1
|
Gao Y, Cai C, Adamo S, Biteus E, Kamal H, Dager L, Miners KL, Llewellyn-Lacey S, Ladell K, Amratia PS, Bentley K, Kollnberger S, Wu J, Akhirunnesa M, Jones SA, Julin P, Lidman C, Stanton RJ, Goepfert PA, Peluso MJ, Deeks SG, Davies HE, Aleman S, Buggert M, Price DA. Identification of soluble biomarkers that associate with distinct manifestations of long COVID. Nat Immunol 2025; 26:692-705. [PMID: 40307449 PMCID: PMC12043503 DOI: 10.1038/s41590-025-02135-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 03/14/2025] [Indexed: 05/02/2025]
Abstract
Long coronavirus disease (COVID) is a heterogeneous clinical condition of uncertain etiology triggered by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we used ultrasensitive approaches to profile the immune system and the plasma proteome in healthy convalescent individuals and individuals with long COVID, spanning geographically independent cohorts from Sweden and the United Kingdom. Symptomatic disease was not consistently associated with quantitative differences in immune cell lineage composition or antiviral T cell immunity. Healthy convalescent individuals nonetheless exhibited higher titers of neutralizing antibodies against SARS-CoV-2 than individuals with long COVID, and extensive phenotypic analyses revealed a subtle increase in the expression of some co-inhibitory receptors, most notably PD-1 and TIM-3, among SARS-CoV-2 nonspike-specific CD8+ T cells in individuals with long COVID. We further identified a shared plasma biomarker signature of disease linking breathlessness with apoptotic inflammatory networks centered on various proteins, including CCL3, CD40, IKBKG, IL-18 and IRAK1, and dysregulated pathways associated with cell cycle progression, lung injury and platelet activation, which could potentially inform the diagnosis and treatment of long COVID.
Collapse
Affiliation(s)
- Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Curtis Cai
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Adamo
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Elsa Biteus
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden
| | - Habiba Kamal
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Lena Dager
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Pragati S Amratia
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Kirsten Bentley
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Simon Kollnberger
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Jinghua Wu
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Mily Akhirunnesa
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Samantha A Jones
- Department of Respiratory Medicine, University Hospital Llandough, Penarth, UK
| | - Per Julin
- Post-COVID Policlinic, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Christer Lidman
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Richard J Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Paul A Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael J Peluso
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Helen E Davies
- Department of Respiratory Medicine, University Hospital Llandough, Penarth, UK
| | - Soo Aleman
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK.
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK.
| |
Collapse
|
2
|
Borthwick N, Fernandez N, Hayes PJ, Wee EGT, Akis Yildirim BM, Baines A, Baker M, Byard N, Conway O, Glaze M, Jenkin D, Larkworthy C, Luciw M, Platt A, Poulton I, Thomas M, Quaddy J, Watson M, Crook A, Cicconi P, Hanke T. Safety and immunogenicity of the ChAdOx1-MVA-vectored conserved mosaic HIVconsvX candidate T-cell vaccines in HIV-CORE 005.2, an open-label, dose-escalation, first-in-human, phase 1 trial in adults living without HIV-1 in the UK. THE LANCET. MICROBE 2025; 6:100956. [PMID: 39612921 DOI: 10.1016/j.lanmic.2024.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND An HIV-1 vaccine is long overdue. Although vaccine research focuses on the induction of broadly neutralising antibodies, challenging infections such as HIV-1 could require parallel induction of protective T cells. It is important to recognise that not all T cells contribute to protection equally. Previously, we developed a T-cell immunogen-based bivalent mosaic vaccine, HIVconsvX, delivered by vaccine vectors ChAdOx1 and modified vaccinia Ankara. In this study, we tested the HIVconsvX vaccine regimen for the first time in humans. Other ongoing trials will assess the contribution of the vaccine-induced killer T cells to the control of HIV-1. METHODS HIV-CORE 005.2 was an open-label, dose-escalation, first-in-human, phase 1 trial done at the Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK. Eligible participants were healthy volunteers aged 18-65 years living without HIV-1 and at a low likelihood of acquiring it. Because it was the first administration of ChAdOx1.tHIVconsv1 (C1) to humans, participants were assigned stepwise to two groups. Volunteer group 1 received a low dose of C1 on enrolment. Following a satisfactory safety review 7 days after vaccination, volunteer group 2 received a full dose of C1 boosted by vaccines MVA.tHIVconsv3 (M3) and MVA.tHIVconsv4 (M4) 4 weeks later in regimen C1-M3M4 and were followed up until day 140. Focusing on the full vaccine doses in group 2, the primary outcome was the local and systemic safety of the vaccine. The secondary outcome was the frequency and breadth of epitope recognition by vaccine-induced T cells determined by IFN-γ ELISPOT assay using peripheral blood mononuclear cells (PBMC) at peak (1 and 2 weeks after the M3M4 boost) and at the end of the study, assessed against volunteer's pre-vaccination levels. The HIV-CORE 005.2 trial is registered at ClinicalTrials.gov (NCT04586673) and is closed. FINDINGS Between July 3, 2021, and Aug 3, 2022, 13 participants were recruited and assigned to group 1 (n=3) and group 2 (n=10). Low-dose C1 was safe and well tolerated in group 1, and all three vaccine components were well tolerated in volunteer group 2. There were no serious adverse events. Local and systemic reactogenicities were consistent with intramuscular needle administration of immunogenic substances. All volunteers responded, and their vaccine-elicited T-cell frequencies peaked at a median of 4433 (IQR 2750-5820) IFN-γ spot-forming units per 106 PBMC and recognised a median of 9 (IQR 9-10) peptide pools out of 10, indicating that the responses were broadly specific and each vaccine recipient targeted at least nine epitopes on HIV-1. These frequencies were 7·4 times lower by day 140 (ie, 3 months later). T cells proliferated upon antigen re-exposure and displayed multiple effector functions, recognised variant epitopes, and inhibited HIV-1 from the four major global clades A, B, C, and D. INTERPRETATION These results inform and support a programme of clinical evaluations of the HIVconsvX T-cell vaccines together with other cutting-edge tools for HIV-1 cure and prevention such as latency reactivating agents, passively infused combinations of broadly neutralising antibodies, and active Env-based vaccines or immunomodulators. FUNDING EU Horizon 2020 Research and Innovation programme, Medical Research Council and Foreign Commonwealth and Development Office Concordat agreement, European and Developing Countries Clinical Trials Partnership, National Institute for Health Research Oxford Biomedical Research Centre, and IAVI.
Collapse
Affiliation(s)
- Nicola Borthwick
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | | | - Peter J Hayes
- IAVI Human Immunology Laboratory, Imperial College, London, UK
| | - Edmund G-T Wee
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | | | - Andrea Baines
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Megan Baker
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Nicholas Byard
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Oliver Conway
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Molly Glaze
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Daniel Jenkin
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Colin Larkworthy
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Michael Luciw
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Abigail Platt
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Ian Poulton
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Merin Thomas
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Jack Quaddy
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Marion Watson
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Alison Crook
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Paola Cicconi
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK; Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
3
|
Autaa G, Papagno L, Nogimori T, Boizard-Moracchini A, Korenkov D, Roy M, Suzuki K, Masuta Y, White E, Llewellyn-Lacey S, Yoshioka Y, Nicoli F, Price DA, Dechanet-Merville J, Yamamoto T, Pellegrin I, Appay V. Aging and inflammation limit the induction of SARS-CoV-2-specific CD8+ T cell responses in severe COVID-19. JCI Insight 2025; 10:e180867. [PMID: 39847442 PMCID: PMC11949069 DOI: 10.1172/jci.insight.180867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
CD8+ T cells are critical for immune protection against severe COVID-19 during acute infection with SARS-CoV-2. However, the induction of antiviral CD8+ T cell responses varies substantially among infected people, and a better understanding of the mechanisms that underlie such immune heterogeneity is required for pandemic preparedness and risk stratification. In this study, we analyzed SARS-CoV-2-specific CD4+ and CD8+ T cell responses in relation to age, clinical status, and inflammation among patients infected primarily during the initial wave of the pandemic in France or Japan. We found that age-related contraction of the naive lymphocyte pool and systemic inflammation were associated with suboptimal SARS-CoV-2-specific CD4+ and, even more evidently, CD8+ T cell immunity in patients with acute COVID-19. No such differences were observed for humoral immune responses targeting the spike protein of SARS-CoV-2. We also found that the proinflammatory cytokine IL-18, concentrations of which were significantly elevated among patients with severe disease, suppressed the de novo induction and memory recall of antigen-specific CD8+ T cells, including those directed against SARS-CoV-2. These results potentially explain the vulnerability of older adults to infections that elicit a profound inflammatory response, exemplified by acute COVID-19.
Collapse
Affiliation(s)
- Gaëlle Autaa
- University of Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
| | - Laura Papagno
- University of Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
| | - Takuto Nogimori
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | | | - Daniil Korenkov
- University of Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
| | - Maeva Roy
- CHU Bordeaux, Laboratory of Immunology and Immunogenetics, 33000 Bordeaux, France
| | - Koichiro Suzuki
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Osaka, Japan
| | - Yuji Masuta
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Eoghann White
- University of Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Yasuo Yoshioka
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Osaka, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, and
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Francesco Nicoli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - David A. Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Julie Dechanet-Merville
- University of Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
| | - Takuya Yamamoto
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Isabelle Pellegrin
- University of Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
- CHU Bordeaux, Laboratory of Immunology and Immunogenetics, 33000 Bordeaux, France
| | - Victor Appay
- University of Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| |
Collapse
|
4
|
Callery EL, Morais CLM, Taylor JV, Challen K, Rowbottom AW. Investigation of Long-Term CD4+ T Cell Receptor Repertoire Changes Following SARS-CoV-2 Infection in Patients with Different Severities of Disease. Diagnostics (Basel) 2024; 14:2330. [PMID: 39451653 PMCID: PMC11507081 DOI: 10.3390/diagnostics14202330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The difference in the immune response to severe acute respiratory syndrome coro-navirus 2 (SARS-CoV-2) in patients with mild versus severe disease remains poorly understood. Recent scientific advances have recognised the vital role of both B cells and T cells; however, many questions remain unanswered, particularly for T cell responses. T cells are essential for helping the generation of SARS-CoV-2 antibody responses but have also been recognised in their own right as a major factor influencing COVID-19 disease outcomes. The examination of T cell receptor (TCR) family differences over a 12-month period in patients with varying COVID-19 disease severity is crucial for understanding T cell responses to SARS-CoV-2. METHODS We applied a machine learning approach to analyse TCR vb family responses in COVID-19 patients (n = 151) across multiple timepoints and disease severities alongside SARS-CoV-2 infection-naïve (healthy control) individ-uals (n = 62). RESULTS Blood samples from hospital in-patients with moderate, severe, or critical disease could be classified with an accuracy of 94%. Furthermore, we identified significant variances in TCR vb family specificities between disease and control subgroups. CONCLUSIONS Our findings suggest advantageous and disadvantageous TCR repertoire patterns in relation to disease severity. Following validation in larger cohorts, our methodology may be useful in detecting protective immunity and the assessment of long-term outcomes, particularly as we begin to unravel the immunological mechanisms leading to post-COVID complications.
Collapse
Affiliation(s)
- Emma L. Callery
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Camilo L. M. Morais
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil;
| | - Jemma V. Taylor
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Kirsty Challen
- Department of Emergency Medicine, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Anthony W. Rowbottom
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
- School of Medicine, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
5
|
Deng S, Xu Z, Hu J, Yang Y, Zhu F, Liu Z, Zhang H, Wu S, Jin T. The molecular mechanisms of CD8 + T cell responses to SARS-CoV-2 infection mediated by TCR-pMHC interactions. Front Immunol 2024; 15:1468456. [PMID: 39450171 PMCID: PMC11499136 DOI: 10.3389/fimmu.2024.1468456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cytotoxic CD8+ T lymphocytes (CTLs) have been implicated in the severity of COVID-19. The TCR-pMHC ternary complex, formed by the T cell receptor (TCR) and peptide-MHC (major histocompatibility complex), constitutes the molecular basis of CTL responses against SARS-CoV-2. While numerous studies have been conducted on T cell immunity, the molecular mechanisms underlying CTL-mediated immunity against SARS-CoV-2 infection have not been well elaborated. In this review, we described the association between HLA variants and different immune responses to SARS-CoV-2 infection, which may lead to varying COVID-19 outcomes. We also summarized the specific TCR repertoires triggered by certain SARS-CoV-2 CTL epitopes, which might explain the variations in disease outcomes among different patients. Importantly, we have highlighted the primary strategies used by SARS-CoV-2 variants to evade T-cell killing: disrupting peptide-MHC binding, TCR recognition, and antigen processing. This review provides valuable insights into the molecule mechanism of CTL responses during SARS-CoV-2 infection, aiding efforts to control the pandemic and prepare for future challenges.
Collapse
Affiliation(s)
- Shasha Deng
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Hu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunru Yang
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| |
Collapse
|
6
|
Rojas M, Acosta-Ampudia Y, Heuer LS, Zang W, M Monsalve D, Ramírez-Santana C, Anaya JM, M Ridgway W, A Ansari A, Gershwin ME. Antigen-specific T cells and autoimmunity. J Autoimmun 2024; 148:103303. [PMID: 39141985 DOI: 10.1016/j.jaut.2024.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Autoimmune diseases (ADs) showcase the intricate balance between the immune system's protective functions and its potential for self-inflicted damage. These disorders arise from the immune system's erroneous targeting of the body's tissues, resulting in damage and disease. The ability of T cells to distinguish between self and non-self-antigens is pivotal to averting autoimmune reactions. Perturbations in this process contribute to AD development. Autoreactive T cells that elude thymic elimination are activated by mimics of self-antigens or are erroneously activated by self-antigens can trigger autoimmune responses. Various mechanisms, including molecular mimicry and bystander activation, contribute to AD initiation, with specific triggers and processes varying across the different ADs. In addition, the formation of neo-epitopes could also be implicated in the emergence of autoreactivity. The specificity of T cell responses centers on the antigen recognition sequences expressed by T cell receptors (TCRs), which recognize peptide fragments displayed by major histocompatibility complex (MHC) molecules. The assortment of TCR gene combinations yields a diverse array of T cell populations, each with distinct affinities for self and non-self antigens. However, new evidence challenges the traditional notion that clonal expansion solely steers the selection of higher-affinity T cells. Lower-affinity T cells also play a substantial role, prompting the "two-hit" hypothesis. High-affinity T cells incite initial responses, while their lower-affinity counterparts perpetuate autoimmunity. Precision treatments that target antigen-specific T cells hold promise for avoiding widespread immunosuppression. Nevertheless, detection of such antigen-specific T cells remains a challenge, and multiple technologies have been developed with different sensitivities while still harboring several drawbacks. In addition, elements such as human leukocyte antigen (HLA) haplotypes and validation through animal models are pivotal for advancing these strategies. In brief, this review delves into the intricate mechanisms contributing to ADs, accentuating the pivotal role(s) of antigen-specific T cells in steering immune responses and disease progression, as well as the novel strategies for the identification of antigen-specific cells and their possible future use in humans. Grasping the mechanisms behind ADs paves the way for targeted therapeutic interventions, potentially enhancing treatment choices while minimizing the risk of systemic immunosuppression.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA; Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luke S Heuer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Weici Zang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | | | - William M Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Aftab A Ansari
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Dallan B, Proietto D, De Laurentis M, Gallerani E, Martino M, Ghisellini S, Zurlo A, Volpato S, Govoni B, Borghesi M, Albanese V, Appay V, Bonnini S, Llewellyn-Lacey S, Pacifico S, Grumiro L, Brandolini M, Semprini S, Sambri V, Ladell K, Parry HM, Moss PAH, Price DA, Caputo A, Gavioli R, Nicoli F. Age differentially impacts adaptive immune responses induced by adenoviral versus mRNA vaccines against COVID-19. NATURE AGING 2024; 4:1121-1136. [PMID: 38918602 DOI: 10.1038/s43587-024-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/02/2024] [Indexed: 06/27/2024]
Abstract
Adenoviral and mRNA vaccines encoding the viral spike (S) protein have been deployed globally to contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Older individuals are particularly vulnerable to severe infection, probably reflecting age-related changes in the immune system, which can also compromise vaccine efficacy. It is nonetheless unclear to what extent different vaccine platforms are impacted by immunosenescence. Here, we evaluated S protein-specific immune responses elicited by vaccination with two doses of BNT162b2 or ChAdOx1-S and subsequently boosted with a single dose of BNT162b2 or mRNA-1273, comparing age-stratified participants with no evidence of previous infection with SARS-CoV-2. We found that aging profoundly compromised S protein-specific IgG titers and further limited S protein-specific CD4+ and CD8+ T cell immunity as a probable function of progressive erosion of the naive lymphocyte pool in individuals vaccinated initially with BNT162b2. Our results demonstrate that primary vaccination with ChAdOx1-S and subsequent boosting with BNT162b2 or mRNA-1273 promotes sustained immunological memory in older adults and potentially confers optimal protection against coronavirus disease 2019.
Collapse
Affiliation(s)
- Beatrice Dallan
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Davide Proietto
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Martina De Laurentis
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Eleonora Gallerani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mara Martino
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Sara Ghisellini
- Laboratory of Clinical Pathology, University Hospital St. Anna, Ferrara, Italy
| | - Amedeo Zurlo
- Department of Medical Sciences, University of Ferrara, Geriatrics Unit, University Hospital of Ferrara, Ferrara, Italy
| | - Stefano Volpato
- Department of Medical Sciences, University of Ferrara, Geriatrics Unit, University Hospital of Ferrara, Ferrara, Italy
| | - Benedetta Govoni
- Department of Medical Sciences, University of Ferrara, Geriatrics Unit, University Hospital of Ferrara, Ferrara, Italy
| | - Michela Borghesi
- Department of Economics and Management, University of Ferrara, Ferrara, Italy
| | - Valentina Albanese
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux, France
| | - Stefano Bonnini
- Department of Economics and Management, University of Ferrara, Ferrara, Italy
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Salvatore Pacifico
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Laura Grumiro
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Martina Brandolini
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Simona Semprini
- Unit of Microbiology, Greater Romagna Area Hub Laboratory, Cesena, Italy
| | - Vittorio Sambri
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Unit of Microbiology, Greater Romagna Area Hub Laboratory, Cesena, Italy
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Helen M Parry
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Paul A H Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Antonella Caputo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Riccardo Gavioli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Francesco Nicoli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
8
|
Lanfermeijer J, van de Ven K, Hendriks M, van Dijken H, Lenz S, Vos M, Borghans JAM, van Baarle D, de Jonge J. The Memory-CD8+-T-Cell Response to Conserved Influenza Virus Epitopes in Mice Is Not Influenced by Time Since Previous Infection. Vaccines (Basel) 2024; 12:419. [PMID: 38675801 PMCID: PMC11054904 DOI: 10.3390/vaccines12040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
To protect older adults against influenza A virus (IAV) infection, innovative strategies are imperative to overcome the decrease in protective immune response with age. One approach involves the boosting of CD8+ T cells at middle age that were previously induced by natural infection. At this stage, the immune system is still fit. Given the high conservation of T-cell epitopes within internal viral proteins, such a response may confer lasting protection against evolving influenza strains at older age, also reducing the high number of influenza immunizations currently required. However, at the time of vaccination, some individuals may have been more recently exposed to IAV than others, which could affect the T-cell response. We therefore investigated the fundamental principle of how the interval between the last infection and booster immunization during middle age influences the CD8+ T-cell response. To model this, female mice were infected at either 6 or 9 months of age and subsequently received a heterosubtypic infection booster at middle age (12 months). Before the booster infection, 6-month-primed mice displayed lower IAV-specific CD8+ T-cell responses in the spleen and lung than 9-month-primed mice. Both groups were better protected against the subsequent heterosubtypic booster infection compared to naïve mice. Notably, despite the different CD8+ T-cell levels between the 6-month- and 9-month-primed mice, we observed comparable responses after booster infection, based on IFNγ responses, and IAV-specific T-cell frequencies and repertoire diversity. Lung-derived CD8+ T cells of 6- and 9-month-primed mice expressed similar levels of tissue-resident memory-T-cell markers 30 days post booster infection. These data suggest that the IAV-specific CD8+ T-cell response after boosting is not influenced by the time post priming.
Collapse
Affiliation(s)
- Josien Lanfermeijer
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- AstraZeneca, 2594 AV Den Haag, The Netherlands
| | - Koen van de Ven
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
- DICA (Dutch Institute for Clinical Auditing), 2333 AA Leiden, The Netherlands
| | - Marion Hendriks
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
- Deventer Ziekenhuis, 7416 SE Deventer, The Netherlands
| | - Harry van Dijken
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - Stefanie Lenz
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
- MSD Animal Health, 5830 AA Boxmeer, The Netherlands
| | - Martijn Vos
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - José A. M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Debbie van Baarle
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Virology & Immunology Research, Department Medical Microbiology and Infection Prevention, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Jørgen de Jonge
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
9
|
Turner L, Van Le TN, Cross E, Queriault C, Knight M, Trihemasava K, Davis J, Schaefer P, Nguyen J, Xu J, Goldspiel B, Hall E, Rome K, Scaglione M, Eggert J, Au-Yeung B, Wallace DC, Mesaros C, Baur JA, Bailis W. Single-cell NAD(H) levels predict clonal lymphocyte expansion dynamics. Sci Immunol 2024; 9:eadj7238. [PMID: 38489349 PMCID: PMC11064129 DOI: 10.1126/sciimmunol.adj7238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Adaptive immunity requires the expansion of high-affinity lymphocytes from a heterogeneous pool. Whereas current models explain this through signal transduction, we hypothesized that antigen affinity tunes discrete metabolic pathways to license clonal lymphocyte dynamics. Here, we identify nicotinamide adenine dinucleotide (NAD) biosynthesis as a biochemical hub for the T cell receptor affinity-dependent metabolome. Through this central anabolic role, we found that NAD biosynthesis governs a quiescence exit checkpoint, thereby pacing proliferation. Normalizing cellular NAD(H) likewise normalizes proliferation across affinities, and enhancing NAD biosynthesis permits the expansion of lower affinity clones. Furthermore, single-cell differences in NAD(H) could predict division potential for both T and B cells, before the first division, unmixing proliferative heterogeneity. We believe that this supports a broader paradigm in which complex signaling networks converge on metabolic pathways to control single-cell behavior.
Collapse
Affiliation(s)
- Lucien Turner
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Tran Ngoc Van Le
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Eric Cross
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104
| | - Clemence Queriault
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Montana Knight
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Krittin Trihemasava
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - James Davis
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, 19104
| | - Patrick Schaefer
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Janet Nguyen
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Jimmy Xu
- Center of Excellence in Environmental Toxicology & Department of Systems Pharmacology & Translational Therapeutics, University of Pennsylvania; Philadelphia, PA 19104
| | - Brian Goldspiel
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Elise Hall
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Kelly Rome
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Michael Scaglione
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Joel Eggert
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University; Atlanta, GA 30322
| | - Byron Au-Yeung
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University; Atlanta, GA 30322
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
- Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104
| | - Clementina Mesaros
- Center of Excellence in Environmental Toxicology & Department of Systems Pharmacology & Translational Therapeutics, University of Pennsylvania; Philadelphia, PA 19104
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, 19104
| | - Will Bailis
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104
| |
Collapse
|
10
|
Cabral-Piccin MP, Briceño O, Papagno L, Liouville B, White E, Perdomo-Celis F, Autaa G, Volant S, Llewellyn-Lacey S, Fromentin R, Chomont N, Price DA, Sáez-Cirión A, Lambotte O, Katlama C, Appay V. CD8 + T-cell priming is quantitatively but not qualitatively impaired in people with HIV-1 on antiretroviral therapy. AIDS 2024; 38:161-166. [PMID: 37800637 DOI: 10.1097/qad.0000000000003746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
BACKGROUND The induction of de novo CD8 + T-cell responses is essential for protective antiviral immunity, but this process is often impaired in people with HIV-1 (PWH). We investigated the extent to which the immune competence of naive CD8 + T cells, a key determinant of priming efficacy, could be preserved or restored in PWH via long-term antiretroviral therapy (ART). METHODS We used flow cytometry, molecular analyses of gene transcription and telomere length, and a fully validated priming assay to characterize naive CD8 + T cells ex vivo and evaluate the induction of antigen-specific effector/memory CD8 + T cells in vitro , comparing age-matched healthy uninfected donors (HUDs), PWH on ART, and natural HIV-1 controllers (HICs). RESULTS We found that naive CD8 + T cells were numerically reduced and exhibited a trend toward shorter telomere lengths in PWH on ART compared with HUDs and HICs. These features associated with impaired priming efficacy. However, we also found that naive CD8 + T cells were fully equipped proliferatively and transcriptionally in PWH on ART, enabling the generation of antigen-specific effector/memory CD8 + T cells with functional and phenotypic attributes comparable to those primed from HUDs. CONCLUSION Our data suggest that naive CD8 + T cells in PWH on ART are intrinsically capable of generating functionally and phenotypically intact effector/memory CD8 + T cells in response to antigen, despite evidence of senescence and an overall numerical reduction that compromises priming efficacy relative to HUDs and HICs.
Collapse
Affiliation(s)
- Mariela P Cabral-Piccin
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Olivia Briceño
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, Mexico City, Mexico
| | - Laura Papagno
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Benjamin Liouville
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Eoghann White
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | | | - Gaëlle Autaa
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux
| | - Stevenn Volant
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Rémi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Asier Sáez-Cirión
- Institut Pasteur, Université Paris Cité, Unité HIV Inflammation et Persistance
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris
| | - Olivier Lambotte
- Université Paris-Saclay, AP-HP Hôpitaux Universitaires Paris Saclay, Service de Médecine Interne, Bicêtre (UMR 1184), CEA (IDMIT Department, IBFJ), INSERM, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), Le Kremlin Bicêtre
| | - Christine Katlama
- Infectious Diseases Department, Pitié-Salpêtrière Hospital, AP-HP, Pierre Louis Epidemiology and Public Health Institute (iPLESP), INSERM 1136, Sorbonne Université, Paris, France
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
11
|
Cai C, Gao Y, Adamo S, Rivera-Ballesteros O, Hansson L, Österborg A, Bergman P, Sandberg JK, Ljunggren HG, Björkström NK, Strålin K, Llewellyn-Lacey S, Price DA, Qin C, Grifoni A, Weiskopf D, Wherry EJ, Sette A, Aleman S, Buggert M. SARS-CoV-2 vaccination enhances the effector qualities of spike-specific T cells induced by COVID-19. Sci Immunol 2023; 8:eadh0687. [PMID: 38064569 PMCID: PMC7615587 DOI: 10.1126/sciimmunol.adh0687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023]
Abstract
T cells are critical for immune protection against severe COVID-19, but it has remained unclear whether repeated exposure to SARS-CoV-2 antigens delivered in the context of vaccination fuels T cell exhaustion or reshapes T cell functionality. Here, we sampled convalescent donors with a history of mild or severe COVID-19 before and after SARS-CoV-2 vaccination to profile the functional spectrum of hybrid T cell immunity. Using combined single-cell technologies and high-dimensional flow cytometry, we found that the frequencies and functional capabilities of spike-specific CD4+ and CD8+ T cells in previously infected individuals were enhanced by vaccination, despite concomitant increases in the expression of inhibitory receptors such as PD-1 and TIM3. In contrast, CD4+ and CD8+ T cells targeting non-spike proteins remained functionally static and waned over time, and only minimal effects were observed in healthy vaccinated donors experiencing breakthrough infections with SARS-CoV-2. Moreover, hybrid immunity was characterized by elevated expression of IFN-γ, which was linked with clonotype specificity in the CD8+ T cell lineage. Collectively, these findings identify a molecular hallmark of hybrid immunity and suggest that vaccination after infection is associated with cumulative immunological benefits over time, potentially conferring enhanced protection against subsequent episodes of COVID-19.
Collapse
Affiliation(s)
- Curtis Cai
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yu Gao
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sarah Adamo
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Olga Rivera-Ballesteros
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lotta Hansson
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Österborg
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Johan K. Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K. Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kristoffer Strålin
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - David A. Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Chuan Qin
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, California, USA
| | - E. John Wherry
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
| | - Alessandro Sette
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Comparative Medicine Center, Peking Union Medical College, Beijing, China
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, California, USA
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Couturaud B, Doix B, Carretero-Iglesia L, Allard M, Pradervand S, Hebeisen M, Rufer N. Overall avidity declines in TCR repertoires during latent CMV but not EBV infection. Front Immunol 2023; 14:1293090. [PMID: 38053994 PMCID: PMC10694213 DOI: 10.3389/fimmu.2023.1293090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction The avidity of the T-cell receptor (TCR) for antigenic peptides presented by the MHC (pMHC) on cells is an essential parameter for efficient T cell-mediated immunity. Yet, whether the TCR-ligand avidity can drive the clonal evolution of virus antigen-specific CD8 T cells, and how this process is determined in latent Cytomegalovirus (CMV)- against Epstein-Barr virus (EBV)-mediated infection remains largely unknown. Methods To address these issues, we quantified monomeric TCR-pMHC dissociation rates on CMV- and EBV-specific individual TCRαβ clonotypes and polyclonal CD8 T cell populations in healthy donors over a follow-up time of 15-18 years. The parameters involved during the long-term persistence of virus-specific T cell clonotypes were further evaluated by gene expression profiling, phenotype and functional analyses. Results Within CMV/pp65-specific T cell repertoires, a progressive contraction of clonotypes with high TCR-pMHC avidity and low CD8 binding dependency was observed, leading to an overall avidity decline during long-term antigen exposure. We identified a unique transcriptional signature preferentially expressed by high-avidity CMV/pp65-specific T cell clonotypes, including the inhibitory receptor LILRB1. Interestingly, T cell clonotypes of high-avidity showed higher LILRB1 expression than the low-avidity ones and LILRB1 blockade moderately increased T cell proliferation. Similar findings were made for CD8 T cell repertoires specific for the CMV/IE-1 epitope. There was a gradual in vivo loss of high-avidity T cells with time for both CMV specificities, corresponding to virus-specific CD8 T cells expressing enhanced LILRB1 levels. In sharp contrast, the EBV/BMFL1-specific T cell clonal composition and distribution, once established, displayed an exceptional stability, unrelated to TCR-pMHC binding avidity or LILRB1 expression. Conclusions These findings reveal an overall long-term avidity decline of CMV- but not EBV-specific T cell clonal repertoires, highlighting the differing role played by TCR-ligand avidity over the course of these two latent herpesvirus infections. Our data further suggest that the inhibitor receptor LILRB1 potentially restricts the clonal expansion of high-avidity CMV-specific T cell clonotypes during latent infection. We propose that the mechanisms regulating the long-term outcome of CMV- and EBV-specific memory CD8 T cell clonotypes in humans are distinct.
Collapse
Affiliation(s)
- Barbara Couturaud
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Bastien Doix
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Laura Carretero-Iglesia
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Mathilde Allard
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Sylvain Pradervand
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
- Lausanne Genomic Technologies Facility (LGTF), University of Lausanne, Lausanne, Switzerland
| | - Michael Hebeisen
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Nathalie Rufer
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
13
|
Adamo S, Gao Y, Sekine T, Mily A, Wu J, Storgärd E, Westergren V, Filén F, Treutiger CJ, Sandberg JK, Sällberg M, Bergman P, Llewellyn-Lacey S, Ljunggren HG, Price DA, Ekström AM, Sette A, Grifoni A, Buggert M. Memory profiles distinguish cross-reactive and virus-specific T cell immunity to mpox. Cell Host Microbe 2023; 31:928-936.e4. [PMID: 37236191 PMCID: PMC10211501 DOI: 10.1016/j.chom.2023.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Mpox represents a persistent health concern with varying disease severity. Reinfections with mpox virus (MPXV) are rare, possibly indicating effective memory responses to MPXV or related poxviruses, notably vaccinia virus (VACV) from smallpox vaccination. We assessed cross-reactive and virus-specific CD4+ and CD8+ T cells in healthy individuals and mpox convalescent donors. Cross-reactive T cells were most frequently observed in healthy donors over 45 years. Notably, long-lived memory CD8+ T cells targeting conserved VACV/MPXV epitopes were identified in older individuals more than four decades after VACV exposure and exhibited stem-like characteristics, defined by T cell factor-1 (TCF-1) expression. In mpox convalescent donors, MPXV-reactive CD4+ and CD8+ T cells were more prevalent than in controls, demonstrating enhanced functionality and skewing toward effector phenotypes, which correlated with milder disease. Collectively, we report robust effector memory MPXV-specific T cell responses in mild mpox and long-lived TCF-1+ VACV/MPXV-specific CD8+ T cells decades after smallpox vaccination.
Collapse
Affiliation(s)
- Sarah Adamo
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm 14152, Sweden
| | - Yu Gao
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm 14152, Sweden
| | - Takuya Sekine
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm 14152, Sweden
| | - Akhirunnesa Mily
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm 14152, Sweden
| | - Jinghua Wu
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm 14152, Sweden
| | - Elisabet Storgärd
- Department of Infectious Diseases/Venhälsan, Södersjukhuset, Stockholm 11861, Sweden
| | - Victor Westergren
- Department of Infectious Diseases/Venhälsan, Södersjukhuset, Stockholm 11861, Sweden
| | - Finn Filén
- Department of Infectious Diseases/Venhälsan, Södersjukhuset, Stockholm 11861, Sweden
| | - Carl-Johan Treutiger
- Department of Infectious Diseases/Venhälsan, Södersjukhuset, Stockholm 11861, Sweden
| | - Johan K Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm 14152, Sweden
| | - Matti Sällberg
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Stockholm 14152, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Stockholm 14152, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm 14152, Sweden
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4ER, UK
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm 14152, Sweden
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4ER, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4ER, UK
| | - Anna-Mia Ekström
- Department of Infectious Diseases/Venhälsan, Södersjukhuset, Stockholm 11861, Sweden; Department of Global Public Health, Karolinska Institutet, Stockholm 17176, Sweden
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA; Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm 14152, Sweden.
| |
Collapse
|
14
|
Poli MC, Vial C, Rey-Jurado E, González N, Cortés LJ, Hormazabal J, Ramírez-Riffo C, de la Cruz J, Ulloa C. A Third Dose of SARS-CoV-2 mRNA Vaccine Improves Immune Response in Chronic Kidney Disease Patients. Vaccines (Basel) 2023; 11:vaccines11051012. [PMID: 37243116 DOI: 10.3390/vaccines11051012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic kidney disease (CKD) patients have an increased risk of morbidity and mortality following SARS-CoV-2 infection. Vaccination in these patients is prioritized, and monitoring of the immune response is paramount to define further vaccination strategies. This prospective study included a cohort of 100 adult CKD patients: 48 with kidney transplant (KT) and 52 on hemodialysis without prior COVID-19. The patients were assessed for humoral and cellular immune responses after four months of an anti-SARS-CoV-2 primary two-dose vaccination scheme (CoronaVac or BNT162b2) and one month after a booster third dose of BNT162b2 vaccine. We identified poor cellular and humoral immune responses in the CKD patients after a primary vaccination scheme, and these responses were improved by a booster. Robust polyfunctional CD4+ T cell responses were observed in the KT patients after a booster, and this could be attributed to a higher proportion of the patients having been vaccinated with homologous BNT162b2 schemes. However, even after the booster, the KT patients exhibited lower neutralizing antibodies, attributable to specific immunosuppressive treatments. Four patients suffered severe COVID-19 despite three-dose vaccination, and all had low polyfunctional T-cell responses, underscoring the importance of this functional subset in viral protection. In conclusion, a booster dose of SARS-CoV-2 mRNA vaccine in CKD patients improves the impaired humoral and cellular immune responses observed after a primary vaccination scheme.
Collapse
Affiliation(s)
- Maria Cecilia Poli
- Departamento de Pediatría, Clínica Alemana de Santiago, Santiago 7650568, Chile
- Programa de Inmunogenética e Inmunología Traslacional, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Cecilia Vial
- Programa Hantavirus y Zoonosis, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Emma Rey-Jurado
- Programa de Inmunogenética e Inmunología Traslacional, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Natalia González
- Programa de Inmunogenética e Inmunología Traslacional, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
- Programa Hantavirus y Zoonosis, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Lina Jimena Cortés
- Programa Hantavirus y Zoonosis, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Juan Hormazabal
- Programa Hantavirus y Zoonosis, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Carolina Ramírez-Riffo
- Programa Hantavirus y Zoonosis, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Javiera de la Cruz
- Programa de Inmunogenética e Inmunología Traslacional, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Camilo Ulloa
- Departamento de Medicina Interna, Unidad de Nefrología y Trasplante Renal, Clínica Alemana de Santiago, Santiago 7650568, Chile
| |
Collapse
|
15
|
Cabral-Piccin MP, Papagno L, Lahaye X, Perdomo-Celis F, Volant S, White E, Monceaux V, Llewellyn-Lacey S, Fromentin R, Price DA, Chomont N, Manel N, Saez-Cirion A, Appay V. Primary role of type I interferons for the induction of functionally optimal antigen-specific CD8 + T cells in HIV infection. EBioMedicine 2023; 91:104557. [PMID: 37058769 PMCID: PMC10130611 DOI: 10.1016/j.ebiom.2023.104557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND CD8+ T cells equipped with a full arsenal of antiviral effector functions are critical for effective immune control of HIV-1. It has nonetheless remained unclear how best to elicit such potent cellular immune responses in the context of immunotherapy or vaccination. HIV-2 has been associated with milder disease manifestations and more commonly elicits functionally replete virus-specific CD8+ T cell responses compared with HIV-1. We aimed to learn from this immunological dichotomy and to develop informed strategies that could enhance the induction of robust CD8+ T cell responses against HIV-1. METHODS We developed an unbiased in vitro system to compare the de novo induction of antigen-specific CD8+ T cell responses after exposure to HIV-1 or HIV-2. The functional properties of primed CD8+ T cells were assessed using flow cytometry and molecular analyses of gene transcription. FINDINGS HIV-2 primed functionally optimal antigen-specific CD8+ T cells with enhanced survival properties more effectively than HIV-1. This superior induction process was dependent on type I interferons (IFNs) and could be mimicked via the adjuvant delivery of cyclic GMP-AMP (cGAMP), a known agonist of the stimulator of interferon genes (STING). CD8+ T cells elicited in the presence of cGAMP were polyfunctional and highly sensitive to antigen stimulation, even after priming from people living with HIV-1. INTERPRETATION HIV-2 primes CD8+ T cells with potent antiviral functionality by activating the cyclic GMP-AMP synthase (cGAS)/STING pathway, which results in the production of type I IFNs. This process may be amenable to therapeutic development via the use of cGAMP or other STING agonists to bolster CD8+ T cell-mediated immunity against HIV-1. FUNDING This work was funded by INSERM, the Institut Curie, and the University of Bordeaux (Senior IdEx Chair) and by grants from Sidaction (17-1-AAE-11097, 17-1-FJC-11199, VIH2016126002, 20-2-AEQ-12822-2, and 22-2-AEQ-13411), the Agence Nationale de la Recherche sur le SIDA (ECTZ36691, ECTZ25472, ECTZ71745, and ECTZ118797), and the Fondation pour la Recherche Médicale (EQ U202103012774). D.A.P. was supported by a Wellcome Trust Senior Investigator Award (100326/Z/12/Z).
Collapse
Affiliation(s)
- Mariela P Cabral-Piccin
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Laura Papagno
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Xavier Lahaye
- Institut Curie, INSERM U932, Immunity and Cancer Department, PSL Research University, 75005, Paris, France
| | | | - Stevenn Volant
- Institut Pasteur, Hub Bioinformatique et Biostatistique, 75015, Paris, France
| | - Eoghann White
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Valérie Monceaux
- Institut Pasteur, Unité HIV Inflammation et Persistance, 75015, Paris, France
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Rémi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Nicolas Manel
- Institut Curie, INSERM U932, Immunity and Cancer Department, PSL Research University, 75005, Paris, France.
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV Inflammation et Persistance, 75015, Paris, France; Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, 75015, Paris, France.
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France; International Research Center of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
16
|
Zornikova KV, Sheetikov SA, Rusinov AY, Iskhakov RN, Bogolyubova AV. Architecture of the SARS-CoV-2-specific T cell repertoire. Front Immunol 2023; 14:1070077. [PMID: 37020560 PMCID: PMC10067759 DOI: 10.3389/fimmu.2023.1070077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
The T cell response plays an indispensable role in the early control and successful clearance of SARS-CoV-2 infection. However, several important questions remain about the role of cellular immunity in COVID-19, including the shape and composition of disease-specific T cell repertoires across convalescent patients and vaccinated individuals, and how pre-existing T cell responses to other pathogens—in particular, common cold coronaviruses—impact susceptibility to SARS-CoV-2 infection and the subsequent course of disease. This review focuses on how the repertoire of T cell receptors (TCR) is shaped by natural infection and vaccination over time. We also summarize current knowledge regarding cross-reactive T cell responses and their protective role, and examine the implications of TCR repertoire diversity and cross-reactivity with regard to the design of vaccines that confer broader protection against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ksenia V. Zornikova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Saveliy A. Sheetikov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander Yu Rusinov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Rustam N. Iskhakov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Apollinariya V. Bogolyubova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- *Correspondence: Apollinariya V. Bogolyubova,
| |
Collapse
|
17
|
NKG2D signaling shifts the balance of CD8 T cells from single cytokine- to polycytokine-producing effector cells. Mol Immunol 2023; 155:1-6. [PMID: 36634520 PMCID: PMC9992161 DOI: 10.1016/j.molimm.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
CD8 T cells play a critical role in immunity against intracellular pathogens and cancer. A primary objective of T cell-based vaccine strategies is the induction of durable and effective immune responses. Achieving this goal involves more than simply boosting the numbers of responding T cells. Of particular interest is the induction of CD8 T cells with polycytokine capability, specifically with the ability of CD8 T cells to co-produce IFNγ, TNFα and IL-2. The presence of these polycytokine-producing CD8 T cells correlates strongly with protection against foreign pathogens and cancer. Therefore, approaches capable of inducing such polyfunctional responses are needed. NKG2D engagement on CD8 T cells has been shown to result in increased effector response. However, the manner in which NKG2D engagement results in improved CD8 T cell effector response is unclear. Here we demonstrate in vitro and in vivo that NKG2D engagement by its natural ligand, Rae-1ε, shifts the balance from single cytokine to polycytokine (IL-2, IFNγ, and TFNα) production. These data define a previously unrecognized process in which NKG2D costimulation on CD8 T cells results in improved effector responses.
Collapse
|
18
|
Proietto D, Dallan B, Gallerani E, Albanese V, Llewellyn-Lacey S, Price DA, Appay V, Pacifico S, Caputo A, Nicoli F, Gavioli R. Ageing Curtails the Diversity and Functionality of Nascent CD8 + T Cell Responses against SARS-CoV-2. Vaccines (Basel) 2023; 11:vaccines11010154. [PMID: 36679999 PMCID: PMC9867380 DOI: 10.3390/vaccines11010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Age-related changes in the immune system are thought to underlie the vulnerability of elderly individuals to emerging viral diseases, such as coronavirus disease 2019 (COVID-19). In this study, we used a fully validated in vitro approach to determine how age impacts the generation of de novo CD8+ T cell responses against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19. Our data revealed a generalized deficit in the ability of elderly individuals to prime the differentiation of naïve precursors into effector CD8+ T cells defined by the expression of interferon (IFN)-γ and the transcription factor T-bet. As a consequence, there was an age-related decline in the diversity of newly generated CD8+ T cell responses targeting a range of typically immunodominant epitopes derived from SARS-CoV-2, accompanied by an overall reduction in the expression frequency of IFN-γ. These findings have potential implications for the development of new strategies to protect the elderly against COVID-19.
Collapse
Affiliation(s)
- Davide Proietto
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44123 Ferrara, Italy
| | - Beatrice Dallan
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44123 Ferrara, Italy
| | - Eleonora Gallerani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44123 Ferrara, Italy
| | - Valentina Albanese
- Department of Environment and Prevention Sciences, University of Ferrara, 44123 Ferrara, Italy
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - David A. Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
| | - Salvatore Pacifico
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44123 Ferrara, Italy
| | - Antonella Caputo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44123 Ferrara, Italy
| | - Francesco Nicoli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44123 Ferrara, Italy
- Correspondence:
| | - Riccardo Gavioli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44123 Ferrara, Italy
| |
Collapse
|
19
|
Liu G, Chen H, Cao X, Jia L, Rui W, Zheng H, Huang D, Liu F, Liu Y, Zhao X, Lu P, Lin X. Efficacy of pp65-specific TCR-T cell therapy in treating cytomegalovirus infection after hematopoietic stem cell transplantation. Am J Hematol 2022; 97:1453-1463. [PMID: 36054234 DOI: 10.1002/ajh.26708] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 01/28/2023]
Abstract
Cytomegalovirus (CMV) infection remains a major cause of mortality after hematopoietic stem cell transplantation (HSCT). Current treatments, including antiviral drugs and adoptive cell therapy with CMV-specific cytotoxic T lymphocytes (CTLs), only show limited benefits in patients. T-cell receptor (TCR)-T cell therapy offers a promising option to treat CMV infections. Here, using tetramer-based screening and single-cell TCR cloning technologies, we identified various CMV antigen-specific TCRs from healthy donors, and generated TCR-T cells targeting multiple pp65 epitopes corresponding to three major HLA-A alleles. The TCR-T cells showed efficient cytotoxicity toward epitope-expressing target cells in vitro. After transfer into immune-deficient mice bearing pp65+ HLA+ tumor cells, TCR-T cells induced dramatic tumor regression and exhibited long-term persistence. In a phase I clinical trial (NCT04153279), CMV TCR-T cells were applied to treat patients with CMV reactivation after HSCT. Except one patient who withdrew at early treatment stage, all other six patients were well-tolerated and achieved complete response (CR), no more than grade 2 cytokine release syndrome (CRS) and other adverse events were observed. CMV TCR-T cells persisted up to 3 months. Among them, two patients have survived for more than 1 year. This study demonstrates the great potential in the treatment and prevention of CMV infection following HSCT or other organ transplantation.
Collapse
Affiliation(s)
- Guangna Liu
- Department of Basic Medical Sciences and Institute for Immunology, Tsinghua University School of Medicine, Beijing, China.,School of Biomedical Sciences, Hunan University, Changsha, China
| | - Hua Chen
- Department of Basic Medical Sciences and Institute for Immunology, Tsinghua University School of Medicine, Beijing, China.,BriStar Immunotech Co, Beijing, China
| | - Xingyu Cao
- Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Lemei Jia
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Rui
- BriStar Immunotech Co, Beijing, China
| | | | - Daosheng Huang
- Department of Basic Medical Sciences and Institute for Immunology, Tsinghua University School of Medicine, Beijing, China
| | - Fang Liu
- BriStar Immunotech Co, Beijing, China
| | - Yue Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xueqiang Zhao
- Department of Basic Medical Sciences and Institute for Immunology, Tsinghua University School of Medicine, Beijing, China.,BriStar Immunotech Co, Beijing, China
| | - Peihua Lu
- Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Xin Lin
- Department of Basic Medical Sciences and Institute for Immunology, Tsinghua University School of Medicine, Beijing, China
| |
Collapse
|
20
|
Yi J, Miller AT, Archambault AS, Jones AJ, Bradstreet TR, Bandla S, Hsu YS, Edelson BT, Zhou YW, Fremont DH, Egawa T, Singh N, Wu GF, Hsieh CS. Antigen-specific depletion of CD4 + T cells by CAR T cells reveals distinct roles of higher- and lower-affinity TCRs during autoimmunity. Sci Immunol 2022; 7:eabo0777. [PMID: 36206355 PMCID: PMC9867937 DOI: 10.1126/sciimmunol.abo0777] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Both higher- and lower-affinity self-reactive CD4+ T cells are expanded in autoimmunity; however, their individual contribution to disease remains unclear. We addressed this question using peptide-MHCII chimeric antigen receptor (pMHCII-CAR) T cells to specifically deplete peptide-reactive T cells in mice. Integration of improvements in CAR engineering with TCR repertoire analysis was critical for interrogating in vivo the role of TCR affinity in autoimmunity. Our original MOG35-55 pMHCII-CAR, which targeted only higher-affinity TCRs, could prevent the induction of experimental autoimmune encephalomyelitis (EAE). However, pMHCII-CAR enhancements to pMHCII stability, as well as increased survivability via overexpression of a dominant-negative Fas, were required to target lower-affinity MOG-specific T cells and reverse ongoing clinical EAE. Thus, these data suggest a model in which higher-affinity autoreactive T cells are required to provide the "activation energy" for initiating neuroinflammatory injury, but lower-affinity cells are sufficient to maintain ongoing disease.
Collapse
Affiliation(s)
- Jaeu Yi
- Department of Internal Medicine, Division of Rheumatology, Washington University of Medicine, St. Louis, MO 63110, USA,Co-first authors
| | - Aidan T. Miller
- Department of Internal Medicine, Division of Rheumatology, Washington University of Medicine, St. Louis, MO 63110, USA,Co-first authors
| | - Angela S. Archambault
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Andrew J. Jones
- Department of Internal Medicine, Division of Rheumatology, Washington University of Medicine, St. Louis, MO 63110, USA
| | - Tara R. Bradstreet
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sravanthi Bandla
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yu-Sung Hsu
- Division of Oncology, Section of Stem Cell Biology, Washington University School of Medicine, St. Louis, MO 63105, USA
| | - Brian T. Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - You W. Zhou
- Wugen Inc, 4340 Duncan Ave, St Louis MO 63110, USA
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathan Singh
- Division of Oncology, Section of Stem Cell Biology, Washington University School of Medicine, St. Louis, MO 63105, USA
| | - Gregory F. Wu
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA,Correspondence: and
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University of Medicine, St. Louis, MO 63110, USA,Correspondence: and
| |
Collapse
|
21
|
Rahmberg AR, Markowitz TE, Mudd JC, Hirsch V, Brenchley JM. Epigenetic Reprogramming Leads to Downregulation of CD4 and Functional Changes in African Green Monkey Memory CD4 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:337-345. [PMID: 35750337 PMCID: PMC9283288 DOI: 10.4049/jimmunol.2200109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/05/2022] [Indexed: 05/12/2023]
Abstract
African green monkeys (AGMs), Chlorocebus pygerythrus, are a natural host for a lentivirus related to HIV, SIV. SIV-infected AGMs rarely progress to AIDS despite robust viral replication. Though multiple mechanisms are involved, a primary component is the animals' ability to downregulate CD4 expression on mature CD4+ Th cells, rendering these cells resistant to infection by SIV. These CD8αα+ T cells retain functional characteristics of CD4+ Th cells while simultaneously acquiring abilities of cytotoxic CD8αβ+ T cells. To determine mechanisms underlying functional differences between T cell subsets in AGMs, chromatin accessibility in purified populations was determined by assay for transposase-accessible chromatin sequencing. Differences in chromatin accessibility alone were sufficient to cluster cells by subtype, and accessibility at the CD4 locus reflected changes in CD4 expression. DNA methylation at the CD4 locus also correlated with inaccessible chromatin. By associating accessible regions with nearby genes, gene expression was found to correlate with accessibility changes. T cell and immune system activation pathways were identified when comparing regions that changed accessibility from CD4+ T cells to CD8αα+ T cells. Different transcription factor binding sites are revealed as chromatin accessibility changes, and these differences may elicit downstream changes in differentiation. This comprehensive description of the epigenetic landscape of AGM T cells identified genes and pathways that could have translational value in therapeutic approaches recapitulating the protective effects CD4 downregulation.
Collapse
Affiliation(s)
- Andrew R Rahmberg
- Barrier Immunity Section, Lab of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Tovah E Markowitz
- NIAID Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Axle Informatics, Bethesda, MD
| | - Joseph C Mudd
- Tulane National Primate Research Center, Division of Immunology, Tulane University, New Orleans, LA; and
| | - Vanessa Hirsch
- Nonhuman Primate Virology Section, Lab of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jason M Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD;
| |
Collapse
|
22
|
Boonpattanaporn N, Kongkaew T, Sengprasert P, Souter MNT, Lakananurak N, Rerknimitr R, Corbett AJ, Reantragoon R. Human mucosal Vα7.2 + CD161 hi T cell distribution at physiologic state and in Helicobacter pylori infection. J Leukoc Biol 2022; 112:717-732. [PMID: 35704477 DOI: 10.1002/jlb.4a0421-223rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/23/2022] [Indexed: 01/02/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like, unconventional T cells that are present in peripheral blood and mucosal surfaces. A clear understanding of how MAIT cells in the mucosae function and their role in host immunity is still lacking. Therefore, our aim was to investigate MAIT cell distribution and their characteristics in the gastrointestinal (GI) mucosal tissue based on Vα7.2+ CD161hi identification. We showed that Vα7.2+ CD161hi T cells are present in both intraepithelial layer and lamina propriae of the GI mucosa, but have different abundance at each GI site. Vα7.2+ CD161hi T cells were most abundant in the duodenum, but had the lowest reactivity to MR1-5-OP-RU tetramers when compared with Vα7.2+ CD161hi T cells at other GI tissue sites. Striking discrepancies between MR1-5-OP-RU tetramer reactive cells and Vα7.2+ CD161hi T cells were observed along each GI tissue sites. Vα7.2+ CD161hi TCR repertoire was most diverse in the ileum. Similar dominant profiles of TRBV usage were observed among peripheral blood, duodenum, ileum, and colon. Some TRBV chains were detected at certain intestinal sites and not elsewhere. The frequency of peripheral blood Vα7.2+ CD161hi T cells correlated with mucosal Vα7.2+ CD161hi T cells in lamina propriae ileum and lamina propriae colon. The frequency of peripheral blood Vα7.2+ CD161hi T cells in Helicobacter pylori-infected individuals was significantly lower than uninfected individuals, but this was not observed with gastric Vα7.2+ CD161hi T cells. This study illustrates the biology of Vα7.2+ CD161hi T cells in the GI mucosa and provides a basis for understanding MAIT cells in the mucosa and MAIT-related GI diseases.
Collapse
Affiliation(s)
- Norasate Boonpattanaporn
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Thidarat Kongkaew
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Panjana Sengprasert
- Immunology Division, Faculty of Medicine, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Michael N T Souter
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Narisorn Lakananurak
- Faculty of Medicine, Department of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rungsun Rerknimitr
- Faculty of Medicine, Department of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Rangsima Reantragoon
- Immunology Division, Faculty of Medicine, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand.,Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand.,Faculty of Medicine, Center of Excellence in Skeletal Disorders and Enzyme Reaction Mechanism, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
23
|
Huisman W, Hageman L, Leboux DAT, Khmelevskaya A, Efimov GA, Roex MCJ, Amsen D, Falkenburg JHF, Jedema I. Public T-Cell Receptors (TCRs) Revisited by Analysis of the Magnitude of Identical and Highly-Similar TCRs in Virus-Specific T-Cell Repertoires of Healthy Individuals. Front Immunol 2022; 13:851868. [PMID: 35401538 PMCID: PMC8987591 DOI: 10.3389/fimmu.2022.851868] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 01/11/2023] Open
Abstract
Since multiple different T-cell receptor (TCR) sequences can bind to the same peptide-MHC combination and the number of TCR-sequences that can theoretically be generated even exceeds the number of T cells in a human body, the likelihood that many public identical (PUB-I) TCR-sequences frequently contribute to immune responses has been estimated to be low. Here, we quantitatively analyzed the TCR-repertoires of 190 purified virus-specific memory T-cell populations, directed against 21 epitopes of Cytomegalovirus, Epstein-Barr virus and Adenovirus isolated from 29 healthy individuals, and determined the magnitude, defined as prevalence within the population and frequencies within individuals, of PUB-I TCR and of TCR-sequences that are highly-similar (PUB-HS) to these PUB-I TCR-sequences. We found that almost one third of all TCR nucleotide-sequences represented PUB-I TCR amino-acid (AA) sequences and found an additional 12% of PUB-HS TCRs differing by maximally 3 AAs. We illustrate that these PUB-I and PUB-HS TCRs were structurally related and contained shared core-sequences in their TCR-sequences. We found a prevalence of PUB-I and PUB-HS TCRs of up to 50% among individuals and showed frequencies of virus-specific PUB-I and PUB-HS TCRs making up more than 10% of each virus-specific T-cell population. These findings were confirmed by using an independent TCR-database of virus-specific TCRs. We therefore conclude that the magnitude of the contribution of PUB-I and PUB-HS TCRs to these virus-specific T-cell responses is high. Because the T cells from these virus-specific memory TCR-repertoires were the result of successful control of the virus in these healthy individuals, these PUB-HS TCRs and PUB-I TCRs may be attractive candidates for immunotherapy in immunocompromised patients that lack virus-specific T cells to control viral reactivation.
Collapse
Affiliation(s)
- Wesley Huisman
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands.,Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory for Blood Cell Research, Amsterdam, Netherlands
| | - Lois Hageman
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Didier A T Leboux
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Alexandra Khmelevskaya
- Laboratory of Transplantation Immunology, National Research Center for Hematology, Moscow, Russia
| | - Grigory A Efimov
- Laboratory of Transplantation Immunology, National Research Center for Hematology, Moscow, Russia
| | - Marthe C J Roex
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Derk Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory for Blood Cell Research, Amsterdam, Netherlands
| | | | - Inge Jedema
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
24
|
Fahad AS, Chung CY, Lopez Acevedo SN, Boyle N, Madan B, Gutiérrez-González MF, Matus-Nicodemos R, Laflin AD, Ladi RR, Zhou J, Wolfe J, Llewellyn-Lacey S, Koup RA, Douek DC, Balfour Jr HH, Price DA, DeKosky BJ. Immortalization and functional screening of natively paired human T cell receptor repertoires. Protein Eng Des Sel 2022; 35:gzab034. [PMID: 35174859 PMCID: PMC9005053 DOI: 10.1093/protein/gzab034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Functional analyses of the T cell receptor (TCR) landscape can reveal critical information about protection from disease and molecular responses to vaccines. However, it has proven difficult to combine advanced next-generation sequencing technologies with methods to decode the peptide-major histocompatibility complex (pMHC) specificity of individual TCRs. We developed a new high-throughput approach to enable repertoire-scale functional evaluations of natively paired TCRs. In particular, we leveraged the immortalized nature of physically linked TCRα:β amplicon libraries to analyze binding against multiple recombinant pMHCs on a repertoire scale, and to exemplify the utility of this approach, we also performed affinity-based functional mapping in conjunction with quantitative next-generation sequencing to track antigen-specific TCRs. These data successfully validated a new immortalization and screening platform to facilitate detailed molecular analyses of disease-relevant antigen interactions with human TCRs.
Collapse
Affiliation(s)
- Ahmed S Fahad
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Cheng-Yu Chung
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Sheila N Lopez Acevedo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Nicoleen Boyle
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | | | - Rodrigo Matus-Nicodemos
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy D Laflin
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Rukmini R Ladi
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - John Zhou
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Jacy Wolfe
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Henry H Balfour Jr
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
| | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS 66044, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
25
|
Sooda A, Rwandamuriye F, Wanjalla CN, Jing L, Koelle DM, Peters B, Leary S, Chopra A, Calderwood MA, Mallal SA, Pavlos R, Watson M, Phillips EJ, Redwood AJ. Abacavir inhibits but does not cause self-reactivity to HLA-B*57:01-restricted EBV specific T cell receptors. Commun Biol 2022; 5:133. [PMID: 35173258 PMCID: PMC8850454 DOI: 10.1038/s42003-022-03058-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 01/14/2022] [Indexed: 01/11/2023] Open
Abstract
Pre-existing pathogen-specific memory T cell responses can contribute to multiple adverse outcomes including autoimmunity and drug hypersensitivity. How the specificity of the T cell receptor (TCR) is subverted or seconded in many of these diseases remains unclear. Here, we apply abacavir hypersensitivity (AHS) as a model to address this question because the disease is linked to memory T cell responses and the HLA risk allele, HLA-B*57:01, and the initiating insult, abacavir, are known. To investigate the role of pathogen-specific TCR specificity in mediating AHS we performed a genome-wide screen for HLA-B*57:01 restricted T cell responses to Epstein-Barr virus (EBV), one of the most prevalent human pathogens. T cell epitope mapping revealed HLA-B*57:01 restricted responses to 17 EBV open reading frames and identified an epitope encoded by EBNA3C. Using these data, we cloned the dominant TCR for EBNA3C and a previously defined epitope within EBNA3B. TCR specificity to each epitope was confirmed, however, cloned TCRs did not cross-react with abacavir plus self-peptide. Nevertheless, abacavir inhibited TCR interactions with their cognate ligands, demonstrating that TCR specificity may be subverted by a drug molecule. These results provide an experimental road map for future studies addressing the heterologous immune responses of TCRs including T cell mediated adverse drug reactions.
Collapse
Affiliation(s)
- Anuradha Sooda
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Francois Rwandamuriye
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
- Telethon Kids Institute, Nedlands, WA, Australia
| | - Celestine N Wanjalla
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Benaroya Research Institute, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Michael A Calderwood
- Department of Medicine, The Channing Laboratory, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Simon A Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca Pavlos
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
- Telethon Kids Institute, Nedlands, WA, Australia
| | - Mark Watson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia.
- Center for Drug Safety & Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Alec J Redwood
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
- Institute for Respiratory Health, Level 2, 6 Verdun Street, Nedlands, WA, 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
26
|
Nicoli F, Cabral-Piccin MP, Papagno L, Gallerani E, Fusaro M, Folcher V, Dubois M, Clave E, Vallet H, Frere JJ, Gostick E, Llewellyn-Lacey S, Price DA, Toubert A, Dupré L, Boddaert J, Caputo A, Gavioli R, Appay V. Altered Basal Lipid Metabolism Underlies the Functional Impairment of Naive CD8 + T Cells in Elderly Humans. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:562-570. [PMID: 35031578 PMCID: PMC7615155 DOI: 10.4049/jimmunol.2100194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022]
Abstract
Aging is associated with functional deficits in the naive T cell compartment, which compromise the generation of de novo immune responses against previously unencountered Ags. The mechanisms that underlie this phenomenon have nonetheless remained unclear. We found that naive CD8+ T cells in elderly humans were prone to apoptosis and proliferated suboptimally in response to stimulation via the TCR. These abnormalities were associated with dysregulated lipid metabolism under homeostatic conditions and enhanced levels of basal activation. Importantly, reversal of the bioenergetic anomalies with lipid-altering drugs, such as rosiglitazone, almost completely restored the Ag responsiveness of naive CD8+ T cells. Interventions that favor lipid catabolism may therefore find utility as adjunctive therapies in the elderly to promote vaccine-induced immunity against targetable cancers and emerging pathogens, such as seasonal influenza viruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Francesco Nicoli
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France;
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mariela P Cabral-Piccin
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
| | - Laura Papagno
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
| | - Eleonora Gallerani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mathieu Fusaro
- Toulouse Institute for Infectious and Inflammatory Diseases, Université Toulouse III, INSERM UMR1291/CNRS UMR5051, Toulouse, France
| | - Victor Folcher
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
| | - Marion Dubois
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
| | - Emmanuel Clave
- Institut de Recherche Saint Louis, EMiLy, Université de Paris, INSERM U1160, Paris, France
| | - Hélène Vallet
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
- Service de Gériatrie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Justin J Frere
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine Tucson, Tucson, AZ
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Antoine Toubert
- Institut de Recherche Saint Louis, EMiLy, Université de Paris, INSERM U1160, Paris, France
- Laboratoire d'Immunologie et d'Histocompatibilité, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Loïc Dupré
- Toulouse Institute for Infectious and Inflammatory Diseases, Université Toulouse III, INSERM UMR1291/CNRS UMR5051, Toulouse, France
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Jacques Boddaert
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
- Service de Gériatrie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Antonella Caputo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Riccardo Gavioli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Victor Appay
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France;
- International Research Center of Medical Sciences, Kumamoto University, Kumamoto, Japan; and
- Université de Bordeaux, CNRS UMR5164, INSERM ERL1303, ImmunoConcEpT, Bordeaux, France
| |
Collapse
|
27
|
Füchsl F, Krackhardt AM. Adoptive Cellular Therapy for Multiple Myeloma Using CAR- and TCR-Transgenic T Cells: Response and Resistance. Cells 2022; 11:410. [PMID: 35159220 PMCID: PMC8834324 DOI: 10.3390/cells11030410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Despite the substantial improvement of therapeutic approaches, multiple myeloma (MM) remains mostly incurable. However, immunotherapeutic and especially T cell-based approaches pioneered the therapeutic landscape for relapsed and refractory disease recently. Targeting B-cell maturation antigen (BCMA) on myeloma cells has been demonstrated to be highly effective not only by antibody-derived constructs but also by adoptive cellular therapies. Chimeric antigen receptor (CAR)-transgenic T cells lead to deep, albeit mostly not durable responses with manageable side-effects in intensively pretreated patients. The spectrum of adoptive T cell-transfer covers synthetic CARs with diverse specificities as well as currently less well-established T cell receptor (TCR)-based personalized strategies. In this review, we want to focus on treatment characteristics including efficacy and safety of CAR- and TCR-transgenic T cells in MM as well as the future potential these novel therapies may have. ACT with transgenic T cells has only entered clinical trials and various engineering strategies for optimization of T cell responses are necessary to overcome therapy resistance mechanisms. We want to outline the current success in engineering CAR- and TCR-T cells, but also discuss challenges including resistance mechanisms of MM for evading T cell therapy and point out possible novel strategies.
Collapse
Affiliation(s)
- Franziska Füchsl
- School of Medicine, Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Ismaningerstraße 22, 81675 Munich, Germany;
| | - Angela M. Krackhardt
- School of Medicine, Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Ismaningerstraße 22, 81675 Munich, Germany;
- German Cancer Consortium (DKTK), Partner-Site Munich, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Einsteinstraße 25, 81675 Munich, Germany
| |
Collapse
|
28
|
Koning D, Quakkelaar ED, Schellens IMM, Spierings E, van Baarle D. Protective HLA Alleles Recruit Biased and Largely Similar Antigen-Specific T Cell Repertoires across Different Outcomes in HIV Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:3-15. [PMID: 34880106 DOI: 10.4049/jimmunol.2001145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/01/2021] [Indexed: 11/19/2022]
Abstract
CD8+ T cells play an important role in the control of untreated HIV infection. Several studies have suggested a decisive role of TCRs involved in anti-HIV immunity. HLA-B*27 and B*57 are often associated with a delayed HIV disease progression, but the exact correlates that provide superior immunity against HIV are not known. To investigate if the T cell repertoire underlies the protective effect in disease outcome in HLA-B*27 and B*57+ individuals, we analyzed Ag-specific TCR profiles from progressors (n = 13) and slow progressors (n = 11) expressing either B*27 or B*57. Our data showed no differences in TCR diversity between progressors and slow progressors. Both alleles recruit biased T cell repertoires (i.e., TCR populations skewed toward specific TRBV families or CDR3 regions). This bias was unrelated to disease progression and was remarkably profound for HLA-B*57, in which TRBV family usage and CDR3 sequences were shared to some extent even between epitopes. Conclusively, these data suggest that the T cell repertoires recruited by protective HLA alleles are highly similar between progressors and slow progressors in terms of TCR diversity, TCR usage, and cross-reactivity.
Collapse
Affiliation(s)
- Dan Koning
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and
| | - Esther D Quakkelaar
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and
| | - Ingrid M M Schellens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and
| | - Debbie van Baarle
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and .,Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
29
|
Pothast CR, Dijkland RC, Thaler M, Hagedoorn RS, Kester MGD, Wouters AK, Hiemstra PS, van Hemert MJ, Gras S, Falkenburg JHF, Heemskerk MHM. SARS-CoV-2-specific CD4 + and CD8 + T cell responses can originate from cross-reactive CMV-specific T cells. eLife 2022; 11:82050. [PMID: 36408799 PMCID: PMC9822249 DOI: 10.7554/elife.82050] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific CD4+ and CD8+ T cells in SARS-CoV-2-unexposed donors has been explained by the presence of T cells primed by other coronaviruses. However, based on the relatively high frequency and prevalence of cross-reactive T cells, we hypothesized cytomegalovirus (CMV) may induce these cross-reactive T cells. Stimulation of pre-pandemic cryo-preserved peripheral blood mononuclear cells (PBMCs) with SARS-CoV-2 peptides revealed that frequencies of SARS-CoV-2-specific T cells were higher in CMV-seropositive donors. Characterization of these T cells demonstrated that membrane-specific CD4+ and spike-specific CD8+ T cells originate from cross-reactive CMV-specific T cells. Spike-specific CD8+ T cells recognize SARS-CoV-2 spike peptide FVSNGTHWF (FVS) and dissimilar CMV pp65 peptide IPSINVHHY (IPS) presented by HLA-B*35:01. These dual IPS/FVS-reactive CD8+ T cells were found in multiple donors as well as severe COVID-19 patients and shared a common T cell receptor (TCR), illustrating that IPS/FVS-cross-reactivity is caused by a public TCR. In conclusion, CMV-specific T cells cross-react with SARS-CoV-2, despite low sequence homology between the two viruses, and may contribute to the pre-existing immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Cilia R Pothast
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Romy C Dijkland
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Melissa Thaler
- Department of Medical Microbiology, Leiden University Medical CenterLeidenNetherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Michel GD Kester
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Anne K Wouters
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical CenterLeidenNetherlands
| | - Martijn J van Hemert
- Department of Medical Microbiology, Leiden University Medical CenterLeidenNetherlands
| | - Stephanie Gras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe UniversityVictoriaAustralia,Department of Biochemistry and Molecular Biology, Monash UniversityClaytonAustralia
| | | | | |
Collapse
|
30
|
Pasetto A, Buggert M. T-Cell Repertoire Characterization. Methods Mol Biol 2022; 2574:209-219. [PMID: 36087203 DOI: 10.1007/978-1-0716-2712-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
T-cell repertoire characterization is a methodology that enables the identification of T-cell receptor (TCR) gene sequences in a T-cell population. TCR genes are composed of modular gene segments V (D) J that undergo somatic recombination, resulting in unique and unpredictable sequences that can be utilized to identify each T-cell clone. The analysis of the TCR composition in a T-cell population can give information on the biological phenomenon such as antigen-driven expansion and heterogeneity of T-cell responses. Bulk TCR analysis can give useful information on the clonality and can help track a specific clonotype over time or in different compartments, although the information about pairing cannot be provided. Single-cell TCR sequencing, on the other hand, can provide pairing information that are necessary to reconstruct the TCR and confirm antigen specificity.Here we describe common methods to characterize T-cell repertoires based on both bulk and single-cell next-generation sequencing.
Collapse
Affiliation(s)
- Anna Pasetto
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine (CIM), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
31
|
Niessl J, Sekine T, Lange J, Konya V, Forkel M, Maric J, Rao A, Mazzurana L, Kokkinou E, Weigel W, Llewellyn-Lacey S, Hodcroft EB, Karlsson AC, Fehrm J, Sundman J, Price DA, Mjösberg J, Friberg D, Buggert M. Identification of resident memory CD8 + T cells with functional specificity for SARS-CoV-2 in unexposed oropharyngeal lymphoid tissue. Sci Immunol 2021; 6:eabk0894. [PMID: 34519539 PMCID: PMC10763663 DOI: 10.1126/sciimmunol.abk0894] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022]
Abstract
Cross-reactive CD4+ T cells that recognize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are more commonly detected in the peripheral blood of unexposed individuals compared with SARS-CoV-2–reactive CD8+ T cells. However, large numbers of memory CD8+ T cells reside in tissues, feasibly harboring localized SARS-CoV-2–specific immune responses. To test this idea, we performed a comprehensive functional and phenotypic analysis of virus-specific T cells in tonsils, a major lymphoid tissue site in the upper respiratory tract, and matched peripheral blood samples obtained from children and adults before the emergence of COVID-19 (coronavirus disease 2019). We found that SARS-CoV-2–specific memory CD4+ T cells could be found at similar frequencies in the tonsils and peripheral blood in unexposed individuals, whereas functional SARS-CoV-2–specific memory CD8+ T cells were almost only detectable in the tonsils. Tonsillar SARS-CoV-2–specific memory CD8+ T cells displayed a follicular homing and tissue-resident memory phenotype, similar to tonsillar Epstein-Barr virus–specific memory CD8+ T cells, but were functionally less potent than other virus-specific memory CD8+ T cell responses. The presence of preexisting tissue-resident memory CD8+ T cells in unexposed individuals could potentially enable rapid sentinel immune responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Julia Niessl
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Takuya Sekine
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joshua Lange
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Viktoria Konya
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Forkel
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jovana Maric
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Rao
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Luca Mazzurana
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Efthymia Kokkinou
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Whitney Weigel
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Emma B. Hodcroft
- Biozentrum, University of Basel, Basel, Switzerland
- ISPM, University of Bern, Bern, Switzerland
| | - Annika C. Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johan Fehrm
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Joar Sundman
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - David A. Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Jenny Mjösberg
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Danielle Friberg
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Marcus Buggert
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Man S, Redman JE, Cross DL, Cole DK, Can I, Davies B, Hashimdeen SS, Reid R, Llewellyn-Lacey S, Miners KL, Ladell K, Lissina A, Brown PE, Wooldridge L, Price DA, Rizkallah PJ. Synthetic Peptides with Inadvertent Chemical Modifications Can Activate Potentially Autoreactive T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1009-1017. [PMID: 34321228 PMCID: PMC7615501 DOI: 10.4049/jimmunol.2000756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 05/24/2021] [Indexed: 11/19/2022]
Abstract
The human CD8+ T cell clone 6C5 has previously been shown to recognize the tert-butyl-modified Bax161-170 peptide LLSY(3-tBu)FGTPT presented by HLA-A*02:01. This nonnatural epitope was likely created as a by-product of fluorenylmethoxycarbonyl protecting group peptide synthesis and bound poorly to HLA-A*02:01. In this study, we used a systematic approach to identify and characterize natural ligands for the 6C5 TCR. Functional analyses revealed that 6C5 T cells only recognized the LLSYFGTPT peptide when tBu was added to the tyrosine residue and did not recognize the LLSYFGTPT peptide modified with larger (di-tBu) or smaller chemical groups (Me). Combinatorial peptide library screening further showed that 6C5 T cells recognized a series of self-derived peptides with dissimilar amino acid sequences to LLSY(3-tBu)FGTPT. Structural studies of LLSY(3-tBu)FGTPT and two other activating nonamers (IIGWMWIPV and LLGWVFAQV) in complex with HLA-A*02:01 demonstrated similar overall peptide conformations and highlighted the importance of the position (P) 4 residue for T cell recognition, particularly the capacity of the bulky amino acid tryptophan to substitute for the tBu-modified tyrosine residue in conjunction with other changes at P5 and P6. Collectively, these results indicated that chemical modifications directly altered the immunogenicity of a synthetic peptide via molecular mimicry, leading to the inadvertent activation of a T cell clone with unexpected and potentially autoreactive specificities.
Collapse
Affiliation(s)
- Stephen Man
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom;
| | - James E Redman
- School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - Deborah L Cross
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - David K Cole
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ilona Can
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Bethan Davies
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Shaikh Shimaz Hashimdeen
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Reiss Reid
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kelly L Miners
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Anya Lissina
- Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Paul E Brown
- The Zeeman Institute, University of Warwick, Coventry, United Kingdom; and
| | - Linda Wooldridge
- Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - David A Price
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Pierre J Rizkallah
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
33
|
Dimonte S, Gimeno-Brias S, Marsden M, Chapman L, Sabberwal P, Clement M, Humphreys IR. Optimal CD8 + T-cell memory formation following subcutaneous cytomegalovirus infection requires virus replication but not early dendritic cell responses. Immunology 2021; 164:279-291. [PMID: 34003499 PMCID: PMC8442243 DOI: 10.1111/imm.13368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/23/2022] Open
Abstract
Cytomegalovirus (CMV) induction of large frequencies of highly functional memory T cells has attracted much interest in the utility of CMV‐based vaccine vectors, with exciting preclinical data obtained in models of infectious diseases and cancer. However, pathogenesis of human CMV (HCMV) remains a concern. Attenuated CMV‐based vectors, such as replication‐ or spread‐deficient viruses, potentially offer an alternative to fully replicating vectors. However, it is not well understood how CMV attenuation impacts vector immunogenicity, particularly when administered via relevant routes of immunization such as the skin. Herein, we used the murine cytomegalovirus (MCMV) model to investigate the impact of vector attenuation on T‐cell memory formation following subcutaneous administration. We found that the spread‐deficient virus (ΔgL‐MCMV) was impaired in its ability to induce memory CD8+ T cells reactive to some (M38, IE1) but not all (IE3) viral antigens. Impaired‐memory T‐cell development was associated with a preferential and pronounced loss of polyfunctional (IFN‐γ+ TNF‐α+) T cells and also reduced accumulation of TCF1+ T cells, and was not rescued by increasing the dose of replication‐defective MCMV. Finally, whilst vector attenuation reduced dendritic cell (DC) recruitment to skin‐draining lymph nodes, systematic depletion of multiple DC subsets during acute subcutaneous MCMV infection had a negligible impact on T‐cell memory formation, implying that attenuated responses induced by replication‐deficient vectors were likely not a consequence of impaired initial DC activation. Thus, overall, these data imply that the choice of antigen and/or cloning strategy of exogenous antigen in combination with the route of immunization may influence the ability of attenuated CMV vectors to induce robust functional T‐cell memory.
Collapse
Affiliation(s)
- Sandra Dimonte
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Silvia Gimeno-Brias
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Morgan Marsden
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Lucy Chapman
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Pragati Sabberwal
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Mathew Clement
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Ian R Humphreys
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
34
|
Optimal Maturation of the SIV-Specific CD8 + T Cell Response after Primary Infection Is Associated with Natural Control of SIV: ANRS SIC Study. Cell Rep 2021; 32:108174. [PMID: 32966788 DOI: 10.1016/j.celrep.2020.108174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/10/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022] Open
Abstract
Highly efficient CD8+ T cells are associated with natural HIV control, but it has remained unclear how these cells are generated and maintained. We have used a macaque model of spontaneous SIVmac251 control to monitor the development of efficient CD8+ T cell responses. Our results show that SIV-specific CD8+ T cells emerge during primary infection in all animals. The ability of CD8+ T cells to suppress SIV is suboptimal in the acute phase but increases progressively in controller macaques before the establishment of sustained low-level viremia. Controller macaques develop optimal memory-like SIV-specific CD8+ T cells early after infection. In contrast, a persistently skewed differentiation phenotype characterizes memory SIV-specific CD8+ T cells in non-controller macaques. Accordingly, the phenotype of SIV-specific CD8+ T cells defined early after infection appears to favor the development of protective immunity in controllers, whereas SIV-specific CD8+ T cells in non-controllers fail to gain antiviral potency, feasibly as a consequence of early defects imprinted in the memory pool.
Collapse
|
35
|
Turner SJ, Bennett TJ, Gruta NLL. CD8 + T-Cell Memory: The Why, the When, and the How. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a038661. [PMID: 33648987 PMCID: PMC8091951 DOI: 10.1101/cshperspect.a038661] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The generation of effective adaptive T-cell memory is a cardinal feature of the adaptive immune system. The establishment of protective T-cell immunity requires the differentiation of CD8+ T cells from a naive state to one where pathogen-specific memory CD8+ T cells are capable of responding to a secondary infection more rapidly and robustly without the need for further differentiation. The study of factors that determine the fate of activated CD8+ T cells into either effector or memory subsets has a long history. The advent of new technologies is now providing new insights into how epigenetic regulation not only impacts acquisition and maintenance of effector function, but also the maintenance of the quiescent yet primed memory state. There is growing appreciation that rather than distinct subsets, memory T-cell populations may reflect different points on a spectrum between the starting naive T-cell population and a terminally differentiated effector CD8+ T-cell population. Interestingly, there is growing evidence that the molecular mechanisms that underpin the rapid effector function of memory T cells are also observed in innate immune cells such as macrophages and natural killer (NK) cells. This raises an interesting hypothesis that the memory/effector T-cell state represents a default innate-like response to antigen recognition, and that it is the naive state that is the defining feature of adaptive immunity. These issues are discussed.
Collapse
Affiliation(s)
- Stephen J Turner
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Taylah J Bennett
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Nicole L La Gruta
- Department of Biochemistry and Molecular Biology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
36
|
CD4 + T Cells Recognize Conserved Influenza A Epitopes through Shared Patterns of V-Gene Usage and Complementary Biochemical Features. Cell Rep 2021; 32:107885. [PMID: 32668259 PMCID: PMC7370177 DOI: 10.1016/j.celrep.2020.107885] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 01/20/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
T cell recognition of peptides presented by human leukocyte antigens (HLAs) is mediated by the highly variable T cell receptor (TCR). Despite this built-in TCR variability, individuals can mount immune responses against viral epitopes by using identical or highly related TCRs expressed on CD8+ T cells. Characterization of these TCRs has extended our understanding of the molecular mechanisms that govern the recognition of peptide-HLA. However, few examples exist for CD4+ T cells. Here, we investigate CD4+ T cell responses to the internal proteins of the influenza A virus that correlate with protective immunity. We identify five internal epitopes that are commonly recognized by CD4+ T cells in five HLA-DR1+ subjects and show conservation across viral strains and zoonotic reservoirs. TCR repertoire analysis demonstrates several shared gene usage biases underpinned by complementary biochemical features evident in a structural comparison. These epitopes are attractive targets for vaccination and other T cell therapies.
Collapse
|
37
|
Kedzierska K, Koutsakos M. The ABC of Major Histocompatibility Complexes and T Cell Receptors in Health and Disease. Viral Immunol 2021; 33:160-178. [PMID: 32286182 PMCID: PMC7185345 DOI: 10.1089/vim.2019.0184] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A seminal discovery of major histocompatibility complex (MHC) restriction in T cell recognition by Peter Doherty and Rolf Zinkernagel has led to 45 years of exciting research on the mechanisms governing peptide MHC (pMHC) recognition by T cell receptors (TCRs) and their importance in health and disease. T cells provide a significant level of protection against viral, bacterial, and parasitic infections, as well as tumors, hence, the generation of protective T cell responses is a primary goal for cell-mediated vaccines and immunotherapies. Understanding the mechanisms underlying generation of optimal high-avidity effector T cell responses, memory development, maintenance, and recall is of major importance for the rational design of preventative and therapeutic vaccines/immunotherapies. In this review, we summarize the lessons learned over the last four decades and outline our current understanding of the basis and consequences of pMHC/TCR interactions on T cell development and function, and TCR diversity and composition, driving better clinical outcomes and prevention of viral escape. We also discuss the current models of T cell memory formation and determinants of immunodominant T cell responses in animal models and humans. As TCR composition and diversity can affect both the protective capacity of T cells and protection against viral escape, defining the spectrum of TCR selection has implications for improving the functional efficacy of effector T cell responsiveness and memory formation.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
38
|
Mahnke YD, Devevre E, Baumgaertner P, Matter M, Rufer N, Romero P, Speiser DE. Human melanoma-specific CD8(+) T-cells from metastases are capable of antigen-specific degranulation and cytolysis directly ex vivo. Oncoimmunology 2021; 1:467-530. [PMID: 22754765 PMCID: PMC3382891 DOI: 10.4161/onci.19856] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The relatively low frequencies of tumor Ag-specific T-cells in PBMC and metastases from cancer patients have long precluded the analysis of their direct ex vivo cytolytic capacity. Using a new composite technique that works well with low cell numbers, we aimed at determining the functional competence of melanoma-specific CD8+ T-cells. A multiparameter flow cytometry based technique was applied to assess the cytolytic function, degranulation and IFNγ production by tumor Ag-specific CD8+ T-cells from PBMC and tumor-infiltrated lymph nodes (TILN) of melanoma patients. We found strong cytotoxicity by T-cells not only when they were isolated from PBMC but also from TILN. Cytotoxicity was observed against peptide-pulsed target cells and melanoma cells presenting the naturally processed endogenous antigen. However, unlike their PBMC-derived counterparts, T-cells from TILN produced only minimal amounts of IFNγ, while exhibiting similar levels of degranulation, revealing a critical functional dichotomy in metastatic lesions. Our finding of partial functional impairment fits well with the current knowledge that T-cells from cancer metastases are so-called exhausted, a state of T-cell hyporesponsiveness also found in chronic viral infections. The identification of responsible mechanisms in the tumor microenvironment is important for improving cancer therapies.
Collapse
Affiliation(s)
- Yolanda D Mahnke
- Ludwig Center for Cancer Research; University of Lausanne; Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
39
|
Brenna E, Davydov AN, Ladell K, McLaren JE, Bonaiuti P, Metsger M, Ramsden JD, Gilbert SC, Lambe T, Price DA, Campion SL, Chudakov DM, Borrow P, McMichael AJ. CD4 + T Follicular Helper Cells in Human Tonsils and Blood Are Clonally Convergent but Divergent from Non-Tfh CD4 + Cells. Cell Rep 2021; 30:137-152.e5. [PMID: 31914381 PMCID: PMC7029615 DOI: 10.1016/j.celrep.2019.12.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/16/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
Abstract
T follicular helper (Tfh) cells are fundamental for B cell selection and antibody maturation in germinal centers. Circulating Tfh (cTfh) cells constitute a minor proportion of the CD4+ T cells in peripheral blood, but their clonotypic relationship to Tfh populations resident in lymph nodes and the extent to which they differ from non-Tfh CD4+ cells have been unclear. Using donor-matched blood and tonsil samples, we investigate T cell receptor (TCR) sharing between tonsillar Tfh cells and peripheral Tfh and non-Tfh cell populations. TCR transcript sequencing reveals considerable clonal overlap between peripheral and tonsillar Tfh cell subsets as well as a clear distinction between Tfh and non-Tfh cells. Furthermore, influenza-specific cTfh cell clones derived from blood can be found in the repertoire of tonsillar Tfh cells. Therefore, human blood samples can be used to gain insight into the specificity of Tfh responses occurring in lymphoid tissues, provided that cTfh subsets are studied.
Collapse
Affiliation(s)
- Elena Brenna
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| | - Alexey N Davydov
- Central European Institute of Technology, Brno 601 77, Czech Republic
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Paolo Bonaiuti
- Istituto Firc di Oncologia Molecolare, Milano 20139, Italy
| | - Maria Metsger
- Central European Institute of Technology, Brno 601 77, Czech Republic
| | | | - Sarah C Gilbert
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Suzanne L Campion
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Dmitriy M Chudakov
- Central European Institute of Technology, Brno 601 77, Czech Republic; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow 117997, Russia
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| |
Collapse
|
40
|
Edwards SC, Sutton CE, Ladell K, Grant EJ, McLaren JE, Roche F, Dash P, Apiwattanakul N, Awad W, Miners KL, Lalor SJ, Ribot JC, Baik S, Moran B, McGinley A, Pivorunas V, Dowding L, Macoritto M, Paez-Cortez J, Slavin A, Anderson G, Silva-Santos B, Hokamp K, Price DA, Thomas PG, McLoughlin RM, Mills KHG. A population of proinflammatory T cells coexpresses αβ and γδ T cell receptors in mice and humans. J Exp Med 2020; 217:133848. [PMID: 32106283 PMCID: PMC7201916 DOI: 10.1084/jem.20190834] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/29/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
T cells are classically recognized as distinct subsets that express αβ or γδ TCRs. We identify a novel population of T cells that coexpress αβ and γδ TCRs in mice and humans. These hybrid αβ-γδ T cells arose in the murine fetal thymus by day 16 of ontogeny, underwent αβ TCR-mediated positive selection into CD4+ or CD8+ thymocytes, and constituted up to 10% of TCRδ+ cells in lymphoid organs. They expressed high levels of IL-1R1 and IL-23R and secreted IFN-γ, IL-17, and GM-CSF in response to canonically restricted peptide antigens or stimulation with IL-1β and IL-23. Hybrid αβ-γδ T cells were transcriptomically distinct from conventional γδ T cells and displayed a hyperinflammatory phenotype enriched for chemokine receptors and homing molecules that facilitate migration to sites of inflammation. These proinflammatory T cells promoted bacterial clearance after infection with Staphylococcus aureus and, by licensing encephalitogenic Th17 cells, played a key role in the development of autoimmune disease in the central nervous system.
Collapse
Affiliation(s)
- Sarah C Edwards
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Caroline E Sutton
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Emma J Grant
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.,Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Fiona Roche
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Pradyot Dash
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Nopporn Apiwattanakul
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN.,Division of Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Walid Awad
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Stephen J Lalor
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Julie C Ribot
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Song Baik
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | - Barry Moran
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aoife McGinley
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | | | - Graham Anderson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Rachel M McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kingston H G Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
41
|
The Identity of Human Tissue-Emigrant CD8 + T Cells. Cell 2020; 183:1946-1961.e15. [PMID: 33306960 DOI: 10.1016/j.cell.2020.11.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/02/2020] [Accepted: 11/12/2020] [Indexed: 11/23/2022]
Abstract
Lymphocyte migration is essential for adaptive immune surveillance. However, our current understanding of this process is rudimentary, because most human studies have been restricted to immunological analyses of blood and various tissues. To address this knowledge gap, we used an integrated approach to characterize tissue-emigrant lineages in thoracic duct lymph (TDL). The most prevalent immune cells in human and non-human primate efferent lymph were T cells. Cytolytic CD8+ T cell subsets with effector-like epigenetic and transcriptional signatures were clonotypically skewed and selectively confined to the intravascular circulation, whereas non-cytolytic CD8+ T cell subsets with stem-like epigenetic and transcriptional signatures predominated in tissues and TDL. Moreover, these anatomically distinct gene expression profiles were recapitulated within individual clonotypes, suggesting parallel differentiation programs independent of the expressed antigen receptor. Our collective dataset provides an atlas of the migratory immune system and defines the nature of tissue-emigrant CD8+ T cells that recirculate via TDL.
Collapse
|
42
|
Galletti G, De Simone G, Mazza EMC, Puccio S, Mezzanotte C, Bi TM, Davydov AN, Metsger M, Scamardella E, Alvisi G, De Paoli F, Zanon V, Scarpa A, Camisa B, Colombo FS, Anselmo A, Peano C, Polletti S, Mavilio D, Gattinoni L, Boi SK, Youngblood BA, Jones RE, Baird DM, Gostick E, Llewellyn-Lacey S, Ladell K, Price DA, Chudakov DM, Newell EW, Casucci M, Lugli E. Two subsets of stem-like CD8 + memory T cell progenitors with distinct fate commitments in humans. Nat Immunol 2020; 21:1552-1562. [PMID: 33046887 PMCID: PMC7610790 DOI: 10.1038/s41590-020-0791-5] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022]
Abstract
T cell memory relies on the generation of antigen-specific progenitors with stem-like properties. However, the identity of these progenitors has remained unclear, precluding a full understanding of the differentiation trajectories that underpin the heterogeneity of antigen-experienced T cells. We used a systematic approach guided by single-cell RNA-sequencing data to map the organizational structure of the human CD8+ memory T cell pool under physiological conditions. We identified two previously unrecognized subsets of clonally, epigenetically, functionally, phenotypically and transcriptionally distinct stem-like CD8+ memory T cells. Progenitors lacking the inhibitory receptors programmed death-1 (PD-1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT) were committed to a functional lineage, whereas progenitors expressing PD-1 and TIGIT were committed to a dysfunctional, exhausted-like lineage. Collectively, these data reveal the existence of parallel differentiation programs in the human CD8+ memory T cell pool, with potentially broad implications for the development of immunotherapies and vaccines.
Collapse
Affiliation(s)
- Giovanni Galletti
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Gabriele De Simone
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Emilia M C Mazza
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Simone Puccio
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Claudia Mezzanotte
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Timothy M Bi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Maria Metsger
- Central European Institute of Technology, Brno, Czech Republic
| | - Eloise Scamardella
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Giorgia Alvisi
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Federica De Paoli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Veronica Zanon
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Alice Scarpa
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Barbara Camisa
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico S Colombo
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Achille Anselmo
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Rozzano, Milan, Italy
- Genomic Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Sara Polletti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Luca Gattinoni
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Regensburg Center for Interventional Immunology, Regensburg, Germany
- University of Regensburg, Regensburg, Germany
| | - Shannon K Boi
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Rhiannon E Jones
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Duncan M Baird
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Dmitriy M Chudakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Monica Casucci
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy.
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy.
| |
Collapse
|
43
|
Schulien I, Kemming J, Oberhardt V, Wild K, Seidel LM, Killmer S, Sagar, Daul F, Salvat Lago M, Decker A, Luxenburger H, Binder B, Bettinger D, Sogukpinar O, Rieg S, Panning M, Huzly D, Schwemmle M, Kochs G, Waller CF, Nieters A, Duerschmied D, Emmerich F, Mei HE, Schulz AR, Llewellyn-Lacey S, Price DA, Boettler T, Bengsch B, Thimme R, Hofmann M, Neumann-Haefelin C. Characterization of pre-existing and induced SARS-CoV-2-specific CD8 + T cells. Nat Med 2020; 27:78-85. [PMID: 33184509 DOI: 10.1038/s41591-020-01143-2] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Emerging data indicate that SARS-CoV-2-specific CD8+ T cells targeting different viral proteins are detectable in up to 70% of convalescent individuals1-5. However, very little information is currently available about the abundance, phenotype, functional capacity and fate of pre-existing and induced SARS-CoV-2-specific CD8+ T cell responses during the natural course of SARS-CoV-2 infection. Here, we define a set of optimal and dominant SARS-CoV-2-specific CD8+ T cell epitopes. We also perform a high-resolution ex vivo analysis of pre-existing and induced SARS-CoV-2-specific CD8+ T cells, applying peptide-loaded major histocompatibility complex class I (pMHCI) tetramer technology. We observe rapid induction, prolonged contraction and emergence of heterogeneous and functionally competent cross-reactive and induced memory CD8+ T cell responses in cross-sectionally analyzed individuals with mild disease following SARS-CoV-2 infection and three individuals longitudinally assessed for their T cells pre- and post-SARS-CoV-2 infection. SARS-CoV-2-specific memory CD8+ T cells exhibited functional characteristics comparable to influenza-specific CD8+ T cells and were detectable in SARS-CoV-2 convalescent individuals who were seronegative for anti-SARS-CoV-2 antibodies targeting spike (S) and nucleoprotein (N). These results define cross-reactive and induced SARS-CoV-2-specific CD8+ T cell responses as potentially important determinants of immune protection in mild SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Isabel Schulien
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Janine Kemming
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valerie Oberhardt
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katharina Wild
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Lea M Seidel
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,SGBM - Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Saskia Killmer
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sagar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Franziska Daul
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marilyn Salvat Lago
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annegrit Decker
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hendrik Luxenburger
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,IMM-PACT, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Benedikt Binder
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,IMM-PACT, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik Bettinger
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Berta-Ottenstein Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oezlem Sogukpinar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Siegbert Rieg
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcus Panning
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniela Huzly
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Georg Kochs
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelius F Waller
- Department of Haematology, Oncology & Stem Cell Transplantation, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexandra Nieters
- Center for Biobanking-FREEZE-Biobanking, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Duerschmied
- Department of Medicine III (Interdisciplinary Medical Intensive Care), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian Emmerich
- Institute for Transfusion Medicine and Gene Therapy, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Henrik E Mei
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | | | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.,Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Tobias Boettler
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Berta-Ottenstein Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bertram Bengsch
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Maike Hofmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Christoph Neumann-Haefelin
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
44
|
Lanfermeijer J, Borghans JAM, Baarle D. How age and infection history shape the antigen-specific CD8 + T-cell repertoire: Implications for vaccination strategies in older adults. Aging Cell 2020; 19:e13262. [PMID: 33078890 PMCID: PMC7681067 DOI: 10.1111/acel.13262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Older adults often show signs of impaired CD8+ T‐cell immunity, reflected by weaker responses against new infections and vaccinations, and decreased protection against reinfection. This immune impairment is in part thought to be the consequence of a decrease in both T‐cell numbers and repertoire diversity. If this is indeed the case, a strategy to prevent infectious diseases in older adults could be the induction of protective memory responses through vaccination at a younger age. However, this requires that the induced immune responses are maintained until old age. It is therefore important to obtain insights into the long‐term maintenance of the antigen‐specific T‐cell repertoire. Here, we review the literature on the maintenance of antigen‐experienced CD8+ T‐cell repertoires against acute and chronic infections. We describe the complex interactions that play a role in shaping the memory T‐cell repertoire, and the effects of age, infection history, and T‐cell avidity. We discuss the implications of these findings for the development of new vaccination strategies to protect older adults.
Collapse
Affiliation(s)
- Josien Lanfermeijer
- Center for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven the Netherlands
- Center for Translational Immunology University Medical Center Utrecht the Netherlands
| | - José A. M. Borghans
- Center for Translational Immunology University Medical Center Utrecht the Netherlands
| | - Debbie Baarle
- Center for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven the Netherlands
- Center for Translational Immunology University Medical Center Utrecht the Netherlands
- Virology & Immunology Research Department of Medical Microbiology and Infection prevention University Medical Center Groningen the Netherlands
| |
Collapse
|
45
|
Kunz HE, Agha NH, Hussain M, LaVoy EC, Smith KA, Mylabathula P, Diak D, Baker FL, O'Connor DP, Bond RA, Katsanis E, Bollard CM, Simpson RJ. The effects of β 1 and β 1+2 adrenergic receptor blockade on the exercise-induced mobilization and ex vivo expansion of virus-specific T cells: implications for cellular therapy and the anti-viral immune effects of exercise. Cell Stress Chaperones 2020; 25:993-1012. [PMID: 32779001 PMCID: PMC7591642 DOI: 10.1007/s12192-020-01136-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/15/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
The adoptive transfer of donor-derived virus-specific T cells (VSTs) is an effective treatment for infections following allogeneic hematopoietic cell transplantation. Acute exercise mobilizes effector lymphocytes and VSTs to the circulation and augments the ex vivo manufacture of VSTs. This study determined if β2 adrenergic receptor (AR) signaling precipitated the VST response to acute exercise. Healthy participants (n = 12) completed 30 min of steady-state cycling exercise after ingesting a placebo, a β1 + 2 AR antagonist (nadolol) or a β1 AR antagonist (bisoprolol). Circulating VSTs to cytomegalovirus (CMV), Epstein-Barr virus (EBV), and adenovirus (AdV) antigens were enumerated before and after exercise, and peripheral blood mononuclear cells were cultured with viral peptides for 8 days to expand multi-VSTs. Compared with placebo, nadolol blunted the exercise-induced mobilization of CMV-VSTs (Δ VSTs/100,000 CD3+ T cells = 93 ± 104 vs. 22 ± 91 for placebo and nadolol, respectively; p = 0.036), while bisoprolol did not, despite both drugs evoking similar reductions in exercising heart rate and blood pressure. Circulating AdV and EBV VSTs (VSTs/mL blood) only increased after exercise with placebo. Although not significant, nadolol partially mitigated exercise-induced increases in multi-VST expansion, particularly in participants that demonstrated an exercise-induced increase in VST expansion. We conclude that exercise-induced enhancements in VST mobilization and expansion are at least partially β2 AR mediated, thus highlighting a role for the β2 AR in targeted therapy for the augmentation of VST immune cell therapeutics in the allogeneic adoptive transfer setting. Moreover, long-term regular exercise may provide additional viral protection in the host through frequent β2 AR-dependent mobilization and redistribution of VSTs cumulated with each bout of exercise.
Collapse
Affiliation(s)
- Hawley E Kunz
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Nadia H Agha
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Maryam Hussain
- Merced Experimental Social and Health Psychology Laboratory, Stress and Health Laboratory, Department of Psychological Sciences, University of California Merced, Merced, CA, USA
| | - Emily C LaVoy
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Kyle A Smith
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | | | - Douglass Diak
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Forrest L Baker
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Daniel P O'Connor
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Richard A Bond
- College of Pharmacy, Science and Engineering Research Center, The University of Houston, Houston, TX, USA
| | | | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System and The George Washington University, Washington, D.C., USA
| | - Richard J Simpson
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA.
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA.
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA.
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
46
|
Cox KS, Zhang L, Freed DC, Tang A, Zhang S, Zhou Y, Wang IM, Rupp RE, Adler SP, Musey LK, Wang D, Vora KA, Fu TM. Functional Evaluation and Genetic Evolution of Human T-Cell Responses After Vaccination With a Conditionally Replication-Defective Cytomegalovirus Vaccine. J Infect Dis 2020; 223:2001-2012. [PMID: 33031517 DOI: 10.1093/infdis/jiaa631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cytomegalovirus (CMV) can cause congenital infection and is the leading cause of nongenetic newborn disabilities. V160, a conditionally replication-defective virus, is an investigational vaccine under evaluation for prevention of congenital CMV. The vaccine was well tolerated and induced both humoral and cellular immunity in CMV-seronegative trial participants. T-cell-mediated immunity is important for immune control of CMV. Here we describe efforts to understand the quality attributes of the T-cell responses induced by vaccination. METHODS Using multicolor flow cytometry, we analyzed vaccine-induced T cells for memory phenotype, antigen specificity, cytokine profiles, and cytolytic potential. Moreover, antigen-specific T cells were sorted from 4 participants, and next-generation sequencing was used to trace clonal lineage development during the course of vaccination using T-cell receptor β-chain sequences as identifiers. RESULTS The results demonstrated that vaccination elicited polyfunctional CD4 and CD8 T cells to 2 dominant antigens, pp65 and IE1, with a predominantly effector phenotype. Analysis of T-cell receptor repertoires showed polyclonal expansion of pp65- and IE1-specific T cells after vaccination. CONCLUSION V160 induced a genetically diverse and polyfunctional T-cell response and the data support further clinical development of V160 for prevention of CMV infection and congenital transmission. CLINICAL TRIALS REGISTRATION NCT01986010.
Collapse
Affiliation(s)
- Kara S Cox
- Department of Infectious Diseases and Vaccines, Merck & Co., Inc. Kenilworth, New Jersey, USA
| | - Lu Zhang
- Department of Strategic Planning and Research Informatics, MSD, Beijing, China
| | - Daniel C Freed
- Department of Infectious Diseases and Vaccines, Merck & Co., Inc. Kenilworth, New Jersey, USA
| | - Aimin Tang
- Department of Infectious Diseases and Vaccines, Merck & Co., Inc. Kenilworth, New Jersey, USA
| | | | - Yu Zhou
- Department of Infectious Diseases and Vaccines, Merck & Co., Inc. Kenilworth, New Jersey, USA
| | - I-Ming Wang
- Department of Genetics and Pharmacogenomics, Merck & Co., Inc. Kenilworth, New Jersey, USA
| | - Richard E Rupp
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Luwy K Musey
- Department of Clinical Research, Merck & Co., Inc. Kenilworth, New Jersey, USA
| | - Dai Wang
- Department of Infectious Diseases and Vaccines, Merck & Co., Inc. Kenilworth, New Jersey, USA
| | - Kalpit A Vora
- Department of Infectious Diseases and Vaccines, Merck & Co., Inc. Kenilworth, New Jersey, USA
| | - Tong-Ming Fu
- Department of Infectious Diseases and Vaccines, Merck & Co., Inc. Kenilworth, New Jersey, USA
| |
Collapse
|
47
|
Sekine T, Perez-Potti A, Rivera-Ballesteros O, Strålin K, Gorin JB, Olsson A, Llewellyn-Lacey S, Kamal H, Bogdanovic G, Muschiol S, Wullimann DJ, Kammann T, Emgård J, Parrot T, Folkesson E, Rooyackers O, Eriksson LI, Henter JI, Sönnerborg A, Allander T, Albert J, Nielsen M, Klingström J, Gredmark-Russ S, Björkström NK, Sandberg JK, Price DA, Ljunggren HG, Aleman S, Buggert M. Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19. Cell 2020; 183:158-168.e14. [PMID: 32979941 PMCID: PMC7427556 DOI: 10.1016/j.cell.2020.08.017] [Citation(s) in RCA: 1375] [Impact Index Per Article: 275.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2-specific memory T cells will likely prove critical for long-term immune protection against COVID-19. Here, we systematically mapped the functional and phenotypic landscape of SARS-CoV-2-specific T cell responses in unexposed individuals, exposed family members, and individuals with acute or convalescent COVID-19. Acute-phase SARS-CoV-2-specific T cells displayed a highly activated cytotoxic phenotype that correlated with various clinical markers of disease severity, whereas convalescent-phase SARS-CoV-2-specific T cells were polyfunctional and displayed a stem-like memory phenotype. Importantly, SARS-CoV-2-specific T cells were detectable in antibody-seronegative exposed family members and convalescent individuals with a history of asymptomatic and mild COVID-19. Our collective dataset shows that SARS-CoV-2 elicits broadly directed and functionally replete memory T cell responses, suggesting that natural exposure or infection may prevent recurrent episodes of severe COVID-19.
Collapse
Affiliation(s)
- Takuya Sekine
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - André Perez-Potti
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Olga Rivera-Ballesteros
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Kristoffer Strålin
- Division of Infectious Diseases, Karolinska University Hospital, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jean-Baptiste Gorin
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Annika Olsson
- Division of Infectious Diseases, Karolinska University Hospital, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Habiba Kamal
- Division of Infectious Diseases, Karolinska University Hospital, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Gordana Bogdanovic
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Muschiol
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David J Wullimann
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Kammann
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Emgård
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Tiphaine Parrot
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Elin Folkesson
- Division of Infectious Diseases, Karolinska University Hospital, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Olav Rooyackers
- Department of Clinical Interventions and Technology, Karolinska Institutet, Stockholm, Sweden; Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Lars I Eriksson
- Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Theme of Children's and Women's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Sönnerborg
- Division of Infectious Diseases, Karolinska University Hospital, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Allander
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jan Albert
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark; Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Argentina
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Division of Infectious Diseases, Karolinska University Hospital, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Soo Aleman
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Division of Infectious Diseases, Karolinska University Hospital, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
48
|
Narayanan GA, McLaren JE, Meermeier EW, Ladell K, Swarbrick GM, Price DA, Tran JG, Worley AH, Vogt T, Wong EB, Lewinsohn DM. The MAIT TCRβ chain contributes to discrimination of microbial ligand. Immunol Cell Biol 2020; 98:770-781. [PMID: 32568415 PMCID: PMC7541710 DOI: 10.1111/imcb.12370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/03/2019] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are key players in the immune response against microbial infection. The MAIT T-cell receptor (TCR) recognizes a diverse array of microbial ligands, and recent reports have highlighted the variability in the MAIT TCR that could further contribute to discrimination of ligand. The MAIT TCR complementarity determining region (CDR)3β sequence displays a high level of diversity across individuals, and clonotype usage appears to be dependent on antigenic exposure. To address the relationship between the MAIT TCR and microbial ligand, we utilized a previously defined panel of MAIT cell clones that demonstrated variability in responses against different microbial infections. Sequencing of these clones revealed four pairs, each with shared (identical) CDR3α and different CDR3β sequences. These pairs demonstrated varied responses against microbially infected dendritic cells as well as against 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil, a ligand abundant in Salmonella enterica serovar Typhimurium, suggesting that the CDR3β contributes to differences in ligand discrimination. Taken together, these results highlight a key role for the MAIT CDR3β region in distinguishing between MR1-bound antigens and ligands.
Collapse
Affiliation(s)
- Gitanjali A. Narayanan
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - James E. McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, UK
| | - Erin W. Meermeier
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, UK
| | - Gwendolyn M. Swarbrick
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- VA Portland Health Care Center, Portland, OR 97239, USA
| | - David A. Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, UK
| | | | | | - Todd Vogt
- VA Portland Health Care Center, Portland, OR 97239, USA
| | - Emily B. Wong
- Africa Health Research Institute, Durban, South Africa
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David M. Lewinsohn
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- VA Portland Health Care Center, Portland, OR 97239, USA
| |
Collapse
|
49
|
Lees JR. CD8+ T cells: The past and future of immune regulation. Cell Immunol 2020; 357:104212. [PMID: 32979764 DOI: 10.1016/j.cellimm.2020.104212] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/16/2020] [Accepted: 09/01/2020] [Indexed: 02/05/2023]
Abstract
Regulation of the adaptive immune response is critical for health. Regulatory activity can be found in multiple components of the immune system, however, the focus on particular components of the immune regulatory network has left many aspects of this critical immune component understudied. Here we review the evidence for activities of CD8+ T cells in immune homeostasis and regulation of autoimmune reactivity. The heterogeneous nature of identified CD8+ cell types are examined, and common phenotypes associated with functional activities are defined. The varying types of antigen signal crucial for CD8+ T cell regulatory activity are identified and the implications of these activation pathways for control of adaptive responses is considered. Finally, the promising capacity for transgenic antigen receptor directed cytotoxicity as a mechanism for modulation of autoimmunity is detailed.
Collapse
Affiliation(s)
- Jason R Lees
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
50
|
Sant S, Quiñones-Parra SM, Koutsakos M, Grant EJ, Loudovaris T, Mannering SI, Crowe J, van de Sandt CE, Rimmelzwaan GF, Rossjohn J, Gras S, Loh L, Nguyen THO, Kedzierska K. HLA-B*27:05 alters immunodominance hierarchy of universal influenza-specific CD8+ T cells. PLoS Pathog 2020; 16:e1008714. [PMID: 32750095 PMCID: PMC7428290 DOI: 10.1371/journal.ppat.1008714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/14/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
Seasonal influenza virus infections cause 290,000–650,000 deaths annually and severe morbidity in 3–5 million people. CD8+ T-cell responses towards virus-derived peptide/human leukocyte antigen (HLA) complexes provide the broadest cross-reactive immunity against human influenza viruses. Several universally-conserved CD8+ T-cell specificities that elicit prominent responses against human influenza A viruses (IAVs) have been identified. These include HLA-A*02:01-M158-66 (A2/M158), HLA-A*03:01-NP265-273, HLA-B*08:01-NP225-233, HLA-B*18:01-NP219-226, HLA-B*27:05-NP383-391 and HLA-B*57:01-NP199-207. The immunodominance hierarchies across these universal CD8+ T-cell epitopes were however unknown. Here, we probed immunodominance status of influenza-specific universal CD8+ T-cells in HLA-I heterozygote individuals expressing two or more universal HLAs for IAV. We found that while CD8+ T-cell responses directed towards A2/M158 were generally immunodominant, A2/M158+CD8+ T-cells were markedly diminished (subdominant) in HLA-A*02:01/B*27:05-expressing donors following ex vivo and in vitro analyses. A2/M158+CD8+ T-cells in non-HLA-B*27:05 individuals were immunodominant, contained optimal public TRBV19/TRAV27 TCRαβ clonotypes and displayed highly polyfunctional and proliferative capacity, while A2/M158+CD8+ T cells in HLA-B*27:05-expressing donors were subdominant, with largely distinct TCRαβ clonotypes and consequently markedly reduced avidity, proliferative and polyfunctional efficacy. Our data illustrate altered immunodominance patterns and immunodomination within human influenza-specific CD8+ T-cells. Accordingly, our work highlights the importance of understanding immunodominance hierarchies within individual donors across a spectrum of prominent virus-specific CD8+ T-cell specificities prior to designing T cell-directed vaccines and immunotherapies, for influenza and other infectious diseases. Annual influenza infections cause significant morbidity and morbidity globally. Established T-cell immunity directed at conserved viral regions provides some protection against influenza viruses and promotes rapid recovery, leading to better clinical outcomes. Killer CD8+ T-cells recognising viral peptides in a context of HLA-I glycoproteins, provide the broadest ever reported immunity across distinct influenza strains and subtypes. We asked whether the expression of certain HLA-I alleles affects CD8+ T cells responses. Our study clearly illustrates altered immunodominance hierarchies and immunodomination within broadly-cross-reactive influenza-specific CD8+ T-cells in individuals expressing two or more universal HLA-I alleles, key for T cell-directed vaccines and immunotherapies.
Collapse
Affiliation(s)
- Sneha Sant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Sergio M. Quiñones-Parra
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Emma J. Grant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Thomas Loudovaris
- Immunology and Diabetes Unit, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Stuart I. Mannering
- Immunology and Diabetes Unit, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Jane Crowe
- Deepdene Surgery, Deepdene, Victoria, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Guus F. Rimmelzwaan
- National Influenza Center and Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Stephanie Gras
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Thi H. O. Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- * E-mail: (THON); (KK)
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- * E-mail: (THON); (KK)
| |
Collapse
|