1
|
Wu F, Li H, Li W, Zhang L, An Q, Sun J, Zhang Q, Sun Y, Xu L, Yu J, Diao X, Li J, Meng L, Xu S. Design, Synthesis, and biological evaluation of 7H-Pyrrolo[2,3-d]pyrimidines as potent HPK1 kinase inhibitors. Bioorg Med Chem 2025; 119:118079. [PMID: 39874881 DOI: 10.1016/j.bmc.2025.118079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) has emerged as a promising target for cancer immunotherapy due to its critical role as a negative regulator of T cell receptor (TCR) signaling. Despite this potential, no HPK1 inhibitors have been approved for cancer treatment, underscoring the need for structurally novel inhibitors. Herein, we describe the design, synthesis and biological evaluation of a series of potent HPK1 inhibitors based on our previously identified hit 9. Among them, compound 24 demonstrated strong HPK1 inhibition (IC50 of 10.1 nM) and effectively suppressed phosphorylation of the downstream protein SLP76. Notably, compound 24 exhibited enhanced potency in promoting IL-2 secretion in Jurkat T cells, reduced cellular toxicity, and improved liver microsomal stability compared to hit 9. Overall, this study provides a promising lead compound for further optimization as a candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Feifei Wu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai 201203 China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiyu Li
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqiang Li
- Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laishun Zhang
- Zunyi Medical University-Zhuhai Campus, Zhuhai, China
| | - Qi An
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Qixia District, Nanjing 210023 China
| | - Jiaqi Sun
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Qixia District, Nanjing 210023 China
| | - Yaoliang Sun
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai 201203 China
| | - Lei Xu
- Zhongshan Institute for Drug Discovery, The Institutes of Drug Discovery and Development, CAS, Zhongshan 528400 China
| | - Jinghua Yu
- Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China
| | - Xingxing Diao
- Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Li
- Zunyi Medical University-Zhuhai Campus, Zhuhai, China; Zhongshan Institute for Drug Discovery, The Institutes of Drug Discovery and Development, CAS, Zhongshan 528400 China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024 China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linghua Meng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shilin Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai 201203 China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Qixia District, Nanjing 210023 China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024 China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Wang Q, Zhu X, Li J, Xu S, Wang A, Zhang X, Wang X, Cai X, Xing H, Liu Y, Liu X, Wang Z, Wang L, Yuan X. HPK1 kinase inhibitor: a sufficient approach to target HPK1 to modulate T cell activation in cancer immunotherapy compared with degraders. Front Immunol 2025; 16:1449106. [PMID: 39981246 PMCID: PMC11839646 DOI: 10.3389/fimmu.2025.1449106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
Background Hematopoietic progenitor kinase 1 (HPK1) is a member of the mitogen-activated protein kinase kinase kinase kinase (MAP4K) family. It has been reported that HPK1 negatively regulates the activation of T cells. Several compounds have been developed and tested in clinical trials to target HPK1 for cancer immunotherapy. However, whether kinase inhibition is sufficient to eliminate the immunosuppressive function of HPK1, particularly in T cells, remains elusive. Methods In this study, genetic tools were used to edit the human T lymphocyte cell line Jurkat. The activation of HPK1-null cells, HPK1-wildtype cells and HPK1-kinase-inactive cells was compared through ectopic expression of HPK1 in HPK1 knockout cells or direct HPK1 mutation. Besides genetic validation, a series of compounds that selectively target HPK1 (with or without HPK1-degradation activity) were used to assess the potential scaffold function of HPK1 in regulation of human primary T cell activation and cytotoxic activity. Results and conclusion Augmented T-cell receptor (TCR)-induced activation in HPK1-knockout Jurkat cells was inhibited by complementation of wildtype, but not kinase-dead HPK1. HPK1 K46E-knockin and K46*-knockin Jurkat cells showed comparable levels of enhanced TCR-induced activation compared with control HPK1-wildtype Jurkat cells. Similarly, HPK1 kinase inhibitor (Compound 1) and cereblon-based (CRBN-based) HPK1 degrader (Compound 2) elicited similar degrees of maximum TCR-induced activation in primary human peripheral blood T cells. In summary, the results of this study suggested that HPK1 kinase inhibitor may be sufficient for HPK1 targeting in T cell mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Qin Wang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Xinyi Zhu
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Jing Li
- Department of Medicinal Chemistry, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Sanjia Xu
- Department of Medicinal Chemistry, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Ali Wang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Xinwen Zhang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Xingxing Wang
- Department of Medicinal Chemistry, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Xiaopeng Cai
- Department of Medicinal Chemistry, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Haimei Xing
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Ye Liu
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Xuesong Liu
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Zhiwei Wang
- Department of Medicinal Chemistry, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Lai Wang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
- Research & Clinical Development, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Xi Yuan
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| |
Collapse
|
3
|
Mowat J, Carretero R, Leder G, Aiguabella Font N, Neuhaus R, Berndt S, Günther J, Friberg A, Schäfer M, Briem H, Raschke M, Miyatake Ondozabal H, Buchmann B, Boemer U, Kreft B, Hartung IV, Offringa R. Discovery of BAY-405: An Azaindole-Based MAP4K1 Inhibitor for the Enhancement of T-Cell Immunity against Cancer. J Med Chem 2024; 67:17429-17453. [PMID: 39331123 PMCID: PMC11472321 DOI: 10.1021/acs.jmedchem.4c01325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1) is a serine/threonine kinase that acts as an immune checkpoint downstream of T-cell receptor stimulation. MAP4K1 activity is enhanced by prostaglandin E2 (PGE2) and transforming growth factor beta (TGFβ), immune modulators commonly present in the tumor microenvironment. Therefore, its pharmacological inhibition is an attractive immuno-oncology concept for inducing therapeutic T-cell responses in cancer patients. Here, we describe the systematic optimization of azaindole-based lead compound 1, resulting in the discovery of potent and selective MAP4K1 inhibitor 38 (BAY-405) that displays nanomolar potency in biochemical and cellular assays as well as in vivo exposure after oral dosing. BAY-405 enhances T-cell immunity and overcomes the suppressive effect of PGE2 and TGFβ. Treatment of tumor-bearing mice shows T-cell-dependent antitumor efficacy. MAP4K1 inhibition in conjunction with PD-L1 blockade results in a superior antitumor impact, illustrating the complementarity of the single agent treatments.
Collapse
Affiliation(s)
| | - Rafael Carretero
- Bayer
AG, Pharmaceutical R&D, 13342 Berlin, Germany
- DKFZ-Bayer
Joint Immunotherapeutics Laboratory, German Cancer Research Center, Heidelberg 69120, Germany
| | | | | | - Roland Neuhaus
- DKFZ-Bayer
Joint Immunotherapeutics Laboratory, German Cancer Research Center, Heidelberg 69120, Germany
| | | | | | | | | | - Hans Briem
- Bayer
AG, Pharmaceutical R&D, 13342 Berlin, Germany
| | | | | | | | - Ulf Boemer
- Bayer
AG, Pharmaceutical R&D, 13342 Berlin, Germany
| | | | | | - Rienk Offringa
- DKFZ-Bayer
Joint Immunotherapeutics Laboratory, German Cancer Research Center, Heidelberg 69120, Germany
- Division
of Molecular Oncology of Gastrointestinal Tumors, Department of Surgery, University Hospital Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
4
|
Xu J, Li Y, Chen X, Yang J, Xia H, Huang W, Zeng S. Opportunities and challenges for targeting HPK1 in cancer immunotherapy. Bioorg Chem 2024; 153:107866. [PMID: 39369461 DOI: 10.1016/j.bioorg.2024.107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Hematopoietic Progenitor Kinase 1 (HPK1, also known as MAP4K1) is a hematopoiesis-specific serine/threonine kinase that belongs to the MAP4K family of Ste20-related protein kinases. HPK1 has been identified as a negative regulator of T-cell receptor signaling. Recent studies have indicated that the inhibition or knockout of HPK1 kinase function can effectively alleviate T cell exhaustion, enhance T cell functionality, and improve the therapeutic efficacy of tumor immunotherapy. In recent years, small molecule chemical drugs targeting HPK1 have made significant progress and have become a hot topic in the research and development of tumor immunotherapy drugs. However, the advancement of small molecule drugs that target HPK1 is hindered by various challenges, including the limited selectivity, insufficient immune stimulation, and the ambiguity surrounding role of non-kinase scaffold functions of HPK1 in tumor immune responses. This review briefly describes the biological structure of HPK1 and its related signaling pathways in tumor immunity, systematically discusses the latest research progress in small molecule chemical drugs targeting HPK1. Finally, we summarize and prospect the opportunities and challenges in the drug development of small molecule chemical drugs targeting HPK1 in tumor immunity.
Collapse
Affiliation(s)
- Jiamei Xu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Yingzhou Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Xinyi Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Junyi Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Heye Xia
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Wenhai Huang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| | - Shenxin Zeng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; School of Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
5
|
Chen L, Zhang B, Zhou P, Duan Y, He C, Zhong W, Wang T, Xu S, Chen J, Yao H, Xu J. Design, synthesis, and biological evaluation of novel HPK1 inhibitors possessing 3-cyano-quinoline moiety. Bioorg Chem 2024; 153:107814. [PMID: 39299176 DOI: 10.1016/j.bioorg.2024.107814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a negative regulator of T cell receptor signaling, plays a crucial role in multiple cellular immune responses. Emerging researches have demonstrated that inhibiting HPK1 kinase function enhances T cells' ability to recognize tumor antigens and boosts anti-tumor immune responses. As a result, HPK1 has become a promising target for tumor immunotherapy. Herein, we report the design, synthesis, and biological evaluation of a series of novel HPK1 inhibitors featuring a 3-cyano-quinoline scaffold. Among these, compound 3a was identified as the most potent HPK1 inhibitor (HPK1 IC50 = 48 nM). It effectively inhibited SLP76 phosphorylation, enhanced IL-2 cytokine secretion, and reversed PGE2-induced immunosuppression in Jurkat cells. In addition, compound 3a exhibited favorable metabolic stability in mouse liver microsomes and plasma. Overall, this work provides a structurally novel lead compound for the development of HPK1 inhibitors.
Collapse
Affiliation(s)
- Long Chen
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Baixue Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Pijun Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yiping Duan
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chen He
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenyi Zhong
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tianyi Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Hong Yao
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Jinyi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
6
|
Choi WS, Kwon H, Yi E, Lee H, Kim JM, Park HJ, Choi EJ, Choi ME, Sung YH, Won CH, Sung CO, Kim HS. HPK1 Dysregulation-Associated NK Cell Dysfunction and Defective Expansion Promotes Metastatic Melanoma Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400920. [PMID: 38828677 PMCID: PMC11304315 DOI: 10.1002/advs.202400920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/10/2024] [Indexed: 06/05/2024]
Abstract
Distant metastasis, the leading cause of cancer death, is efficiently kept in check by immune surveillance. Studies have uncovered peripheral natural killer (NK) cells as key antimetastatic effectors and their dysregulation during metastasis. However, the molecular mechanism governing NK cell dysfunction links to metastasis remains elusive. Herein, MAP4K1 encoding HPK1 is aberrantly overexpressed in dysfunctional NK cells in the periphery and the metastatic site. Conditional HPK1 overexpression in NK cells suffices to exacerbate melanoma lung metastasis but not primary tumor growth. Conversely, MAP4K1-deficient mice are resistant to metastasis and further protected by combined immune-checkpoint inhibitors. Mechanistically, HPK1 restrains NK cell cytotoxicity and expansion via activating receptors. Likewise, HPK1 limits human NK cell activation and associates with melanoma NK cell dysfunction couples to TGF-β1 and patient response to immune checkpoint therapy. Thus, HPK1 is an intracellular checkpoint controlling NK-target cell responses, which is dysregulated and hijacked by tumors during metastatic progression.
Collapse
Affiliation(s)
- Woo Seon Choi
- Department of MicrobiologyStem Cell Immunomodulation Research CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Hyung‐Joon Kwon
- Department of MicrobiologyStem Cell Immunomodulation Research CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Eunbi Yi
- Department of MicrobiologyStem Cell Immunomodulation Research CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Haeun Lee
- Department of MicrobiologyStem Cell Immunomodulation Research CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Jung Min Kim
- Department of MicrobiologyStem Cell Immunomodulation Research CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Hyo Jin Park
- Department of MicrobiologyStem Cell Immunomodulation Research CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Eun Ji Choi
- Department of DermatologyAsan Institute for Life SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Myoung Eun Choi
- Department of DermatologyAsan Institute for Life SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Young Hoon Sung
- Department of Cell and Genetic EngineeringAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Chong Hyun Won
- Department of DermatologyAsan Institute for Life SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Chang Ohk Sung
- Department of PathologyAsan Medical Institute of Convergence Science and TechnologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Hun Sik Kim
- Department of MicrobiologyStem Cell Immunomodulation Research CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| |
Collapse
|
7
|
Chitre AS, Wu P, Walters BT, Wang X, Bouyssou A, Du X, Lehoux I, Fong R, Arata A, Chan J, Wang D, Franke Y, Grogan JL, Mellman I, Comps-Agrar L, Wang W. HPK1 citron homology domain regulates phosphorylation of SLP76 and modulates kinase domain interaction dynamics. Nat Commun 2024; 15:3725. [PMID: 38697971 PMCID: PMC11066036 DOI: 10.1038/s41467-024-48014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T-cell receptor signaling and as such is an attractive target for cancer immunotherapy. Although the role of the HPK1 kinase domain (KD) has been extensively characterized, the function of its citron homology domain (CHD) remains elusive. Through a combination of structural, biochemical, and mechanistic studies, we characterize the structure-function of CHD in relationship to KD. Crystallography and hydrogen-deuterium exchange mass spectrometry reveal that CHD adopts a seven-bladed β-propellor fold that binds to KD. Mutagenesis associated with binding and functional studies show a direct correlation between domain-domain interaction and negative regulation of kinase activity. We further demonstrate that the CHD provides stability to HPK1 protein in cells as well as contributes to the docking of its substrate SLP76. Altogether, this study highlights the importance of the CHD in the direct and indirect regulation of HPK1 function.
Collapse
Affiliation(s)
| | - Ping Wu
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Xiangdan Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Xiangnan Du
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Isabelle Lehoux
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Rina Fong
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Alisa Arata
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Joyce Chan
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Die Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yvonne Franke
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jane L Grogan
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
- GraphiteBio, Incl., 1400 Sierra Point Parkway, Brisbane, CA, 94005, USA
| | - Ira Mellman
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| | | | - Weiru Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
- Frontier Medicines, 151 Oyster Point Boulevard, South San Francisco, CA, 94080, USA.
| |
Collapse
|
8
|
Chen H, Guan X, He C, Lu T, Lin X, Liao X. Current strategies for targeting HPK1 in cancer and the barriers to preclinical progress. Expert Opin Ther Targets 2024; 28:237-250. [PMID: 38650383 DOI: 10.1080/14728222.2024.2344697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Hematopoietic progenitor kinase 1 (HPK1), a 97-kDa serine/threonine Ste20-related protein kinase, functions as an intracellular negative regulator, primarily in hematopoietic lineage cells, where it regulates T cells, B cells, dendritic cells, and other immune cells. Loss of HPK1 kinase activity results in exacerbated cytokine secretion, enhanced T cell signaling, improved viral clearance, and thus increased restraint of tumor growth. These findings highlight HPK1 as a promising target for immuno-oncology treatments, culminating in the advancement of candidate compounds targeting HPK1 to clinical trials by several biotech enterprises. AREAS COVERED Through searching PubMed, Espacenet-patent search, and clinicaltrials.gov, this review provides a comprehensive analysis of HPK1, encompassing its structure and roles in various downstream signaling pathways, the consequences of constitutive activation of HPK1, and potential therapeutic strategies to treat HPK1-driven malignancies. Moreover, the review outlines the patents issued for small molecule inhibitors and clinical investigations of HPK1. EXPERT OPINION To enhance the success of tumor immunotherapy in clinical trials, it is important to develop protein degraders, allosteric inhibitors, and antibody-drug conjugates based on the crystal structure of HPK1, and to explore combination therapy approaches. Although several challenges remain, the development of HPK1 inhibitors display promising in preclinical and clinical studies.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Xiangna Guan
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Chi He
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Tingting Lu
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China
| | - Xingyu Lin
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China
| | - Xuebin Liao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| |
Collapse
|
9
|
Zeng S, Jin Y, Xia H, Shang Y, Li Y, Wang Z, Huang W. Discovery of highly efficient CRBN-recruiting HPK1-PROTAC as a potential chemical tool for investigation of scaffolding roles in TCR signaling. Bioorg Chem 2024; 143:107016. [PMID: 38086239 DOI: 10.1016/j.bioorg.2023.107016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/24/2024]
Abstract
Hematopoietic progenitor kinase 1 (HPK1, MAP4K1) is a promising target for immune-oncology therapy. It has been recently demonstrated that loss of HPK1 kinase activity can enhance T cell receptor (TCR) signaling. However, many essential functions mediated by the HPK1 scaffolding role are still beyond the reach of any kinase inhibitor. Proteolysis targeting chimera (PROTAC) has emerged as a promising strategy for pathogenic proteins degradation with the characteristics of rapid, reversible, and low-cost versus RNA interference or DNA knock-out technology. Herein we first disclosed the design, synthesis, and evaluation of a series of thalidomide-based PROTAC molecules and identified B1 as a highly efficient HPK1 degrader with DC50 value of 1.8 nM. Further mechanism investigation demonstrated that compound B1 inhibits phosphorylation of the SLP76 protein with IC50 value of 496.1 nM, and confirmed that B1 is a bona fide HPK1-PROTAC degrader. Thus, this study provides a basis for HPK1 degraders development and the candidate could be used as a potential chemical tool for further investigation of the kinase-independent signaling of HPK1 in TCR.
Collapse
Affiliation(s)
- Shenxin Zeng
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, PR China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China.
| | - Yuyuan Jin
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, PR China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China
| | - Heye Xia
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, PR China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China
| | - Yanwei Shang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, PR China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China
| | - Yingzhou Li
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, PR China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China
| | - Zunyuan Wang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, PR China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China
| | - Wenhai Huang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, PR China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China.
| |
Collapse
|
10
|
Zhang Y, Yan M, Yu Y, Wang J, Jiao Y, Zheng M, Zhang S. 14-3-3ε: a protein with complex physiology function but promising therapeutic potential in cancer. Cell Commun Signal 2024; 22:72. [PMID: 38279176 PMCID: PMC10811864 DOI: 10.1186/s12964-023-01420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/02/2023] [Indexed: 01/28/2024] Open
Abstract
Over the past decade, the role of the 14-3-3 protein has received increasing interest. Seven subtypes of 14-3-3 proteins exhibit high homology; however, each subtype maintains its specificity. The 14-3-3ε protein is involved in various physiological processes, including signal transduction, cell proliferation, apoptosis, autophagy, cell cycle regulation, repolarization of cardiac action, cardiac development, intracellular electrolyte homeostasis, neurodevelopment, and innate immunity. It also plays a significant role in the development and progression of various diseases, such as cardiovascular diseases, inflammatory diseases, neurodegenerative disorders, and cancer. These immense and various involvements of 14-3-3ε in diverse processes makes it a promising target for drug development. Although extensive research has been conducted on 14-3-3 dimers, studies on 14-3-3 monomers are limited. This review aimed to provide an overview of recent reports on the molecular mechanisms involved in the regulation of binding partners by 14-3-3ε, focusing on issues that could help advance the frontiers of this field. Video Abstract.
Collapse
Affiliation(s)
- Yue Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Man Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yongjun Yu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Jiangping Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuqi Jiao
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300071, People's Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
11
|
Sandner L, Alteneder M, Rica R, Woller B, Sala E, Frey T, Tosevska A, Zhu C, Madern M, Khan M, Hoffmann P, Schebesta A, Taniuchi I, Bonelli M, Schmetterer K, Iannacone M, Kuka M, Ellmeier W, Sakaguchi S, Herbst R, Boucheron N. The guanine nucleotide exchange factor Rin-like controls Tfh cell differentiation via CD28 signaling. J Exp Med 2023; 220:e20221466. [PMID: 37703004 PMCID: PMC10499045 DOI: 10.1084/jem.20221466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 06/07/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
T follicular helper (Tfh) cells are essential for the development of germinal center B cells and high-affinity antibody-producing B cells in humans and mice. Here, we identify the guanine nucleotide exchange factor (GEF) Rin-like (Rinl) as a negative regulator of Tfh generation. Loss of Rinl leads to an increase of Tfh in aging, upon in vivo immunization and acute LCMV Armstrong infection in mice, and in human CD4+ T cell in vitro cultures. Mechanistically, adoptive transfer experiments using WT and Rinl-KO naïve CD4+ T cells unraveled T cell-intrinsic GEF-dependent functions of Rinl. Further, Rinl regulates CD28 internalization and signaling, thereby shaping CD4+ T cell activation and differentiation. Thus, our results identify the GEF Rinl as a negative regulator of global Tfh differentiation in an immunological context and species-independent manner, and furthermore, connect Rinl with CD28 internalization and signaling pathways in CD4+ T cells, demonstrating for the first time the importance of endocytic processes for Tfh differentiation.
Collapse
Affiliation(s)
- Lisa Sandner
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marlis Alteneder
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ramona Rica
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Barbara Woller
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Eleonora Sala
- School of Medicine, Vita-Salute San Raffaele University and Division of Immunology, Transplantation, and Infectious Diseases, Istituto di Ricovero e Cura a Carettere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Tobias Frey
- Department of Laboratory Medicine, Klinisches Institut für Labormedizin (KILM), Anna Spiegel Research Building, Medical University of Vienna, Vienna, Austria
| | - Anela Tosevska
- Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Ci Zhu
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Moritz Madern
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Matarr Khan
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Pol Hoffmann
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alexandra Schebesta
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Michael Bonelli
- Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Klaus Schmetterer
- Department of Laboratory Medicine, Klinisches Institut für Labormedizin (KILM), Anna Spiegel Research Building, Medical University of Vienna, Vienna, Austria
| | - Matteo Iannacone
- School of Medicine, Vita-Salute San Raffaele University and Division of Immunology, Transplantation, and Infectious Diseases, Istituto di Ricovero e Cura a Carettere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Experimental Imaging Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | - Mirela Kuka
- School of Medicine, Vita-Salute San Raffaele University and Division of Immunology, Transplantation, and Infectious Diseases, Istituto di Ricovero e Cura a Carettere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ruth Herbst
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nicole Boucheron
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Schlicher L, Green LG, Romagnani A, Renner F. Small molecule inhibitors for cancer immunotherapy and associated biomarkers - the current status. Front Immunol 2023; 14:1297175. [PMID: 38022587 PMCID: PMC10644399 DOI: 10.3389/fimmu.2023.1297175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Following the success of cancer immunotherapy using large molecules against immune checkpoint inhibitors, the concept of using small molecules to interfere with intracellular negative regulators of anti-tumor immune responses has emerged in recent years. The main targets for small molecule drugs currently include enzymes of negative feedback loops in signaling pathways of immune cells and proteins that promote immunosuppressive signals within the tumor microenvironment. In the adaptive immune system, negative regulators of T cell receptor signaling (MAP4K1, DGKα/ζ, CBL-B, PTPN2, PTPN22, SHP1), co-receptor signaling (CBL-B) and cytokine signaling (PTPN2) have been preclinically validated as promising targets and initial clinical trials with small molecule inhibitors are underway. To enhance innate anti-tumor immune responses, inhibitory immunomodulation of cGAS/STING has been in the focus, and inhibitors of ENPP1 and TREX1 have reached the clinic. In addition, immunosuppressive signals via adenosine can be counteracted by CD39 and CD73 inhibition, while suppression via intratumoral immunosuppressive prostaglandin E can be targeted by EP2/EP4 antagonists. Here, we present the status of the most promising small molecule drug candidates for cancer immunotherapy, all residing relatively early in development, and the potential of relevant biomarkers.
Collapse
Affiliation(s)
- Lisa Schlicher
- Cancer Cell Targeted Therapy, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Luke G. Green
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Andrea Romagnani
- Cancer Cell Targeted Therapy, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Florian Renner
- Cancer Cell Targeted Therapy, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| |
Collapse
|
13
|
Laletin V, Bernard PL, Costa da Silva C, Guittard G, Nunes JA. Negative intracellular regulators of T-cell receptor (TCR) signaling as potential antitumor immunotherapy targets. J Immunother Cancer 2023; 11:e005845. [PMID: 37217244 PMCID: PMC10231026 DOI: 10.1136/jitc-2022-005845] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Immunotherapy strategies aim to mobilize immune defenses against tumor cells by targeting mainly T cells. Co-inhibitory receptors or immune checkpoints (ICPs) (such as PD-1 and CTLA4) can limit T cell receptor (TCR) signal propagation in T cells. Antibody-based blocking of immune checkpoints (immune checkpoint inhibitors, ICIs) enable escape from ICP inhibition of TCR signaling. ICI therapies have significantly impacted the prognosis and survival of patients with cancer. However, many patients remain refractory to these treatments. Thus, alternative approaches for cancer immunotherapy are needed. In addition to membrane-associated inhibitory molecules, a growing number of intracellular molecules may also serve to downregulate signaling cascades triggered by TCR engagement. These molecules are known as intracellular immune checkpoints (iICPs). Blocking the expression or the activity of these intracellular negative signaling molecules is a novel field of action to boost T cell-mediated antitumor responses. This area is rapidly expanding. Indeed, more than 30 different potential iICPs have been identified. Over the past 5 years, several phase I/II clinical trials targeting iICPs in T cells have been registered. In this study, we summarize recent preclinical and clinical data demonstrating that immunotherapies targeting T cell iICPs can mediate regression of solid tumors including (membrane associated) immune-checkpoint inhibitor refractory cancers. Finally, we discuss how these iICPs are targeted and controlled. Thereby, iICP inhibition is a promising strategy opening new avenues for future cancer immunotherapy treatments.
Collapse
Affiliation(s)
- Vladimir Laletin
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Pierre-Louis Bernard
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Cathy Costa da Silva
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Geoffrey Guittard
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Jacques A Nunes
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| |
Collapse
|
14
|
Gallego RA, Bernier L, Chen H, Cho-Schultz S, Chung L, Collins M, Del Bel M, Elleraas J, Costa Jones C, Cronin CN, Edwards M, Fang X, Fisher T, He M, Hoffman J, Huo R, Jalaie M, Johnson E, Johnson TW, Kania RS, Kraus M, Lafontaine J, Le P, Liu T, Maestre M, Matthews J, McTigue M, Miller N, Mu Q, Qin X, Ren S, Richardson P, Rohner A, Sach N, Shao L, Smith G, Su R, Sun B, Timofeevski S, Tran P, Wang S, Wang W, Zhou R, Zhu J, Nair SK. Design and Synthesis of Functionally Active 5-Amino-6-Aryl Pyrrolopyrimidine Inhibitors of Hematopoietic Progenitor Kinase 1. J Med Chem 2023; 66:4888-4909. [PMID: 36940470 DOI: 10.1021/acs.jmedchem.2c02038] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Immune activating agents represent a valuable class of therapeutics for the treatment of cancer. An area of active research is expanding the types of these therapeutics that are available to patients via targeting new biological mechanisms. Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of immune signaling and a target of high interest for the treatment of cancer. Herein, we present the discovery and optimization of novel amino-6-aryl pyrrolopyrimidine inhibitors of HPK1 starting from hits identified via virtual screening. Key components of this discovery effort were structure-based drug design aided by analyses of normalized B-factors and optimization of lipophilic efficiency.
Collapse
Affiliation(s)
- Rebecca A Gallego
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Louise Bernier
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Hui Chen
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Sujin Cho-Schultz
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Loanne Chung
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Michael Collins
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Matthew Del Bel
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Jeff Elleraas
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Cinthia Costa Jones
- Oncology Research Unit, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Ciaran N Cronin
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Martin Edwards
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Xu Fang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Timothy Fisher
- Oncology Research Unit, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Mingying He
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Jacqui Hoffman
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Ruiduan Huo
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Mehran Jalaie
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Eric Johnson
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Ted W Johnson
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Robert S Kania
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Manfred Kraus
- Oncology Research Unit, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Jennifer Lafontaine
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Phuong Le
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Tongnan Liu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Michael Maestre
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Jean Matthews
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Michele McTigue
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Nichol Miller
- Oncology Research Unit, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Qiming Mu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xulong Qin
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shijian Ren
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Paul Richardson
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Allison Rohner
- Oncology Research Unit, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Neal Sach
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Li Shao
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Graham Smith
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Ruirui Su
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Bin Sun
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Sergei Timofeevski
- Oncology Research Unit, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Phuong Tran
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Shuiwang Wang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Wei Wang
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Ru Zhou
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Jinjiang Zhu
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Sajiv K Nair
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| |
Collapse
|
15
|
Ge H, Tang C, Pan Y, Yao X. Theoretical Studies on Selectivity of HPK1/JAK1 Inhibitors by Molecular Dynamics Simulations and Free Energy Calculations. Int J Mol Sci 2023; 24:ijms24032649. [PMID: 36768974 PMCID: PMC9916865 DOI: 10.3390/ijms24032649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 02/01/2023] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T cell receptor, which has been regarded as a potential target for immunotherapy. Yu et al. observed the off-target effect of the high-throughput screening HPK1 kinase inhibitor hits on JAK1 kinase. The off-target effect is usually due to the lack of specificity of the drug, resulting in toxic side effects. Therefore, exploring the mechanisms to selectively inhibit HPK1 is critical for developing effective and safe inhibitors. In this study, two indazole compounds as HPK1 inhibitors with different selectivity towards JAK1 were used to investigate the selectivity mechanism using multiple computational methods, including conventional molecular dynamics simulations, binding free energy calculations and umbrella sampling simulations. The results indicate that the salt bridge between the inhibitor and residue Asp101 of HPK1 favors their selectivity towards HPK1 over JAK1. Information obtained from this study can be used to discover and design more potent and selective HPK1 inhibitors for immunotherapy.
Collapse
|
16
|
Lv J, Qin L, Zhao R, Wu D, Wu Z, Zheng D, Li S, Luo M, Wu Q, Long Y, Tang Z, Tang YL, Luo X, Yao Y, Yang LH, Li P. Disruption of CISH promotes the antitumor activity of human T cells and decreases PD-1 expression levels. Mol Ther Oncolytics 2022; 28:46-58. [PMID: 36654786 PMCID: PMC9827364 DOI: 10.1016/j.omto.2022.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor cells and the immunosuppressive tumor microenvironment suppress the antitumor activity of T cells through immune checkpoints, including the PD-L1/PD-1 axis. Cytokine-inducible SH2-containing protein (CISH), a member of the suppressor of cytokine signaling (SOCS) family, inhibits JAK-STAT and T cell receptor (TCR) signaling in T and natural killer (NK) cells. However, its role in the regulation of immune checkpoints in T cells remains unclear. In this study, we ablated CISH in T cells with CRISPR-Cas9 and found that the sensitivity of T cells to TCR and cytokine stimulation was increased. In addition, chimeric antigen receptor T cells with CISH deficiency exhibited longer survival and higher cytokine secretion and antitumor activity. Notably, PD-1 expression was decreased in activated CISH-deficient T cells in vitro and in vivo. The level of FBXO38, a ubiquitination-regulating protein that reduces PD-1 expression, was elevated in activated T cells after CISH ablation. Hence, this study reveals a mechanism by which CISH promotes PD-1 expression by suppressing the expression of FBXO38 and proposes a new strategy for augmenting the therapeutic effect of CAR-T cells by inhibiting CISH.
Collapse
Affiliation(s)
- Jiang Lv
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Qin
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ruocong Zhao
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR 999077, China
| | - Di Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhiping Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diwei Zheng
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Siyu Li
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Mintao Luo
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiting Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Youguo Long
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhaoyang Tang
- Guangdong Zhaotai InVivo Biomedicine Co., Ltd., Guangzhou 510700, China
| | - Yan-Lai Tang
- Department of Paediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xuequn Luo
- Department of Paediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yao Yao
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Li-Hua Yang
- Department of Paediatrics, Zhujiang Hospital, Southern China Medical University, Guangzhou, Guangdong 510280, China,Corresponding author Li-Hua Yang, Department of Paediatrics, Zhujiang Hospital, Southern China Medical University, Guangzhou, Guangdong 510280, China.
| | - Peng Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR 999077, China,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China,Corresponding author Peng Li, China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
17
|
Offringa R, Kötzner L, Huck B, Urbahns K. The expanding role for small molecules in immuno-oncology. Nat Rev Drug Discov 2022; 21:821-840. [PMID: 35982333 DOI: 10.1038/s41573-022-00538-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2022] [Indexed: 02/07/2023]
Abstract
The advent of immune checkpoint inhibition (ICI) using antibodies against PD1 and its ligand PDL1 has prompted substantial efforts to develop complementary drugs. Although many of these are antibodies directed against additional checkpoint proteins, there is an increasing interest in small-molecule immuno-oncology drugs that address intracellular pathways, some of which have recently entered clinical trials. In parallel, small molecules that target pro-tumorigenic pathways in cancer cells and the tumour microenvironment have been found to have immunostimulatory effects that synergize with the action of ICI antibodies, leading to the approval of an increasing number of regimens that combine such drugs. Combinations with small molecules targeting cancer metabolism, cytokine/chemokine and innate immune pathways, and T cell checkpoints are now under investigation. This Review discusses the recent milestones and hurdles encountered in this area of drug development, as well as our views on the best path forward.
Collapse
Affiliation(s)
- Rienk Offringa
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany. .,DKFZ-Bayer Immunotherapeutics Laboratory, German Cancer Research Center, Heidelberg, Germany. .,Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany.
| | - Lisa Kötzner
- Merck Healthcare KGaA, Healthcare R&D, Discovery and Development Technologies, Darmstadt, Germany
| | - Bayard Huck
- EMD Serono, Healthcare R&D, Discovery and Development Technologies, Billerica, MA, USA
| | - Klaus Urbahns
- EMD Serono, Healthcare R&D, Discovery and Development Technologies, Billerica, MA, USA.
| |
Collapse
|
18
|
Zhu Q, Chen N, Tian X, Zhou Y, You Q, Xu X. Hematopoietic Progenitor Kinase 1 in Tumor Immunology: A Medicinal Chemistry Perspective. J Med Chem 2022; 65:8065-8090. [PMID: 35696642 DOI: 10.1021/acs.jmedchem.2c00172] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a hematopoietic cell-restricted member of the serine/threonine Ste20-related protein kinases, is a negative regulator of the T cell receptor, B cell receptor, and dendritic cells. Loss of HPK1 kinase function increases cytokine secretion and enhances T cell signaling, virus clearance, and tumor growth inhibition. Therefore, HPK1 is considered a promising target for tumor immunotherapy. Several HPK1 inhibitors have been reported to regulate T cell function. In addition, HPK1-targeting PROTACs, which can induce the degradation of HPK1, have also been developed. Here, we provide an overview of research concerning HPK1 protein structure, function, and inhibitors and propose perspectives and insights for the future development of agents targeting HPK1.
Collapse
Affiliation(s)
- Qiangsheng Zhu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Nannan Chen
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinjian Tian
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yeling Zhou
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - QiDong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
19
|
Ge H, Peng L, Sun Z, Liu H, Shen Y, Yao X. Discovery of Novel HPK1 Inhibitors Through Structure-Based Virtual Screening. Front Pharmacol 2022; 13:850855. [PMID: 35370676 PMCID: PMC8967249 DOI: 10.3389/fphar.2022.850855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/17/2022] [Indexed: 01/22/2023] Open
Abstract
Hematopoietic progenitor kinase (HPK1) is a negative regulator of T-cell receptor and B-cell signaling, which has been recognized as a novel antitumor target for immunotherapy. In this work, Glide docking-based virtual screening and kinase inhibition assay were performed to identify novel HPK1 inhibitors. The kinase inhibition assay results demonstrated five compounds with IC50 values below 20 μM, and the most potent one (compound M074-2865) had an IC50 value of 2.93 ± 0.09 μM. Molecular dynamics (MD) simulations were performed to delve into the interaction of sunitinib and the identified compound M074-2865 with the kinase domain of HPK1. The five compounds identified in this work could be considered promising hit compounds for further development of HPK1 inhibitors for immunotherapy.
Collapse
Affiliation(s)
- Huizhen Ge
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Lizeng Peng
- Institute of Agro-Food Science and Technology Shandong Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Jinan, China
| | - Zhou Sun
- Academy of Advanced Interdisciplinary Studies, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | | | - Xiaojun Yao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| |
Collapse
|
20
|
Bader A, Winkelmann M, Forné I, Walzog B, Maier-Begandt D. Decoding the signaling profile of hematopoietic progenitor kinase 1 (HPK1) in innate immunity: a proteomic approach. Eur J Immunol 2022; 52:760-769. [PMID: 35099066 DOI: 10.1002/eji.202149283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/06/2021] [Accepted: 01/14/2022] [Indexed: 11/10/2022]
Abstract
Signaling via β2 integrins (CD11/CD18) as well as T and B cell receptors involves similar pathways. However, the activation of the same signaling molecule can result in opposing effects. One such example is the hematopoietic progenitor kinase 1 (HPK1), which negatively regulates T and B cell activation but enforces neutrophil adhesion via β2 integrins. This difference may be defined by specific HPK1 interacting networks in different leukocyte subsets which have already been described in the adaptive immune system. Here, we set out to identify interacting proteins of HPK1 in neutrophil-like differentiated HL-60 cells exposed to immobilized fibrinogen and left non-activated or Mn2+ -activated to allow β2 integrin-dependent adhesion. Co-immunoprecipitation experiments followed by mass spectrometry led to the identification of 115 HPK1-interacting proteins. 58 proteins were found only in non-activated cells and 39 proteins only in Mn2+ -activated adherent cells. From these results we decoded a pre-existing signaling cluster of HPK1 in non-activated cells encompassing proteins essential for β2 integrin-mediated signaling during neutrophil trafficking, namely DNAX-activation protein 12 (DAP12), spleen tyrosine kinase (Syk) and Rac1. Thus, our study provides novel insights into the complex architecture of the signaling processes during neutrophil activation and the complex signaling profile of HPK1 in leukocytes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Almke Bader
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, 82152, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, 81377, Germany
| | - Michael Winkelmann
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, 82152, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, 81377, Germany.,Department of Radiology, University Hospital, LMU Munich, Munich, 81377, Germany
| | - Ignasi Forné
- Protein Analysis Unit, Biomedical Center, LMU Munich, Planegg-Martinsried, 82152, Germany
| | - Barbara Walzog
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, 82152, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, 81377, Germany
| | - Daniela Maier-Begandt
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, 82152, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, 81377, Germany
| |
Collapse
|
21
|
Nicolas P, Ollier J, Mori D, Voisinne G, Celis-Gutierrez J, Gregoire C, Perroteau J, Vivien R, Camus M, Burlet-Schiltz O, Gonzalez de Peredo A, Clémenceau B, Roncagalli R, Vié H, Malissen B. Systems-level conservation of the proximal TCR signaling network of mice and humans. J Exp Med 2022; 219:212976. [PMID: 35061003 PMCID: PMC8789201 DOI: 10.1084/jem.20211295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/11/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
We exploited traceable gene tagging in primary human T cells to establish the composition and dynamics of seven canonical TCR-induced protein signaling complexes (signalosomes) using affinity purification coupled with mass spectrometry (AP-MS). It unveiled how the LAT adaptor assembles higher-order molecular condensates and revealed that the proximal TCR-signaling network has a high degree of qualitative and quantitative conservation between human CD4+ and CD8+ T cells. Such systems-level conservation also extended across human and mouse T cells and unexpectedly encompassed protein–protein interaction stoichiometry. Independently of evolutionary considerations, our study suggests that a drug targeting the proximal TCR signaling network should behave similarly when applied to human and mouse T cells. However, considering that signaling differences likely exist between the distal TCR-signaling pathway of human and mouse, our fast-track AP-MS approach should be favored to determine the mechanism of action of drugs targeting human T cell activation. An opportunity is illustrated here using an inhibitor of the LCK protein tyrosine kinase as a proof-of-concept.
Collapse
Affiliation(s)
- Philippe Nicolas
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| | - Jocelyn Ollier
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Université d'Angers, Université de Nantes, Nantes, France
- LabEx Immunotherapy–Graft–Oncology, Nantes, France
| | - Daiki Mori
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| | - Guillaume Voisinne
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| | - Javier Celis-Gutierrez
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| | - Claude Gregoire
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| | - Jeanne Perroteau
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| | - Régine Vivien
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Université d'Angers, Université de Nantes, Nantes, France
- LabEx Immunotherapy–Graft–Oncology, Nantes, France
| | - Mylène Camus
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre national de la recherche scientifique Université Paul Sabatier, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre national de la recherche scientifique Université Paul Sabatier, Toulouse, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre national de la recherche scientifique Université Paul Sabatier, Toulouse, France
| | - Béatrice Clémenceau
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Université d'Angers, Université de Nantes, Nantes, France
- LabEx Immunotherapy–Graft–Oncology, Nantes, France
| | - Romain Roncagalli
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| | - Henri Vié
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Université d'Angers, Université de Nantes, Nantes, France
- LabEx Immunotherapy–Graft–Oncology, Nantes, France
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| |
Collapse
|
22
|
Zhang H, Xie Y, Huang J, Luo D, Zhang Q. Reduced expression of hematopoietic progenitor kinase 1 in T follicular helper cells causes autoimmunity of systemic lupus erythematosus. Lupus 2021; 31:28-38. [PMID: 34968152 DOI: 10.1177/09612033211062524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUD T follicular helper (Tfh) cells have been discovered to be the main CD4+ T cells assisting B cells to produce antibody. They are over activated in patients with systemic lupus erythematosus (SLE) and consequently lead to excessive immunity. Hematopoietic progenitor kinase 1 (HPK1) negatively regulates T cell-mediated immune responses and TCR signal. This study aimed to investigate the roles of HPK1 in SLE Tfh cells. METHODS HPK1 mRNA and protein levels in Tfh cells were measured by real-time quantitative PCR and western blot analysis, respectively. The production of IL-21, B cell-activating factor (BAFF), interferon γ (IFNγ), IL-17A, IgM, IgG1, IgG2, and IgG3 were analyzed using enzyme linked immunosorbent assay. Tfh cells proliferation was evaluated with 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS HPK1 mRNA and protein levels were significantly reduced in SLE Tfh cells, and negatively correlated with SLE disease activity index (SLEDAI) and Systemic Lupus International Collaborating Clinics/American College of Rheumatology (SLICC/ACR) Damage Index for SLE (SDI). Knocking down HPK1 with siRNA in normal Tfh cells greatly elevated Tfh cells proliferation and secretions of IL-21, BAFF, IFNγ, IgG1, IgG2, and IgG3. There were no marked alterations in IL-17A and IgM productions. The opposite effects were observed in SLE Tfh cells transfected with HPK1 overexpressing plasmid: Tfh cells proliferation and productions of IL-21, BAFF, IFNγ, IgG1, IgG2, and IgG3 were all alleviated. And there were no significant changes in IL-17A and IgM levels. CONCLUSION Our results suggest for the first time that inhibited expression of HPK1 in SLE Tfh cells leading to Tfh cells overactivation and B cells overstimulation, subsequently, the onset and progression of SLE.
Collapse
Affiliation(s)
- Huilin Zhang
- Clinical Nursing Teaching and Research Section, 70566Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuming Xie
- Department of Dermatology, 70566Second Xiangya Hospital, Central South University, Changsha, China
| | - Junke Huang
- Department of Dermatology, 70566Second Xiangya Hospital, Central South University, Changsha, China
| | - Danhong Luo
- Department of Dermatology, Fifth People's Hospital of Hainan Province, Haikou, China
| | - Qing Zhang
- Department of Dermatology, 70566Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Wang W, Mevellec L, Liu A, Struble G, Miller R, Allen SJ, Federowicz K, Wroblowski B, Vialard J, Ahn K, Krosky D. Discovery of an Allosteric, Inactive Conformation-Selective Inhibitor of Full-Length HPK1 Utilizing a Kinase Cascade Assay. Biochemistry 2021; 60:3114-3124. [PMID: 34608799 DOI: 10.1021/acs.biochem.1c00486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Achieving selectivity across the human kinome is a major hurdle in kinase inhibitor drug discovery. Assays using active, phosphorylated protein kinases bias hits toward poorly selective inhibitors that bind within the highly conserved adenosine triphosphate (ATP) pocket. Targeting inactive (vs active) kinase conformations offers advantages in achieving selectivity because of their more diversified structures. Kinase cascade assays are typically initiated with target kinases in their unphosphorylated inactive forms, which are activated during the assays. Therefore, these assays are capable of identifying inhibitors that preferentially bind to the unphosphorylated form of the enzyme in addition to those that bind to the active form. We applied this cascade assay to the emerging cancer immunotherapy target hematopoietic progenitor kinase 1 (HPK1), a serine/threonine kinase that negatively regulates T cell receptor signaling. Using this approach, we discovered an allosteric, inactive conformation-selective triazolopyrimidinone HPK1 inhibitor, compound 1. Compound 1 binds to unphosphorylated HPK1 >24-fold more potently than active HPK1, is not competitive with ATP, and is highly selective against kinases critical for T cell signaling. Furthermore, compound 1 does not bind to the isolated HPK1 kinase domain alone but requires other domains. Together, these data indicate that 1 is an allosteric HPK1 inhibitor that attenuates kinase autophosphorylation by binding to a pocket consisting of residues within and outside of the kinase domain. Our study demonstrates that cascade assays can lead to the discovery of highly selective kinase inhibitors. The triazolopyrimidinone described in this study may represent a privileged chemical scaffold for further development of potent and selective HPK1 inhibitors.
Collapse
Affiliation(s)
- Weixue Wang
- Discovery Technologies and Molecular Pharmacology, Janssen Research and Development, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Laurence Mevellec
- Discovery Chemistry, Janssen Research and Development, Campus de Maigremont, Val de Reuil 27106, France
| | - Annie Liu
- Discovery Technologies and Molecular Pharmacology, Janssen Research and Development, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Geoff Struble
- Discovery Technologies and Molecular Pharmacology, Janssen Research and Development, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Robyn Miller
- Discovery Technologies and Molecular Pharmacology, Janssen Research and Development, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Samantha J Allen
- Discovery Technologies and Molecular Pharmacology, Janssen Research and Development, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Kelly Federowicz
- Discovery Technologies and Molecular Pharmacology, Janssen Research and Development, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Berthold Wroblowski
- Computational Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Jorge Vialard
- Oncology Discovery Biology, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Kay Ahn
- Discovery Technologies and Molecular Pharmacology, Janssen Research and Development, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Daniel Krosky
- Discovery Technologies and Molecular Pharmacology, Janssen Research and Development, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
24
|
Soini L, Redhead M, Westwood M, Leysen S, Davis J, Ottmann C. Identification of molecular glues of the SLP76/14-3-3 protein-protein interaction. RSC Med Chem 2021; 12:1555-1564. [PMID: 34667951 PMCID: PMC8459327 DOI: 10.1039/d1md00172h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
The stabilisation of protein-protein interactions (PPIs) through molecular glues is a novel and promising approach in drug discovery. In stark contrast to research in protein-protein inhibition the field of stabilisation remains underdeveloped with comparatively few examples of small-molecule stabilisers of PPIs reported to date. At the same time identifying molecular glues has received recent sustained interest, especially in the fields of targeted protein degradation and 14-3-3 PPIs. The hub-protein 14-3-3 has a broad interactome with more than 500 known protein partners which presents a great opportunity for therapeutic intervention. In this study we have developed an HTRF assay suitable for HTS of the 14-3-3/SLP76 PPI and have completed a proof of concept screen against a chemically diverse library of 20 K molecules. The adaptor protein SLP76 has been reported to interact with 14-3-3 proteins downstream of the TCR playing an important role in mediating its own proteasomal degradation. We believe that stabilisation of this PPI could be exploited to potentiate degradation of SLP76 and therefore inhibit TCR signalling. This would represent an interesting alternative to other approaches in the field of targeted protein degradation. Here we disclose 16 novel stabilisers of the 14-3-3/SLP76 PPI across multiple different chemotypes. Based on the early results presented here we would recommend this approach to find molecular glues with broad applicability in the field of 14-3-3 PPIs.
Collapse
Affiliation(s)
- Lorenzo Soini
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands .,Department of Chemistry, UCB Celltech Slough UK
| | - Martin Redhead
- Exscientia Ltd, Schrodinger Building, Oxford Science Park Oxford OX44GE UK
| | - Marta Westwood
- Structural Biology, Discovery, Charles River, Chesterford Research Park UK
| | - Seppe Leysen
- Department of Structural Biology and Biophysics, UCB Celltech Slough UK
| | | | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| |
Collapse
|
25
|
Linney ID, Kaila N. Inhibitors of immuno-oncology target HPK1 - a patent review (2016 to 2020). Expert Opin Ther Pat 2021; 31:893-910. [PMID: 33956554 DOI: 10.1080/13543776.2021.1924671] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Hematopoietic progenitor kinase (HPK1), a serine/threonine kinase, which is primarily expressed in hematopoietic cells is a negative regulator of T-cell receptor and B cell signaling. Studies using genetic disruption of HPK1 function show enhanced T-cell signaling, cytokine production, and in vivo tumor growth inhibition. This profile of enhanced immune response highlights small molecule inhibition of HPK1 as an attractive approach for the immunotherapy of cancer.Areas covered: This article summarizes the biological rationale for the inhibition of HPK1 as a potential adjunct to the current immuno-oncology (IO) therapies. The article primarily discloses the current state of development of HPK1 inhibitors.Expert Opinion: The rapid increase in the identification of small molecule inhibitors of HPK1 should translate into a fuller understanding of the role of HPK1 inhibition in the IO setting. This understanding will be of huge importance in determining whether HPK1 inhibition alone will be sufficient for tumor growth inhibition or if combination with current IO therapies will be required.
Collapse
Affiliation(s)
- Ian D Linney
- Medicinal Chemistry, Charles River, Chesterford Park Research Park, Saffron Walden, United Kingdom
| | - Neelu Kaila
- Medicinal Chemistry, Nimbus Therapeutics, Cambridge, MA, USA
| |
Collapse
|
26
|
Hallumi E, Shalah R, Lo WL, Corso J, Oz I, Beach D, Wittman S, Isenberg A, Sela M, Urlaub H, Weiss A, Yablonski D. Itk Promotes the Integration of TCR and CD28 Costimulation through Its Direct Substrates SLP-76 and Gads. THE JOURNAL OF IMMUNOLOGY 2021; 206:2322-2337. [PMID: 33931484 DOI: 10.4049/jimmunol.2001053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022]
Abstract
The costimulatory receptor CD28 synergizes with the TCR to promote IL-2 production, cell survival, and proliferation; yet the obligatory interdependence of TCR and CD28 signaling is not well understood. Upon TCR stimulation, Gads, a Grb2-family adaptor, bridges the interaction of two additional adaptors, LAT and SLP-76, to form a TCR-induced effector signaling complex. SLP-76 binds the Tec-family tyrosine kinase, Itk, which phosphorylates SLP-76 Y173 and PLC-γ1 Y783. In this study, we identified TCR-inducible, Itk-mediated phosphorylation of Gads Y45 in a human T cell line and in mouse primary T cells. Y45 is found within the N-terminal SH3 domain of Gads, an evolutionarily conserved domain with no known signaling function. Gads Y45 phosphorylation depended on the interaction of Gads with SLP-76 and on the dimerization-dependent binding of Gads to phospho-LAT. We provide evidence that Itk acts through SLP-76 and Gads to promote the TCR/CD28-induced activation of the RE/AP transcriptional element from the IL-2 promoter. Two Itk-related features of SLP-76, Y173 and a proline-rich Itk SH3 binding motif on SLP-76, were dispensable for activation of NFAT but selectively required for the TCR/CD28-induced increase in cytoplasmic and nuclear c-Rel and consequent RE/AP activation. We provide evidence that unphosphorylated, monomeric Gads mediates an RE/AP-directed inhibitory activity that is mitigated upon Gads dimerization and Y45 phosphorylation. This study illuminates a new, to our knowledge, regulatory module, in which TCR-induced, Itk-mediated phosphorylation sites on SLP-76 and Gads control the transcriptional response to TCR/CD28 costimulation, thus enforcing the obligatory interdependence of the TCR and CD28 signaling pathways.
Collapse
Affiliation(s)
- Enas Hallumi
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Rose Shalah
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Wan-Lin Lo
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Jasmin Corso
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ilana Oz
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dvora Beach
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Samuel Wittman
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Amy Isenberg
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Meirav Sela
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Research Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Arthur Weiss
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
| | - Deborah Yablonski
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
27
|
Rudd CE. How the Discovery of the CD4/CD8-p56 lck Complexes Changed Immunology and Immunotherapy. Front Cell Dev Biol 2021; 9:626095. [PMID: 33791292 PMCID: PMC8005572 DOI: 10.3389/fcell.2021.626095] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
The past 25 years have seen enormous progress in uncovering the receptors and signaling mechanisms on T-cells that activate their various effecter functions. Until the late 1980s, most studies on T-cells had focused on the influx of calcium and the levels of cAMP/GMP in T-cells. My laboratory then uncovered the interaction of CD4 and CD8 co-receptors with the protein-tyrosine kinase p56lck which are now widely accepted as the initiators of the tyrosine phosphorylation cascade leading to T-cell activation. The finding explained how immune recognition receptors expressed by many immune cells, which lack intrinsic catalytic activity, can transduce activation signals via non-covalent association with non-receptor tyrosine kinases. The discovery also established the concept that a protein tyrosine phosphorylation cascade operated in T-cells. In this vein, we and others then showed that the CD4- and CD8-p56lck complexes phosphorylate the TCR complexes which led to the identification of other protein-tyrosine kinases such as ZAP-70 and an array of substrates that are now central to studies in T-cell immunity. Other receptors such as B-cell receptor, Fc receptors and others were also subsequently found to use src kinases to control cell growth. In T-cells, p56lck driven phosphorylation targets include co-receptors such as CD28 and CTLA-4 and immune cell-specific adaptor proteins such as LAT and SLP-76 which act to integrate signals proximal to surface receptors. CD4/CD8-p56lck regulated events in T-cells include intracellular calcium mobilization, integrin activation and the induction of transcription factors for gene expression. Lastly, the identification of the targets of p56lck in the TCR and CD28 provided the framework for the development of chimeric antigen receptor (CAR) therapy in the treatment of cancer. In this review, I outline a history of the development of events that led to the development of the "TCR signaling paradigm" and its implications to immunology and immunotherapy.
Collapse
Affiliation(s)
- Christopher E. Rudd
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Faculty of Medicine, Universite de Montreal, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University Health Center, McGill University, Montreal, QC, Canada
| |
Collapse
|
28
|
Pinte L, Cunningham A, Trébéden-Negre H, Nikiforow S, Ritz J. Global Perspective on the Development of Genetically Modified Immune Cells for Cancer Therapy. Front Immunol 2021; 11:608485. [PMID: 33658994 PMCID: PMC7917113 DOI: 10.3389/fimmu.2020.608485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Since the first genetically-engineered clinical trial was posted to clinicaltrials.gov in 2003 (NCT00019136), chimeric antigen receptor (CAR) and T-cell receptor (TCR) therapies have exhibited unprecedented growth. USA, China, and Europe have emerged as major sites of investigation as many new biotechnology and established pharmaceutical companies invest in this rapidly evolving field. Although initial studies focused primarily on CD19 as a target antigen, many novel targets are now being evaluated. Next-generation genetic constructs, starting materials, and manufacturing strategies are also being applied to enhance efficacy and safety and to treat solid tumors as well as hematologic malignancies. Fueled by dramatic clinical efficacy and recent regulatory approvals of CD19-targeted CAR cell therapies, the field of engineered cell therapeutics continues to expand. Here, we review all 745 genetically modified CAR and TCR clinical trials with anticipated accrual of over 28,000 patients posted to clinicaltrials.gov until 31st of December 2019. We analyze projected patient enrollment, geographic distribution and phase of studies, target antigens and diseases, current strategies for optimizing efficacy and safety, and trials expected to yield important clinical data in the coming 6-12 months.
Collapse
Affiliation(s)
| | | | | | | | - Jerome Ritz
- Connell and O’Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
29
|
Balagopalan L, Raychaudhuri K, Samelson LE. Microclusters as T Cell Signaling Hubs: Structure, Kinetics, and Regulation. Front Cell Dev Biol 2021; 8:608530. [PMID: 33575254 PMCID: PMC7870797 DOI: 10.3389/fcell.2020.608530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022] Open
Abstract
When T cell receptors (TCRs) engage with stimulatory ligands, one of the first microscopically visible events is the formation of microclusters at the site of T cell activation. Since the discovery of these structures almost 20 years ago, they have been studied extensively in live cells using confocal and total internal reflection fluorescence (TIRF) microscopy. However, due to limits in image resolution and acquisition speed, the spatial relationships of signaling components within microclusters, the kinetics of their assembly and disassembly, and the role of vesicular trafficking in microcluster formation and maintenance were not finely characterized. In this review, we will summarize how new microscopy techniques have revealed novel insights into the assembly of these structures. The sub-diffraction organization of microclusters as well as the finely dissected kinetics of recruitment and disassociation of molecules from microclusters will be discussed. The role of cell surface molecules in microcluster formation and the kinetics of molecular recruitment via intracellular vesicular trafficking to microclusters is described. Finally, the role of post-translational modifications such as ubiquitination in the downregulation of cell surface signaling molecules is also discussed. These results will be related to the role of these structures and processes in T cell activation.
Collapse
Affiliation(s)
- Lakshmi Balagopalan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kumarkrishna Raychaudhuri
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
30
|
Wang Y, Zhang K, Georgiev P, Wells S, Xu H, Lacey BM, Xu Z, Laskey J, Mcleod R, Methot JL, Bittinger M, Pasternak A, Ranganath S. Pharmacological inhibition of hematopoietic progenitor kinase 1 positively regulates T-cell function. PLoS One 2020; 15:e0243145. [PMID: 33270695 PMCID: PMC7714195 DOI: 10.1371/journal.pone.0243145] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a hematopoietic cell-specific Ste20-related serine/threonine kinase, is a negative regulator of signal transduction in immune cells, including T cells, B cells, and dendritic cells (DCs). In mice, HPK1 deficiency subverts inhibition of the anti-tumor immune response and is associated with functional augmentation of anti-tumor T cells. We have used a potent, small molecule HPK1 inhibitor, Compound 1, to investigate the effects of pharmacological intervention of HPK1 kinase activity in immune cells. Compound 1 enhanced Th1 cytokine production in T cells and fully reverted immune suppression imposed by the prostaglandin E2 (PGE2) and adenosine pathways in human T cells. Moreover, the combination of Compound 1 with pembrolizumab, a humanized monoclonal antibody against the programmed cell death protein 1 (PD-1), demonstrated a synergistic effect, resulting in enhanced interferon (IFN)-γ production. Collectively, our results suggest that blocking HPK1 kinase activity with small molecule inhibitors alone or in combination with checkpoint blockade may be an attractive approach for the immunotherapy of cancer.
Collapse
Affiliation(s)
- Yun Wang
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Kelvin Zhang
- Department of Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Peter Georgiev
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Steven Wells
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Haiyan Xu
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Brian M. Lacey
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Zangwei Xu
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Jason Laskey
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Robbie Mcleod
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Joey L. Methot
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Mark Bittinger
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Alexander Pasternak
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts, United States of America
- * E-mail: (AP); (SR)
| | - Sheila Ranganath
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, United States of America
- * E-mail: (AP); (SR)
| |
Collapse
|
31
|
Soini L, Leysen S, Davis J, Westwood M, Ottmann C. The 14-3-3/SLP76 protein-protein interaction in T-cell receptor signalling: a structural and biophysical characterization. FEBS Lett 2020; 595:404-414. [PMID: 33159816 DOI: 10.1002/1873-3468.13993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 11/01/2020] [Indexed: 12/18/2022]
Abstract
The SH2 domain-containing protein of 76 kDa, SLP76, is an important adaptor protein that coordinates a complex protein network downstream of T-cell receptors (TCR), ultimately regulating the immune response. Upon phosphorylation on Ser376, SLP76 interacts with 14-3-3 adaptor proteins, which leads to its proteolytic degradation. This provides a negative feedback mechanism by which TCR signalling can be controlled. To gain insight into the 14-3-3/SLP76 protein-protein interaction (PPI), we have determined a high-resolution crystal structure of a SLP76 synthetic peptide containing Ser376 with 14-3-3σ. We then characterized its binding to 14-3-3 proteins biophysically by means of fluorescence polarization and isothermal titration calorimetry. Furthermore, we generated two recombinant SLP76 protein constructs and characterized their binding to 14-3-3. Our work lays the foundation for drug design efforts aimed at targeting the 14-3-3/SLP76 interaction and, thereby, TCR signalling.
Collapse
Affiliation(s)
- Lorenzo Soini
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.,Department of Chemistry, UCB Celltech, Slough, UK
| | - Seppe Leysen
- Department of Structural Biology and Biophysics, UCB Celltech, Slough, UK
| | - Jeremy Davis
- Department of Chemistry, UCB Celltech, Slough, UK
| | | | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
32
|
Sawasdikosol S, Burakoff S. A perspective on HPK1 as a novel immuno-oncology drug target. eLife 2020; 9:55122. [PMID: 32896273 PMCID: PMC7478889 DOI: 10.7554/elife.55122] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
In this perspective review, the role Hematopoietic Progenitor Kinase 1 (HPK1) in tumor immunity will be reviewed, with special emphasis on how T cells are negatively-regulated at different junctures of cancer-immunity cycle by this regulatory kinase. The review will highlight the strengths and weaknesses of HPK1 as a candidate target for novel immuno-oncology (IO) drug development that is centered on the use of small molecule kinase inhibitor to modulate the immune response against cancer. Such a therapeutic approach, if proven successful, could supplement the cancer cell-centric standard of care therapies in order to fully meet the therapeutic needs of cancer patients.
Collapse
Affiliation(s)
- Sansana Sawasdikosol
- Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, United States
| | - Steven Burakoff
- Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, United States
| |
Collapse
|
33
|
Xiong Y, Yi Y, Wang Y, Yang N, Rudd CE, Liu H. Ubc9 Interacts with and SUMOylates the TCR Adaptor SLP-76 for NFAT Transcription in T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:3023-3036. [PMID: 31666306 DOI: 10.4049/jimmunol.1900556] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/30/2019] [Indexed: 12/25/2022]
Abstract
Although the immune adaptor SH2 domain containing leukocyte phosphoprotein of 76 kDa (SLP-76) integrates and propagates the TCR signaling, the regulation of SLP-76 during the TCR signaling is incompletely studied. In this article, we report that SLP-76 interacts with the small ubiquitin-like modifier (SUMO) E2 conjugase Ubc9 and is a substrate for Ubc9-mediated SUMOylation in human and mouse T cells. TCR stimulation promotes SLP-76-Ubc9 binding, accompanied by an increase in SLP-76 SUMOylation. Ubc9 binds to the extreme C terminus of SLP-76 spanning residues 516-533 and SUMOylates SLP-76 at two conserved residues K266 and K284. In addition, SLP-76 and Ubc9 synergizes to augment the TCR-mediated IL-2 transcription by NFAT in a manner dependent of SUMOylation of SLP-76. Moreover, although not affecting the TCR proximal signaling events, the Ubc9-mediated SUMOylation of SLP-76 is required for TCR-induced assembly of Ubc9-NFAT complex for IL-2 transcription. Together, these results suggest that Ubc9 modulates the function of SLP-76 in T cell activation both by direct interaction and by SUMOylation of SLP-76 and that the Ubc9-SLP-76 module acts as a novel regulatory complex in the control of T cell activation.
Collapse
Affiliation(s)
- Yiwei Xiong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Yulan Yi
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Yan Wang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Naiqi Yang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Christopher E Rudd
- Division of Immunology-Oncology Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada; and.,Département de Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Hebin Liu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China;
| |
Collapse
|
34
|
Yablonski D. Bridging the Gap: Modulatory Roles of the Grb2-Family Adaptor, Gads, in Cellular and Allergic Immune Responses. Front Immunol 2019; 10:1704. [PMID: 31402911 PMCID: PMC6669380 DOI: 10.3389/fimmu.2019.01704] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023] Open
Abstract
Antigen receptor signaling pathways are organized by adaptor proteins. Three adaptors, LAT, Gads, and SLP-76, form a heterotrimeric complex that mediates signaling by the T cell antigen receptor (TCR) and by the mast cell high affinity receptor for IgE (FcεRI). In both pathways, antigen recognition triggers tyrosine phosphorylation of LAT and SLP-76. The recruitment of SLP-76 to phospho-LAT is bridged by Gads, a Grb2 family adaptor composed of two SH3 domains flanking a central SH2 domain and an unstructured linker region. The LAT-Gads-SLP-76 complex is further incorporated into larger microclusters that mediate antigen receptor signaling. Gads is positively regulated by dimerization, which promotes its cooperative binding to LAT. Negative regulation occurs via phosphorylation or caspase-mediated cleavage of the linker region of Gads. FcεRI-mediated mast cell activation is profoundly impaired in LAT- Gads- or SLP-76-deficient mice. Unexpectedly, the thymic developmental phenotype of Gads-deficient mice is much milder than the phenotype of LAT- or SLP-76-deficient mice. This distinction suggests that Gads is not absolutely required for TCR signaling, but may modulate its sensitivity, or regulate a particular branch of the TCR signaling pathway; indeed, the phenotypic similarity of Gads- and Itk-deficient mice suggests a functional connection between Gads and Itk. Additional Gads binding partners include costimulatory proteins such as CD28 and CD6, adaptors such as Shc, ubiquitin regulatory proteins such as USP8 and AMSH, and kinases such as HPK1 and BCR-ABL, but the functional implications of these interactions are not yet fully understood. No interacting proteins or function have been ascribed to the evolutionarily conserved N-terminal SH3 of Gads. Here we explore the biochemical and functional properties of Gads, and its role in regulating allergy, T cell development and T-cell mediated immunity.
Collapse
Affiliation(s)
- Deborah Yablonski
- The Immune Cell Signaling Lab, Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
35
|
Raab M, Strebhardt K, Rudd CE. Immune adaptor SKAP1 acts a scaffold for Polo-like kinase 1 (PLK1) for the optimal cell cycling of T-cells. Sci Rep 2019; 9:10462. [PMID: 31320682 PMCID: PMC6639320 DOI: 10.1038/s41598-019-45627-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
While the immune cell adaptor protein SKAP1 mediates LFA-1 activation induced by antigen-receptor (TCR/CD3) ligation on T-cells, it is unclear whether the adaptor interacts with other mediators of T-cell function. In this context, the serine/threonine kinase, polo-like kinase (PLK1) regulates multiple steps in the mitotic and cell cycle progression of mammalian cells. Here, we show that SKAP1 is phosphorylated by and binds to PLK1 for the optimal cycling of T-cells. PLK1 binds to the N-terminal residue serine 31 (S31) of SKAP1 and the interaction is needed for optimal PLK1 kinase activity. Further, siRNA knock-down of SKAP1 reduced the rate of T-cell division concurrent with a delay in the expression of PLK1, Cyclin A and pH3. Reconstitution of these KD cells with WT SKAP1, but not the SKAP1 S31 mutant, restored normal cell division. SKAP1-PLK1 binding is dynamically regulated during the cell cycle of T-cells. Our findings identify a novel role for SKAP1 in the regulation of PLK1 and optimal cell cycling needed for T-cell clonal expansion in response to antigenic activation.
Collapse
Affiliation(s)
- Monika Raab
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- Cell Signaling Section, Department of Pathology, Tennis Court Road, University of Cambridge, CB2 1Q, Cambridge, UK.
| | - Klaus Strebhardt
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Christopher E Rudd
- Cell Signaling Section, Department of Pathology, Tennis Court Road, University of Cambridge, CB2 1Q, Cambridge, UK.
- Centre de Recherch-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, Quebec, H1T 2M4, Canada.
- Département de Medicine, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada.
| |
Collapse
|
36
|
Yablonski D. Bridging the Gap: Modulatory Roles of the Grb2-Family Adaptor, Gads, in Cellular and Allergic Immune Responses. Front Immunol 2019; 10:1704. [PMID: 31402911 DOI: 10.3389/fimmu.2019.01704/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/08/2019] [Indexed: 05/22/2023] Open
Abstract
Antigen receptor signaling pathways are organized by adaptor proteins. Three adaptors, LAT, Gads, and SLP-76, form a heterotrimeric complex that mediates signaling by the T cell antigen receptor (TCR) and by the mast cell high affinity receptor for IgE (FcεRI). In both pathways, antigen recognition triggers tyrosine phosphorylation of LAT and SLP-76. The recruitment of SLP-76 to phospho-LAT is bridged by Gads, a Grb2 family adaptor composed of two SH3 domains flanking a central SH2 domain and an unstructured linker region. The LAT-Gads-SLP-76 complex is further incorporated into larger microclusters that mediate antigen receptor signaling. Gads is positively regulated by dimerization, which promotes its cooperative binding to LAT. Negative regulation occurs via phosphorylation or caspase-mediated cleavage of the linker region of Gads. FcεRI-mediated mast cell activation is profoundly impaired in LAT- Gads- or SLP-76-deficient mice. Unexpectedly, the thymic developmental phenotype of Gads-deficient mice is much milder than the phenotype of LAT- or SLP-76-deficient mice. This distinction suggests that Gads is not absolutely required for TCR signaling, but may modulate its sensitivity, or regulate a particular branch of the TCR signaling pathway; indeed, the phenotypic similarity of Gads- and Itk-deficient mice suggests a functional connection between Gads and Itk. Additional Gads binding partners include costimulatory proteins such as CD28 and CD6, adaptors such as Shc, ubiquitin regulatory proteins such as USP8 and AMSH, and kinases such as HPK1 and BCR-ABL, but the functional implications of these interactions are not yet fully understood. No interacting proteins or function have been ascribed to the evolutionarily conserved N-terminal SH3 of Gads. Here we explore the biochemical and functional properties of Gads, and its role in regulating allergy, T cell development and T-cell mediated immunity.
Collapse
Affiliation(s)
- Deborah Yablonski
- The Immune Cell Signaling Lab, Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
37
|
Raab M, Strebhardt K, Rudd CE. Immune adaptor protein SKAP1 (SKAP-55) forms homodimers as mediated by the N-terminal region. BMC Res Notes 2018; 11:869. [PMID: 30522503 PMCID: PMC6282339 DOI: 10.1186/s13104-018-3976-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 12/04/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Immune cell adaptor protein SKAP1 couples the antigen-receptor (TCR/CD3) with the activation of LFA-1 adhesion in T-cells. Previous work by ourselves and others have shown that SKAP1 can directly bind to other adaptors such as ADAP and RapL. However, it has been unclear whether SKAP1 can form homodimers with itself and the regions within SKAP1 that mediated homodimer formation. RESULTS Here, we show that SKAP1 and SKAP2 form homodimers in cells. Homodimer formation of immune adaptor protein SKAP1 (SKAP-55) are mediated by residues A17 to L21 in the SKAP1 N-terminal region. SKAP1 dimer formation was not needed for its binding to RapL. These data indicate that the pathway linking SKAP1 to RapL is not dependent on the homo-dimerization of SKAP1.
Collapse
Affiliation(s)
- Monika Raab
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.,German Cancer Consortium (DKTK)/German Cancer Research Center, Heidelberg, Germany
| | - Christopher E Rudd
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany. .,Research Center-Maisonneuve-Rosemont Hospital (CRHMR), Montreal, QC, H1T 2M4, Canada. .,Cell Signalling Section, Department of Pathology, Cambridge University, Cambridge, CB2 1QP, UK.
| |
Collapse
|
38
|
Wu P, Sneeringer CJ, Pitts KE, Day ES, Chan BK, Wei B, Lehoux I, Mortara K, Li H, Wu J, Franke Y, Moffat JG, Grogan JL, Heffron TP, Wang W. Hematopoietic Progenitor Kinase-1 Structure in a Domain-Swapped Dimer. Structure 2018; 27:125-133.e4. [PMID: 30503777 DOI: 10.1016/j.str.2018.10.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/27/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022]
Abstract
Enhancement of antigen-specific T cell immunity has shown significant therapeutic benefit in infectious diseases and cancer. Hematopoietic progenitor kinase-1 (HPK1) is a negative-feedback regulator of T cell receptor signaling, which dampens T cell proliferation and effector function. A recent report showed that a catalytic dead mutant of HPK1 phenocopies augmented T cell responses observed in HPK1-knockout mice, indicating that kinase activity is critical for function. We evaluated active and inactive mutants and determined crystal structures of HPK1 kinase domain (HPK1-KD) in apo and ligand bound forms. In all structures HPK1-KD displays a rare domain-swapped dimer, in which the activation segment comprises a well-conserved dimer interface. Biophysical measurements show formation of dimer in solution. The activation segment adopts an α-helical structure which exhibits distinct orientations in active and inactive states. This face-to-face configuration suggests that the domain-swapped dimer may possess alternative selectivity for certain substrates of HPK1 under relevant cellular context.
Collapse
Affiliation(s)
- Ping Wu
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | | | - Keith E Pitts
- Department of Biochemical Pharmacology, Genentech, South San Francisco, CA 94080, USA
| | - Eric S Day
- Department of Late Stage Pharmaceutical Development, Genentech, South San Francisco, CA 94080, USA
| | - Bryan K Chan
- Department of Discovery Chemistry, Genentech, South San Francisco, CA 94080, USA
| | - Binqing Wei
- Department of Discovery Chemistry, Genentech, South San Francisco, CA 94080, USA
| | - Isabelle Lehoux
- Department of Biomolecular Resources, Genentech, South San Francisco, CA 94080, USA
| | - Kyle Mortara
- Department of Biomolecular Resources, Genentech, South San Francisco, CA 94080, USA
| | - Hong Li
- Department of Protein Chemistry, Genentech, South San Francisco, CA 94080, USA
| | - Jiansheng Wu
- Department of Protein Chemistry, Genentech, South San Francisco, CA 94080, USA
| | - Yvonne Franke
- Department of Biomolecular Resources, Genentech, South San Francisco, CA 94080, USA
| | - John G Moffat
- Department of Biochemical Pharmacology, Genentech, South San Francisco, CA 94080, USA
| | - Jane L Grogan
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Timothy P Heffron
- Department of Discovery Chemistry, Genentech, South San Francisco, CA 94080, USA
| | - Weiru Wang
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
39
|
Lewis JB, Scangarello FA, Murphy JM, Eidell KP, Sodipo MO, Ophir MJ, Sargeant R, Seminario MC, Bunnell SC. ADAP is an upstream regulator that precedes SLP-76 at sites of TCR engagement and stabilizes signaling microclusters. J Cell Sci 2018; 131:jcs215517. [PMID: 30305305 PMCID: PMC6240300 DOI: 10.1242/jcs.215517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
Antigen recognition by the T cell receptor (TCR) directs the assembly of essential signaling complexes known as SLP-76 (also known as LCP2) microclusters. Here, we show that the interaction of the adhesion and degranulation-promoting adaptor protein (ADAP; also known as FYB1) with SLP-76 enables the formation of persistent microclusters and the stabilization of T cell contacts, promotes integrin-independent adhesion and enables the upregulation of CD69. By analyzing point mutants and using a novel phospho-specific antibody, we show that Y595 is essential for normal ADAP function, that virtually all tyrosine phosphorylation of ADAP is restricted to a Y595-phosphorylated (pY595) pool, and that multivalent interactions between the SLP-76 SH2 domain and its binding sites in ADAP are required to sustain ADAP phosphorylation. Although pY595 ADAP enters SLP-76 microclusters, non-phosphorylated ADAP is enriched in protrusive actin-rich structures. The pre-positioning of ADAP at the contact sites generated by these structures favors the retention of nascent SLP-76 oligomers and their assembly into persistent microclusters. Although ADAP is frequently depicted as an effector of SLP-76, our findings reveal that ADAP acts upstream of SLP-76 to convert labile, Ca2+-competent microclusters into stable adhesive junctions with enhanced signaling potential.
Collapse
Affiliation(s)
- Juliana B Lewis
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Frank A Scangarello
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Medical Scientist Training Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Joanne M Murphy
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Keith P Eidell
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Michelle O Sodipo
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Michael J Ophir
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Ryan Sargeant
- Pacific Immunology Corporation, Ramona, CA 92065, USA
| | | | - Stephen C Bunnell
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
40
|
Agüera-González S, Burton OT, Vázquez-Chávez E, Cuche C, Herit F, Bouchet J, Lasserre R, Del Río-Iñiguez I, Di Bartolo V, Alcover A. Adenomatous Polyposis Coli Defines Treg Differentiation and Anti-inflammatory Function through Microtubule-Mediated NFAT Localization. Cell Rep 2018; 21:181-194. [PMID: 28978472 DOI: 10.1016/j.celrep.2017.09.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/04/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022] Open
Abstract
Adenomatous polyposis coli (APC) is a polarity regulator and tumor suppressor associated with familial adenomatous polyposis and colorectal cancer development. Although extensively studied in epithelial transformation, the effect of APC on T lymphocyte activation remains poorly defined. We found that APC ensures T cell receptor-triggered activation through Nuclear Factor of Activated T cells (NFAT), since APC is necessary for NFAT's nuclear localization in a microtubule-dependent fashion and for NFAT-driven transcription leading to cytokine gene expression. Interestingly, NFAT forms clusters juxtaposed with microtubules. Ultimately, mouse Apc deficiency reduces the presence of NFAT in the nucleus of intestinal regulatory T cells (Tregs) and impairs Treg differentiation and the acquisition of a suppressive phenotype, which is characterized by the production of the anti-inflammatory cytokine IL-10. These findings suggest a dual role for APC mutations in colorectal cancer development, where mutations drive the initiation of epithelial neoplasms and also reduce Treg-mediated suppression of the detrimental inflammation that enhances cancer growth.
Collapse
Affiliation(s)
- Sonia Agüera-González
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France.
| | - Oliver T Burton
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Elena Vázquez-Chávez
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France
| | - Céline Cuche
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France
| | - Floriane Herit
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France
| | - Jérôme Bouchet
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France
| | - Rémi Lasserre
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France
| | - Iratxe Del Río-Iñiguez
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France
| | - Vincenzo Di Bartolo
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France
| | - Andrés Alcover
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France.
| |
Collapse
|
41
|
Zhang Q, Ding S, Zhang H. Interactions between hematopoietic progenitor kinase 1 and its adaptor proteins. Mol Med Rep 2017; 16:6472-6482. [DOI: 10.3892/mmr.2017.7494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/31/2017] [Indexed: 11/06/2022] Open
|
42
|
Navas VH, Cuche C, Alcover A, Di Bartolo V. Serine Phosphorylation of SLP76 Is Dispensable for T Cell Development but Modulates Helper T Cell Function. PLoS One 2017; 12:e0170396. [PMID: 28107427 PMCID: PMC5249077 DOI: 10.1371/journal.pone.0170396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/04/2017] [Indexed: 12/26/2022] Open
Abstract
The adapter protein SLP76 is a key orchestrator of T cell receptor (TCR) signal transduction. We previously identified a negative feedback loop that modulates T cell activation, involving phosphorylation of Ser376 of SLP76 by the hematopoietic progenitor kinase 1 (HPK1). However, the physiological relevance of this regulatory mechanism was still unknown. To address this question, we generated a SLP76-S376A-expressing knock-in mouse strain and investigated the effects of Ser376 mutation on T cell development and function. We report here that SLP76-S376A-expressing mice exhibit normal thymocyte development and no detectable phenotypic alterations in mature T cell subsets or other lymphoid and myeloid cell lineages. Biochemical analyses revealed that mutant T cells were hypersensitive to TCR stimulation. Indeed, phosphorylation of several signaling proteins, including SLP76 itself, phospholipase Cγ1 and the protein kinases AKT and ERK1/2, was increased. These modifications correlated with increased Th1-type and decreased Th2-type cytokine production by SLP76-S376A T cells, but did not result in significant changes of proliferative capacity nor activation-induced cell death susceptibility. Hence, our results reveal that SLP76-Ser376 phosphorylation does not mediate all HPK1-dependent regulatory effects in T cells but it fine-tunes helper T cell responses.
Collapse
Affiliation(s)
- Victor H. Navas
- Lymphocyte Cell Biology Unit, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
- Université "Pierre et Marie Curie", Paris, France
| | - Céline Cuche
- Lymphocyte Cell Biology Unit, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
- INSERM U1221, Paris, France
| | - Andres Alcover
- Lymphocyte Cell Biology Unit, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
- INSERM U1221, Paris, France
| | - Vincenzo Di Bartolo
- Lymphocyte Cell Biology Unit, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
- INSERM U1221, Paris, France
- * E-mail:
| |
Collapse
|
43
|
Marcotte D, Rushe M, M Arduini R, Lukacs C, Atkins K, Sun X, Little K, Cullivan M, Paramasivam M, Patterson TA, Hesson T, D McKee T, May-Dracka TL, Xin Z, Bertolotti-Ciarlet A, Bhisetti GR, Lyssikatos JP, Silvian LF. Germinal-center kinase-like kinase co-crystal structure reveals a swapped activation loop and C-terminal extension. Protein Sci 2016; 26:152-162. [PMID: 27727493 DOI: 10.1002/pro.3062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 12/20/2022]
Abstract
Germinal-center kinase-like kinase (GLK, Map4k3), a GCK-I family kinase, plays multiple roles in regulating apoptosis, amino acid sensing, and immune signaling. We describe here the crystal structure of an activation loop mutant of GLK kinase domain bound to an inhibitor. The structure reveals a weakly associated, activation-loop swapped dimer with more than 20 amino acids of ordered density at the carboxy-terminus. This C-terminal PEST region binds intermolecularly to the hydrophobic groove of the N-terminal domain of a neighboring molecule. Although the GLK activation loop mutant crystallized demonstrates reduced kinase activity, its structure demonstrates all the hallmarks of an "active" kinase, including the salt bridge between the C-helix glutamate and the catalytic lysine. Our compound displacement data suggests that the effect of the Ser170Ala mutation in reducing kinase activity is likely due to its effect in reducing substrate peptide binding affinity rather than reducing ATP binding or ATP turnover. This report details the first structure of GLK; comparison of its activation loop sequence and P-loop structure to that of Map4k4 suggests ideas for designing inhibitors that can distinguish between these family members to achieve selective pharmacological inhibitors.
Collapse
Affiliation(s)
- Douglas Marcotte
- Department of Drug Discovery, Biogen Inc., 115 Binney Street, Cambridge, MA, 02142
| | - Mia Rushe
- Department of Drug Discovery, Biogen Inc., 115 Binney Street, Cambridge, MA, 02142
| | - Robert M Arduini
- Department of Drug Discovery, Biogen Inc., 115 Binney Street, Cambridge, MA, 02142
| | | | - Kateri Atkins
- Beryllium Discovery Corp., 3 Preston Court, Bedford, MA, 01730
| | - Xin Sun
- Department of Drug Discovery, Biogen Inc., 115 Binney Street, Cambridge, MA, 02142
| | - Kevin Little
- Department of Drug Discovery, Biogen Inc., 115 Binney Street, Cambridge, MA, 02142
| | - Michael Cullivan
- Department of Drug Discovery, Biogen Inc., 115 Binney Street, Cambridge, MA, 02142
| | - Murugan Paramasivam
- Department of Drug Discovery, Biogen Inc., 115 Binney Street, Cambridge, MA, 02142
| | - Thomas A Patterson
- Department of Drug Discovery, Biogen Inc., 115 Binney Street, Cambridge, MA, 02142
| | - Thomas Hesson
- Department of Drug Discovery, Biogen Inc., 115 Binney Street, Cambridge, MA, 02142
| | - Timothy D McKee
- Department of Drug Discovery, Biogen Inc., 115 Binney Street, Cambridge, MA, 02142
| | - Tricia L May-Dracka
- Department of Drug Discovery, Biogen Inc., 115 Binney Street, Cambridge, MA, 02142
| | - Zhili Xin
- Department of Drug Discovery, Biogen Inc., 115 Binney Street, Cambridge, MA, 02142
| | | | - Govinda R Bhisetti
- Department of Drug Discovery, Biogen Inc., 115 Binney Street, Cambridge, MA, 02142
| | - Joseph P Lyssikatos
- Department of Drug Discovery, Biogen Inc., 115 Binney Street, Cambridge, MA, 02142
| | - Laura F Silvian
- Department of Drug Discovery, Biogen Inc., 115 Binney Street, Cambridge, MA, 02142
| |
Collapse
|
44
|
|
45
|
The Immune Adaptor SLP-76 Binds to SUMO-RANGAP1 at Nuclear Pore Complex Filaments to Regulate Nuclear Import of Transcription Factors in T Cells. Mol Cell 2015; 59:840-9. [PMID: 26321253 PMCID: PMC4576164 DOI: 10.1016/j.molcel.2015.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 06/01/2015] [Accepted: 07/17/2015] [Indexed: 12/03/2022]
Abstract
While immune cell adaptors regulate proximal T cell signaling, direct regulation of the nuclear pore complex (NPC) has not been reported. NPC has cytoplasmic filaments composed of RanGAP1 and RanBP2 with the potential to interact with cytoplasmic mediators. Here, we show that the immune cell adaptor SLP-76 binds directly to SUMO-RanGAP1 of cytoplasmic fibrils of the NPC, and that this interaction is needed for optimal NFATc1 and NF-κB p65 nuclear entry in T cells. Transmission electron microscopy showed anti-SLP-76 cytoplasmic labeling of the majority of NPCs in anti-CD3 activated T cells. Further, SUMO-RanGAP1 bound to the N-terminal lysine 56 of SLP-76 where the interaction was needed for optimal RanGAP1-NPC localization and GAP exchange activity. While the SLP-76-RanGAP1 (K56E) mutant had no effect on proximal signaling, it impaired NF-ATc1 and p65/RelA nuclear entry and in vivo responses to OVA peptide. Overall, we have identified SLP-76 as a direct regulator of nuclear pore function in T cells. Immune adaptor SLP-76 binds to SUMO-RanGAP1 of cytoplasmic fibrils of the NPC SLP-76 K-56 binding needed for optimal RanGAP1 localization and exchange activity SLP-76 K56E mutant impaired NF-ATc1 and NFκB p65 (RelA) nuclear entry Immune adaptors directly regulate nuclear entry of transcription factors in T cells
Collapse
|
46
|
Paster W, Bruger AM, Katsch K, Grégoire C, Roncagalli R, Fu G, Gascoigne NRJ, Nika K, Cohnen A, Feller SM, Simister PC, Molder KC, Cordoba SP, Dushek O, Malissen B, Acuto O. A THEMIS:SHP1 complex promotes T-cell survival. EMBO J 2014; 34:393-409. [PMID: 25535246 PMCID: PMC4339124 DOI: 10.15252/embj.201387725] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
THEMIS is critical for conventional T-cell development, but its precise molecular function remains elusive. Here, we show that THEMIS constitutively associates with the phosphatases SHP1 and SHP2. This complex requires the adapter GRB2, which bridges SHP to THEMIS in a Tyr-phosphorylation-independent fashion. Rather, SHP1 and THEMIS engage with the N-SH3 and C-SH3 domains of GRB2, respectively, a configuration that allows GRB2-SH2 to recruit the complex onto LAT. Consistent with THEMIS-mediated recruitment of SHP to the TCR signalosome, THEMIS knock-down increased TCR-induced CD3-ζ phosphorylation, Erk activation and CD69 expression, but not LCK phosphorylation. This generalized TCR signalling increase led to augmented apoptosis, a phenotype mirrored by SHP1 knock-down. Remarkably, a KI mutation of LCK Ser59, previously suggested to be key in ERK-mediated resistance towards SHP1 negative feedback, did not affect TCR signalling nor ligand discrimination in vivo. Thus, the THEMIS:SHP complex dampens early TCR signalling by a previously unknown molecular mechanism that favours T-cell survival. We discuss possible implications of this mechanism in modulating TCR output signals towards conventional T-cell development and differentiation.
Collapse
Affiliation(s)
- Wolfgang Paster
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Annika M Bruger
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Kristin Katsch
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Claude Grégoire
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France INSERM U1104, Marseille, France CNRS UMR7280, Marseille, France
| | - Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France INSERM U1104, Marseille, France CNRS UMR7280, Marseille, France
| | - Guo Fu
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicholas R J Gascoigne
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Konstantina Nika
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Andre Cohnen
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Stephan M Feller
- Biological Systems Architecture Group, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK Tumor Biology Unit, Institute of Molecular Medicine, ZAMED, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Philip C Simister
- Biological Systems Architecture Group, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Kelly C Molder
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shaun-Paul Cordoba
- Molecular Immunology Group, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Omer Dushek
- Molecular Immunology Group, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France INSERM U1104, Marseille, France CNRS UMR7280, Marseille, France
| | - Oreste Acuto
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
47
|
Malissen B, Grégoire C, Malissen M, Roncagalli R. Integrative biology of T cell activation. Nat Immunol 2014; 15:790-7. [PMID: 25137453 DOI: 10.1038/ni.2959] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 07/10/2014] [Indexed: 12/11/2022]
Abstract
The activation of T cells mediated by the T cell antigen receptor (TCR) requires the interaction of dozens of proteins, and its malfunction has pathological consequences. Our major focus is on new developments in the systems-level understanding of the TCR signal-transduction network. To make sense of the formidable complexity of this network, we argue that 'fine-grained' methods are needed to assess the relationships among a few components that interact on a nanometric scale, and those should be integrated with high-throughput '-omic' approaches that simultaneously capture large numbers of parameters. We illustrate the utility of this integrative approach with the transmembrane signaling protein Lat, which is a key signaling hub of the TCR signal-transduction network, as a connecting thread.
Collapse
Affiliation(s)
- Bernard Malissen
- 1] Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France. [2] INSERM U1104, Marseille, France. [3] CNRS UMR7280, Marseille, France. [4] Centre d'Immunophénomique, UM2 Aix-Marseille Université, Marseille, France. [5] INSERM US012, Marseille, France. [6] CNRS UMS3367, Marseille, France
| | - Claude Grégoire
- 1] Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France. [2] INSERM U1104, Marseille, France. [3] CNRS UMR7280, Marseille, France
| | - Marie Malissen
- 1] Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France. [2] INSERM U1104, Marseille, France. [3] CNRS UMR7280, Marseille, France. [4] Centre d'Immunophénomique, UM2 Aix-Marseille Université, Marseille, France. [5] INSERM US012, Marseille, France. [6] CNRS UMS3367, Marseille, France
| | - Romain Roncagalli
- 1] Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France. [2] INSERM U1104, Marseille, France. [3] CNRS UMR7280, Marseille, France
| |
Collapse
|
48
|
|
49
|
Roncagalli R, Hauri S, Fiore F, Liang Y, Chen Z, Sansoni A, Kanduri K, Joly R, Malzac A, Lähdesmäki H, Lahesmaa R, Yamasaki S, Saito T, Malissen M, Aebersold R, Gstaiger M, Malissen B. Quantitative proteomics analysis of signalosome dynamics in primary T cells identifies the surface receptor CD6 as a Lat adaptor-independent TCR signaling hub. Nat Immunol 2014; 15:384-392. [PMID: 24584089 DOI: 10.1038/ni.2843] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/03/2014] [Indexed: 02/08/2023]
Abstract
T cell antigen receptor (TCR)-mediated activation of T cells requires the interaction of dozens of proteins. Here we used quantitative mass spectrometry and activated primary CD4(+) T cells from mice in which a tag for affinity purification was knocked into several genes to determine the composition and dynamics of multiprotein complexes that formed around the kinase Zap70 and the adaptors Lat and SLP-76. Most of the 112 high-confidence time-resolved protein interactions we observed were previously unknown. The surface receptor CD6 was able to initiate its own signaling pathway by recruiting SLP-76 and the guanine nucleotide-exchange factor Vav1 regardless of the presence of Lat. Our findings provide a more complete model of TCR signaling in which CD6 constitutes a signaling hub that contributes to the diversification of TCR signaling.
Collapse
Affiliation(s)
- Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France
| | - Simon Hauri
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, Switzerland
| | - Fréderic Fiore
- Centre d'Immunophénomique, UM2 Aix-Marseille Université, Marseille, France.,INSERM US012, Marseille, France.,CNRS UMS3367, Marseille, France
| | - Yinming Liang
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France
| | - Zhi Chen
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Amandine Sansoni
- Centre d'Immunophénomique, UM2 Aix-Marseille Université, Marseille, France.,INSERM US012, Marseille, France.,CNRS UMS3367, Marseille, France
| | - Kartiek Kanduri
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Rachel Joly
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France
| | - Aurélie Malzac
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France
| | - Harri Lähdesmäki
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland.,Department of Information and Computer Science, Aalto University, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takashi Saito
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, Switzerland
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France.,Centre d'Immunophénomique, UM2 Aix-Marseille Université, Marseille, France.,INSERM US012, Marseille, France.,CNRS UMS3367, Marseille, France
| |
Collapse
|
50
|
Liu H, Thaker YR, Stagg L, Schneider H, Ladbury JE, Rudd CE. SLP-76 sterile α motif (SAM) and individual H5 α helix mediate oligomer formation for microclusters and T-cell activation. J Biol Chem 2013; 288:29539-49. [PMID: 23935094 PMCID: PMC3795252 DOI: 10.1074/jbc.m112.424846] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the importance of the immune adaptor SLP-76 in T-cell immunity, it has been unclear whether SLP-76 directly self-associates to form higher order oligomers for T-cell activation. In this study, we show that SLP-76 self-associates in response to T-cell receptor ligation as mediated by the N-terminal sterile α motif (SAM) domain. SLP-76 co-precipitated alternately tagged SLP-76 in response to anti-CD3 ligation. Dynamic light scattering and fluorescent microscale thermophoresis of the isolated SAM domain (residues 1–78) revealed evidence of dimers and tetramers. Consistently, deletion of the SAM region eliminated SLP-76 co-precipitation of itself, concurrent with a loss of microcluster formation, nuclear factor of activated T-cells (NFAT) transcription, and interleukin-2 production in Jurkat or primary T-cells. Furthermore, the H5 α helix within the SAM domain contributed to self-association. Retention of H5 in the absence of H1–4 sufficed to support SLP-76 self-association with smaller microclusters that nevertheless enhanced anti-CD3-driven AP1/NFAT transcription and IL-2 production. By contrast, deletion of the H5 α helix impaired self-association and anti-CD3 induced AP1/NFAT transcription. Our data identified for the first time a role for the SAM domain in mediating SLP-76 self-association for T-cell function.
Collapse
Affiliation(s)
- Hebin Liu
- From the Cell Signalling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | | | | | | | | | | |
Collapse
|