1
|
Chen LR, Zhou SS, Yang JX, Liu XQ. Effect of hypoxia on the mucus system and intragastric microecology in the gastrointestinal tract. Microb Pathog 2025; 205:107615. [PMID: 40355054 DOI: 10.1016/j.micpath.2025.107615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
Digestive diseases have a high incidence worldwide, with various geographic, age, and gender factors influencing the occurrence and development of the diseases. The main etiologic factors involve genetics, environment, lifestyle, and dietary habits. In a low-oxygen environment, however, the body's tissue cells activate hypoxia-inducible factor (HIF), which produces different inflammatory mediators. Hypoxia impacts health at the molecular level by modulating cellular stress responses, metabolic pathways, and immune functions. It also alters gene expression and cellular behavior, thereby affecting gastrointestinal function. Under normal physiological conditions, the gastrointestinal mucus system serves as a crucial protective barrier, defending against mechanical injury, pathogenic invasion, and exposure to harmful chemicals. The integrity and functionality of this barrier are dependent on the synthesis and regulation of mucins and mucus, which are influenced by multiple factors. Additionally, the composition and diversity of the gastric microbiota are shaped by factors such as Helicobacter pylori infection, diet, and lifestyle. A balanced gastric microbiota supports gastrointestinal health and fortifies the mucus barrier. However, hypoxia can disrupt this equilibrium, leading to inflammation, alterations in the mucus layer, and destabilization of the gastric microbiota. Understanding the interplay between hypoxia, the mucus system, and the gastric microbiota is essential for identifying novel therapeutic strategies. Future research should elucidate the mechanisms through which hypoxia influences these systems and develop interventions to mitigate its adverse effects on gastrointestinal health. We examined the impact of hypoxia on the gastrointestinal mucus system and gastric microbiota, highlighting its implications for human health and potential therapeutic approaches.
Collapse
Affiliation(s)
- Li Rong Chen
- Qinghai University, Xining, 810001, PR China; Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China
| | - Si Si Zhou
- Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China; Department of Gastroenterology, Qinghai Provincial People's Hospital, Xining, 810001, PR China; Qinghai Provincial Clinical Medical Research Center for Digestive Diseases, Xining, 810001, PR China.
| | - Ji Xiang Yang
- Qinghai University, Xining, 810001, PR China; Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China
| | - Xiao Qian Liu
- Qinghai University, Xining, 810001, PR China; Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China
| |
Collapse
|
2
|
Xiong L, Diwakarla S, Chatzis R, Artaiz O, Macowan M, Zhang S, Garnham A, Morgan PK, Mellett NA, Meikle PJ, Lancaster GI, Marsland BJ, Nutt SL, Seillet C. Acute exposure to high-fat diet impairs ILC3 functions and gut homeostasis. Immunity 2025; 58:1185-1200.e8. [PMID: 40233759 DOI: 10.1016/j.immuni.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/17/2024] [Accepted: 03/18/2025] [Indexed: 04/17/2025]
Abstract
Prolonged exposure to a high-fat diet (HFD) exacerbates intestinal disease pathology, yet the early events preceding the development of gut inflammation remain poorly understood. Here, we show that within 48 h, HFD impairs intestinal group 3 innate lymphoid cells (ILC3s) and their capacity to produce interleukin-22 (IL-22), critical for maintaining gut homeostasis. This loss of function was associated with rapid dysbiosis, increased gut permeability, and reduced production of antimicrobial peptides, mucus, and tight-junction proteins. While saturated fatty acids metabolized through oxidation impaired ILC3 function, unsaturated fatty acids sustained IL-22 secretion by ILC3s through the formation of lipid droplets using diacylglycerol O-acyltransferase (DGAT) enzymes. Upon inflammation, saturated fatty acids impaired IL-22 production by ILC3s and increased the susceptibility of the gut to injury. Our findings reveal the differential acute impact of saturated and unsaturated fatty acids on gut homeostasis through distinct metabolic pathways in ILC3s.
Collapse
Affiliation(s)
- Le Xiong
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Shanti Diwakarla
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Roxanne Chatzis
- Department of Immunology, University of Monash, Melbourne, Melbourne, VIC 3004, Australia
| | - Olivia Artaiz
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew Macowan
- Department of Immunology, University of Monash, Melbourne, Melbourne, VIC 3004, Australia
| | - Shengbo Zhang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexandra Garnham
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pooranee K Morgan
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | | | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC 3086, Australia
| | - Graeme I Lancaster
- Department of Immunology, University of Monash, Melbourne, Melbourne, VIC 3004, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Benjamin J Marsland
- Department of Immunology, University of Monash, Melbourne, Melbourne, VIC 3004, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Cyril Seillet
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Immunology, University of Monash, Melbourne, Melbourne, VIC 3004, Australia.
| |
Collapse
|
3
|
Wang J, Cheng W, Yang R. Nervous system-gut microbiota-immune system axis: future directions for preventing tumor. Front Immunol 2025; 16:1535955. [PMID: 40376000 PMCID: PMC12078214 DOI: 10.3389/fimmu.2025.1535955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/01/2025] [Indexed: 05/18/2025] Open
Abstract
Tumor is one of the leading causes of death worldwide. The occurrence and development of tumors are related to multiple systems and factors such as the immune system, gut microbiota, and nervous system. The immune system plays a critical role in tumor development. Studies have also found that the gut microbiota can directly or indirectly affect tumorigenesis and tumor development. With increasing attention on the tumor microenvironment in recent years, the nervous system has emerged as a novel regulator of tumor development. Some tumor therapies based on the nervous system have also been tested in clinical trials. However, the nervous system can not only directly interact with tumor cells but also indirectly affect tumor development through the gut microbiota. The nervous system-mediated gut microbiota can regulate tumorigenesis, growth, invasion, and metastasis through the immune system. Here, we mainly explore the potential effects of the nervous system-gut microbiota-immune system axis on tumorigenesis and tumor development. The effects of the nervous system-gut microbiota-immune system axis on tumors involve the nervous system regulating immune cells through the gut microbiota, which can prevent tumor development. Meanwhile, the direct effects of the gut microbiota on tumors and the regulation of the immune system by the nervous system, which can affect tumor development, are also reviewed.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Wenyue Cheng
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Fonseca-Pereira D, Bae S, Clay SL, Michaud M, MacDonald MH, Glickman JN, Garrett WS. The metabolic sensor LKB1 regulates ILC3 homeostasis and mitochondrial function. Cell Rep 2025; 44:115456. [PMID: 40120107 DOI: 10.1016/j.celrep.2025.115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 02/06/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) are tissue-resident cells that sense environmental cues, control infections, and promote tissue homeostasis at mucosal surfaces. The metabolic sensor liver kinase B1 (LKB1) integrates intracellular stress, metabolism, and mitochondrial function to promote the development and effector functions of a variety of immune cells; however, the role of LKB1 in ILC3 function was unknown. Here, we show that LKB1 is crucial for adult ILC3 homeostasis, cytokine production, and mitochondrial function. ILC3-specific LKB1 deletion resulted in a reduced number of ILC3s and interleukin-22 (IL-22) production. LKB1-deficient ILC3s had decreased survival, mitochondrial dysfunction, cytoplasmic lipid accumulation, and altered bioenergetics. Using LKB1 downstream kinase modulators, we found that LKB1 regulation of ILC3 survival and IL-22 production requires signaling through microtubule affinity-regulating kinases (MARKs). Mechanistically, LKB1 deficiency resulted in increased reactive oxygen species (ROS) production and NFAT2 and PD-1 expression. Our work reveals that metabolic regulation of enteric ILC3 function by an LKB1-dependent signaling network is crucial for intestinal immunity and tissue homeostasis.
Collapse
Affiliation(s)
- Diogo Fonseca-Pereira
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Sena Bae
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Slater L Clay
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Monia Michaud
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Meghan H MacDonald
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Jonathan N Glickman
- Gastrointestinal Pathology, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA; Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
5
|
Zhang MJ, Wen Y, Sun ZJ. The impact of metabolic reprogramming on tertiary lymphoid structure formation: enhancing cancer immunotherapy. BMC Med 2025; 23:217. [PMID: 40223062 PMCID: PMC11995586 DOI: 10.1186/s12916-025-04037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Cancer immunotherapy has achieved unprecedented success in the field of cancer therapy. However, its potential is constrained by a low therapeutic response rate. MAIN BODY Tertiary lymphoid structure (TLS) plays a crucial role in antitumor immunity and is associated with a good prognosis. Metabolic reprogramming, as a hallmark of the tumor microenvironment, can influence tumor immunity and promote the formation of follicular helper T cells and germinal centers. However, many current studies focus on the correlation between metabolism and TLS formation factors, and there is insufficient direct evidence to suggest that metabolism drives TLS formation. This review provided a comprehensive summary of the relationship between metabolism and TLS formation, highlighting glucose metabolism, lipid metabolism, amino acid metabolism, and vitamin metabolism. CONCLUSIONS In the future, an in-depth exploration of how metabolism affects cell interactions and the role of microorganisms in TLS will significantly advance our understanding of metabolism-enhanced antitumor immunity.
Collapse
Affiliation(s)
- Meng-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Yan Wen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
6
|
Roberts LB, Kelly AM, Hepworth MR. There's no place like home: How local tissue microenvironments shape the function of innate lymphoid cells. Mucosal Immunol 2025; 18:279-289. [PMID: 39900201 DOI: 10.1016/j.mucimm.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Innate lymphoid cells (ILC) have emerged as critical immune effectors with key roles in orchestrating the wider immune response. While ILC are relatively rare cells they are found enriched within discrete microenvironments, predominantly within barrier tissues. An emerging body of evidence implicates complex and multi-layered interactions between cell types, tissue structure and the external environment as key determinants of ILC function within these niches. In this review we will discuss the specific components that constitute ILC-associated microenvironments and consider how they act to determine health and disease. The development of holistic, integrated models of ILC function within complex tissue environments will inform new understanding of the contextual cues and mechanisms that determine the protective versus disease-causing roles of this immune cell family.
Collapse
Affiliation(s)
- Luke B Roberts
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
| | - Alanna M Kelly
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
| | - Matthew R Hepworth
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom.
| |
Collapse
|
7
|
Werner A, Holmes A, Moldovan G, Rodriguez-Garcia M. Innate lymphoid cells in HIV pathogenesis and in the human female genital tract. Curr Opin HIV AIDS 2025; 20:117-123. [PMID: 39774425 DOI: 10.1097/coh.0000000000000908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW Women are underrepresented in HIV infection and prevention research despite making up half of people living with HIV. The female genital tract (FGT) serves as a primary site of HIV acquisition, but gaps in knowledge remain regarding protective innate immune mechanisms. Innate lymphoid cells are tissue-resident cells involved in mucosal barrier maintenance and protection, and innate lymphoid cells (ILCs) are altered during chronic HIV infection. However, ILCs role in mucosal HIV pathogenesis is unclear and they are poorly characterized in the FGT. RECENT FINDINGS Human ILCs differ from their mouse counterparts and plastically adjust to their tissue of residency. Human ILC characterization is difficult due to tissue-specific adaptations and transition between subsets. While evidence for ILC involvement in antiviral activity and barrier maintenance is provided in mouse models, human ILC role in mucosal immunity remain understudied, particularly in the FGT. In chronic HIV/simian immunodeficiency virus (SIV) infection, ILCs are altered in a tissue-specific manner, and SIV models indicate potential for antiviral responses. SUMMARY ILCs are tissue-resident plastic cells that provide barrier protection at mucosal surfaces and display antiviral capacity. Considering that HIV is primarily transmitted through mucosal exposure, more research is needed to understand ILC contribution to HIV pathogenesis in human mucosal surfaces relevant for HIV acquisition.
Collapse
Affiliation(s)
- Alexandra Werner
- C.S. Mott Center for Human Growth and Development
- Immunology Program, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Aleah Holmes
- C.S. Mott Center for Human Growth and Development
- Immunology Program, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Genna Moldovan
- C.S. Mott Center for Human Growth and Development
- Department of Obstetrics and Gynecology
| | - Marta Rodriguez-Garcia
- C.S. Mott Center for Human Growth and Development
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan
- Immunology Program, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Ham J, Yang W, Kim HY. Tissue-Specific Metabolic Reprogramming in Innate Lymphoid Cells and Its Impact on Disease. Immune Netw 2025; 25:e3. [PMID: 40078781 PMCID: PMC11896661 DOI: 10.4110/in.2025.25.e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 03/14/2025] Open
Abstract
Recent advances have highlighted the crucial role of metabolic reprogramming in shaping the functions of innate lymphoid cells (ILCs), which are vital for tissue immunity and homeostasis. As tissue-resident cells, ILCs dynamically respond to local environmental cues, with tissue-derived metabolites such as short-chain fatty acids and amino acids directly modulating their effector functions. The metabolic states of ILC subsets-ILC1, ILC2, and ILC3-are closely linked to their ability to produce cytokines, sustain survival, and drive proliferation. This review provides a comprehensive analysis of how key metabolic pathways, including glycolysis, oxidative phosphorylation, and fatty acid oxidation, influence ILC activation and function. Furthermore, we explore the complex interactions between these metabolic pathways and tissue-specific metabolites, which can shape ILC-mediated immune responses in health and disease. Understanding these interactions reveals new insights into the pathogenesis of conditions such as asthma, inflammatory bowel disease, and cancer. A deeper understanding of these mechanisms may not only advance our knowledge of disease pathogenesis but also lead to the development of novel therapeutic strategies targeting metabolic pathways in ILCs to treat tissue-specific immune disorders.
Collapse
Affiliation(s)
- Jongho Ham
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Life Science, SRC Center for Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Korea
| | - Wooseok Yang
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Life Science, SRC Center for Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
| |
Collapse
|
9
|
Xu X, Zhang H, Meng K, Cai H, Liu W, Song L, Zhang Z, Zhu Q, Han X, Han Y, Yang P. Limosilactobacillus reuteri ZY15 Alleviates Intestinal Inflammation and Barrier Dysfunction via AKT/mTOR/HIF-1α/RORγt/IL-17 Signaling and the Gut Microbiota in ETEC K88-Challenged Mice. Antioxidants (Basel) 2025; 14:58. [PMID: 39857392 PMCID: PMC11763039 DOI: 10.3390/antiox14010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Limosilactobacillus reuteri, a recognized probiotic, improves intestinal health in animals, but the mechanism remains unclear. This study investigates the mechanisms by which L. reuteri ZY15, isolated from healthy pig feces, mitigates intestinal barrier damage and inflammation caused by oxidative stress in Enterotoxigenic Escherichia coli (ETEC) K88-challenged mice. The results indicated that L. reuteri ZY15 increased antioxidant capacity by reducing serum reactive oxygen species (ROS) and superoxide dismutase (SOD) levels. L. reuteri ZY15 enhanced the intestinal barrier by upregulating mucin 1, mucin 2, occludin, zonula occludens-1 (ZO-1), and claudin-1 expressions in protein and mRNA levels. It significantly alleviated intestinal inflammation by reducing the proinflammatory cytokines interleukin-1β (IL-1β), interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin-17 (IL-17) mRNA and protein levels. Notably, L. reuteri ZY15 suppressed intestinal inflammation by inhibiting AKT/mTOR/HIF-1α/RORγt/IL-17 pathway activation. Additionally, it significantly altered the structure of gut microorganisms by enriching Akkermansia and Clostridia_UCG.014, and thereby re-establishing colonization resistance and alleviating ETEC K88-induced intestinal barrier damage and inflammation in mice. Taken together, our findings reveal the protective mechanism of L. reuteri ZY15 in mice challenged with ETEC K88 by regulating AKT/mTOR/HIF-1α/RORγt/IL-17 signaling and microbial imbalance. Leveraging these properties, live L. reuteri ZY15 offers a promising alternative treatment for Escherichia coli-induced diarrhea in weaned piglets.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.X.); (K.M.); (H.C.); (W.L.); (L.S.); (Z.Z.); (Q.Z.); (X.H.)
| | - Hongwei Zhang
- Chengde Academy of Agriculture and Forestry Sciences, Chengde 067000, China;
| | - Kun Meng
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.X.); (K.M.); (H.C.); (W.L.); (L.S.); (Z.Z.); (Q.Z.); (X.H.)
| | - Hongying Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.X.); (K.M.); (H.C.); (W.L.); (L.S.); (Z.Z.); (Q.Z.); (X.H.)
| | - Weiwei Liu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.X.); (K.M.); (H.C.); (W.L.); (L.S.); (Z.Z.); (Q.Z.); (X.H.)
| | - Liye Song
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.X.); (K.M.); (H.C.); (W.L.); (L.S.); (Z.Z.); (Q.Z.); (X.H.)
| | - Zihan Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.X.); (K.M.); (H.C.); (W.L.); (L.S.); (Z.Z.); (Q.Z.); (X.H.)
| | - Qijun Zhu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.X.); (K.M.); (H.C.); (W.L.); (L.S.); (Z.Z.); (Q.Z.); (X.H.)
| | - Xiling Han
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.X.); (K.M.); (H.C.); (W.L.); (L.S.); (Z.Z.); (Q.Z.); (X.H.)
| | - Yunsheng Han
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.X.); (K.M.); (H.C.); (W.L.); (L.S.); (Z.Z.); (Q.Z.); (X.H.)
| | - Peilong Yang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.X.); (K.M.); (H.C.); (W.L.); (L.S.); (Z.Z.); (Q.Z.); (X.H.)
| |
Collapse
|
10
|
Corkish C, Aguiar CF, Finlay DK. Approaches to investigate tissue-resident innate lymphocytes metabolism at the single-cell level. Nat Commun 2024; 15:10424. [PMID: 39613733 PMCID: PMC11607443 DOI: 10.1038/s41467-024-54516-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
Tissue-resident innate immune cells have important functions in both homeostasis and pathological states. Despite advances in the field, analyzing the metabolism of tissue-resident innate lymphocytes is still challenging. The small number of tissue-resident innate lymphocytes such as ILC, NK, iNKT and γδ T cells poses additional obstacles in their metabolic studies. In this review, we summarize the current understanding of innate lymphocyte metabolism and discuss potential pitfalls associated with the current methodology relying predominantly on in vitro cultured cells or bulk-level comparison. Meanwhile, we also summarize and advocate for the development and adoption of single-cell metabolic assays to accurately profile the metabolism of tissue-resident immune cells directly ex vivo.
Collapse
Affiliation(s)
- Carrie Corkish
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Cristhiane Favero Aguiar
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
11
|
Wu Y, Ma Y, Li Q, Li J, Zhang D, Zhang Y, Li Y, Li X, Xu P, Bai L, Zhou X, Xue M. Multi-omics analysis reveals phenylalanine enhance mitochondrial function and hypoxic endurance via LKB1/AMPK activation. J Transl Med 2024; 22:920. [PMID: 39390477 PMCID: PMC11465566 DOI: 10.1186/s12967-024-05696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024] Open
Abstract
Many studies have focused on the effects of small molecules, such as amino acids, on metabolism under hypoxia. Recent findings have indicated that phenylalanine levels were markedly elevated in adaptation to chronic hypoxia. This raises the possibility that phenylalanine treatment could markedly improve the hypoxic endurance. However, the importance of hypoxia-regulated phenylalanine is still unclear. This study investigates the role of phenylalanine in hypoxia adaptation using a hypoxic zebrafish model and multi-omics analysis. We found that phenylalanine-related metabolic pathways are significantly up-regulated under hypoxia, contributing to enhanced hypoxic endurance. Phenylalanine treatment reduced ROS levels, improved mitochondrial oxygen consumption rate (OCR), and extracellular acidification rate (ECAR) in hypoxic cells. Western blotting revealed increased phenylalanine uptake via L-type amino transporters (LAT1), activating the LKB1/AMPK signaling pathway. This activation up-regulated peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) and the Bcl-2/Bax ratio, while down-regulating uncoupling protein 2 (UCP2), thereby improving mitochondrial function under hypoxia. This is the first comprehensive multi-omics analysis to demonstrate phenylalanine's crucial role in hypoxia adaptation, providing insights for the development of anti-hypoxic drugs.
Collapse
Affiliation(s)
- Yi Wu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yi Ma
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
| | - Qiang Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jing Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Di Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuxin Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yue Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaorong Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Beijing, 100069, China
| | - Pingxiang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lu Bai
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Beijing, 100069, China.
| | - Ming Xue
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Beijing, 100069, China.
| |
Collapse
|
12
|
Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H, Zhang N. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal Transduct Target Ther 2024; 9:268. [PMID: 39379377 PMCID: PMC11461632 DOI: 10.1038/s41392-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metabolism, including glycolysis, oxidative phosphorylation, fatty acid oxidation, and other metabolic pathways, impacts the phenotypes and functions of immune cells. The metabolic regulation of the immune system is important in the pathogenesis and progression of numerous diseases, such as cancers, autoimmune diseases and metabolic diseases. The concept of immunometabolism was introduced over a decade ago to elucidate the intricate interplay between metabolism and immunity. The definition of immunometabolism has expanded from chronic low-grade inflammation in metabolic diseases to metabolic reprogramming of immune cells in various diseases. With immunometabolism being proposed and developed, the metabolic regulation of the immune system can be gradually summarized and becomes more and more clearer. In the context of many diseases including cancer, autoimmune diseases, metabolic diseases, and many other disease, metabolic reprogramming occurs in immune cells inducing proinflammatory or anti-inflammatory effects. The phenotypic and functional changes of immune cells caused by metabolic regulation further affect and development of diseases. Based on experimental results, targeting cellular metabolism of immune cells becomes a promising therapy. In this review, we focus on immune cells to introduce their metabolic pathways and metabolic reprogramming, and summarize how these metabolic pathways affect immune effects in the context of diseases. We thoroughly explore targets and treatments based on immunometabolism in existing studies. The challenges of translating experimental results into clinical applications in the field of immunometabolism are also summarized. We believe that a better understanding of immune regulation in health and diseases will improve the management of most diseases.
Collapse
Affiliation(s)
- Tengyue Hu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Min Lei
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Division of Renal and endocrinology, Qin Huang Hospital, Xi'an, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Nannan Zhang
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Zhao R, Yang J, Zhai Y, Zhang H, Zhou Y, Hong L, Yuan D, Xia R, Liu Y, Pan J, Shafi S, Shi G, Zhang R, Luo D, Yuan J, Pan D, Peng C, Li S, Sun M. Nucleophosmin 1 promotes mucosal immunity by supporting mitochondrial oxidative phosphorylation and ILC3 activity. Nat Immunol 2024; 25:1565-1579. [PMID: 39103576 PMCID: PMC11362010 DOI: 10.1038/s41590-024-01921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/10/2024] [Indexed: 08/07/2024]
Abstract
Nucleophosmin 1 (NPM1) is commonly mutated in myelodysplastic syndrome (MDS) and acute myeloid leukemia. Concurrent inflammatory bowel diseases (IBD) and MDS are common, indicating a close relationship between IBD and MDS. Here we examined the function of NPM1 in IBD and colitis-associated colorectal cancer (CAC). NPM1 expression was reduced in patients with IBD. Npm1+/- mice were more susceptible to acute colitis and experimentally induced CAC than littermate controls. Npm1 deficiency impaired the function of interleukin-22 (IL-22)-producing group three innate lymphoid cells (ILC3s). Mice lacking Npm1 in ILC3s exhibited decreased IL-22 production and accelerated development of colitis. NPM1 was important for mitochondrial biogenesis and metabolism by oxidative phosphorylation in ILC3s. Further experiments revealed that NPM1 cooperates with p65 to promote mitochondrial transcription factor A (TFAM) transcription in ILC3s. Overexpression of Npm1 in mice enhanced ILC3 function and reduced the severity of dextran sulfate sodium-induced colitis. Thus, our findings indicate that NPM1 in ILC3s protects against IBD by regulating mitochondrial metabolism through a p65-TFAM axis.
Collapse
Affiliation(s)
- Rongchuan Zhao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiao Yang
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Yunjiao Zhai
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Hong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
| | - Yuanshuai Zhou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lei Hong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruilong Xia
- The First Rehabilitation Hospital of Shanghai, Brain and Spinal Cord Innovation Research Center, School of Medicine, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Yanxiang Liu
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Jinlin Pan
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shaheryar Shafi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guohua Shi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ruobing Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dingsan Luo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
| | - Jinyun Yuan
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
| | - Dejing Pan
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, China
| | - Changgeng Peng
- The First Rehabilitation Hospital of Shanghai, Brain and Spinal Cord Innovation Research Center, School of Medicine, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Shiyang Li
- Advanced Medical Research Institute, Shandong University, Jinan, China.
| | - Minxuan Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China.
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
14
|
Su X, Zhao L, Zhang H, Wang D, Sun J, Shen L. Sirtuin 6 inhibits group 3 innate lymphoid cell function and gut immunity by suppressing IL-22 production. Front Immunol 2024; 15:1402834. [PMID: 39253083 PMCID: PMC11381250 DOI: 10.3389/fimmu.2024.1402834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction Group 3 innate lymphoid cells (ILC3s) are enriched in the intestinal mucosa and play important roles in host defense against infection and inflammatory diseases. Sirtuin 6 (SIRT6) is a nicotinamide adenine dinucleotide (NAD+)- dependent deacetylase and has been shown to control intestinal epithelial cell differentiation and survival. However, the role of SIRT6 in ILC3s remains unknown. Methods To investigate the role of SIRT6 in gut ILC3s, we generated SIRT6 conditional knockout mice by crossing Rorccre and Sirt6flox/flox mice. Cell number and cytokine production was examined using flow cytometry. Citrobacter rodentium infection and dextran sodium sulfate-induced colitis models were used to determine the role of SIRT6 in gut defense. RT-qPCR, flow cytometry and immunohistochemistry were used to assess the intestinal inflammatory responses. Results Here we show that SIRT6 inhibits IL-22 expression in intestinal ILC3s in a cell-intrinsic manner. Deletion of SIRT6 in ILC3s does not affect the cell numbers of total ILC3s and subsets, but results in increased IL-22 production. Furthermore, ablation of SIRT6 in ILC3s protects mice against Citrobacter rodentium infection and dextran sodium sulfate-induced colitis. Our results suggest that SIRT6 may play a role in ILC3 function by regulating gut immune responses against bacterial infection and inflammation. Discussion Our finding provided insight into the relation of epigenetic regulators with IL-22 production and supplied a new perspective for a potential strategy against inflammatory bowel disease.
Collapse
Affiliation(s)
- Xiaohui Su
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linfeng Zhao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huasheng Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongdi Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiping Sun
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Shen
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Bonetti L, Horkova V, Grusdat M, Longworth J, Guerra L, Kurniawan H, Franchina DG, Soriano-Baguet L, Binsfeld C, Verschueren C, Spath S, Ewen A, Koncina E, Gérardy JJ, Kobayashi T, Dostert C, Farinelle S, Härm J, Fan YT, Chen Y, Harris IS, Lang PA, Vasiliou V, Waisman A, Letellier E, Becher B, Mittelbronn M, Brenner D. A Th17 cell-intrinsic glutathione/mitochondrial-IL-22 axis protects against intestinal inflammation. Cell Metab 2024; 36:1726-1744.e10. [PMID: 38986617 DOI: 10.1016/j.cmet.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/06/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
The intestinal tract generates significant reactive oxygen species (ROS), but the role of T cell antioxidant mechanisms in maintaining intestinal homeostasis is poorly understood. We used T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), which impaired glutathione (GSH) production, crucially reducing IL-22 production by Th17 cells in the lamina propria, which is critical for gut protection. Under steady-state conditions, Gclc deficiency did not alter cytokine secretion; however, C. rodentium infection induced increased ROS and disrupted mitochondrial function and TFAM-driven mitochondrial gene expression, resulting in decreased cellular ATP. These changes impaired the PI3K/AKT/mTOR pathway, reducing phosphorylation of 4E-BP1 and consequently limiting IL-22 translation. The resultant low IL-22 levels led to poor bacterial clearance, severe intestinal damage, and high mortality. Our findings highlight a previously unrecognized, essential role of Th17 cell-intrinsic GSH in promoting mitochondrial function and cellular signaling for IL-22 protein synthesis, which is critical for intestinal integrity and defense against gastrointestinal infections.
Collapse
Affiliation(s)
- Lynn Bonetti
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Veronika Horkova
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Melanie Grusdat
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Joseph Longworth
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Luana Guerra
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Henry Kurniawan
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Davide G Franchina
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Leticia Soriano-Baguet
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Carole Binsfeld
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Charlène Verschueren
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sabine Spath
- Institute of Experimental Immunology, Inflammation Research, University of Zurich, 8057 Zurich, Switzerland; Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Anouk Ewen
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Eric Koncina
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - Jean-Jacques Gérardy
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg; Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg
| | - Takumi Kobayashi
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Catherine Dostert
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sophie Farinelle
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Janika Härm
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Yu-Tong Fan
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Isaac S Harris
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - Burkhard Becher
- Institute of Experimental Immunology, Inflammation Research, University of Zurich, 8057 Zurich, Switzerland
| | - Michel Mittelbronn
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg; Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), 1526 Luxembourg, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
16
|
Di Mattia M, Sallese M, Neri M, Lopetuso LR. Hypoxic Functional Regulation Pathways in the GI Tract: Focus on the HIF-1α and Microbiota's Crosstalk. Inflamm Bowel Dis 2024; 30:1406-1418. [PMID: 38484200 DOI: 10.1093/ibd/izae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 08/02/2024]
Abstract
Hypoxia is an essential gastrointestinal (GI) tract phenomenon that influences both physiologic and pathologic states. Hypoxia-inducible factors (HIFs), the primary drivers of cell adaptation to low-oxygen environments, have been identified as critical regulators of gut homeostasis: directly, through the induction of different proteins linked to intestinal barrier stabilization (ie, adherent proteins, tight junctions, mucins, integrins, intestinal trefoil factor, and adenosine); and indirectly, through the regulation of several immune cell types and the modulation of autophagy and inflammatory processes. Furthermore, hypoxia and HIF-related sensing pathways influence the delicate relationship existing between bacteria and mammalian host cells. In turn, gut commensals establish and maintain the physiologic hypoxia of the GI tract and HIF-α expression. Based on this premise, the goals of this review are to (1) highlight hypoxic molecular pathways in the GI tract, both in physiologic and pathophysiologic settings, such as inflammatory bowel disease; and (2) discuss a potential strategy for ameliorating gut-related disorders, by targeting HIF signaling, which can alleviate inflammatory processes, restore autophagy correct mechanisms, and benefit the host-microbiota equilibrium.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Michele Sallese
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Matteo Neri
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Loris Riccardo Lopetuso
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
17
|
Horn V, Sonnenberg GF. Group 3 innate lymphoid cells in intestinal health and disease. Nat Rev Gastroenterol Hepatol 2024; 21:428-443. [PMID: 38467885 PMCID: PMC11144103 DOI: 10.1038/s41575-024-00906-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
The gastrointestinal tract is an immunologically rich organ, containing complex cell networks and dense lymphoid structures that safeguard this large absorptive barrier from pathogens, contribute to tissue physiology and support mucosal healing. Simultaneously, the immune system must remain tolerant to innocuous dietary antigens and trillions of normally beneficial microorganisms colonizing the intestine. Indeed, a dysfunctional immune response in the intestine underlies the pathogenesis of numerous local and systemic diseases, including inflammatory bowel disease, food allergy, chronic enteric infections or cancers. Here, we discuss group 3 innate lymphoid cells (ILC3s), which have emerged as orchestrators of tissue physiology, immunity, inflammation, tolerance and malignancy in the gastrointestinal tract. ILC3s are abundant in the developing and healthy intestine but their numbers or function are altered during chronic disease and cancer. The latest studies provide new insights into the mechanisms by which ILC3s fundamentally shape intestinal homeostasis or disease pathophysiology, and often this functional dichotomy depends on context and complex interactions with other cell types or microorganisms. Finally, we consider how this knowledge could be harnessed to improve current treatments or provoke new opportunities for therapeutic intervention to promote gut health.
Collapse
Affiliation(s)
- Veronika Horn
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory F Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
18
|
Jacquelot N, Xiong L, Cao WHJ, Huang Q, Yu H, Sayad A, Anttila CJA, Baldwin TM, Hickey PF, Amann-Zalcenstein D, Ohashi PS, Nutt SL, Belz GT, Seillet C. PD-1 regulates ILC3-driven intestinal immunity and homeostasis. Mucosal Immunol 2024; 17:371-386. [PMID: 38492744 DOI: 10.1016/j.mucimm.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
Interleukin-(IL) 22 production by intestinal group 3 innate lymphoid cells (ILC3) is critical to maintain gut homeostasis. However, IL-22 needs to be tightly controlled; reduced IL-22 expression is associated with intestinal epithelial barrier defect while its overexpression promotes tumor development. Here, using a single-cell ribonucleic acid sequencing approach, we identified a core set of genes associated with increased IL-22 production by ILC3. Among these genes, programmed cell death 1 (PD-1), extensively studied in the context of cancer and chronic infection, was constitutively expressed on a subset of ILC3. These cells, found in the crypt of the small intestine and colon, displayed superior capacity to produce IL-22. PD-1 expression on ILC3 was dependent on the microbiota and was induced during inflammation in response to IL-23 but, conversely, was reduced in the presence of Notch ligand. PD-1+ ILC3 exhibited distinct metabolic activity with increased glycolytic, lipid, and polyamine synthesis associated with augmented proliferation compared with their PD-1- counterparts. Further, PD-1+ ILC3 showed increased expression of mitochondrial antioxidant proteins which enable the cells to maintain their levels of reactive oxygen species. Loss of PD-1 signaling in ILC3 led to reduced IL-22 production in a cell-intrinsic manner. During inflammation, PD-1 expression was increased on natural cytotoxicity receptor (NCR)- ILC3 while deficiency in PD-1 expression resulted in increased susceptibility to experimental colitis and failure to maintain gut barrier integrity. Collectively, our findings uncover a new function of the PD-1 and highlight the role of PD-1 signaling in the maintenance of gut homeostasis mediated by ILC3 in mice.
Collapse
Affiliation(s)
- Nicolas Jacquelot
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada; Arnie Charbonneau Cancer Research Institute, Calgary, Canada.
| | - Le Xiong
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Wang H J Cao
- Frazer Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Qiutong Huang
- Frazer Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Huiyang Yu
- Frazer Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Azin Sayad
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Casey J A Anttila
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia
| | - Tracey M Baldwin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia
| | - Peter F Hickey
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Daniela Amann-Zalcenstein
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, Canada
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia; Frazer Institute, The University of Queensland, Woolloongabba, Queensland, Australia.
| | - Cyril Seillet
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia.
| |
Collapse
|
19
|
Das A, Martinez-Ruiz GU, Bouladoux N, Stacy A, Moraly J, Vega-Sendino M, Zhao Y, Lavaert M, Ding Y, Morales-Sanchez A, Harly C, Seedhom MO, Chari R, Awasthi P, Ikeuchi T, Wang Y, Zhu J, Moutsopoulos NM, Chen W, Yewdell JW, Shapiro VS, Ruiz S, Taylor N, Belkaid Y, Bhandoola A. Transcription factor Tox2 is required for metabolic adaptation and tissue residency of ILC3 in the gut. Immunity 2024; 57:1019-1036.e9. [PMID: 38677292 PMCID: PMC11096055 DOI: 10.1016/j.immuni.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/13/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Group 3 innate lymphoid cells (ILC3) are the major subset of gut-resident ILC with essential roles in infections and tissue repair, but how they adapt to the gut environment to maintain tissue residency is unclear. We report that Tox2 is critical for gut ILC3 maintenance and function. Gut ILC3 highly expressed Tox2, and depletion of Tox2 markedly decreased ILC3 in gut but not at central sites, resulting in defective control of Citrobacter rodentium infection. Single-cell transcriptional profiling revealed decreased expression of Hexokinase-2 in Tox2-deficient gut ILC3. Consistent with the requirement for hexokinases in glycolysis, Tox2-/- ILC3 displayed decreased ability to utilize glycolysis for protein translation. Ectopic expression of Hexokinase-2 rescued Tox2-/- gut ILC3 defects. Hypoxia and interleukin (IL)-17A each induced Tox2 expression in ILC3, suggesting a mechanism by which ILC3 adjusts to fluctuating environments by programming glycolytic metabolism. Our results reveal the requirement for Tox2 to support the metabolic adaptation of ILC3 within the gastrointestinal tract.
Collapse
Affiliation(s)
- Arundhoti Das
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Gustavo Ulises Martinez-Ruiz
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA; Faculty of Medicine, Research Division, National Autonomous University of Mexico, Mexico City, Mexico; Children's Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, MD, USA
| | - Apollo Stacy
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, MD, USA; Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Josquin Moraly
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Maria Vega-Sendino
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Yongge Zhao
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Marieke Lavaert
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Yi Ding
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Abigail Morales-Sanchez
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA; Children's Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - Christelle Harly
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Mina O Seedhom
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Parirokh Awasthi
- Mouse Modeling Core, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tomoko Ikeuchi
- Oral Immunity and Infection Section, NIDCR, NIH, Bethesda, MD, USA
| | - Yueqiang Wang
- Shenzhen Typhoon HealthCare, Shenzhen, Guangdong, China
| | - Jinfang Zhu
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | | | - WanJun Chen
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD, USA
| | | | | | - Sergio Ruiz
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Naomi Taylor
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, MD, USA
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
20
|
Cao S, Fachi JL, Ma K, Ulezko Antonova A, Wang Q, Cai Z, Kaufman RJ, Ciorba MA, Deepak P, Colonna M. The IRE1α/XBP1 pathway sustains cytokine responses of group 3 innate lymphoid cells in inflammatory bowel disease. J Clin Invest 2024; 134:e174198. [PMID: 38722686 PMCID: PMC11214543 DOI: 10.1172/jci174198] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) are key players in intestinal homeostasis. ER stress is linked to inflammatory bowel disease (IBD). Here, we used cell culture, mouse models, and human specimens to determine whether ER stress in ILC3s affects IBD pathophysiology. We show that mouse intestinal ILC3s exhibited a 24-hour rhythmic expression pattern of the master ER stress response regulator inositol-requiring kinase 1α/X-box-binding protein 1 (IRE1α/XBP1). Proinflammatory cytokine IL-23 selectively stimulated IRE1α/XBP1 in mouse ILC3s through mitochondrial ROS (mtROS). IRE1α/XBP1 was activated in ILC3s from mice exposed to experimental colitis and in inflamed human IBD specimens. Mice with Ire1α deletion in ILC3s (Ire1αΔRorc) showed reduced expression of the ER stress response and cytokine genes including Il22 in ILC3s and were highly vulnerable to infections and colitis. Administration of IL-22 counteracted their colitis susceptibility. In human ILC3s, IRE1 inhibitors suppressed cytokine production, which was upregulated by an IRE1 activator. Moreover, the frequencies of intestinal XBP1s+ ILC3s in patients with Crohn's disease before administration of ustekinumab, an anti-IL-12/IL-23 antibody, positively correlated with the response to treatment. We demonstrate that a noncanonical mtROS-IRE1α/XBP1 pathway augmented cytokine production by ILC3s and identify XBP1s+ ILC3s as a potential biomarker for predicting the response to anti-IL-23 therapies in IBD.
Collapse
Affiliation(s)
- Siyan Cao
- Division of Gastroenterology, Department of Medicine and
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jose L. Fachi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kaiming Ma
- Division of Gastroenterology, Department of Medicine and
| | - Alina Ulezko Antonova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qianli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zhangying Cai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Randal J. Kaufman
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | | | | | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
21
|
Serafini N, Di Santo JP. Group 3 innate lymphoid cells: A trained Gutkeeper. Immunol Rev 2024; 323:126-137. [PMID: 38491842 DOI: 10.1111/imr.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Group 3 innate lymphoid cells (ILC3s) are tissue-resident immune lymphocytes that critically regulate intestinal homeostasis, organogenesis, and immunity. ILC3s possess the capacity to "sense" the inflammatory environment within tissues, especially in the context of pathogen challenges that imprints durable non-antigen-specific changes in ILC3 function. As such, ILC3s become a new actor in the emerging field of trained innate immunity. Here, we summarize recent discoveries regarding ILC3 responses to bacterial challenges and the role these encounters play in triggering trained innate immunity. We further discuss how signaling events throughout ILC3 ontogeny potentially control the development and function of trained ILC3s. Finally, we highlight the open questions surrounding ILC3 "training" the answers to which may reveal new insights into innate immunity. Understanding the fundamental concepts behind trained innate immunity could potentially lead to the development of new strategies for improving immunity-based modulation therapies for inflammation, infectious diseases, and cancer.
Collapse
Affiliation(s)
- Nicolas Serafini
- Innate Immunity Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, Paris, France
| |
Collapse
|
22
|
Zhu W, Xu X, Nagarajan V, Guo J, Peng Z, Zhang A, Liu J, Mattapallil MJ, Jittayasothorn Y, Horai R, Leger AJS, Caspi RR. TLR2 Supports γδ T cell IL-17A Response to ocular surface commensals by Metabolic Reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587519. [PMID: 38712203 PMCID: PMC11071315 DOI: 10.1101/2024.04.01.587519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The ocular surface is a mucosal barrier tissue colonized by commensal microbes, which tune local immunity by eliciting IL-17 from conjunctival γδ T cells to prevent pathogenic infection. The commensal Corynebacterium mastitidis (C. mast) elicits protective IL-17 responses from conjunctival Vγ4 T cells through a combination of γδ TCR ligation and IL-1 signaling. Here, we identify Vγ6 T cells as a major C. mast-responsive subset in the conjunctiva and uncover its unique activation requirements. We demonstrate that Vγ6 cells require not only extrinsic (via dendritic cells) but also intrinsic TLR2 stimulation for optimal IL-17A response. Mechanistically, intrinsic TLR2 signaling was associated with epigenetic changes and enhanced expression of genes responsible for metabolic shift to fatty acid oxidation to support Il17a transcription. We identify one key transcription factor, IκBζ, which is upregulated by TLR2 stimulation and is essential for this program. Our study highlights the importance of intrinsic TLR2 signaling in driving metabolic reprogramming and production of IL-17A in microbiome-specific mucosal γδ T cells.
Collapse
Affiliation(s)
- Wenjie Zhu
- Laboratory of Immunology, NEI, NIH Bethesda MD 20892, USA
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Xiaoyan Xu
- Laboratory of Immunology, NEI, NIH Bethesda MD 20892, USA
| | | | - Jing Guo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zixuan Peng
- Laboratory of Immunology, NEI, NIH Bethesda MD 20892, USA
| | - Amy Zhang
- Laboratory of Immunology, NEI, NIH Bethesda MD 20892, USA
| | - Jie Liu
- Laboratory of Immunology, NEI, NIH Bethesda MD 20892, USA
- Current address: Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 02114
| | | | | | - Reiko Horai
- Laboratory of Immunology, NEI, NIH Bethesda MD 20892, USA
| | - Anthony J. St. Leger
- University of Pittsburgh School of Medicine, Departments of Ophthalmology and Immunology, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
23
|
Zhao R, Hong L, Shi G, Ye H, Lou X, Zhou X, Yao J, Shi X, An J, Sun M. Mineralocorticoid promotes intestinal inflammation through receptor dependent IL17 production in ILC3s. Int Immunopharmacol 2024; 130:111678. [PMID: 38368773 DOI: 10.1016/j.intimp.2024.111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Aldosterone is a key mineralocorticoid involved in regulating the concentration of blood electrolytes and physiological volume balance. Activation of mineralocorticoid receptor (MR) has been recently reported to participate in adaptive and innate immune responses under inflammation. Here, we evaluated the role of aldosterone and MR in inflammation bowel diseases (IBD). Aldosterone elevated in the colon of DSS-induced colitis mice. Aldosterone addition induced IL17 production and ROS/RNS level in group 3 innate lymphoid cells (ILC3s) and exacerbated intestinal injury. A selective mineralocorticoid receptor antagonism, eplerenone, inhibited IL17-producing ILC3s and its ROS/RNS production, protected mice from DSS-induced colitis. Mice lacking Nr3c2 (MR coding gene) in ILC3s exhibited decreased IL17 and ROS/RNS production, which alleviated colitis and colitis-associated colorectal cancer (CAC). Further experiments revealed that MR could directly bind to IL17A promoter and facilitate its transcription, which could be enhanced by aldosterone. Thus, our findings demonstrated the critical role of aldosterone-MR-IL17 signaling in ILC3s and gut homeostasis, indicating the therapeutic strategy of eplerenone in IBD clinical trial.
Collapse
Affiliation(s)
- Rongchuan Zhao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Lei Hong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China; Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University. Suzhou Science and Technology Town Hospital. No. 1 Lijiang Road, Suzhou 215153, China
| | - Guohua Shi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Hong Ye
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Xinqi Lou
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University. Suzhou Science and Technology Town Hospital. No. 1 Lijiang Road, Suzhou 215153, China
| | - Xinying Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Jinyu Yao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Xiaohua Shi
- Digestive Department, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou Science and Technology Town Hospital, No. 1 Lijiang Road, Suzhou 215153, China
| | - Jianzhong An
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University. Suzhou Science and Technology Town Hospital. No. 1 Lijiang Road, Suzhou 215153, China.
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| |
Collapse
|
24
|
Shah R, Ibis B, Kashyap M, Boussiotis VA. The role of ROS in tumor infiltrating immune cells and cancer immunotherapy. Metabolism 2024; 151:155747. [PMID: 38042522 PMCID: PMC10872310 DOI: 10.1016/j.metabol.2023.155747] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
Reactive oxygen species (ROS) are a group of short-lived highly reactive molecules formed intracellularly from molecular oxygen. ROS can alter biochemical, transcriptional, and epigenetic programs and have an indispensable role in cellular function. In immune cells, ROS are mediators of specialized functions such as phagocytosis, antigen presentation, activation, cytolysis, and differentiation. ROS have a fundamental role in the tumor microenvironment (TME) where they are produced by immune cell-intrinsic and -extrinsic mechanisms. ROS can act as a double-edged sword with short exposures leading to activation in various innate and adaptative immune cells, and prolonged exposures, unopposed by redox balancing antioxidants leading to exhaustion, immunosuppression, and unresponsiveness to cancer immunotherapy. Due to its plasticity and impact on the anti-tumor function of immune cells, attempts are currently in process to harness ROS biology with the purpose to improve contemporary strategies of cancer immunotherapy. Here, we provide a short overview how ROS and various antioxidant systems impact on the function of innate and adaptive immune system cells with emphasis on the TME and immune-based therapies for cancer.
Collapse
Affiliation(s)
- Rushil Shah
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Betul Ibis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Monisha Kashyap
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America.
| |
Collapse
|
25
|
Fachi JL, Pral LP, Assis HC, Oliveira S, Rodovalho VR, dos Santos JAC, Fernandes MF, Matheus VA, Sesti-Costa R, Basso PJ, Flóro e Silva M, Câmara NOS, Giorgio S, Colonna M, Vinolo MAR. Hyperbaric oxygen augments susceptibility to C. difficile infection by impairing gut microbiota ability to stimulate the HIF-1α-IL-22 axis in ILC3. Gut Microbes 2024; 16:2297872. [PMID: 38165200 PMCID: PMC10763646 DOI: 10.1080/19490976.2023.2297872] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024] Open
Abstract
Hyperbaric oxygen (HBO) therapy is a well-established method for improving tissue oxygenation and is typically used for the treatment of various inflammatory conditions, including infectious diseases. However, its effect on the intestinal mucosa, a microenvironment known to be physiologically hypoxic, remains unclear. Here, we demonstrated that daily treatment with hyperbaric oxygen affects gut microbiome composition, worsening antibiotic-induced dysbiosis. Accordingly, HBO-treated mice were more susceptible to Clostridioides difficile infection (CDI), an enteric pathogen highly associated with antibiotic-induced colitis. These observations were closely linked with a decline in the level of microbiota-derived short-chain fatty acids (SCFAs). Butyrate, a SCFA produced primarily by anaerobic microbial species, mitigated HBO-induced susceptibility to CDI and increased epithelial barrier integrity by improving group 3 innate lymphoid cell (ILC3) responses. Mice displaying tissue-specific deletion of HIF-1 in RORγt-positive cells exhibited no protective effect of butyrate during CDI. In contrast, the reinforcement of HIF-1 signaling in RORγt-positive cells through the conditional deletion of VHL mitigated disease outcome, even after HBO therapy. Taken together, we conclude that HBO induces intestinal dysbiosis and impairs the production of SCFAs affecting the HIF-1α-IL-22 axis in ILC3 and worsening the response of mice to subsequent C. difficile infection.
Collapse
Affiliation(s)
- José L. Fachi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Laís. P. Pral
- Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Helder C. Assis
- Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Sarah Oliveira
- Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Vinícius R. Rodovalho
- Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Jefferson A. C. dos Santos
- Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Mariane F. Fernandes
- Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Valquíria A. Matheus
- Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Renata Sesti-Costa
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| | - Paulo J. Basso
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marina Flóro e Silva
- Department of Animal Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Niels O. S. Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Selma Giorgio
- Department of Animal Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marco A. R. Vinolo
- Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| |
Collapse
|
26
|
Valle-Noguera A, Sancho-Temiño L, Castillo-González R, Villa-Gómez C, Gomez-Sánchez MJ, Ochoa-Ramos A, Yagüe-Fernández P, Soler Palacios B, Zorita V, Raposo-Ponce B, González-Granado JM, Aragonés J, Cruz-Adalia A. IL-18-induced HIF-1α in ILC3s ameliorates the inflammation of C. rodentium-induced colitis. Cell Rep 2023; 42:113508. [PMID: 38019650 DOI: 10.1016/j.celrep.2023.113508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) are vital for defending tissue barriers from invading pathogens. Hypoxia influences the production of intestinal ILC3-derived cytokines by activating HIF. Yet, the mechanisms governing HIF-1α in ILC3s and other innate RORγt+ cells during in vivo infections are poorly understood. In our study, transgenic mice with specific Hif-1a gene inactivation in innate RORγt+ cells (RAG1KO HIF-1α▵Rorc) exhibit more severe colitis following Citrobacter rodentium infection, primarily due to the inability to upregulate IL-22. We find that HIF-1α▵Rorc mice have impaired IL-22 production in ILC3s, while non-ILC3 innate RORγt+ cells, also capable of producing IL-22, remain unaffected. Furthermore, we show that IL-18, induced by Toll-like receptor 2, selectively triggers IL-22 in ILC3s by transcriptionally upregulating HIF-1α, revealing an oxygen-independent regulatory pathway. Our results highlight that, during late-stage C. rodentium infection, IL-18 induction in the colon promotes IL-22 through HIF-1α in ILC3s, which is crucial for protection against this pathogen.
Collapse
Affiliation(s)
- Ana Valle-Noguera
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Lucía Sancho-Temiño
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Raquel Castillo-González
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Cristina Villa-Gómez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - María José Gomez-Sánchez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Anne Ochoa-Ramos
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Blanca Soler Palacios
- Department of Immunology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Virginia Zorita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - José María González-Granado
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Julián Aragonés
- Hospital Santa Cristina, Fundación de Investigación Hospital de la Princesa, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Aránzazu Cruz-Adalia
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
27
|
Sah P, Knighten BA, Reidy MA, Zenewicz LA. Polyamines and hypusination are important for Clostridioides difficile toxin B (TcdB)-mediated activation of group 3 innate lymphocytes (ILC3s). Infect Immun 2023; 91:e0023623. [PMID: 37861311 PMCID: PMC10652861 DOI: 10.1128/iai.00236-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/17/2023] [Indexed: 10/21/2023] Open
Abstract
Clostridioides difficile is the most common cause of nosocomial gastrointestinal tract bacterial infections. We lack fully effective reliable treatments for this pathogen, and there is a critical need to better understand how C. difficile interacts with our immune system. Group 3 innate lymphocytes (ILC3s) are rare immune cells localized within mucosal tissues that protect against bacterial infections. Upon activation, ILC3s secrete high levels of the cytokine interleukin-22 (IL-22), which is a critical regulator of tissue responses during infection. C. difficile toxin B (TcdB), the major virulence factor, directly activates ILC3s, resulting in high IL-22 levels. We previously reported that polyamines are important in the activation of ILC3s by the innate cytokine interleukin-23 (IL-23) but did not identify a specific mechanism. In this study, we examine how a pathogen impacts a metabolic pathway important for immune cell function and hypothesized that polyamines are important in TcdB-mediated ILC3 activation. We show that TcdB upregulates the polyamine biosynthesis pathway, and the inhibition of the pathway decreases TcdB-mediated ILC3 activation. Two polyamines, putrescine and spermidine, are involved. Spermidine is the key polyamine in the hypusination of eukaryotic initiation factor 5A (eIF5A), and the inhibition of eIF5A reduced ILC3 activation. Thus, there is potential to leverage polyamines in ILC3s to promote activation of ILC3s during C. difficile infection and other bacterial infections where ILC3s serve a protective role.
Collapse
Affiliation(s)
- Prakash Sah
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bailey A. Knighten
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Megan A. Reidy
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lauren A. Zenewicz
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
28
|
Hepworth MR. Proline fuels ILC3s to maintain gut health. Nat Metab 2023; 5:1848-1849. [PMID: 37857732 DOI: 10.1038/s42255-023-00895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Affiliation(s)
- Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
29
|
Deng YF, Wu ST, Peng HY, Tian L, Li YN, Yang Y, Meng M, Huang LL, Xiong PW, Li SY, Yang QL, Wang LL, Li XY, Li LP, Lu XL, Li XH, Wei YL, Xiao ZH, Yu JH, Deng YC. mTORC2 acts as a gatekeeper for mTORC1 deficiency-mediated impairments in ILC3 development. Acta Pharmacol Sin 2023; 44:2243-2252. [PMID: 37407703 PMCID: PMC10618277 DOI: 10.1038/s41401-023-01120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023]
Abstract
Group 3 innate lymphoid cells (ILC3s) are mediators of intestinal immunity and barrier function. Recent studies have investigated the role of the mammalian target of rapamycin complex (mTOR) in ILC3s, whereas the mTORC1-related mechanisms and crosstalk between mTORC1 and mTORC2 involved in regulating ILC3 homeostasis remain unknown. In this study, we found that mTORC1 but not mTORC2 was critical in ILC3 development, IL-22 production, and ILC3-mediated intestinal homeostasis. Single-cell RNA sequencing revealed that mTORC1 deficiency led to disruption of ILC3 heterogeneity, showing an increase in differentiation into ILC1-like phenotypes. Mechanistically, mTORC1 deficiency decreased the expression of NFIL3, which is a critical transcription factor responsible for ILC3 development. The activities of both mTORC1 and mTORC2 were increased in wild-type ILC3s after activation by IL-23, whereas inhibition of mTORC1 by Raptor deletion or rapamycin treatment resulted in increased mTORC2 activity. Previous studies have demonstrated that S6K, the main downstream target of mTORC1, can directly phosphorylate Rictor to dampen mTORC2 activity. Our data found that inhibition of mTORC1 activity by rapamycin reduced Rictor phosphorylation in ILC3s. Reversing the increased mTORC2 activity via heterozygous or homozygous knockout of Rictor in Raptor-deleted ILC3s resulted in severe ILC3 loss and complete susceptibility to intestinal infection in mice with mTORC1 deficiency (100% mortality). Thus, mTORC1 acts as a rheostat of ILC3 heterogeneity, and mTORC2 protects ILC3s from severe loss of cells and immune activity against intestinal infection when mTORC1 activity is diminished.
Collapse
Affiliation(s)
- Ya-Fei Deng
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China
| | - Shu-Ting Wu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Hong-Yan Peng
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Ya-Na Li
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Yao Yang
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China
| | - Meng Meng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China
| | - Lan-Lan Huang
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Pei-Wen Xiong
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Song-Yang Li
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Qing-Lan Yang
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Li-Li Wang
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Xiao-Yao Li
- Department of Clinical Pharmacy, Weifang Traditional Chinese Hospital, Weifang, 261041, China
| | - Li-Ping Li
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Xiu-Lan Lu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China
| | - Xiao-Hui Li
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China
| | - Yan-Ling Wei
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Zheng-Hui Xiao
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, 410007, China.
| | - Jian-Hua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA.
| | - You-Cai Deng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
30
|
Wu D, Li Z, Zhang Y, Zhang Y, Ren G, Zeng Y, Liu H, Guan W, Zhao X, Li P, Hu L, Hou Z, Gong J, Li J, Jin W, Hu Z, Jiang C, Li H, Zhong C. Proline uptake promotes activation of lymphoid tissue inducer cells to maintain gut homeostasis. Nat Metab 2023; 5:1953-1968. [PMID: 37857730 DOI: 10.1038/s42255-023-00908-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
Metabolic regulation is integral to the proper functioning of innate lymphoid cells, yet the underlying mechanisms remain elusive. Here, we show that disruption of exogenous proline uptake, either through dietary restriction or by deficiency of the proline transporter Slc6a7, in lymphoid tissue inducer (LTi) cells, impairs LTi activation and aggravates dextran sodium sulfate-induced colitis in mice. With an integrative transcriptomic and metabolomic analysis, we profile the metabolic characteristics of various innate lymphoid cell subsets and reveal a notable enrichment of proline metabolism in LTi cells. Mechanistically, defective proline uptake diminishes the generation of reactive oxygen species, previously known to facilitate LTi activation. Additionally, LTi cells deficient in Slc6a7 display downregulation of Cebpb and Kdm6b, resulting in compromised transcriptional and epigenetic regulation of interleukin-22. Furthermore, our study uncovers the therapeutic potential of proline supplementation in alleviating colitis. Therefore, these findings shed light on the role of proline in facilitating LTi activation and ultimately contributing to gut homeostasis.
Collapse
Affiliation(s)
- Di Wu
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zongxian Li
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yime Zhang
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yinlian Zhang
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Guanqun Ren
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yanyu Zeng
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Huiying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Weiqiang Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xingyu Zhao
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Peng Li
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Luni Hu
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zhiyuan Hou
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Jingjing Gong
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Jun Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Wenfei Jin
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Houhua Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Chao Zhong
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
31
|
Koprivica I, Stanisavljević S, Mićanović D, Jevtić B, Stojanović I, Miljković Đ. ILC3: a case of conflicted identity. Front Immunol 2023; 14:1271699. [PMID: 37915588 PMCID: PMC10616800 DOI: 10.3389/fimmu.2023.1271699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Innate lymphoid cells type 3 (ILC3s) are the first line sentinels at the mucous tissues, where they contribute to the homeostatic immune response in a major way. Also, they have been increasingly appreciated as important modulators of chronic inflammatory and autoimmune responses, both locally and systemically. The proper identification of ILC3 is of utmost importance for meaningful studies on their role in immunity. Flow cytometry is the method of choice for the detection and characterization of ILC3. However, the analysis of ILC3-related papers shows inconsistency in ILC3 phenotypic definition, as different inclusion and exclusion markers are used for their identification. Here, we present these discrepancies in the phenotypic characterization of human and mouse ILC3s. We discuss the pros and cons of using various markers for ILC3 identification. Furthermore, we consider the possibilities for the efficient isolation and propagation of ILC3 from different organs and tissues for in-vitro and in-vivo studies. This paper calls upon uniformity in ILC3 definition, isolation, and propagation for the increased possibility of confluent interpretation of ILC3's role in immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
32
|
King JI, Melo-Gonzalez F, Malengier-Devlies B, Tachó-Piñot R, Magalhaes MS, Hodge SH, Romero Ros X, Gentek R, Hepworth MR. Bcl-2 supports survival and metabolic fitness of quiescent tissue-resident ILC3. Mucosal Immunol 2023; 16:658-670. [PMID: 37453568 PMCID: PMC10564625 DOI: 10.1016/j.mucimm.2023.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Group 3 innate lymphoid cells (ILC3) are potent effector cells with critical roles in enforcing immunity, barrier integrity and tissue homeostasis along the gastrointestinal tract. ILC3 are considered primarily tissue-resident cells, seeding the gastrointestinal tract during embryonic stages and early life. However, the mechanisms through which mature ILC3 are maintained within adult tissues are poorly understood. Here, we report that lymphoid tissue-inducer-like (LTi-like) ILC3 exhibit minimal turnover in the healthy adult intestinal tract, persist for extended periods of time, and display a quiescent phenotype. Strikingly, during enteric bacterial infection LTi-like ILC3 also exhibit negligible hematopoietic replenishment and remain non-proliferative, despite robustly producing cytokines. Survival of LTi-like ILC3 was found to be dependent upon the balance between the metabolic activity required to drive effector function and anti-apoptotic programs. Notably, the pro-survival protein B-cell lymphoma-2 (Bcl-2) was required for the survival of LTi-like ILC3 ex vivo but was rendered partially dispensable if mitochondrial respiration was inhibited. Together we demonstrate LTi-like ILC3 are a tissue-resident, quiescent population that persist independently of hematopoietic replenishment to survive within the intestinal microenvironment.
Collapse
Affiliation(s)
- James I King
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Felipe Melo-Gonzalez
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Bert Malengier-Devlies
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Roser Tachó-Piñot
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Marlene S Magalhaes
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Suzanne H Hodge
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Xavier Romero Ros
- Bioscience Asthma, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Rebecca Gentek
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
33
|
Xiong L, Helm EY, Dean JW, Sun N, Jimenez-Rondan FR, Zhou L. Nutrition impact on ILC3 maintenance and function centers on a cell-intrinsic CD71-iron axis. Nat Immunol 2023; 24:1671-1684. [PMID: 37709985 PMCID: PMC11256193 DOI: 10.1038/s41590-023-01612-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/04/2023] [Indexed: 09/16/2023]
Abstract
Iron metabolism is pivotal for cell fitness in the mammalian host; however, its role in group 3 innate lymphoid cells (ILC3s) is unknown. Here we show that transferrin receptor CD71 (encoded by Tfrc)-mediated iron metabolism cell-intrinsically controls ILC3 proliferation and host protection against Citrobacter rodentium infection and metabolically affects mitochondrial respiration by switching of oxidative phosphorylation toward glycolysis. Iron deprivation or Tfrc ablation in ILC3s reduces the expression and/or activity of the aryl hydrocarbon receptor (Ahr), a key ILC3 regulator. Genetic ablation or activation of Ahr in ILC3s leads to CD71 upregulation or downregulation, respectively, suggesting Ahr-mediated suppression of CD71. Mechanistically, Ahr directly binds to the Tfrc promoter to inhibit transcription. Iron overload partially restores the defective ILC3 compartment in the small intestine of Ahr-deficient mice, consistent with the compensatory upregulation of CD71. These data collectively demonstrate an under-appreciated role of the Ahr-CD71-iron axis in the regulation of ILC3 maintenance and function.
Collapse
Affiliation(s)
- Lifeng Xiong
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Eric Y Helm
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Joseph W Dean
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Na Sun
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Felix R Jimenez-Rondan
- Center for Nutritional Sciences and Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
34
|
Lyu Y, Wang T, Huang S, Zhang Z. Mitochondrial Damage-Associated Molecular Patterns and Metabolism in the Regulation of Innate Immunity. J Innate Immun 2023; 15:665-679. [PMID: 37666239 PMCID: PMC10601681 DOI: 10.1159/000533602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023] Open
Abstract
The innate immune system, as the host's first line of defense against intruders, plays a critical role in recognizing, identifying, and reacting to a wide range of microbial intruders. There is increasing evidence that mitochondrial stress is a major initiator of innate immune responses. When mitochondria's integrity is disrupted or dysfunction occurs, the mitochondria's contents are released into the cytosol. These contents, like reactive oxygen species, mitochondrial DNA, and double-stranded RNA, among others, act as damage-related molecular patterns (DAMPs) that can bind to multiple innate immune sensors, particularly pattern recognition receptors, thereby leading to inflammation. To avoid the production of DAMPs, in addition to safeguarding organelles integrity and functionality, mitochondria may activate mitophagy or apoptosis. Moreover, mitochondrial components and specific metabolic regulations modify properties of innate immune cells. These include macrophages, dendritic cells, innate lymphoid cells, and so on, in steady state or in stimulation that are involved in processes ranging from the tricarboxylic acid cycle to oxidative phosphorylation and fatty acid metabolism. Here we provide a brief summary of mitochondrial DAMPs' initiated and potentiated inflammatory response in the innate immune system. We also provide insights into how the state of activation, differentiation, and functional polarization of innate immune cells can be influenced by alteration to the metabolic pathways in mitochondria.
Collapse
Affiliation(s)
- Yanmin Lyu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tianyu Wang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuhong Huang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhaoqiang Zhang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
35
|
Bonetti L, Horkova V, Longworth J, Guerra L, Kurniawan H, Franchina DG, Soriano-Baguet L, Grusdat M, Spath S, Koncina E, Ewen A, Binsfeld C, Verschueren C, Gérardy JJ, Kobayashi T, Dostert C, Farinelle S, Härm J, Chen Y, Harris IS, Lang PA, Vasiliou V, Waisman A, Letellier E, Becher B, Mittelbronn M, Brenner D. A Th17 cell-intrinsic glutathione/mitochondrial-IL-22 axis protects against intestinal inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547932. [PMID: 37489135 PMCID: PMC10363291 DOI: 10.1101/2023.07.06.547932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Although the intestinal tract is a major site of reactive oxygen species (ROS) generation, the mechanisms by which antioxidant defense in gut T cells contribute to intestinal homeostasis are currently unknown. Here we show, using T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that the ensuing loss of glutathione (GSH) impairs the production of gut-protective IL-22 by Th17 cells within the lamina propria. Although Gclc ablation does not affect T cell cytokine secretion in the gut of mice at steady-state, infection with C. rodentium increases ROS, inhibits mitochondrial gene expression and mitochondrial function in Gclc-deficient Th17 cells. These mitochondrial deficits affect the PI3K/AKT/mTOR pathway, leading to reduced phosphorylation of the translation repressor 4E-BP1. As a consequence, the initiation of translation is restricted, resulting in decreased protein synthesis of IL-22. Loss of IL-22 results in poor bacterial clearance, enhanced intestinal damage, and high mortality. ROS-scavenging, reconstitution of IL-22 expression or IL-22 supplementation in vivo prevent the appearance of these pathologies. Our results demonstrate the existence of a previously unappreciated role for Th17 cell-intrinsic GSH coupling to promote mitochondrial function, IL-22 translation and signaling. These data reveal an axis that is essential for maintaining the integrity of the intestinal barrier and protecting it from damage caused by gastrointestinal infection.
Collapse
Affiliation(s)
- Lynn Bonetti
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Veronika Horkova
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Joseph Longworth
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Luana Guerra
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Henry Kurniawan
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Davide G. Franchina
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Leticia Soriano-Baguet
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Melanie Grusdat
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sabine Spath
- Institute of Experimental Immunology, Inflammation Research, University of Zurich, 8057 Zurich, Switzerland
- Center for Fundamental Immunology, Benaroya Research Institute; Seattle, WA 98101, USA
| | - Eric Koncina
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - Anouk Ewen
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Carole Binsfeld
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Charlène Verschueren
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Jean-Jacques Gérardy
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, L-3555, Luxembourg
| | - Takumi Kobayashi
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Catherine Dostert
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sophie Farinelle
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Janika Härm
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Isaac S. Harris
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Philipp A. Lang
- Department of Molecular Medicine II, Medical Faculty Heinrich Heine University Düsseldorf, Germany
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - Burkhard Becher
- Institute of Experimental Immunology, Inflammation Research, University of Zurich, 8057 Zurich, Switzerland
| | - Michel Mittelbronn
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, L-3555, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, L-4362, Luxembourg
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), Luxembourg, L-1526, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
36
|
Alisjahbana A, Mohammad I, Gao Y, Evren E, Willinger T. Single-cell RNA sequencing of human lung innate lymphoid cells in the vascular and tissue niche reveals molecular features of tissue adaptation. DISCOVERY IMMUNOLOGY 2023; 2:kyad007. [PMID: 38650756 PMCID: PMC11034571 DOI: 10.1093/discim/kyad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 04/25/2024]
Abstract
Innate lymphoid cells (ILCs) are sentinels of healthy organ function, yet it is unknown how ILCs adapt to distinct anatomical niches within tissues. Here, we used a unique humanized mouse model, MISTRG mice transplanted with human hematopoietic stem and progenitor cells (HSPCs), to define the gene signatures of human ILCs in the vascular versus the tissue (extravascular) compartment of the lung. Single-cell RNA sequencing in combination with intravascular cell labeling demonstrated that heterogeneous populations of human ILCs and natural killer (NK) cells occupied the vascular and tissue niches in the lung of HSPC-engrafted MISTRG mice. Moreover, we discovered that niche-specific cues shape the molecular programs of human ILCs in the distinct sub-anatomical compartments of the lung. Specifically, extravasation of ILCs into the lung tissue was associated with the upregulation of genes involved in the acquisition of tissue residency, cell positioning within the lung, sensing of tissue-derived signals, cellular stress responses, nutrient uptake, and interaction with other tissue-resident immune cells. We also defined a core tissue signature shared between human ILCs and NK cells in the extravascular space of the lung, consistent with imprinting by signals from the local microenvironment. The molecular characterization of human ILCs and NK cells in the vascular and tissue niches of the lung provides new knowledge on the mechanisms of ILC tissue adaptation and represents a resource for further studies.
Collapse
Affiliation(s)
- Arlisa Alisjahbana
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Imran Mohammad
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu Gao
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Elza Evren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Tim Willinger
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
37
|
Helm EY, Zhou L. Transcriptional regulation of innate lymphoid cells and T cells by aryl hydrocarbon receptor. Front Immunol 2023; 14:1056267. [PMID: 37056785 PMCID: PMC10089284 DOI: 10.3389/fimmu.2023.1056267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
The aryl hydrocarbon receptor (Ahr) is a ligand-dependent transcription factor and facilitates immune cell environmental sensing through its activation by cellular, dietary, and microbial metabolites, as well as environmental toxins. Although expressed in various cell types, Ahr in innate lymphoid cells (ILCs) and their adaptive T cell counterparts regulates essential aspects of their development and function. As opposed to T cells, ILCs exclusively rely on germ-line encoded receptors for activation, but often share expression of core transcription factors and produce shared effector molecules with their T cell counterparts. As such, core modules of transcriptional regulation are both shared and diverge between ILCs and T cells. In this review, we highlight the most recent findings regarding Ahr’s transcriptional regulation of both ILCs and T cells. Furthermore, we focus on insights elucidating the shared and distinct mechanisms by which Ahr regulates both innate and adaptive lymphocytes.
Collapse
|
38
|
Makhijani P, Basso PJ, Chan YT, Chen N, Baechle J, Khan S, Furman D, Tsai S, Winer DA. Regulation of the immune system by the insulin receptor in health and disease. Front Endocrinol (Lausanne) 2023; 14:1128622. [PMID: 36992811 PMCID: PMC10040865 DOI: 10.3389/fendo.2023.1128622] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
The signaling pathways downstream of the insulin receptor (InsR) are some of the most evolutionarily conserved pathways that regulate organism longevity and metabolism. InsR signaling is well characterized in metabolic tissues, such as liver, muscle, and fat, actively orchestrating cellular processes, including growth, survival, and nutrient metabolism. However, cells of the immune system also express the InsR and downstream signaling machinery, and there is increasing appreciation for the involvement of InsR signaling in shaping the immune response. Here, we summarize current understanding of InsR signaling pathways in different immune cell subsets and their impact on cellular metabolism, differentiation, and effector versus regulatory function. We also discuss mechanistic links between altered InsR signaling and immune dysfunction in various disease settings and conditions, with a focus on age related conditions, such as type 2 diabetes, cancer and infection vulnerability.
Collapse
Affiliation(s)
- Priya Makhijani
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Buck Institute for Research in Aging, Novato, CA, United States
| | - Paulo José Basso
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yi Tao Chan
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nan Chen
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jordan Baechle
- Buck Institute for Research in Aging, Novato, CA, United States
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, United States
| | - Saad Khan
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - David Furman
- Buck Institute for Research in Aging, Novato, CA, United States
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, United States
- Stanford 1, 000 Immunomes Project, Stanford School of Medicine, Stanford University, Stanford, CA, United States
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pilar, Argentina
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Daniel A. Winer
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Buck Institute for Research in Aging, Novato, CA, United States
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, United States
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
39
|
Korchagina AA, Koroleva E, Tumanov AV. Innate Lymphoid Cell Plasticity in Mucosal Infections. Microorganisms 2023; 11:461. [PMID: 36838426 PMCID: PMC9967737 DOI: 10.3390/microorganisms11020461] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Mucosal tissue homeostasis is a dynamic process that involves multiple mechanisms including regulation of innate lymphoid cells (ILCs). ILCs are mostly tissue-resident cells which are critical for tissue homeostasis and immune response against pathogens. ILCs can sense environmental changes and rapidly respond by producing effector cytokines to limit pathogen spread and initiate tissue recovery. However, dysregulation of ILCs can also lead to immunopathology. Accumulating evidence suggests that ILCs are dynamic population that can change their phenotype and functions under rapidly changing tissue microenvironment. However, the significance of ILC plasticity in response to pathogens remains poorly understood. Therefore, in this review, we discuss recent advances in understanding the mechanisms regulating ILC plasticity in response to intestinal, respiratory and genital tract pathogens. Key transcription factors and lineage-guiding cytokines regulate this plasticity. Additionally, we discuss the emerging data on the role of tissue microenvironment, gut microbiota, and hypoxia in ILC plasticity in response to mucosal pathogens. The identification of new pathways and molecular mechanisms that control functions and plasticity of ILCs could uncover more specific and effective therapeutic targets for infectious and autoimmune diseases where ILCs become dysregulated.
Collapse
Affiliation(s)
| | | | - Alexei V. Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA
| |
Collapse
|
40
|
Zhou J, Yue J, Yao Y, Hou P, Zhang T, Zhang Q, Yi L, Mi M. Dihydromyricetin Protects Intestinal Barrier Integrity by Promoting IL-22 Expression in ILC3s through the AMPK/SIRT3/STAT3 Signaling Pathway. Nutrients 2023; 15:nu15020355. [PMID: 36678226 PMCID: PMC9861697 DOI: 10.3390/nu15020355] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Previous studies indicate that dihydromyricetin (DHM) could alleviate intestinal inflammation and improve intestinal barrier integrity, yet the underlying mechanism remains obscure. METHODS C57BL/6 male mice were fed with a control diet, high-fat diet (HFD), or HFD + DHM diet for 12 weeks. The intestinal permeability and expression of intestinal tight junction (TJ) protein were detected to evaluate the effects of DHM on intestinal barrier integrity. The interleukin 22 (IL-22) production of group 3 innate lymphoid cells (ILC3s) in small intestine lamina propria was tested to clarify the effects of DHM on ILC3s. In addition, an MNK3 cell line, which expresses the same transcription factors and cytokines as ILC3, was used to investigate the molecular mechanism under DHM-induced IL-22 expression. RESULTS DHM effectively protected HFD-fed mice against intestinal barrier destruction by promoting ILC3 activation and IL-22 secretion, and IL-22 expression increased the expression levels of TJ molecules to protect intestinal barrier integrity. Moreover, DHM increased activation of the AMPK/SIRT3/STAT3 pathway, which in turn promoted IL-22 expression in MNK3 cells. CONCLUSIONS DHM improved IL-22 production in ILC3 cells to alleviate HFD-induced intestinal barrier destruction via the AMPK/SIRT3/STAT3 pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Long Yi
- Correspondence: (L.Y.); or mantian (M.M.); Tel./Fax: +86-2368771549 (M.M.)
| | - Mantian Mi
- Correspondence: (L.Y.); or mantian (M.M.); Tel./Fax: +86-2368771549 (M.M.)
| |
Collapse
|
41
|
Sah P, Zenewicz LA. The Polyamine Putrescine Is a Positive Regulator of Group 3 Innate Lymphocyte Activation. Immunohorizons 2023; 7:41-48. [PMID: 36637514 PMCID: PMC10520894 DOI: 10.4049/immunohorizons.2200097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 01/14/2023] Open
Abstract
Group 3 innate lymphocytes (ILC3s) rapidly respond to invading pathogens or inflammatory signals, which requires shifting cellular metabolic demands. Metabolic adaptations regulating ILC3 function are not completely understood. Polyamines are polycationic metabolites that have diverse roles in cellular functions and in immunity regulate immune cell biology, including Th17 cells. Whether polyamines play a role in ILC3 activation is unknown. In this article, we report that the polyamine synthesis pathway is important for ILC3 activation. IL-23-activated mouse ILC3s upregulate ornithine decarboxylase, the enzyme catalyzing the rate-limiting step of the conversion of ornithine to putrescine in polyamine synthesis, with a subsequent increase in putrescine levels. Inhibition of ornithine decarboxylase via a specific inhibitor, α-difluoromethylornithine, reduced levels of IL-22 produced by steady-state or IL-23-activated ILC3s in a putrescine-dependent manner. Thus, the polyamine putrescine is a positive regulator of ILC3 activation. Our results suggest that polyamines represent a potential target for therapeutic modulation of ILC3 activation during infection or inflammatory disorders.
Collapse
Affiliation(s)
- Prakash Sah
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Lauren A Zenewicz
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
42
|
Zhou L, Lin Q, Sonnenberg GF. Metabolic control of innate lymphoid cells in health and disease. Nat Metab 2022; 4:1650-1659. [PMID: 36424470 PMCID: PMC9789197 DOI: 10.1038/s42255-022-00685-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022]
Abstract
Innate lymphoid cells (ILCs) are a family of predominantly tissue-resident lymphocytes that critically orchestrate immunity, inflammation, tolerance and repair at barrier surfaces of the mammalian body. Heterogeneity among ILC subsets is comparable to that of adaptive CD4+ T helper cell counterparts, and emerging studies demonstrate that ILC biology is also dictated by cellular metabolism that adapts bioenergetic requirements during activation, proliferation or cytokine production. Accumulating evidence in mouse models and human samples indicates that ILCs exhibit profound roles in shaping states of metabolic health and disease. Here we summarize and discuss our current knowledge of the cell-intrinsic and cell-extrinsic metabolic factors controlling ILC responses, as well as highlight contributions of ILCs to organismal metabolism. It is expected that continued research in this area will advance our understanding of how to manipulate ILCs or their metabolism for therapeutic strategies that benefit human health.
Collapse
Affiliation(s)
- Lei Zhou
- Shanghai Immune Therapy Institute, Shanghai Jiaotong University School of Medicine-affiliated Renji Hospital, Shanghai, China.
| | - Qingxia Lin
- Shanghai Immune Therapy Institute, Shanghai Jiaotong University School of Medicine-affiliated Renji Hospital, Shanghai, China
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Department of Microbiology and Immunology, and the Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
43
|
Ruan D, Wu S, Fouad AM, Zhu Y, Huang W, Chen Z, Gou Z, Wang Y, Han Y, Yan S, Zheng C, Jiang S. Curcumin alleviates LPS-induced intestinal homeostatic imbalance through reshaping gut microbiota structure and regulating group 3 innate lymphoid cells in chickens. Food Funct 2022; 13:11811-11824. [PMID: 36306140 DOI: 10.1039/d2fo02598a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Gastrointestinal dysfunction is associated with a disturbance of immune homeostasis, changes in the intestinal microbiome, alteration of the composition of the bile acid pool, and dynamic imbalance of group 3 innate lymphoid cells (ILC3s). Curcumin (CUR), a polyphenolic compound isolated from turmeric, has been known to attenuate intestinal inflammation in potential therapies for gastrointestinal diseases. It was hypothesized that CUR could target the gut microbiome to modulate bile acid (BA) metabolism and the function of ILC3s in ameliorating lipopolysaccharide (LPS)-induced imbalance of intestinal homeostasis in chickens. Seven hundred and twenty 1-day-old crossbred chickens were randomly divided into four treatments, namely CON_saline (basal diet + saline control), CUR_saline (basal diet + 300 mg kg-1 curcumin + saline), CON_LPS (basal diet + LPS), and CUR_LPS (basal diet + 300 mg kg-1 curcumin + LPS), each consisting of 6 replicates of 30 birds. On days 14, 17, and 21, the chickens in the CON_LPS and CUR_LPS treatments were intraperitoneally injected with LPS at 0.5 mg per kg BW. Dietary CUR supplementation significantly decreased LPS-induced suppression of growth performance and injury to the intestinal tight junctions and decreased the vulnerability to LPS-induced acute inflammatory response by inhibiting pro-inflammatory (interleukin-1β and tumor necrosis factor-α) cytokines. CUR reshaped the cecal microbial community and BA metabolism, contributing to regulation of the intestinal mucosal immunity by promoting the anti-inflammatory (interleukin 10, IL-10) cytokines and enhancing the concentrations of primary and secondary BA metabolites (chenodexycholic acid, lithocholic acid). LPS decreased farnesoid X receptor (FXR) and G protein-coupled receptor class C group 5 member A synthesis, which was reversed by CUR administration, along with an increase in interleukin 22 (IL-22) production from ILC3s. Dietary supplementation of CUR increased the prevalence of Butyricicoccus and Enterococcus and enhanced the tricarboxylic acid cycle of intestinal epithelial cells. In addition, curcumin supplementation significantly increased sirtuin 1 and sirtuin 5 transcription and protein expression, which contributes to regulating mitochondrial metabolic and oxidative stress responses to alleviate LPS-induced enteritis. Our findings demonstrated that curcumin played a pivotal role in regulating the structure of the intestinal microbiome for health promotion and the treatment of intestinal dysbiosis. The beneficial effects of CUR may be attributed to the modulation of the BA-FXR pathway and inhibition of inflammation that induces IL-22 secretion by ILC3s in the intestinal lamina propria.
Collapse
Affiliation(s)
- Dong Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Shaowen Wu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ahmed Mohamed Fouad
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhilong Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Zhongyong Gou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Yibing Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Yongquan Han
- Guangzhou Cohoo Biotechnology Co., Ltd, Guangzhou 510663, China
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chuntian Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Shouqun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| |
Collapse
|
44
|
Peng V, Cao S, Trsan T, Bando JK, Avila-Pacheco J, Cleveland JL, Clish C, Xavier RJ, Colonna M. Ornithine decarboxylase supports ILC3 responses in infectious and autoimmune colitis through positive regulation of IL-22 transcription. Proc Natl Acad Sci U S A 2022; 119:e2214900119. [PMID: 36279426 PMCID: PMC9659397 DOI: 10.1073/pnas.2214900119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 01/14/2023] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) are RORγT+ lymphocytes that are predominately enriched in mucosal tissues and produce IL-22 and IL-17A. They are the innate counterparts of Th17 cells. While Th17 lymphocytes utilize unique metabolic pathways in their differentiation program, it is unknown whether ILC3s make similar metabolic adaptations. We employed single-cell RNA sequencing and metabolomic profiling of intestinal ILC subsets to identify an enrichment of polyamine biosynthesis in ILC3s, converging on the rate-limiting enzyme ornithine decarboxylase (ODC1). In vitro and in vivo studies demonstrated that exogenous supplementation with the polyamine putrescine or its biosynthetic substrate, ornithine, enhanced ILC3 production of IL-22. Conditional deletion of ODC1 in ILC3s impaired mouse antibacterial defense against Citrobacter rodentium infection, which was associated with a decrease in anti-microbial peptide production by the intestinal epithelium. Furthermore, in a model of anti-CD40 colitis, deficiency of ODC1 in ILC3s markedly reduced the production of IL-22 and severity of inflammatory colitis. We conclude that ILC3-intrinsic polyamine biosynthesis facilitates efficient defense against enteric pathogens as well as exacerbates autoimmune colitis, thus representing an attractive target to modulate ILC3 function in intestinal disease.
Collapse
Affiliation(s)
- Vincent Peng
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Siyan Cao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110
| | - Tihana Trsan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Jennifer K. Bando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | | | - John L. Cleveland
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612
| | | | - Ramnik J. Xavier
- Broad Institute, Cambridge, MA 02412
- Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Cambridge Street, Boston, MA 02114
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
45
|
Yu H, Jacquelot N, Belz GT. Metabolic features of innate lymphoid cells. J Exp Med 2022; 219:e20221140. [PMID: 36301303 PMCID: PMC9617479 DOI: 10.1084/jem.20221140] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/31/2022] [Accepted: 10/04/2022] [Indexed: 12/02/2022] Open
Abstract
Innate and adaptive immune cells are found in distinct tissue niches where they orchestrate immune responses. This requires intrinsic and temporal metabolic adaptability to coordinately activate the immune response cascade. Dysregulation of this program is a key feature of immunosuppression. Direct or indirect metabolic immune cell reprogramming may offer new approaches to modulate immune cells behavior for therapy to overcome dysregulation. In this review, we explored how metabolism regulates lymphocytes beyond the classical T cell subsets. We focus on the innate lymphoid cell (ILC) family, highlighting the distinct metabolic characteristics of these cells, the impact of environmental factors, and the receptors that could alter immune cell functions through manipulation of metabolic pathways to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Huiyang Yu
- The University of Queensland, Diamantina Institute, Brisbane, Queensland, Australia
| | - Nicolas Jacquelot
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Gabrielle T. Belz
- The University of Queensland, Diamantina Institute, Brisbane, Queensland, Australia
| |
Collapse
|
46
|
A Fun-Guide to Innate Immune Responses to Fungal Infections. J Fungi (Basel) 2022; 8:jof8080805. [PMID: 36012793 PMCID: PMC9409918 DOI: 10.3390/jof8080805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Immunocompromised individuals are at high risk of developing severe fungal infections with high mortality rates, while fungal pathogens pose little risk to most healthy people. Poor therapeutic outcomes and growing antifungal resistance pose further challenges for treatments. Identifying specific immunomodulatory mechanisms exploited by fungal pathogens is critical for our understanding of fungal diseases and development of new therapies. A gap currently exists between the large body of literature concerning the innate immune response to fungal infections and the potential manipulation of host immune responses to aid clearance of infection. This review considers the innate immune mechanisms the host deploys to prevent fungal infection and how these mechanisms fail in immunocompromised hosts. Three clinically relevant fungal pathogens (Candida albicans, Cryptococcus spp. and Aspergillus spp.) will be explored. This review will also examine potential mechanisms of targeting the host therapeutically to improve outcomes of fungal infection.
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Innate lymphoid cells (ILCs) are specialized immune cells that rapidly sense environmental perturbations and regulate immune responses and tissue homeostasis. ILCs are mainly tissue resident and their crosstalk within tissue microenvironments influences both local and systemic metabolism. Reciprocally, metabolic status conditions ILC phenotype and effector function. In this review, we discuss the role of ILCs as metabolic sentinels and describe how ILC subset-specific activities influence homeostasis and disease. Finally, we highlight emerging challenges in the field of ILC immunometabolism. RECENT FINDINGS Accumulating evidence suggests that ILCs metabolism, phenotype, and function are shaped by signals from the tissue microenvironment. Dietary, endogenous, and microbial metabolites are sensed by ILC subsets and can impact on ILC-mediated immune responses. Recent studies have found that mitochondria are central regulators of ILC effector function. Furthermore, ILCs have emerged as crucial sensors of metabolic stress, suggesting they might act as metabolic sentinels, coordinating tissue and host metabolism. SUMMARY Our understanding how ILCs mechanistically regulate host metabolism and defenses is still incomplete. Unraveling critical metabolic features of ILCs may lead to novel therapeutic strategies that target these cells in the context of disease.
Collapse
Affiliation(s)
- Laura Surace
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, , Bonn, Germany
| | - James P Di Santo
- Institut Pasteur, Université Paris Cité, Inserm, Paris, France
- Innate Immunity Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, Paris, France
| |
Collapse
|
48
|
Wu D, Hu L, Han M, Deng Y, Zhang Y, Ren G, Zhao X, Li Z, Li P, Zhang Y, Chen S, Li J, Shi Y, Xue J, Wang P, Zhong C. PD-1 signaling facilitates activation of lymphoid tissue inducer cells by restraining fatty acid oxidation. Nat Metab 2022; 4:867-882. [PMID: 35788761 DOI: 10.1038/s42255-022-00595-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Anti-programmed death-1 (PD-1) immunotherapy that aims to restore T cell activity in cancer patients frequently leads to immune-related adverse events such as colitis. However, the underlying mechanism is still elusive. Here, we find that Pdcd1-deficient mice exhibit disrupted gut microbiota and aggravated dextran sulfate sodium (DSS)-induced colitis. In addition to T cells, PD-1 is also substantially expressed in colonic lymphoid tissue inducer (LTi) cells. During DSS-induced colitis, LTi cell activation is accompanied by increased PD-1 expression, whereas PD-1 deficiency results in reduced interleukin-22 (IL-22) production by LTi cells and exacerbated inflammation. Mechanistically, activated LTi cells reprogram their metabolism toward carbohydrate metabolism and fatty acid synthesis, while fatty acid oxidation (FAO) is unchanged. However, PD-1 deficiency leads to significantly elevated FAO in LTi cells, which in turn attenuates their activation and IL-22 production. Consistently, FAO suppression efficiently restores IL-22 production in Pdcd1-/- LTi cells. Thus, our study provides unforeseen mechanistic insight into colitis occurrence during anti-PD-1 immunotherapy through LTi cell metabolic reconfiguration.
Collapse
Affiliation(s)
- Di Wu
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Luni Hu
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Mengwei Han
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yichen Deng
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yime Zhang
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Guanqun Ren
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Xingyu Zhao
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zongxian Li
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Peng Li
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yinlian Zhang
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Shanwen Chen
- Division of General Surgery, Peking University First Hospital, Beijing, China
| | - Jun Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Jianxin Xue
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Pengyuan Wang
- Division of General Surgery, Peking University First Hospital, Beijing, China
| | - Chao Zhong
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
49
|
Surace L, Wilhelm C. Keeping ILCs in shape: PD-1 as a metabolic checkpoint. Nat Metab 2022; 4:794-795. [PMID: 35788759 DOI: 10.1038/s42255-022-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laura Surace
- Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.
| | - Christoph Wilhelm
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
50
|
Zhou J, Hou P, Yao Y, Yue J, Zhang Q, Yi L, Mi M. Dihydromyricetin Improves High-Fat Diet-Induced Hyperglycemia through ILC3 Activation via a SIRT3-Dependent Mechanism. Mol Nutr Food Res 2022; 66:e2101093. [PMID: 35635431 DOI: 10.1002/mnfr.202101093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/13/2022] [Indexed: 12/30/2022]
Abstract
SCOPE Previous studies indicate that dihydromyricetin (DHM) effectively improved glucose homeostasis and alleviated insulin resistance in population-intervened trials, yet the underlying mechanism remains obscure. METHODS AND RESULTS Wild-type male mice and recombinase activating gene 1(Rag1)-/- mice (lacking adaptive immunity lymphocytes) are fed with control, high-fat diet (HFD), or HFD+DHM diets for 8 weeks. DHM effectively protects HFD feeding mice against hyperglycemia by promoting group 3 innate lymphoid cells (ILC3s) cells proliferation and interleukin 22 (IL-22) production. Furthermore, IL-22 secretion induced by DHM increases the expression levels of the tight junction (TJs) molecules to protect the intestinal barrier integrity, thereby decreasing the level of lipopolysaccharides (LPS), an endotoxin that is involved in the regulation of chronic tissue inflammation and insulin resistance. In addition, silent mating-type information regulation 2 homolog 3 (SIRT3) deficiency results in more serious obesity and intestinal barrier damage following HFD feeding and abolished DHM-mediated increase in IL-22 expression levels of ILC3 cells in SIRT3 knockout (SIRT3KO) mice. DHM reduces metabolic stress and enhances mitochondrial respiratory capacity to promote cell proliferation and IL-22 secretion by activating SIRT3 in ILC3 cells CONCLUSIONS: DHM improves IL-22 production of ILC3 cells and subsequently inhibits intestinal barrier dysfunction to alleviate hyperglycemia partially mediated by SIRT3.
Collapse
Affiliation(s)
- Jie Zhou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Pengfei Hou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Yu Yao
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Jing Yue
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Qianyong Zhang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Long Yi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| |
Collapse
|