1
|
Sultan S, AlMalki S. Analysis of global DNA methylation and epigenetic modifiers (DNMTs and HDACs) in human foetal endothelium exposed to gestational and type 2 diabetes. Epigenetics 2023; 18:2201714. [PMID: 37066707 PMCID: PMC10114969 DOI: 10.1080/15592294.2023.2201714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
Foetuses exposed to maternal gestational diabetes (GDM) and type 2 diabetes (T2D) have an increased risk of adverse perinatal outcomes. Epigenetic mechanisms, including DNA methylation and histone modifications, may act as mediators of persistent metabolic memory in endothelial cells (ECs) exposed to hyperglycaemia, even after glucose normalization. Therefore, we investigated alterations in global DNA methylation and epigenetic modifier expression (DNMT1, DNMT3a, DNMT3b, HDAC1, and HDAC2) in human umbilical vein ECs (HUVECs) from the umbilical cords of mothers with GDM (n = 8) and T2D (n = 3) compared to that of healthy mothers (n = 6). Global DNA alteration was measured using a 5-methylation cytosine colorimetric assay, followed by quantitative real-time polymerase chain reaction to measure DNA methyltransferase and histone acetylase transcript expression. We revealed that DNA hypermethylation occurs in both GDM- and T2D-HUVECs compared to that in Control-HUVECs. Furthermore, there was a significant increase in HDAC2 mRNA levels in GDM-HUVECs and increase in DNMT3b mRNA levels in T2D-HUVECs. Overall, our results suggest that GDM and T2D are associated with global DNA hypermethylation in foetal endothelial cells under normoglycemic conditions and the aberrant mRNA expression of HDAC2 and DNMT3b could play a role in this dysregulation.
Collapse
Affiliation(s)
- Samar Sultan
- Medical Laboratory Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sultanh AlMalki
- Medical Laboratory Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Yilmaz UC, Evin F, Onay H, Ozen S, Darcan S, Simsek DG. Molecular genetic etiology by whole exome sequence analysis in cases with familial type 1 diabetes mellitus without HLA haplotype predisposition or incomplete predisposition. J Pediatr Endocrinol Metab 2023; 36:64-73. [PMID: 36343308 DOI: 10.1515/jpem-2022-0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Familial transmission is observed in approximately 10% of cases with type 1 diabetes mellitus (T1DM). The most important gene determining susceptibility is the human leukocyte antigen complex (HLA) located on chromosome 6. More than 50 susceptible loci are associated with T1DM susceptibility have been identified in genes other than HLA. In this study, it was aimed to investigate the molecular genetic etiology by whole-exome sequence (WES) analysis in cases with familial T1DM with no or weakly detected HLA tissue type susceptibility. We aimed to identify new genes responsible for the development of type 1 diabetes and to reveal new genes that have not been shown in the literature before. METHODS Cases with at least one T1DM diagnosis in first-degree relatives were included in the study. In the first step, HLA DQ2 and DQ8 loci, which are known to be associated with T1DM susceptibility, were investigated by. In the second step, the presence of variants that could explain the situation was investigated by WES analysis in patients who were negative for both HLA DQ2 and HLA DQ8 haplotypes, HLA DQ2 negative, HLA DQ8 positive, and HLA DQ2 positive and HLA DQ8 negative patients. RESULTS The mean age and duration of diabetes of the 30 cases (Girl/Male: 17/13) were 14.9 ± 6 and 7.56 ± 3.84 years, respectively. There was consanguineous marriage in 5 (16%) of the families. As a result of filtering all exome sequence analysis data of two cases with DQ2 (DQB1*02) (-) and DQ8 (DQB1*03:02) (-), seven cases with DQ2 (DQB1*02) (+) and DQ8 (DQB1*03:02) (-), and one case with DQ2 (DQB1*02) (-) and DQ8 (DQB1*03:02) (+), seven different variants in seven different genes were detected in five cases. The pathogenicity of the detected variants were determined according to the "American College of Medical Genetics and Genomics (ACMG)" criteria. These seven variants detected were evaluated as high-score VUS (Variants of unknown/uncertain significance). In the segregation study conducted for the mutation in the POLG gene detected in case 5, this variant was detected in the mother of the case and his brother with T1DM. Segregation studies are ongoing for variants detected in other affected individuals in the family. CONCLUSIONS In conclusion, in this study, seven different variants in seven different genes were detected in five patients by WES analysis in familial T1DM patients with no or weak HLA tissue type susceptibility. These seven variants detected were evaluated as high-score VUS. POLG might be a novel candidate gene responsible for susceptibility to T1DM. Non-HLA genes directly responsible for the development of T1DM were not detected in any of the cases.
Collapse
Affiliation(s)
- Uğur Cem Yilmaz
- Department of Pediatrics, Ege University Faculty of Medicine, Izmir, Turkey
| | - Ferda Evin
- Division of Pediatric Endocrinology and Diabetes, Ege University Faculty of Medicine, Izmir, Turkey
| | - Huseyin Onay
- Multigen Genetic Diseases Diagnosis Center, Izmir, Turkey
| | - Samim Ozen
- Division of Pediatric Endocrinology and Diabetes, Ege University Faculty of Medicine, Izmir, Turkey
| | - Sukran Darcan
- Division of Pediatric Endocrinology and Diabetes, Ege University Faculty of Medicine, Izmir, Turkey
| | - Damla Goksen Simsek
- Division of Pediatric Endocrinology and Diabetes, Ege University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
3
|
Dotta F, Ventriglia G, Snowhite IV, Pugliese A. MicroRNAs: markers of β-cell stress and autoimmunity. Curr Opin Endocrinol Diabetes Obes 2018; 25:237-245. [PMID: 29846238 DOI: 10.1097/med.0000000000000420] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW We discuss current knowledge about microRNAs (miRNAs) in type 1 diabetes (T1D), an autoimmune disease leading to severe loss of pancreatic β-cells. We describe: the role of cellular miRNAs in regulating immune functions and pathways impacting insulin secretion and β-cell survival; circulating miRNAs as disease biomarkers. RECENT FINDINGS Studies examined miRNAs in experimental models and patients, including analysis of tissues from organ donors, peripheral blood cells, and circulating miRNAs in serum, plasma, and exosomes. Studies employed diverse designs and methodologies to detect miRNAs and measure their levels. Selected miRNAs have been linked to the regulation of key biological pathways and disease pathogenesis; several circulating miRNAs are associated with having T1D, islet autoimmunity, disease progression, and immune and metabolic functions, for example, C-peptide secretion, in multiple studies. SUMMARY A growing literature reveals multiple roles of miRNAs in T1D, provide new clues into the regulation of disease mechanisms, and identify reproducible associations. Yet challenges remain, and the field will benefit from joint efforts to analyze results, compare methodologies, formally test the robustness of miRNA associations, and ultimately move towards validating robust miRNA biomarkers.
Collapse
Affiliation(s)
- Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena
- Fondazione Umberto di Mario, Toscana Life Sciences, Siena, Italy
| | - Giuliana Ventriglia
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena
- Fondazione Umberto di Mario, Toscana Life Sciences, Siena, Italy
| | | | - Alberto Pugliese
- Diabetes Research Institute
- Department of Medicine, Division of Endocrinology and Metabolism
- Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
4
|
Pociot F. Type 1 diabetes genome-wide association studies: not to be lost in translation. Clin Transl Immunology 2017; 6:e162. [PMID: 29333267 PMCID: PMC5750451 DOI: 10.1038/cti.2017.51] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Genetic studies have identified >60 loci associated with the risk of developing type 1 diabetes (T1D). The vast majority of these are identified by genome-wide association studies (GWAS) using large case-control cohorts of European ancestry. More than 80% of the heritability of T1D can be explained by GWAS data in this population group. However, with few exceptions, their individual contribution to T1D risk is low and understanding their function in disease biology remains a huge challenge. GWAS on its own does not inform us in detail on disease mechanisms, but the combination of GWAS data with other omics-data is beginning to advance our understanding of T1D etiology and pathogenesis. Current knowledge supports the notion that genetic variation in both pancreatic β cells and in immune cells is central in mediating T1D risk. Advances, perspectives and limitations of GWAS are discussed in this review.
Collapse
Affiliation(s)
- Flemming Pociot
- Department of Pediatrics, Herlev and Gentofte Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
5
|
Cnop M, Toivonen S, Igoillo-Esteve M, Salpea P. Endoplasmic reticulum stress and eIF2α phosphorylation: The Achilles heel of pancreatic β cells. Mol Metab 2017; 6:1024-1039. [PMID: 28951826 PMCID: PMC5605732 DOI: 10.1016/j.molmet.2017.06.001] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/19/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pancreatic β cell dysfunction and death are central in the pathogenesis of most if not all forms of diabetes. Understanding the molecular mechanisms underlying β cell failure is important to develop β cell protective approaches. SCOPE OF REVIEW Here we review the role of endoplasmic reticulum stress and dysregulated endoplasmic reticulum stress signaling in β cell failure in monogenic and polygenic forms of diabetes. There is substantial evidence for the presence of endoplasmic reticulum stress in β cells in type 1 and type 2 diabetes. Direct evidence for the importance of this stress response is provided by an increasing number of monogenic forms of diabetes. In particular, mutations in the PERK branch of the unfolded protein response provide insight into its importance for human β cell function and survival. The knowledge gained from different rodent models is reviewed. More disease- and patient-relevant models, using human induced pluripotent stem cells differentiated into β cells, will further advance our understanding of pathogenic mechanisms. Finally, we review the therapeutic modulation of endoplasmic reticulum stress and signaling in β cells. MAJOR CONCLUSIONS Pancreatic β cells are sensitive to excessive endoplasmic reticulum stress and dysregulated eIF2α phosphorylation, as indicated by transcriptome data, monogenic forms of diabetes and pharmacological studies. This should be taken into consideration when devising new therapeutic approaches for diabetes.
Collapse
Key Words
- ATF, activating transcription factor
- CHOP, C/EBP homologous protein
- CRISPR, clustered regularly interspaced short palindromic repeats
- CReP, constitutive repressor of eIF2α phosphorylation
- Diabetes
- ER, endoplasmic reticulum
- ERAD, ER-associated degradation
- Endoplasmic reticulum stress
- GCN2, general control non-derepressible-2
- GIP, glucose-dependent insulinotropic polypeptide
- GLP-1, glucagon-like peptide 1
- GWAS, genome-wide association study
- HNF1A, hepatocyte nuclear factor 1-α
- HRI, heme-regulated inhibitor kinase
- IAPP, islet amyloid polypeptide
- IER3IP1, immediate early response-3 interacting protein-1
- IRE1, inositol-requiring protein-1
- ISR, integrated stress response
- Insulin
- Islet
- MEHMO, mental retardation, epilepsy, hypogonadism and -genitalism, microcephaly and obesity
- MODY, maturity-onset diabetes of the young
- NRF2, nuclear factor, erythroid 2 like 2
- PBA, 4-phenyl butyric acid
- PERK, PKR-like ER kinase
- PKR, protein kinase RNA
- PP1, protein phosphatase 1
- PPA, phenylpropenoic acid glucoside
- Pancreatic β cell
- Pdx1, pancreatic duodenal homeobox 1
- RIDD, regulated IRE1-dependent decay
- RyR2, type 2 ryanodine receptor/Ca2+ release channel
- SERCA, sarcoendoplasmic reticulum Ca2+ ATPase
- TUDCA, taurine-conjugated ursodeoxycholic acid derivative
- UPR, unfolded protein response
- WFS, Wolfram syndrome
- XBP1, X-box binding protein 1
- eIF2, eukaryotic translation initiation factor 2
- eIF2α
- hESC, human embryonic stem cell
- hPSC, human pluripotent stem cell
- hiPSC, human induced pluripotent stem cell
- uORF, upstream open reading frame
Collapse
Affiliation(s)
- Miriam Cnop
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Sanna Toivonen
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Paraskevi Salpea
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
6
|
Snowhite IV, Allende G, Sosenko J, Pastori RL, Messinger Cayetano S, Pugliese A. Association of serum microRNAs with islet autoimmunity, disease progression and metabolic impairment in relatives at risk of type 1 diabetes. Diabetologia 2017; 60:1409-1422. [PMID: 28500393 PMCID: PMC5839115 DOI: 10.1007/s00125-017-4294-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/31/2017] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS MicroRNAs (miRNAs) are key regulators of gene expression and novel biomarkers for many diseases. We investigated the hypothesis that serum levels of some miRNAs would be associated with islet autoimmunity and/or progression to type 1 diabetes. METHODS We measured levels of 93 miRNAs most commonly detected in serum. This retrospective cohort study included 150 autoantibody-positive and 150 autoantibody-negative family-matched siblings enrolled in the TrialNet Pathway to Prevention Study. This was a young cohort (mean age = 11 years), and most autoantibody-positive relatives were at high risk because they had multiple autoantibodies, with 39/150 (26%, progressors) developing type 1 diabetes within an average 8.7 months of follow-up. We analysed miRNA levels in relation to autoantibody status, future development of diabetes and OGTT C-peptide and glucose indices of disease progression. RESULTS Fifteen miRNAs were differentially expressed when comparing autoantibody-positive/negative siblings (range -2.5 to 1.3-fold). But receiver operating characteristic (ROC) analysis indicated low specificity and sensitivity. Seven additional miRNAs were differentially expressed among autoantibody-positive relatives according to disease progression; ROC returned significant AUC values and identified miRNA cut-off levels associated with an increased risk of disease in both cross-sectional and survival analyses. Levels of several miRNAs showed significant correlations (r values range 0.22-0.55) with OGTT outcomes. miR-21-3p, miR-29a-3p and miR-424-5p had the most robust associations. CONCLUSIONS/INTERPRETATION Serum levels of selected miRNAs are associated with disease progression and confer additional risk of the development of type 1 diabetes in young autoantibody-positive relatives. Further studies, including longitudinal assessments, are warranted to further define miRNA biomarkers for prediction of disease risk and progression.
Collapse
Affiliation(s)
- Isaac V Snowhite
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, 1450 NW 10th Avenue, Miami, FL, 33136, USA
| | - Gloria Allende
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, 1450 NW 10th Avenue, Miami, FL, 33136, USA
| | - Jay Sosenko
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, 1450 NW 10th Avenue, Miami, FL, 33136, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ricardo L Pastori
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, 1450 NW 10th Avenue, Miami, FL, 33136, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Shari Messinger Cayetano
- Department of Epidemiology and Public Health Sciences, Division of Biostatistics, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, 1450 NW 10th Avenue, Miami, FL, 33136, USA.
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA.
- Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
7
|
Alipour S, Nouri M, Sakhinia E, Samadi N, Roshanravan N, Ghavami A, Khabbazi A. Epigenetic alterations in chronic disease focusing on Behçet's disease: Review. Biomed Pharmacother 2017; 91:526-533. [PMID: 28482290 DOI: 10.1016/j.biopha.2017.04.106] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE 'Epigenetics' is specified as the inheritable changes in gene expression with no alterations in DNA sequences. Epigenetics is a rapidly overspreading scientific field, and the study of epigenetic regulation in chronic disease is emerging. This study aims to evaluate epigenetic changes including DNA methylation, histone modification, and non-coding RNAs (ncRNAs) in inflammatory disease, with focus on Behçet's disease. In this review, first we describe the history and classification of epigenetic changes, and then the role of epigenetic alterations in chronic diseases is explained. METHODS Systematic search of MEDLINE, Embase, and Cochrane Library was conducted for all comparative studies since 2000 to 2015 with the limitations of the English language. RESULTS For a notable period of time, researchers have mainly focused on the epigenetic pathways that are involved in the modulation of inflammatory and anti-inflammatory genes. Recent studies have proposed a central role for chronic inflammation in the pathogenesis of chronic disease, including Behçet's disease. CONCLUSION Studies have been reported on the epigenetic of BD showed the role of alterations in the methylation level of IRS elements; histone modifications such as H3K4me27 and H3K4me3; up regulation of miR-182 and miR-3591-3p; down regulation of miR-155, miR-638 and miR-4488 in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Shahriar Alipour
- Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Iran; Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Iran
| | - Mohammad Nouri
- Dept. of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Dept. of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Dept. of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Nutrition Research Center, School of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abed Ghavami
- Nutrition Research Center, School of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
8
|
Holmberg D, Ruikka K, Lindgren P, Eliasson M, Mayans S. Association of CD247 (CD3ζ) gene polymorphisms with T1D and AITD in the population of northern Sweden. BMC MEDICAL GENETICS 2016; 17:70. [PMID: 27716086 PMCID: PMC5050583 DOI: 10.1186/s12881-016-0333-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/29/2016] [Indexed: 12/31/2022]
Abstract
Background T1D and AITD are autoimmune disorders commonly occurring in the same family and even in the same individual. The genetic contribution to these disorders is complex making uncovering of susceptibility genes very challenging. The general aim of this study was to identify loci and genes contributing to T1D/AITD susceptibility. Our strategy was to perform linkage and association studies in the relatively genetically homogenous population of northern Sweden. We performed a GWLS to find genomic regions linked to T1D/AITD in families from northern Sweden and we performed an association study in the families to test for association between T1D/AITD and variants in previously published candidate genes as well as a novel candidate gene, CD247. Methods DNA prepared from 459 individuals was used to perform a linkage and an association study. The ABI PRISM Linkage Mapping Set v2.5MD10 was employed for an initial 10-cM GWLS, and additional markers were added for fine mapping. Merlin was used for linkage calculations. For the association analysis, a GoldenGate Custom Panel from Illumina containing 79 SNPs of interest was used and FBAT was used for association calculations. Results Our study revealed linkage to two previously identified chromosomal regions, 4q25 and 6p22, as well as to a novel chromosomal region, 1q23. The association study replicated association to PTPN22, HLA-DRB1, INS, IFIH1, CTLA4 and C12orf30. Evidence in favor of association was also found for SNPs in the novel susceptibility gene CD247. Conclusions Several risk loci for T1D/AITD identified in published association studies were replicated in a family material, of modest size, from northern Sweden. This provides evidence that these loci confer disease susceptibility in this population and emphasizes that small to intermediate sized family studies in this population can be used in a cost-effective manner for the search of genes involved in complex diseases. The linkage study revealed a chromosomal region in which a novel T1D/AITD susceptibility gene, CD247, is located. The association study showed association between T1D/AITD and several variants in this gene. These results suggests that common susceptibility genes act in concert with variants of CD247 to generate genetic risk for T1D/AITD in this population. Electronic supplementary material The online version of this article (doi:10.1186/s12881-016-0333-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Holmberg
- Department of Medical Biosciences - Medical Genetics, Umeå University, SE-901 85, Umeå, Sweden.,EMV, Immunology, BMC, Lund University, SE-221 00, Lund, Sweden
| | - Karin Ruikka
- Department of Medicine, Sunderby Hospital, SE-971 80, Luleå, Sweden
| | - Petter Lindgren
- Department of Medical Biosciences - Medical Genetics, Umeå University, SE-901 85, Umeå, Sweden
| | - Mats Eliasson
- Department of Medicine, Sunderby Hospital, SE-971 80, Luleå, Sweden.,Department of Public Health and Clinical Medicine, Umeå University, SE-901 85, Umeå, Sweden
| | - Sofia Mayans
- Department of Medical Biosciences - Medical Genetics, Umeå University, SE-901 85, Umeå, Sweden. .,Department of Clinical Microbiology, Division of Immunology, Umeå University, Building 6C, SE-90185, Umeå, Sweden.
| |
Collapse
|
9
|
Feathers AS, Charron-Prochownik D, Siminerio LM, Manthei ER, Dorman JS. Genetics and Type 1 Diabetes: Online Resources for Patients. DIABETES EDUCATOR 2016; 30:972-9. [PMID: 15641618 DOI: 10.1177/014572170403000618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE This Web-based review was undertaken to compile online resources for diabetes educators on genetics--specifically, the genetics of type 1 diabetes--and to provide helpful and accurate information for the public. METHODS Keyword searches were performed to identify Web sites for genetics education for the lay public and for sites specifically geared toward children/young adults. Web sites were critiqued based on credibility (source, currency, relevance/utility), content (accuracy), and design (accessibility, logical organization). Additional keyword searches were conducted to find sites describing the genetics of type 1 diabetes, which were evaluated for content validity. RESULTS The Web sites selected for general genetics education contain accessible, credible, and accurate information about basic genetics in an easy-to-follow format with both text and visual aides. Although these sites adequately educate the public about genetics, only diabetes-specific Web sites discussed the relationship between genetics and risk for type 1 diabetes associated with high-risk HLA alleles. CONCLUSIONS In this genomic age, it is important for healthcare professionals to provide genetics information. Educational tools that specifically address the genetics of type 1 diabetes are urgently needed to fill the current information gaps on the Internet.
Collapse
Affiliation(s)
- Angela S Feathers
- Department of Human Genetics, University of Pittsburgh, Pennsylvania
| | | | | | - Eric R Manthei
- Department of Human Genetics, University of Pittsburgh, Pennsylvania
| | | |
Collapse
|
10
|
Epigenetic changes in diabetes. Neurosci Lett 2016; 625:64-9. [PMID: 27130819 DOI: 10.1016/j.neulet.2016.04.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022]
Abstract
The incidence of diabetes is increasing worldwide. Diabetes is quickly becoming one of the leading causes of death. Diabetes is a genetic disease; however, the environment plays critical roles in its development and progression. Epigenetic changes often translate environmental stimuli to changes in gene expression. Changes in epigenetic marks and differential regulation of epigenetic modulators have been observed in different models of diabetes and its associated complications. In this minireview, we will focus DNA methylation, Histone acetylation and methylation and their roles in the pathogenesis of diabetes.
Collapse
|
11
|
Lee MG, Bae SC, Lee YH. Association between FOXP3 polymorphisms and susceptibility to autoimmune diseases: A meta-analysis. Autoimmunity 2015; 48:445-52. [PMID: 25977253 DOI: 10.3109/08916934.2015.1045582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The aim of this study was to explore whether the FOXP3 -3279 A/C polymorphism and (GT)n microsatellite polymorphisms are associated with susceptibility to autoimmune diseases. METHODS A meta-analysis was conducted on the associations between the FOXP3 -3279 A/C polymorphism and (GT)15 and (GT)16 polymorphisms and autoimmune diseases. RESULTS Twenty-two comparative studies with a total of 7962 patients and 7453 controls were included in the meta-analysis. Meta-analysis revealed an association between autoimmune disease and the FOXP3 -3279 AA + AC genotype (OR = 1.480, 95% CI = 1.263-1.614, p < 1.0 × 10(-9)), and stratification by ethnicity indicated a significant association between the FOXP3 -3279 AA + AC genotype and autoimmune diseases in Asians (OR = 1.416, 95% CI = 1.225-1.637, p = 2.5 × 10(-7)) and non-Caucasians (OR = 1.432, 95% CI = 1.245-1.647, p = 7.5 × 10(-8)). In addition, corrected p values for multiple testing remained significant. Meta-analysis revealed no association between autoimmune disease and the FOXP3 (GT)15 allele (OR = 1.051, 95% CI = 0.933-1.183, p = 0.413). Similarly, the FOXP3 (GT)16 allele showed no associations with autoimmune disease. CONCLUSIONS This meta-analysis indicates that the FOXP3 -3279 A/C polymorphism is associated with susceptibility to autoimmune disease in Asians and non-Caucasians.
Collapse
Affiliation(s)
- Min-Gu Lee
- a Division of Rheumatology, Department of Internal Medicine , Korea University College of Medicine , Seoul , Korea and
| | - Sang-Cheol Bae
- b Division of Rheumatology, Department of Internal Medicine , The Hospital for Autoimmune Diseases, Hanyang University Medical Center , Seoul , Korea
| | - Young Ho Lee
- a Division of Rheumatology, Department of Internal Medicine , Korea University College of Medicine , Seoul , Korea and
| |
Collapse
|
12
|
Clinical Case of Immune Dysregulation, Polyendocrinopaty, Enteropathy, X-Linked (IPEX) Syndrome with Severe Immune Deficiency and Late Onset of Endocrinopathy and Enteropathy. Case Rep Med 2014; 2014:564926. [PMID: 24982679 PMCID: PMC4058591 DOI: 10.1155/2014/564926] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/27/2014] [Accepted: 04/27/2014] [Indexed: 12/22/2022] Open
Abstract
Objective. To describe the clinical characteristics of IPEX syndrome in a child with FOXP3 mutation. Clinical Case. A boy aged 2.3 years was born from first normal pregnancy with a weight of 3420 gr. Family History. Two brothers of the mother died before the age of 3 years with severe infections, diarrhea, erythroderma, and elevated immunoglobulins class E (IgEs). Since first month of life, our patient suffered from septicemia, pneumonias, pyelonephritis, and meningitis, accompanied with eczematous dermatitis and IgEs up to 4000 IU/L (normal <10). At the age of 1.6 years, he developed type 1 diabetes mellitus (T1DM). He was underweighted (-3.42 SDS) and had some phenotypic features like coarse face, muscle hypotonia, joint hyperextensibility, eczematous dermatitis, and subcutaneous cold abscesses. Autoimmune thyroiditis and celiac disease were excluded. After diabetes, intermittent watery diarrhea appeared with progression to severe intractable form. Finally, aggravating symptoms of nephritis, cachexia, and respiratory insufficiency were the cause for his death at the age of 2 years and 3 months. The DNA analysis at the University of Exeter Medical School established mutation at exon 10 of FOXP3 gene c.1010G >A, p. (Arg337Gln), which confirmed IPEX syndrome. The same mutation in heterozygotic state was found in the mother. A prenatal diagnosis of her second pregnancy ensured a daughter carrier of the mutation.
Collapse
|
13
|
Groop L, Pociot F. Genetics of diabetes--are we missing the genes or the disease? Mol Cell Endocrinol 2014; 382:726-739. [PMID: 23587769 DOI: 10.1016/j.mce.2013.04.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 01/25/2013] [Accepted: 04/02/2013] [Indexed: 12/20/2022]
Abstract
Diabetes is a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. The chronic hyperglycemia of diabetes is associated with long-term damage, dysfunction, and failure of different organs, especially the eyes, kidneys, nerves, heart, and blood vessels. Several pathogenic processes are involved in the development of diabetes. These range from autoimmune destruction of the beta-cells of the pancreas with consequent insulin deficiency to abnormalities that result in resistance to insulin action (American Diabetes Association, 2011). The vast majority of cases of diabetes fall into two broad categories. In type 1 diabetes (T1D), the cause is an absolute deficiency of insulin secretion, whereas in type 2 diabetes (T2D), the cause is a combination of resistance to insulin action and an inadequate compensatory insulin secretory response. However, the subdivision into two main categories represents a simplification of the real situation, and research during the recent years has shown that the disease is much more heterogeneous than a simple subdivision into two major subtypes assumes. Worldwide prevalence figures estimate that there are 280 million diabetic patients in 2011 and more than 500 million in 2030 (http://www.diabetesatlas.org/). In Europe, about 6-8% of the population suffer from diabetes, of them about 90% has T2D and 10% T1D, thereby making T2D to the fastest increasing disease in Europe and worldwide. This epidemic has been ascribed to a collision between the genes and the environment. While our knowledge about the genes is clearly better for T1D than for T2D given the strong contribution of variation in the HLA region to the risk of T1D, the opposite is the case for T2D, where our knowledge about the environmental triggers (obesity, lack of exercise) is much better than the understanding of the underlying genetic causes. This lack of knowledge about the underlying genetic causes of diabetes is often referred to as missing heritability (Manolio et al., 2009) which exceeds 80% for T2D but less than 25% for T1D. In the following review, we will discuss potential sources of this missing heritability which also includes the possibility that our definition of diabetes and its subgroups is imprecise and thereby making the identification of genetic causes difficult.
Collapse
Affiliation(s)
- Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, University Hospital Skåne, Malmö, Sweden; Glostrup Research Institute, Glostrup University Hospital, Glostrup, Denmark.
| | - Flemming Pociot
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, University Hospital Skåne, Malmö, Sweden; Glostrup Research Institute, Glostrup University Hospital, Glostrup, Denmark
| |
Collapse
|
14
|
Portuesi R, Pozzilli P, Boehm B, Buzzetti R, Filippi S. Assessment of type 1 diabetes risk conferred by HLA-DRB1, INS-VNTR and PTPN22 genes using the Bayesian network approach. PLoS One 2013; 8:e79506. [PMID: 24260237 PMCID: PMC3832602 DOI: 10.1371/journal.pone.0079506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/01/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Determining genetic risk is a fundamental prerequisite for the implementation of primary prevention trials for type 1 diabetes (T1D). The aim of this study was to assess the risk conferred by HLA-DRB1, INS-VNTR and PTPN22 single genes on the onset of T1D and the joint risk conferred by all these three susceptibility loci using the Bayesian Network (BN) approach in both population-based case-control and family clustering data sets. METHODOLOGY/PRINCIPAL FINDINGS A case-control French cohort, consisting of 868 T1D patients and 73 French control subjects, a French family data set consisting of 1694 T1D patients and 2340 controls were analysed. We studied both samples separately applying the BN probabilistic approach, that is a graphical model that encodes probabilistic relationships among variables of interest. As expected HLA-DRB1 is the most relevant susceptibility gene. We proved that INS and PTPN22 genes marginally influence T1D risk in all risk HLA-DRB1 genotype categories. The absolute risk conferred by carrying simultaneously high, moderate or low risk HLA-DRB1 genotypes together with at risk INS and PTPN22 genotypes, was 11.5%, 1.7% and 0.1% in the case-control sample and 19.8%, 6.6% and 2.2% in the family cohort, respectively. CONCLUSIONS/SIGNIFICANCE This work represents, to the best of our knowledge, the first study based on both case-control and family data sets, showing the joint effect of HLA, INS and PTPN22 in a T1D Caucasian population with a wide range of age at T1D onset, adding new insights to previous findings regarding data sets consisting of patients and controls <15 years at onset.
Collapse
Affiliation(s)
- Rosalba Portuesi
- Department of Endocrinology and Diabetes, University Campus Bio-Medico, Rome, Italy
- Department of Gynecology, University Campus Bio-Medico, Rome, Italy
| | - Paolo Pozzilli
- Department of Endocrinology and Diabetes, University Campus Bio-Medico, Rome, Italy
- Blizard Institute, Center of Diabetes, St Bartholomew’s and the London School of Medicine, Queen Mary, University of London, London, United Kingdom
| | - Bernhard Boehm
- Division of Endocrinology and Diabetes, Ulm University, Ulm, Germany
| | - Raffaella Buzzetti
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
- * E-mail:
| | - Simonetta Filippi
- Laboratory of Non Linear Physics and Mathematical Models, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
15
|
Abstract
Epigenetic mechanisms, including DNA methylation, histone modifications, and noncoding RNA expression, contribute to regulate islet cell development and function. Indeed, epigenetic mechanisms were recently shown to be involved in the control of endocrine cell fate decision, islet differentiation, β-cell identity, proliferation, and mature function. Epigenetic mechanisms can also contribute to the pathogenesis of complex diseases. Emerging knowledge regarding epigenetic mechanisms suggest that they may be involved in β-cell dysfunction and pathogenesis of diabetes. Epigenetic mechanisms could predispose to the diabetic phenotype such as decline of β-cell proliferation ability and β-cell failure, and account for complications associated with diabetes. Better understanding of epigenetic landscapes of islet differentiation and function may be useful to improve β-cell differentiation protocols and discover novel therapeutic targets for prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Cecile Haumaitre
- CNRS UMR 7622, Université Pierre et Marie Curie, INSERM U969, 9 quai Saint Bernard, 75005, Paris, France,
| |
Collapse
|
16
|
Bakay M, Pandey R, Hakonarson H. Genes involved in type 1 diabetes: an update. Genes (Basel) 2013; 4:499-521. [PMID: 24705215 PMCID: PMC3924830 DOI: 10.3390/genes4030499] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/26/2013] [Accepted: 09/05/2013] [Indexed: 01/06/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic multifactorial disease with a strong genetic component, which, through interactions with specific environmental factors, triggers disease onset. T1D typically manifests in early to mid childhood through the autoimmune destruction of pancreatic β cells resulting in a lack of insulin production. Historically, prior to genome-wide association studies (GWAS), six loci in the genome were fully established to be associated with T1D. With the advent of high-throughput single nucleotide polymorphism (SNP) genotyping array technologies, enabling investigators to perform high-density GWAS, many additional T1D susceptibility genes have been discovered. Indeed, recent meta-analyses of multiple datasets from independent investigators have brought the tally of well-validated T1D disease genes to almost 60. In this mini-review, we address recent advances in the genetics of T1D and provide an update on the latest susceptibility loci added to the list of genes involved in the pathogenesis of T1D.
Collapse
Affiliation(s)
- Marina Bakay
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Rahul Pandey
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Abstract
HDACs (histone deacetylases) are a group of enzymes that deacetylate histones as well as non-histone proteins. They are known as modulators of gene transcription and are associated with proliferation and differentiation of a variety of cell types and the pathogenesis of some diseases. Recently, HDACs have come to be considered crucial targets in various diseases, including cancer, interstitial fibrosis, autoimmune and inflammatory diseases, and metabolic disorders. Pharmacological inhibitors of HDACs have been used or tested to treat those diseases. In the present review, we will examine the application of HDAC inhibitors in a variety of diseases with the focus on their effects of anti-cancer, fibrosis, anti-inflammatory, immunomodulatory activity and regulating metabolic disorders.
Collapse
|
18
|
de Jesus J, Imane Z, Senée V, Romero S, Guillausseau PJ, Balafrej A, Julier C. SLC29A3 mutation in a patient with syndromic diabetes with features of pigmented hypertrichotic dermatosis with insulin-dependent diabetes, H syndrome and Faisalabad histiocytosis. DIABETES & METABOLISM 2013; 39:281-5. [PMID: 23623699 DOI: 10.1016/j.diabet.2013.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/12/2013] [Accepted: 03/15/2013] [Indexed: 11/27/2022]
Abstract
AIMS Atypical forms of diabetes may be caused by monogenic mutations in key genes controlling beta-cell development, survival and function. This report describes an insulin-dependent diabetes patient with a syndromic presentation in whom a homozygous SLC29A3 mutation was identified. METHODS SLC29A3 was selected as the candidate gene based on the patient's clinical manifestations, and all exons and flanking regions in the patient's genomic DNA were sequenced. RESULTS A homozygous splice mutation (c.300+1G>C) resulting in a frameshift and truncated protein (p.N101LfsX34) was identified. The patient had insulin-dependent diabetes, congenital deafness, short stature, hyperpigmented patches on the skin, dysmorphic features, cardiomegaly, arthrogryposis, hepatosplenomegaly, anaemia with erythroblastopenia, and an inflammatory syndrome with fever and arthritis; she also presented with a fibrotic mediastinal mass. These clinical features overlapped with pigmented hypertrichosis with insulin-dependent diabetes (PHID), H syndrome, Faisalabad histiocytosis and sinus histiocytosis with massive lymphadenopathy (SHML), all of which are also caused by SLC29A3 mutations. CONCLUSION This is the most severe case reported of SLC29A3 mutations with cumulative features of all these syndromes. This extreme severity coincides with the most N-terminal location of the truncation mutation, thereby affecting all alternative transcripts of the gene. This case report extends the clinical variability of homozygous SLC29A3 mutations that result in a spectrum of multisystemic manifestations.
Collapse
Affiliation(s)
- J de Jesus
- Inserm UMR-S958, Medical Faculty Paris 7, site Villemin, Paris, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Kumar N, Kaur G, Tandon N, Kanga U, Mehra NK. Genomic evaluation of HLA-DR3+ haplotypes associated with type 1 diabetes. Ann N Y Acad Sci 2013; 1283:91-6. [PMID: 23387390 DOI: 10.1111/nyas.12019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have defined three sets of HLA-DR3(+) haplotypes that provide maximum risk of type 1 disease development in Indians: (1) a diverse array of B8-DR3 haplotypes, (2) A33-B58-DR3 haplotype, and (3) A2-B50-DR3 occurring most predominantly in this population. Further analysis has revealed extensive diversity in B8-DR3 haplotypes, particularly at the HLA-A locus, in contrast to the single fixed HLA-A1-B8-DR3 haplotype (generally referred to as AH8.1) reported in Caucasians. However, the classical AH8.1 haplotype was rare and differed from the Caucasian counterpart at multiple loci. In our study, HLA-A26-B8-DR3 (AH8.2) was the most common B8-DR3 haplotype constituting >50% of the total B8-DR3 haplotypes. Further, A2-B8-DR3 contributed the maximum risk (RR = 48.7) of type 1 diabetes, followed by A2-B50-DR3 (RR = 9.4), A33-B58-DR3 (RR = 6.6), A24-B8-DR3 (RR = 4.5), and A26-B8-DR3 (RR = 4.2). Despite several differences, the disease-associated haplotypes in Indian and Caucasian populations share a frozen DR3-DQ2 block, suggesting a common ancestor from which multiple haplotypes evolved independently.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | | | | | | |
Collapse
|
20
|
Rafehi H, El-Osta A, Karagiannis TC. Epigenetic mechanisms in the pathogenesis of diabetic foot ulcers. J Diabetes Complications 2012; 26:554-61. [PMID: 22739801 DOI: 10.1016/j.jdiacomp.2012.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 05/03/2012] [Accepted: 05/22/2012] [Indexed: 12/14/2022]
Abstract
The incidence of diabetes mellitus, a chronic metabolic disease associated with both predisposing genetic and environmental factors, is increasing globally. As a result, it is expected that there will also be an increasing incidence of diabetic complications which arise as a result of poor glycemic control. Complications include cardiovascular diseases, nephropathy, retinopathy and diabetic foot ulcers. The findings of several major clinical trials have identified that diabetic complications may arise even after many years of proper glycemic control. This has led to the concept of persistent epigenetic changes. Various epigenetic mechanisms have been identified as important contributors to the pathogenesis of diabetes and diabetic complications. The aim of this review is to provide an overview of the pathobiology of type 2 diabetes with an emphasis on complications, particularly diabetic foot ulcers. An overview of epigenetic mechanisms is provided and the focus is on the emerging evidence for aberrant epigenetic mechanisms in diabetic foot ulcers.
Collapse
Affiliation(s)
- Haloom Rafehi
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
21
|
Yao ZG, Liu Y, Zhang L, Huang L, Ma CM, Xu YF, Zhu H, Qin C. Co-location of HDAC2 and insulin signaling components in the adult mouse hippocampus. Cell Mol Neurobiol 2012; 32:1337-42. [PMID: 22733364 PMCID: PMC11498477 DOI: 10.1007/s10571-012-9859-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 06/05/2012] [Indexed: 01/15/2023]
Abstract
As one part of epigenetics, histone deacetylases (HDACs) have been demonstrated to get into the neural events, including neurogenesis, synaptic plasticity, and neurodegeneration through regulating acetylation status of target proteins to influence protein function and gene expression. However, the recent studies indicated that HDAC2, a member of HDACs family, played a role in insulin signaling pathway and synaptic plasticity. Here, we are concerned about whether HDAC2 was co-located with insulin signaling components in postsynaptic glutamatergic neurons (PSGNs) of the adult mouse hippocampus using double immunofluorescence staining. The results displayed that HDAC2 was present in PSGNs marked by N-methyl-D-aspartate receptor subunit 2B, in which major components of insulin signaling pathway such as insulin receptor alpha and beta and insulin receptor substrate-1 were also involved. Accordingly, we speculate that the interaction of HDAC2 and insulin signaling system in PSGNs observed in the present study may serve as a potential mechanism in memory formation. We hope this could provide a valuable basis for understanding the roles of HDAC2 and insulin on cognitive impairment of diabetes mellitus, involved Alzheimer's disease, which is also called type 3 diabetes recently. And this will also benefit to the treatment of insulin-related diseases in the central nervous system.
Collapse
Affiliation(s)
- Zhi-Gang Yao
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yu Liu
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Ling Zhang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Lan Huang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Chun-Mei Ma
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yan-Feng Xu
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Hua Zhu
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Chuan Qin
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
22
|
Ferrari A, Fiorino E, Giudici M, Gilardi F, Galmozzi A, Mitro N, Cermenati G, Godio C, Caruso D, De Fabiani E, Crestani M. Linking epigenetics to lipid metabolism: focus on histone deacetylases. Mol Membr Biol 2012; 29:257-66. [PMID: 23095054 DOI: 10.3109/09687688.2012.729094] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A number of recent studies revealed that epigenetic modifications play a central role in the regulation of lipid and of other metabolic pathways such as cholesterol homeostasis, bile acid synthesis, glucose and energy metabolism. Epigenetics refers to aspects of genome functions regulated in a DNA sequence-independent fashion. Chromatin structure is controlled by epigenetic mechanisms through DNA methylation and histone modifications. The main modifications are histone acetylation and deacetylation on specific lysine residues operated by two different classes of enzymes: Histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. The interaction between these enzymes and histones can activate or repress gene transcription: Histone acetylation opens and activates chromatin, while deacetylation of histones and DNA methylation compact chromatin making it transcriptionally silent. The new evidences on the importance of HDACs in the regulation of lipid and other metabolic pathways will open new perspectives in the comprehension of the pathophysiology of metabolic disorders.
Collapse
Affiliation(s)
- Alessandra Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Age-dependent variation of genotypes in MHC II transactivator gene (CIITA) in controls and association to type 1 diabetes. Genes Immun 2012; 13:632-40. [PMID: 23052709 DOI: 10.1038/gene.2012.44] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The major histocompatibility complex class II transactivator (CIITA) gene (16p13) has been reported to associate with susceptibility to multiple sclerosis, rheumatoid arthritis and myocardial infarction, recently also to celiac disease at genome-wide level. However, attempts to replicate association have been inconclusive. Previously, we have observed linkage to the CIITA region in Scandinavian type 1 diabetes (T1D) families. Here we analyze five Swedish T1D cohorts and a combined control material from previous studies of CIITA. We investigate how the genotype distribution within the CIITA gene varies depending on age, and the association to T1D. Unexpectedly, we find a significant difference in the genotype distribution for markers in CIITA (rs11074932, P=4 × 10(-5) and rs3087456, P=0.05) with respect to age, in the collected control material. This observation is replicated in an independent cohort material of about 2000 individuals (P=0.006, P=0.007). We also detect association to T1D for both markers, rs11074932 (P=0.004) and rs3087456 (P=0.001), after adjusting for age at sampling. The association remains independent of the adjacent T1D risk gene CLEC16A. Our results indicate an age-dependent variation in CIITA allele frequencies, a finding of relevance for the contrasting outcomes of previously published association studies.
Collapse
|
24
|
Asad S, Nikamo P, Gyllenberg A, Bennet H, Hansson O, Wierup N, Carlsson A, Forsander G, Ivarsson SA, Larsson H, Lernmark Å, Lindblad B, Ludvigsson J, Marcus C, Rønningen KS, Nerup J, Pociot F, Luthman H, Fex M, Kockum I. HTR1A a novel type 1 diabetes susceptibility gene on chromosome 5p13-q13. PLoS One 2012; 7:e35439. [PMID: 22563461 PMCID: PMC3341376 DOI: 10.1371/journal.pone.0035439] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 03/16/2012] [Indexed: 11/18/2022] Open
Abstract
Background We have previously performed a genome-wide linkage study in Scandinavian Type 1 diabetes (T1D) families. In the Swedish families, we detected suggestive linkage (LOD≤2.2) to the chromosome 5p13-q13 region. The aim of our study was to investigate the linked region in search for possible T1D susceptibility genes. Methodology/Principal Findings Microsatellites were genotyped in the Scandinavian families to fine-map the previously linked region. Further, SNPs were genotyped in Swedish and Danish families as well as Swedish sporadic cases. In the Swedish families we detected genome-wide significant linkage to the 5-hydroxytryptamine receptor 1A (HTR1A) gene (LOD 3.98, p<9.8×10−6). Markers tagging two separate genes; the ring finger protein 180 (RNF180) and HTR1A showed association to T1D in the Swedish and Danish families (p<0.002, p<0.001 respectively). The association was not confirmed in sporadic cases. Conditional analysis indicates that the primary association was to HTR1A. Quantitative PCR show that transcripts of both HTR1A and RNF180 are present in human islets of Langerhans. Moreover, immunohistochemical analysis confirmed the presence of the 5-HTR1A protein in isolated human islets of Langerhans as well as in sections of human pancreas. Conclusions We have identified and confirmed the association of both HTR1A and RFN180, two genes in high linkage disequilibrium (LD) to T1D in two separate family materials. As both HTR1A and RFN180 were expressed at the mRNA level and HTR1A as protein in human islets of Langerhans, we suggest that HTR1A may affect T1D susceptibility by modulating the initial autoimmune attack or either islet regeneration, insulin release, or both.
Collapse
Affiliation(s)
- Samina Asad
- Neuroimmunology Unit, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Pernilla Nikamo
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Gyllenberg
- Neuroimmunology Unit, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Hedvig Bennet
- Diabetes and Celiac Unit, Department of Clinical Sciences, Lund University, Malmö University Hospital, Malmö, Sweden
- Lund University Diabetes Center, Lund, Sweden
| | - Ola Hansson
- Diabetes and Endocrinology, Department of Clinical Science, Lund, University, Malmö University Hospital, Malmö, Sweden
- Lund University Diabetes Center, Lund, Sweden
| | - Nils Wierup
- Neuroendocrine cell biology, Department of Clinical Science, Lund, University, Malmö University Hospital, Malmö, Sweden
- Lund University Diabetes Center, Lund, Sweden
| | | | - Annelie Carlsson
- Department of Pediatrics, Lund University Hospital, Lund, Sweden
| | - Gun Forsander
- Department of Pediatrics, the Queen Silvia Children’s Hospital, Göteborg, Sweden
| | - Sten-Anders Ivarsson
- Diabetes and Celiac Unit, Department of Clinical Sciences, Lund University, Malmö University Hospital, Malmö, Sweden
| | - Helena Larsson
- Diabetes and Celiac Unit, Department of Clinical Sciences, Lund University, Malmö University Hospital, Malmö, Sweden
| | - Åke Lernmark
- Diabetes and Celiac Unit, Department of Clinical Sciences, Lund University, Malmö University Hospital, Malmö, Sweden
| | - Bengt Lindblad
- Department of Pediatrics, the Queen Silvia Children’s Hospital, Göteborg, Sweden
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Diabetes Research Center, Linköping University Hospital, Linköping, Sweden
| | - Claude Marcus
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, National Childhood Obesity Center, Karolinska Institutet, Stockholm, Sweden
| | - Kjersti S. Rønningen
- Department of Pediatric Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jan Nerup
- Steno Diabetes Center, Gentofte, Denmark
| | - Flemming Pociot
- Diabetes and Celiac Unit, Department of Clinical Sciences, Lund University, Malmö University Hospital, Malmö, Sweden
- Glostrup Research Institute, University Hospital Glostrup, Glostrup, Denmark
| | - Holger Luthman
- Diabetes and Celiac Unit, Department of Clinical Sciences, Lund University, Malmö University Hospital, Malmö, Sweden
- Lund University Diabetes Center, Lund, Sweden
| | - Malin Fex
- Diabetes and Celiac Unit, Department of Clinical Sciences, Lund University, Malmö University Hospital, Malmö, Sweden
- Lund University Diabetes Center, Lund, Sweden
| | - Ingrid Kockum
- Neuroimmunology Unit, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
25
|
Gray SG. The Potential of Epigenetic Compounds in Treating Diabetes. EPIGENETICS IN HUMAN DISEASE 2012:331-367. [DOI: 10.1016/b978-0-12-388415-2.00017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Endoplasmic reticulum stress in the β-cell pathogenesis of type 2 diabetes. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:618396. [PMID: 21915177 PMCID: PMC3170700 DOI: 10.1155/2012/618396] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/06/2011] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes is a complex metabolic disorder characterized by high blood glucose in the context of insulin resistance and relative insulin deficiency by β-cell failure. Even if the mechanisms underlying the pathogenesis of β-cell failure are still under investigation, recent increasing genetic, experimental, and clinical evidence indicate that hyperactivation of the unfolded protein response (UPR) to counteract metabolic stresses is closely related to β-cell dysfunction and apoptosis. Signaling pathways of the UPR are “a double-edged sword” that can promote adaptation or apoptosis depending on the nature of the ER stress condition. In this paper, we summarized our current understanding of the mechanisms and components related to ER stress in the β-cell pathogenesis of type 2 diabetes.
Collapse
|
27
|
El-Ella SSA, Shaltout A, Tawfik MA, Deeb M, EL-Lahony DM, Khatab ES, Barseem NF. Non HLA genetic markers association with type-1 diabetes mellitus. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2011. [DOI: 10.1016/j.ejmhg.2011.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
28
|
Christensen DP, Dahllöf M, Lundh M, Rasmussen DN, Nielsen MD, Billestrup N, Grunnet LG, Mandrup-Poulsen T. Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol Med 2011; 17:378-90. [PMID: 21274504 DOI: 10.2119/molmed.2011.00021] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/24/2011] [Indexed: 12/13/2022] Open
Abstract
Both common forms of diabetes have an inflammatory pathogenesis in which immune and metabolic factors converge on interleukin-1β as a key mediator of insulin resistance and β-cell failure. In addition to improving insulin resistance and preventing β-cell inflammatory damage, there is evidence of genetic association between diabetes and histone deacetylases (HDACs); and HDAC inhibitors (HDACi) promote β-cell development, proliferation, differentiation and function and positively affect late diabetic microvascular complications. Here we review this evidence and propose that there is a strong rationale for preclinical studies and clinical trials with the aim of testing the utility of HDACi as a novel therapy for diabetes.
Collapse
Affiliation(s)
- Dan P Christensen
- Center for Medical Research Methodology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Pociot F, Akolkar B, Concannon P, Erlich HA, Julier C, Morahan G, Nierras CR, Todd JA, Rich SS, Nerup J. Genetics of type 1 diabetes: what's next? Diabetes 2010; 59:1561-71. [PMID: 20587799 PMCID: PMC2889752 DOI: 10.2337/db10-0076] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Accepted: 04/05/2010] [Indexed: 12/21/2022]
Affiliation(s)
- Flemming Pociot
- Department of Genome Biology, Hagedorn Research Institute, Gentofte, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Raha O, Chowdhury S, Dasgupta S, Raychaudhuri P, Sarkar BN, Raju PV, Rao VR. Approaches in type 1 diabetes research: A status report. Int J Diabetes Dev Ctries 2010; 29:85-101. [PMID: 20142874 PMCID: PMC2812756 DOI: 10.4103/0973-3930.53126] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 05/29/2009] [Indexed: 12/18/2022] Open
Abstract
Type 1 diabetes is a multifactorial disease with an early age of onset, in which the insulin producing beta cell of the pancreas are destroyed because of autoimmunity. It is the second most common chronic disease in children and account for 5% to 10% of all diagnosed cases of diabetes. India is having an incidence of 10.6 cases/year/100,000, and recent studies indicate that the prevalence of type 1 diabetes in India is increasing. However in view of poor health care network, there is no monitoring system in the country. Of the 18 genomic intervals implicated for the risk to develop type 1 diabetes, the major histocompatibility complex (MHC) region on chromosome 6p21.31 has been the major contributor estimated to account for 40-50%, followed by 10% frequency of INS-VNTR at 5' flanking region of the insulin gene on chromosome 11p15.5. However, population studies suggest that > 95% of type 1 diabetes have HLA-DR3 or DR4, or both, and in family studies, sibling pairs affected with type 1 diabetes have a non-random distribution of shared HLA haplotypes. As predisposing genetic factors such as HLA alleles are known, immunological interventions to prevent type 1 diabetes are of great interest. In the present study we have reviewed the status of molecular genetics of the disease and the approaches that need to be adopted in terms of developing patient and suitable control cohorts in the country.
Collapse
Affiliation(s)
- Oindrila Raha
- Anthropological Survey of India, 27-Jawaharlal Nehru Road, Kolkata, West-Bengal - 700 016, India
| | | | | | | | | | | | | |
Collapse
|
31
|
Bergholdt R, Brorsson C, Lage K, Nielsen JH, Brunak S, Pociot F. Expression profiling of human genetic and protein interaction networks in type 1 diabetes. PLoS One 2009; 4:e6250. [PMID: 19609442 PMCID: PMC2707614 DOI: 10.1371/journal.pone.0006250] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 06/17/2009] [Indexed: 01/07/2023] Open
Abstract
Proteins contributing to a complex disease are often members of the same functional pathways. Elucidation of such pathways may provide increased knowledge about functional mechanisms underlying disease. By combining genetic interactions in Type 1 Diabetes (T1D) with protein interaction data we have previously identified sets of genes, likely to represent distinct cellular pathways involved in T1D risk. Here we evaluate the candidate genes involved in these putative interaction networks not only at the single gene level, but also in the context of the networks of which they form an integral part. mRNA expression levels for each gene were evaluated and profiling was performed by measuring and comparing constitutive expression in human islets versus cytokine-stimulated expression levels, and for lymphocytes by comparing expression levels among controls and T1D individuals. We identified differential regulation of several genes. In one of the networks four out of nine genes showed significant down regulation in human pancreatic islets after cytokine exposure supporting our prediction that the interaction network as a whole is a risk factor. In addition, we measured the enrichment of T1D associated SNPs in each of the four interaction networks to evaluate evidence of significant association at network level. This method provided additional support, in an independent data set, that two of the interaction networks could be involved in T1D and highlights the following processes as risk factors: oxidative stress, regulation of transcription and apoptosis. To understand biological systems, integration of genetic and functional information is necessary, and the current study has used this approach to improve understanding of T1D and the underlying biological mechanisms.
Collapse
Affiliation(s)
- Regine Bergholdt
- Hagedorn Research Institute and Steno Diabetes Center, Gentofte, Denmark.
| | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Patrick Concannon
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
33
|
Kumar N, Kaur G, Mehra N. Genetic determinants of Type 1 diabetes: immune response genes. Biomark Med 2009; 3:153-73. [DOI: 10.2217/bmm.09.7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Type 1 diabetes (T1D) is a polygenic autoimmune disease. Susceptibility to T1D is strongly linked to a major genetic locus that is the MHC, and several other minor loci including insulin, cytotoxic T-lymphocyte-associated antigen-4, PTPN22 and others that contribute to diabetes risk in an epistatic way. We have observed that there are three sets of DR3-positive autoimmunity-favoring haplotypes in the north-Indian population, including B50-DR3, B58-DR3 and B8-DR3. The classical Caucasian autoimmunity favoring AH8.1 (HLA-A1-B8-DR3) is rare in the Indian population, and has been replaced by a variant AH8.1v, which differs from the Caucasian AH8.1 at several gene loci. Similarly, there are additional HLA-DR3 haplotypes, A26-B8-DR3 (AH8.2), A24-B8-DR3 (AH8.3), A3-B8-DR3 (AH8.4) and A31-B8-DR3 (AH8.5), of which AH8.2 is the most common. The fact that disease-associated DR3-positive haplotypes show heterogeneity in different populations suggests that these might possess certain shared components that are involved in the development of autoimmunity.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Transplant Immunology & Immunogenetics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Gurvinder Kaur
- Department of Transplant Immunology & Immunogenetics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Narinder Mehra
- Department of Transplant Immunology & Immunogenetics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
34
|
Concannon P, Chen WM, Julier C, Morahan G, Akolkar B, Erlich HA, Hilner JE, Nerup J, Nierras C, Pociot F, Todd JA, Rich SS. Genome-wide scan for linkage to type 1 diabetes in 2,496 multiplex families from the Type 1 Diabetes Genetics Consortium. Diabetes 2009; 58:1018-22. [PMID: 19136655 PMCID: PMC2661598 DOI: 10.2337/db08-1551] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 01/05/2009] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Type 1 diabetes arises from the actions of multiple genetic and environmental risk factors. Considerable success at identifying common genetic variants that contribute to type 1 diabetes risk has come from genetic association (primarily case-control) studies. However, such studies have limited power to detect genes containing multiple rare variants that contribute significantly to disease risk. RESEARCH DESIGN AND METHODS The Type 1 Diabetes Genetics Consortium (T1DGC) has assembled a collection of 2,496 multiplex type 1 diabetic families from nine geographical regions containing 2,658 affected sib-pairs (ASPs). We describe the results of a genome-wide scan for linkage to type 1 diabetes in the T1DGC family collection. RESULTS Significant evidence of linkage to type 1 diabetes was confirmed at the HLA region on chromosome 6p21.3 (logarithm of odds [LOD] = 213.2). There was further evidence of linkage to type 1 diabetes on 6q that could not be accounted for by the major linkage signal at the HLA class II loci on chromosome 6p21. Suggestive evidence of linkage (LOD > or =2.2) was observed near CTLA4 on chromosome 2q32.3 (LOD = 3.28) and near INS (LOD = 3.16) on chromosome 11p15.5. Some evidence for linkage was also detected at two regions on chromosome 19 (LOD = 2.84 and 2.54). CONCLUSIONS Five non-HLA chromosome regions showed some evidence of linkage to type 1 diabetes. A number of previously proposed type 1 diabetes susceptibility loci, based on smaller ASP numbers, showed limited or no evidence of linkage to disease. Low-frequency susceptibility variants or clusters of loci with common alleles could contribute to the linkage signals observed.
Collapse
Affiliation(s)
- Patrick Concannon
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gylvin T, Ek J, Nolsøe R, Albrechtsen A, Andersen G, Bergholdt R, Brorsson C, Bang-Berthelsen CH, Hansen T, Karlsen AE, Billestrup N, Borch-Johnsen K, Jørgensen T, Pedersen O, Mandrup-Poulsen T, Nerup J, Pociot F. Functional SOCS1 polymorphisms are associated with variation in obesity in whites. Diabetes Obes Metab 2009; 11:196-203. [PMID: 19215277 DOI: 10.1111/j.1463-1326.2008.00900.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS The suppressor of cytokine signalling 1 (SOCS1) is a natural inhibitor of cytokine and insulin signalling pathways and may also play a role in obesity. In addition, SOCS1 is considered a candidate gene in the pathogenesis of both type 1 diabetes (T1D) and type 2 diabetes (T2D). The objective was to perform mutation analysis of SOCS1 and to test the identified variations for association to T2D-related quantitative traits, T2D or T1D. METHODS Mutation scanning was performed by direct sequencing in 27 white Danish subjects. Genotyping was carried out by TaqMan allelic discrimination. A total of more than 8100 individuals were genotyped. RESULTS Eight variations were identified in the 5' untranslated region (UTR) region. Two of these had allele frequencies below 1% and were not further examined. The six other variants were analysed in groups of T1D families (n = 1461 subjects) and T2D patients (n = 1430), glucose tolerant first-degree relatives of T2D patients (n = 212) and normal glucose tolerant (NGT) subjects. The rs33977706 polymorphism (-820G > T) was associated with a lower body mass index (BMI) (p = 0.004). In a second study (n = 4625 NGT subjects), significant associations of both the rs33977706 and the rs243330 (-1656G > A) variants to obesity were found (p = 0.047 and p = 0.015) respectively. The rs33977706 affected both binding of a nuclear protein to and the transcriptional activity of the SOCS1 promoter, indicating a relationship between this polymorphism and gene regulation. CONCLUSIONS/INTERPRETATION This study demonstrates that functional variations in the SOCS1 promoter may associate with alterations in BMI in the general white population.
Collapse
Affiliation(s)
- T Gylvin
- Steno Diabetes Center, Gentofte, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wägner AM, Cloos P, Bergholdt R, Eising S, Brorsson C, Stalhut M, Christgau S, Nerup J, Pociot F. Posttranslational Protein Modifications in Type 1 Diabetes - Genetic Studies with PCMT1, the Repair Enzyme Protein Isoaspartate Methyltransferase (PIMT) Encoding Gene. Rev Diabet Stud 2009; 5:225-31. [PMID: 19290383 DOI: 10.1900/rds.2008.5.225] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Posttranslational protein modifications have been implicated in the development of autoimmunity. Protein L-isoaspartate (D-aspartate) O-methyltransferase (PIMT) repairs modified proteins and is encoded by PCMT1, located in a region linked to type 1 diabetes (T1D), namely IDDM5. AIM To evaluate the association between genetic variations in the PCMT1 gene and T1D. METHODS Firstly, PCMT1 was sequenced in 26 patients with T1D (linked to IDDM5) and 10 control subjects. The variations found in PCMT1 were then tested (alone and interacting with a functional polymorphism in SUMO4 and with HLA) for association with T1D in 253 families (using transmission disequilibrium test). In a third step, the association of the functional variation in PCMT1 (rs4816) with T1D was analyzed in 778 T1D patients and 749 controls (using chi-square test). In vitro promoter activity was assessed by transfecting INS-1E cells with PCMT1 promoter constructs and a reporter gene, with or without cytokine stimulation. RESULTS Four polymorphisms in complete linkage disequilibrium were identified in PCMT1 (5' to the gene (rs11155676), exon 5 (rs4816) and exon 8 (rs7818 and rs4552)). In the whole cohort of 253 families, the allele associated with increased PIMT enzyme activity (rs4816, allele A) was less frequently transmitted to the affected than to the non-affected offspring (46% vs. 53%, p = 0.099). This finding was even more evident in the subset of families where the proband had high-risk SUMO4 (p = 0.069) or low-risk HLA (p = 0.086). Surprisingly, in the case-control study with 778 cases and 749 controls, an inverse trend was found (40.36% of patients and 36.98% of controls had the allele, p = 0.055). PCMT1 promoter activity increased with cytokine stimulation, but no differences were detected between the constructs adjacent to rs11155676. CONCLUSION PCMT1 was virtually associated with T1D in groups defined by other risk genes (SUMO4 and HLA). A general association in a not further defined sample of T1D patients was not evident. Verification in a larger population is needed.
Collapse
|
37
|
Concannon P, Onengut-Gumuscu S, Todd JA, Smyth DJ, Pociot F, Bergholdt R, Akolkar B, Erlich HA, Hilner JE, Julier C, Morahan G, Nerup J, Nierras CR, Chen WM, Rich SS. A human type 1 diabetes susceptibility locus maps to chromosome 21q22.3. Diabetes 2008; 57:2858-61. [PMID: 18647951 PMCID: PMC2551699 DOI: 10.2337/db08-0753] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 07/14/2008] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The Type 1 Diabetes Genetics Consortium (T1DGC) has assembled and genotyped a large collection of multiplex families for the purpose of mapping genomic regions linked to type 1 diabetes. In the current study, we tested for evidence of loci associated with type 1 diabetes utilizing genome-wide linkage scan data and family-based association methods. RESEARCH DESIGN AND METHODS A total of 2,496 multiplex families with type 1 diabetes were genotyped with a panel of 6,090 single nucleotide polymorphisms (SNPs). Evidence of association to disease was evaluated by the pedigree disequilibrium test. Significant results were followed up by genotyping and analyses in two independent sets of samples: 2,214 parent-affected child trio families and a panel of 7,721 case and 9,679 control subjects. RESULTS- Three of the SNPs most strongly associated with type 1 diabetes localized to previously identified type 1 diabetes risk loci: INS, IFIH1, and KIAA0350. A fourth strongly associated SNP, rs876498 (P = 1.0 x 10(-4)), occurred in the sixth intron of the UBASH3A locus at chromosome 21q22.3. Support for this disease association was obtained in two additional independent sample sets: families with type 1 diabetes (odds ratio [OR] 1.06 [95% CI 1.00-1.11]; P = 0.023) and case and control subjects (1.14 [1.09-1.19]; P = 7.5 x 10(-8)). CONCLUSIONS The T1DGC 6K SNP scan and follow-up studies reported here confirm previously reported type 1 diabetes associations at INS, IFIH1, and KIAA0350 and identify an additional disease association on chromosome 21q22.3 in the UBASH3A locus (OR 1.10 [95% CI 1.07-1.13]; P = 4.4 x 10(-12)). This gene and its flanking regions are now validated targets for further resequencing, genotyping, and functional studies in type 1 diabetes.
Collapse
Affiliation(s)
- Patrick Concannon
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bergholdt R, Størling ZM, Lage K, Karlberg EO, Olason PI, Aalund M, Nerup J, Brunak S, Workman CT, Pociot F. Integrative analysis for finding genes and networks involved in diabetes and other complex diseases. Genome Biol 2008; 8:R253. [PMID: 18045462 PMCID: PMC2258178 DOI: 10.1186/gb-2007-8-11-r253] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Revised: 10/31/2007] [Accepted: 11/28/2007] [Indexed: 01/17/2023] Open
Abstract
An integrative analysis combining genetic interactions and protein interactions can be used to identify candidate genes/proteins for type 1 diabetes and other complex diseases. We have developed an integrative analysis method combining genetic interactions, identified using type 1 diabetes genome scan data, and a high-confidence human protein interaction network. Resulting networks were ranked by the significance of the enrichment of proteins from interacting regions. We identified a number of new protein network modules and novel candidate genes/proteins for type 1 diabetes. We propose this type of integrative analysis as a general method for the elucidation of genes and networks involved in diabetes and other complex diseases.
Collapse
Affiliation(s)
- Regine Bergholdt
- Steno Diabetes Center, Niels Steensensvej 2, DK-2820 Gentofte, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Duchatelet S, Caillat-Zucman S, Dubois-Laforgue D, Blanc H, Timsit J, Julier C. FCRL3 −169CT functional polymorphism in type 1 diabetes and autoimmunity traits. Biomed Pharmacother 2008; 62:153-7. [DOI: 10.1016/j.biopha.2007.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 09/12/2007] [Accepted: 09/13/2007] [Indexed: 12/12/2022] Open
|
40
|
Stene LC, Thorsby PM, Berg JP, Rønningen KS, Joner G. Peroxisome proliferator-activated receptor-gamma2 Pro12Ala polymorphism, cod liver oil and risk of type 1 diabetes. Pediatr Diabetes 2008; 9:40-5. [PMID: 18211635 DOI: 10.1111/j.1399-5448.2007.00263.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE We have previously described an association between use of cod liver oil (a dietary n-3 fatty acid supplement) and reduced risk of type 1 diabetes. n-3 fatty acids are ligands for the peroxisome proliferator-activated receptor-gamma (PPARG), which has recently been implicated in the control of inflammation and possibly autoimmunity. We aimed to estimate the association between the common Pro12Ala polymorphism of PPARG2 and risk of type 1 diabetes, and to test whether there is gene-environment interaction with use of cod liver oil in the first year of life or gene-gene interaction with the established insulin gene (INS) and human leukocyte antigen DQ (HLA-DQ) genetic susceptibility loci. METHODS We designed a population-based case-control study of childhood-onset type 1 diabetes in Norway with information on use of cod liver oil in the first year of life from questionnaires and PPARG2 genotype data for 483 cases and 1520 control subjects. We used logistic regression for analysis. RESULTS The odds ratio for the PPARG2 Ala/Ala or Pro/Ala vs. Pro/Pro genotype and type 1 diabetes was 0.89 (95% CI: 0.69-1.13, p = 0.33). There was no significant interaction with cod liver oil in the first year of life [P (interaction) = 0.35] or with the INS polymorphism [P(interaction) = 0.42]. CONCLUSIONS Although the association between PPARG2 and type 1 diabetes was not significant, the observed odds ratio was almost identical to that observed in two previous studies and can contribute to meta-analysis indicating a weak but significant association. Our hypothesized interaction between cod liver oil and PPARG2 in reducing type 1 diabetes risk was not supported.
Collapse
Affiliation(s)
- Lars C Stene
- Department of Chronic Diseases, Norwegian Institute of Public Health, Oslo,Norway.
| | | | | | | | | | | |
Collapse
|
41
|
Genetics of autoimmune diabetes mellitus. Wien Med Wochenschr 2008; 158:2-12. [DOI: 10.1007/s10354-007-0448-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 04/23/2007] [Indexed: 10/24/2022]
|
42
|
Qiao Q, Osterholm AM, He B, Pitkäniemi J, Cordell HJ, Sarti C, Kinnunen L, Tuomilehto-Wolf E, Tryggvason K, Tuomilehto J. A genome-wide scan for type 1 diabetes susceptibility genes in nuclear families with multiple affected siblings in Finland. BMC Genet 2007; 8:84. [PMID: 18093291 PMCID: PMC2225422 DOI: 10.1186/1471-2156-8-84] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 12/19/2007] [Indexed: 11/23/2022] Open
Abstract
Background A genome-wide search for genes that predispose to type 1 diabetes using linkage analysis was performed using 900 microsatellite markers in 70 nuclear families with affected siblings from Finland, a population expected to be more genetically homogeneous than others, and having the highest incidence of type 1 diabetes in the world and, yet, the highest proportion in Europe of cases (10%) carrying neither of the highest risk HLA haplotypes that include DR3 or DR4 alleles. Results In addition to the evidence of linkage to the HLA region on 6p21 (nominal p = 4.0 × 10-6), significant evidence of linkage in other chromosome regions was not detected with a single-locus analysis. The two-locus analysis conditional on the HLA gave a maximum lod score (MLS) of 3.1 (nominal p = 2 × 10-4) on chromosome 9p13 under an additive model; MLS of 2.1 (nominal p = 6.1 × 10-3) on chromosome 17p12 and MLS of 2.5 (nominal p = 2.9 × 10-3) on chromosome 18p11 under a general model. Conclusion Our genome scan data confirmed the primary contribution of the HLA genes also in the high-risk Finnish population, and suggest that non-HLA genes also contribute to the familial clustering of type 1 diabetes in Finland.
Collapse
Affiliation(s)
- Qing Qiao
- Department of Public Health, University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Asad S, Nikamo P, Törn C, Landin-Olsson M, Lernmark A, Alarcón-Riquelme M, Kockum I. No evidence of association of the PDCD1 gene with Type 1 diabetes. Diabet Med 2007; 24:1473-7. [PMID: 18042085 DOI: 10.1111/j.1464-5491.2007.02297.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To test the association between the immunoreceptor PD-1 (PDCD1) gene and Type 1 diabetes mellitus (T1DM). This gene has been reported to be associated with other autoimmune diseases such as systemic lupus erythematosus (SLE) as well as T1DM. METHODS Genotyping of single nucleotide polymorphisms (SNPs) in the PDCD1 gene was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), pyrosequencing and TaqMan in two separate cohorts of Swedish patients and control subjects: a family study consisting of 184 multiplex and eight simplex families and a case-control study consisting of 586 patients and 836 control subjects. Three SNPs were genotyped: PD-1 7146, PD-1 7785 and PD-1 8738. RESULTS We did not detect any association or linkage between SNPs in PDCD1 and T1DM. We further performed a meta-analysis for association of PD-1 7146, PD-1 7785 and PD-1 8738 to T1DM. We detected heterogeneity in association with weak evidence for overall association. CONCLUSIONS We conclude that PDCD1 is unlikely to be a major susceptibility gene for T1DM.
Collapse
Affiliation(s)
- S Asad
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
44
|
Eising S, Svensson J, Skogstrand K, Nilsson A, Lynch K, Andersen PS, Lernmark A, Hougaard DM, Pociot F, Nørgaard-Pedersen B, Nerup J. Type 1 diabetes risk analysis on dried blood spot samples from population-based newborns: design and feasibility of an unselected case-control study. Paediatr Perinat Epidemiol 2007; 21:507-17. [PMID: 17937736 DOI: 10.1111/j.1365-3016.2007.00846.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Development of type 1 diabetes mellitus (T1D) may be triggered pre- or perinatally by multiple factors. Identifying new predisposing T1D markers or combinations of markers in a large, well-characterised case-control collection may be important for future T1D prevention. The present work describes the design and feasibility of a large and unselected case-control study, which will define and evaluate prediction criteria for T1D at the time of birth. Danish registries (Biological Specimen Bank for Neonatal Screening, and the National Discharge Registry) made it possible to identify and collect dried blood spots (DBS) from newborns who later developed T1D (cases) born 1981-2002. DBS samples from 2086 cases and two matching control subjects per case were analysed for genetic and immune factors that are associated with T1D: (a) candidate genes (HLA, INS and CTLA4), (b) cytokines and inflammatory markers, (c) islet auto-antibodies (GAD65A, IA-2A). The objective of the study was to define reliable prediction tools for T1D using samples available at the time of birth. In a unique approach, the study linked a large unselected and population-based sample resource to well-ascertained clinical databases and advanced technology. It combined genetic, immunological and demographic data to develop prediction algorithms. It also provided a resource for future studies in which new genetic markers can be included as they are identified.
Collapse
|
45
|
Shin JH, Janer M, McNeney B, Blay S, Deutsch K, Sanjeevi CB, Kockum I, Lernmark A, Graham J, Arnqvist H, Björck E, Eriksson J, Nyström L, Ohlson LO, Scherstén B, Ostman J, Aili M, Bååth LE, Carlsson E, Edenwall H, Forsander G, Granström BW, Gustavsson I, Hanås R, Hellenberg L, Hellgren H, Holmberg E, Hörnell H, Ivarsson SA, Johansson C, Jonsell G, Kockum K, Lindblad B, Lindh A, Ludvigsson J, Myrdal U, Neiderud J, Segnestam K, Sjöblad S, Skogsberg L, Strömberg L, Ståhle U, Thalme B, Tullus K, Tuvemo T, Wallensteen M, Westphal O, Aman J. IA-2 autoantibodies in incident type I diabetes patients are associated with a polyadenylation signal polymorphism in GIMAP5. Genes Immun 2007; 8:503-12. [PMID: 17641683 DOI: 10.1038/sj.gene.6364413] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a large case-control study of Swedish incident type I diabetes patients and controls, 0-34 years of age, we tested the hypothesis that the GIMAP5 gene, a key genetic factor for lymphopenia in spontaneous BioBreeding rat diabetes, is associated with type I diabetes; with islet autoantibodies in incident type I diabetes patients or with age at clinical onset in incident type I diabetes patients. Initial scans of allelic association were followed by more detailed logistic regression modeling that adjusted for known type I diabetes risk factors and potential confounding variables. The single nucleotide polymorphism (SNP) rs6598, located in a polyadenylation signal of GIMAP5, was associated with the presence of significant levels of IA-2 autoantibodies in the type I diabetes patients. Patients with the minor allele A of rs6598 had an increased prevalence of IA-2 autoantibody levels compared to patients without the minor allele (OR=2.2; Bonferroni-corrected P=0.003), after adjusting for age at clinical onset (P=8.0 x 10(-13)) and the numbers of HLA-DQ A1*0501-B1*0201 haplotypes (P=2.4 x 10(-5)) and DQ A1*0301-B1*0302 haplotypes (P=0.002). GIMAP5 polymorphism was not associated with type I diabetes or with GAD65 or insulin autoantibodies, ICA, or age at clinical onset in patients. These data suggest that the GIMAP5 gene is associated with islet autoimmunity in type I diabetes and add to recent findings implicating the same SNP in another autoimmune disease.
Collapse
Affiliation(s)
- J-H Shin
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Loeser S, Penninger JM. Regulation of peripheral T cell tolerance by the E3 ubiquitin ligase Cbl-b. Semin Immunol 2007; 19:206-14. [PMID: 17391982 DOI: 10.1016/j.smim.2007.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 02/16/2007] [Indexed: 02/07/2023]
Abstract
The family of the Casitas B-lineage Lymphoma (Cbl) proteins, c-Cbl, Cbl-b, and Cbl-3, function as E3 ubiquitin ligases and molecular adaptors. In particular, Cbl-b acts as a gatekeeper in T cell activation that controls activation thresholds and the requirement for co-stimulation. Loss of Cbl-b expression renders animals susceptible to antigen-triggered autoimmunity suggesting that Cbl-b is a key autoimmunity gene. In addition, Cbl-b plays a critical role in T cell anergy and escape from regulatory T cells (Treg) suppression. Modulation of Cbl-b might provide us with a unique opportunity for future immune treatment of human disorders such as autoimmunity, immunodeficiency, or cancer.
Collapse
Affiliation(s)
- Stefanie Loeser
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohrgasse 3, A-1030 Vienna, Austria.
| | | |
Collapse
|
47
|
Dong GP, Yu ZS, Liang L, Zou CC, Fu JF, Wang CL. IL-18 gene promoter ?137C/G and ?607C/A polymorphisms in Chinese Han children with type 1 diabetes mellitus. Int J Immunogenet 2007; 34:75-9. [PMID: 17373930 DOI: 10.1111/j.1744-313x.2007.00665.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a heterogeneous autoimmune disease, and both environmental and genetic factors play a role in its pathogenesis. Interleukin (IL)-18 is a potent pro-inflammatory cytokine capable of inducing interferon-gamma production that is associated with the development of T1DM. The gene for IL-18 is located on chromosome 11q22.2-q22.3 and has been reported to be associated with a susceptibility to T1DM. To test the putative involvement between IL-18 gene polymorphism and predisposition to T1DM, we conducted a case-control study in Chinese Han children. The single nucleotide polymorphisms at position -607(C/A) and -137(C/G) in the promoter region of the IL-18 gene were analysed by sequence-specific primers-polymerase chain reaction in 118 patients with T1DM and 150 healthy controls. (1) The allele frequency of -607A was 41.2% and 53.0%, respectively, in patients and in control subjects (P = 0.01), but the allele frequency of -137C/G was not statistically significant (P = 0.37). (2) The distribution of CC genotype at position -607 was significantly different between patients and normal controls (P = 0.03), while the distribution of AA genotype in patients was significantly lower than that in the controls (P = 0.03). (3) Furthermore, there was a significant increase in haplotype (-137C/-607G) and genotype combination (-137GG/ -607CC) in patients compared with controls (P = 0.03 and P = 0.04, respectively). The results of this study show that IL-18 gene promoter polymorphisms confer susceptibility to T1DM in Chinese Han children. Moreover, subjects carrying AA genotype at position -607 of the promoter of IL-18 gene may be a low risk of T1DM development.
Collapse
Affiliation(s)
- G P Dong
- Department of Endocrinology, The Children's Hospital of Zhejiang University of Medicine, #57 Zhugan Xiang, Hangzhou 310003, China
| | | | | | | | | | | |
Collapse
|
48
|
Bergholdt R, Karlsen AE, Hagedorn PH, Aalund M, Nielsen JH, Kruhøffer M, Orntoft T, Wang H, Wollheim CB, Nerup J, Pociot F. Transcriptional profiling of type 1 diabetes genes on chromosome 21 in a rat beta-cell line and human pancreatic islets. Genes Immun 2007; 8:232-8. [PMID: 17330137 DOI: 10.1038/sj.gene.6364379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We recently finemapped a type 1 diabetes (T1D)-linked region on chromosome 21, indicating that one or more T1D-linked genes exist in this region with 33 annotated genes. In the current study, we have taken a novel approach using transcriptional profiling in predicting and prioritizing the most likely candidate genes influencing beta-cell function in this region. Two array-based approaches were used, a rat insulinoma cell line (INS-1alphabeta) overexpressing pancreatic duodenum homeobox 1 (pdx-1) and treated with interleukin 1beta (IL-1beta) as well as human pancreatic islets stimulated with a mixture of cytokines. Several candidate genes with likely functional significance in T1D were identified. Genes showing differential expression in the two approaches were highly similar, supporting the role of these specific gene products in cytokine-induced beta-cell damage. These were genes involved in cytokine signaling, oxidative phosphorylation, defense responses and apoptosis. The analyses, furthermore, revealed several transcription factor binding sites shared by the differentially expressed genes and by genes demonstrating highly similar expression profiles with these genes. Comparable findings in the rat beta-cell line and human islets support the validity of the methods used and support this as a valuable approach for gene mapping and identification of genes with potential functional significance in T1D, within a region of linkage.
Collapse
|
49
|
Asano K, Ikegami H, Fujisawa T, Nishino M, Nojima K, Kawabata Y, Noso S, Hiromine Y, Fukai A, Ogihara T. Molecular scanning of interleukin-21 gene and genetic susceptibility to type 1 diabetes. Hum Immunol 2007; 68:384-91. [PMID: 17462506 DOI: 10.1016/j.humimm.2007.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Revised: 12/22/2006] [Accepted: 01/08/2007] [Indexed: 11/28/2022]
Abstract
A recent study in the nonobese diabetic (NOD) mouse demonstrated the involvement of interleukin (IL)-21 in the pathogenesis of type 1 diabetes. A strong susceptibility locus, Idd3, has also been mapped to the interval containing the murine gene for IL-21 (Il21), making Il21 and the human orthologue IL21 a functional and positional candidate gene for type 1 diabetes. To investigate the contribution of the human genes for IL-21 and its receptor (IL-21R) to susceptibility to type 1 diabetes, we re-sequenced IL21 to identify novel sequence variants, searched for informative variants of IL21R, and studied the association of these variants with the disease. Two polymorphisms, a single nucleotide polymorphism (SNP) and a mononucleotide repeat polymorphism, were identified for IL21, and an allele of the mononucleotide repeat polymorphism was positively associated with the disease. Two novel microsatellite polymorphisms of IL21R were identified, one of which was associated with the disease. Scoring of individuals according to the status of these alleles showed a significant trend for high scores for susceptibility in diabetes patients, suggesting the contribution of IL21 and IL21R to disease susceptibility in an additive manner. These data suggest a contribution of IL21 and IL21R to genetic susceptibility to type 1 diabetes and possible involvement of IL-21 and its receptor system in the disease pathogenesis.
Collapse
Affiliation(s)
- Katsuaki Asano
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chelala C, Duchatelet S, Joffret ML, Bergholdt R, Dubois-Laforgue D, Ghandil P, Pociot F, Caillat-Zucman S, Timsit J, Julier C. PTPN22 R620W functional variant in type 1 diabetes and autoimmunity related traits. Diabetes 2007; 56:522-6. [PMID: 17259401 DOI: 10.2337/db06-0942] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The PTPN22 gene, encoding the lymphoid-specific protein tyrosine phosphatase, a negative regulator in the T-cell activation and development, has been associated with the susceptibility to several autoimmune diseases, including type 1 diabetes. Based on combined case-control and family-based association studies, we replicated the finding of an association of the PTPN22 C1858T (R620W) functional variant with type 1 diabetes, which was independent from the susceptibility status at the insulin gene and at HLA-DR (DR3/4 compared with others). The risk contributed by the 1858T allele was increased in patients with a family history of other autoimmune diseases, further supporting a general role for this variant on autoimmunity. In addition, we found evidence for an association of 1858T allele with the presence of GAD autoantibodies (GADA), which was restricted to patients with long disease duration (>10 years, P < 0.001). This may help define a subgroup of patients with long-term persistence of GADA. The risk conferred by 1858T allele on GAD positivity was additive, and our meta-analysis also supported an additive rather than dominant effect of this variant on type 1 diabetes, similar to previous reports on rheumatoid arthritis and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Claude Chelala
- Genetics of Infectious and Autoimmune Diseases, INSERM U730, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|