1
|
Caniels TG, Prabhakaran M, Ozorowski G, MacPhee KJ, Wu W, van der Straten K, Agrawal S, Derking R, Reiss EIMM, Millard K, Turroja M, Desrosiers A, Bethony J, Malkin E, Liesdek MH, van der Veen A, Klouwens M, Snitselaar JL, Bouhuijs JH, Bronson R, Jean-Baptiste J, Gajjala S, Rikhtegaran Tehrani Z, Benner A, Ramaswami M, Duff MO, Liu YW, Sato AH, Kim JY, Baken IJL, Mendes Silva C, Bijl TPL, van Rijswijk J, Burger JA, Cupo A, Yasmeen A, Phulera S, Lee WH, Randall KN, Zhang S, Corcoran MM, Regadas I, Sullivan AC, Brown DM, Bohl JA, Greene KM, Gao H, Yates NL, Sawant S, Prins JM, Kootstra NA, Kaminsky SM, Barin B, Rahaman F, Meller M, Philiponis V, Laufer DS, Lombardo A, Mwoga L, Shotorbani S, Holman D, Koup RA, Klasse PJ, Karlsson Hedestam GB, Tomaras GD, van Gils MJ, Montefiori DC, McDermott AB, Hyrien O, Moore JP, Wilson IA, Ward AB, Diemert DJ, de Bree GJ, Andrews SF, Caskey M, Sanders RW. Precise targeting of HIV broadly neutralizing antibody precursors in humans. Science 2025:eadv5572. [PMID: 40373114 DOI: 10.1126/science.adv5572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 05/01/2025] [Indexed: 05/17/2025]
Abstract
A protective HIV vaccine will need to induce broadly neutralizing antibodies (bnAbs) in humans, but priming rare bnAb precursor B cells has been challenging. In a double-blinded, placebo-controlled phase 1 human clinical trial, the recombinant, germline-targeting envelope glycoprotein (Env) trimer BG505 SOSIP.v4.1-GT1.1, adjuvanted with AS01B, induced bnAb precursors of the VRC01-class at a high frequency in the majority of vaccine recipients. These bnAb precursors, that target the CD4 receptor binding site, had undergone somatic hypermutation characteristic of the VRC01-class. A subset of isolated VRC01-class monoclonal antibodies neutralized wild-type pseudoviruses and was structurally extremely similar to bnAb VRC01. These results further support germline-targeting approaches for human HIV vaccine design and demonstrate atomic-level manipulation of B cell responses with rational vaccine design.
Collapse
Affiliation(s)
- Tom G Caniels
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, location AMC, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Madhu Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Kellie J MacPhee
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Weiwei Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Karlijn van der Straten
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, location AMC, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Sashank Agrawal
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ronald Derking
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, location AMC, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Emma I M M Reiss
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, location AMC, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Katrina Millard
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Martina Turroja
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Aimee Desrosiers
- Vaccine Research Unit, The George Washington University, Washington, DC, USA
| | - Jeffrey Bethony
- Vaccine Research Unit, The George Washington University, Washington, DC, USA
| | - Elissa Malkin
- Vaccine Research Unit, The George Washington University, Washington, DC, USA
| | - Marinus H Liesdek
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, location AMC, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Annelou van der Veen
- Department of Internal Medicine, Amsterdam UMC, location AMC, Amsterdam, Netherlands
| | - Michelle Klouwens
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Department of Internal Medicine, Amsterdam UMC, location AMC, Amsterdam, Netherlands
| | - Jonne L Snitselaar
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, location AMC, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Joey H Bouhuijs
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, location AMC, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Rhianna Bronson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jalen Jean-Baptiste
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Suprabhath Gajjala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zahra Rikhtegaran Tehrani
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alison Benner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mukundhan Ramaswami
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael O Duff
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yung-Wen Liu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alicia H Sato
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ju Yeong Kim
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Isabel J L Baken
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, location AMC, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Catarina Mendes Silva
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, location AMC, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Tom P L Bijl
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, location AMC, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Jacqueline van Rijswijk
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, location AMC, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, location AMC, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Swastik Phulera
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Kipchoge N Randall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Shiyu Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Martin M Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Isabel Regadas
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alex C Sullivan
- Foundation for the National Institutes of Health, Inc., Bethesda, MD, USA
| | - David M Brown
- Foundation for the National Institutes of Health, Inc., Bethesda, MD, USA
| | - Jennifer A Bohl
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kelli M Greene
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Hongmei Gao
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Nicole L Yates
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Sheetal Sawant
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Jan M Prins
- Department of Internal Medicine, Amsterdam UMC, location AMC, Amsterdam, Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Amsterdam UMC, location AMC, Amsterdam, Netherlands
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Farhad Rahaman
- International AIDS Vaccine Initiative (IAVI), New York, NY, USA
| | - Margaret Meller
- International AIDS Vaccine Initiative (IAVI), New York, NY, USA
| | | | - Dagna S Laufer
- International AIDS Vaccine Initiative (IAVI), New York, NY, USA
| | - Angela Lombardo
- International AIDS Vaccine Initiative (IAVI), New York, NY, USA
| | - Lindsey Mwoga
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Solmaz Shotorbani
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Drienna Holman
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | | | - Georgia D Tomaras
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, location AMC, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - David C Montefiori
- Foundation for the National Institutes of Health, Inc., Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - David J Diemert
- Vaccine Research Unit, The George Washington University, Washington, DC, USA
| | - Godelieve J de Bree
- Department of Internal Medicine, Amsterdam UMC, location AMC, Amsterdam, Netherlands
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, location AMC, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Bick MV, Puig E, Beauparlant D, Nedellec R, Burton I, Ardaghi K, Zalunardo TR, Bastidas R, Li X, Guenaga J, Lee WH, Wyatt R, Zhu W, Crispin M, Ozorowski G, Ward AB, Burton DR, Hangartner L. Molecular parameters governing antibody FcγR signaling and effector functions in the context of HIV envelope. Cell Rep 2025; 44:115331. [PMID: 40158219 DOI: 10.1016/j.celrep.2025.115331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 10/29/2024] [Accepted: 01/28/2025] [Indexed: 04/02/2025] Open
Abstract
Antibody effector functions contribute to the immune response to pathogens and can influence the efficacy of antibodies as therapeutics. To date, however, there is limited information on the molecular parameters that govern fragment crystallizable (Fc) effector functions. In this study, using AI-assisted protein design, the influences of binding kinetics, epitope location, and stoichiometry of binding on cellular Fc effector functions were investigated using engineered HIV-1 envelope as a model antigen. For this antigen, stoichiometry of binding was found to be the primary molecular determinant of FcγRIIIa signaling, antibody-dependent cellular cytotoxicity, and antibody-dependent cellular phagocytosis, while epitope location and antibodybinding kinetics, at least in the ranges investigated, were of no substantial impact. These findings are of importance for informing the development of vaccination strategies against HIV-1 and, possibly, other viral pathogens.
Collapse
Affiliation(s)
- Michael V Bick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Eduard Puig
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - David Beauparlant
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Iszac Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Keihvan Ardaghi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Thea R Zalunardo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Raiza Bastidas
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Xuduo Li
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Javier Guenaga
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Richard Wyatt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wenwen Zhu
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92109, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92109, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Lars Hangartner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Bailey JK, Horiya S, Neralkar M, Horvath V, Nakamoto K, Temme JS, Turra RJ, Krauss IJ. In vitro selection of cyclized, glycosylated peptide antigens that tightly bind HIV high mannose patch antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645033. [PMID: 40196650 PMCID: PMC11974836 DOI: 10.1101/2025.03.24.645033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
In vitro selection is typically limited to discovery of peptides, proteins and nucleic acids. Given the importance of carbohydrate-protein interactions in diverse areas of biology including cell adhesion/recognition, immunoregulation and host-pathogen interactions, directed-evolution-based methods for discovery of potent glycoligands are greatly needed. We have previously reported a method for in vitro selection of glycopeptides that combines mRNA display, alkynyl amino acid incorporation, and CuAAC "click" glycosylation. Herein, we describe extensions of this method that incorporate chemical cyclization, removal of N-terminal glycosylation sites and next-generation sequencing; as an approach to HIV immunogen design, we have then used this method to develop mimics of the High Mannose Patch (HMP), which is the region on HIV envelope protein gp120 most commonly targeted by HIV broadly neutralizing antibodies (bnAbs). We prepared libraries of 10 12-14 glycopeptides about 50 amino acids in length, containing variable numbers of high mannose (Man 9 GlcNAc 2 ) glycans and cyclization at varied sites. We performed selections to obtain binders of HIV bnAbs PGT128, PGT122, and gl-PGT121, a germline precursor of PGT122, and prepared numerous glycopeptide hits by chemical synthesis. Selected glycopeptides in some cases bound very tightly to their target HIV bnAb, e.g., with a K D as low as 0.5 nM for PGT128. These glycopeptides are of interest as immunogens and tools for HIV vaccine design.
Collapse
|
4
|
Agrawal P, Khechaduri A, Salladay KR, MacCamy A, Ralph DK, Riker A, Stuart AB, Siddaramaiah LK, Shen X, Matsen FA, Montefiori D, Stamatatos L. Increased immunogen valency improves the maturation of vaccine-elicited HIV-1 VRC01-class antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.642975. [PMID: 40161829 PMCID: PMC11952507 DOI: 10.1101/2025.03.13.642975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Antibodies belonging to the VRC01-class display broad and potent neutralizing activities and have been isolated from several people living with HIV (PLWH). A member of that class, monoclonal antibody VRC01, was shown to reduce HIV-acquisition in two phase 2b efficacy trials. VRC01-class antibodies are therefore expected to be a key component of an effective HIV-1 vaccine. In contrast to the VRC01-class antibodies that are highly mutated, their unmutated forms do not engage HIV-1 envelope (Env) and do not display neutralizing activities. Hence, specifically modified Env-derived proteins have been designed to engage the unmutated forms of VRC01-class antibodies, and to activate the corresponding naïve B cells. Selected heterologous Env must then be used as boost immunogens to guide the proper maturation of these elicited VRC01-class antibodies. Here we examined whether and how the valency of the prime and boost immunogens influences VRC01-class antibody-maturation. Our findings indicate that, indeed the valency of the immunogen affects the maturation of elicited antibody responses by preferentially selecting VRC01-class antibodies that have accumulated somatic mutations present in broadly neutralizing VRC01-class antibodies isolated from PLWH. As a result, antibodies isolated from animals immunized with the higher valency immunogens display broader Env cross-binding properties and improved neutralizing potentials than those isolated from animals immunized with the lower valency immunogens. Our results are relevant to current and upcoming phase 1 clinical trials that evaluate the ability of novel immunogens aiming to elicit cross-reactive VRC01-class antibody responses.
Collapse
Affiliation(s)
- Parul Agrawal
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Arineh Khechaduri
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kelsey R. Salladay
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Anna MacCamy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Duncan K. Ralph
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew Riker
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew B. Stuart
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Xiaoying Shen
- Division of Surgical Sciences, Duke University Medical Center, Durham, NC, USA
| | - Frederick A. Matsen
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - David Montefiori
- Division of Surgical Sciences, Duke University Medical Center, Durham, NC, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Boomgarden AC, Upadhyay C. Progress and Challenges in HIV-1 Vaccine Research: A Comprehensive Overview. Vaccines (Basel) 2025; 13:148. [PMID: 40006695 PMCID: PMC11860913 DOI: 10.3390/vaccines13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The development of an effective HIV-1 vaccine remains a formidable challenge in biomedical research. Despite significant advancements in our understanding of HIV biology and pathogenesis, progress has been impeded by factors such as the virus's genetic diversity, high mutation rates, and its ability to establish latent reservoirs. Recent innovative approaches, including mosaic vaccines and mRNA technology to induce broadly neutralizing antibodies, have shown promise. However, the efficacy of these vaccines has been modest, with the best results achieving approximately 30% effectiveness. Ongoing research emphasizes the necessity of a multifaceted strategy to overcome these obstacles and achieve a breakthrough in HIV-1 vaccine development. This review summarizes current approaches utilized to further understand HIV-1 biology and to create a global vaccine. We discuss the impact of these approaches on vaccine development for other diseases, including COVID-19, influenza, and Zika virus. Additionally, we highlight the specific limitations faced with each approach and present the methods researchers employ to overcome these challenges. These innovative techniques, which have demonstrated preclinical and clinical success, have advanced the field closer to the ultimate goal of developing a global HIV-1 vaccine. Leveraging these advancements will enable significant strides in combating HIV-1 and other infectious diseases, ultimately improving global health outcomes.
Collapse
Affiliation(s)
| | - Chitra Upadhyay
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
6
|
Gristick HB, Hartweger H, Nishimura Y, Gavor E, Nagashima K, Koranda NS, Gnanapragasam PNP, Kakutani LM, Segovia L, Donau O, Keeffe JR, West AP, Martin MA, Nussenzweig MC, Bjorkman PJ. Design and characterization of HIV-1 vaccine candidates to elicit antibodies targeting multiple epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.632013. [PMID: 39829910 PMCID: PMC11741423 DOI: 10.1101/2025.01.08.632013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
A primary goal in the development of an AIDS vaccine is the elicitation of broadly neutralizing antibodies (bNAbs) that protect against diverse HIV-1 strains. To this aim, germline-targeting immunogens have been developed to activate bNAb precursors and initiate the induction of bNAbs. While most pre-clinical germline-targeting HIV-1 vaccine candidates only target a single bNAb precursor epitope, an effective HIV-1 vaccine will likely require bNAbs that target multiple epitopes on Env. Here, we report a newly designed germline-targeting Env SOSIP trimer, named 3nv.2, that targets three bNAb epitopes on Env: the CD4bs, V3, and V2 epitopes. 3nv.2 forms a stable trimeric Env and binds to bNAb precursors from each one of the desired epitopes. Importantly, immunization experiments in rhesus macaques and mice demonstrate 3nv.2 elicits the combined effects of its parent immunogens. Our results reported here provide a proof-of-concept for using a germline-targeting immunogen that targets three or more bNAb precursors and present a framework to develop improved next-generation HIV-1 vaccine candidates.
Collapse
|
7
|
Hetrick B, Siddiqui S, Spear M, Guo J, Liang H, Fu Y, Yang Z, Doyle-Meyers L, Pahar B, Veazey RS, Dufour J, Andalibi A, Ling B, Wu Y. Suppression of viral rebound by a Rev-dependent lentiviral particle in SIV-infected rhesus macaques. Gene Ther 2025; 32:16-24. [PMID: 39025983 PMCID: PMC11785524 DOI: 10.1038/s41434-024-00467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Persistence of human immunodeficiency virus (HIV) reservoirs prevents viral eradication, and consequently HIV-infected patients require lifetime treatment with antiretroviral therapy (ART) [1-5]. Currently, there are no effective therapeutics to prevent HIV rebound upon ART cessation. Here we describe an HIV/SIV Rev-dependent lentiviral particle that can be administered to inhibit viral rebound [6-9]. Using simian immunodeficiency virus (SIV)-infected rhesus macaques as a model, we demonstrate that the administration of pre-assembled SIV Rev-dependent lentiviral particles into SIVmac239-infected Indian rhesus macaques can lead to reduction of viral rebound upon ART termination. One of the injected animals, KC50, controlled plasma and CNS viremia to an undetectable level most of the time for over two years after ART termination. Surprisingly, detailed molecular and immunological characterization revealed that viremia control was concomitant with the induction of neutralizing antibodies (nAbs) following the administration of the Rev-dependent vectors. This study emphasizes the importance of neutralizing antibodies (nAbs) for viremia control [10-15], and also provides proof of concept that the Rev-dependent vector can be used to target viral reservoirs, including the CNS reservoirs, in vivo. However, future large-scale in vivo studies are needed to understand the potential mechanisms of viremia control induced by the Rev-dependent vector.
Collapse
Affiliation(s)
- Brian Hetrick
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Summer Siddiqui
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Mark Spear
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Jia Guo
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Huizhi Liang
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Yajing Fu
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Zhijun Yang
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Lara Doyle-Meyers
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Bapi Pahar
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Jason Dufour
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Ali Andalibi
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Binhua Ling
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W Military Dr., San Antonio, TX, 78227, USA
| | - Yuntao Wu
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
8
|
Cale EM, Shen CH, Olia AS, Radakovich NA, Rawi R, Yang Y, Ambrozak DR, Bennici AK, Chuang GY, Crooks ED, Driscoll JI, Lin BC, Louder MK, Madden PJ, Messina MA, Osawa K, Stewart-Jones GBE, Verardi R, Vrakas Z, Xie D, Zhang B, Binley JM, Connors M, Koup RA, Pierson TC, Doria-Rose NA, Kwong PD, Mascola JR, Gorman J. A multidonor class of highly glycan-dependent HIV-1 gp120-gp41 interface-targeting broadly neutralizing antibodies. Cell Rep 2024; 43:115010. [PMID: 39675002 DOI: 10.1016/j.celrep.2024.115010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/13/2024] [Accepted: 11/07/2024] [Indexed: 12/17/2024] Open
Abstract
Antibodies that target the gp120-gp41 interface of the HIV-1 envelope (Env) trimer comprise a commonly elicited category of broadly neutralizing antibodies (bNAbs). Here, we isolate and characterize VRC44, a bNAb lineage with up to 52% neutralization breadth. The cryoelectron microscopy (cryo-EM) structure of antibody VRC44.01 in complex with the Env trimer reveals binding to the same gp120-gp41 interface site of vulnerability as antibody 35O22 from a different HIV-1-infected donor. In addition to having similar angles of approach and extensive contacts with glycans N88 and N625, VRC44 and 35O22 derive from the same IGHV1-18 gene and share convergent mutations, indicating these two antibodies to be members of the only known highly glycan-dependent multidonor class. Strikingly, both lineages achieved almost 100% neutralization breadth against virus strains displaying high-mannose glycans. The high breadth and reproducible elicitation of VRC44 and 35O22 lineages validate germline-based methods of immunogen design for targeting the HIV-1 gp120-gp41 interface.
Collapse
Affiliation(s)
- Evan M Cale
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathan A Radakovich
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David R Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony K Bennici
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emma D Crooks
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Jefferson I Driscoll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patrick J Madden
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael A Messina
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keiko Osawa
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zoe Vrakas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle Xie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James M Binley
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Theodore C Pierson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; ModeX Therapeutics, Weston, MA 02493, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
9
|
DeLaitsch AT, Keeffe JR, Gristick HB, Lee JA, Ding W, Liu W, Skelly AN, Shaw GM, Hahn BH, Björkman PJ. Neutralizing antibodies elicited in macaques recognize V3 residues on altered conformations of HIV-1 Env trimer. NPJ Vaccines 2024; 9:240. [PMID: 39638818 PMCID: PMC11621127 DOI: 10.1038/s41541-024-01038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Eliciting broadly neutralizing antibodies that protect against diverse HIV-1 strains is a primary goal of AIDS vaccine research. We characterized Ab1456 and Ab1271, two heterologously-neutralizing antibodies elicited in non-human primates by priming with an engineered V3-targeting SOSIP Env immunogen and boosting with increasingly native-like SOSIP Envs derived from different strain backgrounds. Structures of Env trimers in complex with these antibodies revealed V3 targeting, but on conformational states of Env distinct from the typical closed, prefusion trimeric SOSIP structure. Env trimers bound by Ab1456 adopted conformations resembling CD4-bound open Env states in the absence of soluble CD4, whereas trimers bound by Ab1271 exhibited a trimer apex-altered conformation to accommodate antibody binding. The finding that elicited antibodies cross-neutralized by targeting altered, non-closed, prefusion Env trimer conformations provides important information about Env dynamics that is relevant for HIV-1 vaccine design aimed at raising antibodies to desired epitopes on closed pre-fusion Env trimers.
Collapse
Affiliation(s)
- Andrew T DeLaitsch
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Juliet A Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Wenge Ding
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Weimin Liu
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashwin N Skelly
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Pamela J Björkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
10
|
Richel E, Cordsmeier A, Bauer L, Fraedrich K, Vestweber R, Roshani B, Stolte-Leeb N, Ensser A, Stahl-Hennig C, Überla K. Mechanisms of sterilizing immunity provided by an HIV-1 neutralizing antibody against mucosal infection. PLoS Pathog 2024; 20:e1012777. [PMID: 39724193 DOI: 10.1371/journal.ppat.1012777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Broadly neutralizing antibodies (bnAbs) against HIV-1 have been shown to protect from systemic infection. When employing a novel challenge virus that uses HIV-1 Env for entry into target cells during the first replication cycle, but then switches to SIV Env usage, we demonstrated that bnAbs also prevented mucosal infection of the first cells. However, it remained unclear whether antibody Fc-effector functions contribute to this sterilizing immunity. Therefore, additional challenge viruses were produced that contain SIV Env and graded doses of a fusion-defective trimer of HIV-1 Env, to which the bnAb, PGT121 can bind without interfering with the SIV Env-based cell entry. After administration of either PGT121 or its mutant deficient in Fc-effector functions, rhesus macaques were intrarectally exposed to these challenge viruses and to those using either HIV-1 Env or SIV Env for entry into the first cells. Both antibodies similarly reduced infection events with the challenge virus using HIV-1 Env by a factor close to 200. Incorporating fusion-defective HIV-1 Env trimers into the particles of the challenge viruses at densities observed in primary virus isolates did not reduce SIV Env-mediated infection events. The results indicate that the sparsity of bnAb binding-sites on HIV-1 virions limits the contribution of Fc-effector functions to provide sterilizing immunity against mucosal viral infection. Hence, harnessing Fc-effector functions for sterilizing immunity against mucosal HIV-1 infection may require strategies to increase the degree of antibody opsonization.
Collapse
Affiliation(s)
- Elie Richel
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | - Arne Cordsmeier
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | - Larissa Bauer
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | - Kirsten Fraedrich
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | | | | | | | - Armin Ensser
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | | | - Klaus Überla
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
11
|
Dankwa S, Kosman C, Dennis M, Giorgi EE, Vuong K, Pahountis I, Garza A, Binuya C, McCarthy J, Mayer BT, Ngo JT, Enemuo CA, Carnathan DG, Stanfield-Oakley S, Berendam SJ, Weinbaum C, Engelman K, Magnani DM, Chan C, Ferrari G, Silvestri G, Amara RR, Chahroudi A, Permar SR, Fouda GG, Goswami R. A novel HIV triple broadly neutralizing antibody (bNAb) combination-based passive immunization of infant rhesus macaques achieves durable protective plasma neutralization levels and mediates anti-viral effector functions. PLoS One 2024; 19:e0312411. [PMID: 39527587 PMCID: PMC11554116 DOI: 10.1371/journal.pone.0312411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 10/05/2024] [Indexed: 11/16/2024] Open
Abstract
To eliminate vertical HIV transmission and achieve therapy-free viral suppression among children living with HIV, novel strategies beyond antiretroviral therapy (ART) are necessary. Our group previously identified a triple broadly neutralizing antibody (bNAb) combination comprising of 3BNC117, PGDM1400 and PGT151 that mediates robust in vitro neutralization and non-neutralizing effector functions against a cross-clade panel of simian human immunodeficiency viruses (SHIVs). In this study, we evaluated the safety, pharmacokinetics, and antiviral potency of this bNAb combination in infant rhesus macaques (RMs). We demonstrate that subcutaneous infusion of the triple bNAb regimen was well tolerated in pediatric monkeys and resulted in durable systemic and mucosal distribution. Plasma obtained from passively-immunized RMs demonstrated potent HIV-neutralizing and Fc-mediated antiviral effector functions. Finally, using the predicted serum neutralization 80% inhibitory dilution titer (PT80) biomarker threshold of >200, which was recently identified as a surrogate endpoint for evaluation of the preventative efficacy of bNAbs against mucosal viral acquisition in human clinical trials, we demonstrated that our regimen has PT80>200 against a large panel of plasma and breast milk-derived HIV strains and cross-clade SHIV variants. This data will guide the development of combination bNAbs for eliminating vertical HIV transmission and for achieving ART-free viral suppression among children living with HIV.
Collapse
Affiliation(s)
- Sedem Dankwa
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America
| | - Christina Kosman
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America
| | - Maria Dennis
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America
| | - Elena E. Giorgi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Kenneth Vuong
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America
| | - Ioanna Pahountis
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America
| | - Ashley Garza
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States of America
| | - Christian Binuya
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America
| | - Janice McCarthy
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States of America
- Center for Human Systems Immunology, Duke University, Durham, NC, United States of America
| | - Bryan T. Mayer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Julia T. Ngo
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Chiamaka A. Enemuo
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Diane G. Carnathan
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Sherry Stanfield-Oakley
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States of America
| | - Stella J. Berendam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States of America
| | - Carolyn Weinbaum
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America
| | - Kathleen Engelman
- Department of Medicine, UMass Chan Medical School, Worcester, MA, United States of America
| | - Diogo M. Magnani
- Department of Medicine, UMass Chan Medical School, Worcester, MA, United States of America
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States of America
- Center for Human Systems Immunology, Duke University, Durham, NC, United States of America
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States of America
| | - Guido Silvestri
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Rama R. Amara
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, United States of America
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States of America
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA, United States of America
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine, New York, NY, United States of America
| | - Genevieve G. Fouda
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine, New York, NY, United States of America
| | - Ria Goswami
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine, New York, NY, United States of America
| |
Collapse
|
12
|
Agrawal P, Knudsen ML, MacCamy A, Hurlburt NK, Khechaduri A, Salladay KR, Kher GM, Kallur Siddaramaiah L, Stuart AB, Bontjer I, Shen X, Montefiori D, Gristick HB, Bjorkman PJ, Sanders RW, Pancera M, Stamatatos L. Short CDRL1 in intermediate VRC01-like mAbs is not sufficient to overcome key glycan barriers on HIV-1 Env. J Virol 2024; 98:e0074424. [PMID: 39240111 PMCID: PMC11495006 DOI: 10.1128/jvi.00744-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/12/2024] [Indexed: 09/07/2024] Open
Abstract
VRC01-class broadly neutralizing antibodies (bnAbs) have been isolated from people with HIV-1, but they have not yet been elicited by vaccination. They are extensively somatically mutated and sometimes accumulate CDRL1 deletions. Such indels may allow VRC01-class antibodies to accommodate the glycans expressed on a conserved N276 N-linked glycosylation site in loop D of the gp120 subunit. These glycans constitute a major obstacle in the development of VRC01-class antibodies, as unmutated antibody forms are unable to accommodate them. Although immunizations of knock-in mice expressing human VRC01-class B-cell receptors (BCRs) with specifically designed Env-derived immunogens lead to the accumulation of somatic mutations in VRC01-class BCRs, CDRL1 deletions are rarely observed, and the elicited antibodies display narrow neutralizing activities. The lack of broad neutralizing potential could be due to the absence of deletions, the lack of appropriate somatic mutations, or both. To address this point, we modified our previously determined prime-boost immunization with a germline-targeting immunogen nanoparticle (426c.Mod.Core), followed by a heterologous core nanoparticle (HxB2.WT.Core), by adding a final boost with a cocktail of various stabilized soluble Env trimers. We isolated VRC01-like antibodies with extensive somatic mutations and, in one case, a seven-amino acid CDRL1 deletion. We generated chimeric antibodies that combine the vaccine-elicited somatic mutations with CDRL1 deletions present in human mature VRC01 bnAbs. We observed that CDRL1 indels did not improve the neutralizing antibody activities. Our study indicates that CDRL1 length by itself is not sufficient for the broadly neutralizing phenotype of this class of antibodies. IMPORTANCE HIV-1 broadly neutralizing antibodies will be a key component of an effective HIV-1 vaccine, as they prevent viral acquisition. Over the past decade, numerous broadly neutralizing antibodies (bnAbs) have been isolated from people with HIV. Despite an in-depth knowledge of their structures, epitopes, ontogenies, and, in a few rare cases, their maturation pathways during infection, bnAbs have, so far, not been elicited by vaccination. This necessitates the identification of key obstacles that prevent their elicitation by immunization and overcoming them. Here we examined whether CDRL1 shortening is a prerequisite for the broadly neutralizing potential of VRC01-class bnAbs, which bind within the CD4 receptor binding site of Env. Our findings indicate that CDRL1 shortening by itself is important but not sufficient for the acquisition of neutralization breadth, and suggest that particular combinations of amino acid mutations, not elicited so far by vaccination, are most likely required for the development of such a feature.
Collapse
Affiliation(s)
- Parul Agrawal
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Maria L. Knudsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Anna MacCamy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Nicholas K. Hurlburt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Arineh Khechaduri
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Kelsey R. Salladay
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Gargi M. Kher
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Andrew B. Stuart
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Ilja Bontjer
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Xiaoying Shen
- Division of Surgical Sciences, Duke University, Durham, North Carolina, USA
| | - David Montefiori
- Division of Surgical Sciences, Duke University, Durham, North Carolina, USA
| | | | | | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Snow BJ, Keles NK, Grunst MW, Janaka SK, Behrens RT, Evans DT. Potent broadly neutralizing antibodies mediate efficient antibody-dependent phagocytosis of HIV-infected cells. PLoS Pathog 2024; 20:e1012665. [PMID: 39466835 PMCID: PMC11542898 DOI: 10.1371/journal.ppat.1012665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/07/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
Antibody-dependent cellular phagocytosis (ADCP) has been implicated in protection against HIV-1. However, methods for measuring ADCP currently rely on the phagocytosis of gp120- or gp41-coated beads that do not reflect physiologically relevant conformations of the viral envelope glycoprotein or the size of a virus-infected cell. We therefore developed a novel approach for measuring ADCP of HIV-infected cells expressing natural conformations of Env. A monocytic cell line (THP-1 cells) or primary human monocytes were incubated with a CD4+ T cell line that expresses eGFP upon HIV-1 infection in the presence of antibodies and ADCP was measured as the accumulation of eGFP+ material by flow cytometry. The internalization of HIV-infected cells by monocytes was confirmed visually by image-capture flow cytometry. Cytoskeletal remodeling, pseudopod formation and phagocytosis were also observed by confocal microscopy. We found that potent broadly neutralizing antibodies (bnAbs), but not non-neutralizing antibodies (nnAbs), mediate efficient phagocytosis of cells infected with either primary or lab-adapted HIV-1. A nnAb to a CD4-inducible epitope of gp120 (A32) failed to enable ADCP of HIV-infected cells but mediated efficient phagocytosis of gp120-coated beads. Conversely, a bnAb specific to intact Env trimers (PGT145) mediated potent ADCP of HIV-infected cells but did not facilitate the uptake of gp120-coated beads. These results underscore the importance of measuring ADCP of HIV-infected cells expressing physiologically relevant conformations of Env and show that most antibodies that are capable of binding to Env trimers on virions to neutralize virus infectivity are also capable of binding to Env on the surface of virus-infected cells to mediate ADCP.
Collapse
Affiliation(s)
- Brian J. Snow
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nida K. Keles
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael W. Grunst
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sanath Kumar Janaka
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ryan T. Behrens
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| |
Collapse
|
14
|
Dias J, Fabozzi G, Fourati S, Chen X, Liu C, Ambrozak DR, Ransier A, Laboune F, Hu J, Shi W, March K, Maximova AA, Schmidt SD, Samsel J, Talana CA, Ernste K, Ko SH, Lucas ME, Radecki PE, Boswell KL, Nishimura Y, Todd JP, Martin MA, Petrovas C, Boritz EA, Doria-Rose NA, Douek DC, Sékaly RP, Lifson JD, Asokan M, Gama L, Mascola JR, Pegu A, Koup RA. Administration of anti-HIV-1 broadly neutralizing monoclonal antibodies with increased affinity to Fcγ receptors during acute SHIV AD8-EO infection. Nat Commun 2024; 15:7461. [PMID: 39198422 PMCID: PMC11358508 DOI: 10.1038/s41467-024-51848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Anti-HIV-1 broadly neutralizing antibodies (bNAbs) have the dual potential of mediating virus neutralization and antiviral effector functions through their Fab and Fc domains, respectively. So far, bNAbs with enhanced Fc effector functions in vitro have only been tested in NHPs during chronic simian-HIV (SHIV) infection. Here, we investigate the effects of administering in acute SHIVAD8-EO infection either wild-type (WT) bNAbs or bNAbs carrying the S239D/I332E/A330L (DEL) mutation, which increases binding to FcγRs. Emergence of virus in plasma and lymph nodes (LNs) was delayed by bNAb treatment and occurred earlier in monkeys given DEL bNAbs than in those given WT bNAbs, consistent with faster clearance of DEL bNAbs from plasma. DEL bNAb-treated monkeys had higher levels of circulating virus-specific IFNγ single-producing CD8+ CD69+ T cells than the other groups. In LNs, WT bNAbs were evenly distributed between follicular and extrafollicular areas, but DEL bNAbs predominated in the latter. At week 8 post-challenge, LN monocytes and NK cells from DEL bNAb-treated monkeys upregulated proinflammatory signaling pathways and LN T cells downregulated TNF signaling via NF-κB. Overall, bNAbs with increased affinity to FcγRs shape innate and adaptive cellular immunity, which may be important to consider in future strategies of passive bNAb therapy.
Collapse
Affiliation(s)
- Joana Dias
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Giulia Fabozzi
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Slim Fourati
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Xuejun Chen
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cuiping Liu
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David R Ambrozak
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy Ransier
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Farida Laboune
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jianfei Hu
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wei Shi
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kylie March
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna A Maximova
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen D Schmidt
- Humoral Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jakob Samsel
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Institute for Biomedical Sciences, George Washington University, Washington, D.C., USA
| | - Chloe A Talana
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Keenan Ernste
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sung Hee Ko
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Margaret E Lucas
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pierce E Radecki
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kristin L Boswell
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John-Paul Todd
- Translational Research Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Malcolm A Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Constantinos Petrovas
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Eli A Boritz
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Humoral Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rafick-Pierre Sékaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mangaiarkarasi Asokan
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lucio Gama
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Amarendra Pegu
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Mahomed S. Broadly neutralizing antibodies for HIV prevention: a comprehensive review and future perspectives. Clin Microbiol Rev 2024; 37:e0015222. [PMID: 38687039 PMCID: PMC11324036 DOI: 10.1128/cmr.00152-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
SUMMARYThe human immunodeficiency virus (HIV) epidemic remains a formidable global health concern, with 39 million people living with the virus and 1.3 million new infections reported in 2022. Despite anti-retroviral therapy's effectiveness in pre-exposure prophylaxis, its global adoption is limited. Broadly neutralizing antibodies (bNAbs) offer an alternative strategy for HIV prevention through passive immunization. Historically, passive immunization has been efficacious in the treatment of various diseases ranging from oncology to infectious diseases. Early clinical trials suggest bNAbs are safe, tolerable, and capable of reducing HIV RNA levels. Although challenges such as bNAb resistance have been noted in phase I trials, ongoing research aims to assess the additive or synergistic benefits of combining multiple bNAbs. Researchers are exploring bispecific and trispecific antibodies, and fragment crystallizable region modifications to augment antibody efficacy and half-life. Moreover, the potential of other antibody isotypes like IgG3 and IgA is under investigation. While promising, the application of bNAbs faces economic and logistical barriers. High manufacturing costs, particularly in resource-limited settings, and logistical challenges like cold-chain requirements pose obstacles. Preliminary studies suggest cost-effectiveness, although this is contingent on various factors like efficacy and distribution. Technological advancements and strategic partnerships may mitigate some challenges, but issues like molecular aggregation remain. The World Health Organization has provided preferred product characteristics for bNAbs, focusing on optimizing their efficacy, safety, and accessibility. The integration of bNAbs in HIV prophylaxis necessitates a multi-faceted approach, considering economic, logistical, and scientific variables. This review comprehensively covers the historical context, current advancements, and future avenues of bNAbs in HIV prevention.
Collapse
Affiliation(s)
- Sharana Mahomed
- Centre for the AIDS
Programme of Research in South Africa (CAPRISA), Doris Duke Medical
Research Institute, Nelson R Mandela School of Medicine, University of
KwaZulu-Natal, Durban,
South Africa
| |
Collapse
|
16
|
Del Moral-Sánchez I, Wee EG, Xian Y, Lee WH, Allen JD, Torrents de la Peña A, Fróes Rocha R, Ferguson J, León AN, Koekkoek S, Schermer EE, Burger JA, Kumar S, Zwolsman R, Brinkkemper M, Aartse A, Eggink D, Han J, Yuan M, Crispin M, Ozorowski G, Ward AB, Wilson IA, Hanke T, Sliepen K, Sanders RW. Triple tandem trimer immunogens for HIV-1 and influenza nucleic acid-based vaccines. NPJ Vaccines 2024; 9:74. [PMID: 38582771 PMCID: PMC10998906 DOI: 10.1038/s41541-024-00862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/14/2024] [Indexed: 04/08/2024] Open
Abstract
Recombinant native-like HIV-1 envelope glycoprotein (Env) trimers are used in candidate vaccines aimed at inducing broadly neutralizing antibodies. While state-of-the-art SOSIP or single-chain Env designs can be expressed as native-like trimers, undesired monomers, dimers and malformed trimers that elicit non-neutralizing antibodies are also formed, implying that these designs could benefit from further modifications for gene-based vaccination approaches. Here, we describe the triple tandem trimer (TTT) design, in which three Env protomers are genetically linked in a single open reading frame and express as native-like trimers. Viral vectored Env TTT induced similar neutralization titers but with a higher proportion of trimer-specific responses. The TTT design was also applied to generate influenza hemagglutinin (HA) trimers without the need for trimerization domains. Additionally, we used TTT to generate well-folded chimeric Env and HA trimers that harbor protomers from three different strains. In summary, the TTT design is a useful platform for the design of HIV-1 Env and influenza HA immunogens for a multitude of vaccination strategies.
Collapse
Affiliation(s)
- Iván Del Moral-Sánchez
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Edmund G Wee
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yuejiao Xian
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Alba Torrents de la Peña
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rebeca Fróes Rocha
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - James Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - André N León
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sylvie Koekkoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Edith E Schermer
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Sanjeev Kumar
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Robby Zwolsman
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Mitch Brinkkemper
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Aafke Aartse
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
17
|
Grunst MW, Gil HM, Grandea AG, Snow BJ, Andrabi R, Nedellec R, Burton I, Clark NM, Janaka SK, Keles NK, Moriarty RV, Weiler AM, Capuano S, Fennessey CM, Friedrich TC, O’Connor SL, O’Connor DH, Broman AT, Keele BF, Lifson JD, Hangartner L, Burton DR, Evans DT. Potent antibody-dependent cellular cytotoxicity of a V2-specific antibody is not sufficient for protection of macaques against SIV challenge. PLoS Pathog 2024; 20:e1011819. [PMID: 38252675 PMCID: PMC10833561 DOI: 10.1371/journal.ppat.1011819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/01/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Fc-mediated antibody effector functions, such as antibody-dependent cellular cytotoxicity (ADCC), can contribute to the containment HIV-1 replication but whether such activities are sufficient for protection is unclear. We previously identified an antibody to the variable 2 (V2) apex of the HIV-1 Env trimer (PGT145) that potently directs the lysis of SIV-infected cells by NK cells but poorly neutralizes SIV infectivity. To determine if ADCC is sufficient for protection, separate groups of six rhesus macaques were treated with PGT145 or a control antibody (DEN3) by intravenous infusion followed five days later by intrarectal challenge with SIVmac239. Despite high concentrations of PGT145 and potent ADCC activity in plasma on the day of challenge, all animals became infected and viral loads did not differ between the PGT145- and DEN3-treated animals. To determine if PGT145 can protect against a neutralization-sensitive virus, two additional groups of six macaques were treated with PGT145 and DEN3 and challenged with an SIVmac239 variant with a single amino acid change in Env (K180S) that increases PGT145 binding and renders the virus susceptible to neutralization by this antibody. Although there was no difference in virus acquisition, peak and chronic phase viral loads were significantly lower and time to peak viremia was significantly delayed in the PGT145-treated animals compared to the DEN3-treated control animals. Env changes were also selected in the PGT145-treated animals that confer resistance to both neutralization and ADCC. These results show that ADCC is not sufficient for protection by this V2-specific antibody. However, protection may be achieved by increasing the affinity of antibody binding to Env above the threshold required for neutralization.
Collapse
Affiliation(s)
- Michael W. Grunst
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hwi Min Gil
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andres G. Grandea
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Brian J. Snow
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Iszac Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Natasha M. Clark
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sanath Kumar Janaka
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nida K. Keles
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ryan V. Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Thomas C. Friedrich
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Aimee T. Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Lars Hangartner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
18
|
Kreer C, Lupo C, Ercanoglu MS, Gieselmann L, Spisak N, Grossbach J, Schlotz M, Schommers P, Gruell H, Dold L, Beyer A, Nourmohammad A, Mora T, Walczak AM, Klein F. Probabilities of developing HIV-1 bNAb sequence features in uninfected and chronically infected individuals. Nat Commun 2023; 14:7137. [PMID: 37932288 PMCID: PMC10628170 DOI: 10.1038/s41467-023-42906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
HIV-1 broadly neutralizing antibodies (bNAbs) are able to suppress viremia and prevent infection. Their induction by vaccination is therefore a major goal. However, in contrast to antibodies that neutralize other pathogens, HIV-1-specific bNAbs frequently carry uncommon molecular characteristics that might prevent their induction. Here, we perform unbiased sequence analyses of B cell receptor repertoires from 57 uninfected and 46 chronically HIV-1- or HCV-infected individuals and learn probabilistic models to predict the likelihood of bNAb development. We formally show that lower probabilities for bNAbs are predictive of higher HIV-1 neutralization activity. Moreover, ranking bNAbs by their probabilities allows to identify highly potent antibodies with superior generation probabilities as preferential targets for vaccination approaches. Importantly, we find equal bNAb probabilities across infected and uninfected individuals. This implies that chronic infection is not a prerequisite for the generation of bNAbs, fostering the hope that HIV-1 vaccines can induce bNAb development in uninfected people.
Collapse
Affiliation(s)
- Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Cosimo Lupo
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma I, 00185, Rome, Italy
| | - Meryem S Ercanoglu
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931, Cologne, Germany
| | - Natanael Spisak
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
| | - Jan Grossbach
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases & Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, 50931, Cologne, Germany
| | - Maike Schlotz
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931, Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Leona Dold
- Department of Internal Medicine I, University Hospital of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Andreas Beyer
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases & Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931, Cologne, Germany
| | - Armita Nourmohammad
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077, Göttingen, Germany
- Department of Physics, University of Washington, 3910 15th Ave Northeast, Seattle, WA, 98195, USA
- Department of Applied Mathematics, University of Washington, 4182 W Stevens Way NE, Seattle, WA, 98105, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, 85 E Stevens Way NE, Seattle, WA, 98195, USA
- Fred Hutchinson Cancer Center, 1241 Eastlake Ave E, Seattle, WA, 98102, USA
| | - Thierry Mora
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
| | - Aleksandra M Walczak
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
19
|
Stamatatos L. 'Immunization during ART and ATI for HIV-1 vaccine discovery/development'. Curr Opin HIV AIDS 2023; 18:309-314. [PMID: 37712859 PMCID: PMC10552831 DOI: 10.1097/coh.0000000000000817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
PURPOSE OF REVIEW Explore whether immunization with germline-targeting Env immunogens during ART, followed by ATI, leads to the identification of viral envelope glycoproteins (Envs) that promote and guide the full maturation of broadly neutralizing antibody responses. RECENT FINDINGS The HIV-1 envelope glycoprotein (Env) does not efficiently engage the germline precursors of broadly neutralizing antibodies (bnAbs). However, Env-derived proteins specifically designed to precisely do that, have been recently developed. These 'germline-targeting' Env immunogens activate naïve B cells that express the germline precursors of bnAbs but by themselves cannot guide their maturation towards their broadly neutralizing forms. This requires sequential immunizations with heterologous sets of Envs. These 'booster' Envs are currently unknown. SUMMARY Combining germline-targeting Env immunization approaches during ART with ATI could lead to the identification of natural Envs that are responsible for the maturation of broadly neutralizing antibody responses during infection. Such Envs could then serve as booster immunogens to guide the maturation of glBCRs that have become activated by germline-targeting immunogens in uninfected subjects.
Collapse
Affiliation(s)
- Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center and University of Washington, Department of Global Health, Seattle, WA, USA
| |
Collapse
|
20
|
Stab V, Stahl-Hennig C, Ensser A, Richel E, Fraedrich K, Sauermann U, Tippler B, Klein F, Burton DR, Tenbusch M, Überla K. HIV-1 neutralizing antibodies provide sterilizing immunity by blocking infection of the first cells. Cell Rep Med 2023; 4:101201. [PMID: 37804829 PMCID: PMC10591032 DOI: 10.1016/j.xcrm.2023.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/28/2023] [Accepted: 08/25/2023] [Indexed: 10/09/2023]
Abstract
Neutralizing antibodies targeting HIV-1 Env have been shown to protect from systemic infection. To explore whether these antibodies can inhibit infection of the first cells, challenge viruses based on simian immunodeficiency virus (SIV) were developed that use HIV-1 Env for entry into target cells during the first replication cycle, but then switch to SIV Env usage. Antibodies binding to Env of HIV-1, but not SIV, block HIV-1 Env-mediated infection events after rectal exposure of non-human primates to the switching challenge virus. After natural exposure to HIV-1, such a reduction of the number of first infection events should be sufficient to provide sterilizing immunity in the strictest sense in most of the exposed individuals. Since blocking infection of the first cells avoids the formation of latently infected cells and reduces the risk of emergence of antibody-resistant mutants, it may be the best mode of protection.
Collapse
Affiliation(s)
- Viktoria Stab
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | | | - Armin Ensser
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Elie Richel
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kirsten Fraedrich
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | - Bettina Tippler
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Dennis R Burton
- Department of Immunology and Microbiology, Consortium for HIV/AIDS Vaccine Development (CHAVD), IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Matthias Tenbusch
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany; University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany; University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
21
|
Suphaphiphat K, Desjardins D, Lorin V, Dimant N, Bouchemal K, Bossevot L, Galpin-Lebreau M, Dereuddre-Bosquet N, Mouquet H, Le Grand R, Cavarelli M. Mucosal application of the broadly neutralizing antibody 10-1074 protects macaques from cell-associated SHIV vaginal exposure. Nat Commun 2023; 14:6224. [PMID: 37803011 PMCID: PMC10558491 DOI: 10.1038/s41467-023-41966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
Passive immunization using broadly neutralizing antibodies (bNAbs) is investigated in clinical settings to inhibit HIV-1 acquisition due to the lack of a preventive vaccine. However, bNAbs efficacy against highly infectious cell-associated virus transmission has been overlooked. HIV-1 transmission mediated by infected cells present in body fluids likely dominates infection and aids the virus in evading antibody-based immunity. Here, we show that the anti-N-glycans/V3 loop HIV-1 bNAb 10-1074 formulated for topical vaginal application in a microbicide gel provides significant protection against repeated cell-associated SHIV162P3 vaginal challenge in non-human primates. The treated group has a significantly lower infection rate than the control group, with 5 out of 6 animals fully protected from the acquisition of infection. The findings suggest that mucosal delivery of potent bnAbs may be a promising approach for preventing transmission mediated by infected cells and support the use of anti-HIV-antibody-based strategies as potential microbicides in human clinical trials.
Collapse
Affiliation(s)
- Karunasinee Suphaphiphat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Delphine Desjardins
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Valérie Lorin
- Laboratory of Humoral Immunology, Institut Pasteur, Université Paris Cité, INSERM U1222, 75015, Paris, France
| | - Nastasia Dimant
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Kawthar Bouchemal
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, CNRS UMR 8247, 75005, Paris, France
| | - Laetitia Bossevot
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Maxence Galpin-Lebreau
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Institut Pasteur, Université Paris Cité, INSERM U1222, 75015, Paris, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France.
| |
Collapse
|
22
|
Anderson JL, Sandstrom K, Smith WR, Wetzel M, Klenchin VA, Evans DT. MHC Class I Ligands of Rhesus Macaque Killer Cell Ig-like Receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1815-1826. [PMID: 37036309 PMCID: PMC10192222 DOI: 10.4049/jimmunol.2200954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/20/2023] [Indexed: 04/11/2023]
Abstract
Definition of MHC class I ligands of rhesus macaque killer cell Ig-like receptors (KIRs) is fundamental to NK cell biology in this species as an animal model for infectious diseases, reproductive biology, and transplantation. To provide a more complete foundation for studying NK cell responses, rhesus macaque KIRs representing common allotypes of lineage II KIR genes were tested for interactions with MHC class I molecules representing diverse Macaca mulatta (Mamu)-A, -B, -E, -F, -I, and -AG alleles. KIR-MHC class I interactions were identified by coincubating reporter cell lines bearing chimeric KIR-CD3ζ receptors with target cells expressing individual MHC class I molecules and were corroborated by staining with KIR IgG-Fc fusion proteins. Ligands for 12 KIRs of previously unknown specificity were identified that fell into three general categories: interactions with multiple Mamu-Bw4 molecules, interactions with Mamu-A-related molecules, including allotypes of Mamu-AG and the hybrid Mamu-B*045:03 molecule, or interactions with Mamu-A1*012:01. Whereas most KIRs found to interact with Mamu-Bw4 are inhibitory, most of the KIRs that interact with Mamu-AG are activating. The KIRs that recognize Mamu-A1*012:01 belong to a phylogenetically distinct group of macaque KIRs with a 3-aa deletion in the D0 domain that is also present in human KIR3DL1/S1 and KIR3DL2. This study more than doubles the number of rhesus macaque KIRs with defined MHC class I ligands and identifies interactions with Mamu-AG, -B*045, and -A1*012. These findings support overlapping, but nonredundant, patterns of ligand recognition that reflect extensive functional diversification of these receptors.
Collapse
Affiliation(s)
- Jennifer L. Anderson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Kjell Sandstrom
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Willow R. Smith
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Molly Wetzel
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Vadim A. Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
23
|
Cohen KW, De Rosa SC, Fulp WJ, deCamp AC, Fiore-Gartland A, Mahoney CR, Furth S, Donahue J, Whaley RE, Ballweber-Fleming L, Seese A, Schwedhelm K, Geraghty D, Finak G, Menis S, Leggat DJ, Rahaman F, Lombardo A, Borate BR, Philiponis V, Maenza J, Diemert D, Kolokythas O, Khati N, Bethony J, Hyrien O, Laufer DS, Koup RA, McDermott AB, Schief WR, McElrath MJ. A first-in-human germline-targeting HIV nanoparticle vaccine induced broad and publicly targeted helper T cell responses. Sci Transl Med 2023; 15:eadf3309. [PMID: 37224227 PMCID: PMC11036875 DOI: 10.1126/scitranslmed.adf3309] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
The engineered outer domain germline targeting version 8 (eOD-GT8) 60-mer nanoparticle was designed to prime VRC01-class HIV-specific B cells that would need to be matured, through additional heterologous immunizations, into B cells that are able to produce broadly neutralizing antibodies. CD4 T cell help will be critical for the development of such high-affinity neutralizing antibody responses. Thus, we assessed the induction and epitope specificities of the vaccine-specific T cells from the IAVI G001 phase 1 clinical trial that tested immunization with eOD-GT8 60-mer adjuvanted with AS01B. Robust polyfunctional CD4 T cells specific for eOD-GT8 and the lumazine synthase (LumSyn) component of eOD-GT8 60-mer were induced after two vaccinations with either the 20- or 100-microgram dose. Antigen-specific CD4 T helper responses to eOD-GT8 and LumSyn were observed in 84 and 93% of vaccine recipients, respectively. CD4 helper T cell epitope "hotspots" preferentially targeted across participants were identified within both the eOD-GT8 and LumSyn proteins. CD4 T cell responses specific to one of these three LumSyn epitope hotspots were observed in 85% of vaccine recipients. Last, we found that induction of vaccine-specific peripheral CD4 T cells correlated with expansion of eOD-GT8-specific memory B cells. Our findings demonstrate strong human CD4 T cell responses to an HIV vaccine candidate priming immunogen and identify immunodominant CD4 T cell epitopes that might improve human immune responses either to heterologous boost immunogens after this prime vaccination or to other human vaccine immunogens.
Collapse
Affiliation(s)
- Kristen W. Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - William J. Fulp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Allan C. deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Celia R. Mahoney
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sarah Furth
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Josh Donahue
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Rachael E. Whaley
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lamar Ballweber-Fleming
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Aaron Seese
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Katharine Schwedhelm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Daniel Geraghty
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sergey Menis
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92307, USA
- Center for HIV/AIDS Vaccine Development, Scripps Research Institute, La Jolla, CA 92307, USA
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92307, USA
| | - David J. Leggat
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Farhad Rahaman
- IAVI, 125 Broad Street, 9th Floor, New York, NY 10004, USA
| | | | - Bhavesh R. Borate
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Janine Maenza
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - David Diemert
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington DC, 20052, USA
- Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington DC 20052, USA
| | - Orpheus Kolokythas
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Nadia Khati
- Department of Radiology, School of Medicine and Health Sciences, George Washington University, Washington DC 20052, USA
| | - Jeffrey Bethony
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington DC, 20052, USA
| | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Richard A. Koup
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B. McDermott
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - William R. Schief
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92307, USA
- Center for HIV/AIDS Vaccine Development, Scripps Research Institute, La Jolla, CA 92307, USA
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92307, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
24
|
Mattathil JG, Volz A, Onabajo OO, Maynard S, Bixler SL, Shen XX, Vargas-Inchaustegui D, Robert-Guroff M, Lebranche C, Tomaras G, Montefiori D, Sutter G, Mattapallil JJ. Direct intranodal tonsil vaccination with modified vaccinia Ankara vaccine protects macaques from highly pathogenic SIVmac251. Nat Commun 2023; 14:1264. [PMID: 36882405 PMCID: PMC9990026 DOI: 10.1038/s41467-023-36907-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Human immunodeficiency virus (HIV) is a mucosally transmitted virus that causes immunodeficiency and AIDS. Developing efficacious vaccines to prevent infection is essential to control the epidemic. Protecting the vaginal and rectal mucosa, the primary routes of HIV entry has been a challenge given the significant compartmentalization between the mucosal and peripheral immune systems. We hypothesized that direct intranodal vaccination of mucosa associated lymphoid tissue (MALT) such as the readily accessible palatine tonsils could overcome this compartmentalization. Here we show that rhesus macaques primed with plasmid DNA encoding SIVmac251-env and gag genes followed by an intranodal tonsil MALT boost with MVA encoding the same genes protects from a repeated low dose intrarectal challenge with highly pathogenic SIVmac251; 43% (3/7) of vaccinated macaques remained uninfected after 9 challenges as compared to the unvaccinated control (0/6) animals. One vaccinated animal remained free of infection even after 22 challenges. Vaccination was associated with a ~2 log decrease in acute viremia that inversely correlated with anamnestic immune responses. Our results suggest that a combination of systemic and intranodal tonsil MALT vaccination could induce robust adaptive and innate immune responses leading to protection from mucosal infection with highly pathogenic HIV and rapidly control viral breakthroughs.
Collapse
Affiliation(s)
- Jeffy G Mattathil
- Henry M. Jackson Foundation for Military Medicine, Bethesda, MD, USA
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany
| | | | - Sean Maynard
- Henry M. Jackson Foundation for Military Medicine, Bethesda, MD, USA
| | - Sandra L Bixler
- Henry M. Jackson Foundation for Military Medicine, Bethesda, MD, USA
| | | | | | | | | | | | | | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU, Munich, Germany
| | - Joseph J Mattapallil
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
25
|
Edelstein J, Fritz M, Lai SK. Challenges and opportunities in gene editing of B cells. Biochem Pharmacol 2022; 206:115285. [PMID: 36241097 DOI: 10.1016/j.bcp.2022.115285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 01/29/2023]
Abstract
B cells have long been an underutilized target in immune cell engineering, despite a number of unique attributes that could address longstanding challenges in medicine. Notably, B cells evolved to secrete large quantities of antibodies for prolonged periods, making them suitable platforms for long-term protein delivery. Recent advances in gene editing technologies, such as CRISPR-Cas, have improved the precision and efficiency of engineering and expanded potential applications of engineered B cells. While most work on B cell editing has focused on ex vivo modification, a body of recent work has also advanced the possibility of in vivo editing applications. In this review, we will discuss both past and current approaches to B cell engineering, and its promising applications in immunology research and therapeutic gene editing.
Collapse
Affiliation(s)
- Jasmine Edelstein
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Marshall Fritz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Immunology and Microbiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
26
|
Reiss EIMM, van Haaren MM, van Schooten J, Claireaux MAF, Maisonnasse P, Antanasijevic A, Allen JD, Bontjer I, Torres JL, Lee WH, Ozorowski G, Vázquez Bernat N, Kaduk M, Aldon Y, Burger JA, Chawla H, Aartse A, Tolazzi M, Gao H, Mundsperger P, Crispin M, Montefiori DC, Karlsson Hedestam GB, Scarlatti G, Ward AB, Le Grand R, Shattock R, Dereuddre-Bosquet N, Sanders RW, van Gils MJ. Fine-mapping the immunodominant antibody epitopes on consensus sequence-based HIV-1 envelope trimer vaccine candidates. NPJ Vaccines 2022; 7:152. [PMID: 36433972 PMCID: PMC9700725 DOI: 10.1038/s41541-022-00576-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) trimer is the key target for vaccines aimed at inducing neutralizing antibodies (NAbs) against HIV-1. The clinical candidate immunogen ConM SOSIP.v7 is a stabilized native-like HIV-1 Env trimer based on an artificial consensus sequence of all HIV-1 isolates in group M. In preclinical studies ConM SOSIP.v7 trimers induced strong autologous NAb responses in non-human primates (NHPs). To fine-map these responses, we isolated monoclonal antibodies (mAbs) from six cynomolgus macaques that were immunized three times with ConM SOSIP.v7 protein and boosted twice with the closely related ConSOSL.UFO.664 immunogen. A total of 40 ConM and/or ConS-specific mAbs were isolated, of which 18 were retrieved after the three ConM SOSIP.v7 immunizations and 22 after the two immunizations with ConSOSL.UFO.664. 22 mAbs (55%) neutralized the ConM and/or ConS virus. Cross-neutralization of ConS virus by approximately one-third of the mAbs was seen prior to ConSOSL.UFO.664 immunization, albeit with modest potency. Neutralizing antibodies predominantly targeted the V1 and V2 regions of the immunogens, with an apparent extension towards the V3 region. Thus, the V1V2V3 region is immunodominant in the potent NAb response elicited by two consensus sequence native-like HIV-1 Env immunogens. Immunization with these soluble consensus Env proteins also elicited non-neutralizing mAbs targeting the trimer base. These results inform the use and improvement of consensus-based trimer immunogens in combinatorial vaccine strategies.
Collapse
Affiliation(s)
- E I M M Reiss
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - M M van Haaren
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - J van Schooten
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - M A F Claireaux
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - P Maisonnasse
- Université Paris-Saclay - CEA - INSERM U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - A Antanasijevic
- Department of Integrative Structural and Computational Biology, Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - J D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - I Bontjer
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - J L Torres
- Department of Integrative Structural and Computational Biology, Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - W-H Lee
- Department of Integrative Structural and Computational Biology, Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - G Ozorowski
- Department of Integrative Structural and Computational Biology, Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - N Vázquez Bernat
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - M Kaduk
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Y Aldon
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - J A Burger
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - H Chawla
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - A Aartse
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - M Tolazzi
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - H Gao
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - P Mundsperger
- Polymun Scientific Immunbiologische Forschung GmbH, Klosterneuburg, Austria
| | - M Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - D C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - G B Karlsson Hedestam
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - G Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - A B Ward
- Department of Integrative Structural and Computational Biology, Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - R Le Grand
- Université Paris-Saclay - CEA - INSERM U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - R Shattock
- Division of Mucosal Infection and Immunity, Department of Medicine, Imperial College of Science, Technology and Medicine, London, UK
| | - N Dereuddre-Bosquet
- Université Paris-Saclay - CEA - INSERM U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - R W Sanders
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - M J van Gils
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Knudsen ML, Agrawal P, MacCamy A, Parks KR, Gray MD, Takushi BN, Khechaduri A, Salladay KR, Coler RN, LaBranche CC, Montefiori D, Stamatatos L. Adjuvants influence the maturation of VRC01-like antibodies during immunization. iScience 2022; 25:105473. [PMID: 36405776 PMCID: PMC9667313 DOI: 10.1016/j.isci.2022.105473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Once naive B cells expressing germline VRC01-class B cell receptors become activated by germline-targeting immunogens, they enter germinal centers and undergo affinity maturation. Booster immunizations with heterologous Envs are required for the full maturation of VRC01-class antibodies. Here, we examined whether and how three adjuvants, Poly(I:C), GLA-LSQ, or Rehydragel, that activate different pathways of the innate immune system, influence the rate and type of somatic mutations accumulated by VRC01-class BCRs that become activated by the germline-targeting 426c.Mod.Core immunogen and the heterologous HxB2.WT.Core booster immunogen. We report that although the adjuvant used had no influence on the durability of plasma antibody responses after the prime, it influenced the plasma VRC01 antibody titers after the boost and the accumulation of somatic mutations on the elicited VRC01 antibodies.
Collapse
Affiliation(s)
- Maria L. Knudsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Parul Agrawal
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Anna MacCamy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - K. Rachael Parks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Matthew D. Gray
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Brittany N. Takushi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Arineh Khechaduri
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kelsey R. Salladay
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rhea N. Coler
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | | | - David Montefiori
- Division of Surgical Sciences, Duke University, Durham, NC 27710, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
28
|
van Schooten J, Schorcht A, Farokhi E, Umotoy JC, Gao H, van den Kerkhof TLGM, Dorning J, Rijkhold Meesters TG, van der Woude P, Burger JA, Bijl T, Ghalaiyini R, Torrents de la Peña A, Turner HL, Labranche CC, Stanfield RL, Sok D, Schuitemaker H, Montefiori DC, Burton DR, Ozorowski G, Seaman MS, Wilson IA, Sanders RW, Ward AB, van Gils MJ. Complementary antibody lineages achieve neutralization breadth in an HIV-1 infected elite neutralizer. PLoS Pathog 2022; 18:e1010945. [PMID: 36395347 PMCID: PMC9714913 DOI: 10.1371/journal.ppat.1010945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 12/01/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) have remarkable breadth and potency against most HIV-1 subtypes and are able to prevent HIV-1 infection in animal models. However, bNAbs are extremely difficult to induce by vaccination. Defining the developmental pathways towards neutralization breadth can assist in the design of strategies to elicit protective bNAb responses by vaccination. Here, HIV-1 envelope glycoproteins (Env)-specific IgG+ B cells were isolated at various time points post infection from an HIV-1 infected elite neutralizer to obtain monoclonal antibodies (mAbs). Multiple antibody lineages were isolated targeting distinct epitopes on Env, including the gp120-gp41 interface, CD4-binding site, silent face and V3 region. The mAbs each neutralized a diverse set of HIV-1 strains from different clades indicating that the patient's remarkable serum breadth and potency might have been the result of a polyclonal mixture rather than a single bNAb lineage. High-resolution cryo-electron microscopy structures of the neutralizing mAbs (NAbs) in complex with an Env trimer generated from the same individual revealed that the NAbs used multiple strategies to neutralize the virus; blocking the receptor binding site, binding to HIV-1 Env N-linked glycans, and disassembly of the trimer. These results show that diverse NAbs can complement each other to achieve a broad and potent neutralizing serum response in HIV-1 infected individuals. Hence, the induction of combinations of moderately broad NAbs might be a viable vaccine strategy to protect against a wide range of circulating HIV-1 viruses.
Collapse
Affiliation(s)
- Jelle van Schooten
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anna Schorcht
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Elinaz Farokhi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jeffrey C. Umotoy
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hongmei Gao
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Tom L. G. M. van den Kerkhof
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jessica Dorning
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tim G. Rijkhold Meesters
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patricia van der Woude
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Judith A. Burger
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom Bijl
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Riham Ghalaiyini
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Alba Torrents de la Peña
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Hannah L. Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Celia C. Labranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Robyn L. Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Hanneke Schuitemaker
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Rogier W. Sanders
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, California, United States of America
| | - Marit J. van Gils
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Moshoette T, Papathanasopoulos MA, Killick MA. HIV-1 bispecific antibody iMab-N6 exhibits enhanced breadth but not potency over its parental antibodies iMab and N6. Virol J 2022; 19:143. [PMID: 36071449 PMCID: PMC9450465 DOI: 10.1186/s12985-022-01876-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
The recently published AMP trial (HVTN 703/HPTN 081 and HVTN704/HPTN 085) results have validated broad neutralising antibodies (bNAbs) as potential anti-HIV-1 agents. However, single bNAb preparations are unlikely to cope with the onslaught of existing and de novo resistance mutations, thus necessitating the use of bNAb combinations to achieve clinically relevant results. Specifically engineered antibodies incorporating two bNAbs into a single antibody structure have been developed. These bispecific antibodies (bibNAbs) retain the benefits of bNAb combinations, whilst several conformations exhibit improved neutralisation potency over the parental bNAbs. Here we report on the engineering of a bibNAb comprising of an HIV-1 spike targeting bNAb N6 and a host CD4 targeting antibody ibalizumab (iMab). Antibodies were expressed in HEK293T cells and purified by protein-A affinity chromatography followed by size exclusion chromatography to achieve homogenous, monomeric, bibNAb preparations. Antibody purity was confirmed by SDS-PAGE whilst epitope specificity and binding were confirmed by ELISA. Finally, antibody breadth and potency data were generated by HIV-1 neutralisation assay (n = 21, inclusive of the global panel). iMab-N6 exhibited better neutralisation breadth (100% coverage) in comparison to its parental bNAbs iMab (90%) and N6 (95%). This is encouraging as exceptional neutralisation breadth is necessary for HIV-1 treatment or prevention. Unfortunately, iMab-N6 did not exhibit any enhancement in potency over the most potent parental antibody, iMab (p = 0.1674, median IC50 of 0.0475 µg/ml, and 0.0665 µg/ml respectively) or the parental combination, iMab + N6 (p = 0.1964, median IC50: combination 0.0457 µg/ml). This result may point to a lack of dual engagement of the bibNAb Fab moieties necessary for potency enhancement. Against the previously reported bibNAbs; iMab-CAP256, 10E08-iMab, and PG9-iMab; iMab-N6 was the lowest performing bibNAb. The re-engineering of iMab-N6 to enhance its potency, while retaining breadth, is a worthwhile endeavour due to its clinical potential.
Collapse
Affiliation(s)
- Tumelo Moshoette
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Maria Antonia Papathanasopoulos
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Mark Andrew Killick
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| |
Collapse
|
30
|
Zhao F, Berndsen ZT, Pedreño-Lopez N, Burns A, Allen JD, Barman S, Lee WH, Chakraborty S, Gnanakaran S, Sewall LM, Ozorowski G, Limbo O, Song G, Yong P, Callaghan S, Coppola J, Weisgrau KL, Lifson JD, Nedellec R, Voigt TB, Laurino F, Louw J, Rosen BC, Ricciardi M, Crispin M, Desrosiers RC, Rakasz EG, Watkins DI, Andrabi R, Ward AB, Burton DR, Sok D. Molecular insights into antibody-mediated protection against the prototypic simian immunodeficiency virus. Nat Commun 2022; 13:5236. [PMID: 36068229 PMCID: PMC9446601 DOI: 10.1038/s41467-022-32783-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
SIVmac239 infection of macaques is a favored model of human HIV infection. However, the SIVmac239 envelope (Env) trimer structure, glycan occupancy, and the targets and ability of neutralizing antibodies (nAbs) to protect against SIVmac239 remain unknown. Here, we report the isolation of SIVmac239 nAbs that recognize a glycan hole and the V1/V4 loop. A high-resolution structure of a SIVmac239 Env trimer-nAb complex shows many similarities to HIV and SIVcpz Envs, but with distinct V4 features and an extended V1 loop. Moreover, SIVmac239 Env has a higher glycan shield density than HIV Env that may contribute to poor or delayed nAb responses in SIVmac239-infected macaques. Passive transfer of a nAb protects macaques from repeated intravenous SIVmac239 challenge at serum titers comparable to those described for protection of humans against HIV infection. Our results provide structural insights for vaccine design and shed light on antibody-mediated protection in the SIV model.
Collapse
Affiliation(s)
- Fangzhu Zhao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Zachary T Berndsen
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nuria Pedreño-Lopez
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Alison Burns
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Shawn Barman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Wen-Hsin Lee
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Srirupa Chakraborty
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Leigh M Sewall
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gabriel Ozorowski
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Oliver Limbo
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI, New York, NY, 10004, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jessica Coppola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Kim L Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Thomas B Voigt
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Fernanda Laurino
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Johan Louw
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Brandon C Rosen
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Michael Ricciardi
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ronald C Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - David I Watkins
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, 02139, USA.
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI, New York, NY, 10004, USA.
| |
Collapse
|
31
|
Identification of IOMA-class neutralizing antibodies targeting the CD4-binding site on the HIV-1 envelope glycoprotein. Nat Commun 2022; 13:4515. [PMID: 35922441 PMCID: PMC9349188 DOI: 10.1038/s41467-022-32208-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
A major goal of current HIV-1 vaccine design efforts is to induce broadly neutralizing antibodies (bNAbs). The VH1-2-derived bNAb IOMA directed to the CD4-binding site of the HIV-1 envelope glycoprotein is of interest because, unlike the better-known VH1-2-derived VRC01-class bNAbs, it does not require a rare short light chain complementarity-determining region 3 (CDRL3). Here, we describe three IOMA-class NAbs, ACS101-103, with up to 37% breadth, that share many characteristics with IOMA, including an average-length CDRL3. Cryo-electron microscopy revealed that ACS101 shares interactions with those observed with other VH1-2 and VH1-46-class bNAbs, but exhibits a unique binding mode to residues in loop D. Analysis of longitudinal sequences from the patient suggests that a transmitter/founder-virus lacking the N276 glycan might have initiated the development of these NAbs. Together these data strengthen the rationale for germline-targeting vaccination strategies to induce IOMA-class bNAbs and provide a wealth of sequence and structural information to support such strategies.
Collapse
|
32
|
Kreider EF, Bar KJ. HIV-1 Reservoir Persistence and Decay: Implications for Cure Strategies. Curr HIV/AIDS Rep 2022; 19:194-206. [PMID: 35404007 PMCID: PMC10443186 DOI: 10.1007/s11904-022-00604-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Despite suppressive antiretroviral therapy (ART), a viral reservoir persists in individuals living with HIV that can reignite systemic replication should treatment be interrupted. Understanding how HIV-1 persists through effective ART is essential to develop cure strategies to induce ART-free virus remission. RECENT FINDINGS The HIV-1 reservoir resides in a pool of CD4-expressing cells as a range of viral species, a subset of which is genetically intact. Recent studies suggest that the reservoir on ART is highly dynamic, with expansion and contraction of virus-infected cells over time. Overall, the intact proviral reservoir declines faster than defective viruses, suggesting enhanced immune clearance or cellular turnover. Upon treatment interruption, rebound viruses demonstrate escape from adaptive and innate immune responses, implicating these selective pressures in restriction of virus reactivation. Cure strategies employing immunotherapy are poised to test whether host immune pressure can be augmented to enhance reservoir suppression or clearance. Alternatively, genomic engineering approaches are being applied to directly eliminate intact viruses and shrink the replication-competent virus pool. New evidence suggests host immunity exerts selective pressure on reservoir viruses and clears HIV-1 infected cells over years on ART. Efforts to build on the detectable, but insufficient, reservoir clearance via empiric testing in clinical trials will inform our understanding of mechanisms of viral persistence and the direction of future cure strategies.
Collapse
Affiliation(s)
- Edward F Kreider
- Perelman School of Medicine, University of Pennsylvania, Stemmler Hall Room 130-150, 3450 Hamilton Walk, Philadelphia, PA, 19104-6073, USA
| | - Katharine J Bar
- Perelman School of Medicine, University of Pennsylvania, 502D Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104‑0673, USA.
| |
Collapse
|
33
|
Gray MD, Feng J, Weidle CE, Cohen KW, Ballweber-Fleming L, MacCamy AJ, Huynh CN, Trichka JJ, Montefiori D, Ferrari G, Pancera M, McElrath MJ, Stamatatos L. Characterization of a vaccine-elicited human antibody with sequence homology to VRC01-class antibodies that binds the C1C2 gp120 domain. SCIENCE ADVANCES 2022; 8:eabm3948. [PMID: 35507661 PMCID: PMC9067929 DOI: 10.1126/sciadv.abm3948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Broadly HIV-1-neutralizing VRC01-class antibodies bind the CD4-binding site of Env and contain VH1-2*02-derived heavy chains paired with light chains expressing five-amino acid-long CDRL3s. Their unmutated germline forms do not recognize HIV-1 Env, and their lack of elicitation in human clinical trials could be due to the absence of activation of the corresponding naïve B cells by the vaccine immunogens. To address this point, we examined Env-specific B cell receptor sequences from participants in the HVTN 100 clinical trial. Of all the sequences analyzed, only one displayed homology to VRC01-class antibodies, but the corresponding antibody (FH1) recognized the C1C2 gp120 domain. For FH1 to switch epitope recognition to the CD4-binding site, alterations in the CDRH3 and CDRL3 were necessary. Only germ line-targeting Env immunogens efficiently activated VRC01 B cells, even in the presence of FH1 B cells. Our findings support the use of these immunogens to activate VRC01 B cells in humans.
Collapse
Affiliation(s)
- Matthew D. Gray
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Junli Feng
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Connor E. Weidle
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kristen W. Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lamar Ballweber-Fleming
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Anna J. MacCamy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Crystal N. Huynh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Josephine J. Trichka
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
34
|
Nicholas RE, Sandstrom K, Anderson JL, Smith WR, Wetzel M, Banerjee P, Janaka SK, Evans DT. KIR3DL05 and KIR3DS02 Recognition of a Nonclassical MHC Class I Molecule in the Rhesus Macaque Implicated in Pregnancy Success. Front Immunol 2022; 13:841136. [PMID: 35401580 PMCID: PMC8984097 DOI: 10.3389/fimmu.2022.841136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Knowledge of the MHC class I ligands of rhesus macaque killer-cell Ig-like receptors (KIRs) is fundamental to understanding the role of natural killer (NK) cells in this species as a nonhuman primate model for infectious diseases, transplantation and reproductive biology. We previously identified Mamu-AG as a ligand for KIR3DL05. Mamu-AG is a nonclassical MHC class I molecule that is expressed at the maternal-fetal interface of the placenta in rhesus macaques similar to HLA-G in humans. Although Mamu-AG and HLA-G share similar molecular features, including limited polymorphism and a short cytoplasmic tail, Mamu-AG is considerably more polymorphic. To determine which allotypes of Mamu-AG serve as ligands for KIR3DL05, we tested reporter cell lines expressing five different alleles of KIR3DL05 (KIR3DL05*001, KIR3DL05*004, KIR3DL05*005, KIR3DL05*008 and KIR3DL05*X) for responses to target cells expressing eight different alleles of Mamu-AG. All five allotypes of KIR3DL05 responded to Mamu-AG2*01:01, two exhibited dominant responses to Mamu-AG1*05:01, and three had low but detectable responses to Mamu-AG3*03:01, -AG3*03:02, -AG3*03:03 and -AG3*03:04. Since KIR3DL05*X is the product of recombination between KIR3DL05 and KIR3DS02, we also tested an allotype of KIR3DS02 (KIR3DS02*004) and found that this activating KIR also recognizes Mamu-AG2*01:01. Additional analysis of Mamu-AG variants with single amino acid substitutions identified residues in the α1-domain essential for recognition by KIR3DL05. These results reveal variation in KIR3DL05 and KIR3DS02 responses to Mamu-AG and define Mamu-AG polymorphisms that differentially affect KIR recognition.
Collapse
Affiliation(s)
- Rachel E. Nicholas
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Kjell Sandstrom
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Jennifer L. Anderson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Willow R. Smith
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Molly Wetzel
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Priyankana Banerjee
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Sanath Kumar Janaka
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
35
|
Lewitus E, Townsley SM, Li Y, Donofrio GC, Dearlove BL, Bai H, Sanders-Buell E, O’Sullivan AM, Bose M, Kibuuka H, Maganga L, Nitayaphan S, Sawe FK, Eller LA, Michael NL, Polonis VR, Ake JA, Vasan S, Robb ML, Tovanabutra S, Krebs SJ, Rolland M. HIV-1 infections with multiple founders associate with the development of neutralization breadth. PLoS Pathog 2022; 18:e1010369. [PMID: 35303045 PMCID: PMC8967031 DOI: 10.1371/journal.ppat.1010369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/30/2022] [Accepted: 02/16/2022] [Indexed: 12/21/2022] Open
Abstract
Eliciting broadly neutralizing antibodies (bnAbs) is a cornerstone of HIV-1 vaccine strategies. Comparing HIV-1 envelope (env) sequences from the first weeks of infection to the breadth of antibody responses observed several years after infection can help define viral features critical to vaccine design. We investigated the relationship between HIV-1 env genetics and the development of neutralization breadth in 70 individuals enrolled in a prospective acute HIV-1 cohort. Half of the individuals who developed bnAbs were infected with multiple HIV-1 founder variants, whereas all individuals with limited neutralization breadth had been infected with single HIV-1 founders. Accordingly, at HIV-1 diagnosis, env diversity was significantly higher in participants who later developed bnAbs compared to those with limited breadth (p = 0.012). This association between founder multiplicity and the subsequent development of neutralization breadth was also observed in 56 placebo recipients in the RV144 vaccine efficacy trial. In addition, we found no evidence that neutralization breath was heritable when analyzing env sequences from the 126 participants. These results demonstrate that the presence of slightly different HIV-1 variants in acute infection could promote the induction of bnAbs, suggesting a novel vaccine strategy, whereby an initial immunization with a cocktail of minimally distant antigens would be able to initiate bnAb development towards breadth. Vaccines against viral pathogens protect through the induction of broadly neutralizing antibodies (bnAbs). No HIV-1 vaccine has successfully elicited bnAbs, and a successful HIV-1 vaccine will need to accelerate the process of development of a broadly neutralizing response that typically takes a couple of years to develop in natural infection. We studied diversity in the HIV-1 envelope gene from initial infection to several years out in 126 individuals from two cohorts. We showed that the development of bnAbs at 2–3 years was not due to transmissible viral genetics, but rather associated with diversity during the first month of infection. We propose that designing a vaccine that mimics an infection with multiple, minimally distant founder variants may successfully elicit the development of bnAbs and provide effective prophylaxis against HIV-1.
Collapse
Affiliation(s)
- Eric Lewitus
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Samantha M. Townsley
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Yifan Li
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Gina C. Donofrio
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Bethany L. Dearlove
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Hongjun Bai
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Anne Marie O’Sullivan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Meera Bose
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Lucas Maganga
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya, Tanzania
| | | | - Fredrick K. Sawe
- Kenya Medical Research Institute/U.S. Army Medical Research Directorate-Africa/Kenya-Henry Jackson Foundation MRI, Kericho, Kenya
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Nelson L. Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Victoria R. Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Julie A. Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Shelly J. Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
Deimel LP, Xue X, Sattentau QJ. Glycans in HIV-1 vaccine design – engaging the shield. Trends Microbiol 2022; 30:866-881. [DOI: 10.1016/j.tim.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022]
|
37
|
Duggan NN, Weisgrau KL, Magnani DM, Rakasz EG, Desrosiers RC, Martinez-Navio JM. SOSIP Trimer-Specific Antibodies Isolated from a Simian-Human Immunodeficiency Virus-Infected Monkey with versus without a Pre-blocking Step with gp41. J Virol 2022; 96:e0158221. [PMID: 34730398 PMCID: PMC8791287 DOI: 10.1128/jvi.01582-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
BG505 SOSIP.664 (hereafter referred to as SOSIP), a stabilized trimeric mimic of the HIV-1 envelope spike resembling the native viral spike, is a useful tool for isolating anti-HIV-1 neutralizing antibodies. We screened long-term SHIV-AD8 infected rhesus monkeys for potency and breadth of serum neutralizing activity against autologous and heterologous viruses: SHIV-AD8, HIV-1 YU2, HIV-1 JR-CSF, and HIV-1 NL4-3. Monkey rh2436 neutralized all viruses tested and showed strong reactivity to the SOSIP trimer, suggesting this was a promising candidate for attempts at monoclonal antibody (MAb) isolation. MAbs were isolated by performing single B-cell sorts from peripheral blood mononuclear cells (PBMC) by FACS using the SOSIP trimer as a probe. An initial round of sorted cells revealed the majority of isolated MAbs were directed to the gp41 external domain portion of the SOSIP trimer and were mostly non-neutralizing against tested isolates. A second sort was performed, introducing a gp41 blocking step prior to PBMC staining and FACS sorting. These isolated MAbs bound SOSIP trimer but were no longer directed to the gp41 external domain portion. A significantly higher proportion of MAbs with neutralizing activity were obtained with this strategy. Our data show this pre-blocking step with gp41 greatly increases the yield of non-gp41-reactive, SOSIP-specific MAbs and increases the likelihood of isolating MAbs with neutralizing activity. IMPORTANCE Recent advancements in the field have focused on the isolation and use of broadly neutralizing antibodies for both prophylaxis and therapy. Finding a useful probe to isolate broad potent neutralizing antibodies while avoiding non-neutralizing antibodies is important. The SOSIP trimer has been shown to be a great tool for this purpose because it binds known broadly neutralizing antibodies. However, the SOSIP trimer can isolate non-neutralizing antibodies as well, including gp41-specific MAbs. Introducing a pre-blocking step with gp41 recombinant protein decreased the percent of gp41-specific antibodies isolated with SOSIP probe, as well as increased the number of neutralizing antibodies isolated. This method can be used as a tool to increase the chances of isolating neutralizing antibodies.
Collapse
Affiliation(s)
- Natasha N. Duggan
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kim L. Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Diogo M. Magnani
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ronald C. Desrosiers
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jose M. Martinez-Navio
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
38
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
39
|
Tolbert WD, Nguyen DN, Tuyishime M, Crowley AR, Chen Y, Jha S, Goodman D, Bekker V, Mudrak SV, DeVico AL, Lewis GK, Theis JF, Pinter A, Moody MA, Easterhoff D, Wiehe K, Pollara J, Saunders KO, Tomaras GD, Ackerman M, Ferrari G, Pazgier M. Structure and Fc-Effector Function of Rhesusized Variants of Human Anti-HIV-1 IgG1s. Front Immunol 2022; 12:787603. [PMID: 35069563 PMCID: PMC8770954 DOI: 10.3389/fimmu.2021.787603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/09/2021] [Indexed: 01/14/2023] Open
Abstract
Passive transfer of monoclonal antibodies (mAbs) of human origin into Non-Human Primates (NHPs), especially those which function predominantly by a Fc-effector mechanism, requires an a priori preparation step, in which the human mAb is reengineered to an equivalent NHP IgG subclass. This can be achieved by changing both the Fc and Fab sequence while simultaneously maintaining the epitope specificity of the parent antibody. This Ab reengineering process, referred to as rhesusization, can be challenging because the simple grafting of the complementarity determining regions (CDRs) into an NHP IgG subclass may impact the functionality of the mAb. Here we describe the successful rhesusization of a set of human mAbs targeting HIV-1 envelope (Env) epitopes involved in potent Fc-effector function against the virus. This set includes a mAb targeting a linear gp120 V1V2 epitope isolated from a RV144 vaccinee, a gp120 conformational epitope within the Cluster A region isolated from a RV305 vaccinated individual, and a linear gp41 epitope within the immunodominant Cys-loop region commonly targeted by most HIV-1 infected individuals. Structural analyses confirm that the rhesusized variants bind their respective Env antigens with almost identical specificity preserving epitope footprints and most antigen-Fab atomic contacts with constant regions folded as in control RM IgG1s. In addition, functional analyses confirm preservation of the Fc effector function of the rhesusized mAbs including the ability to mediate Antibody Dependent Cell-mediated Cytotoxicity (ADCC) and antibody dependent cellular phagocytosis by monocytes (ADCP) and neutrophils (ADNP) with potencies comparable to native macaque antibodies of similar specificity. While the antibodies chosen here are relevant for the examination of the correlates of protection in HIV-1 vaccine trials, the methods used are generally applicable to antibodies for other purposes.
Collapse
Affiliation(s)
- William D. Tolbert
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Dung N. Nguyen
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Marina Tuyishime
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Andrew R. Crowley
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Yaozong Chen
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Shalini Jha
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Derrick Goodman
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Valerie Bekker
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Sarah V. Mudrak
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Anthony L. DeVico
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - George K. Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - James F. Theis
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Abraham Pinter
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - M. Anthony Moody
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - David Easterhoff
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Kevin Wiehe
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Justin Pollara
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Kevin O. Saunders
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Georgia D. Tomaras
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Margaret Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD, United States,*Correspondence: Marzena Pazgier,
| |
Collapse
|
40
|
Zhang P, Narayanan E, Liu Q, Tsybovsky Y, Boswell K, Ding S, Hu Z, Follmann D, Lin Y, Miao H, Schmeisser H, Rogers D, Falcone S, Elbashir SM, Presnyak V, Bahl K, Prabhakaran M, Chen X, Sarfo EK, Ambrozak DR, Gautam R, Martin MA, Swerczek J, Herbert R, Weiss D, Misamore J, Ciaramella G, Himansu S, Stewart-Jones G, McDermott A, Koup RA, Mascola JR, Finzi A, Carfi A, Fauci AS, Lusso P. A multiclade env-gag VLP mRNA vaccine elicits tier-2 HIV-1-neutralizing antibodies and reduces the risk of heterologous SHIV infection in macaques. Nat Med 2021; 27:2234-2245. [PMID: 34887575 DOI: 10.1038/s41591-021-01574-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022]
Abstract
The development of a protective vaccine remains a top priority for the control of the HIV/AIDS pandemic. Here, we show that a messenger RNA (mRNA) vaccine co-expressing membrane-anchored HIV-1 envelope (Env) and simian immunodeficiency virus (SIV) Gag proteins to generate virus-like particles (VLPs) induces antibodies capable of broad neutralization and reduces the risk of infection in rhesus macaques. In mice, immunization with co-formulated env and gag mRNAs was superior to env mRNA alone in inducing neutralizing antibodies. Macaques were primed with a transmitted-founder clade-B env mRNA lacking the N276 glycan, followed by multiple booster immunizations with glycan-repaired autologous and subsequently bivalent heterologous envs (clades A and C). This regimen was highly immunogenic and elicited neutralizing antibodies against the most prevalent (tier-2) HIV-1 strains accompanied by robust anti-Env CD4+ T cell responses. Vaccinated animals had a 79% per-exposure risk reduction upon repeated low-dose mucosal challenges with heterologous tier-2 simian-human immunodeficiency virus (SHIV AD8). Thus, the multiclade env-gag VLP mRNA platform represents a promising approach for the development of an HIV-1 vaccine.
Collapse
Affiliation(s)
- Peng Zhang
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | | | - Qingbo Liu
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Shilei Ding
- Université de Montreal, Montreal, Quebec, Canada
| | - Zonghui Hu
- Biostatistics Research Branch, NIAID, NIH, Bethesda, MD, USA
| | - Dean Follmann
- Biostatistics Research Branch, NIAID, NIH, Bethesda, MD, USA
| | - Yin Lin
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Huiyi Miao
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Hana Schmeisser
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Denise Rogers
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | | | | | | | | | | | - Xuejun Chen
- Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | | | | | - Rajeev Gautam
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Malcom A Martin
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Joanna Swerczek
- Experimental Primate Virology Section, NIAID, Poolesville, MD, USA
| | - Richard Herbert
- Experimental Primate Virology Section, NIAID, Poolesville, MD, USA
| | | | | | | | | | | | | | | | | | - Andrés Finzi
- Université de Montreal, Montreal, Quebec, Canada
| | | | - Anthony S Fauci
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA.
| |
Collapse
|
41
|
Escolano A, Gristick HB, Gautam R, DeLaitsch AT, Abernathy ME, Yang Z, Wang H, Hoffmann MA, Nishimura Y, Wang Z, Koranda N, Kakutani LM, Gao H, Gnanapragasam PNP, Raina H, Gazumyan A, Cipolla M, Oliveira TY, Ramos V, Irvine DJ, Silva M, West AP, Keeffe JR, Barnes CO, Seaman MS, Nussenzweig MC, Martin MA, Bjorkman PJ. Sequential immunization of macaques elicits heterologous neutralizing antibodies targeting the V3-glycan patch of HIV-1 Env. Sci Transl Med 2021; 13:eabk1533. [PMID: 34818054 PMCID: PMC8932345 DOI: 10.1126/scitranslmed.abk1533] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Broadly neutralizing antibodies (bNAbs) against HIV-1 develop after prolonged virus and antibody coevolution. Previous studies showed that sequential immunization with a V3-glycan patch germline-targeting HIV-1 envelope trimer (Env) followed by variant Envs can reproduce this process in mice carrying V3-glycan bNAb precursor B cells. However, eliciting bNAbs in animals with polyclonal antibody repertoires is more difficult. We used a V3-glycan immunogen multimerized on virus-like particles (VLPs), followed by boosting with increasingly native-like Env-VLPs, to elicit heterologous neutralizing antibodies in nonhuman primates (NHPs). Structures of antibody/Env complexes after prime and boost vaccinations demonstrated target epitope recognition with apparent maturation to accommodate glycans. However, we also observed increasing off-target antibodies with boosting. Eight vaccinated NHPs were subsequently challenged with simian-human immunodeficiency virus (SHIV), and seven of eight animals became infected. The single NHP that remained uninfected after viral challenge exhibited one of the lowest neutralization titers against the challenge virus. These results demonstrate that more potent heterologous neutralization resulting from sequential immunization is necessary for protection in this animal model. Thus, improved prime-boost regimens to increase bNAb potency and stimulate other immune protection mechanisms are essential for developing anti–HIV-1 vaccines.
Collapse
Affiliation(s)
- Amelia Escolano
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Harry B. Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rajeev Gautam
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Present address: Virology Branch, Basic Research Section, NIAID, NIH. 5601 Fisher’s Lane. Rockville, MD 20892, USA
| | - Andrew T. DeLaitsch
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Morgan E. Abernathy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zhi Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Haoqing Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Present address: Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Magnus A.G. Hoffmann
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Nicholas Koranda
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Leesa M. Kakutani
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Henna Raina
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Darrell J. Irvine
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Murillo Silva
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christopher O. Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Present address: Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Malcolm A. Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
42
|
Strategies for eliciting multiple lineages of broadly neutralizing antibodies to HIV by vaccination. Curr Opin Virol 2021; 51:172-178. [PMID: 34742037 DOI: 10.1016/j.coviro.2021.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/24/2021] [Indexed: 12/29/2022]
Abstract
A prophylactic vaccine would be a powerful tool in the fight against HIV. Passive immunization of animals with broadly neutralizing antibodies (bnAbs) affords protection against viral challenge, and recent data from the Antibody Mediated Prevention clinical trials support the concept of bnAbs providing protection against HIV in humans, albeit only at broad and potent neutralizing antibody titers. Moreover, it is now clear that a successful vaccine will also need to induce bnAbs against multiple neutralizing epitopes on the HIV envelope (Env) glycoprotein. Here, we review recent clinical trials evaluating bnAb-based vaccines, and discuss key issues in the development of an HIV vaccine capable of targeting multiple Env neutralizing epitopes.
Collapse
|
43
|
Miner MD, Corey L, Montefiori D. Broadly neutralizing monoclonal antibodies for HIV prevention. J Int AIDS Soc 2021; 24 Suppl 7:e25829. [PMID: 34806308 PMCID: PMC8606861 DOI: 10.1002/jia2.25829] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/14/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION The last 12 years have seen remarkable progress in the isolation and characterization of at least five different epitope classes of HIV-specific broadly neutralizing antibodies (bnAbs). Detailed analyses of these bnAb lineages, maturation pathways and epitopes have created new opportunities for vaccine development. In addition, interest exists in passive administration of monoclonal antibodies as a viable option for HIV prevention. DISCUSSION Recently, two antibody-mediated prevention (AMP) trials of a passively administered monoclonal antibody targeting the HIV envelope CD4 binding site, called VRC01, provided proof-of-concept that monoclonal antibody infusion could offer protection against HIV acquisition. While the trials failed to show overall protection against HIV acquisition, sub-analyses revealed that VRC01 infusion provided a 75% prevention efficacy against HIV strains that were susceptible to the antibody. The study also demonstrated that in vitro neutralizing activity, measured by the TZM-bl/pseudovirus assay, was able to predict HIV prevention efficacy in humans. In addition, the AMP trials defined a threshold protective concentration, or neutralization titer, for the VRC01 class of bnAbs, explaining the observed low overall efficacy and serving as a benchmark for the clinical testing of new bnAbs, bnAb cocktails and neutralizing antibody-inducing vaccines. Newer bnAbs that exhibit greater potency and breadth of neutralization in vitro than VRC01 are available for clinical testing. Combinations of best-in-class bnAbs with complementary magnitude, breadth and extent of complete neutralization are predicted to far exceed the prevention efficacy of VRC01. Some engineered bi- and trispecific mAbs exhibit similar desirable neutralizing activity and afford advantages for manufacturing and delivery. Modifications that prolong the serum half-life and improve genital tissue persistence offer additional advantages. CONCLUSIONS Iterative phase 1 trials are acquiring safety and pharmacokinetic data on dual and triple bnAbs and bi- and trispecific antibodies in preparation for future AMP studies that seek to translate findings from the VRC01 efficacy trials and achieve acceptable levels of overall prevention efficacy.
Collapse
Affiliation(s)
- Maurine D. Miner
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Lawrence Corey
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - David Montefiori
- Department of Surgery and Duke Human Vaccine InstituteDuke University Medical CenterDurhamNorth CarolinaUSA
| |
Collapse
|
44
|
Derking R, Sanders RW. Structure-guided envelope trimer design in HIV-1 vaccine development: a narrative review. J Int AIDS Soc 2021; 24 Suppl 7:e25797. [PMID: 34806305 PMCID: PMC8606863 DOI: 10.1002/jia2.25797] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The development of a human immunodeficiency virus 1 (HIV-1) vaccine remains a formidable challenge. An effective vaccine likely requires the induction of broadly neutralizing antibodies (bNAbs), which likely involves the use of native-like HIV-1 envelope (Env) trimers at some or all stages of vaccination. Development of such trimers has been very difficult, but much progress has been made in the past decade, starting with the BG505 SOSIP trimer, elucidation of its atomic structure and implementing subsequent design iterations. This progress facilitated understanding the weaknesses of the Env trimer, fuelled structure-guided HIV-1 vaccine design and assisted in the development of new vaccine designs. This review summarizes the relevant literature focusing on studies using structural biology to reveal and define HIV-1 Env sites of vulnerability; to improve Env trimers, by creating more stable versions; understanding antibody responses in preclinical vaccination studies at the atomic level; understanding the glycan shield; and to improve "on-target" antibody responses versus "off-target" responses. METHODS The authors conducted a narrative review of recently published articles that made a major contribution to HIV-1 structural biology and vaccine design efforts between the years 2000 and 2021. DISCUSSION The field of structural biology is evolving at an unprecedented pace, where cryo-electron microscopy (cryo-EM) and X-ray crystallography provide complementary information. Resolving protein structures is necessary for defining which Env surfaces are accessible for the immune system and can be targeted by neutralizing antibodies. Recently developed techniques, such as electron microscopy-based polyclonal epitope mapping (EMPEM) are revolutionizing the way we are analysing immune responses and shed light on the immunodominant targets on new vaccine immunogens. Such information accelerates iterative vaccine design; for example, by reducing undesirable off-target responses, while improving immunogens to drive the more desirable on-target responses. CONCLUSIONS Resolving high-resolution structures of the HIV-1 Env trimer was instrumental in understanding and improving recombinant HIV-1 Env trimers that mimic the structure of viral HIV-1 Env spikes. Newly emerging techniques in structural biology are aiding vaccine design efforts and improving immunogens. The role of structural biology in HIV-1 vaccine design has indeed become very prominent and is unlikely to diminish any time soon.
Collapse
Affiliation(s)
- Ronald Derking
- Department of Medical MicrobiologyAmsterdam Infection & Immunity InstituteAmsterdam UMC, AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Rogier W. Sanders
- Department of Medical MicrobiologyAmsterdam Infection & Immunity InstituteAmsterdam UMC, AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Microbiology and ImmunologyWeill Medical College of Cornell UniversityNew YorkNew YorkUSA
| |
Collapse
|
45
|
Shivatare SS, Rachel Cheng TJ, Cheng YY, Shivatare VS, Tsai TI, Chuang HY, Wu CY, Wong CH. Immunogenicity Evaluation of N-Glycans Recognized by HIV Broadly Neutralizing Antibodies. ACS Chem Biol 2021; 16:2016-2025. [PMID: 34649433 PMCID: PMC8526942 DOI: 10.1021/acschembio.1c00375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While the improved treatment of human immunodeficiency virus type 1 (HIV-1) infection is available, the development of an effective and safe prophylactic vaccine against HIV-1 is still an unrealized goal. Encouragingly, the discovery of broadly neutralizing antibodies (bNAbs) from HIV-1 positive patients that are capable of neutralizing a broad spectrum of HIV-1 isolates of various clades has accelerated the progress of vaccine development in the past few years. Some of these bNAbs recognize the N-glycans on the viral surface gp120 glycoprotein. We have been interested in using the glycan epitopes recognized by bNAbs for the development of vaccines to elicit bNAb-like antibodies with broadly neutralizing activities. Toward this goal, we have identified novel hybrid-type structures with subnanomolar avidity toward several bNAbs including PG16, PGT121, PGT128-3C, 2G12, VRC13, VRC-PG05, VRC26.25, VRC26.09, PGDM1400, 35O22, and 10-1074. Here, we report the immunogenicity evaluation of a novel hybrid glycan conjugated to carrier DTCRM197, a nontoxic mutant of the diphtheria toxin, for immunization in mice. Our results indicated that the IgG response was mainly against the chitobiose motif with nonspecific binding to a panel of N-glycans with reducing end GlcNAc-GlcNAc (chitobiose) printed on the glass slides. However, the IgM response was mainly toward the reducing end GlcNAc moiety. We further used the glycoconjugates of Man3GlcNAc2, Man5GlcNAc2, and Man9GlcNAc2 glycans for immunization, and a similar specificity pattern was observed. These findings suggest that the immunogenicity of chitobiose may interfere with the outcome of N-glycan-based vaccines, and modification may be necessary to increase the immunogenicity of the entire N-glycan epitope.
Collapse
Affiliation(s)
- Sachin S. Shivatare
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Ting-Jen Rachel Cheng
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Yang-Yu Cheng
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Vidya S. Shivatare
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Tsung-I Tsai
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Hong-Yang Chuang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Chi-Huey Wong
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| |
Collapse
|
46
|
Chikaev AN, Chikaev AN, Rudometov AP, Merkulyeva YA, Karpenko LI. Phage display as a tool for identifying HIV-1 broadly neutralizing antibodies. Vavilovskii Zhurnal Genet Selektsii 2021; 25:562-572. [PMID: 34595378 PMCID: PMC8453360 DOI: 10.18699/vj21.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/14/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
Combinatorial biology methods offer a good solution for targeting interactions of specif ic molecules
by a high-throughput screening and are widely used for drug development, diagnostics, identif ication of novel
monoclonal antibodies, search for linear peptide mimetics of discontinuous epitopes for the development of
immunogens or vaccine components. Among all currently available techniques, phage display remains one of
the most popular approaches. Despite being a fairly old method, phage display is still widely used for studying
protein-protein, peptide-protein and DNA-protein interactions due to its relative simplicity and versatility. Phage
display allows highly representative libraries of peptides, proteins or their fragments to be created. Each phage
particle in a library displays peptides or proteins fused to its coat protein and simultaneously carries the DNA
sequence encoding the displayed peptide/protein in its genome. The biopanning procedure allows isolation of
specif ic clones for almost any target, and due to the physical link between the genotype and the phenotype of
recombinant phage particles it is possible to determine the structure of selected molecules. Phage display technology
continues to play an important role in HIV research. A major obstacle to the development of an effective
HIV vaccine is an extensive genetic and antigenic variability of the virus. According to recent data, in order to provide
protection against HIV infection, the so-called broadly neutralizing antibodies that are cross-reactive against
multiple viral strains of HIV must be induced, which makes the identif ication of such antibodies a key area of HIV
vaccinology. In this review, we discuss the use of phage display as a tool for identif ication of HIV-specif ic antibodies
with broad neutralizing activity. We provide an outline of phage display technology, brief ly describe the
design of antibody phage libraries and the affinity selection procedure, and discuss the biology of HIV-1-specif ic
broadly neutralizing antibodies. Finally, we summarize the studies aimed at identif ication of broadly neutralizing
antibodies using various types of phage libraries.
Collapse
Affiliation(s)
| | - A N Chikaev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A P Rudometov
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - Yu A Merkulyeva
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - L I Karpenko
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| |
Collapse
|
47
|
Nduati EW, Gorman MJ, Sein Y, Hermanus T, Yuan D, Oyaro I, Muema DM, Ndung’u T, Alter G, Moore PL. Coordinated Fc-effector and neutralization functions in HIV-infected children define a window of opportunity for HIV vaccination. AIDS 2021; 35:1895-1905. [PMID: 34115644 PMCID: PMC8462450 DOI: 10.1097/qad.0000000000002976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/04/2021] [Accepted: 06/02/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Antibody function has been extensively studied in HIV-infected adults but is relatively understudied in children. Emerging data suggests enhanced development of broadly neutralizing antibodies (bNAbs) in children but Fc effector functions in this group are less well defined. Here, we profiled overall antibody function in HIV-infected children. DESIGN Plasma samples from a cross-sectional study of 50 antiretroviral therapy-naive children (aged 1-11 years) vertically infected with HIV-1 clade A were screened for HIV-specific binding antibody levels and neutralizing and Fc-mediated functions. METHODS Neutralization breadth was determined against a globally representative panel of 12 viruses. HIV-specific antibody levels were determined using a multiplex assay. Fc-mediated antibody functions measured were antibody-dependent: cellular phagocytosis (ADCP); neutrophil phagocytosis (ADNP); complement deposition (ADCD) and natural killer function (ADNK). RESULTS All children had HIV gp120-specific antibodies, largely of the IgG1 subtype. Fifty-four percent of the children exhibited more than 50% neutralization breadth, with older children showing significantly broader neutralization activity. Apart from ADCC, observed only in 16% children, other Fc-mediated functions were common (>58% children). Neutralization breadth correlated with Fc-mediated functions suggesting shared determinants of enhanced antibody function exist. CONCLUSIONS These results are consistent with previous observations that children may develop high levels of neutralization breadth. Furthermore, the striking association between neutralization breadth and Fc effector function suggests that HIV vaccination in children could yield multifunctional antibodies. Paediatric populations may therefore provide an ideal window of opportunity for HIV vaccination strategies.
Collapse
Affiliation(s)
| | | | - Yiakon Sein
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Tandile Hermanus
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg
| | - Dansu Yuan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Ian Oyaro
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Daniel M. Muema
- Africa Health Research Institute, Durban
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung’u
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Africa Health Research Institute, Durban
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
- Division of Infection and Immunity, University College London, London, UK
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Penny L. Moore
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg
- Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
48
|
Robert PA, Arulraj T, Meyer-Hermann M. Ymir: A 3D structural affinity model for multi-epitope vaccine simulations. iScience 2021; 24:102979. [PMID: 34485861 PMCID: PMC8405928 DOI: 10.1016/j.isci.2021.102979] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 07/10/2021] [Accepted: 08/11/2021] [Indexed: 11/05/2022] Open
Abstract
Vaccine development is challenged by the hierarchy of immunodominance between target antigen epitopes and the emergence of antigenic variants by pathogen mutation. The strength and breadth of antibody responses relies on selection and mutation in the germinal center and on the structural similarity between antigens. Computational methods for assessing the breadth of germinal center responses to multivalent antigens are critical to speed up vaccine development. Yet, such methods have poorly reflected the 3D antigen structure and antibody breadth. Here, we present Ymir, a new 3D-lattice-based framework that calculates in silico antibody-antigen affinities. Key physiological properties naturally emerge from Ymir such as affinity jumps, cross-reactivity, and differential epitope accessibility. We validated Ymir by replicating known features of germinal center dynamics. We show that combining antigens with mutated but structurally related epitopes enhances vaccine breadth. Ymir opens a new avenue for understanding vaccine potency based on the structural relationship between vaccine antigens.
Collapse
Affiliation(s)
- Philippe A. Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
| | - Theinmozhi Arulraj
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
- Centre for Individualised Infection Medicine (CIIM), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
49
|
Phelps M, Balazs AB. Contribution to HIV Prevention and Treatment by Antibody-Mediated Effector Function and Advances in Broadly Neutralizing Antibody Delivery by Vectored Immunoprophylaxis. Front Immunol 2021; 12:734304. [PMID: 34603314 PMCID: PMC8479175 DOI: 10.3389/fimmu.2021.734304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/24/2021] [Indexed: 01/11/2023] Open
Abstract
HIV-1 broadly neutralizing antibodies (bNAbs) targeting the viral envelope have shown significant promise in both HIV prevention and viral clearance, including pivotal results against sensitive strains in the recent Antibody Mediated Prevention (AMP) trial. Studies of bNAb passive transfer in infected patients have demonstrated transient reduction of viral load at high concentrations that rebounds as bNAb is cleared from circulation. While neutralization is a crucial component of therapeutic efficacy, numerous studies have demonstrated that bNAbs can also mediate effector functions, such as antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and antibody-dependent complement deposition (ADCD). These functions have been shown to contribute towards protection in several models of HIV acquisition and in viral clearance during chronic infection, however the role of target epitope in facilitating these functions, as well as the contribution of individual innate functions in protection and viral clearance remain areas of active investigation. Despite their potential, the transient nature of antibody passive transfer limits the widespread use of bNAbs. To overcome this, we and others have demonstrated vectored antibody delivery capable of yielding long-lasting expression of bNAbs in vivo. Two clinical trials have shown that adeno-associated virus (AAV) delivery of bNAbs is safe and capable of sustained bNAb expression for over 18 months following a single intramuscular administration. Here, we review key concepts of effector functions mediated by bNAbs against HIV infection and the potential for vectored immunoprophylaxis as a means of producing bNAbs in patients.
Collapse
|
50
|
Sobia P, Archary D. Preventive HIV Vaccines-Leveraging on Lessons from the Past to Pave the Way Forward. Vaccines (Basel) 2021; 9:vaccines9091001. [PMID: 34579238 PMCID: PMC8472969 DOI: 10.3390/vaccines9091001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/05/2022] Open
Abstract
Almost four decades on, since the 1980’s, with hundreds of HIV vaccine candidates tested in both non-human primates and humans, and several HIV vaccines trials later, an efficacious HIV vaccine continues to evade us. The enormous worldwide genetic diversity of HIV, combined with HIV’s inherent recombination and high mutation rates, has hampered the development of an effective vaccine. Despite the advent of antiretrovirals as pre-exposure prophylaxis and preventative treatment, which have shown to be effective, HIV infections continue to proliferate, highlighting the great need for a vaccine. Here, we provide a brief history for the HIV vaccine field, with the most recent disappointments and advancements. We also provide an update on current passive immunity trials, testing proof of the concept of the most clinically advanced broadly neutralizing monoclonal antibodies for HIV prevention. Finally, we include mucosal immunity, the importance of vaccine-elicited immune responses and the challenges thereof in the most vulnerable environment–the female genital tract and the rectal surfaces of the gastrointestinal tract for heterosexual and men who have sex with men transmissions, respectively.
Collapse
Affiliation(s)
- Parveen Sobia
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban 4001, South Africa
- Correspondence: ; Tel.: +27-(0)-31-655-0540
| |
Collapse
|