1
|
Ross P, Fatima H, Leaman DP, Matthias J, Spencer K, Zwick MB, Henderson SC, Mace EM, Murin CD. Spatial localization of CD16a at the human NK cell ADCC lytic synapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.605851. [PMID: 39149244 PMCID: PMC11326286 DOI: 10.1101/2024.08.09.605851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Natural Killer (NK) cells utilize effector functions, including antibody-dependent cellular cytotoxicity (ADCC), for the clearance of viral infection and cellular malignancies. NK cell ADCC is mediated by FcγRIIIa (CD16a) binding to the fragment crystallizable (Fc) region of immunoglobulin G (IgG) within immune complexes on a target cell surface. While antibody-induced clustering of CD16a is thought to drive ADCC, the molecular basis for this activity has not been fully described. Here we use MINFLUX nanoscopy to map the spatial distribution of stoichiometrically labeled CD16a across the NK cell membrane, revealing the presence of pairs of CD16a molecules with intra-doublet distance of approximately 17 nm. NK cells activated on supported lipid bilayers by Trastuzumab results in an increase of synaptic regions with greater CD16a density. Our results provide the highest spatial resolution yet described for CD16a imaging, offering new insight into how CD16a organization within the immune synapse could influence ADCC activity. MINFLUX holds great promise to further unravel the molecular details driving CD16a-based activation of NK cells.
Collapse
Affiliation(s)
- Patrick Ross
- San Diego Biomedical Research Institute, San Diego, CA, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Hijab Fatima
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Dan P. Leaman
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | | | - Kathryn Spencer
- Core Microscopy Facility, Scripps Research, La Jolla, CA, USA
| | - Michael B. Zwick
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Scott C. Henderson
- Core Microscopy Facility, Scripps Research, La Jolla, CA, USA
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Emily M. Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles Daniel Murin
- San Diego Biomedical Research Institute, San Diego, CA, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
2
|
Eugene-Norbert M, Cuffel A, Riou G, Jean L, Blondel C, Dehayes J, Bisson A, Giverne C, Brotin E, Denoyelle C, Poulain L, Boyer O, Martinet J, Latouche JB. Development of optimized cytotoxicity assays for assessing the antitumor potential of CAR-T cells. J Immunol Methods 2024; 525:113603. [PMID: 38147898 DOI: 10.1016/j.jim.2023.113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/01/2023] [Accepted: 12/09/2023] [Indexed: 12/28/2023]
Abstract
CAR-T cells are T cells expressing a chimeric antigen receptor (CAR) rendering them capable of killing tumor cells after recognition of a target antigen. CD19 CAR-T cells have revolutionized the treatment of hematological malignancies. Their function is typically assessed by cytotoxicity assays using human allogeneic cell lines expressing the target antigen CD19 such as Nalm-6. However, an alloreactive reaction is observed with these cells, leading to a CD19-independent killing. To address this issue, we developed a fluorescence microscopy-based potency assay using murine target cells to provide an optimized cytotoxicity assay with enhanced specificity towards CD19. Murine NIH/3T3 (3T3) fibroblast-derived cell line and EL4 T-cell lymphoma-derived cell line were used as targets (no xenoreactivity was observed after coculture with human T cells). 3T3 and EL4 cells were engineered to express eGFP (enhanced Green Fluorescent Protein) and CD19 or CD22 using retroviral vectors. CD19 CAR-T cells and non-transduced (NT) control T cells were produced from several donors. After 4 h or 24 h, alloreactive cytotoxicity against CD19+ Nalm-6-GFP cells and CD19- Jurkat-GFP cells was observed with NT or CAR-T cells. In the same conditions, CAR-T but not NT cells specifically killed CD19+ but not CD19- 3T3-GFP or EL4-GFP cells. Both microscope- and flow cytometry-based assays revealed as sensitive as impedance-based assay. Using flow cytometry, we could further determine that CAR-T cells had mostly a stem cell-like memory phenotype after contact with EL4 target cells. Therefore, CD19+ 3T3-GFP or EL4-GFP cells and fluorescence microscopy- or flow cytometry-based assays provide convenient, sensitive and specific tools to evaluate CAR-T cell function with no alloreactivity.
Collapse
Affiliation(s)
- Misa Eugene-Norbert
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France
| | - Alexis Cuffel
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| | - Gaetan Riou
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France
| | - Laetitia Jean
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France
| | - Clara Blondel
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France
| | - Justine Dehayes
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| | - Aurélie Bisson
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| | - Camille Giverne
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| | - Emilie Brotin
- Université de Caen Normandie, Unité de Service PLATON, ImpedanCELL Core Facility, Caen F-14000, France
| | - Christophe Denoyelle
- Université de Caen Normandie, Unité de Service PLATON, ImpedanCELL Core Facility, Caen F-14000, France; Université de Caen Normandie, Inserm, ANTICIPE UMR (1086), Structure Fédérative 4207 Normandie Oncologie, Normandie Univ, Caen F-14000, France; Comprehensive Cancer Center F. Baclesse, Unicancer, Caen F-14000, France
| | - Laurent Poulain
- Université de Caen Normandie, Inserm, ANTICIPE UMR (1086), Structure Fédérative 4207 Normandie Oncologie, Normandie Univ, Caen F-14000, France; Comprehensive Cancer Center F. Baclesse, Unicancer, Caen F-14000, France
| | - Olivier Boyer
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| | - Jérémie Martinet
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France.
| | - Jean-Baptiste Latouche
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| |
Collapse
|
3
|
Dias J, Cadiñanos-Garai A, Roddie C. Release Assays and Potency Assays for CAR T-Cell Interventions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:117-137. [PMID: 37258787 DOI: 10.1007/978-3-031-30040-0_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Chimeric antigen receptor (CAR) T-cells are considered "living drugs" and offer a compelling alternative to conventional anticancer therapies. Briefly, T-cells are redirected, using gene engineering technology, toward a specific cancer cell surface target antigen via a synthetic chimeric antigen receptor (CAR) protein. CARs have a modular design comprising four main structures: an antigen-binding domain, a hinge region, a transmembrane domain, and one or more intracellular signaling domains for T-cell activation. A major challenge in the CAR T-cell manufacturing field is balancing product quality with scalability and cost-effectiveness, especially when transitioning from an academic clinical trial into a marketed product, to be implemented across many collection, manufacturing, and treatment sites. Achieving product consistency while circumnavigating the intrinsic variability associated with autologous products is an additional barrier. To overcome these limitations, a robust understanding of the product and its biological actions is crucial to establish a target product profile with a defined list of critical quality attributes to be assessed for each batch prior to product certification. Additional challenges arise as the field progresses, such as new safety considerations associated with the use of allogenic T-cells and genome editing tools. In this chapter, we will discuss the release and potency assays required for CAR T-cell manufacturing, covering their relevance, current challenges, and future perspectives.
Collapse
Affiliation(s)
- Juliana Dias
- UCL Cancer Institute, University College London, London, UK.
- Royal Free Hospital London, NHS Foundation Trust, London, UK.
| | - Amaia Cadiñanos-Garai
- USC/CHLA Cell Therapy Program, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, USA
| | - Claire Roddie
- UCL Cancer Institute, University College London, London, UK
- Department of Haematology, UCL Hospital, London, UK
| |
Collapse
|
4
|
Bernardo L, Corallo L, Caterini J, Su J, Gisonni-Lex L, Gajewska B. Application of xCELLigence real-time cell analysis to the microplate assay for pertussis toxin induced clustering in CHO cells. PLoS One 2021; 16:e0248491. [PMID: 33720984 PMCID: PMC7959359 DOI: 10.1371/journal.pone.0248491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
The microplate assay with Chinese Hamster Ovary (CHO) cells is currently used as a safety test to monitor the residual pertussis toxin (PT) amount in acellular pertussis antigens prior to vaccine formulation. The assay is based on the findings that the exposure of CHO cells to PT results in a concentration-dependent clustering response which can be used to estimate the amount of PT in a sample preparation. A major challenge with the current CHO cell assay methodology is that scoring of PT-induced clustering is dependent on subjective operator visual assessment using light microscopy. In this work, we have explored the feasibility of replacing the microscopy readout for the CHO cell assay with the xCELLigence Real-Time Cell Analysis system (ACEA BioSciences, a part of Agilent). The xCELLigence equipment is designed to monitor cell adhesion and growth. The electrical impedance generated from cell attachment and proliferation is quantified via gold electrodes at the bottom of the cell culture plate wells, which is then translated into a unitless readout called cell index. Results showed significant decrease in the cell index readouts of CHO cells exposed to PT compared to the cell index of unexposed CHO cells. Similar endpoint concentrations were obtained when the PT reference standard was titrated with either xCELLigence or microscopy. Testing genetically detoxified pertussis samples unspiked or spiked with PT further supported the sensitivity and reproducibility of the xCELLigence assay in comparison with the conventional microscopy assay. In conclusion, the xCELLigence RTCA system offers an alternative automated and higher throughput method for evaluating PT-induced clustering in CHO cells.
Collapse
Affiliation(s)
- Lidice Bernardo
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
- * E-mail:
| | - Lucas Corallo
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| | - Judy Caterini
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| | - Jin Su
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| | - Lucy Gisonni-Lex
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| | - Beata Gajewska
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| |
Collapse
|
5
|
Kute T, Stehle JR, Ornelles D, Walker N, Delbono O, Vaughn JP. Understanding key assay parameters that affect measurements of trastuzumab-mediated ADCC against Her2 positive breast cancer cells. Oncoimmunology 2021; 1:810-821. [PMID: 23162748 PMCID: PMC3489736 DOI: 10.4161/onci.20447] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Use of the antibody trastuzumab to kill HER2+ breast cancer cells is an attractive therapy because of its specificity and minimal adverse effects. However, a large fraction of HER2+ positive patients are or will become resistant to this treatment. No other markers are used to determine sensitivity to trastuzumab other than HER2 status.Using the xCELLigence platform and flow cytometry, we have compared the ability of mononuclear cells (MNCs) from normal and breast cancer patients to kill different breast cancer cell lines in the presence (i.e., ADCC) or absence of trastuzumab. Image analysis and cell separation procedures were used to determine the differential contribution of immune cell subsets to ADCC activity. The assay demonstrated that ADCC activity is dependent on the presence of trastuzumab, the level of HER2 expression on the target, and the ratio of MNCs to tumor cells. There is a wide range of ADCC activity among normal individuals and breast cancer patients for high and low HER2-expressing tumor targets. Fresh MNCs display higher ADCC levels compared with cryopreserved cells. Natural killer cells display the highest ADCC followed by monocytes. T cells and B cells were ineffective in killing. A major mechanism of killing of tumor cells involves insertion of granzyme B and caspase enzymes via the antibody attached MNCs.
Collapse
Affiliation(s)
- Timothy Kute
- Pathology; Wake Forest University School of Medicine; Winston-Salem, NC USA
| | | | | | | | | | | |
Collapse
|
6
|
Salvo P, Vivaldi FM, Bonini A, Biagini D, Bellagambi FG, Miliani FM, Di Francesco F, Lomonaco T. Biosensors for Detecting Lymphocytes and Immunoglobulins. BIOSENSORS 2020; 10:E155. [PMID: 33121071 PMCID: PMC7694141 DOI: 10.3390/bios10110155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
Lymphocytes (B, T and natural killer cells) and immunoglobulins are essential for the adaptive immune response against external pathogens. Flow cytometry and enzyme-linked immunosorbent (ELISA) kits are the gold standards to detect immunoglobulins, B cells and T cells, whereas the impedance measurement is the most used technique for natural killer cells. For point-of-care, fast and low-cost devices, biosensors could be suitable for the reliable, stable and reproducible detection of immunoglobulins and lymphocytes. In the literature, such biosensors are commonly fabricated using antibodies, aptamers, proteins and nanomaterials, whereas electrochemical, optical and piezoelectric techniques are used for detection. This review describes how these measurement techniques and transducers can be used to fabricate biosensors for detecting lymphocytes and the total content of immunoglobulins. The various methods and configurations are reported, along with the advantages and current limitations.
Collapse
Affiliation(s)
- Pietro Salvo
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Federico M. Vivaldi
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy;
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Andrea Bonini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Francesca G. Bellagambi
- Institut des Sciences Analytiques, UMR 5280, Université Lyon 1, 5, rue de la Doua, 69100 Villeurbanne, France;
| | - Filippo M. Miliani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| |
Collapse
|
7
|
Somatic mTOR mutation in clonally expanded T lymphocytes associated with chronic graft versus host disease. Nat Commun 2020; 11:2246. [PMID: 32382059 PMCID: PMC7206083 DOI: 10.1038/s41467-020-16115-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 04/13/2020] [Indexed: 12/16/2022] Open
Abstract
Graft versus host disease (GvHD) is the main complication of allogeneic hematopoietic stem cell transplantation (HSCT). Here we report studies of a patient with chronic GvHD (cGvHD) carrying persistent CD4+ T cell clonal expansion harboring somatic mTOR, NFKB2, and TLR2 mutations. In the screening cohort (n = 134), we detect the mTOR P2229R kinase domain mutation in two additional cGvHD patients, but not in healthy or HSCT patients without cGvHD. Functional analyses of the mTOR mutation indicate a gain-of-function alteration and activation of both mTORC1 and mTORC2 signaling pathways, leading to increased cell proliferation and decreased apoptosis. Single-cell RNA sequencing and real-time impedance measurements support increased cytotoxicity of mutated CD4+ T cells. High throughput drug-sensitivity testing suggests that mutations induce resistance to mTOR inhibitors, but increase sensitivity for HSP90 inhibitors. Our findings imply that somatic mutations may contribute to aberrant T cell proliferations and persistent immune activation in cGvHD, thereby paving the way for targeted therapies. Chronic graft versus host disease (cGvHD) is a major cause of morbidity and mortality in allogeneic bone marrow transplantation. Here the authors identify a recurrent activating mTOR mutation in expanded donor T-cell clones of 3 cGvHD patients, which suggests somatic mutations may contribute to GvHD pathogenesis and opens avenues to targeted therapies.
Collapse
|
8
|
Monitoring kinetics reveals critical parameters of IgA-dependent granulocyte-mediated anti-tumor cell cytotoxicity. J Immunol Methods 2019; 473:112644. [PMID: 31404549 DOI: 10.1016/j.jim.2019.112644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/26/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
Abstract
Human IgA antibodies effectively engage myeloid cells for the FcαRI-dependent antibody-dependent cell-mediated cytotoxicity (ADCC) of tumor cells. Established methods to investigate ADCC are the 51chromium and Calcein release assays. Their critical limitations are the end-point measurement, the unspecific release of the probes, the requirement of target cells in suspension and thus do not reflect physiologic conditions of adherently growing cells. Here we report the label-free real-time monitoring of granulocyte-mediated ADCC using an impedance-based method. We investigated the efficacy of an engineered epidermal growth factor receptor (EGFR)-directed IgA2 antibody to engage neutrophils for ADCC against a panel of adherently growing EGFR-expressing cancer cell lines majorly head and neck squamous cell carcinoma (HNSCC). The impedance assay allowed the documentation of the IgA-neutrophil-and FcαRI-signaling dependent ADCC of adherently growing target cells. While at a short-term it provided comparable results to release assays, in the long run real time monitoring also revealed cell-line specific kinetics and long-term efficacy. Although short-term results may depend on EGFR expression, long-term efficacy did not correlate with the surface level of EGFR nor of the myeloid checkpoint CD47 pointing to additional critical parameters to predict the treatment efficacy. Real-time monitoring of neutrophil-mediated ADCC allowed documenting effector cell activity and exhaustion. Along with excess expression of Mac-1 ligands, which may explain the target cell resistance, this eventually leads to tumor cell outgrowth at later time points. In conclusion, the impedance assay provides valuable information on the kinetics, effector cell performance, efficacy and critical parameters of IgA-dependent granulocyte-mediated cytotoxicity and is expected to become an important tool in its evaluation.
Collapse
|
9
|
Hayek S, Bekaddour N, Besson L, Alves de Sousa R, Pietrancosta N, Viel S, Smith N, Jacob Y, Nisole S, Mandal R, Wishart DS, Walzer T, Herbeuval JP, Vidalain PO. Identification of Primary Natural Killer Cell Modulators by Chemical Library Screening with a Luciferase-Based Functional Assay. SLAS DISCOVERY 2018; 24:25-37. [PMID: 30184441 DOI: 10.1177/2472555218797078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Natural killer (NK) cells are essential players of the innate immune response that secrete cytolytic factors and cytokines such as IFN-γ when contacting virus-infected or tumor cells. They represent prime targets in immunotherapy as defects in NK cell functions are hallmarks of many pathological conditions, such as cancer and chronic infections. The functional screening of chemical libraries or biologics would greatly help identify new modulators of NK cell activity, but commonly used methods such as flow cytometry are not easily scalable to high-throughput settings. Here we describe an efficient assay to measure the natural cytotoxicity of primary NK cells where the bioluminescent enzyme NanoLuc is constitutively expressed in the cytoplasm of target cells and is released in co-culture supernatants when lysis occurs. We fully characterized this assay using either purified NK cells or total peripheral blood mononuclear cells (PBMCs), including some patient samples, as effector cells. A pilot screen was also performed on a library of 782 metabolites, xenobiotics, and common drugs, which identified dextrometorphan and diphenhydramine as novel NK cell inhibitors. Finally, this assay was further improved by developing a dual-reporter cell line to simultaneously measure NK cell cytotoxicity and IFN-γ secretion in a single well, extending the potential of this system.
Collapse
Affiliation(s)
- Simon Hayek
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Nassima Bekaddour
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Laurie Besson
- 2 Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France.,3 Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Rodolphe Alves de Sousa
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Nicolas Pietrancosta
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Sébastien Viel
- 2 Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France.,3 Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Nikaia Smith
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Yves Jacob
- 4 CNRS, UMR3569, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Sébastien Nisole
- 5 Institut de Recherche en Infectiologie de Montpellier, CNRS, UMR9004, Université de Montpellier, Montpellier, France
| | - Rupasri Mandal
- 6 Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - David S Wishart
- 6 Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - Thierry Walzer
- 2 Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Jean-Philippe Herbeuval
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Pierre-Olivier Vidalain
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| |
Collapse
|
10
|
Abstract
The use of impedance-based label free cell analysis is increasingly popular and has many different applications. Here, we report that a real-time cell analyzer (RTCA) can be used to study the stimulation of Natural Killer (NK) cells. Engagement of NK cells via plate-bound antibodies directed against different activating surface receptors could be measured in real time using the label-free detection of impedance. The change in impedance was dependent on early signal transduction events in the NK cells as it was blocked by inhibitors of Src-family kinases and by inhibiting actin polymerization. While CD16 was the only receptor that could induce a strong change in impedance in primary NK cells, several activating receptors induced changes in impedance in expanded NK cells. Using PBMCs we could detect T cell receptor-mediated T cell activation and CD16-mediated NK cell activation in the same sample. Performing a dose-response analysis for the Src-family kinases inhibitor PP1 we show that T cells are more sensitive to inhibition compared to NK cells. Our data demonstrate that the RTCA can be used to detect physiological activation events in NK cells in a label-free and real-time fashion.
Collapse
|
11
|
Cerignoli F, Abassi YA, Lamarche BJ, Guenther G, Santa Ana D, Guimet D, Zhang W, Zhang J, Xi B. In vitro immunotherapy potency assays using real-time cell analysis. PLoS One 2018; 13:e0193498. [PMID: 29499048 PMCID: PMC5834184 DOI: 10.1371/journal.pone.0193498] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
A growing understanding of the molecular interactions between immune effector cells and target tumor cells, coupled with refined gene therapy approaches, are giving rise to novel cancer immunotherapeutics with remarkable efficacy in the clinic against both solid and liquid tumors. While immunotherapy holds tremendous promise for treatment of certain cancers, significant challenges remain in the clinical translation to many other types of cancers and also in minimizing adverse effects. Therefore, there is an urgent need for functional potency assays, in vitro and in vivo, that could model the complex interaction of immune cells with tumor cells and can be used to rapidly test the efficacy of different immunotherapy approaches, whether it is small molecule, biologics, cell therapies or combinations thereof. Herein we report the development of an xCELLigence real-time cytolytic in vitro potency assay that uses cellular impedance to continuously monitor the viability of target tumor cells while they are being subjected to different types of treatments. Specialized microtiter plates containing integrated gold microelectrodes enable the number, size, and surface attachment strength of adherent target tumor cells to be selectively monitored within a heterogeneous mixture that includes effector cells, antibodies, small molecules, etc. Through surface-tethering approach, the killing of liquid cancers can also be monitored. Using NK92 effector cells as example, results from RTCA potency assay are very well correlated with end point data from image-based assays as well as flow cytometry. Several effector cells, i.e., PBMC, NK, CAR-T were tested and validated as well as biological molecules such as Bi-specific T cell Engagers (BiTEs) targeting the EpCAM protein expressed on tumor cells and blocking antibodies against the immune checkpoint inhibitor PD-1. Using the specifically designed xCELLigence immunotherapy software, quantitative parameters such as KT50 (the amount of time it takes to kill 50% of the target tumor cells) and % cytolysis are calculated and used for comparing the relative efficacy of different reagents. In summary, our results demonstrate the xCELLigence platform to be well suited for potency assays, providing quantitative assessment with high reproducibility and a greatly simplified work flow.
Collapse
Affiliation(s)
- Fabio Cerignoli
- ACEA Biosciences, San Diego, California, United States of America
| | - Yama A. Abassi
- ACEA Biosciences, San Diego, California, United States of America
| | | | - Garret Guenther
- ACEA Biosciences, San Diego, California, United States of America
| | - David Santa Ana
- ACEA Biosciences, San Diego, California, United States of America
| | - Diana Guimet
- ACEA Biosciences, San Diego, California, United States of America
| | - Wen Zhang
- ACEA Biosciences, San Diego, California, United States of America
| | - Jing Zhang
- ACEA Biosciences, San Diego, California, United States of America
| | - Biao Xi
- ACEA Biosciences, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Bravo DD, Chernov-Rogan T, Chen J, Wang J. An impedance-based cell contraction assay using human primary smooth muscle cells and fibroblasts. J Pharmacol Toxicol Methods 2017; 89:47-53. [PMID: 29056519 DOI: 10.1016/j.vascn.2017.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/10/2017] [Accepted: 10/18/2017] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Many cell types (including muscle cells and fibroblasts) can contract at physiological conditions and their contractility may change during tissue injury and repair or other diseases such as allergy and asthma. The conventional gel contraction assay is commonly used to monitor the cellular contractility. It is a manual assay and the experiment usually takes hours even days to complete. As its readout is not always accurate and reliable, the gel contraction assay is often used to qualitatively (but not quantitatively) characterize cellular contractility under various conditions. METHOD To overcome the limits of the gel contraction assay, we developed an impedance-based contraction assay using the xCELLigence RTCA MP system. This technology utilizes special 96-well E-plates with gold microelectrode arrays printed in individual wells to monitor cellular adhesion by recording the electrical impedance in real time. The impedance change (percentage vs. control) can be used as the readout for cellular contraction. RESULTS We demonstrated that the impedance-based contraction assay can be performed within 2h. Using this new method, we quantitatively characterized the effects of several contractile stimulators and inhibitors on human primary bronchial smooth muscle cells and primary lung fibroblasts. DISCUSSION The impedance-based contraction assay can be applied to both basic research and drug discovery for characterizing cellular contraction quantitatively. Because it has high throughput capacity and high reproducibility, the impedance-based contraction assay is useful for high throughput functional screening in drug industry.
Collapse
Affiliation(s)
- Daniel D Bravo
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA 94080-4990, United States
| | - Tania Chernov-Rogan
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA 94080-4990, United States
| | - Jun Chen
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA 94080-4990, United States
| | - Jianyong Wang
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA 94080-4990, United States.
| |
Collapse
|
13
|
Gomes SE, Simões AES, Pereira DM, Castro RE, Rodrigues CMP, Borralho PM. miR-143 or miR-145 overexpression increases cetuximab-mediated antibody-dependent cellular cytotoxicity in human colon cancer cells. Oncotarget 2017; 7:9368-87. [PMID: 26824186 PMCID: PMC4891046 DOI: 10.18632/oncotarget.7010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/01/2016] [Indexed: 12/21/2022] Open
Abstract
miR-143 and miR-145 are downregulated in colon cancer. Here, we tested the effect of restoring these miRNAs on sensitization to cetuximab in mutant KRAS (HCT116 and SW480) and wild-type KRAS (SW48) colon cancer cells. We evaluated cetuximab-mediated antibody-dependent cellular cytotoxicity (ADCC) and the modulation of signaling pathways involved in immune effector cell-mediated elimination of cancer cells. Stable miR-143 or miR-145 overexpression increased cell sensitivity to cetuximab, resulting in a significant increase of cetuximab-mediated ADCC independently of KRAS status. Importantly, HCT116 cells overexpressing these miRNAs triggered apoptosis in result of cetuximab-mediated ADCC, effected by peripheral blood mononuclear cells (p < 0.01). This was associated with increased apoptosis and caspase-3/7 activity, and reduced Bcl-2 protein expression (p < 0.01). In addition, caspase inhibition abrogated cetuximab-mediated ADCC in HCT116 cells overexpressing either miR-143 or miR-145 (p < 0.01). Furthermore, Bcl-2 silencing led to high level of cetuximab-mediated ADCC, compared to control siRNA (p < 0.05). Importantly, granzyme B inhibition, abrogated cetuximab-mediated ADCC, reducing caspase-3/7 activity (p < 0.01). Collectively, our data suggests that re-introduction of miR-143 or miR-145 may provide a new approach for development of therapeutic strategies to re-sensitize colon cancer cells to cetuximab by stimulating cetuximab-dependent ADCC to induce cell death.
Collapse
Affiliation(s)
- Sofia E Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - André E S Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Diane M Pereira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Xu Y, Xie X, Duan Y, Wang L, Cheng Z, Cheng J. A review of impedance measurements of whole cells. Biosens Bioelectron 2016; 77:824-36. [DOI: 10.1016/j.bios.2015.10.027] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/03/2015] [Accepted: 10/09/2015] [Indexed: 11/17/2022]
|
15
|
Seidel UJE, Vogt F, Grosse-Hovest L, Jung G, Handgretinger R, Lang P. γδ T Cell-Mediated Antibody-Dependent Cellular Cytotoxicity with CD19 Antibodies Assessed by an Impedance-Based Label-Free Real-Time Cytotoxicity Assay. Front Immunol 2014; 5:618. [PMID: 25520723 PMCID: PMC4251440 DOI: 10.3389/fimmu.2014.00618] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/18/2014] [Indexed: 11/13/2022] Open
Abstract
γδ T cells are not MHC restricted, elicit cytotoxicity against various malignancies, are present in early post-transplant phases in novel stem cell transplantation strategies and have been shown to mediate antibody-dependent cellular cytotoxicity (ADCC) with monoclonal antibodies (mAbs). These features make γδ T cells promising effector cells for antibody-based immunotherapy in pediatric patients with B-lineage acute lymphoblastic leukemia (ALL). To evaluate combination of human γδ T cells with CD19 antibodies for immunotherapy of B-lineage ALL, γδ T cells were expanded after a GMP-compliant protocol and ADCC of both primary and expanded γδ T cells with an Fc-optimized CD19 antibody (4G7SDIE) and a bi-specific antibody with the specificities CD19 and CD16 (N19-C16) was evaluated in CD107a-degranulation assays and intracellular cytokine staining. CD107a, TNFα, and IFNγ expression of primary γδ T cells were significantly increased and correlated with CD16-expression of γδ T cells. γδ T cells highly expressed CD107a after expansion and no further increased expression by 4G7SDIE and N19-C16 was measured. Cytotoxicity of purified expanded γδ T cells targeting CD19-expressing cells was assessed in both europium-TDA release and in an impedance-based label-free method (using the xCELLigence system) measuring γδ T cell lysis in real-time. Albeit in the 2 h end-point europium-TDA release assay no increased lysis was observed, in real-time xCELLigence assays both significant antibody-independent cytotoxicity and ADCC of γδ T cells were observed. The xCELLigence system outperformed the end-point europium-TDA release assay in sensitivity and allows drawing of conclusions to lysis kinetics of γδ T cells over prolonged periods of time periods. Combination of CD19 antibodies with primary as well as expanded γδ T cells exhibits a promising approach, which may enhance clinical outcome of patients with pediatric B-lineage ALL and requires clinical evaluation.
Collapse
Affiliation(s)
- Ursula Jördis Eva Seidel
- Department of General Paediatrics, Oncology/Haematology, University Children's Hospital Tübingen , Tübingen , Germany
| | - Fabian Vogt
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen , Tübingen , Germany ; Partner Site Tübingen, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Tübingen , Germany
| | - Ludger Grosse-Hovest
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen , Tübingen , Germany ; SYNIMMUNE GmbH , Tübingen , Germany
| | - Gundram Jung
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen , Tübingen , Germany ; Partner Site Tübingen, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Tübingen , Germany
| | - Rupert Handgretinger
- Department of General Paediatrics, Oncology/Haematology, University Children's Hospital Tübingen , Tübingen , Germany ; Partner Site Tübingen, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Tübingen , Germany
| | - Peter Lang
- Department of General Paediatrics, Oncology/Haematology, University Children's Hospital Tübingen , Tübingen , Germany ; Partner Site Tübingen, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Tübingen , Germany
| |
Collapse
|
16
|
Liu Q, Wu C, Cai H, Hu N, Zhou J, Wang P. Cell-based biosensors and their application in biomedicine. Chem Rev 2014; 114:6423-61. [PMID: 24905074 DOI: 10.1021/cr2003129] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of the Ministry of Education, Department of Biomedical Engineering, Zhejiang University , Hangzhou 310027, China
| | | | | | | | | | | |
Collapse
|
17
|
An impedance-based cytotoxicity assay for real-time and label-free assessment of T-cell-mediated killing of adherent cells. J Immunol Methods 2014; 405:192-8. [DOI: 10.1016/j.jim.2014.01.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/16/2014] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
|
18
|
Ameri H, Liu H, Liu R, Ha Y, Paulucci-Holthauzen AA, Hu S, Motamedi M, Godley BF, Tilton RG, Zhang W. TWEAK/Fn14 pathway is a novel mediator of retinal neovascularization. Invest Ophthalmol Vis Sci 2014; 55:801-13. [PMID: 24408972 DOI: 10.1167/iovs.13-12812] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Retinal neovascularization (NV) is a major cause of vision loss in ischemia-induced retinopathy. Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and its receptor, fibroblast growth factor inducible-14 (Fn14), have been implicated in angiogenesis, but their role in retinal diseases is unknown. The goal of this study was to investigate the role of TWEAK/Fn14 pathway in retinal NV. METHODS Studies were performed in a mouse model of oxygen-induced retinopathy (OIR) and in primary human retinal microvascular endothelial cells (HRMECs). Hyperoxia treatment was initiated on postnatal day (P)14. Immunohistochemistry and quantitative PCR (qPCR) were used to assess retinal vascular changes in relation to expression of Fn14 and TWEAK. RESULTS Fibroblast growth factor-inducible 14 mRNA was prominently increased from P13 to P17 in OIR retinas, whereas TWEAK level was slightly decreased. These alterations were normalized by hyperoxia treatment and were more striking in isolated retinal vessels. There was a discernible shift in the immunoreactivity of Fn14 and TWEAK from the neuronal layers in the healthy retina to the neovascular tufts in that of OIR. Blockade of TWEAK/Fn14 significantly prevented retinal NV while slightly accelerated revascularization. In contrast, activation of Fn14 positively regulated survival pathways in the B-cell lymphoma-2 (Bcl2) family and robustly enhanced HRMEC survival. Furthermore, gene analysis revealed the regulatory region of Fn14 gene contains several conserved hypoxia inducible factor (HIF)-1α binding sites. Overexpression of HIF-1α prominently induced Fn14 expression in HRMECs. CONCLUSIONS We found that the TNF-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor inducible-14 (Fn14) pathway is involved in the development of pathologic retinal neovascularization. Hypoxia inducible factor-1α is likely implicated in the upregulation of Fn14.
Collapse
Affiliation(s)
- Hossein Ameri
- Department of Ophthalmology and Visual Sciences, the University of Texas Medical Branch, Galveston, Texas
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gu W, Zhao Y. Cellular electrical impedance spectroscopy: an emerging technology of microscale biosensors. Expert Rev Med Devices 2014; 7:767-79. [DOI: 10.1586/erd.10.47] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Abonnenc M, Borgatti M, Fabbri E, Gavioli R, Fortini C, Destro F, Altomare L, Manaresi N, Medoro G, Romani A, Tartagni M, Lo Monaco E, Giacomini P, Guerrieri R, Gambari R. Lysis-on-Chip of Single Target Cells following Forced Interaction with CTLs or NK Cells on a Dielectrophoresis-Based Array. THE JOURNAL OF IMMUNOLOGY 2013; 191:3545-52. [DOI: 10.4049/jimmunol.1300890] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Li G, Lai F, Fang Y. Modulating cell-cell communication with a high-throughput label-free cell assay. ACTA ACUST UNITED AC 2012; 17:6-15. [PMID: 22357603 DOI: 10.1177/2211068211424548] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A high-throughput label-free cell assay for modulating cell-cell communication is demonstrated with the Epic® system, a resonant waveguide grating sensor platform. Natural killer (NK) cells are known to be able to recognize abnormal cells (e.g., cancer cells and cells presenting intercellular adhesion molecule 1 [ICAM1] through cell surface receptors) and kill them. In this study, the effect of effecter cells NK92MI on two kinds of target cells, cervical cancer cells (HeLa) and Chinese hamster ovarian cells overexpressing ICAM1 (CHO-ICAM1), was examined. Living target cells' response to NK92MI cells was monitored in real time and measured as wavelength shift in picometers. The authors showed that the detectability of target cell response is affected by multiple factors: the ratio of effecter cells to target cells (E/T), the interaction time of the two types of cells, and the target cell type. For example, with the effecter cells NK92MI and the same incubation time of 16 h, a minimal E/T ratio of 1 is required to detect HeLa cell response, whereas an E/T of 0.5 is sufficient to detect CHO-ICAM1 cell response. The authors confirmed that NK92MI cell-mediated target cell cytotoxicity results in negative optical signals and is associated with apoptosis mainly through caspase pathways. Distinct optical signals could be generated with the pretreatment of the target cells with various known pharmaceutical reagents, making the assay useful for discovering new chemicals that may affect cell-cell communications.
Collapse
Affiliation(s)
- Guangshan Li
- Corning Inc., Biochemical Technologies, Corning, NY 14831, USA.
| | | | | |
Collapse
|
22
|
Abstract
Development of specific immunotherapy for colorectal cancer (CRC) will require identification of antigens selectively or exclusively expressed on CRC cells and strategies to induce and enhance immune responses against these antigenic targets. Cancer-testis (C-T) antigens are proving to be excellent targets for immunotherapy of solid tumors such as melanoma, but their clinical utility for treatment of CRC has to date been limited by their infrequent expression in CRC cells. Here we report that the hypomethylating agent 5-aza-2'-deoxycytidine (DAC) induces expression of NY-ESO-1 and other C-T genes in CRC cells both in vitro and in vivo in a dose-dependent manner but has negligible effects on the expression of C-T genes in normal nontransformed cells such as fibroblasts. The induction by DAC of NY-ESO-1 expression in CRC cells persists over 100 days after DAC exposure and is associated with increased levels of NY-ESO-1 protein. CRC cells exposed to DAC at concentrations that can be readily achieved in vivo are rendered susceptible to major histocompatibility complex-restricted recognition by CD8 NY-ESO-1-specific T cells. We also demonstrate that retroviral transduction of polyclonal peripheral blood T cells from a metastatic CRC patient with the T-cell receptor α-chain and β-chain genes encoding a human leukocyte antigen-A2-restricted, NY-ESO-1157-165-specific T-cell receptor can be used to generate both CD8 and CD4 NY-ESO-1157-165-specific T cells that selectively recognize DAC-treated CRC but not nontransformed cells. Collectively, these results suggest that the combination of epigenetic modulation and adoptive transfer of genetically engineered T lymphocytes may enable specific immunotherapy for CRC.
Collapse
|
23
|
Kondakov SE, Mel’nikov MY, Fedorenko KG, Prokoptseva OS. Metrological approaches to drug development. Fast screening using universal biosensors at the stage of drug development. RUSS J GEN CHEM+ 2012. [DOI: 10.1134/s1070363212030322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Chen H, Cui L, Jiang XY, Pang YQ, Tang GL, Hou HW, Jiang JH, Hu QY. Evaluation of the cytotoxicity of cigarette smoke condensate by a cellular impedance biosensor. Food Chem Toxicol 2012; 50:612-8. [PMID: 22142689 DOI: 10.1016/j.fct.2011.11.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/02/2011] [Accepted: 11/23/2011] [Indexed: 12/28/2022]
Abstract
In this study, a cytotoxicity assay was developed for profiling the cytotoxicity of cigarette smoke condensates (CSCs) base on a cellular impedance biosensor (CIB). Compared with the traditional in vitro cytotoxicity assays, this CIB-based method offered distinct advantages in real-time kinetic measurement which provided a comprehensive understanding of cellular responses for the entire duration of the experiment and prediction of the potential mechanism of action of a given treatment. The time-dependent cell response profiles provided valid evidences for optimization of cell number per well, cell quality control, and identification of the optimal time points for compound treatment and endpoint assays. According to the time dependent IC50 values, the CIB could provide dynamic information that can be used to identify maximum toxicity of cigarette smoke and reversibility of the toxic effects which are difficult to achieve by the endpoint assays. The comparative IC50 values indicated that the as-developed biosensor offered analytical results in good consistency with the commonly used NRU method. The features of the CIB-based cytotoxicity assay, such as no cell labeling, automatic detection, and easy operation, give this assay potential to become routine setting for evaluating the cytotoxicity of CSCs.
Collapse
Affiliation(s)
- Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Weiland T, Berger A, Essmann F, Lauer UM, Bitzer M, Venturelli S. Kinetic tracking of therapy-induced senescence using the real-time cell analyzer single plate system. Assay Drug Dev Technol 2011; 10:289-95. [PMID: 22192307 DOI: 10.1089/adt.2011.0402] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In recent years, terminal growth arrest, that is, senescence, especially therapy-induced senescence (TIS), has become a major subject in cancer research and several fields of life sciences. Senescence is characterized by a specific set of morphological and biochemical changes. However, methods that evidence senescence induction are still very limited and show large variation between individual examiners. Most notably, these assays are classical endpoint assays, and, therefore, screening for senescence is time consuming and expensive. Here, we describe an efficient, simple, and objective method to screen for TIS over time by modifying the Real-Time Cell Analyzer SP system, thus enabling to pin point the induction of senescence. This method continuously detects the cell's impedance in each well of a 96-microwell plate that allows to observe increment of cell size, a hallmark feature of cellular senescence. This technique is suitable for high-throughput TIS screening by measuring several compounds, small molecules, and/or cell lines simultaneously.
Collapse
Affiliation(s)
- Timo Weiland
- Department of Internal Medicine I, Medical University Clinic, Tuebingen, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
INTRODUCTION The need to improve drug research and development productivity continues to drive innovation in pharmacological assays. Technologies that can leverage the advantages of both molecular and phenotypic assays would hold great promise for discovery of new medicines. AREAS COVERED This article briefly reviews current label-free platforms for cell-based assays and is primarily focused on fundamental aspects of these assays using dynamic mass redistribution technology as an example. The article also presents strategies for relating label-free profiles to molecular modes of actions of drugs. EXPERT OPINION Emerging evidence suggests that label-free cellular assays are phenotypic in nature, yet permit molecular mechanistic deconvolution. Together with unique competency in throughput, sensitivity and pathway coverages, label-free cellular assays allow users to screen drugs against endogenous receptors in native cells (including disease relevant primary cells) and determine the molecular modes of action of drug molecules. However, there are challenges for label-free in both basic research and drug discovery: the deconvolution of the cellular and molecular mechanisms for the biosensor signatures of receptor-drug interactions, new methodologies for data analysis and the development of new biosensor technologies. These challenges will need to be met for the wide adoption of these assays in drug discovery.
Collapse
Affiliation(s)
- Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning, Inc. , Corning, NY 14831 , USA
| |
Collapse
|
27
|
Fishel ML, Jiang Y, Rajeshkumar NV, Scandura G, Sinn AL, He Y, Shen C, Jones DR, Pollok KE, Ivan M, Maitra A, Kelley MR. Impact of APE1/Ref-1 redox inhibition on pancreatic tumor growth. Mol Cancer Ther 2011; 10:1698-708. [PMID: 21700832 PMCID: PMC3170439 DOI: 10.1158/1535-7163.mct-11-0107] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer is especially a deadly form of cancer with a survival rate less than 2%. Pancreatic cancers respond poorly to existing chemotherapeutic agents and radiation, and progress for the treatment of pancreatic cancer remains elusive. To address this unmet medical need, a better understanding of critical pathways and molecular mechanisms involved in pancreatic tumor development, progression, and resistance to traditional therapy is therefore critical. Reduction-oxidation (redox) signaling systems are emerging as important targets in pancreatic cancer. AP endonuclease1/Redox effector factor 1 (APE1/Ref-1) is upregulated in human pancreatic cancer cells and modulation of its redox activity blocks the proliferation and migration of pancreatic cancer cells and pancreatic cancer-associated endothelial cells in vitro. Modulation of APE1/Ref-1 using a specific inhibitor of APE1/Ref-1's redox function, E3330, leads to a decrease in transcription factor activity for NFκB, AP-1, and HIF1α in vitro. This study aims to further establish the redox signaling protein APE1/Ref-1 as a molecular target in pancreatic cancer. Here, we show that inhibition of APE1/Ref-1 via E3330 results in tumor growth inhibition in cell lines and pancreatic cancer xenograft models in mice. Pharmacokinetic studies also show that E3330 attains more than10 μmol/L blood concentrations and is detectable in tumor xenografts. Through inhibition of APE1/Ref-1, the activity of NFκB, AP-1, and HIF1α that are key transcriptional regulators involved in survival, invasion, and metastasis is blocked. These data indicate that E3330, inhibitor of APE1/Ref-1, has potential in pancreatic cancer and clinical investigation of APE1/Ref-1 molecular target is warranted.
Collapse
Affiliation(s)
- Melissa L Fishel
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University of School of Medicine, 980 W. Walnut, R3-548, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells. Biomed Microdevices 2011; 13:1075-88. [DOI: 10.1007/s10544-011-9577-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
Yamashita-Kashima Y, Iijima S, Yorozu K, Furugaki K, Kurasawa M, Ohta M, Fujimoto-Ouchi K. Pertuzumab in Combination with Trastuzumab Shows Significantly Enhanced Antitumor Activity in HER2-Positive Human Gastric Cancer Xenograft Models. Clin Cancer Res 2011; 17:5060-70. [DOI: 10.1158/1078-0432.ccr-10-2927] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Atienzar FA, Tilmant K, Gerets HH, Toussaint G, Speeckaert S, Hanon E, Depelchin O, Dhalluin S. The use of real-time cell analyzer technology in drug discovery: defining optimal cell culture conditions and assay reproducibility with different adherent cellular models. ACTA ACUST UNITED AC 2011; 16:575-87. [PMID: 21518825 DOI: 10.1177/1087057111402825] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The use of impedance-based label-free technology applied to drug discovery is nowadays receiving more and more attention. Indeed, such a simple and noninvasive assay that interferes minimally with cell morphology and function allows one to perform kinetic measurements and to obtain information on proliferation, migration, cytotoxicity, and receptor-mediated signaling. The objective of the study was to further assess the usefulness of a real-time cell analyzer (RTCA) platform based on impedance in the context of quality control and data reproducibility. The data indicate that this technology is useful to determine the best coating and cellular density conditions for different adherent cellular models including hepatocytes, cardiomyocytes, fibroblasts, and hybrid neuroblastoma/neuronal cells. Based on 31 independent experiments, the reproducibility of cell index data generated from HepG2 cells exposed to DMSO and to Triton X-100 was satisfactory, with a coefficient of variation close to 10%. Cell index data were also well reproduced when cardiomyocytes and fibroblasts were exposed to 21 compounds three times (correlation >0.91, p < 0.0001). The data also show that a cell index decrease is not always associated with cytotoxicity effects and that there are some confounding factors that can affect the analysis. Finally, another drawback is that the correlation analysis between cellular impedance measurements and classical toxicity endpoints has been performed on a limited number of compounds. Overall, despite some limitations, the RTCA technology appears to be a powerful and reliable tool in drug discovery because of the reasonable throughput, rapid and efficient performance, technical optimization, and cell quality control.
Collapse
|
31
|
Denelavas A, Weibel F, Prummer M, Imbach A, Clerc RG, Apfel CM, Hertel C. Real-time cellular impedance measurements detect Ca(2+) channel-dependent oscillations of morphology in human H295R adrenoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:754-62. [PMID: 21262275 DOI: 10.1016/j.bbamcr.2011.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/07/2010] [Accepted: 01/13/2011] [Indexed: 01/15/2023]
Abstract
Endocrine cells, such as H295R have been widely used to study secretion of steroid and other hormones. Exocytosis-dependent hormone release is accompanied by an increase in plasma membrane surface area and a decrease in vesicle content. Recovery of vesicles and decrease in plasma membrane area is achieved by endocytotic processes. These changes in the extent of the surface area lead to morphological changes which can be determined by label-free real-time impedance measurements. Exo- and endocytosis have been described to be triggered by activation of L-type Ca(2+) channels. The present study demonstrates that activation of L-type calcium channels induces prolonged oscillating changes in cellular impedance. The data support the hypothesis that a tight regulation of the intracellular Ca(2+) concentration is a prerequisite for the observed cellular impedance oscillations. Furthermore evidence is presented for a mechanism in which the oscillations depend on a Ca(2+)-triggered calmodulin-dependent cascade involving myosin light chain kinase, nonmuscle myosin II and ultimately actin polymerization, a known determinant for cell shape changes and exocytosis in secretory cells. The described assay provides a method to determine continuously prolonged changes in cellular morphology such as exo/endocytosis cycles. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Athanasios Denelavas
- Metabolic Diseases, F. Hoffmann-La Roche Ltd., Pharma Research and Early Development, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Label-free biosensors for studying cell biology have finally come of age. Recent developments have advanced the biosensors from low throughput and high maintenance research tools to high throughput and low maintenance screening platforms. In parallel, the biosensors have evolved from an analytical tool solely for molecular interaction analysis to powerful platforms for studying cell biology at the whole cell level. This paper presents historical development, detection principles, and applications in cell biology of label-free biosensors. Future perspectives are also discussed.
Collapse
Affiliation(s)
- Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Inc., Corning, NY 14831, USA
| |
Collapse
|
33
|
Fang Y. Label-Free and Non-invasive Biosensor Cellular Assays for Cell Adhesion. JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY 2010; 24:1011-1021. [DOI: 10.1163/016942409x12598231568267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
34
|
Kute TE, Savage L, Stehle JR, Kim-Shapiro JW, Blanks MJ, Wood J, Vaughn JP. Breast tumor cells isolated from in vitro resistance to trastuzumab remain sensitive to trastuzumab anti-tumor effects in vivo and to ADCC killing. Cancer Immunol Immunother 2009; 58:1887-96. [PMID: 19340424 PMCID: PMC11030142 DOI: 10.1007/s00262-009-0700-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 03/13/2009] [Indexed: 02/07/2023]
Abstract
An understanding of model systems of trastuzumab (Herceptin) resistance is of great importance since the humanized monoclonal antibody is now used as first line therapy with paclitaxel in patients with metastatic Her2 overexpressing breast cancer, and the majority of their tumors has innate resistance or develops acquired resistance to the treatment. Previously, we selected trastuzumab-resistant clonal cell lines in vitro from trastuzumab-sensitive parental BT-474 cells and showed that cloned trastuzumab-resistant cell lines maintain similar levels of the extracellular Her2 receptor, bind trastuzumab as efficiently as the parental cells, but continue to grow in the presence of trastuzumab and display cell cycle profiles and growth rates comparable to parental cells grown in the absence of trastuzumab (Kute et al. in Cytometry A 57:86-93, 2004). We now show that trastuzumab-resistant and trastuzumab-sensitive cells both surprisingly display trastuzumab-mediated growth inhibition in athymic nude mice. This demonstrates that resistance developed in vitro is not predictive of resistance in vivo. The observation that in vitro resistant cells are sensitive to trastuzumab in vivo could be explained by antibody dependent cellular cytotoxicity (ADCC). Therefore, both parental and trastuzumab-resistant cells were assayed for ADCC in real time on electroplates with and without trastuzumab in the presence of a natural killer cell line (NK-92), and granulocyte or mononuclear cellular fractions isolated from human peripheral blood. Mononuclear cells and NK-92 cells were more effective in killing both parental and trastuzumab-resistant cells in the presence of trastuzumab. Both trastuzumab-resistant cells and trastuzumab-sensitive cells showed similar susceptibility to ADCC despite displaying divergent growth responses to trastuzumab. The granulocyte fraction was able to kill these cells with equal efficacy in the presence or absence of trastuzumab. These results support a model of trastuzumab tumor cell killing in vivo mediated primarily by ADCC from the mononuclear fraction of innate immune cells and suggest that in the clinical setting not only should changes in signaling transduction pathways be studied in acquired tumor resistance to trastuzumab, but also mechanisms by which tumors impede immune function should be evaluated.
Collapse
Affiliation(s)
- Timothy E. Kute
- Department of Pathology, Wake Forest University, Winston-Salem, NC USA
| | - Lori Savage
- Department of Pathology, Wake Forest University, Winston-Salem, NC USA
| | - John R. Stehle
- Department of Pathology, Wake Forest University, Winston-Salem, NC USA
| | | | - Michael J. Blanks
- Department of Pathology, Wake Forest University, Winston-Salem, NC USA
| | - James Wood
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC USA
| | - James P. Vaughn
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC USA
| |
Collapse
|
35
|
Salo S, Boutaud A, Hansen AJ, He L, Sun Y, Morales S, Venturini A, Martin P, Nokelainen P, Betsholtz C, Mathiasen IS, Tryggvason K. Antibodies blocking adhesion and matrix binding domains of laminin-332 inhibit tumor growth and metastasis in vivo. Int J Cancer 2009; 125:1814-25. [PMID: 19582877 DOI: 10.1002/ijc.24532] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Laminin-332 (LN-332), which is essential for epithelial cell adhesion and migration, is up-regulated in most invasive carcinomas. Association between LN-332 and carcinoma cell integrins and stroma collagen is thought to be important for tumor growth and metastasis. Here, we show that function blocking LN-332 antibodies interfering with cellular adhesion and migration in vitro evoke apoptotic pathways. The antibodies also target epithelial tumors in vivo. Antibodies against the cell binding domain of the alpha3 chain of LN-332 inhibited tumor growth by up to 68%, and antibodies against the matrix binding domains of the beta3 and gamma2 chains significantly decreased lung metastases. The LN-332 antibodies appear to induce tumor cell anoikis and subsequent programmed cell death and reduce migration by interfering with tumor cell matrix interactions.
Collapse
Affiliation(s)
- Sirpa Salo
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Qavi AJ, Washburn AL, Byeon JY, Bailey RC. Label-free technologies for quantitative multiparameter biological analysis. Anal Bioanal Chem 2009; 394:121-35. [PMID: 19221722 PMCID: PMC2667559 DOI: 10.1007/s00216-009-2637-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 01/12/2009] [Accepted: 01/20/2009] [Indexed: 11/26/2022]
Abstract
In the postgenomic era, information is king and information-rich technologies are critically important drivers in both fundamental biology and medicine. It is now known that single-parameter measurements provide only limited detail and that quantitation of multiple biomolecular signatures can more fully illuminate complex biological function. Label-free technologies have recently attracted significant interest for sensitive and quantitative multiparameter analysis of biological systems. There are several different classes of label-free sensors that are currently being developed both in academia and in industry. In this critical review, we highlight, compare, and contrast some of the more promising approaches. We describe the fundamental principles of these different methods and discuss advantages and disadvantages that might potentially help one in selecting the appropriate technology for a given bioanalytical application.
Collapse
Affiliation(s)
- Abraham J. Qavi
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801
| | - Adam L. Washburn
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801
| | - Ji-Yeon Byeon
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801
| | - Ryan C. Bailey
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801
| |
Collapse
|
37
|
|
38
|
Xi B, Yu N, Wang X, Xu X, Abassi Y. The application of cell-based label-free technology in drug discovery. Biotechnol J 2008; 3:484-95. [DOI: 10.1002/biot.200800020] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Spegel C, Heiskanen A, Skjolding L, Emnéus J. Chip Based Electroanalytical Systems for Cell Analysis. ELECTROANAL 2008. [DOI: 10.1002/elan.200704130] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|