, we determined that IL-7 signaling is important for the homeostasis of these cells.
Collapse
Affiliation(s)
- Seung-Min Yeon
- Department of Pharmacy, Korea University, Sejong-si, Korea
| | - Lea Halim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Anmol Chandele
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Curtis J Perry
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sang Hoon Kim
- Department of Pharmacy, Korea University, Sejong-si, Korea
| | - Sun-Uk Kim
- National Primate Research Center and Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Youngjoo Byun
- Department of Pharmacy, Korea University, Sejong-si, Korea
| | - Soon Hong Yuk
- Department of Pharmacy, Korea University, Sejong-si, Korea
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Yong Woo Jung
- Department of Pharmacy, Korea University, Sejong-si, Korea.
| |
Collapse
|
44
|
Mathews DV, Wakwe WC, Kim SC, Lowe MC, Breeden C, Roberts ME, Farris AB, Strobert EA, Jenkins JB, Larsen CP, Ford ML, Townsend R, Adams AB. Belatacept-Resistant Rejection Is Associated With CD28 + Memory CD8 T Cells. Am J Transplant 2017; 17:2285-2299. [PMID: 28502128 PMCID: PMC5573634 DOI: 10.1111/ajt.14349] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 01/25/2023]
Abstract
Recently, newer therapies have been designed to more specifically target rejection in an effort to improve efficacy and limit unwanted toxicity. Belatacept, a CD28-CD80/86 specific reagent, is associated with superior patient survival and graft function compared with traditional therapy, but its adoption as a mainstay immunosuppressive therapy has been tempered by increased rejection rates. It is essential that the underlying mechanisms associated with this rejection be elucidated before belatacept is more widely used. To that end, we designed a study in a nonhuman primate kidney transplant model where animals were treated with either a belatacept- or a tacrolimus-based immunosuppressive regimen. Interestingly, we found that elevated pretransplant frequencies of CD28+ CD8+ TEMRA cells are associated with rejection on belatacept but not tacrolimus treatment. Further analysis showed that the CD28+ CD8+ TEMRA cells rapidly lose CD28 expression after transplant in those animals that go on to reject with the allograft infiltrate being predominantly CD28- . These data suggest that CD28+ memory T cells may be resistant to belatacept, capable of further differentiation including loss of CD28 expression while maintaining effector function. The unique signaling requirements of CD28+ memory T cells provide opportunities for the development of targeted therapies, which may synergize with belatacept to prevent costimulation-independent rejection.
Collapse
Affiliation(s)
| | - WC Wakwe
- Emory Transplant Center, Atlanta, GA
| | - SC Kim
- Emory Transplant Center, Atlanta, GA
| | - MC Lowe
- Emory Transplant Center, Atlanta, GA
| | - C Breeden
- Emory Transplant Center, Atlanta, GA
| | | | - AB Farris
- Emory Transplant Center, Atlanta, GA
| | | | - JB Jenkins
- Yerkes National Primate Center, Atlanta, GA
| | - CP Larsen
- Emory Transplant Center, Atlanta, GA,Yerkes National Primate Center, Atlanta, GA
| | - ML Ford
- Emory Transplant Center, Atlanta, GA
| | | | - AB Adams
- Emory Transplant Center, Atlanta, GA,Yerkes National Primate Center, Atlanta, GA
| |
Collapse
|
45
|
Pangrazzi L, Naismith E, Meryk A, Keller M, Jenewein B, Trieb K, Grubeck-Loebenstein B. Increased IL-15 Production and Accumulation of Highly Differentiated CD8 + Effector/Memory T Cells in the Bone Marrow of Persons with Cytomegalovirus. Front Immunol 2017; 8:715. [PMID: 28674537 PMCID: PMC5474847 DOI: 10.3389/fimmu.2017.00715] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/02/2017] [Indexed: 01/10/2023] Open
Abstract
Cytomegalovirus (CMV) has been described as a contributor to immunosenescence, thus exacerbating age-related diseases. In persons with latent CMV infection, the CD8+ T cell compartment is irreversibly changed, leading to the accumulation of highly differentiated virus-specific CD8+ T cells in the peripheral blood. The bone marrow (BM) has been shown to play a major role in the long-term survival of antigen-experienced T cells. Effector CD8+ T cells are preferentially maintained by the cytokine IL-15, the expression of which increases in old age. However, the impact of CMV on the phenotype of effector CD8+ T cells and on the production of T cell survival molecules in the BM is not yet known. We now show, using BM samples obtained from persons who underwent hip replacement surgery because of osteoarthrosis, that senescent CD8+ TEMRA cells with a bright expression of CD45RA and a high responsiveness to IL-15 accumulate in the BM of CMV-infected persons. A negative correlation was found between CMV antibody (Ab) titers in the serum and the expression of CD28 and IL-7Rα in CD8+ [Formula: see text] cells. Increased IL-15 mRNA levels were observed in the BM of CMV+ compared to CMV- persons, being particularly high in old seropositive individuals. In summary, our results indicate that a BM environment rich in IL-15 may play an important role in the maintenance of highly differentiated CD8+ T cells generated after CMV infection.
Collapse
Affiliation(s)
- Luca Pangrazzi
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Erin Naismith
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Andreas Meryk
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Michael Keller
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Brigitte Jenewein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Klemens Trieb
- Department of Orthopedic Surgery, Hospital Wels-Grieskirchen, Wels, Austria
| | - Beatrix Grubeck-Loebenstein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
46
|
Wieland D, Kemming J, Schuch A, Emmerich F, Knolle P, Neumann-Haefelin C, Held W, Zehn D, Hofmann M, Thimme R. TCF1 + hepatitis C virus-specific CD8 + T cells are maintained after cessation of chronic antigen stimulation. Nat Commun 2017; 8:15050. [PMID: 28466857 PMCID: PMC5418623 DOI: 10.1038/ncomms15050] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 02/23/2017] [Indexed: 12/22/2022] Open
Abstract
Differentiation and fate of virus-specific CD8+ T cells after cessation of chronic antigen stimulation is unclear. Here we show that a TCF1+CD127+PD1+ hepatitis C virus (HCV)-specific CD8+ T-cell subset exists in chronically infected patients with phenotypic features of T-cell exhaustion and memory, both before and after treatment with direct acting antiviral (DAA) agents. This subset is maintained during, and for a long duration after, HCV elimination. After antigen re-challenge the less differentiated TCF1+CD127+PD1+ population expands, which is accompanied by emergence of terminally exhausted TCF1-CD127-PD1hi HCV-specific CD8+ T cells. These results suggest the TCF1+CD127+PD1+ HCV-specific CD8+ T-cell subset has memory-like characteristics, including antigen-independent survival and recall proliferation. We thus provide evidence for the establishment of memory-like virus-specific CD8+ T cells in a clinically relevant setting of chronic viral infection and we uncover their fate after cessation of chronic antigen stimulation, implicating a potential strategy for antiviral immunotherapy.
Collapse
Affiliation(s)
- Dominik Wieland
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg 79104, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Janine Kemming
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Anita Schuch
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Florian Emmerich
- Institute for Cell and Gene Therapy, University Hospital Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, Klinikum rechts der Isar, Ismaningerstr. 22, München 81675, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany
| | - Werner Held
- Ludwig Center for Cancer Research, Department of Fundamental Oncology, University of Lausanne, 155, Ch. Des Boveresses, Epalinges 1066, Switzerland
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University Munich, Freising, Weihenstephaner Berg 3, Freising 85354, Germany
| | - Maike Hofmann
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany
| |
Collapse
|
47
|
Mathias CB, Schramm CM, Guernsey LA, Wu CA, Polukort SH, Rovatti J, Ser-Dolansky J, Secor E, Schneider SS, Thrall RS, Aguila HL. IL-15-deficient mice develop enhanced allergic responses to airway allergen exposure. Clin Exp Allergy 2017; 47:639-655. [PMID: 28093832 PMCID: PMC5407912 DOI: 10.1111/cea.12886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Interleukin-15 is a pleiotropic cytokine that is critical for the development and survival of multiple haematopoietic lineages. Mice lacking IL-15 have selective defects in populations of several pro-allergic immune cells including natural killer (NK) cells, NKT cells, and memory CD8+ T cells. We therefore hypothesized that IL-15-/- mice will have reduced inflammatory responses during the development of allergic airway disease (AAD). OBJECTIVE To determine whether IL-15-/- mice have attenuated allergic responses in a mouse model of AAD. METHODS C57BL/6 wild-type (WT) and IL-15-/- mice were sensitized and challenged with ovalbumin (OVA), and the development of AAD was ascertained by examining changes in airway inflammatory responses, Th2 responses, and lung histopathology. RESULTS Here, we report that IL-15-/- mice developed enhanced allergic responses in an OVA-induced model of AAD. In the absence of IL-15, OVA-challenged mice exhibited enhanced bronchial eosinophilic inflammation, elevated IL-13 production, and severe lung histopathology in comparison with WT mice. In addition, increased numbers of CD4+ T and B cells in the spleens and bronchoalveolar lavage (BAL) were also observed. Examination of OVA-challenged IL-15Rα-/- animals revealed a similar phenotype resulting in enhanced airway eosinophilia compared to WT mice. Adoptive transfer of splenic CD8+ T cells from OVA-sensitized WT mice suppressed the enhancement of eosinophilia in IL-15-/- animals to levels observed in WT mice, but had no further effects. CONCLUSION AND CLINICAL RELEVANCE These data demonstrate that mice with an endogenous IL-15 deficiency are susceptible to the development of severe, enhanced Th2-mediated AAD, which can be regulated by CD8+ T cells. Furthermore, the development of disease as well as allergen-specific Th2 responses occurs despite deficiencies in several IL-15-dependent cell types including NK, NKT, and γδ T cells, suggesting that these cells or their subsets are dispensable for the induction of AAD in IL-15-deficient mice.
Collapse
Affiliation(s)
- Clinton B. Mathias
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Craig M. Schramm
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Linda A. Guernsey
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Carol A. Wu
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Stephanie H. Polukort
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Jeffrey Rovatti
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Jennifer Ser-Dolansky
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199
| | - Eric Secor
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199
| | - Roger S. Thrall
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Hector L. Aguila
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
48
|
Andrada E, Liébana R, Merida I. Diacylglycerol Kinase ζ Limits Cytokine-dependent Expansion of CD8 + T Cells with Broad Antitumor Capacity. EBioMedicine 2017; 19:39-48. [PMID: 28438506 PMCID: PMC5440620 DOI: 10.1016/j.ebiom.2017.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/03/2017] [Accepted: 04/12/2017] [Indexed: 11/18/2022] Open
Abstract
Interleukin-2 and -15 drive expansion/differentiation of cytotoxic CD8+ T cells that eliminate targets via antigen-independent killing. This property is clinically relevant for the improvement of T cell-based antitumor therapies. Diacylglycerol kinase α and ζ (DGKα/ζ) metabolize the diacylglycerol generated following antigen recognition by T lymphocytes. Enhanced expression of these two lipid kinases in tumor-infiltrating CD8+ T cells promotes a hyporesponsive state that contributes to tumor immune escape. Inhibition of these two enzymes might thus be of interest for potentiating conventional antigen-directed tumor elimination. In this study, we sought to characterize the contribution of DGKα and ζ to antigen-independent cytotoxic functions of CD8+ T cells. Analysis of DGKζ-deficient mice showed an increase in bystander memory-like CD8+ T cell populations not observed in DGKα-deficient mice. We demonstrate that DGKζ limits cytokine responses in an antigen-independent manner. Cytokine-specific expansion of DGKζ-deficient CD8+ T cells promoted enhanced differentiation of innate-like cytotoxic cells in vitro, and correlated with the more potent in vivo anti-tumor responses of DGKζ-deficient mice engrafted with the murine A20 lymphoma. Our studies reveal a isoform-specific function for DGKζ downstream of IL-2/IL-15-mediated expansion of innate-like cytotoxic T cells, Pharmacological manipulation of DGKζ activity is of therapeutic interest for cytokine-directed anti-tumor treatments. DGKζ, a well-characterized negative regulator of TCR signals, also limits IL-2/15 function. DGKζ impairs cytokine-induced differentiation of cytotoxic T cell populations with innate-like ability to kill targets. As a result, DGKζ-deficient mice demonstrate enhanced rejection of implanted B cell lymphoma compared to wild type mice. Targeting DGKζ activity might be of interest to enhance cytokine-mediated antitumor therapies.
The immune system defends the body from foreign invaders. In cancer, tumors disguise as self-body cells and evade immune attack. For this reason it is important to identify the mechanism that stop T lymphocytes from recognize and destroy tumors. In this study we investigate the role of Diacylglycerol kinase zeta (DGKζ) as an inhibitor of antitumor T cell functions. We demonstrate that lymphoma cells injected in mice genetically modified to lack DGKζ expression develop smaller tumors that resolve more rapidly than those grown in normal mice. Our studies suggest that inhibition of DGKζ could help to reinforce the antitumor capacity of immune T lymphocytes.
Collapse
Affiliation(s)
- Elena Andrada
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049 Madrid, Spain
| | - Rosa Liébana
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049 Madrid, Spain
| | - Isabel Merida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049 Madrid, Spain.
| |
Collapse
|
49
|
Zhang F, Little A, Zhang H. Chronic alcohol consumption inhibits peripheral NK cell development and maturation by decreasing the availability of IL-15. J Leukoc Biol 2016; 101:1015-1027. [PMID: 27837016 DOI: 10.1189/jlb.1a0716-298rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 01/13/2023] Open
Abstract
NK cells are innate immune cells and have important roles in antiviral and antitumor immunity. Based on the transcriptional regulation, organ distribution, and cell function, NK cells have recently been further divided into cytotoxic conventional NK cells (cNK) and noncytotoxic helper-like group 1 innate lymphoid cells (ILC1s). It is well known that chronic alcohol consumption decreases peripheral NK cell number and cytolytic activity; however, the underlying mechanism remains to be elucidated. How chronic alcohol consumption affects ILC1s is, to our knowledge, completely unexplored. Herein, we used a well-established mouse model of chronic alcohol consumption to study the effects of alcohol on transcription factor expression, maturation, and cytokine production of cNK cells and ILC1s in various organs. We found that alcohol consumption significantly decreased Eomes-expressing cNK cells in all the examined organs, except BM, but did not significantly affect ILC1s. Alcohol consumption compromised cNK cell development and maturation. Exogenous IL-15/IL-15Rα treatment caused full recovery of Eomes-expressing cNK cell number and maturation. Taken together, our data indicated that chronic alcohol consumption decreases cNK cell number and cytolytic activity by arresting cNK cell development at the CD27+CD11b+ stage. This developmental arrest of NK cells results from a lack of IL-15 availability in the microenvironment. IL-15/IL-15Rα treatment can recover alcohol consumption-induced developmental defect in NK cells.
Collapse
Affiliation(s)
- Faya Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, USA
| | - Alex Little
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, USA
| | - Hui Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, USA
| |
Collapse
|
50
|
Basher F, Jeng EK, Wong H, Wu J. Cooperative therapeutic anti-tumor effect of IL-15 agonist ALT-803 and co-targeting soluble NKG2D ligand sMIC. Oncotarget 2016; 7:814-30. [PMID: 26625316 PMCID: PMC4808035 DOI: 10.18632/oncotarget.6416] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/16/2015] [Indexed: 02/06/2023] Open
Abstract
Shedding of the human NKG2D ligand MIC (MHC class I-chain-related molecule) from tumor cell surfaces correlates with progression of many epithelial cancers. Shedding-derived soluble MIC (sMIC) enables tumor immune escape through multiple immune suppressive mechanisms, such as disturbing natural killer (NK) cell homeostatic maintenance, impairing NKG2D expression on NK cells and effector T cells, and facilitating the expansion of arginase I+ myeloid suppressor cells. Our recent study has demonstrated that sMIC is an effective cancer therapeutic target. Whether targeting tumor-derived sMIC would enhance current active immunotherapy is not known. Here, we determined the in vivo therapeutic effect of an antibody co-targeting sMIC with the immunostimulatory IL-15 superagonist complex, ALT-803, using genetically engineered transplantable syngeneic sMIC+ tumor models. We demonstrate that combined therapy of a nonblocking antibody neutralizing sMIC and ALT-803 improved the survival of animals bearing sMIC+ tumors in comparison to monotherapy. We further demonstrate that the enhanced therapeutic effect with combined therapy is through concurrent augmentation of NK and CD8 T cell anti-tumor responses. In particular, expression of activation-induced surface molecules and increased functional potential by cytokine secretion are improved greatly by the administration of combined therapy. Depletion of NK cells abolished the cooperative therapeutic effect. Our findings suggest that administration of the sMIC-neutralizing antibody can enhance the anti-tumor effects of ALT-803. With ALT-803 currently in clinical trials to treat progressive solid tumors, the majority of which are sMIC+, our findings provide a rationale for co-targeting sMIC to enhance the therapeutic efficacy of ALT-803 or other IL-15 agonists.
Collapse
Affiliation(s)
- Fahmin Basher
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Hing Wong
- Altor BioSciences Corporation, Miramar, FL, USA
| | - Jennifer Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.,Cancer Immunology Program, Hollings Cancer Center, Charleston, SC, USA.,CanCure LLC, Everett, WA, USA
| |
Collapse
|