1
|
Vallet T, Vignuzzi M. Self-Amplifying RNA: Advantages and Challenges of a Versatile Platform for Vaccine Development. Viruses 2025; 17:566. [PMID: 40285008 PMCID: PMC12031284 DOI: 10.3390/v17040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Self-amplifying RNA is synthetic nucleic acid engineered to replicate within cells without generating viral particles. Derived from alphavirus genomes, saRNA retains the non-structural elements essential for replication while replacing the structural elements with an antigen of interest. By enabling efficient intracellular amplification, saRNA offers a promising alternative to conventional mRNA vaccines, enhancing antigen expression while requiring lower doses. However, this advantage comes with challenges. In this review, we highlight the key limitations of saRNA technology and explore potential strategies to overcome them. By identifying these challenges, we aim to provide insights that can guide the future design of saRNA-based therapeutics, extending their potential beyond vaccine applications.
Collapse
Affiliation(s)
- Thomas Vallet
- A*STAR Infectious Diseases Labs (A*IDL), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore;
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 118420, Singapore
| | - Marco Vignuzzi
- A*STAR Infectious Diseases Labs (A*IDL), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore;
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 118420, Singapore
| |
Collapse
|
2
|
Craft K, Amanor A, Barnett I, Donaldson C, Anegon I, Madduri S, Tang Q, Bility MT. Can Humanized Immune System Mouse and Rat Models Accelerate the Development of Cytomegalovirus-Based Vaccines Against Infectious Diseases and Cancers? Int J Mol Sci 2025; 26:3082. [PMID: 40243710 PMCID: PMC11988357 DOI: 10.3390/ijms26073082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Over the past three decades, immunodeficient mouse models carrying human immune cells, with or without human lymphoid tissues, termed humanized immune system (HIS) rodent models, have been developed to recapitulate the human immune system and associated immune responses. HIS mouse models have successfully modeled many human-restricted viral infections, including those caused by human cytomegalovirus (HCMV) and human immunodeficiency virus (HIV). HIS mouse models have also been used to model human cancer immunobiology, which exhibits differences from murine cancers in traditional mouse models. Variants of HIS mouse models that carry human liver cells, lung tissue, skin tissue, or human patient-derived tumor xenografts and human hematopoietic stem cells-derived-human immune cells with or without lymphoid tissue xenografts have been developed to probe human immune responses to infections and human tumors. HCMV-based vaccines are human-restricted, which poses limitations for mechanistic and efficacy studies using traditional animal models. The HCMV-based vaccine approach is a promising vaccine strategy as it induces robust effector memory T cell responses that may be critical in preventing and rapidly controlling persistent viral infections and cancers. Here, we review novel HIS mouse models with robust human immune cell development and primary and secondary lymphoid tissues that could address many of the limitations of HIS mice in their use as animal models for HCMV-based vaccine research. We also reviewed novel HIS rat models, which could allow long-term (greater than one year) vaccinology studies and better recapitulate human pathophysiology. Translating laboratory research findings to clinical application is a significant bottleneck in vaccine development; HIS rodents and related variants that more accurately model human immunology and diseases could increase the translatability of research findings.
Collapse
Affiliation(s)
- Kaci Craft
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Athina Amanor
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Ian Barnett
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Clarke Donaldson
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Ignacio Anegon
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France;
| | - Srinivas Madduri
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, University of Geneva, 1211 Geneva, Switzerland;
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Moses T. Bility
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| |
Collapse
|
3
|
Boomgarden AC, Upadhyay C. Progress and Challenges in HIV-1 Vaccine Research: A Comprehensive Overview. Vaccines (Basel) 2025; 13:148. [PMID: 40006695 PMCID: PMC11860913 DOI: 10.3390/vaccines13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The development of an effective HIV-1 vaccine remains a formidable challenge in biomedical research. Despite significant advancements in our understanding of HIV biology and pathogenesis, progress has been impeded by factors such as the virus's genetic diversity, high mutation rates, and its ability to establish latent reservoirs. Recent innovative approaches, including mosaic vaccines and mRNA technology to induce broadly neutralizing antibodies, have shown promise. However, the efficacy of these vaccines has been modest, with the best results achieving approximately 30% effectiveness. Ongoing research emphasizes the necessity of a multifaceted strategy to overcome these obstacles and achieve a breakthrough in HIV-1 vaccine development. This review summarizes current approaches utilized to further understand HIV-1 biology and to create a global vaccine. We discuss the impact of these approaches on vaccine development for other diseases, including COVID-19, influenza, and Zika virus. Additionally, we highlight the specific limitations faced with each approach and present the methods researchers employ to overcome these challenges. These innovative techniques, which have demonstrated preclinical and clinical success, have advanced the field closer to the ultimate goal of developing a global HIV-1 vaccine. Leveraging these advancements will enable significant strides in combating HIV-1 and other infectious diseases, ultimately improving global health outcomes.
Collapse
Affiliation(s)
| | - Chitra Upadhyay
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
4
|
Jartti M, Flodström-Tullberg M, Hankaniemi MM. Enteroviruses: epidemic potential, challenges and opportunities with vaccines. J Biomed Sci 2024; 31:73. [PMID: 39010093 PMCID: PMC11247760 DOI: 10.1186/s12929-024-01058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024] Open
Abstract
Enteroviruses (EVs) are the most prevalent viruses in humans. EVs can cause a range of acute symptoms, from mild common colds to severe systemic infections such as meningitis, myocarditis, and flaccid paralysis. They can also lead to chronic diseases such as cardiomyopathy. Although more than 280 human EV serotypes exist, only four serotypes have licenced vaccines. No antiviral drugs are available to treat EV infections, and global surveillance of EVs has not been effectively coordinated. Therefore, poliovirus still circulates, and there have been alarming epidemics of non-polio enteroviruses. Thus, there is a pressing need for coordinated preparedness efforts against EVs.This review provides a perspective on recent enterovirus outbreaks and global poliovirus eradication efforts with continuous vaccine development initiatives. It also provides insights into the challenges and opportunities in EV vaccine development. Given that traditional whole-virus vaccine technologies are not suitable for many clinically relevant EVs and considering the ongoing risk of enterovirus outbreaks and the potential for new emerging pathogenic strains, the need for new effective and adaptable enterovirus vaccines is emphasized.This review also explores the difficulties in translating promising vaccine candidates for clinical use and summarizes information from published literature and clinical trial databases focusing on existing enterovirus vaccines, ongoing clinical trials, the obstacles faced in vaccine development as well as the emergence of new vaccine technologies. Overall, this review contributes to the understanding of enterovirus vaccines, their role in public health, and their significance as a tool for future preparedness.
Collapse
Affiliation(s)
- Minne Jartti
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Malin Flodström-Tullberg
- Department of Medicine Huddinge and Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Minna M Hankaniemi
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
5
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
6
|
Sinha D, Yaugel-Novoa M, Waeckel L, Paul S, Longet S. Unmasking the potential of secretory IgA and its pivotal role in protection from respiratory viruses. Antiviral Res 2024; 223:105823. [PMID: 38331200 DOI: 10.1016/j.antiviral.2024.105823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Mucosal immunity has regained its spotlight amidst the ongoing Coronavirus disease 19 (COVID-19) pandemic, with numerous studies highlighting the crucial role of mucosal secretory IgA (SIgA) in protection against Severe acute respiratory syndrome coronavirus-2 or SARS-CoV-2 infections. The observed limitations in the efficacy of currently authorized COVID-19 vaccines in inducing effective mucosal immune responses remind us of the limitations of systemic vaccination in promoting protective mucosal immunity. This resurgence of interest has motivated the development of vaccine platforms capable of enhancing mucosal responses, specifically the SIgA response, and the development of IgA-based therapeutics. Recognizing viral respiratory infections as a global threat, we would like to comprehensively review the existing knowledge on mucosal immunity, with a particular emphasis on SIgA, in the context of SARS-CoV-2, influenza, and Respiratory Syncytial Virus (RSV) infections. This review aims to describe the structural and functional specificities of SIgA, along with its nuanced role in combating influenza, RSV, and SARS-CoV-2 infections. Subsequent sections further elaborate promising vaccine strategies, including mucosal vaccines against Influenza, RSV, and SARS-CoV-2 respiratory viruses, currently undergoing preclinical and clinical development. Additionally, we address the challenges associated with mucosal vaccine development, concluding with a discussion on IgA-based therapeutics as a promising platform for the treatment of viral respiratory infections. This comprehensive review not only synthesizes current insights into mucosal immunity but also identifies critical knowledge gaps, strengthening the way for further advancements in our current understanding and approaches to combat respiratory viral threats.
Collapse
Affiliation(s)
- Divya Sinha
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Melyssa Yaugel-Novoa
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Louis Waeckel
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France; Immunology Department, University Hospital of Saint-Etienne, F42055, Saint-Etienne, France
| | - Stéphane Paul
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France; Immunology Department, University Hospital of Saint-Etienne, F42055, Saint-Etienne, France; CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, F42055, Saint-Etienne, France.
| | - Stéphanie Longet
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France.
| |
Collapse
|
7
|
Kozak M, Hu J. DNA Vaccines: Their Formulations, Engineering and Delivery. Vaccines (Basel) 2024; 12:71. [PMID: 38250884 PMCID: PMC10820593 DOI: 10.3390/vaccines12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The concept of DNA vaccination was introduced in the early 1990s. Since then, advancements in the augmentation of the immunogenicity of DNA vaccines have brought this technology to the market, especially in veterinary medicine, to prevent many diseases. Along with the successful COVID mRNA vaccines, the first DNA vaccine for human use, the Indian ZyCovD vaccine against SARS-CoV-2, was approved in 2021. In the current review, we first give an overview of the DNA vaccine focusing on the science, including adjuvants and delivery methods. We then cover some of the emerging science in the field of DNA vaccines, notably efforts to optimize delivery systems, better engineer delivery apparatuses, identify optimal delivery sites, personalize cancer immunotherapy through DNA vaccination, enhance adjuvant science through gene adjuvants, enhance off-target and heritable immunity through epigenetic modification, and predict epitopes with bioinformatic approaches. We also discuss the major limitations of DNA vaccines and we aim to address many theoretical concerns.
Collapse
Affiliation(s)
- Michael Kozak
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- The Department of Pathology and Laboratory Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- The Department of Pathology and Laboratory Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
8
|
Morrocchi E, van Haren S, Palma P, Levy O. Modeling human immune responses to vaccination in vitro. Trends Immunol 2024; 45:32-47. [PMID: 38135599 PMCID: PMC11688643 DOI: 10.1016/j.it.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
The human immune system is a complex network of coordinated components that are crucial for health and disease. Animal models, commonly used to study immunomodulatory agents, are limited by species-specific differences, low throughput, and ethical concerns. In contrast, in vitro modeling of human immune responses can enable species- and population-specific mechanistic studies and translational development within the same study participant. Translational accuracy of in vitro models is enhanced by accounting for genetic, epigenetic, and demographic features such as age, sex, and comorbidity. This review explores various human in vitro immune models, considers evidence that they may resemble human in vivo responses, and assesses their potential to accelerate and de-risk vaccine discovery and development.
Collapse
Affiliation(s)
- Elena Morrocchi
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Rome, Italy; Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
| | - Simon van Haren
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Paolo Palma
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Rome, Italy; Chair of Pediatrics, Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy.
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
9
|
Trivedi PD, Byrne BJ, Corti M. Evolving Horizons: Adenovirus Vectors' Timeless Influence on Cancer, Gene Therapy and Vaccines. Viruses 2023; 15:2378. [PMID: 38140619 PMCID: PMC10747483 DOI: 10.3390/v15122378] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Efficient and targeted delivery of a DNA payload is vital for developing safe gene therapy. Owing to the recent success of commercial oncolytic vector and multiple COVID-19 vaccines, adenovirus vectors are back in the spotlight. Adenovirus vectors can be used in gene therapy by altering the wild-type virus and making it replication-defective; specific viral genes can be removed and replaced with a segment that holds a therapeutic gene, and this vector can be used as delivery vehicle for tissue specific gene delivery. Modified conditionally replicative-oncolytic adenoviruses target tumors exclusively and have been studied in clinical trials extensively. This comprehensive review seeks to offer a summary of adenovirus vectors, exploring their characteristics, genetic enhancements, and diverse applications in clinical and preclinical settings. A significant emphasis is placed on their crucial role in advancing cancer therapy and the latest breakthroughs in vaccine clinical trials for various diseases. Additionally, we tackle current challenges and future avenues for optimizing adenovirus vectors, promising to open new frontiers in the fields of cell and gene therapies.
Collapse
Affiliation(s)
| | | | - Manuela Corti
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA; (P.D.T.); (B.J.B.)
| |
Collapse
|
10
|
Ibrahim A, Humphries UW, Ngiamsunthorn PS, Baba IA, Qureshi S, Khan A. Modeling the dynamics of COVID-19 with real data from Thailand. Sci Rep 2023; 13:13082. [PMID: 37567888 PMCID: PMC10421938 DOI: 10.1038/s41598-023-39798-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
In recent years, COVID-19 has evolved into many variants, posing new challenges for disease control and prevention. The Omicron variant, in particular, has been found to be highly contagious. In this study, we constructed and analyzed a mathematical model of COVID-19 transmission that incorporates vaccination and three different compartments of the infected population: asymptomatic [Formula: see text], symptomatic [Formula: see text], and Omicron [Formula: see text]. The model is formulated in the Caputo sense, which allows for fractional derivatives that capture the memory effects of the disease dynamics. We proved the existence and uniqueness of the solution of the model, obtained the effective reproduction number, showed that the model exhibits both endemic and disease-free equilibrium points, and showed that backward bifurcation can occur. Furthermore, we documented the effects of asymptomatic infected individuals on the disease transmission. We validated the model using real data from Thailand and found that vaccination alone is insufficient to completely eradicate the disease. We also found that Thailand must monitor asymptomatic individuals through stringent testing to halt and subsequently eradicate the disease. Our study provides novel insights into the behavior and impact of the Omicron variant and suggests possible strategies to mitigate its spread.
Collapse
Affiliation(s)
- Alhassan Ibrahim
- Department of Mathematics, Faculty of Science, King Mongkut's University of Technology, Thonburi (KMUTT), 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok, 10140, Thailand
- Department of Mathematical Sciences, Bayero University, Kano, Nigeria
| | - Usa Wannasingha Humphries
- Department of Mathematics, Faculty of Science, King Mongkut's University of Technology, Thonburi (KMUTT), 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok, 10140, Thailand.
| | - Parinya Sa Ngiamsunthorn
- Department of Mathematics, Faculty of Science, King Mongkut's University of Technology, Thonburi (KMUTT), 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok, 10140, Thailand
| | - Isa Abdullahi Baba
- Department of Mathematics, Faculty of Science, King Mongkut's University of Technology, Thonburi (KMUTT), 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok, 10140, Thailand
- Department of Mathematical Sciences, Bayero University, Kano, Nigeria
| | - Sania Qureshi
- Department of mathematics, Near East University TRNC, Mersin 10, Turkey
- Department of Basic Sciences and Related Studies, Mehran University of Engineering & Technology, Jamshoro, 76062, Pakistan
| | - Amir Khan
- Department of Mathematics and Statistics, University of Swat, Khyber Pakhtunkhwa, kpk, Pakistan
| |
Collapse
|
11
|
Zhao M, Zhai Y, Zai X, Mao Y, Hu E, Wei Z, Li Y, Li K, Liu Y, Xu J, Yu R, Chen W. Comparative evaluation of protective immunity against Francisella tularensis induced by subunit or adenovirus-vectored vaccines. Front Cell Infect Microbiol 2023; 13:1195314. [PMID: 37305410 PMCID: PMC10248143 DOI: 10.3389/fcimb.2023.1195314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Tularemia is a highly contagious disease caused by infection with Francisella tularensis (Ft), a pathogenic intracellular gram-negative bacterium that infects a wide range of animals and causes severe disease and death in people, making it a public health concern. Vaccines are the most effective way to prevent tularemia. However, there are no Food and Drug Administration (FDA)-approved Ft vaccines thus far due to safety concerns. Herein, three membrane proteins of Ft, Tul4, OmpA, and FopA, and a molecular chaperone, DnaK, were identified as potential protective antigens using a multifactor protective antigen platform. Moreover, the recombinant DnaK, FopA, and Tul4 protein vaccines elicited a high level of IgG antibodies but did not protect against challenge. In contrast, protective immunity was elicited by a replication-defective human type 5 adenovirus (Ad5) encoding the Tul4, OmpA, FopA, and DnaK proteins (Ad5-Tul4, Ad5-OmpA, Ad5-FopA, and Ad5-DnaK) after a single immunization, and all Ad5-based vaccines stimulated a Th1-biased immune response. Moreover, intramuscular and intranasal vaccination with Ad5-Tul4 using the prime-boost strategy effectively eliminated Ft lung, spleen and liver colonization and provided nearly 80% protection against intranasal challenge with the Ft live vaccine strain (LVS). Only intramuscular, not intranasal vaccination, with Ad5-Tul4 protected mice from intraperitoneal challenge. This study provides a comprehensive comparison of protective immunity against Ft provided by subunit or adenovirus-vectored vaccines and suggests that mucosal vaccination with Ad5-Tul4 may yield desirable protective efficacy against mucosal infection, while intramuscular vaccination offers greater overall protection against intraperitoneal tularemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Rui Yu
- *Correspondence: Rui Yu, ; Wei Chen,
| | - Wei Chen
- *Correspondence: Rui Yu, ; Wei Chen,
| |
Collapse
|
12
|
Kok TW, Izzo AA, Costabile M. Intracellular immunoglobulin A (icIgA) in protective immunity and vaccines. Scand J Immunol 2023; 97:e13253. [PMID: 36597220 DOI: 10.1111/sji.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/20/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
Virus neutralization at respiratory mucosal surfaces is important in the prevention of infection. Mucosal immunity is mediated mainly by extracellular secretory immunoglobulin A (sIgA) and its role has been well studied. However, the protective role of intracellular specific IgA (icIgA) is less well defined. Initially, in vitro studies using epithelial cell lines with surface expressed polymeric immunoglobulin receptor (pIgR) in transwell culture chambers have shown that icIgA can neutralize influenza, parainfluenza, HIV, rotavirus and measles viruses. This effect appears to involve an interaction between polymeric immunoglobulin A (pIgA) and viral particles within an intracellular compartment, since IgA is transported across the polarized cell. Co-localization of specific icIgA with influenza virus in patients' (virus culture positive) respiratory epithelial cells using well-characterized antisera was initially reported in 2018. This review provides a summary of in vitro studies with icIgA on colocalization and neutralization of the above five viruses. Two other highly significant respiratory infectious agents with severe global impacts viz. SARS-2 virus (CoViD pandemic) and the intracellular bacterium-Mycobacterium tuberculosis-are discussed. Further studies will provide more detailed understanding of the mechanisms and kinetics of icIgA neutralization in relation to viral entry and early replication steps with a specific focus on mucosal infections. This will inform the design of more effective vaccines against infectious agents transmitted via the mucosal route.
Collapse
Affiliation(s)
- Tuck-Weng Kok
- University of Adelaide, Faculty of Health & Medical Sciences and School of Biological Sciences, Adelaide, South Australia, Australia
| | - Angelo A Izzo
- University of Sydney, Tuberculosis Research Program, Centenary Institute, Camperdown, New South Wales, Australia
| | - Maurizio Costabile
- University of South Australia, Clinical and Health Sciences and Centre for Cancer Biology, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Johnson MM, Jones CE, Clark DN. The Effect of Treatment-Associated Mutations on HIV Replication and Transmission Cycles. Viruses 2022; 15:107. [PMID: 36680147 PMCID: PMC9861436 DOI: 10.3390/v15010107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
HIV/AIDS mortality has been decreasing over the last decade. While promising, this decrease correlated directly with increased use of antiretroviral drugs. As a natural consequence of its high mutation rate, treatments provide selection pressure that promotes the natural selection of escape mutants. Individuals may acquire drug-naive strains, or those that have already mutated due to treatment. Even within a host, mutation affects HIV tropism, where initial infection begins with R5-tropic virus, but the clinical transition to AIDS correlates with mutations that lead to an X4-tropic switch. Furthermore, the high mutation rate of HIV has spelled failure for all attempts at an effective vaccine. Pre-exposure drugs are currently the most effective drug-based preventatives, but their effectiveness is also threatened by viral mutation. From attachment and entry to assembly and release, the steps in the replication cycle are also discussed to describe the drug mechanisms and mutations that arise due to those drugs. Revealing the patterns of HIV-1 mutations, their effects, and the coordinated attempt to understand and control them will lead to effective use of current preventative measures and treatment options, as well as the development of new ones.
Collapse
Affiliation(s)
- Madison M. Johnson
- Department of Microbiology, Weber State University, Ogden, UT 84408, USA
| | | | | |
Collapse
|
14
|
Harwood OE, Balgeman AJ, Weaver AJ, Ellis-Connell AL, Weiler AM, Erickson KN, Matschke LM, Golfinos AE, Vezys V, Skinner PJ, Safrit JT, Edlefsen PT, Reynolds MR, Friedrich TC, O’Connor SL. Transient T Cell Expansion, Activation, and Proliferation in Therapeutically Vaccinated Simian Immunodeficiency Virus-Positive Macaques Treated with N-803. J Virol 2022; 96:e0142422. [PMID: 36377872 PMCID: PMC9749465 DOI: 10.1128/jvi.01424-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Vaccine strategies aimed at eliciting human immunodeficiency virus (HIV)-specific CD8+ T cells are one major target of interest in HIV functional cure strategies. We hypothesized that CD8+ T cells elicited by therapeutic vaccination during antiretroviral therapy (ART) would be recalled and boosted by treatment with the interleukin 15 (IL-15) superagonist N-803 after ART discontinuation. We intravenously immunized four simian immunodeficiency virus-positive (SIV+) Mauritian cynomolgus macaques receiving ART with vesicular stomatitis virus (VSV), modified vaccinia virus Ankara strain (MVA), and recombinant adenovirus serotype 5 (rAd-5) vectors all expressing SIVmac239 Gag. Immediately after ART cessation, these animals received three doses of N-803. Four control animals received no vaccines or N-803. The vaccine regimen generated a high-magnitude response involving Gag-specific CD8+ T cells that were proliferative and biased toward an effector memory phenotype. We then compared cells elicited by vaccination (Gag specific) to cells elicited by SIV infection and unaffected by vaccination (Nef specific). We found that N-803 treatment enhanced the frequencies of both bulk and proliferating antigen-specific CD8+ T cells elicited by vaccination and the antigen-specific CD8+ T cells elicited by SIV infection. In sum, we demonstrate that a therapeutic heterologous prime-boost-boost (HPBB) vaccine can elicit antigen-specific effector memory CD8+ T cells that are boosted by N-803. IMPORTANCE While antiretroviral therapy (ART) can suppress HIV replication, it is not a cure. It is therefore essential to develop therapeutic strategies to enhance the immune system to better become activated and recognize virus-infected cells. Here, we evaluated a novel therapeutic vaccination strategy delivered to SIV+ Mauritian cynomolgus macaques receiving ART. ART was then discontinued and we delivered an immunotherapeutic agent (N-803) after ART withdrawal with the goal of eliciting and boosting anti-SIV cellular immunity. Immunologic and virologic analysis of peripheral blood and lymph nodes collected from these animals revealed transient boosts in the frequency, activation, proliferation, and memory phenotype of CD4+ and CD8+ T cells following each intervention. Overall, these results are important in educating the field of the transient nature of the immunological responses to this particular therapeutic regimen and the similar effects of N-803 on boosting T cells elicited by vaccination or elicited naturally by infection.
Collapse
Affiliation(s)
- Olivia E. Harwood
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Alexis J. Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Abigail J. Weaver
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Amy L. Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | | | - Lea M. Matschke
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Athena E. Golfinos
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Vaiva Vezys
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pamela J. Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Matthew R. Reynolds
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Thomas C. Friedrich
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| |
Collapse
|
15
|
Adenovirus vector system: construction, history and therapeutic applications. Biotechniques 2022; 73:297-305. [DOI: 10.2144/btn-2022-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Since the isolation of adenovirus (AdV) in 1953, AdVs have been used as vectors for various therapeutic purposes, such as gene therapy in cancers and other malignancies, vaccine development and delivery of CRISPR-Cas9 machinery. Over the years, several AdV vector modifications have been introduced, including fiber switching, incorporation of ligands in the viral capsid and hexon modification of the fiber, to improve the efficiency of AdV as a vector. CRISPR-Cas9 has recently been used for these modifications and is also used in other adeno-associated viruses. These modifications further allow the production of AdV libraries that display random peptides for the production of cancer-targeting AdV vectors. This review focuses on the common methods of AdV construction, changes in AdV tropism for the improvement of therapeutic efficiency and the role of AdV vectors in gene therapy, vaccine development and CRISPR-Cas9 delivery.
Collapse
|
16
|
Araújo NM, Rubio IGS, Toneto NPA, Morale MG, Tamura RE. The use of adenoviral vectors in gene therapy and vaccine approaches. Genet Mol Biol 2022; 45:e20220079. [PMID: 36206378 PMCID: PMC9543183 DOI: 10.1590/1678-4685-gmb-2022-0079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Adenovirus was first identified in the 1950s and since then this pathogenic group
of viruses has been explored and transformed into a genetic transfer vehicle.
Modification or deletion of few genes are necessary to transform it into a
conditionally or non-replicative vector, creating a versatile tool capable of
transducing different tissues and inducing high levels of transgene expression.
In the early years of vector development, the application in monogenic diseases
faced several hurdles, including short-term gene expression and even a fatality.
On the other hand, an adenoviral delivery strategy for treatment of cancer was
the first approved gene therapy product. There is an increasing interest in
expressing transgenes with therapeutic potential targeting the cancer hallmarks,
inhibiting metastasis, inducing cancer cell death or modulating the immune
system to attack the tumor cells. Replicative adenovirus as vaccines may be even
older and date to a few years of its discovery, application of non-replicative
adenovirus for vaccination against different microorganisms has been
investigated, but only recently, it demonstrated its full potential being one of
the leading vaccination tools for COVID-19. This is not a new vector nor a new
technology, but the result of decades of careful and intense work in this
field.
Collapse
Affiliation(s)
- Natália Meneses Araújo
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil.
| | - Ileana Gabriela Sanchez Rubio
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | | | - Mirian Galliote Morale
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | - Rodrigo Esaki Tamura
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil.
| |
Collapse
|
17
|
Ura T, Takeuchi M, Kawagoe T, Mizuki N, Okuda K, Shimada M. Current Vaccine Platforms in Enhancing T-Cell Response. Vaccines (Basel) 2022; 10:1367. [PMID: 36016254 PMCID: PMC9413345 DOI: 10.3390/vaccines10081367] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
The induction of T cell-mediated immunity is crucial in vaccine development. The most effective vaccine is likely to employ both cellular and humoral immune responses. The efficacy of a vaccine depends on T cells activated by antigen-presenting cells. T cells also play a critical role in the duration and cross-reactivity of vaccines. Moreover, pre-existing T-cell immunity is associated with a decreased severity of infectious diseases. Many technical and delivery platforms have been designed to induce T cell-mediated vaccine immunity. The immunogenicity of vaccines is enhanced by controlling the kinetics and targeted delivery. Viral vectors are attractive tools that enable the intracellular expression of foreign antigens and induce robust immunity. However, it is necessary to select an appropriate viral vector considering the existing anti-vector immunity that impairs vaccine efficacy. mRNA vaccines have the advantage of rapid and low-cost manufacturing and have been approved for clinical use as COVID-19 vaccines for the first time. mRNA modification and nanomaterial encapsulation can help address mRNA instability and translation efficacy. This review summarizes the T cell responses of vaccines against various infectious diseases based on vaccine technologies and delivery platforms and discusses the future directions of these cutting-edge platforms.
Collapse
Affiliation(s)
- Takehiro Ura
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Masaki Takeuchi
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Tatsukata Kawagoe
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
- Department of Ophthalmology and Visual Science, School of Medicine, St. Marianna University, Kawazaki 216-8511, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Kenji Okuda
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Masaru Shimada
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| |
Collapse
|
18
|
Hu Z, Lu SH, Lowrie DB, Fan XY. Research Advances for Virus-vectored Tuberculosis Vaccines and Latest Findings on Tuberculosis Vaccine Development. Front Immunol 2022; 13:895020. [PMID: 35812383 PMCID: PMC9259874 DOI: 10.3389/fimmu.2022.895020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by respiratory infection with Mycobacterium tuberculosis, remains a major global health threat. The only licensed TB vaccine, the one-hundred-year-old Bacille Calmette-Guérin has variable efficacy and often provides poor protection against adult pulmonary TB, the transmissible form of the disease. Thus, the lack of an optimal TB vaccine is one of the key barriers to TB control. Recently, the development of highly efficacious COVID-19 vaccines within one year accelerated the vaccine development process in human use, with the notable example of mRNA vaccines and adenovirus-vectored vaccines, and increased the public acceptance of the concept of the controlled human challenge model. In the TB vaccine field, recent progress also facilitated the deployment of an effective TB vaccine. In this review, we provide an update on the current virus-vectored TB vaccine pipeline and summarize the latest findings that might facilitate TB vaccine development. In detail, on the one hand, we provide a systematic literature review of the virus-vectored TB vaccines are in clinical trials, and other promising candidate vaccines at an earlier stage of development are being evaluated in preclinical animal models. These research sharply increase the likelihood of finding a more effective TB vaccine in the near future. On the other hand, we provide an update on the latest tools and concept that facilitating TB vaccine research development. We propose that a pre-requisite for successful development may be a better understanding of both the lung-resident memory T cell-mediated mucosal immunity and the trained immunity of phagocytic cells. Such knowledge could reveal novel targets and result in the innovative vaccine designs that may be needed for a quantum leap forward in vaccine efficacy. We also summarized the research on controlled human infection and ultra-low-dose aerosol infection murine models, which may provide more realistic assessments of vaccine utility at earlier stages. In addition, we believe that the success in the ongoing efforts to identify correlates of protection would be a game-changer for streamlining the triage of multiple next-generation TB vaccine candidates. Thus, with more advanced knowledge of TB vaccine research, we remain hopeful that a more effective TB vaccine will eventually be developed in the near future.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| | - Shui-Hua Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Douglas B. Lowrie
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| |
Collapse
|
19
|
Harris JE. The repeated setbacks of HIV vaccine development laid the groundwork for SARS-CoV-2 vaccines. HEALTH POLICY AND TECHNOLOGY 2022; 11:100619. [PMID: 35340773 PMCID: PMC8935961 DOI: 10.1016/j.hlpt.2022.100619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The decades-long effort to produce a workable HIV vaccine has hardly been a waste of public and private resources. To the contrary, the scientific know-how acquired along the way has served as the critical foundation for the development of vaccines against the novel, pandemic SARS-CoV-2 virus. We retell the real-world story of HIV vaccine research - with all its false leads and missteps - in a way that sheds light on the current state of the art of antiviral vaccines. We find that HIV-related R&D had more than a general spillover effect. In fact, the repeated failures of phase 2 and 3 clinical trials of HIV vaccine candidates have served as a critical stimulus to the development of successful vaccine technologies today. We rebut the counterargument that HIV vaccine development has been no more than a blind alley, and that recently developed vaccines against COVID-19 are really descendants of successful vaccines against Ebola, MERS, and SARS. These successful vaccines likewise owe much to the vicissitudes of HIV vaccine development. We then discuss how the failures of HIV vaccine development have taught us how adapt SARS-CoV-2 vaccines to immune escape from emerging variants. Finally, we inquire whether recent advances in the development of vaccines against SARS-CoV-2 might in turn further the development of an HIV vaccine - what we describe as a reverse spillover effect.
Collapse
Affiliation(s)
- Jeffrey E Harris
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Eisner Health, Los Angeles, CA 90015, USA
| |
Collapse
|
20
|
Ampie L, McGavern DB. Immunological defense of CNS barriers against infections. Immunity 2022; 55:781-799. [PMID: 35545028 PMCID: PMC9087878 DOI: 10.1016/j.immuni.2022.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022]
Abstract
Neuroanatomical barriers with physical, chemical, and immunological properties play an essential role in preventing the spread of peripheral infections into the CNS. A failure to contain pathogens within these barriers can result in very serious CNS diseases. CNS barriers are inhabited by an elaborate conglomerate of innate and adaptive immune cells that are highly responsive to environmental challenges. The CNS and its barriers can also be protected by memory T and B cells elicited by prior infection or vaccination. Here, we discuss the different CNS barriers from a developmental, anatomical, and immunological standpoint and summarize our current understanding of how memory cells protect the CNS compartment. We then discuss a contemporary challenge to CNS-barrier system (SARS-CoV-2 infection) and highlight approaches to promote immunological protection of the CNS via vaccination.
Collapse
Affiliation(s)
- Leonel Ampie
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Department of Surgical Neurology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Cytokine Adjuvants IL-7 and IL-15 Improve Humoral Responses of a SHIV LentiDNA Vaccine in Animal Models. Vaccines (Basel) 2022; 10:vaccines10030461. [PMID: 35335093 PMCID: PMC8949948 DOI: 10.3390/vaccines10030461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
HIV-1 remains a major public health issue worldwide in spite of efficacious antiviral therapies, but with no cure or preventive vaccine. The latter has been very challenging, as virus infection is associated with numerous escape mechanisms from host specific immunity and the correlates of protection remain incompletely understood. We have developed an innovative vaccine strategy, inspired by the efficacy of live-attenuated virus, but with the safety of a DNA vaccine, to confer both cellular and humoral responses. The CAL-SHIV-IN− lentiDNA vaccine comprises the backbone of the pathogenic SHIVKU2 genome, able to mimic the early phase of viral infection, but with a deleted integrase gene to ensure safety precluding integration within the host genome. This vaccine prototype, constitutively expressing viral antigen under the CAEV LTR promoter, elicited a variety of vaccine-specific, persistent CD4 and CD8 T cells against SIV-Gag and Nef up to 80 weeks post-immunization in cynomolgus macaques. Furthermore, these specific responses led to antiviral control of the pathogenic SIVmac251. To further improve the efficacy of this vaccine, we incorporated the IL-7 or IL-15 genes into the CAL-SHIV-IN− plasmid DNA in efforts to increase the pool of vaccine-specific memory T cells. In this study, we examined the immunogenicity of the two co-injected lentiDNA vaccines CAL-SHIV-IN− IRES IL-7 and CAL-SHIV-IN− IRES IL-15 in BALB/cJ mice and rhesus macaques and compared the immune responses with those generated by the parental vaccine CAL-SHIV-IN−. This co-immunization elicited potent vaccine-specific CD4 and CD8 T cells both in mice and rhesus macaques. Antibody-dependent cell-mediated cytotoxicity (ADCC) antibodies were detected up to 40 weeks post-immunization in both plasma and mucosal compartments of rhesus macaques and were enhanced by the cytokines.
Collapse
|
22
|
Timofeeva A, Sedykh S, Nevinsky G. Post-Immune Antibodies in HIV-1 Infection in the Context of Vaccine Development: A Variety of Biological Functions and Catalytic Activities. Vaccines (Basel) 2022; 10:384. [PMID: 35335016 PMCID: PMC8955465 DOI: 10.3390/vaccines10030384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Unlike many other viruses, HIV-1 is highly variable. The structure of the viral envelope changes as the infection progresses and is one of the biggest obstacles in developing an HIV-1 vaccine. HIV-1 infection can cause the production of various natural autoantibodies, including catalytic antibodies hydrolyzing DNA, myelin basic protein, histones, HIV-integrase, HIV-reverse transcriptase, β-casein, serum albumin, and some other natural substrates. Currently, there are various directions for the development of HIV-1 vaccines: stimulation of the immune response on the mucous membranes; induction of cytotoxic T cells, which lyse infected cells and hold back HIV-infection; immunization with recombinant Env proteins or vectors encoding Env; mRNA-based vaccines and some others. However, despite many attempts to develop an HIV-1 vaccine, none have been successful. Here we review the entire spectrum of antibodies found in HIV-infected patients, including neutralizing antibodies specific to various viral epitopes, as well as antibodies formed against various autoantigens, catalytic antibodies against autoantigens, and some viral proteins. We consider various promising targets for developing a vaccine that will not produce unwanted antibodies in vaccinated patients. In addition, we review common problems in the development of a vaccine against HIV-1.
Collapse
Affiliation(s)
- Anna Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.S.); (G.N.)
| | - Sergey Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.S.); (G.N.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Georgy Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.S.); (G.N.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
23
|
Han Y, Pan J, Ma Y, Zhou D, Xu W. Protein-based biomaterials for combating viral infections: current status and future prospects for development. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
24
|
Roth GA, Picece VCTM, Ou BS, Luo W, Pulendran B, Appel EA. Designing spatial and temporal control of vaccine responses. NATURE REVIEWS. MATERIALS 2022; 7:174-195. [PMID: 34603749 PMCID: PMC8477997 DOI: 10.1038/s41578-021-00372-2] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 05/02/2023]
Abstract
Vaccines are the key technology to combat existing and emerging infectious diseases. However, increasing the potency, quality and durability of the vaccine response remains a challenge. As our knowledge of the immune system deepens, it becomes clear that vaccine components must be in the right place at the right time to orchestrate a potent and durable response. Material platforms, such as nanoparticles, hydrogels and microneedles, can be engineered to spatially and temporally control the interactions of vaccine components with immune cells. Materials-based vaccination strategies can augment the immune response by improving innate immune cell activation, creating local inflammatory niches, targeting lymph node delivery and controlling the time frame of vaccine delivery, with the goal of inducing enhanced memory immunity to protect against future infections. In this Review, we highlight the biological mechanisms underlying strong humoral and cell-mediated immune responses and explore materials design strategies to manipulate and control these mechanisms.
Collapse
Affiliation(s)
- Gillie A. Roth
- Department of Bioengineering, Stanford University, Stanford, CA USA
| | - Vittoria C. T. M. Picece
- Department of Materials Science & Engineering, Stanford University, Stanford, CA USA
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Ben S. Ou
- Department of Bioengineering, Stanford University, Stanford, CA USA
| | - Wei Luo
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, CA USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, CA USA
- ChEM-H Institute, Stanford University, Stanford, CA USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA USA
| | - Eric A. Appel
- Department of Bioengineering, Stanford University, Stanford, CA USA
- Department of Materials Science & Engineering, Stanford University, Stanford, CA USA
- ChEM-H Institute, Stanford University, Stanford, CA USA
- Department of Paediatrics — Endocrinology, Stanford University School of Medicine, Stanford, CA USA
| |
Collapse
|
25
|
Domínguez-Rodríguez S, Tagarro A, Foster C, Palma P, Cotugno N, Zicari S, Ruggiero A, de Rossi A, Dalzini A, Pahwa S, Rinaldi S, Nastouli E, Marcelin AG, Dorgham K, Sauce D, Gartner K, Rossi P, Giaquinto C, Rojo P. Clinical, Virological and Immunological Subphenotypes in a Cohort of Early Treated HIV-Infected Children. Front Immunol 2022; 13:875692. [PMID: 35592310 PMCID: PMC9111748 DOI: 10.3389/fimmu.2022.875692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/31/2022] [Indexed: 02/02/2023] Open
Abstract
Background Identifying subphenotypes within heterogeneous diseases may have an impact in terms of therapeutic options. In this study, we aim to assess different subphenotypes in children living with human immunodeficiency virus (HIV-1), according to the clinical, virological, and immunological characteristics. Methods We collected clinical and sociodemographic data, baseline viral load (VL), CD4 and CD8 count and percentage, age at initiation of ART, HIV DNA reservoir size in peripheral blood mononuclear cells (PBMCs), cell-associated RNA (CA-RNA), ultrasensitive VL, CD4 subsets (T effector CD25+, activated memory cells, Treg cells), humoral-specific HIV response (T-bet B cells), innate response (CD56dim natural killer (NK) cells, NKp46+, perforin), exhaustion markers (PD-1, PD-L1, DNAM), CD8 senescence, and biomarkers for T-lymphocyte thymic output (TREC) and endothelial activation (VCAM). The most informative variables were selected using an unsupervised lasso-type penalty selection for sparse clustering. Hierarchical clustering was performed using Pearson correlation as the distance metric and WARD.D2 as the clustering method. Internal validation was applied to select the best number of clusters. To compare the characteristics among clusters, boxplot and Kruskal Wallis test were assessed. Results Three subphenotypes were discovered (cluster1: n=18, 45%; cluster2: n=11, 27.5%; cluster3: n=11, 27.5%). Patients in cluster1 were treated earlier, had higher baseline %CD4, low HIV reservoir size, low western blot score, higher TREC values, and lower VCAM values than the patients in the other clusters. In contrast, cluster3 was the less favorable. Patients were treated later and presented poorer outcomes with lower %CD4, and higher reservoir size, along with a higher percentage of CD8 immunosenescent cells, lower TREC, higher VCAM cytokine, and a higher %CD4 PD-1. Cluster2 was intermediate. Patients were like those of cluster1, but had lower levels of t-bet expression and higher HIV DNA reservoir size. Conclusions Three HIV pediatric subphenotypes with different virological and immunological features were identified. The most favorable cluster was characterized by a higher rate of immune reconstitution and a slower disease progression, and the less favorable with more senescence and high reservoir size. In the near future therapeutic interventions for a path of a cure might be guided or supported by the different subphenotypes.
Collapse
Affiliation(s)
- Sara Domínguez-Rodríguez
- Pediatric Infectious Diseases Unit, Fundación para la Investigación Biomédica del Hospital 12 de Octubre, Madrid, Spain
| | - Alfredo Tagarro
- Pediatric Infectious Diseases Unit, Fundación para la Investigación Biomédica del Hospital 12 de Octubre, Madrid, Spain.,Department of Pediatrics, Fundación para la Investigación e Innovación Biomédica del Hospital Universitario Infanta Sofía y Hospital Universitario del Henares, Madrid, Spain
| | - Caroline Foster
- Department of Pediatrics, Imperial College Healthcare National Health Service (NHS) Trust., London, United Kingdom
| | - Paolo Palma
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesu, Rome, Italy.,Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Cotugno
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesu, Rome, Italy.,Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Sonia Zicari
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesu, Rome, Italy
| | - Alessandra Ruggiero
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesu, Rome, Italy
| | - Anita de Rossi
- Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padua, Padua, Italy
| | - Annalisa Dalzini
- Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padua, Padua, Italy
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stefano Rinaldi
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eleni Nastouli
- Infection, Immunity & Inflammation Department, University College of London (UCL) Great Ormond Street Institute of Child Health (GOS), London, United Kingdom
| | - Anne-Geneviève Marcelin
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Karim Dorgham
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Delphine Sauce
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Kathleen Gartner
- Infection, Immunity & Inflammation Department, University College of London (UCL) Great Ormond Street Institute of Child Health (GOS), London, United Kingdom
| | - Paolo Rossi
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesu, Rome, Italy.,Academic Department of Pediatrics (DPUO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesu, Rome, Italy
| | - Carlo Giaquinto
- Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padua, Padua, Italy
| | - Pablo Rojo
- Pediatric Infectious Diseases Unit, Fundación para la Investigación Biomédica del Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
26
|
Buchy P, Buisson Y, Cintra O, Dwyer DE, Nissen M, Ortiz de Lejarazu R, Petersen E. COVID-19 pandemic: lessons learned from more than a century of pandemics and current vaccine development for pandemic control. Int J Infect Dis 2021; 112:300-317. [PMID: 34563707 PMCID: PMC8459551 DOI: 10.1016/j.ijid.2021.09.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 01/04/2023] Open
Abstract
Pandemic dynamics and health care responses are markedly different during the COVID-19 pandemic than in earlier outbreaks. Compared with established infectious disease such as influenza, we currently know relatively little about the origin, reservoir, cross-species transmission and evolution of SARS-CoV-2. Health care services, drug availability, laboratory testing, research capacity and global governance are more advanced than during 20th century pandemics, although COVID-19 has highlighted significant gaps. The risk of zoonotic transmission and an associated new pandemic is rising substantially. COVID-19 vaccine development has been done at unprecedented speed, with the usual sequential steps done in parallel. The pandemic has illustrated the feasibility of this approach and the benefits of a globally coordinated response and infrastructure. Some of the COVID-19 vaccines recently developed or currently in development might offer flexibility or sufficiently broad protection to swiftly respond to antigenic drift or emergence of new coronaviruses. Yet many challenges remain, including the large-scale production of sufficient quantity of vaccines, delivery of vaccines to all countries and ensuring vaccination of relevant age groups. This wide vaccine technology approach will be best employed in tandem with active surveillance for emerging variants or new pathogens using antigen mapping, metagenomics and next generation sequencing.
Collapse
Affiliation(s)
| | | | | | - Dominic E Dwyer
- New South Wales Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead Hospital, New South Wales, Australia.
| | - Michael Nissen
- Consultant in Infectious Diseases, University of Queensland, Brisbane, Australia.
| | - Raul Ortiz de Lejarazu
- Scientific Advisor & Emeritus director at Valladolid NIC (National Influenza Centre) Spain, School of Medicine, Avd Ramón y Cajal s/n 47005 Valladolid, Spain.
| | - Eskild Petersen
- European Society for Clinical Microbiology and Infectious Diseases, Basel, Switzerland; Department of Molecular Medicine, The University of Pavia, Pavia, Italy; Department of Clinical, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
27
|
Elkashif A, Alhashimi M, Sayedahmed EE, Sambhara S, Mittal SK. Adenoviral vector-based platforms for developing effective vaccines to combat respiratory viral infections. Clin Transl Immunology 2021; 10:e1345. [PMID: 34667600 PMCID: PMC8510854 DOI: 10.1002/cti2.1345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Since the development of the first vaccine against smallpox over two centuries ago, vaccination strategies have been at the forefront of significantly impacting the incidences of infectious diseases globally. However, the increase in the human population, deforestation and climate change, and the rise in worldwide travel have favored the emergence of new viruses with the potential to cause pandemics. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a cruel reminder of the impact of novel pathogens and the suboptimal capabilities of conventional vaccines. Therefore, there is an urgent need to develop new vaccine strategies that allow the production of billions of doses in a short duration and are broadly protective against emerging and re-emerging infectious diseases. Extensive knowledge of the molecular biology and immunology of adenoviruses (Ad) has favored Ad vectors as platforms for vaccine design. The Ad-based vaccine platform represents an attractive strategy as it induces robust humoral and cell-mediated immune responses and can meet the global demand in a pandemic situation. This review describes the status of Ad vector-based vaccines in preclinical and clinical studies for current and emerging respiratory viruses, particularly coronaviruses, influenza viruses and respiratory syncytial viruses.
Collapse
Affiliation(s)
- Ahmed Elkashif
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Marwa Alhashimi
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Ekramy E Sayedahmed
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | | | - Suresh K Mittal
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| |
Collapse
|
28
|
Fathizadeh H, Afshar S, Masoudi MR, Gholizadeh P, Asgharzadeh M, Ganbarov K, Köse Ş, Yousefi M, Kafil HS. SARS-CoV-2 (Covid-19) vaccines structure, mechanisms and effectiveness: A review. Int J Biol Macromol 2021; 188:740-750. [PMID: 34403674 PMCID: PMC8364403 DOI: 10.1016/j.ijbiomac.2021.08.076] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022]
Abstract
The world has been suffering from COVID-19 disease for more than a year, and it still has a high mortality rate. In addition to the need to minimize transmission of the virus through non-pharmacological measures such as the use of masks and social distance, many efforts are being made to develop a variety of vaccines to prevent the disease worldwide. So far, several vaccines have reached the final stages of safety and efficacy in various phases of clinical trials, and some, such as Moderna/NIAID and BioNTech/Pfizer, have reported very high safety and protection. The important point is that comparing different vaccines is not easy because there is no set standard for measuring neutralization. In this study, we have reviewed the common platforms of COVID-19 vaccines and tried to present the latest reports on the effectiveness of these vaccines.
Collapse
Affiliation(s)
- Hadis Fathizadeh
- Department of laboratory sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Saman Afshar
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mahmood Reza Masoudi
- Department of Internal Medicine, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Pourya Gholizadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Iran
| | | | | | - Şükran Köse
- Department of Infectious Diseases and Clinical Microbiology, University of Health Sciences, Tepecik Training and Research Hospital, İzmir, Turkey
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Iran.
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
29
|
Li Q, Wang J, Tang Y, Lu H. Next-generation COVID-19 vaccines: Opportunities for vaccine development and challenges in tackling COVID-19. Drug Discov Ther 2021; 15:118-123. [PMID: 34234059 DOI: 10.5582/ddt.2021.01058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global threat. Although non-pharmaceutical interventions have been rigorously and widely implemented, living conditions caused by the pandemic will last until highly effective vaccines are successfully improved and globally administered. Several first-generation COVID-19 vaccines were approved at the end of 2020. However, the COVID-19 pandemic is persisting worldwide. To be clear, the efficiency and the coverage of current vaccines are insufficient, but newly emerging and rapidly spreading variants are the most pressing concern. A second-generation COVID-19 vaccine worth mentioning, NVX-CoV2373, has demonstrated 90% overall efficacy as well as a high level of efficacy against circulating variants in Phase 3 clinical trials. Currently, NVX-CoV2373 is the only vaccine that has proven successful against variants during Phase 3/4 trials. Therefore, developing the next generation of vaccines is a promising strategy to ultimately prevail against SARS-CoV-2. This review provides up-to-date information on COVID-19 vaccines in terms of their efficacy and new platforms and the progression of COVID-19 vaccination. Moreover, this review also summarizes the efficacy of approved COVID-19 vaccines against variants. Lastly, this review highlights the global challenges for COVID-19 vaccines in development and vaccination, and it discusses opportunities for development of future COVID-19 vaccines and vaccination coverage.
Collapse
Affiliation(s)
- Qian Li
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, China
| | - Jun Wang
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, China
| | - Yang Tang
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, China
| |
Collapse
|
30
|
Hokello J, Sharma AL, Tyagi M. An Update on the HIV DNA Vaccine Strategy. Vaccines (Basel) 2021; 9:vaccines9060605. [PMID: 34198789 PMCID: PMC8226902 DOI: 10.3390/vaccines9060605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 01/24/2023] Open
Abstract
In 2020, the global prevalence of human immunodeficiency virus (HIV) infection was estimated to be 38 million, and a total of 690,000 people died from acquired immunodeficiency syndrome (AIDS)–related complications. Notably, around 12.6 million people living with HIIV/AIDS did not have access to life-saving treatment. The advent of the highly active antiretroviral therapy (HAART) in the mid-1990s remarkably enhanced the life expectancy of people living with HIV/AIDS as a result of improved immune functions. However, HAART has several drawbacks, especially when it is not used properly, including a high risk for the development of drug resistance, as well as undesirable side effects such as lipodystrophy and endocrine dysfunctions, which result in HAART intolerability. HAART is also not curative. Furthermore, new HIV infections continue to occur globally at a high rate, with an estimated 1.7 million new infections occurring in 2018 alone. Therefore, there is still an urgent need for an affordable, effective, and readily available preventive vaccine against HIV/AIDS. Despite this urgent need, however, progress toward an effective HIV vaccine has been modest over the last four decades. Reasons for this slow progress are mainly associated with the unique aspects of HIV itself and its ability to rapidly mutate, targeting immune cells and escape host immune responses. Several approaches to an HIV vaccine have been undertaken. However, this review will mainly discuss progress made, including the pre-clinical and clinical trials involving vector-based HIV DNA vaccines and the use of integrating lentiviral vectors in HIV vaccine development. We concluded by recommending particularly the use of integrase-defective lentiviral vectors, owing to their safety profiles, as one of the promising vectors in HIV DNA vaccine strategies both for prophylactic and therapeutic HIV vaccines.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Microbiology and Immunology, Faculty of Biomedical Sciences, Kampala International University-Western Campus, P.O. Box 71, Bushenyi 0256, Uganda;
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA;
- Correspondence:
| |
Collapse
|
31
|
Bisgin A, Sanlioglu AD, Eksi YE, Griffith TS, Sanlioglu S. Current Update on Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine Development with a Special Emphasis on Gene Therapy Viral Vector Design and Construction for Vaccination. Hum Gene Ther 2021; 32:541-562. [PMID: 33858231 DOI: 10.1089/hum.2021.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) is a newly emerging infectious disease (COVID-19) caused by the novel coronavirus SARS-coronavirus 2 (CoV-2). To combat the devastating spread of SARS-CoV-2, extraordinary efforts from numerous laboratories have focused on the development of effective and safe vaccines. Traditional live-attenuated or inactivated viral vaccines are not recommended for immunocompromised patients as the attenuated virus can still cause disease via phenotypic or genotypic reversion. Subunit vaccines require repeated dosing and adjuvant use to be effective, and DNA vaccines exhibit lower immune responses. mRNA vaccines can be highly unstable under physiological conditions. On the contrary, naturally antigenic viral vectors with well-characterized structure and safety profile serve as among the most effective gene carriers to provoke immune response via heterologous gene transfer. Viral vector-based vaccines induce both an effective cellular immune response and a humoral immune response owing to their natural adjuvant properties via transduction of immune cells. Consequently, viral vectored vaccines carrying the SARS-CoV-2 spike protein have recently been generated and successfully used to activate cytotoxic T cells and develop a neutralizing antibody response. Recent progress in SARS-CoV-2 vaccines, with an emphasis on gene therapy viral vector-based vaccine development, is discussed in this review.
Collapse
Affiliation(s)
- Atil Bisgin
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Medical Genetics, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Ahter D Sanlioglu
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Yunus Emre Eksi
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Thomas S Griffith
- The Department of Urology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Salih Sanlioglu
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
32
|
Mucosal Priming with a Recombinant Influenza A Virus-Vectored Vaccine Elicits T-Cell and Antibody Responses to HIV-1 in Mice. J Virol 2021; 95:JVI.00059-21. [PMID: 33789991 DOI: 10.1128/jvi.00059-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Recombinant influenza A viral (IAV) vectors are potential to stimulate systemic and mucosal immunity, but the packaging capacity is limited and only one or a few epitopes can be carried. Here, we report the generation of a replication-competent IAV vector that carries a full-length HIV-1 p24 gene linked to the 5'-terminal coding region of the neuraminidase segment via a protease cleavage sequence (IAV-p24). IAV-p24 was successfully rescued and stably propagated, and P24 protein was efficiently expressed in infected mammalian cells. In BALB/c mice, IAV-p24 showed attenuated pathogenicity compared to that of the parental A/PR/8/34 (H1N1) virus. An intranasal inoculation with IAV-p24 elicited moderate HIV-specific cell-mediated immune (CMI) responses in the airway and vaginal tracts and in the spleen, and an intranasal boost with a replication-incompetent adenovirus type 2 vector expressing the HIV-1 gag gene (Ad2-gag) greatly improved these responses. Importantly, compared to an Ad2-gag prime plus IAV-p24 boost regimen, the IAV-p24 prime plus Ad2-gag boost regimen had a greater efficacy in eliciting HIV-specific CMI responses. P24-specific CD8+ T cells and antibodies were robustly provoked both systemically and in mucosal sites and showed long-term durability, revealing that IAV-p24 may be used as a mucosa-targeted priming vaccine. Our results illustrate that IAV-p24 is able to prime systemic and mucosal immunity against HIV-1 and warrants further evaluation in nonhuman primates.IMPORTANCE An effective HIV-1 vaccine remains elusive despite nearly 40 years of research. CD8+ T cells and protective antibodies may both be desirable for preventing HIV-1 infection in susceptible mucosal sites. Recombinant influenza A virus (IAV) vector has the potential to stimulate these immune responses, but the packaging capacity is extremely limited. Here, we describe a replication-competent IAV vector expressing the HIV-1 p24 gene (IAV-p24). Unlike most other IAV vectors that carried one or several antigenic epitopes, IAV-p24 stably expressed the full-length P24 protein, which contains multiple epitopes and is highly conserved among all known HIV-1 sequences. Compared to the parental A/PR/8/34 (H1N1) virus, IAV-p24 showed an attenuated pathogenicity in BALB/c mice. When combined with an adenovirus vector expressing the HIV-1 gag gene, IAV-p24 was able to prime P24-specific systemic and mucosal immune responses. IAV-p24 as an alternative priming vaccine against HIV-1 warrants further evaluation in nonhuman primates.
Collapse
|
33
|
Pollara J, Tay MZ, Edwards RW, Goodman D, Crowley AR, Edwards RJ, Easterhoff D, Conley HE, Hoxie T, Gurley T, Jones C, Machiele E, Tuyishime M, Donahue E, Jha S, Spreng RL, Hope TJ, Wiehe K, He MM, Moody MA, Saunders KO, Ackerman ME, Ferrari G, Tomaras GD. Functional Homology for Antibody-Dependent Phagocytosis Across Humans and Rhesus Macaques. Front Immunol 2021; 12:678511. [PMID: 34093580 PMCID: PMC8174565 DOI: 10.3389/fimmu.2021.678511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Analyses of human clinical HIV-1 vaccine trials and preclinical vaccine studies performed in rhesus macaque (RM) models have identified associations between non-neutralizing Fc Receptor (FcR)-dependent antibody effector functions and reduced risk of infection. Specifically, antibody-dependent phagocytosis (ADP) has emerged as a common correlate of reduced infection risk in multiple RM studies and the human HVTN505 trial. This recurrent finding suggests that antibody responses with the capability to mediate ADP are most likely a desirable component of vaccine responses aimed at protecting against HIV-1 acquisition. As use of RM models is essential for development of the next generation of candidate HIV-1 vaccines, there is a need to determine how effectively ADP activity observed in RMs translates to activity in humans. In this study we compared ADP activity of human and RM monocytes and polymorphonuclear leukocytes (PMN) to bridge this gap in knowledge. We observed considerable variability in the magnitude of monocyte and PMN ADP activity across individual humans and RM that was not dependent on FcR alleles, and only modestly impacted by cell-surface levels of FcRs. Importantly, we found that for both human and RM phagocytes, ADP activity of antibodies targeting the CD4 binding site was greatest when mediated by human IgG3, followed by RM and human IgG1. These results demonstrate that there is functional homology between antibody and FcRs from these two species for ADP. We also used novel RM IgG1 monoclonal antibodies engineered with elongated hinge regions to show that hinge elongation augments RM ADP activity. The RM IgGs with engineered hinge regions can achieve ADP activity comparable to that observed with human IgG3. These novel modified antibodies will have utility in passive immunization studies aimed at defining the role of IgG3 and ADP in protection from virus challenge or control of disease in RM models. Our results contribute to a better translation of human and macaque antibody and FcR biology, and may help to improve testing accuracy and evaluations of future active and passive prevention strategies.
Collapse
Affiliation(s)
- Justin Pollara
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States.,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Matthew Zirui Tay
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - R Whitney Edwards
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Derrick Goodman
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Andrew R Crowley
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Robert J Edwards
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - David Easterhoff
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Haleigh E Conley
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Taylor Hoxie
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Thaddeus Gurley
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Caroline Jones
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Emily Machiele
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Marina Tuyishime
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Elizabeth Donahue
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Shalini Jha
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Rachel L Spreng
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Thomas J Hope
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kevin Wiehe
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Max M He
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - M Anthony Moody
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Kevin O Saunders
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States.,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | | | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States.,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Georgia D Tomaras
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States.,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
34
|
Koch T, Fathi A, Addo MM. The COVID-19 Vaccine Landscape. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:549-573. [PMID: 33973199 DOI: 10.1007/978-3-030-63761-3_31] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The history of vaccine development spans centuries. At first, whole pathogens were used as vaccine agents, either inactivated or attenuated, to reduce virulence in humans. Safety and tolerability were increased by including only specific proteins as antigens and using cell culture methods, while novel vaccine strategies, like nucleic acid- or vector-based vaccines, hold high promise for the future. Vaccines have generally not been employed as the primary tools in outbreak response, but this might change since advances in medical technology in the last decades have made the concept of developing vaccines against novel pathogens a realistic strategy. Wandering the uncharted territory of a novel pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we can learn from other human Betacoronaviridae that emerged in the last decades, SARS-CoV-1 and MERS-CoV. We can identify the most likely target structures of immunity, establish animal models that emulate human disease and immunity as closely as possible, and learn about complex mechanisms of immune interaction such as cross-reactivity or antibody-dependent enhancement (ADE). However, significant knowledge gaps remain. What are the correlates of protection? How do we best induce immunity in vulnerable populations like the elderly? Will the immunity induced by vaccination (or by natural infection) wane over time? To date, at least 149 vaccine candidates against SARS-CoV-2 are under development. At the time of writing, at least 17 candidates have already progressed past preclinical studies (in vitro models and in vivo animal experiments) into clinical development. This chapter will provide an overview of this rapidly developing field.
Collapse
Affiliation(s)
- Till Koch
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany. .,German Center for Infection Research, Hamburg-Lubeck-Borstel-Riems, Hamburg, Germany.
| | - Anahita Fathi
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research, Hamburg-Lubeck-Borstel-Riems, Hamburg, Germany
| | - Marylyn M Addo
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research, Hamburg-Lubeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
35
|
Loo KY, Letchumanan V, Ser HL, Teoh SL, Law JWF, Tan LTH, Ab Mutalib NS, Chan KG, Lee LH. COVID-19: Insights into Potential Vaccines. Microorganisms 2021; 9:605. [PMID: 33804162 PMCID: PMC8001762 DOI: 10.3390/microorganisms9030605] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
People around the world ushered in the new year 2021 with a fear of COVID-19, as family members have lost their loved ones to the disease. Millions of people have been infected, and the livelihood of many has been jeopardized due to the pandemic. Pharmaceutical companies are racing against time to develop an effective vaccine to protect against COVID-19. Researchers have developed various types of candidate vaccines with the release of the genetic sequence of the SARS-CoV-2 virus in January. These include inactivated viral vaccines, protein subunit vaccines, mRNA vaccines, and recombinant viral vector vaccines. To date, several vaccines have been authorized for emergency use and they have been administered in countries across the globe. Meanwhile, there are also vaccine candidates in Phase III clinical trials awaiting results and approval from authorities. These candidates have shown positive results in the previous stages of the trials, whereby they could induce an immune response with minimal side effects in the participants. This review aims to discuss the different vaccine platforms and the clinical trials of the candidate vaccines.
Collapse
Affiliation(s)
- Ke-Yan Loo
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
| | - Siew Li Teoh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
| | - Nurul-Syakima Ab Mutalib
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
| |
Collapse
|
36
|
MacPherson A, Hutchinson N, Schneider O, Oliviero E, Feldhake E, Ouimet C, Sheng J, Awan F, Wang C, Papenburg J, Basta NE, Kimmelman J. Probability of Success and Timelines for the Development of Vaccines for Emerging and Reemerged Viral Infectious Diseases. Ann Intern Med 2021; 174:326-334. [PMID: 33226855 PMCID: PMC7707230 DOI: 10.7326/m20-5350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Anticipated success rates and timelines for COVID-19 vaccine development vary. Recent experience with developing and testing viral vaccine candidates can inform expectations regarding the development of safe and effective vaccines. OBJECTIVE To estimate timelines and probabilities of success for recent vaccine candidates. DESIGN ClinicalTrials.gov was searched to identify trials testing viral vaccines that had not advanced to phase 2 before 2005, and the progress of each vaccine from phase 1 through to U.S. Food and Drug Administration (FDA) licensure was tracked. Trial characteristics were double-coded. (Registration: Open Science Framework [https://osf.io/dmuzx/]). SETTING Trials launched between January 2005 and March 2020. PARTICIPANTS Preventive viral vaccine candidates for 23 emerging or reemerged viral infectious diseases. MEASUREMENTS The primary end point was the probability of vaccines advancing from launch of phase 2 to FDA licensure within 10 years. RESULTS In total, 606 clinical trials forming 220 distinct development trajectories (267 343 enrolled participants) were identified. The probability of vaccines progressing from phase 2 to licensure within 10 years was 10.0% (95% CI, 2.6% to 16.9%), with most approvals representing H1N1 or H5N1 vaccines. The average timeline from phase 2 to approval was 4.4 years (range, 6.4 weeks to 13.9 years). The probabilities of advancing from phase 1 to 2, phase 2 to 3, and phase 3 to licensure within the total available follow-up time were 38.2% (CI, 30.7% to 45.0%), 38.3% (CI, 23.1% to 50.5%), and 61.1% (CI, 3.7% to 84.3%), respectively. LIMITATIONS The study did not account for preclinical development and relied primarily on ClinicalTrials.gov and FDA resources. Success probabilities do not capture the varied reasons why vaccines fail to advance to regulatory approval. CONCLUSION Success probabilities and timelines varied widely across different vaccine types and diseases. If a SARS-CoV-2 vaccine is licensed within 18 months of the start of the pandemic, it will mark an unprecedented achievement for noninfluenza viral vaccine development. PRIMARY FUNDING SOURCE McGill Interdisciplinary Initiative in Infection and Immunity (MI4) Emergency COVID-19 Research Funding program.
Collapse
Affiliation(s)
- Amanda MacPherson
- Biomedical Ethics Unit, McGill University, Montreal, Quebec, Canada (A.M., N.H., O.S., E.O., E.F., C.O., J.S., F.A., C.W., J.K.)
| | - Nora Hutchinson
- Biomedical Ethics Unit, McGill University, Montreal, Quebec, Canada (A.M., N.H., O.S., E.O., E.F., C.O., J.S., F.A., C.W., J.K.)
| | - Oliver Schneider
- Biomedical Ethics Unit, McGill University, Montreal, Quebec, Canada (A.M., N.H., O.S., E.O., E.F., C.O., J.S., F.A., C.W., J.K.)
| | - Elisabeth Oliviero
- Biomedical Ethics Unit, McGill University, Montreal, Quebec, Canada (A.M., N.H., O.S., E.O., E.F., C.O., J.S., F.A., C.W., J.K.)
| | - Emma Feldhake
- Biomedical Ethics Unit, McGill University, Montreal, Quebec, Canada (A.M., N.H., O.S., E.O., E.F., C.O., J.S., F.A., C.W., J.K.)
| | - Charlotte Ouimet
- Biomedical Ethics Unit, McGill University, Montreal, Quebec, Canada (A.M., N.H., O.S., E.O., E.F., C.O., J.S., F.A., C.W., J.K.)
| | - Jacky Sheng
- Biomedical Ethics Unit, McGill University, Montreal, Quebec, Canada (A.M., N.H., O.S., E.O., E.F., C.O., J.S., F.A., C.W., J.K.)
| | - Fareed Awan
- Biomedical Ethics Unit, McGill University, Montreal, Quebec, Canada (A.M., N.H., O.S., E.O., E.F., C.O., J.S., F.A., C.W., J.K.)
| | - Catherine Wang
- Biomedical Ethics Unit, McGill University, Montreal, Quebec, Canada (A.M., N.H., O.S., E.O., E.F., C.O., J.S., F.A., C.W., J.K.)
| | | | - Nicole E Basta
- McGill University, Montreal, Quebec, Canada (J.P., N.E.B.)
| | - Jonathan Kimmelman
- Biomedical Ethics Unit, McGill University, Montreal, Quebec, Canada (A.M., N.H., O.S., E.O., E.F., C.O., J.S., F.A., C.W., J.K.)
| |
Collapse
|
37
|
Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther 2021; 6:53. [PMID: 33558455 PMCID: PMC7868676 DOI: 10.1038/s41392-021-00487-6] [Citation(s) in RCA: 725] [Impact Index Per Article: 181.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/05/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023] Open
Abstract
Throughout its 40-year history, the field of gene therapy has been marked by many transitions. It has seen great strides in combating human disease, has given hope to patients and families with limited treatment options, but has also been subject to many setbacks. Treatment of patients with this class of investigational drugs has resulted in severe adverse effects and, even in rare cases, death. At the heart of this dichotomous field are the viral-based vectors, the delivery vehicles that have allowed researchers and clinicians to develop powerful drug platforms, and have radically changed the face of medicine. Within the past 5 years, the gene therapy field has seen a wave of drugs based on viral vectors that have gained regulatory approval that come in a variety of designs and purposes. These modalities range from vector-based cancer therapies, to treating monogenic diseases with life-altering outcomes. At present, the three key vector strategies are based on adenoviruses, adeno-associated viruses, and lentiviruses. They have led the way in preclinical and clinical successes in the past two decades. However, despite these successes, many challenges still limit these approaches from attaining their full potential. To review the viral vector-based gene therapy landscape, we focus on these three highly regarded vector platforms and describe mechanisms of action and their roles in treating human disease.
Collapse
Affiliation(s)
- Jote T Bulcha
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hong Ma
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
38
|
Lin Y, Wang XF, Wang Y, Du C, Ren H, Liu C, Zhu D, Chen J, Na L, Liu D, Yang Z, Wang X. Env diversity-dependent protection of the attenuated equine infectious anaemia virus vaccine. Emerg Microbes Infect 2021; 9:1309-1320. [PMID: 32525460 PMCID: PMC7473056 DOI: 10.1080/22221751.2020.1773323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lentiviruses harbour high genetic variability for efficient evasion from host immunity.
An attenuated equine infectious anaemia (EIA) vaccine was developed decades ago in China
and presented remarkably robust protection against EIA. The vaccine was recently proven to
have high genomic diversity, particular in env. However, how
and to what extent the high env diversity relates to immune
protection remains unclear. In this study, we compared immune protections and responses of
three groups of horses stimulated by the high-diversity vaccine EIAV_HD, a single
molecular clone of the vaccine EIAV_LD with low env
diversity, as well as a constructed vaccine strain EIAV_MD with moderate env diversity. The disparity of virus-host interactions between
three env diversity-varied groups (5 horses in each group)
was evaluated using clinical manifestation, pathological scores, and env-specific antibody. We found the highest titres of env antibodies (Abs) or neutralizing Abs (nAbs) in the EIAV_HD group, followed
by the EIAV_MD group, and the lowest titres in the EIAV_LD group (P<0.05). The occurrence of disease/death was different between EIAV_HD
group (1/0), EIAV_MD (2/2), and EIAV_LD group (4/2). A similar env diversity-related linear relationship was observed in the clinical
manifestations and pathological changes. This diversity-dependent disparity in changes
between the three groups was more distinct after immunosuppression, suggesting that
env diversity plays an important role in protection under
low host immunocompetence. In summary, inoculation with vaccines with higher genetic
diversity could present broader and more efficient protection. Our findings strongly
suggest that an abundance of Env antigens are required for efficient protection against
lentiviruses.
Collapse
Affiliation(s)
- Yuezhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, People's Republic of China
| | - Yuhong Wang
- Department of Geriatrics and Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Huiling Ren
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Cong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Dantong Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jie Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Lei Na
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Diqiu Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Zhibiao Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, People's Republic of China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| |
Collapse
|
39
|
Tzelepis F, Birdi HK, Jirovec A, Boscardin S, Tanese de Souza C, Hooshyar M, Chen A, Sutherland K, Parks RJ, Werier J, Diallo JS. Oncolytic Rhabdovirus Vaccine Boosts Chimeric Anti-DEC205 Priming for Effective Cancer Immunotherapy. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:240-252. [PMID: 33209979 PMCID: PMC7658579 DOI: 10.1016/j.omto.2020.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022]
Abstract
Prime-boost vaccination employing heterologous viral vectors encoding an antigen is an effective strategy to maximize the antigen-specific immune response. Replication-deficient adenovirus serotype 5 (Ad5) is currently being evaluated clinically in North America as a prime in conjunction with oncolytic rhabdovirus Maraba virus (MG1) as a boost. The use of an oncolytic rhabdovirus encoding a tumor antigen elicits a robust anti-cancer immune response and extends survival in murine models of cancer. Given the prevalence of pre-existing immunity to Ad5 globally, we explored the potential use of DEC205-targeted antibodies as an alternative agent to prime antigen-specific responses ahead of boosting with an oncolytic rhabdovirus expressing the same antigen. We found that a prime-boost vaccination strategy, consisting of an anti-DEC205 antibody fused to the model antigen ovalbumin (OVA) as a prime and oncolytic rhabdovirus-OVA as a boost, led to the formation of a robust antigen-specific immune response and improved survival in a B16-OVA tumor model. Overall, our study shows that anti-DEC205 antibodies fused to cancer antigens are effective to prime oncolytic rhabdovirus-boosted cancer antigen responses and may provide an alternative for patients with pre-existing immunity to Ad5 in humans.
Collapse
Affiliation(s)
- Fanny Tzelepis
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Harsimrat Kaur Birdi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Anna Jirovec
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Silvia Boscardin
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii)-INCT, São Paulo, Brazil
| | | | - Mohsen Hooshyar
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Andrew Chen
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Keara Sutherland
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Robin J Parks
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Joel Werier
- Department of Surgery, The Ottawa Hospital, Ottawa, ON, Canada
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
40
|
Li Z, Khanna M, Grimley SL, Ellenberg P, Gonelli CA, Lee WS, Amarasena TH, Kelleher AD, Purcell DFJ, Kent SJ, Ranasinghe C. Mucosal IL-4R antagonist HIV vaccination with SOSIP-gp140 booster can induce high-quality cytotoxic CD4 +/CD8 + T cells and humoral responses in macaques. Sci Rep 2020; 10:22077. [PMID: 33328567 PMCID: PMC7744512 DOI: 10.1038/s41598-020-79172-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/02/2020] [Indexed: 11/09/2022] Open
Abstract
Inducing humoral, cellular and mucosal immunity is likely to improve the effectiveness of HIV-1 vaccine strategies. Here, we tested a vaccine regimen in pigtail macaques using an intranasal (i.n.) recombinant Fowl Pox Virus (FPV)-gag pol env-IL-4R antagonist prime, intramuscular (i.m.) recombinant Modified Vaccinia Ankara Virus (MVA)-gag pol-IL-4R antagonist boost followed by an i.m SOSIP-gp140 boost. The viral vector-expressed IL-4R antagonist transiently inhibited IL-4/IL-13 signalling at the vaccination site. The SOSIP booster not only induced gp140-specific IgG, ADCC (antibody-dependent cellular cytotoxicity) and some neutralisation activity, but also bolstered the HIV-specific cellular and humoral responses. Specifically, superior sustained systemic and mucosal HIV Gag-specific poly-functional/cytotoxic CD4+ and CD8+ T cells were detected with the IL-4R antagonist adjuvanted strategy compared to the unadjuvanted control. In the systemic compartment elevated Granzyme K expression was linked to CD4+ T cells, whilst Granzyme B/TIA-1 to CD8+ T cells. In contrast, the cytotoxic marker expression by mucosal CD4+ and CD8+ T cells differed according to the mucosal compartment. This vector-based mucosal IL-4R antagonist/SOSIP booster strategy, which promotes cytotoxic mucosal CD4+ T cells at the first line of defence, and cytotoxic CD4+ and CD8+ T cells plus functional antibodies in the blood, may prove valuable in combating mucosal infection with HIV-1 and warrants further investigation.
Collapse
Affiliation(s)
- Z Li
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - M Khanna
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - S L Grimley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - P Ellenberg
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - C A Gonelli
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - T H Amarasena
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - A D Kelleher
- Immunovirology and Pathogenesis Program, Kirby Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - D F J Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - S J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - C Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
41
|
Ali MG, Zhang Z, Gao Q, Pan M, Rowan EG, Zhang J. Recent advances in therapeutic applications of neutralizing antibodies for virus infections: an overview. Immunol Res 2020; 68:325-339. [PMID: 33161557 PMCID: PMC7648849 DOI: 10.1007/s12026-020-09159-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022]
Abstract
Antibodies are considered as an excellent foundation to neutralize pathogens and as highly specific therapeutic agents. Antibodies are generated in response to a vaccine but little use as immunotherapy to combat virus infections. A new generation of broadly cross-reactive and highly potent antibodies has led to a unique chance for them to be used as a medical intervention. Neutralizing antibodies (monoclonal and polyclonal antibodies) are desirable for pharmaceutical products because of their ability to target specific epitopes with their variable domains by precise neutralization mechanisms. The isolation of neutralizing antiviral antibodies has been achieved by Phage displayed antibody libraries, transgenic mice, B cell approaches, and hybridoma technology. Antibody engineering technologies have led to efficacy improvements, to further boost antibody in vivo activities. "Although neutralizing antiviral antibodies have some limitations that hinder their full development as therapeutic agents, the potential for prevention and treatment of infections, including a range of viruses (HIV, Ebola, MERS-COV, CHIKV, SARS-CoV, and SARS-CoV2), are being actively pursued in human clinical trials."
Collapse
Affiliation(s)
- Manasik Gumah Ali
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Zhening Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Qi Gao
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Mingzhu Pan
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Edward G Rowan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University Strathclyde, Glasgow, UK
| | - Juan Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
42
|
Rawat K, Kumari P, Saha L. COVID-19 vaccine: A recent update in pipeline vaccines, their design and development strategies. Eur J Pharmacol 2020; 892:173751. [PMID: 33245898 PMCID: PMC7685956 DOI: 10.1016/j.ejphar.2020.173751] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
Coronavirus Disease 2019 named as COVID-19 imposing a huge burden on public health as well as global economies, is caused by a new strain of betacoronavirus named as SARS-CoV-2. The high transmission rate of the virus has resulted in current havoc which highlights the need for a fast and effective approach either to prevent or treat the deadly infection. Development of vaccines can be the most prominent approach to prevent the virus to cause COVID-19 and hence will play a vital role in controlling the spread of the virus and reducing mortality. The virus uses its spike proteins for entering into the host by interacting with a specific receptor called angiotensin converting enzyme-2 (ACE2) present on the surface of alveolar cells in the lungs. Researchers all over the world are targeting the spike protein for the development of potential vaccines. Here, we discuss the immunopathological basis of vaccine designing that can be approached for vaccine development against SARS-CoV-2 infection and different platforms that are being used for vaccine development. We believe this review will increase our understanding of the vaccine designing against SARS-CoV-2 and subsequently contribute to the control of SARS-CoV-2 infections. Also, it gives an insight into the current status of vaccine development and associated outcomes reported at different phases of trial. Either the S protein of the SARS-CoV-2 or the whole pathogen is targeted at the development of vaccines against COVID-19. Lymphocytopenia and Cytokine storm are two major manifestations associated with innate immune response generated against COVID-19. There are 44 vaccine candidates in clinical phase and 154 in preclinical phase of vaccine development. The major hurdle in establishing vaccine's efficacy being its effectiveness and safety at each step among diverse population.
Collapse
Affiliation(s)
- Kajal Rawat
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), 4th Floor, Research Block B, Chandigarh, 160012, India
| | - Puja Kumari
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), 4th Floor, Research Block B, Chandigarh, 160012, India
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), 4th Floor, Research Block B, Chandigarh, 160012, India.
| |
Collapse
|
43
|
Ura T, Yamashita A, Mizuki N, Okuda K, Shimada M. New vaccine production platforms used in developing SARS-CoV-2 vaccine candidates. Vaccine 2020; 39:197-201. [PMID: 33279318 PMCID: PMC7685034 DOI: 10.1016/j.vaccine.2020.11.054] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
The threat of the current coronavirus disease pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is accelerating the development of potential vaccines. Candidate vaccines have been generated using existing technologies that have been applied for developing vaccines against other infectious diseases. Two new types of platforms, mRNA- and viral vector-based vaccines, have been gaining attention owing to the rapid advancement in their methodologies. In clinical trials, setting appropriate immunological endpoints plays a key role in evaluating the efficacy and safety of candidate vaccines. Updated information about immunological features from individuals who have or have not been exposed to SARS-CoV-2 continues to guide effective vaccine development strategies. This review highlights key strategies for generating candidate SARS-CoV-2 vaccines and considerations for vaccine development and clinical trials.
Collapse
Affiliation(s)
- Takehiro Ura
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Akio Yamashita
- Department of Molecular Biology, Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Kenji Okuda
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Masaru Shimada
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
44
|
Lundstrom K. Application of Viral Vectors for Vaccine Development with a Special Emphasis on COVID-19. Viruses 2020; 12:E1324. [PMID: 33218001 PMCID: PMC7698750 DOI: 10.3390/v12111324] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Viral vectors can generate high levels of recombinant protein expression providing the basis for modern vaccine development. A large number of different viral vector expression systems have been utilized for targeting viral surface proteins and tumor-associated antigens. Immunization studies in preclinical animal models have evaluated the elicited humoral and cellular responses and the possible protection against challenges with lethal doses of infectious pathogens or tumor cells. Several vaccine candidates for both infectious diseases and various cancers have been subjected to a number of clinical trials. Human immunization trials have confirmed safe application of viral vectors, generation of neutralizing antibodies and protection against challenges with lethal doses. A special emphasis is placed on COVID-19 vaccines based on viral vectors. Likewise, the flexibility and advantages of applying viral particles, RNA replicons and DNA replicon vectors of self-replicating RNA viruses for vaccine development are presented.
Collapse
|
45
|
Abstract
Acquired immunodeficiency syndrome (AIDS) was first reported more than 30 years ago among homosexuals in the United States. The epidemiology of this disease indicates that there are three modes of transmission: Blood, mother-to-child, and sexual contact transmission. The pathogen of AIDS is human immunodeficiency virus (HIV), primarily HIV-1. HIV-1 could not break through the structurally and functionally integral skin, and primarily invades the human body through the mucosa irrespective of their integrity. Therefore, the mucosae are the natural transmission routes for HIV-1. The mucosae involved in HIV-1 transmission include the mucosae of the gastrointestinal tract and the urogenital tract. The risks of HIV-1 transmission vary significantly between mucosal sites and individuals, and are associated with mucosal integrity, abundance of target cells, immune status of the host, commensal microbes, and host genetic background. Many factors are closely related to the barrier function of the mucosa, and studies on their roles in HIV-1 invasion could promote the prevention and control of mucosal transmission of HIV-1.
Collapse
Affiliation(s)
- Gui-Bo Yang
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
46
|
Abstract
Although the development of effective vaccines has saved countless lives from infectious diseases, the basic workings of the human immune system are complex and have required the development of animal models, such as inbred mice, to define mechanisms of immunity. More recently, new strategies and technologies have been developed to directly explore the human immune system with unprecedented precision. We discuss how these approaches are advancing our mechanistic understanding of human immunology and are facilitating the development of vaccines and therapeutics for infection, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA.
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H: Chemistry, Engineering and Medicine for Human Health, Stanford University, Stanford, CA 94305, USA
- Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
47
|
Abstract
This review provides an overview regarding the main aspects of candidate COVID-19 vaccines and pathophysiology of disease. The types of biotechnological candidate vaccines to be developed against COVID-19, their degree of protection and the pathophysiological mechanism of the disease were analyzed in this review article. The literature data on which cruxes for the development of biotechnological candidate vaccines to be wended are based was researched. Data that could give reference to various biotechnological candidate vaccines were reviewed. For this purpose, up-to-date literature data was utilized. The ways to succeed in the development of a vaccine requiring a technological infrastructure are to synthesize the data obtained from long term trials and to put them into practice subsequently. The vaccines to be developed by means of recombinant DNA technology will be a source of inspiration to people for further studies. After a rapid process of vaccine development, the use of COVID-19 vaccine can be mainstreamed among people to prevent the disease. As a result of these practices, the evaluation of which vaccine will be more safe, reliable and effective will be performed after phase studies.
Collapse
|
48
|
Marques RF, Gimenez AM, Aliprandini E, Novais JT, Cury DP, Watanabe IS, Dominguez MR, Silveira ELV, Amino R, Soares IS. Protective Malaria Vaccine in Mice Based on the Plasmodium vivax Circumsporozoite Protein Fused with the Mumps Nucleocapsid Protein. Vaccines (Basel) 2020; 8:vaccines8020190. [PMID: 32325874 PMCID: PMC7348950 DOI: 10.3390/vaccines8020190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022] Open
Abstract
Plasmodium vivax is the most common species of human malaria parasite found outside Africa, with high endemicity in Asia, Central and South America, and Oceania. Although Plasmodium falciparum causes the majority of deaths, P. vivax can lead to severe malaria and result in significant morbidity and mortality. The development of a protective vaccine will be a major step toward malaria elimination. Recently, a formulation containing the three allelic variants of the P. vivax circumsporozoite protein (PvCSP—All epitopes) showed partial protection in mice after a challenge with the hybrid Plasmodium berghei (Pb) sporozoite, in which the PbCSP central repeats were replaced by the VK210 PvCSP repeats (Pb/Pv sporozoite). In the present study, the chimeric PvCSP allelic variants (VK210, VK247, and P. vivax-like) were fused with the mumps virus nucleocapsid protein in the absence (NLP-CSPR) or presence of the conserved C-terminal (CT) domain of PvCSP (NLP-CSPCT). To elicit stronger humoral and cellular responses, Pichia pastoris yeast was used to assemble them as nucleocapsid-like particles (NLPs). Mice were immunized with each recombinant protein adjuvanted with Poly (I:C) and presented a high frequency of antigen-specific antibody-secreting cells (ASCs) on days 5 and 30, respectively, in the spleen and bone marrow. Moreover, high IgG titers against all PvCSP variants were detected in the sera. Later, these immunized mice with NLP-CSPCT were challenged with Pb/Pv sporozoites. Sterile protection was observed in 30% of the challenged mice. Therefore, this vaccine formulation use has the potential to be a good candidate for the development of a universal vaccine against P. vivax malaria.
Collapse
Affiliation(s)
- Rodolfo F. Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (R.F.M.); (A.M.G.); (J.T.N.); (M.R.D.); (E.L.V.S.)
| | - Alba Marina Gimenez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (R.F.M.); (A.M.G.); (J.T.N.); (M.R.D.); (E.L.V.S.)
- Center of Cellular and Molecular Therapy, Federal University of São Paulo, São Paulo 04044-010 SP, Brazil
| | - Eduardo Aliprandini
- Unit of Malaria Infection & Immunity, Institut Pasteur, 75015 Paris, France; (E.A.); (R.A.)
| | - Janaina T. Novais
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (R.F.M.); (A.M.G.); (J.T.N.); (M.R.D.); (E.L.V.S.)
| | - Diego P. Cury
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (D.P.C.); (I.-S.W.)
| | - Ii-Sei Watanabe
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (D.P.C.); (I.-S.W.)
| | - Mariana R. Dominguez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (R.F.M.); (A.M.G.); (J.T.N.); (M.R.D.); (E.L.V.S.)
| | - Eduardo L. V. Silveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (R.F.M.); (A.M.G.); (J.T.N.); (M.R.D.); (E.L.V.S.)
| | - Rogerio Amino
- Unit of Malaria Infection & Immunity, Institut Pasteur, 75015 Paris, France; (E.A.); (R.A.)
| | - Irene S. Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (R.F.M.); (A.M.G.); (J.T.N.); (M.R.D.); (E.L.V.S.)
- Correspondence:
| |
Collapse
|
49
|
Larijani MS, Ramezani A, Sadat SM. Updated Studies on the Development of HIV Therapeutic Vaccine. Curr HIV Res 2020; 17:75-84. [PMID: 31210114 DOI: 10.2174/1570162x17666190618160608] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Among the various types of pharmaceuticals, vaccines have a special place. However, in the case of HIV, nearly after 40 years of its discovery, an effective vaccine still is not available. The reason lies in several facts mainly the variability and smartness of HIV as well as the complexity of the interaction between HIV and immune responses. A robust, effective, and longterm immunity is undoubtedly what a successful preventive vaccine should induce in order to prevent the infection of HIV. Failure of human trials to this end has led to the idea of developing therapeutic vaccines with the purpose of curing already infected patients by boosting their immune responses against the virus. Nevertheless, the exceptional ability of the virus to escape the immune system based on the genetically diverse envelope and variable protein products have made it difficult to achieve an efficient therapeutic vaccine. OBJECTIVE We aimed at studying and comparing different approaches to HIV therapeutic vaccines. METHODS In this review, we summarized the human trials undergoing on HIV therapeutic vaccination which are registered in the U.S. clinical trial database (clinicaltrials.gov). These attempts are divided into different tables, according to the type of formulation and application in order to classify and compare their results. RESULT/CONCLUSION Among several methods applied in studied clinical trials which are mainly divided into DNA, Protein, Peptide, Viral vectors, and Dendritic cell-based vaccines, protein vaccine strategy is based on Tat protein-induced anti-Tat Abs in 79% HIV patients. However, the studies need to be continued to achieve a durable efficient immune response against HIV-1.
Collapse
Affiliation(s)
- Mona Sadat Larijani
- Hepatitis, AIDS, and Bloodborne Diseases Department, Pasteur Institute of Iran, Tehran, Iran
| | - Amitis Ramezani
- Hepatitis, AIDS, and Bloodborne Diseases Department, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Hepatitis, AIDS, and Bloodborne Diseases Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
50
|
Weaver EA. Dose Effects of Recombinant Adenovirus Immunization in Rodents. Vaccines (Basel) 2019; 7:vaccines7040144. [PMID: 31658786 PMCID: PMC6963634 DOI: 10.3390/vaccines7040144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022] Open
Abstract
Recombinant adenovirus type 5 (rAd) has been used as a vaccine platform against many infectious diseases and has been shown to be an effective vaccine vector. The dose of the vaccine varies significantly from study to study, making it very difficult to compare immune responses and vaccine efficacy. This study determined the immune correlates induced by serial dilutions of rAd vaccines delivered intramuscularly (IM) and intranasally (IN) to mice and rats. When immunized IM, mice had substantially higher antibody responses at the higher vaccine doses, whereas, the IN immunized mice showed a lower response to the higher rAd vaccine doses. Rats did not show dose-dependent antibody responses to increasing vaccine doses. The IM immunized mice and rats also showed significant dose-dependent T cell responses to the rAd vaccine. However, the T cell immunity plateaued in both mice and rats at 109 and 1010 vp/animal, respectively. Additionally, the highest dose of vaccine in mice and rats did not improve the T cell responses. A final vaccine analysis using a lethal influenza virus challenge showed that despite the differences in the immune responses observed in the mice, the mice had very similar patterns of protection. This indicates that rAd vaccines induced dose-dependent immune responses, especially in IM immunized animals, and that immune correlates are not as predictive of protection as initially thought.
Collapse
Affiliation(s)
- Eric A Weaver
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA.
| |
Collapse
|