1
|
Chen S, Li P, Shi K, Tang S, Zhang W, Peng C, Li T, Xie H, Liu C, Zhou J. Tanshinone IIA promotes ferroptosis in cutaneous melanoma via STAT1-mediated upregulation of PTGS2 expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156702. [PMID: 40222167 DOI: 10.1016/j.phymed.2025.156702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Melanoma is highly aggressive, metastatic with a poor prognosis. Despite significant advances in targeted therapies and immunotherapies, their efficiency limited by drug resistance. Tanshinone IIA (Tan IIA), a bioactive compound derived from Traditional Chinese plant, exhibits significant anticancer potential, which still needs more research in its complex regulatory mechanisms. PURPOSE This study aimed to elucidate the putative targets and regulatory mechanisms of Tan IIA in anti-melanoma, with a focus on its role in inducing ferroptosis. STUDY DESIGN We designed the experiment to explore the effects of Tan IIA on melanoma through both in vitro and in vivo experiments and to investigate the underlying mechanisms through transcriptomics combining network pharmacology analysis. METHOD Ferroptosis monitored by Malondialdehyde (MDA), Fe2+, reactive oxygen species (ROS) and glutathione (GSH) in vivo and in vitro. RNA sequence was performed to explore the key regulatory pathways involved in Tan IIA-induced ferroptosis. Chromatin immunoprecipitation (ChIP) and Luciferase assays were used to validate transcription factor responsible for prostaglandin-endoperoxide synthase 2 (PTGS2) regulation. Additionally, RT-qPCR, western blot, IF, IHC were aimed to evaluate the expression of target gene. RESULT Tan IIA markedly suppresses melanoma growth in a xenograft model. The same effect performed on inhibition melanoma cells and promotion to ferroptosis with accumulation of ROS, MDA, and Fe²⁺levels and GSH consumption. RNA sequencing and public database analysis revealed that Tan IIA regulates PTGS2, the critical marker of ferroptosis, and PTGS2-knockdown attenuates Tan IIA -induced ferroptosis in melanoma cells. Furthermore, we identified that Tan IIA stimulate signal transducer and activator of transcription 1 (STAT1), a transcription factor, promoting PTGS2 expression and localized in the cell cytoplasm. Moreover, downregulation of the transcription factor STAT1 lead to PTGS2 downregulation and also inhibit ferroptosis in melanoma. CONCLUSION This study, the first to link Tan IIA-induced ferroptosis to the STAT1/PTGS2 axis in melanoma, identifies STAT1 and PTGS2 as novel therapeutic targets for melanoma, which demonstrates the potential of natural compounds Tan IIA in overcoming drug resistance and integrates traditional medicine with advanced molecular techniques for mechanistic exploration.
Collapse
Affiliation(s)
- Shuyue Chen
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Peiting Li
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Ke Shi
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shijie Tang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Wancong Zhang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tianyu Li
- Department of Burns and Plastic Surgery, Nanshi Hospital of Nanyang, Nanyang, Henan Province 473000, China
| | - Huiqing Xie
- Department of Rehabilitation, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Can Liu
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| | - Jianda Zhou
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
2
|
Liu S, Wang M, Xu L, Deng D, Lu L, Tian J, Zhou D, Rui K. New insight into the role of SOCS family in immune regulation and autoimmune pathogenesis. J Adv Res 2025:S2090-1232(25)00313-3. [PMID: 40349956 DOI: 10.1016/j.jare.2025.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/07/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Suppressor of cytokine signaling (SOCS) proteins regulate signal transduction by interacting with cytokine receptors and signaling proteins and targeting associated proteins for degradation. Recent studies have demonstrated that the SOCS proteins serve as crucial inhibitors in cytokine signaling networks and play a pivotal role in both innate and adaptive immune responses. AIM OF REVIEW In this review, we aim to discuss recent advancements in understanding the complex functions of SOCS proteins in various immune cells, as well as the effects of SOCS proteins in human health and diseases. Increasing evidence indicates that SOCS proteins are frequently dysregulated in developing autoimmune diseases, suggesting that therapeutic targeting of SOCS proteins could provide clinical benefit. KEY SCIENTIFIC CONCEPTS OF REVIEW This review provides a comprehensive understanding of SOCS proteins in immune regulation and autoimmune pathogenesis, it also highlights the role of SOCS-related mimetic peptides in immunotherapy.
Collapse
Affiliation(s)
- Shiyi Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Mingwei Wang
- Department of Emergency, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Liangjie Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Daihua Deng
- Department of Rheumatology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Chongqing International Institute for Immunology, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Dongmei Zhou
- Department of Rheumatology and Immunology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
3
|
Hodge N, Tétreault MP. Epithelial Ikkβ deletion modulates immune responses and the IFNγ/CXCL9 axis during early esophageal carcinogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643566. [PMID: 40166246 PMCID: PMC11957055 DOI: 10.1101/2025.03.18.643566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Esophageal cancer is a major cause of cancer-related death, often preceded with chronic inflammation and injuries. The NFκB/IKKβ pathway plays a central role in inflammation, yet its role in early esophageal carcinogenesis remains unclear. This study investigated the role of epithelial IKKβ in early esophageal carcinogenesis. Mice were treated with the carcinogen 4-nitroquinoline-1-oxide (4-NQO) or a vehicle for one month to induce precancerous lesions. Esophagi were harvested and examined through histological, protein, flow cytometry, and RNA analyses. Histological analysis revealed that 4-NQO treatment led to increased inflammation, intraepithelial CD45+ immune cells, and elevated IKKβ phosphorylation levels. Mice with esophageal epithelial-specific Ikkβ deletion (4-NQO/Ikkβ EEC-KO ) showed delayed progression to a precancerous state, with reduced immune cell recruitment compared to 4-NQO/controls. Immunophenotyping showed decreased recruitment of T cells, including CD4+, CD8+ and regulatory (Tregs) T cells, and increased recruitment of macrophages in 4-NQO/Ikkβ EEC-KO mice compared to 4-NQO/controls. RNA sequencing data identified 262 differentially expressed genes in 4-NQO/Ikkβ EEC-KO mice, implicating pathways related to inflammation and wound healing. Notably, the chemokine CXCL9, a T cell chemoattractant, was significantly upregulated in 4-NQO control mice, but not in 4-NQO/Ikkβ EEC-KO mice. Further analysis identified IFNγ as an upstream regulator of Cxcl9 expression, and neutralization of IFNγ reduced Cxcl9 expression levels in 4-NQO treated mice. Additionally, in vitro studies demonstrated that IFNγ upregulates Cxcl9 in an NF-κB dependent manner in esophageal keratinocytes. These findings suggest that epithelial IKKβ regulates the immune microenvironment in early esophageal carcinogenesis through the IFNγ/CXCL9 axis and influencing T cell recruitment and inflammatory responses.
Collapse
Affiliation(s)
- Nathan Hodge
- Department of Medicine, Gastroenterology and Hepatology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611-3010, USA
| | - Marie-Pier Tétreault
- Department of Medicine, Gastroenterology and Hepatology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611-3010, USA
| |
Collapse
|
4
|
Zhang Y, Yan Z, Jiao Y, Feng Y, Zhang S, Yang A. Innate Immunity in Helicobacter pylori Infection and Gastric Oncogenesis. Helicobacter 2025; 30:e70015. [PMID: 40097330 PMCID: PMC11913635 DOI: 10.1111/hel.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 03/19/2025]
Abstract
Helicobacter pylori is an extremely common cause of gastritis that can lead to gastric adenocarcinoma over time. Approximately half of the world's population is infected with H. pylori, making gastric cancer the fourth leading cause of cancer-related deaths worldwide. Innate immunity significantly contributes to systemic and local immune responses, maintains homeostasis, and serves as the vital link to adaptive immunity, and in doing so, mediates H. pylori infection outcomes and consequent cancer risk and development. The gastric innate immune system, composed of gastric epithelial and myeloid cells, is uniquely challenged by its need to interact simultaneously and precisely with commensal microbiota, exogenous pathogens, ingested substances, and endogenous exfoliated cells. Additionally, innate immunity can be detrimental by promoting chronic infection and fibrosis, creating an environment conducive to tumor development. This review summarizes and discusses the complex role of innate immunity in H. pylori infection and subsequent gastric oncogenesis, and in doing so, provides insights into how these pathways can be exploited to improve prevention and treatment.
Collapse
Affiliation(s)
- Yuheng Zhang
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Eight‐Year Medical Doctor Program, Peking Union Medical CollegeChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Zhiyu Yan
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medicine, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yuhao Jiao
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medicine, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yunlu Feng
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Shengyu Zhang
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
5
|
Zhang Y, Cao W, Wang S, Zhang L, Li X, Zhang Z, Xie Y, Li M. Epigenetic modification of hepatitis B virus infection and related hepatocellular carcinoma. Virulence 2024; 15:2421231. [PMID: 39460469 PMCID: PMC11583590 DOI: 10.1080/21505594.2024.2421231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Hepatitis B virus (HBV) infection poses a challenge to global public health. Persistent liver infection with HBV is associated with an increased risk of developing severe liver disease. The complex interaction between the virus and the host is the reason for the persistent presence of HBV and the risk of tumor development. Chronic liver inflammation, integration of viral genome with host genome, expression of HBx protein, and viral genotype are all key participants in the pathogenesis of hepatocellular carcinoma (HCC). Epigenetic regulation in HBV-associated HCC involves complex interactions of molecular mechanisms that control gene expression and function without altering the underlying DNA sequence. These epigenetic modifications can significantly affect the onset and progression of HCC. This review summarizes recent research on the epigenetic regulation of HBV persistent infection and HBV-HCC development, including DNA methylation, histone modification, RNA modification, non-coding RNA, etc. Enhanced knowledge of these mechanisms will offer fresh perspectives and potential targets for intervention tactics in HBV-HCC.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Weihua Cao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shiyu Wang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinxin Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ziyu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
6
|
Du WY, Masuda H, Nagaoka K, Yasuda T, Kuge K, Seto Y, Kakimi K, Nomura S. Janus kinase inhibitor overcomes resistance to immune checkpoint inhibitor treatment in peritoneal dissemination of gastric cancer in C57BL/6 J mice. Gastric Cancer 2024; 27:971-985. [PMID: 38805119 PMCID: PMC11335826 DOI: 10.1007/s10120-024-01514-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Cancer immunotherapy aims to unleash the immune system's potential against cancer cells, providing sustained relief for tumors responsive to immune checkpoint inhibitors (ICIs). While promising in gastric cancer (GC) trials, the efficacy of ICIs diminishes in the context of peritoneal dissemination. Our objective is to identify strategies to enhance the impact of ICI treatment specifically for cases involving peritoneal dissemination in GC. METHODS The therapeutic efficacy of anti-PD1, CTLA4 treatment alone, or in combination was assessed using the YTN16 peritoneal dissemination tumor model. Peritoneum and peritoneal exudate cells were collected for subsequent analysis. Immunohistochemical staining, flow cytometry, and bulk RNA-sequence analyses were conducted to evaluate the tumor microenvironment (TME). A Janus kinase inhibitor (JAKi) was introduced based on the pathway analysis results. RESULTS Anti-PD1 and anti-CTLA4 combination treatment (dual ICI treatment) demonstrated therapeutic efficacy in certain mice, primarily mediated by CD8 + T cells. However, in mice resistant to dual ICI treatment, even with CD8 + T cell infiltration, most of the T cells exhibited an exhaustion phenotype. Notably, resistant tumors displayed abnormal activation of the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway compared to the untreated group, with observed infiltration of macrophages, neutrophils, and Tregs in the TME. The concurrent administration of JAKi rescued CD8 + T cells function and reshaped the immunosuppressive TME, resulting in enhanced efficacy of the dual ICI treatment. CONCLUSION Dual ICI treatment exerts its anti-tumor effects by increasing tumor-specific CD8 + T cell infiltration, and the addition of JAKi further improves ICI resistance by reshaping the immunosuppressive TME.
Collapse
Affiliation(s)
- Wan-Ying Du
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Hiroki Masuda
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Department of Gastrointestinal Surgery, Nippon Medical School, Tokyo, Japan
| | - Koji Nagaoka
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Tomohiko Yasuda
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Department of Gastrointestinal Surgery, Nippon Medical School, Tokyo, Japan
| | - Komei Kuge
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Department of Gastrointestinal Surgery, Nippon Medical School, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
- Department of Clinical Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
7
|
Mokhtarpour K, Akbarzadehmoallemkolaei M, Rezaei N. A viral attack on brain tumors: the potential of oncolytic virus therapy. J Neurovirol 2024; 30:229-250. [PMID: 38806994 DOI: 10.1007/s13365-024-01209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/30/2024]
Abstract
Managing malignant brain tumors remains a significant therapeutic hurdle that necessitates further research to comprehend their treatment potential fully. Oncolytic viruses (OVs) offer many opportunities for predicting and combating tumors through several mechanisms, with both preclinical and clinical studies demonstrating potential. OV therapy has emerged as a potent and effective method with a dual mechanism. Developing innovative and effective strategies for virus transduction, coupled with immune checkpoint inhibitors or chemotherapy drugs, strengthens this new technique. Furthermore, the discovery and creation of new OVs that can seamlessly integrate gene therapy strategies, such as cytotoxic, anti-angiogenic, and immunostimulatory, are promising advancements. This review presents an overview of the latest advancements in OVs transduction for brain cancer, focusing on the safety and effectiveness of G207, G47Δ, M032, rQNestin34.5v.2, C134, DNX-2401, Ad-TD-nsIL12, NSC-CRAd-S-p7, TG6002, and PVSRIPO. These are evaluated in both preclinical and clinical models of various brain tumors.
Collapse
Affiliation(s)
- Kasra Mokhtarpour
- Animal Model Integrated Network (AMIN), Universal Scientific Education and Research Network (USERN), Tehran, 1419733151, Iran
| | - Milad Akbarzadehmoallemkolaei
- Animal Model Integrated Network (AMIN), Universal Scientific Education and Research Network (USERN), Tehran, 1419733151, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, 1419733151, Iran
| | - Nima Rezaei
- Animal Model Integrated Network (AMIN), Universal Scientific Education and Research Network (USERN), Tehran, 1419733151, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, 1419733151, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417653761, Iran.
| |
Collapse
|
8
|
Sykes M. Tolerance in intestinal transplantation. Hum Immunol 2024; 85:110793. [PMID: 38580539 PMCID: PMC11144570 DOI: 10.1016/j.humimm.2024.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
Intestinal transplantation (ITx) is highly immunogenic, resulting in the need for high levels of immunosuppression, with frequent complications along with high rejection rates. Tolerance induction would provide a solution to these limitations. Detailed studies of alloreactive T cell clones as well as multiparameter flow cytometry in the graft and peripheral tissues have provided evidence for several tolerance mechanisms that occur spontaneously following ITx, which might provide targets for further interventions. These include the frequent occurrence of macrochimerism and engraftment in the recipient bone marrow of donor hematopoietic stem and progenitor cells carried in the allograft. These phenomena are seen most frequently in recipients of multivisceral transplants and are associated with reduced rejection rates. They reflect powerful graft-vs-host responses that enter the peripheral lymphoid system and bone marrow after expanding within and emigrating from the allograft. Several mechanisms of tolerance that may result from this lymphohematopoietic graft-vs-host response are discussed. Transcriptional profiling in quiescent allografts reveals tolerization of pre-existing host-vs-graft-reactive T cells that enter the allograft mucosa and become tissue-resident memory cells. Dissection of the pathways driving and maintaining this tolerant tissue-resident state among donor-reactive T cells will allow controlled tolerance induction through specific therapeutic approaches.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Department of Microbiology and Immunology and Department of Surgery, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Ilangumaran S, Gui Y, Shukla A, Ramanathan S. SOCS1 expression in cancer cells: potential roles in promoting antitumor immunity. Front Immunol 2024; 15:1362224. [PMID: 38415248 PMCID: PMC10897024 DOI: 10.3389/fimmu.2024.1362224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
Suppressor of cytokine signaling 1 (SOCS1) is a potent regulator immune cell responses and a proven tumor suppressor. Inhibition of SOCS1 in T cells can boost antitumor immunity, whereas its loss in tumor cells increases tumor aggressivity. Investigations into the tumor suppression mechanisms so far focused on tumor cell-intrinsic functions of SOCS1. However, it is possible that SOCS1 expression in tumor cells also regulate antitumor immune responses in a cell-extrinsic manner via direct and indirect mechanisms. Here, we discuss the evidence supporting the latter, and its implications for antitumor immunity.
Collapse
Affiliation(s)
- Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | |
Collapse
|
10
|
Shukla A, Khan MGM, Cayarga AA, Namvarpour M, Chowdhury MMH, Levesque D, Lucier JF, Boisvert FM, Ramanathan S, Ilangumaran S. The Tumor Suppressor SOCS1 Diminishes Tolerance to Oxidative Stress in Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:292. [PMID: 38254783 PMCID: PMC10814246 DOI: 10.3390/cancers16020292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
SOCS1 is a tumor suppressor in hepatocellular carcinoma (HCC). Recently, we showed that a loss of SOCS1 in hepatocytes promotes NRF2 activation. Here, we investigated how SOCS1 expression in HCC cells affected oxidative stress response and modulated the cellular proteome. Murine Hepa1-6 cells expressing SOCS1 (Hepa-SOCS1) or control vector (Hepa-Vector) were treated with cisplatin or tert-butyl hydroperoxide (t-BHP). The induction of NRF2 and its target genes, oxidative stress, lipid peroxidation, cell survival and cellular proteome profiles were evaluated. NRF2 induction was significantly reduced in Hepa-SOCS1 cells. The gene and protein expression of NRF2 targets were differentially induced in Hepa-Vector cells but markedly suppressed in Hepa-SOCS1 cells. Hepa-SOCS1 cells displayed an increased induction of reactive oxygen species but reduced lipid peroxidation. Nonetheless, Hepa-SOCS1 cells treated with cisplatin or t-BHP showed reduced survival. GCLC, poorly induced in Hepa-SOCS1 cells, showed a strong positive correlation with NFE2L2 and an inverse correlation with SOCS1 in the TCGA-LIHC transcriptomic data. A proteomic analysis of Hepa-Vector and Hepa-SOCS1 cells revealed that SOCS1 differentially modulated many proteins involved in diverse molecular pathways, including mitochondrial ROS generation and ROS detoxification, through peroxiredoxin and thioredoxin systems. Our findings indicate that maintaining sensitivity to oxidative stress is an important tumor suppression mechanism of SOCS1 in HCC.
Collapse
Affiliation(s)
- Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Md Gulam Musawwir Khan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Anny Armas Cayarga
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Mozhdeh Namvarpour
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Mohammad Mobarak H. Chowdhury
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Dominique Levesque
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Jean-François Lucier
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
- Centre de Recherche, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
- Centre de Recherche, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
11
|
Yi J, Lin P, Li Q, Zhang A, Kong X. A new strategy for treating colorectal cancer: Regulating the influence of intestinal flora and oncolytic virus on interferon. Mol Ther Oncolytics 2023; 30:254-274. [PMID: 37701850 PMCID: PMC10493895 DOI: 10.1016/j.omto.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Colorectal cancer (CRC) has the third highest incidence and the second highest mortality in the world, which seriously affects human health, while current treatments methods for CRC, including systemic therapy, preoperative radiotherapy, and surgical local excision, still have poor survival rates for patients with metastatic disease, making it critical to develop new strategies for treating CRC. In this article, we found that the gut microbiota can modulate the signaling pathways of cancer cells through direct contact with tumor cells, generate inflammatory responses and oxidative stress through interactions between the innate and adaptive immune systems, and produce diverse metabolic combinations to trigger specific immune responses and promote the initiation of systemic type I interferon (IFN-I) and anti-viral immunity. In addition, oncolytic virus-mediated immunotherapy for regulating oncolytic virus can directly lyse tumor cells, induce the immune activity of the body, interact with interferon, inhibit the anti-viral effect of IFN-I, and enhance the anti-tumor effect of IFN-II. Interferon plays an important role in the anti-tumor process. We put forward that exploring the effects of intestinal flora and oncolytic virus on interferon to treat CRC is a promising therapeutic option.
Collapse
Affiliation(s)
- Jia Yi
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peizhe Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingbo Li
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ao Zhang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xianbin Kong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
12
|
Jiao Y, Yan Z, Yang A. The Roles of Innate Lymphoid Cells in the Gastric Mucosal Immunology and Oncogenesis of Gastric Cancer. Int J Mol Sci 2023; 24:ijms24076652. [PMID: 37047625 PMCID: PMC10095467 DOI: 10.3390/ijms24076652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a group of innate immune cells that have garnered considerable attention due to their critical roles in regulating immunity and tissue homeostasis. They are particularly abundant in the gastrointestinal tract, where they have been shown to interact with commensal bacteria, pathogens, and other components of the local microenvironment to influence host immune responses to infection and oncogenesis. Their tissue-residency properties enable gastric ILCs a localized and rapid response to alert and stress, which indicates their key potential in regulating immunosurveillance. In this review, we discuss the current understanding of the role of ILCs in the gastric mucosa, with a focus on their interactions with the gastric microbiota and Helicobacter pylori and their contributions to tissue homeostasis and inflammation. We also highlight recent findings on the involvement of ILCs in the pathogenesis of gastric cancer and the implications of targeting ILCs as a therapeutic approach. Overall, this review provides an overview of the diverse functions of ILCs in gastric mucosa and highlights their potential as targets for future therapies for gastric cancer.
Collapse
Affiliation(s)
- Yuhao Jiao
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhiyu Yan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- 4 + 4 M.D. Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
13
|
Zhou K, Gu X, Tan H, Yu T, Liu C, Ding Z, Liu J, Shi H. Identification pyroptosis-related gene signature to predict prognosis and associated regulation axis in colon cancer. Front Pharmacol 2022; 13:1004425. [PMID: 36249755 PMCID: PMC9559861 DOI: 10.3389/fphar.2022.1004425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Background: Pyroptosis is an important component of the tumor microenvironment and associated with the occurrence and progression of cancer. As the expression of pyroptosis-related genes and its impact on the prognosis of colon cancer (CC) remains unclear, we constructed and validated a pyroptosis-related genes signature to predict the prognosis of patients with CC. Methods: Microarray datasets and the follow-up clinical information of CC patients were obtained from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases. Candidate genes were screened out for further analysis. Various methods were combined to construct a robust pyroptosis-related genes signature for predicting the prognosis of patients with CC. Based on the gene signature and clinical features, a decision tree and nomogram were developed to improve risk stratification and quantify risk assessment for individual patients. Results: The pyroptosis-related genes signature successfully discriminated CC patients with high-risk in the training cohorts. The prognostic value of this signature was further confirmed in independent validation cohort. Multivariable Cox regression and stratified survival analysis revealed this signature was an independent prognostic factor for CC patients. The decision tree identified risk subgroups powerfully, and the nomogram incorporating the gene signature and clinical risk factors performed well in the calibration plots. Conclusion: Pyroptosis-related genes signature was an independent prognostic factor, and can be used to predict the prognosis of patients with CC.
Collapse
Affiliation(s)
- Kexun Zhou
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, China
| | - Xuyu Gu
- School of Medicine, Southeast University, Nanjing, China
| | - Huaicheng Tan
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, China
| | - Ting Yu
- Department of Pathology and Laboratory of Pathology, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, China
| | - Chunhua Liu
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, China
| | - Zhenyu Ding
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, China
| | - Jiyan Liu
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, China
| | - Huashan Shi
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, China
- Department of Radiotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
- *Correspondence: Huashan Shi,
| |
Collapse
|
14
|
Lin Y, Wang D, Zhao H, Li D, Li X, Lin L. Pou3f1 mediates the effect of Nfatc3 on ulcerative colitis-associated colorectal cancer by regulating inflammation. Cell Mol Biol Lett 2022; 27:75. [PMID: 36064319 PMCID: PMC9446766 DOI: 10.1186/s11658-022-00374-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022] Open
Abstract
Background Ulcerative colitis-associated colorectal cancer (UC-CRC) is an important complication of ulcerative colitis. Pou3f1 (POU class 3 homeobox 1) is a critical regulator for developmental events and cellular biological processes. However, the role of Pou3f1 in the development of UC-CRC is unclear. Methods In vivo, a UC-CRC mouse model was induced by azoxymethane (AOM) and dextran sulfate sodium (DSS). Body weight, colon length, mucosal damage, tumor formation, and survival rate were assessed to determine the progression of UC-CRC. Western blot, quantitative real-time PCR, ELISA, immunohistochemistry, immunofluorescence and TUNEL were performed to examine the severity of inflammation and tumorigenesis. In vitro, LPS-treated mouse bone marrow-derived macrophages (BMDMs) and RAW264.7 cells were used to study the role of Pou3f1 in inflammation. ChIP and luciferase reporter assays were used to confirm the interaction between Nfatc3 and Pou3f1. Results Pou3f1 expression was increased in the colons of UC-CRC mice, and its inhibition attenuated mucosal injury, reduced colon tumorigenesis and increased survival ratio. Knockdown of Pou3f1 suppressed cell proliferation and increased cell death in colon tumors. Both the in vivo and in vitro results showed that Pou3f1 depletion reduced the production of proinflammation mediators. In addition, ChIP and luciferase reporter assays demonstrated that Nfatc3 directly bound with the Pou3f1 promoter to induce its expression. The effect of Nfatc3 on the inflammatory response in macrophages was suppressed by Pou3f1 knockdown. Conclusion Overall, it outlines that Pou3f1 mediates the role of Nfatc3 in regulating macrophage inflammation and carcinogenesis in UC-CRC development. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00374-0.
Collapse
Affiliation(s)
- Yan Lin
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China
| | - Dongxu Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China
| | - Hong Zhao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China.,Department of Gastroenterology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, China
| | - Dongyue Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China.,Department of Respiratory, Ansteel Group General Hospital, Anshan, China
| | - Xinning Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China.,Medical Oncology Ward, Tieling Central Hospital, Tieling, China
| | - Lianjie Lin
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China.
| |
Collapse
|
15
|
Kazan O, Kir G, Culpan M, Cecikoglu GE, Atis G, Yildirim A. The association between PI3K, JAK/STAT pathways with the PDL-1 expression in prostate cancer. Andrologia 2022; 54:e14541. [PMID: 35880672 DOI: 10.1111/and.14541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/09/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Programmed cell death protein-1/programmed death-ligand-1 (PD-1/PDL-1) signalling pathway has gained attention in prostate cancer. The relationship between pSTAT-1, pSTAT-3 expressions and PTEN loss with PDL-1 expression was assessed and the effects of the pathways on prostate cancer prognosis were evaluated. Patients who underwent radical prostatectomy between 2011 and 2017 were included in our study. Prostatectomy materials were evaluated using immunohistochemical staining of pSTAT-1, pSTAT-3, PTEN, and PDL-1. The relationship between PDL-1 and pSTAT-1, pSTAT-3 expressions and PTEN loss was evaluated. Additionally, factors affecting biochemical recurrence-free survival and clinical progression-free survival were analysed. Within100 patients, 9 of 11 patients with PDL-1 expression also had intermediate-high pSTAT-1 staining intensity, and those with PDL-1 expression had higher pSTAT-1 staining intensity than those without (81.9% vs. 56.2%, p = 0.014). In univariate analysis, pSTAT-1, pSTAT-3 and PDL-1 expressions had significant impact on biochemical recurrence-free and clinical progression-free survival. In multivariate analysis, pSTAT-1 staining intensity with radical prostatectomy ISUP grade in terms of biochemical recurrence-free survival and the pSTAT-1 H-score with radical prostatectomy ISUP grade in terms of clinical progression-free survival were independent risk factors. Moderate-high expression of pSTAT-1 was closely associated with PDL-1 expression, and pSTAT-1 was also a predictor of biochemical recurrence and clinical progression.
Collapse
Affiliation(s)
- Ozgur Kazan
- Department of Urology, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Gozde Kir
- Department of Pathology, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Meftun Culpan
- Department of Urology, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Gozde Ecem Cecikoglu
- Department of Pathology, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Gokhan Atis
- Department of Urology, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Asif Yildirim
- Department of Urology, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
16
|
Shi XY, Zhang XL, Shi QY, Qiu X, Wu XB, Zheng BL, Jiang HX, Qin SY. IFN-γ affects pancreatic cancer properties by MACC1-AS1/MACC1 axis via AKT/mTOR signaling pathway. Clin Transl Oncol 2022; 24:1073-1085. [PMID: 35037236 DOI: 10.1007/s12094-021-02748-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Metastasis-related in colon cancer 1 (MACC1) is highly expressed in a variety of solid tumours, but its role in pancreatic cancer (PC) remains unknown. Interferon gamma (IFN-γ) affecting MACC1 expression was explored as the potential mechanism following its intervention. METHODS Expressions of MACC1 treated with IFN-γ gradient were confirmed by quantitative real-time PCR (qRT-PCR) and western blot (WB). Proliferation, migration, and invasion abilities of PC cells treated with IFN-γ were analysed by CCK8, EDU, colony formation, Transwell (with or without matrix gel) and wound-healing assays. Expression of antisense long non-coding RNA of MACC1, MACC1-AS1, and proteins of AKT/mTOR pathway, (pho-)AKT, and (pho-)mTOR was also assessed by qRT-PCR and WB. SiRNA kit and lentiviral fluid were conducted for transient expression of MACC1 and stable expression of MACC1-AS1, respectively. Rescue assays of cells overexpressing MACC1-AS1 and of cells silencing MACC1 were performed and cellular properties and proteins were assessed by the above-mentioned assays as well. RESULTS IFN-γ inhibited MACC1 expression in a time- and dose-dependent manner; 100 ng/mL IFN-γ generally caused downregulation of most significant (p ≤ 0.05). In vitro experiments revealed that IFN-γ decreased cellular proliferation, migration, and invasion abilities and downregulated the expression of pho-AKT and pho-mTOR (p ≤ 0.05). Conversely, overexpression of MACC1-AS1 upregulated pho-AKT and pho-mTOR proteins, and reversed cellular properties (p ≤ 0.05). Rescue assays alleviated the above changes of pho-AKT/ mTOR and cellular properties. CONCLUSION IFN-γ affected PC properties by MACC1-AS1/MACC1 axis via AKT/mTOR signaling pathway, which provides novel insight for candidate targets for treating PC.
Collapse
Affiliation(s)
- X-Y Shi
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - X-L Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Q-Y Shi
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - X Qiu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - X-B Wu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - B-L Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - H-X Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - S-Y Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China.
| |
Collapse
|
17
|
Nayak D, Weadick B, Persaud AK, Raj R, Shakya R, Li J, Campbell MJ, Govindarajan R. EMT alterations in the solute carrier landscape uncover SLC22A10/A15 imposed vulnerabilities in pancreatic cancer. iScience 2022; 25:104193. [PMID: 35479410 PMCID: PMC9036131 DOI: 10.1016/j.isci.2022.104193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 01/31/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
The involvement of membrane-bound solute carriers (SLCs) in neoplastic transdifferentiation processes is poorly defined. Here, we examined changes in the SLC landscape during epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. We show that two SLCs from the organic anion/cation transporter family, SLC22A10 and SLC22A15, favor EMT via interferon (IFN) α and γ signaling activation of receptor tyrosine kinase-like orphan receptor 1 (ROR1) expression. In addition, SLC22A10 and SLC22A15 allow tumor cell accumulation of glutathione to support EMT via the IFNα/γ-ROR1 axis. Moreover, a pan-SLC22A inhibitor lesinurad reduces EMT-induced metastasis and gemcitabine chemoresistance to prolong survival in mouse models of pancreatic cancer, thus identifying new vulnerabilities for human PDAC.
Collapse
Affiliation(s)
- Debasis Nayak
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH 43210, USA
| | - Brenna Weadick
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH 43210, USA
| | - Avinash K. Persaud
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH 43210, USA
| | - Radhika Raj
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH 43210, USA
| | - Reena Shakya
- Target Validation Shared Resource, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Junan Li
- The Ohio State University College of Pharmacy, Columbus, OH 43210, USA
| | - Moray J. Campbell
- Molecular Carcinogenesis and Chemoprevention Program, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
- Biomedical Informatics Shared Resource, The Ohio State University, Columbus, OH 43210, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH 43210, USA
- Translational Therapeutics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Ayyildiz T, Dolar E, Oral B, Erturk B, Haktanir AE, Adim SB, Yerci O. SOCS-1 1478 CA/del gene polymorphism affects survival in colorectal carcinoma. Niger J Clin Pract 2022; 25:239-247. [PMID: 35295043 DOI: 10.4103/njcp.njcp_1309_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aims and Background Suppressor of cytokine signaling 1 (SOCS1) is a prototype molecule of the SOCS family. Alterations in the SOCS1 expression have been reported in human cancers and some studies suggest that SOCS1 might act as a tumor suppressor in carcinogenesis. In the present study, we aimed to evaluate the association of SOCS1 promoter -1478CA/del gene polymorphism detected in DNA isolated from the tissues of patients with colorectal cancer (CRC) for histopathological characteristics and survival. Patients and Methods For the study, we retrospectively enrolled 53 patients with resected colon due to CRC and 23 control subjects with no systemic illness. SOCS1- 1478CA/del gene polymorphism was determined using the polymerase chain reaction-restriction fragment length polymorphism methodology. These results were evaluated in relation to histopathological features and survival results and analyzed statistically. A P value equal to or less than 0.05 was considered significant. Results Neither control subjects nor the CRC group showed a significant association with SOCS1 -1478CA/del gene polymorphism (p = 0.248). SOCS1 -1478CA/del gene polymorphism was not significantly associated with histopathological features either. However, in the overall survival (OS) analysis, those patients with the del/del allele were found to have a 3.9-fold greater risk of mortality compared to those with CA/CA allele (p = 0.05). Progression-free survival (PFS) was also significantly different in such patients (p = 0.05). Conclusion The present study examining the association of SOCS1 -1478CA/del gene polymorphism with CRC showed that CRC patients with del/del allele had both significantly shorter PFS and OS versus those with CA/CA or CA/del allele.
Collapse
Affiliation(s)
- T Ayyildiz
- Department of Gastroenterology, School of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - E Dolar
- Department of Gastroenterology, are the part of School of Medicine of Ululudag University, Bursa, Turkey
| | - B Oral
- Department of Immunology, are the part of School of Medicine of Ululudag University, Bursa, Turkey
| | - B Erturk
- Department of Internal Medicine, School of Medicine, Erciyes University, Kayseri, Turkey
| | - A Eroglu Haktanir
- Department of Internal Medicine, are the part of School of Medicine of Ululudag University, Bursa, Turkey
| | - S B Adim
- Department of Pathology, are the part of School of Medicine of Ululudag University, Bursa, Turkey
| | - O Yerci
- Department of Pathology, are the part of School of Medicine of Ululudag University, Bursa, Turkey
| |
Collapse
|
19
|
Wang D, Bai X, Wang B, Yi Q, Yu W, Zhang X, Tian R, Zhang X, Li C, Chen Y, Liu Y, Cheng Y, He S. CTLA4Ig/VISTAIg combination therapy selectively induces CD4 + T cell-mediated immune tolerance by targeting the SOCS1 signaling pathway in porcine islet xenotransplantation. Immunology 2022; 166:169-184. [PMID: 35263451 DOI: 10.1111/imm.13463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
Abstract
T cell inhibitory receptors can regulate the proliferation or function of T cells by binding to their ligands and present a unique opportunity to manage destructive immune responses during porcine islet xenotransplantation. We applied ex vivo porcine islet xenotransplantation and in vitro mixed lymphocyte-islet reaction models to assess immune checkpoint receptor expression profiles in recipient T cells, investigate whether CTLA4 or VISTA immunoglobulin (Ig) combination therapy alone could suppress porcine islet xenograft rejection and further analyze its potential immune tolerance mechanism. Recipient T cells expressed moderate to high levels of CTLA4, PD-1, TIGIT, and VISTA, and the frequency of CTLA4+ CD4+ , TIGIT+ CD4+ , VISTA+ CD4+ and VISTA+ CD8+ T cells was positively correlated with porcine islet xenograft survival time in xenotransplant recipients. Combined treatment with CTLA4Ig and VISTAIg selectively inhibited recipient CD4+ T cell hyperresponsiveness and proinflammatory cytokine production and significantly delayed xenograft rejection. SOCS1 deficiency in CD4+ T cells stimulated by xenogeneic islets facilitated hyperresponsiveness and abolished the suppressive effect of combination therapy on recipient T cell-mediated porcine islet damage in vivo and in vitro. Further mechanistic studies revealed that combined treatment significantly induced SOCS1 expression and inhibited the Jak-STAT signaling pathway in wild-type recipient CD4+ T cells stimulated by xenogeneic islets, whereas SOCS1 deficiency resulted in Jak-STAT signaling pathway activation in recipient CD4+ T cells. We demonstrated a major role for CTLA4 and VISTA as key targets in CD4+ T cell hyperresponsiveness and porcine islet xenograft rejection. The selective inhibition of CD4+ T cell immunity by CTLA4Ig/VISTAIg is based on SOCS1-dependent signaling.
Collapse
Affiliation(s)
- Dan Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Xue Bai
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Bin Wang
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Qiying Yi
- Laboratory Animal Center, Chongqing Medical University, Chongqing, 400016, China
| | - Weihua Yu
- Institutes of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Xinying Zhang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Ruoyuan Tian
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Xiao Zhang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Caihua Li
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yi Chen
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yang Liu
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yao Cheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Sirong He
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| |
Collapse
|
20
|
Li L, Zhang J, Peng H, Jiang X, Liu Z, Tian H, Hou S, Xie X, Peng Q, Zhou T. Knockdown of miR-92a suppresses the stemness of colorectal cancer cells via mediating SOCS3. Bioengineered 2022; 13:5613-5624. [PMID: 35184640 PMCID: PMC8974062 DOI: 10.1080/21655979.2021.2022267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
MiRNAs (microRNAs) participate in colorectal cancer (CRC) progression and act as potential biomarkers for CRC prognosis. In this study, we investigated the mechanisms of microRNA-92a (miR-92a) in CRC. Expressions of miR-92a and SOCS3 (Suppressor Of Cytokine Signaling 3) were investigated by qRT-PCR in CRC cell lines and 30 cases of CRC. The self-renewal capacity and proliferation of CRC stem cells were estimated by the sphere formation assay, EdU staining, and Flow cytometry analysis. Moreover, the interplay between miR-92a and SOCS3 in CRC cells was validated by luciferase reporter experiments. MiR-92a was found to be remarkably increased while SOCS3 was significantly downregulated in CRC tissues. Inhibition of miR-92a or SOCS3 attenuated the sphere formation capacity, decreased expressions of stemness-related proteins, and inhibited the proliferation of cancer stem-like cells. Knockdown of SOCS3 reversed the repressive impacts of miR-92a inhibitors on self-renewal and growth of CRC cancer stem cells. This study suggested that miR-92a functions as an oncogene of CRC through mediating the stemness of colorectal cancer cells by directly binding and repressing SOCS3.
Collapse
Affiliation(s)
- Lifa Li
- Department of Gastrointestinal Surgery II, Hepatobiliary and Pancreatic Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jingxiao Zhang
- Department of Medica, The Second Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Hong Peng
- Department of Anorectal Surgery, Nanchong Central Hospital, the Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xianhong Jiang
- Department of Gastrointestinal Surgery II, Hepatobiliary and Pancreatic Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zuoliang Liu
- Department of Gastrointestinal Surgery II, Hepatobiliary and Pancreatic Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Hongpeng Tian
- Department of Gastrointestinal Surgery II, Hepatobiliary and Pancreatic Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Songlin Hou
- Department of Gastrointestinal Surgery II, Hepatobiliary and Pancreatic Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xingjiang Xie
- Department of Gastrointestinal Surgery II, Hepatobiliary and Pancreatic Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qiang Peng
- Department of Gastrointestinal Surgery II, Hepatobiliary and Pancreatic Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Tong Zhou
- Department of Gastrointestinal Surgery II, The Second Affiliated Hospital of North Sichuan Medical College, Sichuan, China
- Department of Gastrointestinal Surgery II, Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| |
Collapse
|
21
|
Immunotherapy for Colorectal Cancer: Mechanisms and Predictive Biomarkers. Cancers (Basel) 2022; 14:cancers14041028. [PMID: 35205776 PMCID: PMC8869923 DOI: 10.3390/cancers14041028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Late-stage colorectal cancer treatment often involves chemotherapy and radiation that can cause dose-limiting toxicity, and therefore there is great interest in developing targeted therapies for this disease. Immunotherapy is a targeted therapy that uses peptides, cells, antibodies, viruses, or small molecules to engage or train the immune system to kill cancer. Here, we discuss the preclinical and clinical development of immunotherapy for treatment of colorectal cancer and provide an overview of predictive biomarkers for such treatments. We also consider open questions including optimal combination treatments and sensitization of colorectal cancer patients with proficient mismatch repair enzymes. Abstract Though early-stage colorectal cancer has a high 5 year survival rate of 65–92% depending on the specific stage, this probability drops to 13% after the cancer metastasizes. Frontline treatments for colorectal cancer such as chemotherapy and radiation often produce dose-limiting toxicities in patients and acquired resistance in cancer cells. Additional targeted treatments are needed to improve patient outcomes and quality of life. Immunotherapy involves treatment with peptides, cells, antibodies, viruses, or small molecules to engage or train the immune system to kill cancer cells. Preclinical and clinical investigations of immunotherapy for treatment of colorectal cancer including immune checkpoint blockade, adoptive cell therapy, monoclonal antibodies, oncolytic viruses, anti-cancer vaccines, and immune system modulators have been promising, but demonstrate limitations for patients with proficient mismatch repair enzymes. In this review, we discuss preclinical and clinical studies investigating immunotherapy for treatment of colorectal cancer and predictive biomarkers for response to these treatments. We also consider open questions including optimal combination treatments to maximize efficacy, minimize toxicity, and prevent acquired resistance and approaches to sensitize mismatch repair-proficient patients to immunotherapy.
Collapse
|
22
|
Yoshimura A, Ito M, Mise-Omata S, Ando M. SOCS: negative regulators of cytokine signaling for immune tolerance. Int Immunol 2021; 33:711-716. [PMID: 34415326 DOI: 10.1093/intimm/dxab055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/18/2021] [Indexed: 11/14/2022] Open
Abstract
Cytokines are important intercellular communication tools for immunity. Many cytokines promote gene transcription and proliferation through the JAK/STAT (Janus kinase / signal transducers and activators of transcription) and the Ras/ERK (GDP/GTP-binding rat sarcoma protein / extracellular signal-regulated kinase) pathways, and these signaling pathways are tightly regulated. The SOCS (suppressor of cytokine signaling) family are representative negative regulators of JAK/STAT-mediated cytokine signaling and regulate the differentiation and function of T cells, thus being involved in immune tolerance. Human genetic analysis has shown that SOCS family members are strongly associated with autoimmune diseases, allergy and tumorigenesis. SOCS family proteins also function as immune-checkpoint molecules that contribute to the unresponsiveness of T cells to cytokines.
Collapse
Affiliation(s)
- Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinanomachi, Shinjyuku-ku, Tokyo, Japan
| | - Minako Ito
- Medical Institute of Bioregulation Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Setsuko Mise-Omata
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinanomachi, Shinjyuku-ku, Tokyo, Japan
| | - Makoto Ando
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinanomachi, Shinjyuku-ku, Tokyo, Japan
| |
Collapse
|
23
|
Wang Y, Lu C, Huang H, Yao S, Xu C, Ye Y, Gui S, Li G. A lipid-soluble extract of Pinellia pedatisecta Schott orchestrates intratumoral dendritic cell-driven immune activation through SOCS1 signaling in cervical cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:112837. [PMID: 32276009 DOI: 10.1016/j.jep.2020.112837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/14/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pinellia pedatisecta Schott extract (PE) is generated from Pinellia pedatisecta Schott, a traditional Chinese medicinal plant. PE suppresses cervical tumor growth and exhibits effects on dendritic cells (DCs) that lead to modulation of antitumor CD4+ and CD8+ responses. AIMS To explore the underlying mechanisms by which PE modulates tumor-associated dendritic cell (TADC) activation and function. METHODS DCs and TADCs were generated from murine bone marrow and exposed to PE solutions at different doses, as well as to repeated doses separated at different time intervals. Quantitative PCR, Western blot analysis, flow cytometry, and gene silencing were used to analyze the modulatory effects of PE on the SOCS1/JAK2/STAT pathways. Furthermore, we separated human cervical tumor-infiltrated DCs (TIDCs) and conducted an ex-vivo stimulation model to observe the effect of PE. For phenotypic analysis of cultured DCs and ex vivo human specimens, we used flow cytometry to detect the molecular markers associated with cell function. RESULTS In cultured TADCs and human cervical TIDCs, maturation- and functional markers (MHCII, CD80, CD83, CD86, and IL-12) were downregulated, whereas SOCS1 was upregulated. PE enhanced the expression of CD80, CD86, and IL-12 in cervical TIDCs, which induced increased expression of CD107a, GZMB, and perforin in CTLs, and furthermore induced apoptosis in a larger number of tumor cells. In cultured TADCs, PE downregulated SOCS1 expression and activated the phosphorylation of JAK2, STAT1, STAT4, and STAT5 in both dose- and time-dependent manners. The effects of PE upregulating MHCII, CD80, CD86, IL-12 on TADCs were blocked after SOCS1 silencing. CONCLUSIONS In this study, PE restored the impaired function of cervical TIDCs, thereby eliciting further antitumor CTL responses. The effects of PE on TADCs were mediated through inhibition of SOCS1 and activation of downstream JAK2-STAT1/STAT4/STAT5 pathways. PE may be a potent and effective immunomodulatory drug for antitumor treatment via the blockade of SOCS1 signaling in DCs.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Chong Lu
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Haixia Huang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Sheng Yao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Congjian Xu
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Yang Ye
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Suiqi Gui
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Guiling Li
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
24
|
Boukhaled GM, Harding S, Brooks DG. Opposing Roles of Type I Interferons in Cancer Immunity. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:167-198. [PMID: 33264572 DOI: 10.1146/annurev-pathol-031920-093932] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The immune system is tasked with identifying malignant cells to eliminate or prevent cancer spread. This involves a complex orchestration of many immune cell types that together recognize different aspects of tumor transformation and growth. In response, tumors have developed mechanisms to circumvent immune attack. Type I interferons (IFN-Is) are a class of proinflammatory cytokines produced in response to viruses and other environmental stressors. IFN-Is are also emerging as essential drivers of antitumor immunity, potently stimulating the ability of immune cells to eliminate tumor cells. However, a more complicated role for IFN-Is has arisen, as prolonged stimulation can promote feedback inhibitory mechanisms that contribute to immune exhaustion and other deleterious effects that directly or indirectly permit cancer cells to escape immune clearance. We review the fundamental and opposing functions of IFN-Is that modulate tumor growth and impact immune function and ultimately how these functions can be harnessed for the design of new cancer therapies.
Collapse
Affiliation(s)
- Giselle M Boukhaled
- Princess Margaret Cancer Centre, University Health Network Toronto, Ontario M5G 2M9, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shane Harding
- Princess Margaret Cancer Centre, University Health Network Toronto, Ontario M5G 2M9, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David G Brooks
- Princess Margaret Cancer Centre, University Health Network Toronto, Ontario M5G 2M9, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
25
|
Adham AN, Abdelfatah S, Naqishbandi AM, Mahmoud N, Efferth T. Cytotoxicity of apigenin toward multiple myeloma cell lines and suppression of iNOS and COX-2 expression in STAT1-transfected HEK293 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153371. [PMID: 33070080 DOI: 10.1016/j.phymed.2020.153371] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Apigenin is one of the most abundant dietary flavonoids that possesses multiple bio-functions. PURPOSE This study was designed to determine the influence of apigenin on gene expressions, cancer cells, as well as STAT1/COX-2/iNOS pathway mediated inflammation and tumorigenesis in HEK293-STAT1 cells. Furthermore, the cytotoxic activity toward multiple myeloma (MM) cell lines was investigated. METHODS Bioinformatic analyses were used to predict the sensitivity and resistance of tumor cells toward apigenin and to determine cellular pathways influenced by this compound. The cytotoxic and ferroptotic activity of apigenin was examined by the resazurin reduction assay. Additionally, we evaluated apoptosis, and cell cycle distribution, induction of reactive oxygen species (ROS) and loss of integrity of mitochondrial membrane (MMP) by using the flow cytometry analysis. DAPI staining was used to detect characteristic apoptotic features. Furthermore, we verified its anti-inflammatory and additional mechanism of cell death by western blotting. RESULTS COMPARE and hierarchical cluster analyses exhibited that 29 of 55 tumor cell lines were sensitive against apigenin (p < 0.001). The Ingenuity Pathway Analysis data showed that important bio-functions affected by apigenin were: gene expression, cancer, hematological system development and function, inflammatory response, and cell cycle. The STAT1 transcription factor was chosen as target protein on the basis of gene promoter binding motif analyses. Apigenin blocked cell proliferation of wild-type HEK293 and STAT1 reporter cells (HEK293-STAT1), promoted STAT1 suppression and subsequent COX-2 and iNOS inhibition. Apigenin also exhibited synergistic activity in combination with doxorubicin toward HEK293-STAT1 cells. Apigenin exerted excellent growth-inhibitory activity against MM cells in a concentration-dependent manner with the greatest activity toward NCI-H929 (IC50 value: 10.73 ± 3.21 μM). Apigenin induced apoptosis, cell cycle arrest, ferroptosis and autophagy in NCI-H929 cells. CONCLUSION Apigenin may be a suitable candidate for MM treatment. The inhibition of the STAT1/COX-2/iNOS signaling pathway by apigenin is an important mechanism not only in the suppression of inflammation but also in induction of apoptosis.
Collapse
Affiliation(s)
- Aveen N Adham
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq; Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Alaadin M Naqishbandi
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.
| | - Nuha Mahmoud
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
26
|
YOSHIMURA A, AKI D, ITO M. SOCS, SPRED, and NR4a: Negative regulators of cytokine signaling and transcription in immune tolerance. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:277-291. [PMID: 34121041 PMCID: PMC8403526 DOI: 10.2183/pjab.97.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cytokines are important intercellular communication tools for immunity. Most cytokines utilize the JAK-STAT and Ras-ERK pathways to promote gene transcription and proliferation; however, this signaling is tightly regulated. The suppressor of cytokine signaling (SOCS) family and SPRED family are a representative negative regulators of the JAK-STAT pathway and the Ras-ERK pathway, respectively. The SOCS family regulates the differentiation and function of CD4+ T cells, CD8+ T cells, and regulatory T cells, and is involved in immune tolerance, anergy, and exhaustion. SPRED family proteins have been shown to inactivate Ras by recruiting the Ras-GTPase neurofibromatosis type 1 (NF1) protein. Human genetic analysis has shown that SOCS family members are strongly associated with autoimmune diseases, allergies, and tumorigenesis, and SPRED1 is involved in NF1-like syndromes and tumors. We also identified the NR4a family of nuclear receptors as a key transcription factor for immune tolerance that suppresses cytokine expression and induces various immuno-regulatory molecules including SOCS1.
Collapse
Affiliation(s)
- Akihiko YOSHIMURA
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Correspondence should be addressed: A. Yoshimura, Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan (e-mail: )
| | - Daisuke AKI
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Minako ITO
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
27
|
Lu ZW, Hu JQ, Liu WL, Wen D, Wei WJ, Wang YL, Wang Y, Liao T, Ji QH. IL-10 Restores MHC Class I Expression and Interferes With Immunity in Papillary Thyroid Cancer With Hashimoto Thyroiditis. Endocrinology 2020; 161:5827010. [PMID: 32348468 PMCID: PMC7469947 DOI: 10.1210/endocr/bqaa062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
Abstract
The incidence of papillary thyroid cancer (PTC) with concomitant Hashimoto thyroiditis (HT) is increasing. Interleukin (IL)-10 is a cytokine previously reported to be elevated in this condition. Evidence from multiple human malignancies showed IL-10 participated in tumor immunity and exhibited therapeutic potential. The aim of this study is to investigate whether IL-10 interferes with tumor immunity in PTC with concomitant HT. Expression of IL-10 and major histocompatibility complex (MHC) class Ⅰ were compared with PTC tissues with or without concomitant HT. PTC cell lines K1 and TPC-1 were stimulated with IL-10 and analyzed for MHC class Ⅰ expression afterward. T-cell activation, production of IL-2 and interferon (IFN)-γ and programmed death-1 (PD-1) expression were assessed by coculture of donor peripheral blood lymphocytes (PBLs) with IL-10-pretreated PTC cells. Programmed death-ligand 1 (PD-L1) expression was measured in PTC tissues and IL-10-pretreated cells of K1 and TPC-1. Increased levels of IL-10 and MHC class Ⅰ were observed in PTC with concomitant HT. IL-10 stimulation increased MHC class Ⅰ expression of PTC cells in vitro. Coculture of PBLs with IL-10-pretreated PTC cells enhanced T-cell activation (% cluster of differentiation [CD]25+ of CD3+T cells) and increased IL-2 production along with decreased IFN-γ secretion and PD-1 expression. Reduced PD-L1 expression was seen in PTC + HT tissue samples and IL-10-stimulated PTC cell lines. Elevated IL-10 expression in PTC with concomitant HT restores MHC class Ⅰ expression and interferes with tumor immunity. The potential mechanism of IL-10 in tumor immunity needs further investigation.
Collapse
Affiliation(s)
- Zhong-Wu Lu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia-Qian Hu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wan-Ling Liu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Duo Wen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Jun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Long Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Correspondence: Dr. Qing-Hai Ji, Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China. E-mail: ; or Dr. Tian Liao, Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China. E-mail:
| | - Qing-Hai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Correspondence: Dr. Qing-Hai Ji, Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China. E-mail: ; or Dr. Tian Liao, Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China. E-mail:
| |
Collapse
|
28
|
Zhao Y, Xiong X, Sun Y. Cullin-RING Ligase 5: Functional characterization and its role in human cancers. Semin Cancer Biol 2020; 67:61-79. [PMID: 32334051 DOI: 10.1016/j.semcancer.2020.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/06/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022]
Abstract
Cullin-RING ligase 5 (CRL5) is a multi-protein complex and consists of a scaffold protien cullin 5, a RING protein RBX2 (also known as ROC2 or SAG), adaptor proteins Elongin B/C, and a substrate receptor protein SOCS. Through targeting a variety of substrates for proteasomal degradation or modulating various protein-protein interactions, CRL5 is involved in regulation of many biological processes, such as cytokine signal transduction, inflammation, viral infection, and oncogenesis. As many substrates of CRL5 are well-known oncoproteins or tumor suppressors, abnormal regulation of CRL5 is commonly found in human cancers. In this review, we first briefly introduce each of CRL5 components, and then discuss the biological processes regulated by four members of SOCS-box-containing substrate receptor family through substrate degradation. We next describe how CRL5 is hijacked by a variety of viral proteins to degrade host anti-viral proteins, which facilitates virus infection. We further discuss the regulation of CUL5 and its various roles in human cancers, acting as either a tumor suppressor or an oncoprotein in a context-dependent manner. Finally, we propose novel insights for future perspectives on the validation of cullin5 and other CRL5 components as potential targets, and possible targeting strategies to discover CRL5 inhibitors for anti-cancer and anti-virus therapies.
Collapse
Affiliation(s)
- Yongchao Zhao
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
29
|
Tadokoro H, Hirayama A, Kudo R, Hasebe M, Yoshioka Y, Matsuzaki J, Yamamoto Y, Sugimoto M, Soga T, Ochiya T. Adenosine leakage from perforin-burst extracellular vesicles inhibits perforin secretion by cytotoxic T-lymphocytes. PLoS One 2020; 15:e0231430. [PMID: 32275689 PMCID: PMC7147783 DOI: 10.1371/journal.pone.0231430] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) in the tumor microenvironment facilitate intercellular communication. Cancer cell-derived EVs act as an immunosuppressor by transporting cargos and presenting transmembrane proteins. By contrast, CD8+ cytotoxic T-lymphocytes (CTLs) exert anti-cancer cytotoxicity via the pore-forming protein perforin. Here, we hypothesize that although EVs are destroyed by perforin, cancer cell-derived EVs might possess mechanisms that enable them to avoid this destruction. We used a breast cancer cell line, MDA-MB-231-luc-D3H2LN (D3H2LN), to generate EVs. Destruction of the EVs by perforin was demonstrated visually using atomic force microscopy. To investigate immunosuppressive metabolites within cancer cell-derived EVs, we performed metabolomic profiling of EVs from D3H2LN cells cultured for 48 h with or without IFN-γ, which induces metabolic changes in the cells. We found that both types of EV from IFN-γ treated D3H2LN cells and non-treated D3H2LN cells contained adenosine, which has immunosuppressive effects. When we exposed cancer cell-derived EVs to CTLs, perforin secretion by CTLs fell significantly. In addition, the decreases in perforin secretion were ameliorated by treatment with adenosine deaminase, which degrades extracellular adenosine. Taken together, these results suggest that after perforin secreted by CTLs disrupts the membrane of EVs, adenosine released from the EVs acts as an immunosuppressive metabolite by binding to the adenosine receptor on the CTL membrane. This mechanism provides a novel survival strategy using cancer cell-derived EVs.
Collapse
Affiliation(s)
- Hiroko Tadokoro
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Ryuhei Kudo
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Masako Hasebe
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Yusuke Yoshioka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Juntaro Matsuzaki
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Takahiro Ochiya
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
30
|
Cui B, Chen J, Luo M, Wang L, Chen H, Kang Y, Wang J, Zhou X, Feng Y, Zhang P. Protein kinase D3 regulates the expression of the immunosuppressive protein, PD‑L1, through STAT1/STAT3 signaling. Int J Oncol 2020; 56:909-920. [PMID: 32319563 PMCID: PMC7050980 DOI: 10.3892/ijo.2020.4974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is capable of constructing a favorable immune escape environment through interactions of cells with cells and of cells with the environment. Programmed death ligand-1 (PD-L1) is a well-recognized inhibitor of anti-tumor immunity that plays an important role in tumor immune escape. However, the molecular mechanisms regulating PD-L1 expression are not yet fully understood. In this study, to investigate the role of protein kinase D3 (PKD3) in the regulation of PD-L1 expression, the expression and correlation of PKD3 and PD-L1 were first analyzed by the immunostaining of human OSCC tissue sections, cell experiments and TCGA gene expression databases. The expression levels of PKD3 and PD-L1 were found to be significantly higher in OSCC cells than in normal tissues or cells. In addition, the expression levels of PKD3 and PD-L1 were found to be significantly positively correlated. Subsequently, it was found that the levsel of PD-L1 expression decreased following the silencing of PKD3 and that the ability of interferon (IFN)-γ to induce PD-L1 expression was also decreased in OSCC. The opposite phenomenon occurred following the overexpression of PKD3. It was also found that the phosphorylation of signal transducer and activator of transcription (STAT)1/STAT3 was reduced by the knockdown of PKD3 in OSCC. Moreover, the expression level of PD-L1 was decreased after the use of siRNA to knockdown STAT1 or STAT3. On the whole, the findings of this study confirm that PKD3 regulates the expression of PD-L1 induced by IFN-γ by regulating the phosphorylation of STAT1/STAT3. These findings broaden the understanding of the biological function of PKD3, suggesting that PKD is a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Bomiao Cui
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Min Luo
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Liwei Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hongli Chen
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yingzhu Kang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jingnan Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yun Feng
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
31
|
Abstract
Despite advanced clinical treatments, mortality in patients with metastatic colorectal cancer (CRC) remains high. Three critical determinants in CRC progression include the epithelial proliferation checkpoints, epithelial-to-mesenchymal transition (EMT) and inflammatory cytokines in the tumour microenvironment. Genes involved in these three processes are regulated at the transcriptional and post-transcriptional level. Recent studies revealed previously unappreciated roles of non-coding ribonucleic acids (ncRNAs) in modulating the proliferation checkpoints, EMT, and inflammatory gene expression in CRC. In this review, we will discuss the mechanisms underlying the roles of ncRNAs in CRC as well as examine future perspectives in this field. Better understanding of ncRNA biology will provide novel targets for future therapeutic development.
Collapse
Affiliation(s)
- Shengyun Ma
- Cellular and Molecular Medicine, University of California , San Diego, USA
| | - Tianyun Long
- Cellular and Molecular Medicine, University of California , San Diego, USA
| | | |
Collapse
|
32
|
El-Daly SM, Omara EA, Hussein J, Youness ER, El-Khayat Z. Differential expression of miRNAs regulating NF-κB and STAT3 crosstalk during colitis-associated tumorigenesis. Mol Cell Probes 2019; 47:101442. [PMID: 31479716 DOI: 10.1016/j.mcp.2019.101442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/12/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022]
Abstract
Inflammatory bowel disease (IBD) is mostly responsible for the development of colitis-associated colon cancer. Of the several signaling pathways involved in colonic inflammation, the activation and crosstalk between NF-κB and STAT3 serve as the pivotal regulatory hubs that regulate epithelial tumorigenesis by linking inflammation with cancer development. Understanding the molecular mechanisms regulating the crosstalk between NF-κB and STAT3 will help in targeting these signaling pathways and halt epithelial tumorigenesis. MicroRNAs (miRNAs) play important role in the regulation of NF-κB and STAT3 and function in a positive- or negative feedback loop to regulate the crosstalk of these transcription factor. In the present study we evaluated the aberrant expression of a selected panel of miRNAs (miR-181b, miR-31, miR-34a, miR-146b, miR-221, and miR-155) that regulate the crosstalk between NF-κB and STAT3 during colitis-associated tumorigenesis. We used the stepwise colorectal carcinogenesis murine model known as Azoxymethane (AOM)/Dextran sodium sulphate (DSS) to recapitulate the different stages of tumorigenesis. Our results revealed that the expression of the selected miRNAs changed dynamically in a stepwise pattern as colonic tissue transforms from normal to actively inflamed to neoplastic state, in accordance with the gradual activation of NF-κB and STAT3, suggesting that the aberrant expression of these miRNAs could function as the epigenetic switch between inflammation and colorectal tumorigenesis. We were able to elucidate the contribution of miRNAs in the NF-κB - STAT3 crosstalk during the stepwise development of colitis-associated carcinoma, and this could improve our understanding of the molecular pathology of colorectal tumorigenesis and even suggesting a therapeutic strategy by modulating the expression of these regulating miRNAs.
Collapse
Affiliation(s)
- Sherien M El-Daly
- Medical Biochemistry Department, Medical Research Division, National Research Centre, Cairo, Egypt; Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt.
| | - Enayat A Omara
- Pathology Department, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Jihan Hussein
- Medical Biochemistry Department, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Eman R Youness
- Medical Biochemistry Department, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Zakaria El-Khayat
- Medical Biochemistry Department, Medical Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
33
|
Wu M, Song D, Li H, Yang Y, Ma X, Deng S, Ren C, Shu X. Negative regulators of STAT3 signaling pathway in cancers. Cancer Manag Res 2019; 11:4957-4969. [PMID: 31213912 PMCID: PMC6549392 DOI: 10.2147/cmar.s206175] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022] Open
Abstract
STAT3 is the most ubiquitous member of the STAT family and involved in many biological processes, such as cell proliferation, differentiation, and apoptosis. Mounting evidence has revealed that STAT3 is aberrantly activated in many malignant tumors and plays a critical role in cancer progression. STAT3 is usually regarded as an effective molecular target for cancer treatment, and abolishing the STAT3 activity may diminish tumor growth and metastasis. Recent studies have shown that negative regulators of STAT3 signaling such as PIAS, SOCS, and PTP, can effectively retard tumor progression. However, PIAS, SOCS, and PTP have also been reported to correlate with tumor malignancy, and their biological function in tumorigenesis and antitumor therapy are somewhat controversial. In this review, we summarize actual knowledge on the negative regulators of STAT3 in tumors, and focus on the potential role of PIAS, SOCS, and PTP in cancer treatment. Furthermore, we also outline the STAT3 inhibitors that have entered clinical trials. Targeting STAT3 seems to be a promising strategy in cancer therapy.
Collapse
Affiliation(s)
- Moli Wu
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China.,College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Danyang Song
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Hui Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Yang Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Sa Deng
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Changle Ren
- Surgery Department of Dalian Municipal Central Hospital, Dalian Medical University, Dalian 116033, People's Republic of China
| | - Xiaohong Shu
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| |
Collapse
|
34
|
Mevizou R, Sirvent A, Roche S. Control of Tyrosine Kinase Signalling by Small Adaptors in Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11050669. [PMID: 31091767 PMCID: PMC6562749 DOI: 10.3390/cancers11050669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/09/2019] [Accepted: 05/12/2019] [Indexed: 01/06/2023] Open
Abstract
Tyrosine kinases (TKs) phosphorylate proteins on tyrosine residues as an intracellular signalling mechanism to coordinate intestinal epithelial cell communication and fate decision. Deregulation of their activity is ultimately connected with carcinogenesis. In colorectal cancer (CRC), it is still unclear how aberrant TK activities contribute to tumour formation because TK-encoding genes are not frequently mutated in this cancer. In vertebrates, several TKs are under the control of small adaptor proteins with potential important physiopathological roles. For instance, they can exert tumour suppressor functions in human cancer by targeting several components of the oncogenic TK signalling cascades. Here, we review how the Src-like adaptor protein (SLAP) and the suppressor of cytokine signalling (SOCS) adaptor proteins regulate the SRC and the Janus kinase (JAK) oncogenic pathways, respectively, and how their loss of function in the intestinal epithelium may influence tumour formation. We also discuss the potential therapeutic value of these adaptors in CRC.
Collapse
Affiliation(s)
- Rudy Mevizou
- CRBM, CNRS, Univ. Montpellier, "Equipe labellisée Ligue Contre le Cancer", F-34000 Montpellier, France.
| | - Audrey Sirvent
- CRBM, CNRS, Univ. Montpellier, "Equipe labellisée Ligue Contre le Cancer", F-34000 Montpellier, France.
| | - Serge Roche
- CRBM, CNRS, Univ. Montpellier, "Equipe labellisée Ligue Contre le Cancer", F-34000 Montpellier, France.
| |
Collapse
|
35
|
Sarmah N, Baruah MN, Baruah S. Immune Modulation in HLA-G Expressing Head and Neck Squamous Cell Carcinoma in Relation to Human Papilloma Virus Positivity: A Study From Northeast India. Front Oncol 2019; 9:58. [PMID: 30859089 PMCID: PMC6397850 DOI: 10.3389/fonc.2019.00058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/21/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Tumor specific ectopic expression of the immunomodulatory molecule, HLA-G is known to mediate immune tolerance and promote carcinogenesis. Viruses too employ strategies to evade immune surveillance. Considering the role of both HLA-G and HPV in tumor growth and progression, it is pertinent to investigate the relationship between HLA-G and HPV in context of immune modulation in HNSCC. Method: A hospital based case–control study was conducted in histopathologically confirmed HNSCC tissues. HLA-G isoform expression and HPV association studies were carried out and mRNA levels of HLA-G, markers of proliferation and differentiation (ki-67, keratin 18, cyclin D1), immune checkpoint molecules (IL-10, PD-1. TGF-β), SOCS (SOCS1 and SOCS3) and pro-inflammatory cytokine IFN-γ were determined. Results: Higher expression of HLA-G was noted in HPV positive tumors (5.14 fold, p = 0.002). HLA-G7 was the most frequent isoform (29/80) found in HNSCC particularly in HPV positive tumors (13/16). In HPV negative tumors, all the checkpoint molecules were upregulated along with pro–inflammatory IFN-γ. In contrast, in HPV positive tumors, IFN-γ expression was higher (2.12 fold) but levels of IL-10, PD-1, TGF-β, SOCS1 and SOCS3 were markedly lower (fold change of IL-10 = 0.37, PD1 = 0.41, TGF-β = 0.17, SOCS1 = 0.055, SOCS3 = 0.027). HPV positive tumors were more proliferative and differentiated with higher expression of ki-67 and keratin18 (6.25 fold, p = 0.079 and 10.62 fold, p = 0.009). Decreased expression of cyclin D1 was noted in HPV positive tumors (6.94 fold, p = 0.006) than HPV negative tumors (17.69 fold). Also, HLA-G7 expressing HPV positive tumors showed lowest expression of cyclin D1. Interestingly, SOCS showed normal expression in HLA-G7 expressing HPV negative tumors (1.2 and 1.4 fold). IFN-γ was downregulated in HPV positive tumors without HLA-G7 (0.31 fold). Conclusion: Our data suggests that SOCS were downregulated irrespective of HLA-G positivity and IFN- γ expression appeared to be mediated by HLA-G. SOCS are reported to have anti-tumor activity and also SOCS and soluble HLA-G are known to interfere with cell cycle progression. Hence, through regulating HLA-G expression, HPV positive tumors could mediate immune suppression by manipulating SOCS, IFN-γ, IL-10 and cyclin D1 pathways which needs further exploration.
Collapse
Affiliation(s)
- Neelanjana Sarmah
- Immunology and Immunogenetics Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | | | - Shashi Baruah
- Immunology and Immunogenetics Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| |
Collapse
|
36
|
Gendo Y, Matsumoto T, Kamiyama N, Saechue B, Fukuda C, Dewayani A, Hidano S, Noguchi K, Sonoda A, Ozaki T, Sachi N, Hirose H, Ozaka S, Eshita Y, Mizukami K, Okimoto T, Kodama M, Yoshimatsu T, Nishida H, Daa T, Yamaoka Y, Murakami K, Kobayashi T. Dysbiosis of the Gut Microbiota on the Inflammatory Background due to Lack of Suppressor of Cytokine Signalling-1 in Mice. Inflamm Intest Dis 2019; 3:145-154. [PMID: 30820436 DOI: 10.1159/000495462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/13/2018] [Indexed: 11/19/2022] Open
Abstract
Background Both environmental and genetic factors have been implicated in the induction of autoimmune disease. Therefore, it is important to understand the pathophysiological significance of the gut microbiota and host genetic background that contribute to an autoimmune disease such as inflammatory bowel disease (IBD). We have previously reported that mice deficient for suppressor of cytokine signaling-1 (SOCS1), in which SOCS1 expression was restored in T and B cells on an SOCS1-/- background (SOCS1-/-Tg mice), developed systemic autoimmune diseases accompanied by spontaneous colitis. Methods To investigate whether the proinflammatory genetic background affects the gut microbiota, we used SOCS1-/-Tg mice as a model of spontaneous chronic colitis. Fecal samples were collected from SOCS1-/-Tg mice and SOCS1+/+Tg (control) mice at 1 and 6 months of age, and the fecal bacterial 16S ribosomal RNA genes were sequenced using the Illumina MiSeq platform. Results Gut microbial diversity was significantly reduced and the intestinal bacterial community composition changed in SOCS1-/-Tg mice in comparison with the control mice. Interestingly, the population of Prevotella species, which is known to be elevated in ulcerative colitis and colorectal cancer patients, was significantly increased in SOCS1-/-Tg mice regardless of age. Conclusion Taken together, these results suggest that the proinflammatory genetic background owing to SOCS1 deficiency causes dysbiosis of the gut microbiota, which in turn generates a procolitogenic environment.
Collapse
Affiliation(s)
- Yoshiko Gendo
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Naganori Kamiyama
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Benjawan Saechue
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ciaki Fukuda
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Astri Dewayani
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shinya Hidano
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kaori Noguchi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Akira Sonoda
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Takashi Ozaki
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Nozomi Sachi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Haruna Hirose
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Sotaro Ozaka
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yuki Eshita
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazuhiro Mizukami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Tadayoshi Okimoto
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Masaaki Kodama
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Tomoko Yoshimatsu
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Haruto Nishida
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Tsutomu Daa
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
37
|
Bhat MY, Solanki HS, Advani J, Khan AA, Keshava Prasad TS, Gowda H, Thiyagarajan S, Chatterjee A. Comprehensive network map of interferon gamma signaling. J Cell Commun Signal 2018; 12:745-751. [PMID: 30191398 PMCID: PMC6235777 DOI: 10.1007/s12079-018-0486-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/26/2018] [Indexed: 11/25/2022] Open
Abstract
Interferon gamma (IFN-γ), is a cytokine, which is an important regulator of host defense system by mediating both innate and adaptive immune responses. IFN-γ signaling is primarily associated with inflammation and cell-mediated immune responses. IFN-γ is also represented as antitumor cytokine which facilitates immunosurveillance in tumor cells. In addition, IFN-γ mediated signaling also elicits pro-tumorigenic transformations and promotes tumor progression. Impact of IFN-γ signaling in mammalian cells has been widely studied which indicate that IFN-γ orchestrates distinct cellular functions including immunomodulation, leukocyte trafficking, apoptosis, anti-microbial, and both anti- and pro-tumorigenic role. However, a detailed network of IFN-γ signaling pathway is currently lacking. Therefore, we systematically curated the literature information pertaining to IFN-γ signaling and develop a comprehensive signaling network to facilitate better understanding of IFN-γ mediated signaling. A total of 124 proteins were catalogued that were experimentally proven to be involved in IFN-γ signaling cascade. These 124 proteins were found to participate in 81 protein-protein interactions, 94 post-translational modifications, 20 translocation events, 54 activation/inhibiton reactions. Further, 236 differential expressed genes were also documented in IFN-γ mediated signaling. IFN-γ signaling pathway is made freely available to scientific audience through NetPath at ( http://www.netpath.org/pathways?path_id=NetPath_32 ). We believe that documentation of reactions pertaining to IFN-γ signaling and development of pathway map will facilitate further research in IFN-γ associated human diseases including cancer.
Collapse
Affiliation(s)
- Mohd Younis Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, India
| | - Hitendra S Solanki
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Jayshree Advani
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- Manipal Academy of Higher Education, Manipal, 576104, India
| | - Aafaque Ahmad Khan
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
| | | | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India.
| |
Collapse
|
38
|
Han J, Li Y, Zhang H, Guo J, Wang X, Kang Y, Luo Y, Wu M, Zhang X. MicroRNA-142-5p facilitates the pathogenesis of ulcerative colitis by regulating SOCS1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5735-5744. [PMID: 31949659 PMCID: PMC6963094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/22/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Increasing evidence suggests that abnormal levels of microRNAs (miRNAs) are associated with ulcerative colitis (UC). It has been demonstrated that microRNA (miR)-142-5p was upregulated in UC patients. However, it remains unclear what the role of miR-142-5p is in UC. METHODS Samples from patients with active UC and healthy controls were performed with miRNA microarray to identify miRNAs involved in the pathogenesis of UC. The results of quantitative RT-PCR verified that miR-142-5p was upregulated in UC patients. Meanwhile, the decreased expression of suppressor of cytokine signaling 1 (SOCS1) was also detected at mRNA and protein levels. The regulatory effect of miR-142-5p on SOCS1 was evaluated by luciferase reporter assay. Levels of IL-6 or IL-8 were detected by quantitative RT-PCR or enzyme-linked immunosorbent assay in HT-29 cells to evaluate the roles of SOCS1 or miR-142-5p in the progression of UC. RESULTS The expression level of miR-142-5p was significantly upregulated and inversely correlated with SOCS1. Luciferase experiments showed that miR-142-5p interfered with the expression of SOCS1 by directly targeting its 3'-UTR. Furthermore, the level of miR-142-5p plays an important role in the secretion of IL-6 and IL-8. Moreover, lost function of SOCS1 reversed the miR-142-5p inhibitory effect. CONCLUSIONS These results indicate that miR-142-5p improved the intestinal inflammation of active-UC patients by downregulating SOCS1 expression and increasing the cytokines IL-6 and IL-8 secretion.
Collapse
Affiliation(s)
- Jing Han
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
- Department of Physical Examination Center, The Second Hospital of Hebei Medical UniversityHebei, Shijiazhuang, China
| | - Yawei Li
- Department of Cardiology, The Third Hospital of ShijiazhuangShijiazhuang, Hebei, China
| | - Hong Zhang
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
| | - Jinbo Guo
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
| | - Xing Wang
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
| | - Yaxing Kang
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
| | - Yuxin Luo
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
| | - Mengyao Wu
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
| | - Xiaolan Zhang
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
| |
Collapse
|
39
|
Abstract
Interferon-gamma (IFNG) has long been implicated as a central orchestrator of antitumor immune responses in the elimination stage of the immunoediting paradigm. However, mounting evidence suggests that IFNG may also have important and significant protumor roles to play in the equilibrium and escape phases through its regulatory effects on immunoevasive functions that promote tumorigenesis. These seemingly contradictory effects of IFNG undoubtedly play profound roles in not only the activation of inflammatory response to cancer but also in the determination of its outcome. In the face of the recent explosion of anticancer immunotherapeutic strategies in the clinic, it is critical that a complete understanding is achieved of the underpinnings of the mechanisms that determine the two faces of IFNG signaling in cancer. Here, the current state of this dichotomy is reviewed.
Collapse
Affiliation(s)
- M Raza Zaidi
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Tang W, Wallace TA, Yi M, Magi-Galluzzi C, Dorsey TH, Onabajo OO, Obajemu A, Jordan SV, Loffredo CA, Stephens RM, Silverman RH, Stark GR, Klein EA, Prokunina-Olsson L, Ambs S. IFNL4-ΔG Allele Is Associated with an Interferon Signature in Tumors and Survival of African-American Men with Prostate Cancer. Clin Cancer Res 2018; 24:5471-5481. [PMID: 30012562 PMCID: PMC6214748 DOI: 10.1158/1078-0432.ccr-18-1060] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/12/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
Abstract
Purpose: Men of African ancestry experience an excessive prostate cancer mortality that could be related to an aggressive tumor biology. We previously described an immune-inflammation signature in prostate tumors of African-American (AA) patients. Here, we further deconstructed this signature and investigated its relationships with tumor biology, survival, and a common germline variant in the IFNλ4 (IFNL4) gene.Experimental Design: We analyzed gene expression in prostate tissue datasets and performed genotype and survival analyses. We also overexpressed IFNL4 in human prostate cancer cells.Results: We found that a distinct interferon (IFN) signature that is analogous to the previously described "IFN-related DNA damage resistance signature" (IRDS) occurs in prostate tumors. Evaluation of two independent patient cohorts revealed that IRDS is detected about twice as often in prostate tumors of AA than European-American men. Furthermore, analysis in TCGA showed an association of increased IRDS in prostate tumors with decreased disease-free survival. To explain these observations, we assessed whether IRDS is associated with an IFNL4 germline variant (rs368234815-ΔG) that controls production of IFNλ4, a type III IFN, and is most common in individuals of African ancestry. We show that the IFNL4 rs368234815-ΔG allele was significantly associated with IRDS in prostate tumors and overall survival of AA patients. Moreover, IFNL4 overexpression induced IRDS in three human prostate cancer cell lines.Conclusions: Our study links a germline variant that controls production of IFNλ4 to the occurrence of a clinically relevant IFN signature in prostate tumors that may predominantly affect men of African ancestry. Clin Cancer Res; 24(21); 5471-81. ©2018 AACR.
Collapse
Affiliation(s)
- Wei Tang
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Tiffany A Wallace
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Ming Yi
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Tiffany H Dorsey
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Olusegun O Onabajo
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Adeola Obajemu
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Symone V Jordan
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Christopher A Loffredo
- Cancer Prevention and Control Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Robert M Stephens
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Robert H Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - George R Stark
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
41
|
Deficiency in STAT1 Signaling Predisposes Gut Inflammation and Prompts Colorectal Cancer Development. Cancers (Basel) 2018; 10:cancers10090341. [PMID: 30235866 PMCID: PMC6162416 DOI: 10.3390/cancers10090341] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/24/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Signal transducer and activator of transcription 1 (STAT1) is part of the Janus kinase (JAK/STAT) signaling pathway that controls critical events in intestinal immune function related to innate and adaptive immunity. Recent studies have implicated STAT1 in tumor⁻stroma interactions, and its expression and activity are perturbed during colon cancer. However, the role of STAT1 during the initiation of inflammation-associated cancer is not clearly understood. To determine the role of STAT1 in colitis-associated colorectal cancer (CAC), we analyzed the tumor development and kinetics of cell recruitment in wild-type WT or STAT1-/- mice treated with azoxymethane (AOM) and dextran sodium sulfate (DSS). Following CAC induction, STAT1-/- mice displayed an accelerated appearance of inflammation and tumor formation, and increased damage and scores on the disease activity index (DAI) as early as 20 days after AOM-DSS exposure compared to their WT counterparts. STAT1-/- mice showed elevated colonic epithelial cell proliferation in early stages of injury-induced tumor formation and decreased apoptosis in advanced tumors with over-expression of the anti-apoptotic protein Bcl2 at the colon. STAT1-/- mice showed increased accumulation of Ly6G⁺Ly6C-CD11b⁺ cells in the spleen at 20 days of CAC development with concomitant increases in the production of IL-17A, IL-17F, and IL-22 cytokines compared to WT mice. Our findings suggest that STAT1 plays a role as a tumor suppressor molecule in inflammation-associated carcinogenesis, particularly during the very early stages of CAC initiation, modulating immune responses as well as controlling mechanisms such as apoptosis and cell proliferation.
Collapse
|
42
|
Eguchi R, Karim MB, Hu P, Sato T, Ono N, Kanaya S, Altaf-Ul-Amin M. An integrative network-based approach to identify novel disease genes and pathways: a case study in the context of inflammatory bowel disease. BMC Bioinformatics 2018; 19:264. [PMID: 30005591 PMCID: PMC6043997 DOI: 10.1186/s12859-018-2251-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 06/18/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND There are different and complicated associations between genes and diseases. Finding the causal associations between genes and specific diseases is still challenging. In this work we present a method to predict novel associations of genes and pathways with inflammatory bowel disease (IBD) by integrating information of differential gene expression, protein-protein interaction and known disease genes related to IBD. RESULTS We downloaded IBD gene expression data from NCBI's Gene Expression Omnibus, performed statistical analysis to determine differentially expressed genes, collected known IBD genes from DisGeNet database, which were used to construct a IBD related PPI network with HIPPIE database. We adapted our graph-based clustering algorithm DPClusO to cluster the disease PPI network. We evaluated the statistical significance of the identified clusters in the context of determining the richness of IBD genes using Fisher's exact test and predicted novel genes related to IBD. We showed 93.8% of our predictions are correct in the context of other databases and published literatures related to IBD. CONCLUSIONS Finding disease-causing genes is necessary for developing drugs with synergistic effect targeting many genes simultaneously. Here we present an approach to identify novel disease genes and pathways and discuss our approach in the context of IBD. The approach can be generalized to find disease-associated genes for other diseases.
Collapse
Affiliation(s)
- Ryohei Eguchi
- Graduate School of Science and Technology & NAIST Data Science Center, Nara Institute of Science and Technology, Nara, Japan
| | - Mohammand Bozlul Karim
- Graduate School of Science and Technology & NAIST Data Science Center, Nara Institute of Science and Technology, Nara, Japan
| | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada.,George and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Canada.,Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Canada
| | - Tetsuo Sato
- Graduate School of Science and Technology & NAIST Data Science Center, Nara Institute of Science and Technology, Nara, Japan.,Department of Radiological Technology, Gunma Prefectural College of Health Sciences, Gunma, Japan
| | - Naoaki Ono
- Graduate School of Science and Technology & NAIST Data Science Center, Nara Institute of Science and Technology, Nara, Japan
| | - Shigehiko Kanaya
- Graduate School of Science and Technology & NAIST Data Science Center, Nara Institute of Science and Technology, Nara, Japan
| | - Md Altaf-Ul-Amin
- Graduate School of Science and Technology & NAIST Data Science Center, Nara Institute of Science and Technology, Nara, Japan.
| |
Collapse
|
43
|
Yoshimura A, Ito M, Chikuma S, Akanuma T, Nakatsukasa H. Negative Regulation of Cytokine Signaling in Immunity. Cold Spring Harb Perspect Biol 2018; 10:a028571. [PMID: 28716890 PMCID: PMC6028070 DOI: 10.1101/cshperspect.a028571] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokines are key modulators of immunity. Most cytokines use the Janus kinase and signal transducers and activators of transcription (JAK-STAT) pathway to promote gene transcriptional regulation, but their signals must be attenuated by multiple mechanisms. These include the suppressors of cytokine signaling (SOCS) family of proteins, which represent a main negative regulation mechanism for the JAK-STAT pathway. Cytokine-inducible Src homology 2 (SH2)-containing protein (CIS), SOCS1, and SOCS3 proteins regulate cytokine signals that control the polarization of CD4+ T cells and the maturation of CD8+ T cells. SOCS proteins also regulate innate immune cells and are involved in tumorigenesis. This review summarizes recent progress on CIS, SOCS1, and SOCS3 in T cells and tumor immunity.
Collapse
Affiliation(s)
- Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Minako Ito
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takashi Akanuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroko Nakatsukasa
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
44
|
Seamons A, Treuting PM, Meeker S, Hsu C, Paik J, Brabb T, Escobar SS, Alexander JS, Ericsson AC, Smith JG, Maggio-Price L. Obstructive Lymphangitis Precedes Colitis in Murine Norovirus-Infected Stat1-Deficient Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1536-1554. [PMID: 29753791 PMCID: PMC6109697 DOI: 10.1016/j.ajpath.2018.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 12/16/2022]
Abstract
Murine norovirus (MNV) is an RNA virus that can prove lethal in mice with impaired innate immunity. We found that MNV-4 infection of Stat1-/- mice was not lethal, but produced a 100% penetrant, previously undescribed lymphatic phenotype characterized by chronic-active lymphangitis with hepatitis, splenitis, and chronic cecal and colonic inflammation. Lesion pathogenesis progressed from early ileal enteritis and regional dilated lymphatics to lymphangitis, granulomatous changes in the liver and spleen, and, ultimately, typhlocolitis. Lesion development was neither affected by antibiotics nor reproduced by infection with another enteric RNA virus, rotavirus. MNV-4 infection in Stat1-/- mice decreased expression of vascular endothelial growth factor (Vegf) receptor 3, Vegf-c, and Vegf-d and increased interferon (Ifn)-γ, tumor necrosis factor-α, and inducible nitric oxide synthase. However, anti-IFN-γ and anti-tumor necrosis factor-α antibody treatment did not attenuate the histologic lesions. Studies in Ifnαβγr-/- mice suggested that canonical signaling via interferon receptors did not cause MNV-4-induced disease. Infected Stat1-/- mice had increased STAT3 phosphorylation and expressed many STAT3-regulated genes, consistent with our findings of increased myeloid cell subsets and serum granulocyte colony-stimulating factor, which are also associated with increased STAT3 activity. In conclusion, in Stat1-/- mice, MNV-4 induces lymphatic lesions similar to those seen in Crohn disease as well as hepatitis, splenitis, and typhlocolitis. MNV-4-infected Stat1-/- mice may be a useful model to study mechanistic associations between viral infections, lymphatic dysfunction, and intestinal inflammation in a genetically susceptible host.
Collapse
Affiliation(s)
- Audrey Seamons
- Department of Comparative Medicine, University of Washington, Seattle, Washington.
| | - Piper M Treuting
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Stacey Meeker
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Charlie Hsu
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Jisun Paik
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Thea Brabb
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Sabine S Escobar
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Jonathan S Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University, Shreveport, Louisiana
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Jason G Smith
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Lillian Maggio-Price
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
45
|
Crnčec I, Modak M, Gordziel C, Svinka J, Scharf I, Moritsch S, Pathria P, Schlederer M, Kenner L, Timelthaler G, Müller M, Strobl B, Casanova E, Bayer E, Mohr T, Stöckl J, Friedrich K, Eferl R. STAT1 is a sex-specific tumor suppressor in colitis-associated colorectal cancer. Mol Oncol 2018; 12:514-528. [PMID: 29419930 PMCID: PMC5891040 DOI: 10.1002/1878-0261.12178] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/11/2022] Open
Abstract
The interferon-inducible transcription factor STAT1 is a tumor suppressor in various malignancies. We investigated sex-specific STAT1 functions in colitis and colitis-associated colorectal cancer (CRC) using mice with specific STAT1 deletion in intestinal epithelial cells (STAT1∆IEC ). Male but not female STAT1∆IEC mice were more resistant to DSS-induced colitis than sex-matched STAT1flox/flox controls and displayed reduced intraepithelial infiltration of CD8+ TCRαβ+ granzyme B+ T cells. Moreover, DSS treatment failed to induce expression of T-cell-attracting chemokines in intestinal epithelial cells of male but not of female STAT1∆IEC mice. Application of the AOM-DSS protocol for induction of colitis-associated CRC resulted in increased intestinal tumor load in male but not in female STAT1∆IEC mice. A sex-specific stratification of human CRC patients corroborated the data obtained in mice and revealed that reduced tumor cell-intrinsic nuclear STAT1 protein expression is a poor prognostic factor in men but not in women. These data demonstrate that epithelial STAT1 is a male-specific tumor suppressor in CRC of mice and humans.
Collapse
Affiliation(s)
- Ilija Crnčec
- Institute of Cancer ResearchMedical University Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Madhura Modak
- Institute of ImmunologyMedical University ViennaAustria
| | | | - Jasmin Svinka
- Institute of Cancer ResearchMedical University Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Irene Scharf
- Institute of Cancer ResearchMedical University Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Stefan Moritsch
- Institute of Cancer ResearchMedical University Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Paulina Pathria
- Institute of Cancer ResearchMedical University Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Michaela Schlederer
- Ludwig Boltzmann Institute for Cancer Research LBICRViennaAustria
- Department of Experimental Pathology and Laboratory Animal PathologyClinical Institute of PathologyMedical University ViennaAustria
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research LBICRViennaAustria
- Department of Experimental Pathology and Laboratory Animal PathologyClinical Institute of PathologyMedical University ViennaAustria
- Unit of Laboratory Animal PathologyUniversity of Veterinary Medicine ViennaAustria
| | - Gerald Timelthaler
- Institute of Cancer ResearchMedical University Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics and Biomodels AustriaUniversity of Veterinary Medicine ViennaAustria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics and Biomodels AustriaUniversity of Veterinary Medicine ViennaAustria
| | - Emilio Casanova
- Ludwig Boltzmann Institute for Cancer Research LBICRViennaAustria
- Department of PhysiologyCenter of Physiology and PharmacologyMedical University ViennaAustria
| | - Editha Bayer
- Institute of Cancer ResearchMedical University Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Thomas Mohr
- Institute of Cancer ResearchMedical University Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | | | | | - Robert Eferl
- Institute of Cancer ResearchMedical University Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| |
Collapse
|
46
|
Wang QS, Shen SQ, Sun HW, Xing ZX, Yang HL. Interferon-gamma induces autophagy-associated apoptosis through induction of cPLA2-dependent mitochondrial ROS generation in colorectal cancer cells. Biochem Biophys Res Commun 2018; 498:1058-1065. [PMID: 29551681 DOI: 10.1016/j.bbrc.2018.03.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is the second most commonly diagnosed cancer in females and the third in males. In this work, we aim to investigate the possible anti-cancer effects of interferon-gamma (IFN-γ) in CRC cells. We observed that IFN-γ induced mitochondria-derived reactive oxygen species (ROS) production in a time-dependent manner in SW480 and HCT116 cell lines. The IFN-γ-induced mitochondrial ROS generation was dependent on the activation of cytosolic phospholipase A2 (cPLA2). In addition, a mitochondria-targeted antioxidant SS31 and/or cPLA2 inhibitor AACOCF3 abolished the IFN-γ-induced ROS production and subsequent autophagy and apoptosis. Moreover, suppression of autophagy by CQ was able to reduce IFN-γ-induced cell apoptosis. Beclin-1 gene silencing resulted in caspase-3 inactivation, decreased Bax/Bcl-2 ratio and less population of apoptotic cells. Collectively, our results suggested that IFN-γ induces autophagy-associated apoptosis in CRC cells via inducing cPLA2-dependent mitochondrial ROS production.
Collapse
Affiliation(s)
- Qiu-Shuang Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, Hubei, 430060, PR China
| | - Shi-Qiang Shen
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, Hubei, 430060, PR China.
| | - Hua-Wen Sun
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, Hubei, 430060, PR China
| | - Zhi-Xiang Xing
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, Hubei, 430060, PR China
| | - Hou-Lai Yang
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, Hubei, 430060, PR China
| |
Collapse
|
47
|
Aqbi HF, Wallace M, Sappal S, Payne KK, Manjili MH. IFN-γ orchestrates tumor elimination, tumor dormancy, tumor escape, and progression. J Leukoc Biol 2018; 103:10.1002/JLB.5MIR0917-351R. [PMID: 29469956 PMCID: PMC6157004 DOI: 10.1002/jlb.5mir0917-351r] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 12/10/2017] [Accepted: 01/20/2018] [Indexed: 12/11/2022] Open
Abstract
Tumor immunoediting consisting of three phases of elimination, equilibrium or dormancy, and escape has been supported by preclinical and clinical data. A comprehensive understanding of the molecular mechanisms by which antitumor immune responses regulate these three phases are important for developing highly tailored immunotherapeutics that can control cancer. To this end, IFN-γ produced by Th1 cells, cytotoxic T cells, NK cells, and NKT cells is a pleiotropic cytokine that is involved in all three phases of tumor immunoediting, as well as during inflammation-mediated tumorigenesis processes. This essay presents a review of literature and suggests that overcoming tumor escape is feasible by driving tumor cells into a state of quiescent but not indolent dormancy in order for IFN-γ-producing tumor-specific T cells to prevent tumor relapse.
Collapse
Affiliation(s)
- Hussein F. Aqbi
- Department of Microbiology & Immunology, University School of Medicine, Richmond, VA 23298 USA
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Matthew Wallace
- Department of Microbiology & Immunology, University School of Medicine, Richmond, VA 23298 USA
| | - Samay Sappal
- Department of Microbiology & Immunology, University School of Medicine, Richmond, VA 23298 USA
| | - Kyle K Payne
- Translational Tumor Immunology Program, The Wistar Institute, Philadelphia, PA 19104 USA
| | - Masoud H Manjili
- Department of Microbiology & Immunology, University School of Medicine, Richmond, VA 23298 USA
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| |
Collapse
|
48
|
Shu XS, Zhao Y, Sun Y, Zhong L, Cheng Y, Zhang Y, Ning K, Tao Q, Wang Y, Ying Y. The epigenetic modifier PBRM1 restricts the basal activity of the innate immune system by repressing retinoic acid-inducible gene-I-like receptor signalling and is a potential prognostic biomarker for colon cancer. J Pathol 2018; 244:36-48. [PMID: 28940253 DOI: 10.1002/path.4986] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/02/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022]
Abstract
It has long been known that patients suffering from inflammatory bowel disease (IBD) have an increased risk of developing colorectal cancer (CRC). The innate immune system of host cells provides a first-line defence against pathogenic infection, whereas an uncontrolled inflammatory response under homeostatic conditions usually leads to pathological consequences, as exemplified by the chronic inflammation of IBD. The key molecules and pathways keeping innate immunity in check are still poorly defined. Here, we report that the chromatin remodeller polybromo-1 (PBRM1) is a repressor of innate immune signalling mediated by retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs). Knockdown of PBRM1 in colon cancer cells increased the expression of two receptor genes (RIG-I and MDA5) and upregulated interferon (IFN)-related and inflammation-related gene signatures. The innate immune signal stimulated by a double-stranded RNA viral mimic was exaggerated by PBRM1 suppression. PBRM1 cooperated with polycomb protein EZH2 to directly bind the cis-regulatory elements of RIG-I and MDA5, thereby suppressing their transcription. Moreover, upregulation of RIG-I and MDA5 is required for IFN response activation induced by PBRM1 silencing. TRIM25, a protein stimulated by the RLR pathway and IFN production, physically interacted with PBRM1 and induced PBRM1 protein destabilization by promoting its ubiquitination. These findings reveal a PBRM1-RLR regulatory circuit that can keep innate immune activity at a minimal level in resting cells, and also ensure a robust inflammatory response in the case of pathogen invasion. PBRM1 was found to be downregulated in primary tissues from patients with CRC or IBD, and its expression correlated negatively with that of RLR genes and interferon-stimulated genes in CRC samples. Lower PBRM1 expression was associated with advanced pathological grade and poorer survival of CRC patients, indicating that PBRM1 could serve as a potential prognostic biomarker for CRC. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xing-Sheng Shu
- School of Medicine, Health Science Centre, Shenzhen University, Shenzhen, PR China
- Institute of Molecular Medicine, Shenzhen University, Shenzhen, PR China
| | - Yingying Zhao
- School of Medicine, Health Science Centre, Shenzhen University, Shenzhen, PR China
| | - Yanmei Sun
- School of Medicine, Health Science Centre, Shenzhen University, Shenzhen, PR China
| | - Lan Zhong
- Department of Gynaecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, PR China
| | - Yingduan Cheng
- Department of Urology, The Second Affiliated Hospital of Jinan University, Shenzhen People's Hospital, Shenzhen, PR China
| | - Yixiang Zhang
- Department of Urology, The Second Affiliated Hospital of Jinan University, Shenzhen People's Hospital, Shenzhen, PR China
| | - Kaile Ning
- School of Medicine, Health Science Centre, Shenzhen University, Shenzhen, PR China
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Yejun Wang
- School of Medicine, Health Science Centre, Shenzhen University, Shenzhen, PR China
| | - Ying Ying
- School of Medicine, Health Science Centre, Shenzhen University, Shenzhen, PR China
| |
Collapse
|
49
|
Mojic M, Takeda K, Hayakawa Y. The Dark Side of IFN-γ: Its Role in Promoting Cancer Immunoevasion. Int J Mol Sci 2017; 19:E89. [PMID: 29283429 PMCID: PMC5796039 DOI: 10.3390/ijms19010089] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/26/2017] [Accepted: 12/26/2017] [Indexed: 02/07/2023] Open
Abstract
Interferon-γ (IFN-γ) is a pleiotropic cytokine that has long been praised as an important effector molecule of anti-tumor immunity, capable of suppressing tumor growth through various mechanisms. On the contrary to such a bright side of IFN-γ, it has also been involved in promoting an outgrowth of tumor cells with immunoevasive phenotype suggesting an existence of a dark "tumor-promoting" side effect of IFN-γ. In this review, we will summarize this multi-functional role of IFN-γ in tumor context, how it promotes changes in tumor phenotype towards increased fitness for growth in immunocompetent host. Furthermore, we summarize how IFN-γ is involved in homeostatic or cancer-triggered mechanisms to establish an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Marija Mojic
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan.
| | - Kazuyoshi Takeda
- Division of Cell Biology, Biomedical Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan.
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan.
| |
Collapse
|
50
|
Naudin C, Chevalier C, Roche S. The role of small adaptor proteins in the control of oncogenic signalingr driven by tyrosine kinases in human cancer. Oncotarget 2017; 7:11033-55. [PMID: 26788993 PMCID: PMC4905456 DOI: 10.18632/oncotarget.6929] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/01/2016] [Indexed: 12/15/2022] Open
Abstract
Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology.
Collapse
Affiliation(s)
- Cécile Naudin
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Clément Chevalier
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: SFR Biosit (UMS CNRS 3480/US INSERM 018), MRic Photonics Platform, University Rennes, Rennes, France
| | - Serge Roche
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Equipe Labellisée LIGUE 2014, Ligue Contre le Cancer, Paris, France
| |
Collapse
|