1
|
Kul E, Okoroafor U, Dougherty A, Palkovic L, Li H, Valiño-Ramos P, Aberman L, Young SM. Development of adenoviral vectors that transduce Purkinje cells and other cerebellar cell-types in the cerebellum of a humanized mouse model. Mol Ther Methods Clin Dev 2024; 32:101243. [PMID: 38605812 PMCID: PMC11007541 DOI: 10.1016/j.omtm.2024.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Viral vector gene therapy has immense promise for treating central nervous system (CNS) disorders. Although adeno-associated virus vectors (AAVs) have had success, their small packaging capacity limits their utility to treat the root cause of many CNS disorders. Adenoviral vectors (Ad) have tremendous potential for CNS gene therapy approaches. Currently, the most common vectors utilize the Group C Ad5 serotype capsid proteins, which rely on the Coxsackievirus-Adenovirus receptor (CAR) to infect cells. However, these Ad5 vectors are unable to transduce many neuronal cell types that are dysfunctional in many CNS disorders. The human CD46 (hCD46) receptor is widely expressed throughout the human CNS and is the primary attachment receptor for many Ad serotypes. Therefore, to overcome the current limitations of Ad vectors to treat CNS disorders, we created chimeric first generation Ad vectors that utilize the hCD46 receptor. Using a "humanized" hCD46 mouse model, we demonstrate these Ad vectors transduce cerebellar cell types, including Purkinje cells, that are refractory to Ad5 transduction. Since Ad vector transduction properties are dependent on their capsid proteins, these chimeric first generation Ad vectors open new avenues for high-capacity helper-dependent adenovirus (HdAd) gene therapy approaches for cerebellar disorders and multiple neurological disorders.
Collapse
Affiliation(s)
- Emre Kul
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Uchechi Okoroafor
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
- Cell Developmental Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| | - Amanda Dougherty
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Lauren Palkovic
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Hao Li
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Paula Valiño-Ramos
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Leah Aberman
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel M. Young
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
- Cell Developmental Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Xie ST, Fan WC, Zhao XS, Ma XY, Li ZL, Zhao YR, Yang F, Shi Y, Rong H, Cui ZS, Chen JY, Li HZ, Yan C, Zhang Q, Wang JJ, Zhang XY, Gu XP, Ma ZL, Zhu JN. Proinflammatory activation of microglia in the cerebellum hyperexcites Purkinje cells to trigger ataxia. Pharmacol Res 2023; 191:106773. [PMID: 37068531 DOI: 10.1016/j.phrs.2023.106773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Specific medications to combat cerebellar ataxias, a group of debilitating movement disorders characterized by difficulty with walking, balance and coordination, are still lacking. Notably, cerebellar microglial activation appears to be a common feature in different types of ataxic patients and rodent models. However, direct evidence that cerebellar microglial activation in vivo is sufficient to induce ataxia is still lacking. Here, by employing chemogenetic approaches to manipulate cerebellar microglia selectively and directly, we found that specific chemogenetic activation of microglia in the cerebellar vermis directly leads to ataxia symptoms in wild-type mice and aggravated ataxic motor deficits in 3-acetylpyridine (3-AP) mice, a classic mouse model of cerebellar ataxia. Mechanistically, cerebellar microglial proinflammatory activation induced by either chemogenetic M3D(Gq) stimulation or 3-AP modeling hyperexcites Purkinje cells (PCs), which consequently triggers ataxia. Blockade of microglia-derived TNF-α, one of the most important proinflammatory cytokines, attenuates the hyperactivity of PCs driven by microglia. Moreover, chemogenetic inhibition of cerebellar microglial activation or suppression of cerebellar microglial activation by PLX3397 and minocycline reduces the production of proinflammatory cytokines, including TNF-α, to effectively restore the overactivation of PCs and alleviate motor deficits in 3-AP mice. These results suggest that cerebellar microglial activation may aggravate the neuroinflammatory response and subsequently induce dysfunction of PCs, which in turn triggers ataxic motor deficits. Our findings thus reveal a causal relationship between proinflammatory activation of cerebellar microglia and ataxic motor symptoms, which may offer novel evidence for therapeutic intervention for cerebellar ataxias by targeting microglia and microglia-derived inflammatory mediators.
Collapse
Affiliation(s)
- Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wen-Chu Fan
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xian-Sen Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiao-Yang Ma
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ze-Lin Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan-Ran Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Fa Yang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ying Shi
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hui Rong
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhi-San Cui
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jun-Yi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Xiao-Ping Gu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Zheng-Liang Ma
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Tada T, Norton TD, Leibowitz R, Landau NR. Directly injected lentiviral vector-based T cell vaccine protects mice against acute and chronic viral infection. JCI Insight 2022; 7:161598. [PMID: 35972807 PMCID: PMC9675446 DOI: 10.1172/jci.insight.161598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/11/2022] [Indexed: 12/01/2022] Open
Abstract
Lentiviral vector–based dendritic cell vaccines induce protective T cell responses against viral infection and cancer in animal models. In this study, we tested whether preventative and therapeutic vaccination could be achieved by direct injection of antigen-expressing lentiviral vector, obviating the need for ex vivo transduction of dendritic cells. Injected lentiviral vector preferentially transduced splenic dendritic cells and resulted in long-term expression. Injection of a lentiviral vector encoding an MHC class I–restricted T cell epitope of lymphocytic choriomeningitis virus (LCMV) and CD40 ligand induced an antigen-specific cytolytic CD8+ T lymphocyte response that protected the mice from infection. The injection of chronically infected mice with a lentiviral vector encoding LCMV MHC class I and II T cell epitopes and a soluble programmed cell death 1 microbody rapidly cleared the virus. Vaccination by direct injection of lentiviral vector was more effective in sterile alpha motif and HD-domain containing protein 1–knockout (SAMHD1-knockout) mice, suggesting that lentiviral vectors containing Vpx, a lentiviral protein that increases the efficiency of dendritic cell transduction by inducing the degradation of SAMHD1, would be an effective strategy for the treatment of chronic disease in humans.
Collapse
Affiliation(s)
- Takuya Tada
- Department of Medicine, NYU Grossman School of Medicine, New York, United States of America
| | - Thomas D Norton
- Department of Medicine, NYU Grossman School of Medicine, New York, United States of America
| | - Rebecca Leibowitz
- Department of Microbiology, NYU Grossman School of Medicine, New York, United States of America
| | - Nathaniel R Landau
- Department of Microbiology, NYU Grossman School of Medicine, New York, United States of America
| |
Collapse
|
4
|
Cwetsch AW, Pinto B, Savardi A, Cancedda L. In vivo methods for acute modulation of gene expression in the central nervous system. Prog Neurobiol 2018; 168:69-85. [PMID: 29694844 PMCID: PMC6080705 DOI: 10.1016/j.pneurobio.2018.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
Abstract
Accurate and timely expression of specific genes guarantees the healthy development and function of the brain. Indeed, variations in the correct amount or timing of gene expression lead to improper development and/or pathological conditions. Almost forty years after the first successful gene transfection in in vitro cell cultures, it is currently possible to regulate gene expression in an area-specific manner at any step of central nervous system development and in adulthood in experimental animals in vivo, even overcoming the very poor accessibility of the brain. Here, we will review the diverse approaches for acute gene transfer in vivo, highlighting their advantages and disadvantages with respect to the efficiency and specificity of transfection as well as to brain accessibility. In particular, we will present well-established chemical, physical and virus-based approaches suitable for different animal models, pointing out their current and future possible applications in basic and translational research as well as in gene therapy.
Collapse
Affiliation(s)
- Andrzej W Cwetsch
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Bruno Pinto
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Annalisa Savardi
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Laura Cancedda
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; DulbeccoTelethon Institute, Italy.
| |
Collapse
|
5
|
Cell-cycle-independent transitions in temporal identity of mammalian neural progenitor cells. Nat Commun 2016; 7:11349. [PMID: 27094546 PMCID: PMC4842982 DOI: 10.1038/ncomms11349] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/17/2016] [Indexed: 12/30/2022] Open
Abstract
During cerebral development, many types of neurons are sequentially generated by self-renewing progenitor cells called apical progenitors (APs). Temporal changes in AP identity are thought to be responsible for neuronal diversity; however, the mechanisms underlying such changes remain largely unknown. Here we perform single-cell transcriptome analysis of individual progenitors at different developmental stages, and identify a subset of genes whose expression changes over time but is independent of differentiation status. Surprisingly, the pattern of changes in the expression of such temporal-axis genes in APs is unaffected by cell-cycle arrest. Consistent with this, transient cell-cycle arrest of APs in vivo does not prevent descendant neurons from acquiring their correct laminar fates. Analysis of cultured APs reveals that transitions in AP gene expression are driven by both cell-intrinsic and -extrinsic mechanisms. These results suggest that the timing mechanisms controlling AP temporal identity function independently of cell-cycle progression and Notch activation mode.
Collapse
|
6
|
Fujita-Jimbo E, Momoi T. Specific expression of FOXP2 in cerebellum improves ultrasonic vocalization in heterozygous but not in homozygous Foxp2 (R552H) knock-in pups. Neurosci Lett 2014; 566:162-6. [PMID: 24607928 DOI: 10.1016/j.neulet.2014.02.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/14/2014] [Accepted: 02/26/2014] [Indexed: 01/11/2023]
Abstract
The R553H mutation has been found in the FOXP2 gene of patients with speech-language disorder. Foxp2(R552H) knock-in (KI) mice exhibit poor dendritic development of Purkinje cells in the cerebellum and impaired ultrasonic vocalization (USV), which is related to human speech and language; compared with wild-type mice, heterozygous Foxp2(R552H)-KI pups exhibit the reduced number of whistle-type USVs and the increased short-type ones, while homozygous pups exhibit only click-type USVs but no whistle-type or short-type ones. To make clear the relationship between the role of Foxp2 in the cerebellum and whistle-type USVs activity, we prepared transgenic (Tg) mice specifically expressing human FOXP2-myc in cerebellum (Pcp2-FOXP2-myc-Tg mice) by using purkinje cell protein-2 (Pcp2) promoter. FOXP2-myc expression in the cerebellum increased the relative numbers of whistle-type USVs in the heterozygous Foxp2(R552H)-KI pups and recovered their USVs but did not in the homozygous ones. Foxp2 in the cerebellum may pertain to the brain network engaged in whistle-type USVs activities including modification, but not their production. There may be common molecular contribution of Purkinje cells to human FOXP2-mediated speech-language and mouse Foxp2-mediated USVs.
Collapse
Affiliation(s)
- Eriko Fujita-Jimbo
- Center for Medical Science, International University, Kitakanemaru, Ohtawara 3248501, Tochigi, Japan; Department of Pediatrics, Jichi Medical University, Yakushiji, Shimotsukeshi 3290498, Tochigi, Japan
| | - Takashi Momoi
- Center for Medical Science, International University, Kitakanemaru, Ohtawara 3248501, Tochigi, Japan.
| |
Collapse
|
7
|
Nishiyama J, Hayashi Y, Nomura T, Miura E, Kakegawa W, Yuzaki M. Selective and regulated gene expression in murine Purkinje cells by in utero electroporation. Eur J Neurosci 2012; 36:2867-76. [PMID: 22775058 DOI: 10.1111/j.1460-9568.2012.08203.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cerebellar Purkinje cells, which convey the only output from the cerebellar cortex, play an essential role in cerebellar functions, such as motor coordination and motor learning. To understand how Purkinje cells develop and function in the mature cerebellum, an efficient method for molecularly perturbing them is needed. Here we demonstrate that Purkinje cell progenitors at embryonic day (E)11.5 could be efficiently and preferentially transfected by spatially directed in utero electroporation (IUE) with an optimized arrangement of electrodes. Electrophysiological analyses indicated that the electroporated Purkinje cells maintained normal membrane properties, synaptic responses and synaptic plasticity at postnatal days 25-28. By combining the L7 promoter and inducible Cre/loxP system with IUE, transgenes were expressed even more specifically in Purkinje cells and in a temporally controlled manner. We also show that three different fluorescent proteins could be simultaneously expressed, and that Bassoon, a large synaptic protein, could be expressed in the electroporated Purkinje cells. Moreover, phenotypes of staggerer mutant mice, which have a deletion in the gene encoding retinoid-related orphan receptor α (RORα1), were recapitulated by electroporating a dominant-negative form of RORα1 into Purkinje cells at E11.5. Together, these results indicate that this new IUE protocol, which allows the selective, effective and temporally regulated expression of multiple foreign genes transfected into Purkinje cell progenitors in vivo, without changing the cells' physiological characteristics, is a powerful tool for elucidating the molecular mechanisms underlying early Purkinje cell developmental events, such as dendritogenesis and migration, and synaptic plasticity in mature Purkinje cells.
Collapse
Affiliation(s)
- Jun Nishiyama
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Pfrieger FW, Slezak M. Genetic approaches to study glial cells in the rodent brain. Glia 2011; 60:681-701. [PMID: 22162024 DOI: 10.1002/glia.22283] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/18/2011] [Indexed: 01/02/2023]
Abstract
The development, function, and pathology of the brain depend on interactions of neurons and different types of glial cells, namely astrocytes, oligodendrocytes, microglia, and ependymal cells. Understanding neuron-glia interactions in vivo requires dedicated experimental approaches to manipulate each cell type independently. In this review, we first summarize techniques that allow for cell-specific gene modification including targeted mutagenesis and viral transduction. In the second part, we describe the genetic models that allow to target the main glial cell types in the central nervous system. The existing arsenal of approaches to study glial cells in vivo and its expansion in the future are key to understand neuron-glia interactions under normal and pathologic conditions.
Collapse
Affiliation(s)
- Frank W Pfrieger
- CNRS UPR 3212, University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI), 67084 Strasbourg, France.
| | | |
Collapse
|
9
|
Namba K, Sugihara I, Hashimoto M. Close correlation between the birth date of Purkinje cells and the longitudinal compartmentalization of the mouse adult cerebellum. J Comp Neurol 2011; 519:2594-614. [PMID: 21456012 DOI: 10.1002/cne.22640] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The adult cerebellum is organized into longitudinal compartments that are revealed by specific axonal projections (olivocerebellar and corticonuclear projections). These compartments in the adult cerebellum are closely correlated with the striped expression of zebrin II (aldolase C), a late-onset marker of Purkinje cells. Similarly, the embryonic cerebellum is organized into longitudinal compartments that are revealed by striped expression of other genes (early-onset markers). The cerebellar compartments are thought to be the basic and functional subdivisions of the cerebellum. However, the relationship between the embryonic (early-onset) and the adult (late-onset) compartments has remained unknown, because the pattern of the embryonic compartments is distinct from that of the adult compartments. To examine this issue, we labeled Purkinje cells (PCs) born at embryonic day (E) 10.5, E11.5, and E12.5 by using an adenoviral vector and traced their fated positions in the adult cerebellum. By comparing the striped distribution of each cohort of birth date-related PCs with the striped pattern of zebrin II immunoreactivity (zebrin II bands) in the entire adult cerebellum, we found that the striped distribution of PCs correlated strikingly with zebrin II bands. Generally, a single early-onset compartment was transformed directly into a single late-onset compartment. Therefore, our observation also indicated the close correlation between the compartments formed by birth date-related PCs and olivocerebellar projections. Furthermore, we found that the cerebellum was composed of three units showing lateral-to-medial developmental gradients, as revealed by the birth dates of PCs. The results suggest that PC birth dates play an important role in organizing cerebellar compartmentalization.
Collapse
Affiliation(s)
- Kazunori Namba
- Hashimoto Research Unit, RIKEN BSI, Saitama 351-0198, Japan
| | | | | |
Collapse
|
10
|
Louboutin JP, Reyes BAS, Van Bockstaele EJ, Strayer DS. Gene transfer to the cerebellum. THE CEREBELLUM 2011; 9:587-97. [PMID: 20700772 DOI: 10.1007/s12311-010-0202-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There are several diseases for which gene transfer therapy to the cerebellum might be practicable. In these studies, we used recombinant Tag-deleted SV40-derived vectors (rSV40s) to study gene delivery targeting the cerebellum. These vectors transduce neurons and microglia very effectively in vitro and in vivo, and so we tested them to evaluate gene transfer to the cerebellum in vivo. Using a rSV40 vector carrying human immunodeficiency virus (HIV)-Nef with a C-terminal FLAG epitope, we characterized the distribution, duration, and cell types transduced. Rats received test and control vectors by stereotaxic injection into the cerebellum. Transgene expression was assessed 1, 2, and 4 weeks later by immunostaining of serial brain sections. FLAG epitope-expressing cells were seen, at all times after vector administration, principally detected in the Purkinje cells of the cerebellum, identified as immunopositive for calbindin. Occasional microglial cells were tranduced; transgene expression was not detected in astrocytes or oligodendrocytes. No inflammatory or other reaction was detected at any time. Thus, SV40-derived vectors can deliver effective, safe, and durable transgene expression to the cerebellum.
Collapse
Affiliation(s)
- Jean-Pierre Louboutin
- Department of Pathology, Jefferson Medical College, Thomas Jefferson University, 1020 Locust Street, Room 255, Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|
11
|
Directional gene-transfer into the brain by an adenoviral vector tagged with magnetic nanoparticles. J Neurosci Methods 2011; 194:316-20. [DOI: 10.1016/j.jneumeth.2010.10.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/28/2010] [Accepted: 10/29/2010] [Indexed: 11/24/2022]
|
12
|
Suehiro Y, Kinoshita M, Okuyama T, Shimada A, Naruse K, Takeda H, Kubo T, Hashimoto M, Takeuchi H. Transient and permanent gene transfer into the brain of the teleost fish medaka (Oryzias latipes) using human adenovirus and the Cre-loxP system. FEBS Lett 2010; 584:3545-9. [PMID: 20621097 DOI: 10.1016/j.febslet.2010.06.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/14/2010] [Accepted: 06/30/2010] [Indexed: 11/19/2022]
Abstract
In this study, we demonstrated that human type-5 adenovirus infected the brain of the teleost fish, medaka (Oryzias latipes), in vivo. Injection of adenoviral vector into the mesencephalic ventricle of medaka larvae induced the expression of reporter genes in some parts of the telencephalon, the periventricular area of the mesencephalon and diencephalon, and the cerebellum. Additionally, the Cre-loxP system works in medaka brains using transgenic medaka carrying a vector containing DsRed2, flanked by loxP sites under control of the beta-actin promoter and downstream promoterless enhanced green fluorescent protein (EGFP). We demonstrated that the presence of green fluorescence depended on injection of adenoviral vector expressing the Cre gene and confirmed that EGFP mRNA was transcribed in the virus-injected larvae.
Collapse
Affiliation(s)
- Yuji Suehiro
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
During postnatal cerebellar development, Purkinje cells form the most elaborate dendritic trees among neurons in the brain, which have been of great interest to many investigators. This article overviews various examples of cellular and molecular mechanisms of formation of Purkinje cell dendrites as well as the methodological aspects of investigating those mechanisms.
Collapse
Affiliation(s)
- Masahiko Tanaka
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| |
Collapse
|
14
|
Lentiviral vector-mediated rescue of motor behavior in spontaneously occurring hereditary ataxic mice. Neurobiol Dis 2009; 35:457-65. [DOI: 10.1016/j.nbd.2009.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 06/16/2009] [Accepted: 06/20/2009] [Indexed: 11/21/2022] Open
|
15
|
Maeda T, Lee JM, Miyagawa Y, Koga K, Kawaguchi Y, Kusakabe T. Cloning and characterization of a ribonuclease L inhibitor from the silkworm,Bombyx mori. ACTA ACUST UNITED AC 2009; 16:21-7. [PMID: 16040343 DOI: 10.1080/10425170400028871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The ribonuclease L (RNase L) pathway plays an important role in the response of cells to double-stranded RNA (dsRNA) during the events such as virus infection. Ribonuclease L inhibitor (RLI) belonging to the ABC transporter family is known as a regulator of the RNase L pathway. The homologs of RLI were reported in many organisms including the fruit fly and mosquito, but their functions in insects and arthropods have not been elucidated to date. In the present study, we cloned a cDNA of a silkworm RLI homolog, termed BmRLI, and its nucleotide sequence was determined. RT-PCR analysis revealed that the expression of BmRLI mRNA was marked in the testis, ovary and fat body. From the cDNA, recombinant protein with an apparent molecular mass of 69 kDa was expressed in Escherichia coli and cultured insect cells. Although no obvious effect of up-regulation of the BmRLI expression on RNAi was observed, its down-regulation slightly reduced RNAi efficiency.
Collapse
Affiliation(s)
- Takuji Maeda
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Hirai H. Progress in transduction of cerebellar Purkinje cells in vivo using viral vectors. THE CEREBELLUM 2009; 7:273-8. [PMID: 18418690 DOI: 10.1007/s12311-008-0012-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Expression of a foreign gene in cerebellar Purkinje cells in vivo is a powerful method for exploring the pathophysiology of the cerebellum. Although using developmental engineering many gene-modified mice have been generated, this approach is time-consuming and requires a lot of effort for crossing different lines of mice, genotyping and maintenance of animals. If a gene of interest can be transferred to and efficiently expressed in Purkinje cells of developing and mature animals, it saves much time, effort and money. Recent advances in viral vectors have markedly contributed to selective and efficient gene transfer to Purkinje cells in vivo. There are two approaches for selective gene expression in Purkinje cells: one is to take advantage of the viral tropism for Purkinje cells, which includes the tropism of adeno-associated virus and the vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped lentivirus. Another method, which might be used in combination with the first one, is utilization of a Purkinje-cell-specific promoter. Focusing mainly on these points, recent progress in viral-vector-mediated transduction of Purkinje cells in vivo is reviewed.
Collapse
Affiliation(s)
- Hirokazu Hirai
- Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
17
|
Shiba K, Torashima T, Hirai H, Ogawa K, Akhter N, Nakajima K, Kinuya S, Mori H. Potential usefulness of D2R reporter gene imaging by IBF as gene therapy monitoring for cerebellar neurodegenerative diseases. J Cereb Blood Flow Metab 2009; 29:434-40. [PMID: 19002197 DOI: 10.1038/jcbfm.2008.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We investigated a gene expression imaging method to examine the level of therapeutic gene expression in the cerebellum. Using a human immunodeficiency virus derived lentivial vector, we expressed the dopamine D(2) receptor (D(2)R) as a reporter protein to mouse cerebellar Purkinje cells. Biodistribution and ex vivo autoradiography studies were performed by giving [(125)I]5-iodo-7-N-[(1-ethyl-2-pyrrolidinyl)methyl]carboxamide-2,3-dihydrobenzofuran ([(125)I]IBF) (1.85 MBq), as a radioactive D(2)R ligand, to model mice expressing the D(2)R with an HA tag (HA-D(2)R) in the cerebellum. In this study, [(125)I]IBF was bound to the D(2)R expressed in the cerebellum of the model mice selectively. Immunostaining was performed to confirm the HA-D(2)R expression in the cerebellum of the model mice. A significant correlation (r=0.900, P<0.001) between areas that expressed HA-D(2)R by immunostaining and areas in which [(125)I]IBF accumulated by the ex vivo autoradiograms was found. These results indicated that radioiodinated IBF is useful as a reporter probe to detect D(2)R reporter gene expression, which can be used for monitoring therapeutic gene expression in the cerebellum.
Collapse
Affiliation(s)
- Kazuhiro Shiba
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Takayama K, Torashima T, Horiuchi H, Hirai H. Purkinje-cell-preferential transduction by lentiviral vectors with the murine stem cell virus promoter. Neurosci Lett 2008; 443:7-11. [PMID: 18675313 DOI: 10.1016/j.neulet.2008.07.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 07/14/2008] [Accepted: 07/21/2008] [Indexed: 11/27/2022]
Abstract
Viral-vector-mediated gene delivery into Purkinje cells is a promising method for exploring the pathophysiology of the cerebellum; however, it is generally difficult to achieve sufficiently high levels of gene expression in Purkinje cells using viral vectors with a cell-type-specific promoter because of the weakness of transcriptional activity. In this study, we prepared lentiviral vectors that express GFP under the control of various ubiquitous promoters derived from murine stem cell virus (MSCV), cytomegalovirus (CMV), CMV early enhancer/chicken beta actin (CAG), and Rous sarcoma virus (RSV) and compared their potential to transduce Purkinje cells. Mice were sacrificed 7 days after lentiviral injection and the ratios of GFP(+) Purkinje cells to all transduced cells were determined. The highest transduction ratio was observed when we used lentivectors containing the MSCV promoter: approximately 70% of GFP(+) cells were Purkinje cells, the next highest ratio was for the CMV promoter (approximately 40%), then the CAG promoter (approximately 35%), and the lowest ratio was for the RSV promoter (approximately 10%). Moreover, the highest levels of GFP expression were also caused by the MSCV promoter. Thus, among the ubiquitous promoters examined, the MSCV promoter was the best for the expression of a foreign gene in Purkinje cells in vivo.
Collapse
Affiliation(s)
- Kiyohiko Takayama
- Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | | | | | | |
Collapse
|
19
|
Kondo S, Terashima M, Fukuda H, Saito I, Kanegae Y. [Gene engineering of the adenovirus vector]. Uirusu 2007; 57:37-45. [PMID: 18040153 DOI: 10.2222/jsv.57.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The adenovirus vector is very attractive tool not only for the gene therapy but also for the basic sciences. However, because a construction method of this vector had been complex, only limited scientists had constructed and enjoyed the benefits. Recently, various methods were developed and the researchers came to be able to choose an efficient method, which is the COS-TPC method, or a concise procedure, which is the intact-genome transfection method (in vitro ligation method). Here we described not only these methods but also new method to construct the various Ads simultaneously using the recombinase-mediated cassette exchange (RMCE) by the site-specific recombinase. And also we want to refer the possibility to the worth of the vector, especially the vector of the expression-switch.
Collapse
Affiliation(s)
- Saki Kondo
- Laboratory of Molecular Genetics, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai Minato-ku Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
20
|
Hayashi K, Ohshima T, Hashimoto M, Mikoshiba K. Pak1 regulates dendritic branching and spine formation. Dev Neurobiol 2007; 67:655-69. [PMID: 17443815 DOI: 10.1002/dneu.20363] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The serine/threonine kinase p21-activated kinase 1 (Pak1) modulates actin and microtubule dynamics. The neuronal functions of Pak1, despite its abundant expression in the brain, have not yet been fully delineated. Previously, we reported that Pak1 mediates initiation of dendrite formation. In the present study, the role of Pak1 in dendritogenesis, spine formation and maintenance was examined in detail. Overexpression of constitutively active-Pak1 in immature cortical neurons increased not only the number of the primary branching on apical dendrites but also the number of basal dendrites. In contrast, introduction of dominant negative-Pak caused a reduction in both of these morphological features. The length and the number of secondary apical branch points of dendrites were not significantly different in cultured neurons expressing these mutant forms, suggesting that Pak1 plays a role in dendritogenesis. Pak1 also plays a role in the formation and maintenance of spines, as evidenced by the altered spine morphology, resulting from overexpression of mutant forms of Pak1 in immature and mature hippocampal neurons. Thus, our results provide further evidence of the key role of Pak1 in the regulation of dendritogenesis, dendritic arborization, the spine formation, and maintenance.
Collapse
Affiliation(s)
- Kanehiro Hayashi
- Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
21
|
Adachi K, Fujino M, Kitazawa Y, Funeshima-Fuji N, Takahara S, Kimura H, Li XK. Exogenous Expression of Fas-Ligand or CrmA Prolongs the Survival in Rat Liver Transplantation. Transplant Proc 2006; 38:2710-3. [PMID: 17098047 DOI: 10.1016/j.transproceed.2006.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Modulation of donor organs by transfection of a gene encoding immmunosuppresive molecules has been recognized as a less toxic approach to prevent allograft rejection. Fas-ligand (FasL) plays a critical role in activation-induced cell death of activated cytotoxic lymphocytes. This may provide a potential for induction of "immune privileged sites" to escape the host immune surveillance system. Cytokine response modifier A (CrmA), a gene product of cowpox virus, blocks caspase as well as perforin/granzyme-mediated apoptotic pathways. Therefore, it may suppress intragraft apoptosis. The aim of the present study was to investigate whether transfection of FasL or CrmA genes prolonged the survival of rat liver allografts. Using the high responder rat combination of DA (RT-1(a)) donor to LEW (RT-1(1)) recipient, we performed orthotopic liver transplantation with subsequent delivery of adenoviral vectors containing FasL, CrmA, or LacZ, at a dose of 1 x 10(9) pfu via a recipient tail vein using a Cre-mediated gene expression system. Recipient survival was assessed as well as immunohistochemical examination of the grafts for anti-CD2, TUNEL, and H&E staining. Statistical analysis was performed with the Mann-Whitney U test. The therapeutic groups showed significantly prolonged recipient survival compared with the LacZ-treated control group. Histologic analysis revealed reduced hepatocyte apoptosis in the CrmA-treated group and increased apoptosis of infiltrating mononuclear cells in the FasL-treated group. These data suggested that FasL and CrmA may be potent genes to prolong rat liver allograft survival.
Collapse
Affiliation(s)
- K Adachi
- Laboratory of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Torashima T, Okoyama S, Nishizaki T, Hirai H. In vivo transduction of murine cerebellar Purkinje cells by HIV-derived lentiviral vectors. Brain Res 2006; 1082:11-22. [PMID: 16516872 DOI: 10.1016/j.brainres.2006.01.104] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 01/18/2006] [Accepted: 01/22/2006] [Indexed: 11/28/2022]
Abstract
Cerebellar Purkinje cells are key elements in motor learning and motor coordination, and therefore, it is important to clarify the mechanisms by which Purkinje cells integrate information and control cerebellar function. Gene transfer into neurons, followed by the assessment of the effects on neural function, is an effective approach for examining gene function. However, this method has not been used fully in the study of the cerebellum because adenovirus vectors, the vectors most commonly used for in vivo gene transfer, have very low affinity for Purkinje cells. In this study, we used a human immunodeficiency virus (HIV)-derived lentiviral vector and examined the transduction profile of the vector in the cerebellum. A lentiviral vector carrying the GFP gene was injected into the cerebellar cortex. Seven days after the injection, Purkinje cells were efficiently transduced without significant influence on the cell viability and synaptic functions. GFP was also expressed, though less efficiently, in other cortical interneurons and Bergmann glias. In contrast to reported findings with other viral vectors, no transduced cells were observed outside of the cerebellar cortex. Thus, when HIV-derived lentiviral vectors were injected into the cerebellar cortex, transduction was limited to the cells in the cerebellar cortex, with the highest tropism for Purkinje cells. These results suggest that HIV-derived lentiviral vectors are useful for the study of gene function in Purkinje cells as well as for application as a gene therapy tool for the treatment of diseases that affect Purkinje cells.
Collapse
Affiliation(s)
- Takashi Torashima
- Innovative Brain Science Project, Advanced Science Research Center, Kanazawa University, Kanazawa 920-8640, Japan
| | | | | | | |
Collapse
|
23
|
Croci C, Fasano S, Superchi D, Perani L, Martellosio A, Brambilla R, Consalez G, Bongarzone ER. Cerebellar neurons and glial cells are transducible by lentiviral vectors without decrease of cerebellar functions. Dev Neurosci 2006; 28:216-21. [PMID: 16679768 DOI: 10.1159/000091919] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 09/02/2005] [Indexed: 11/19/2022] Open
Abstract
Due to the profuse connections of the cerebellum to the rest of the central nervous system, cerebellar dysfunction impacts tremendously on movement coordination, maintenance of equilibrium, muscle tone and motor memory. Efficient gene transfer of therapeutic genes to this central nervous system structure would constitute a relevant step ahead the design of treatments to ameliorate cerebellar dysfunction. Lentiviral vectors (LVs) have been used as efficient vehicles to integrate transgenes into dividing and non-dividing cells, such as postmitotic adult neurons, with minimal toxicity and immune response. This study aimed to use LVs carrying green fluorescent protein (GFP) cDNA for transduction of cerebellar cells in vivo without compromising neurological cerebellar functions. Our results indicate that LVs, injected in the lobulus simplex, transduced different cerebellar neurons including stellate, Purkinje cells, granular neurons and glial cells such as astrocytes, oligodendrocytes, and that this gene transfer approach was not accompanied by cerebellar deficits.
Collapse
Affiliation(s)
- C Croci
- San Raffaele Telethon Institute for Gene Therapy, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Gene therapy. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
25
|
Sato Y, Shiraishi Y, Furuichi T. Cell specificity and efficiency of the Semliki forest virus vector- and adenovirus vector-mediated gene expression in mouse cerebellum. J Neurosci Methods 2004; 137:111-21. [PMID: 15196833 DOI: 10.1016/j.jneumeth.2004.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 02/06/2004] [Accepted: 02/16/2004] [Indexed: 10/26/2022]
Abstract
Establishing efficient gene transfer and expression in post-mitotic neurons is important in understanding the genetic basis of neural circuits with cellular complexity. This study evaluates the properties of exogenous green fluorescent protein (GFP) expression mediated by the Semliki forest virus (SFV) and adenovirus (Ad) vectors in dissociated and slice cultures of the mouse cerebellum. Infection with SFV-GFP resulted in early-onset and high-level GFP expression in about 90% of Purkinje cells and in about 40% of granule cells in dissociated cultures at 1 day after infection. Two days after infection, GFP-positive cells showed signs of SFV-derived cytotoxicity. Ad-GFP infected almost all astrocytes and granule cells in dissociated cultures, and showed a steady increase in GFP fluorescence with a plateau at around 2 days post-infection. Ad vector-mediated GFP expression lasted for several weeks with no significant cell damage. In the slice cultures, both viral vectors mainly infected astroglial cells, but also showed a similar cell preference as that in dissociated cultures. These data indicate that the use of different viral vectors and infection conditions offers a powerful means of expressing exogenous genes in cerebellar cultures with different cell-type specificity and timing and duration of expression.
Collapse
Affiliation(s)
- Yumi Sato
- Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
26
|
Bhattacharjee AK, Ueyama T, Kondoh T, Hayashi S, Abouelfetouh A, Sakai N, Saito N, Kohmura E. In vivo transgene expression using an adenoviral tetracycline-regulated system with neuron-specific enolase promoter. Biochem Biophys Res Commun 2004; 317:1144-8. [PMID: 15094388 DOI: 10.1016/j.bbrc.2004.03.166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Indexed: 11/29/2022]
Abstract
A recombinant adenoviral tetracycline-regulated system with neuron-specific enolase (NSE) promoter was injected stereotaxically into the striatum of rat brains. The efficiency of in vivo transfection was quantified by counting the number of green fluorescent protein (GFP)-positive cells at 3 days, 1 week, and 4 weeks after injection. NeuN immunohistochemistry demonstrated that expression of gammaPKC-GFP was dominant (20-99%) in neuron and expression of gammaPKC-GFP in neuron was significantly higher in pups than adult rats. These results indicate that tetracycline-inhibitable transcription factor (tTA) can drive tetracycline-responsive promoter (TetOp) under the control of NSE promoter, thereby efficiently and selectively expressing gammaPKC-GFP in neurons in vivo.
Collapse
Affiliation(s)
- Abesh Kumar Bhattacharjee
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki Cho, Chuo-Ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Mon H, Kusakabe T, Bando H, Kojima K, Kawaguchi Y, Koga K. Analysis of extrachromosomal homologous recombination in cultured silkworm cells. Biochem Biophys Res Commun 2004; 312:684-90. [PMID: 14680819 DOI: 10.1016/j.bbrc.2003.10.169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Indexed: 10/26/2022]
Abstract
Double-strand breaks (DSBs) are potentially lethal lesions causing the loss of chromosomal information. Eukaryotic cells have evolved the error-free repair systems of DSBs by homologous recombination (HR) through gene conversion with or without crossing over. In this study, we have developed a rapid assay system for extrachromosomal HR events in the cultured silkworm BmN4 cells. When HR occurs within the disrupted luciferase gene, an enzymatically active luciferase is restored and expressed. Our results strongly suggest that error-prone single strand annealing (SSA) accounts for the majority of extrachromosomal recombination processes in the cells. However, upon the substrates which cannot be repaired through SSA, DSBs were efficiently repaired though gene conversion. The rapid and sensitive HR assay system developed in the present study is expected to be a powerful tool for the identification and analysis of HR-related genes in the silkworm.
Collapse
Affiliation(s)
- Hiroaki Mon
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
The multilayered structure of the cerebral cortex has been studied in detail. Early-born neurons migrate into the inner layer and late-born neurons migrate into more superficial layers, thus establishing an inside-out gradient. The progenitor cells appear to acquire layer-specific properties at the time of neuronal birth; however, the molecular mechanisms of cell-fate acquisition are still unclear, because it has been difficult to identify a cohort of birthdate-related progenitor cells. Using replication-defective adenoviral vectors, we successfully performed "pulse gene transfer" into progenitor cells in a neuronal birthdate-specific manner. When adenoviral vectors were injected into the midbrain ventricle of mouse embryos between embryonic day 10.5 (E10.5) and E14.5, the adenoviral vectors introduced a foreign gene into a specific cohort of birthdate-related progenitor cells. The virally infected cohorts developed normally into cortical neurons and formed the canonical cortical layers in an inside-out manner. This technique allows us to distinguish a cohort of birthdate-related progenitor cells from other progenitor cells with different birthdates and to introduce a foreign gene into specific subsets of cortical layers by performing adenoviral injection at specific times. This adenovirus-meditated gene transfer technique will enable us to examine the properties of each subset of progenitor cells that share the same neuronal birthdate.
Collapse
Affiliation(s)
- Mitsuhiro Hashimoto
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | |
Collapse
|
29
|
Abstract
The adult cerebellum is functionally compartmentalized into clusters along the mediolateral axis (M-L clusters), and a variety of molecular makers are expressed in specific subsets of M-L clusters. These M-L clusters appear to be the basic structure in which cerebellar functions are performed, but the mechanisms by which cerebellar mediolateral compartmentalization is established are still unclear. To address these questions, we examined the development of M-L clusters using replication-defective adenoviral vectors. The adenoviral vectors effectively introduced foreign genes into the neuronal progenitor cells of the cerebellum in a birth date-specific manner, allowing us to observe the native behavior of each cohort of birth date-related progenitor cells. When the adenoviral vectors were injected into the midbrain ventricle of mouse embryos on embryonic days 10.5 (E10.5), E11.5, and E12.5, the virally infected cerebellar progenitor cells developed into Purkinje cells. Notably, the Purkinje cells that shared the same birth date formed specific subsets of M-L clusters in the cerebellum. Each subset of M-L clusters displayed nested and, in part, mutually complementary patterns, and these patterns were unchanged from the late embryonic stage to adulthood, suggesting that Purkinje cell progenitors are fated to form specific subsets of M-L clusters after their birth between E10.5 and E12.5. This study represents the first such direct observation of Purkinje cell development. Moreover, we also show that there is a correlation between the M-L clusters established by the birth date-related Purkinje cells and the domains of engrailed-2, Wnt-7B, L7/pcp2, and EphA4 receptor tyrosine kinase expression.
Collapse
|
30
|
Okino H, Manabe T, Tanaka M, Matsuda T. Novel therapeutic strategy for prevention of malignant tumor recurrence after surgery: Local delivery and prolonged release of adenovirus immobilized in photocured, tissue-adhesive gelatinous matrix. J Biomed Mater Res A 2003; 66:643-51. [PMID: 12918048 DOI: 10.1002/jbm.a.10016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have been developing a new gene delivery method using a styrenated gelatin-based tissue-adhesive matrix that allows in situ adenovirus-immobilized gel formation on living tissue and sustained virus release to permeate carcinoma tissue. Styrenated gelatin was synthesized by the condensation reaction of gelatin with 4-vinylbenzoic acid. Aqueous styrenated gelatin solution premixed with AdLacZ, adenovirus encoding beta-galactosidase cDNA, and carboxylated camphorquinone (CQ) as a photoinitiator was irradiated with visible light to form a styrenated gelatin gel. The in vitro adenovirus release from the styrenated gelatin gel to a medium strongly depended not on styrenated gelatin concentration but on CQ concentration. Maximal beta-galactosidase expression was observed on day 1, followed by a rapid decrease that continued up to 1 month for a styrenated gelatin gel prepared with a low styrenated gelatin concentration and a low CQ concentration. Dose-dependent reduced expression of beta-galactosidase activity with increasing CQ under photoirradiation was observed. AdLacZ-immobilized styrenated gelatin gel was formed on a hybrid tissue, which is a cell traction-induced collagenous gel entrapped with fibroblasts, and lacZ gene expression of fibroblasts in the hybrid tissue was observed for more than one month. The result of this in vitro model experiment implies that the tissue-adhesive styrenated gelatin may be applicable for the delivery of adenovirus encoding cDNA for tumor dormancy therapy into malignant tissue to prevent tumor recurrence after surgery when cDNA is properly selected.
Collapse
Affiliation(s)
- Hidenobu Okino
- Department of Surgery and Oncology, Graduate School of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
31
|
Irie A, Kashani-Sabet M, Scanlon KJ, Uchida T, Baba S. Hammerhead ribozymes as therapeutic agents for bladder cancer. MOLECULAR UROLOGY 2002; 4:61-6. [PMID: 12006244 DOI: 10.1089/10915360050138602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hammerhead ribozymes have been investigated extensively as therapeutic agents against cancer. Aberrant or overexpression of genes related to tumorigenicity or cancer growth might be the appropriate targets for ribozyme strategies. Ribozyme-mediated gene therapy should be applied to those diseases that have no successful conventional therapy such as advanced or treatment-resistant bladder cancer. Many genetic alterations have been identified in bladder cancer related to both tumorigenesis and disease progression. Mutated H-ras, fos, and erb-B2 genes have been chosen as targets for ribozymes in previous studies, and antitumor efficacy has been demonstrated by reversion of the malignant phenotypes and by inhibition of tumor growth both in vitro and in vivo. The efficiency of various delivery systems has also been evaluated. An overview of ribozyme strategies, especially for therapeutic applications against bladder cancer, is described here.
Collapse
Affiliation(s)
- A Irie
- Department of Urology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
32
|
Fujino M, Li XK, Suda T, Hashimoto M, Okabe K, Yaginuma H, Mikoshiba K, Guo L, Okuyama T, Enosawa S, Amemiya H, Amano T, Suzuki S. In vitro prevention of cell-mediated xeno-graft rejection via the Fas/FasL-pathway in CrmA-transducted porcine kidney cells. Xenotransplantation 2002. [DOI: 10.1046/j.1399-3089.2003.00101.x-i1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Agudo M, Trejo JL, Lim F, Avila J, Torres-Alemán I, Diaz-Nido J, Wandosell F. Highly efficient and specific gene transfer to Purkinje cells in vivo using a herpes simplex virus I amplicon. Hum Gene Ther 2002; 13:665-74. [PMID: 11916489 DOI: 10.1089/10430340252837251] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The transduction of cerebellar neurons in vivo with herpes simplex virus 1 (HSV-1) amplicon carrying the lacZ gene has been investigated after injection of the vector in the cerebellar cortex, ventricles, and inferior olive of adult rats. Injection into the cerebellar cortex resulted in transduction of Purkinje cells near the needle tract and injection into the ventricles yielded no transduced neurons. In contrast, high transduction efficiency was achieved by vector injection into the inferior olive, resulting in one of three positive Purkinje cells all over the ipsilateral and contralateral cerebellar hemispheres. Because neurons in the deep cerebellar nuclei are also transduced, we suggest that the vector is delivered from the inferior olive to the cerebellar nuclei and then to Purkinje cells by retrograde axonal transport. Expression of the lacZ gene within Purkinje cells was surprisingly persistent and was maintained at the same level for at least 40 days. Importantly, no signs of either toxicity or inflammation were observed in the cerebellum after vector injection, except for the borders of the needle tract where some reactive astrocytes were detected. Indeed, motor coordination of treated animals was entirely normal, as assessed by the rota-rod test. These results demonstrate that HSV-1 amplicon vectors can effect safe and stable transgene expression in Purkinje cells in vivo, raising the possibility of using these vectors for long-term gene therapy of human cerebellar disorders.
Collapse
Affiliation(s)
- Marta Agudo
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Weld KJ, Mayher BE, Allay JA, Cockroft JL, Reed CP, Randolph MM, Lu Y, Steiner MS, Gingrich JR. Transrectal gene therapy of the prostate in the canine model. Cancer Gene Ther 2002; 9:189-96. [PMID: 11857037 DOI: 10.1038/sj.cgt.7700425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2001] [Indexed: 11/08/2022]
Abstract
Direct transrectal delivery of therapeutic genes utilizing adenoviral vectors for advanced prostate cancer may offer effective treatment at the molecular level. Large animal models to assess feasibility and the intraprostatic and systemic dissemination patterns of these vectors have not been reported. For these studies, a replication-deficient (E1(-)/E3(-)) recombinant adenovirus (AdRSVlacZ) expressing bacterial beta-galactosidase (beta-gal) was delivered under transrectal ultrasound guidance. Two prostate biopsies, followed by concurrent injection of 4.8 x 10(9) pfu of the adenoviral vector divided into either 1 or 2 mL of diluent, were performed (n=4). Swabs of the rectum, sputum, and urine were collected and after 72 hours, the animals were sacrificed. Specimens were assayed for the presence of virus and beta-gal activity. Rectal swabs were transiently positive, whereas urine and sputum samples showed no detectable vector throughout the experiment. Beta-gal activity was observed at the prostate injection sites with detectable activity noted up to 7.5 mm away from the injection site. Systemic dissemination was observed regardless of the injected volume. In conclusion, transrectal prostate biopsy with concurrent prostate injection is a feasible method to deliver therapeutic adenoviral vectors for the treatment of prostate cancer; however, systemic distribution and temporary rectal shedding of virus should be anticipated.
Collapse
Affiliation(s)
- Kyle J Weld
- Urologic Research Laboratories, University of Tennessee, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Schaack J, Allen B, Orlicky DJ, Bennett ML, Maxwell IH, Smith RL. Promoter strength in adenovirus transducing vectors: down-regulation of the adenovirus E1A promoter in 293 cells facilitates vector construction. Virology 2001; 291:101-9. [PMID: 11878880 DOI: 10.1006/viro.2001.1211] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most adenovirus transducing vectors have the cytomegalovirus major immediate-early (CMV) or the Rous sarcoma virus long terminal repeat (RSV) promoter driving expression of the transgene. Both of these promoters are highly active in transfection and transduction assays in 293 cells, in which transducing vectors are constructed and grown, and in HeLa cells. The CMV promoter exhibits rapid activation while the RSV promoter exhibits a lag prior to the onset of viral DNA replication in transduction assays. While the use of very strong promoters facilitates expression of the transgene, high-level expression of certain gene products hinders virus construction and growth. For such genes, the use of the adenovirus type 5 E1A promoter offers advantages. The E1A promoter exhibits modest activity in HeLa cells after transfection or transduction, but very little activity in 293 cells, suggesting that the E1A promoter would permit construction and growth of vectors encoding deleterious gene products that could not be constructed with the CMV and RSV promoters. This idea was tested through attempts to construct viruses encoding the immunoglobulin loop 6 and transmembrane regions of the prostaglandin F2alpha receptor regulatory protein (FPRP), a product that inhibits adenovirus vector construction for reasons that are not clear. Only the E1A promoter permitted construction and growth of the transducing vector encoding the fragment of FPRP.
Collapse
Affiliation(s)
- J Schaack
- Department of Microbiology, Molecular Biology Program, University of Colorado Cancer Center, 4200 East 9th Avenue, Denver, Colorado 80262, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Tak PP, Gerlag DM, Aupperle KR, van de Geest DA, Overbeek M, Bennett BL, Boyle DL, Manning AM, Firestein GS. Inhibitor of nuclear factor kappaB kinase beta is a key regulator of synovial inflammation. ARTHRITIS AND RHEUMATISM 2001; 44:1897-907. [PMID: 11508443 DOI: 10.1002/1529-0131(200108)44:8<1897::aid-art328>3.0.co;2-4] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Inhibitor of nuclear factor kappaB kinase beta (IkappaB kinase beta, or IKKbeta) has emerged as a key regulator of the transcription factor nuclear factor kappaB (NF-kappaB). Since IKKbeta could have both pro- and antiinflammatory activity, we examined whether its constitutive activation was sufficient to cause a chronic inflammatory disease such as rheumatoid arthritis. METHODS Normal Lewis rats were evaluated for paw swelling by plethysmometry and histologic assessment after intraarticular injection of an adenoviral construct encoding the IKKbeta wild-type gene (Ad.IKKbeta-wt); controls received an adenoviral construct encoding green fluorescent protein (Ad.GFP). The rats were killed after 7 days. Additionally, rats were killed 48 hours after intraarticular injection of Ad.IKKbeta-wt or Ad.GFP for studies of IKK activity and NF-kappaB binding. For studies of the effects of inhibition of IKKbeta activity, Lewis rats were immunized with Mycobacterium tuberculosis in mineral oil. The ankle joints were injected on day 12 with an adenoviral construct encoding IKKbeta K-->M (dominant negative, IKKbeta-dn) or Ad.GFP. We evaluated paw swelling and NF-kappaB expression on day 25. RESULTS Intraarticular gene transfer of IKKbeta-wt into the joints of normal rats resulted in significant paw swelling and histologic evidence of synovial inflammation. Increased IKK activity was detectable in the IKKbeta-wt-injected ankle joints, coincident with enhanced NF-kappaB DNA binding activity. Intraarticular gene transfer of IKKbeta-dn significantly ameliorated the severity of adjuvant arthritis, accompanied by a significant decrease in NF-kappaB DNA expression in the joints of Ad.IKKbeta-dn-treated animals. CONCLUSION IKKbeta plays a key role in rodent synovial inflammation. Intraarticular gene therapy to inhibit IKKbeta activity represents an attractive strategy for the treatment of chronic arthritis.
Collapse
Affiliation(s)
- P P Tak
- University of California (San Diego) School of Medicine, La Jolla, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Burbach JP, Luckman SM, Murphy D, Gainer H. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev 2001; 81:1197-267. [PMID: 11427695 DOI: 10.1152/physrev.2001.81.3.1197] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hypothalamo-neurohypophysial system (HNS) is the major peptidergic neurosecretory system through which the brain controls peripheral physiology. The hormones vasopressin and oxytocin released from the HNS at the neurohypophysis serve homeostatic functions of water balance and reproduction. From a physiological viewpoint, the core question on the HNS has always been, "How is the rate of hormone production controlled?" Despite a clear description of the physiology, anatomy, cell biology, and biochemistry of the HNS gained over the last 100 years, this question has remained largely unanswered. However, recently, significant progress has been made through studies of gene identity and gene expression in the magnocellular neurons (MCNs) that constitute the HNS. These are keys to mechanisms and events that exist in the HNS. This review is an inventory of what we know about genes expressed in the HNS, about the regulation of their expression in response to physiological stimuli, and about their function. Genes relevant to the central question include receptors and signal transduction components that receive and process the message that the organism is in demand of a neurohypophysial hormone. The key players in gene regulatory events, the transcription factors, deserve special attention. They do not only control rates of hormone production at the level of the gene, but also determine the molecular make-up of the cell essential for appropriate development and physiological functioning. Finally, the HNS neurons are equipped with a machinery to produce and secrete hormones in a regulated manner. With the availability of several gene transfer approaches applicable to the HNS, it is anticipated that new insights will be obtained on how the HNS is able to respond to the physiological demands for its hormones.
Collapse
Affiliation(s)
- J P Burbach
- Rudolf Magnus Institute for Neurosciences, Section of Molecular Neuroscience, Department of Medical Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Imai T, Tokunaga A, Yoshida T, Hashimoto M, Mikoshiba K, Weinmaster G, Nakafuku M, Okano H. The neural RNA-binding protein Musashi1 translationally regulates mammalian numb gene expression by interacting with its mRNA. Mol Cell Biol 2001; 21:3888-900. [PMID: 11359897 PMCID: PMC87052 DOI: 10.1128/mcb.21.12.3888-3900.2001] [Citation(s) in RCA: 376] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2000] [Accepted: 03/20/2001] [Indexed: 11/20/2022] Open
Abstract
Musashi1 (Msi1) is an RNA-binding protein that is highly expressed in neural progenitor cells, including neural stem cells. In this study, the RNA-binding sequences for Msi1 were determined by in vitro selection using a pool of degenerate 50-mer sequences. All of the selected RNA species contained repeats of (G/A)U(n)AGU (n = 1 to 3) sequences which were essential for Msi1 binding. These consensus elements were identified in some neural mRNAs. One of these, mammalian numb (m-numb), which encodes a membrane-associated antagonist of Notch signaling, is a likely target of Msi1. Msi1 protein binds in vitro-transcribed m-numb RNA in its 3'-untranslated region (UTR) and binds endogenous m-numb mRNA in vivo, as shown by affinity precipitation followed by reverse transcription-PCR. Furthermore, adenovirus-induced Msi1 expression resulted in the down-regulation of endogenous m-Numb protein expression. Reporter assays using a chimeric mRNA that combined luciferase and the 3'-UTR of m-numb demonstrated that Msi1 decreased the reporter activity without altering the reporter mRNA level. Thus, our results suggested that Msi1 could regulate the expression of its target gene at the translational level. Furthermore, we found that Notch signaling activity was increased by Msi1 expression in connection with the posttranscriptional down-regulation of the m-numb gene.
Collapse
Affiliation(s)
- T Imai
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Chandross KJ, Champagne B, Auble K, Hudson LD. Tracking oligodendrocytes during development and regeneration. Microsc Res Tech 2001; 52:766-77. [PMID: 11276129 DOI: 10.1002/jemt.1061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Over the past decade, advances in strategies to tag cells have opened new avenues for examining the development of myelin-forming glial cells and for monitoring transplanted cells in animal models of myelin insufficiency. The strategies for labelling glial cells have encompassed a range of genetic modifications as well as methods for directly attaching labels to cells. Genetically modified oligodendrocytes have been engineered to express enzymatic (e.g., beta-galactosidase, alkaline phosphatase), naturally fluorescent (e.g., green fluorescent protein), and antibiotic resistance (e.g., neomycin, zeomycin) reporters. Genes have been introduced in vivo and in vitro with viral or plasmid vectors to somatically label glial cells. To generate germ-line transmission of tagged oligodendrocytes, transgenic mice have been created both by direct injection into mouse fertilized eggs and by "knock-in" of reporters targetted to myelin gene loci in embryonic stem cells. Each experimental approach has advantages and limitations that need to be considered for individual applications. The availability of tagged glial cells has expanded our basic understanding of how oligodendrocytes are specified from stem cells and should continue to fill in the gaps in our understanding of how oligodendrocytes differentiate, myelinate, and maintain their myelin sheaths. Moreover, the ability to select oligodendrocytes by virtue of their acquired antibiotic resistance has provided an important new tool for isolating and purifying oligodendrocytes. Tagged glial cells have also been invaluable in evaluating cell transplant therapies in the nervous system. The tracking technologies that have driven these advances in glial cell biology are continuing to evolve and present new opportunities for examining oligodendrocytes in living systems. Microsc. Res. Tech. 52:766-777, 2001. Published 2001 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- K J Chandross
- Laboratory of Developmental Neurogenetics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-4160, USA
| | | | | | | |
Collapse
|
40
|
Adachi K, Li X, Kimura H, Amemiya H, Suzuki S. Prolonged survival of rat liver allografts with CrmA gene transfer. Transplant Proc 2001; 33:605. [PMID: 11266979 DOI: 10.1016/s0041-1345(00)02163-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K Adachi
- Department of Surgery, Omiya Medical Center, Jichi Medical School, Saitama, Japan
| | | | | | | | | |
Collapse
|
41
|
Abstract
An odor perception is the brain's interpretation of the activation pattern of many peripheral sensory neurons that are differentially sensitive to a wide variety of odors. The sensitivity of these neurons is determined by which of the thousand or so odor receptor proteins they express on their surface. Understanding the odor code thus requires mapping the receptive range of odorant receptors. We have adopted a pharmacological approach that uses a large and diverse pool of odorous compounds to characterize the molecular receptive field of an odor receptor. We found a high specificity for certain molecular features, but high tolerance for others-a strategy that enables the olfactory apparatus to be both highly discriminating, and able to recognize several thousand odorous compounds.
Collapse
Affiliation(s)
- R C Araneda
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
42
|
Kaemmerer WF, Reddy RG, Warlick CA, Hartung SD, McIvor RS, Low WC. In vivo transduction of cerebellar Purkinje cells using adeno-associated virus vectors. Mol Ther 2000; 2:446-57. [PMID: 11082318 DOI: 10.1006/mthe.2000.0134] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated whether adenovirus or adeno-associated virus vectors can transduce cerebellar Purkinje cells (PCs) in vivo. Mice were injected in the deep cerebellar nuclei (DCN) with lacZ-transducing adenovirus (Ad.RSV-betagal) or a recombinant AAV serotype 2 (rAAV2) vector (vTR-CMVbeta) mixed with wild-type adenovirus type 5 (Ad5). One week later, Ad.RSV-betagal transduced cells were found throughout the cerebellar white matter in a dose-dependent manner, but few transduced PCs were evident. In contrast, vTR-CMVbeta with Ad5 transduced several hundred PCs throughout the injected hemisphere. Using an rAAV2 vector transducing a CMV-regulated green fluorescent protein gene, we again found PC transduction, but only with Ad5 coinjection. To assess the effect of injection site and to determine whether the apparent requirement for Ad5 coinfection is observed with other promoters, a beta-actin-regulated vector was injected with or without Ad5 to DCN or cerebellar cortical sites. Thousands of transduced PCs were observed under each condition. Cortical injection yielded greater numbers of transduced cells. Injection of rAAV2 without Ad5 led to greater specificity for PC transduction. We conclude that injection of rAAV2 vectors into the cerebellum is an effective means for transferring genes into substantial numbers of Purkinje cells in vivo.
Collapse
Affiliation(s)
- W F Kaemmerer
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | | | | | | | | | | |
Collapse
|
43
|
Li XK, Fujino M, Guo L, Okuyama T, Funeshima N, Hashimoto M, Okabe K, Yaginuma H, Mikoshiba K, Enosawa S, Amemiya H, Suzuki S. Inhibition of Fas-mediated fulminant hepatitis in CrmA gene-transfected mice. Biochem Biophys Res Commun 2000; 273:101-9. [PMID: 10873571 DOI: 10.1006/bbrc.2000.2888] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hyperimmune response via Fas/Fas-ligand and perforin/granzyme pathways may be essential in pathogenesis of virus-induced fulminant hepatitis. CrmA inhibits activation of caspases and granzyme B, suggesting it may block these pathways. We investigated whether CrmA expression would inhibit Fas-associated lethal hepatitis in mice. We successfully generated AxCALNLCrmA, a recombinant adenovirus expressing CrmA gene with a Cre-mediated switching cassette. We increased CrmA expression level in the liver transfected with AxCALNLCrmA (10(9) pfu) by increasing administration dose (10(7)-10(9) pfu) of AxCANCre, a recombinant, adenovirus-expressing Cre gene. Injection of anti-Fas antibody into the control mice rapidly led to animal death due to massive liver apoptosis, while the apoptosis was dramatically reduced in the CrmA-expressed mice. The animal survival increased with an increase of CrmA expression. The formation of active caspase-3 was markedly inhibited in the crmA-transfected hepatocytes in vitro. These results suggest that crmA is an effective gene that can inhibit immune-related liver apoptosis.
Collapse
Affiliation(s)
- X K Li
- Department of Experimental Surgery and Bioengineering, National Children's Medical Research Center, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cara A, Lucarelli E, Cornaglia-Ferraris P. Engineering viral promoters for gene transfer to human neuroblasts. Cell Mol Neurobiol 2000; 20:409-15. [PMID: 10789837 PMCID: PMC11537523 DOI: 10.1023/a:1007075412112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. The strength and activity of several viral promoters in human neuroblasts were evaluated in vitro. 2. Several luciferase reporter gene constructs under the control of different viral promoters (HIV-1 LTR, HTLV-I LTR, MMTV LTR, RSV LTR, CMV, SV40), in the presence or in the absence of the viral SV40 enhancer, were transfected into two well-established human neural cell lines, including one derived from human embryonic olfactory cells (B4) and one derived from an adrenal neuroblastoma (SH-SY-5Y). The epithelial cell line HeLa was used as a control. 3. The enzymatic activity of luciferase was evaluated after normalization with an internal control. The results indicated that in the context of the reporter gene constructs, the CMV promoter alone was, overall, the most active in any tested cell line. However, addition of the SV40 enhancer to the CMV promoter abolished luciferase activity in SH-SY-5Y cells while significantly increasing luciferase expression in the CNS derived B4 fetal neuroblasts. 4. The results suggest that gene therapeutic vectors aimed to promote enzymatic activity through gene transfer into undifferentiated human neural cells are feasible. However, since differences in promoter activity in neuroectodermal-derived cells are very relevant, gene construct variants should be considered to optimize the system.
Collapse
Affiliation(s)
- A Cara
- Department of Infectious Diseases, Mount Sinai School of Medicine, New York, New York, USA.
| | | | | |
Collapse
|
45
|
Shinoura N, Koike H, Furitu T, Hashimoto M, Asai A, Kirino T, Hamada H. Adenovirus-mediated transfer of caspase-8 augments cell death in gliomas: implication for gene therapy. Hum Gene Ther 2000; 11:1123-37. [PMID: 10834615 DOI: 10.1089/10430340050015185] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Caspase-8 is a member of the family of caspases, which are involved in the execution of apoptosis. To investigate whether caspase-8 can be used for gene therapy of gliomas, we transduced A-172 and U251 glioma cells with the caspase-8 gene via an adenoviral vector (Adv) controlled by the chicken beta-actin (CA) promoter (Advcaspase-8), and found that a similar level of caspase-8 protein induced A-172 cells to undergo necrotic cell death and U251 cells to undergo apoptotic cell death. Neither Bcl-XL nor Bcl-2, which play important roles in antiapoptotic mechanisms in gliomas, protected glioma cells from apoptosis induced by overexpression of caspase-8. Injection of Adv-caspase-8 suppressed the in vivo growth of U251 xenografts, in which apoptotic cell death remarkably increased as revealed by TUNEL analysis. Finally, we assessed whether gene therapy with a tissue-specific promoter, the myelin basic protein (MBP) promoter, is applicable to gliomas. Adv for caspase-8 controlled by the MBP promoter induced drastic apoptosis in U251 and U-373MG glioma cells, whereas it did not induce apoptosis in human endothelial cells, fibroblasts, and nerve growth factor-treated PC12 cells. These results indicate that Adv for caspase-8 effectively induced cell death in gliomas, and that this approach may be a useful modality for gene therapy of gliomas.
Collapse
Affiliation(s)
- N Shinoura
- Department of Molecular Biotherapy Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo
| | | | | | | | | | | | | |
Collapse
|
46
|
Kurihara H, Zama A, Tamura M, Takeda J, Sasaki T, Takeuchi T. Glioma/glioblastoma-specific adenoviral gene expression using the nestin gene regulator. Gene Ther 2000; 7:686-93. [PMID: 10800092 DOI: 10.1038/sj.gt.3301129] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For glioma- and glioblastoma-specific gene expression, we utilized a nestin regulatory element whose activity was evaluated by the reporter gene lacZ. Nestin is a 38-kDa intermediate filament protein, and is expressed specifically in the neuroepithelial stem cells. Nestin is detected in gliomas and glioblastomas, but not in normal brain tissue. We constructed a nestin gene regulator by placing nestin's second intron before the 5' upstream region (2iNP). To obtain enhanced expression of this tissue-specific regulator, we utilized the adenovirus double-infection method with a Cre-loxP on/off switching system. We constructed a 'regulator' vector, Ax2iNPNCre, which expresses Cre recombinase under the control of the nestin regulatory element, 2iNP. A 'reporter' vector, AxCALNLNZK, expresses lacZ under the control of a strong CAG promoter when the stuffer sequence has been removed by Cre recombinase at a pair of loxP sites. We used seven human glioma/glioblastoma cell lines: U251, KG-1C, NGM5, U87 MG, LN-Z308, NP-2 and T98G. Of these, nestin was expressed highly in U251 and KG-1C, less in NGM5, and undetectably in the other four lines. With the use of the two adenovirus vectors, we found X-gal staining and high nestin regulator-promoted beta-galactosidase activities in four of the seven glioma/glioblastoma cell lines. Staining was strong in U251, KG-1C and NGM5, and less in U87 MG. LacZ expression was nearly undetectable in the non-glioma cell line, HeLa, but a little in COS-7. The adenovirus double-infection method, which uses a nestin regulator, is applicable for glioma/glioblastoma-specific expression.
Collapse
Affiliation(s)
- H Kurihara
- Department of Neurosurgery, Gunma University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Navarro V, Millecamps S, Geoffroy MC, Robert JJ, Valin A, Mallet J, Gal La Salle GL. Efficient gene transfer and long-term expression in neurons using a recombinant adenovirus with a neuron-specific promoter. Gene Ther 1999; 6:1884-92. [PMID: 10602384 DOI: 10.1038/sj.gt.3301008] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adenoviruses are highly efficient vectors for gene transfer into brain cells. Restricting transgene expression to specific cell types and maintaining long-term expression are major goals for gene therapy in the central nervous system. We targeted gene expression to neurons by constructing an adenoviral vector that expressed the E. coli LacZ reporter gene under the control of the rat neuron-specific enolase promoter (Ad-NSE). Expression from Ad-NSE was compared with that from an adenoviral vector encoding the same reporter gene under the control of the Rous sarcoma virus LTR promoter (Ad-RSV). Both recombinant adenoviruses were injected stereotactically into rat hippocampus, cerebellum and striatum. Anatomical and immunohistochemical analyses of the Ad-NSE-stained cells showed that neurons were preferentially transduced. More neurons were stained in the hippocampus following infection with Ad-NSE than with Ad-RSV. Cytotoxicity from Ad-NSE was lower than from Ad-RSV. beta-Galactosidase gene expression after Ad-NSE infection remained stable for 3(1/2) months, and was detectable for 6 months. Thus, the NSE-adenoviral vector can be used to transfer potentially therapeutic genes into neuronal cells. The use of a cell-specific promoter also resulted in high in vivo efficiency and long-term transgene expression.
Collapse
Affiliation(s)
- V Navarro
- Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, Bâtiment CERVI, Hôpital de la Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Hida H, Hashimoto M, Fujimoto I, Nakajima K, Shimano Y, Nagatsu T, Mikoshiba K, Nishino H. Dopa-producing astrocytes generated by adenoviral transduction of human tyrosine hydroxylase gene: in vitro study and transplantation to hemiparkinsonian model rats. Neurosci Res 1999; 35:101-12. [PMID: 10616914 DOI: 10.1016/s0168-0102(99)00073-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Astrocytes secreting a large amount of 3,4-dihydroxyphenylalanine (dopa) were generated by adenoviral transduction of the human tyrosine hydroxylase (TH) gene. After characterizing in vitro, the effect of transplantation of these astrocytes to the striatum of hemiparkinsonian model rats was investigated. Subconfluent cortical astrocytes were infected by replication-defect adenovirus type 5 carrying the human TH-1 gene or the LacZ reporter gene under the promoter of the glial fibrillary acidic protein (AdexGFAP-HTH-1, AdexGFAP-NL-LacZ). Dopa secretion was not evident at 3 days after the transduction of the HTH-1 gene but it increased from 7 days up to at least 4 months. The secretion was substrate (tyrosine)-dependent, and was enhanced by loading tetrahydrobioputerin (BH4) concentration-dependently. One-third of the hemiparkinsonian model rats, that were transplanted the HTH-1 gene-transduced astrocytes or introduced the direct injection of the viral vector to the striatum, showed a reduction of methamphetamine-induced rotations for at least 6 weeks. Apomorphine-induced rotation was decreased to the 50% level of the control's, but the reduction was obtained equally by the transplantation of HTH-1 gene-transduced or LacZ reporter gene-transduced astrocytes, or by the introduction of HTH-1 or LacZ gene carrying adenovirus. Treatment with FK506 for 3 weeks improved the late-phase apomorphine-induced rotations following the introduction of the HTH-1 gene carrying adenovirus. Histological examination revealed that, in animals that showed a reduction of methamphetamine-rotation, the TH positive astrocytes-like cells were distributed widely in the host striatum for at least 4 weeks. The number of TH positive astrocytes-like cells and their immunoreactivity decreased after 6 weeks when OX-41 positive microglias/macrophages were infiltrated. Data indicate that the adenoviral transduction of the human TH gene to astrocytes and its introduction to the striatum is a promising approach for the treatment of Parkinson's disease. However, the further technical improvements are required to optimize the adenoviral gene delivery, such as the control of viral toxicity and the regulation of the immune response.
Collapse
Affiliation(s)
- H Hida
- Department of Physiology, Nagoya City University Medical School, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Franklin RM, Quick MM, Haase G. Adenoviral vectors for in vivo gene delivery to oligodendrocytes: transgene expression and cytopathic consequences. Gene Ther 1999; 6:1360-7. [PMID: 10467360 DOI: 10.1038/sj.gt.3300971] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Replication defective viral vectors provide a potentially useful means of gene transfer to oligodendrocytes and thus for studying the pathogenesis of white matter disease. In this study we have examined the expression pattern of E1/E3 deleted adenoviral vectors expressing the reporter gene LacZ (AdlacZ) as a means of establishing the value of these vectors for gene delivery to oligodendrocytes in adult rat white matter. Our results indicate that although such an approach can be used to induce transgene expression in oligodendrocytes, it is complicated by both immunogenic and cytopathic effects. Thus, in normal animals, injection of DeltaE1/E3 adenoviral vectors was associated with a robust immune response that led to a lack of expression by 40 days after injection. In order to overcome this complication, virus was injected into the white matter of immuno-deficient athymic rats. These experiments indi- cated that even in the absence of a T cell response high viral titres of DeltaE1/E3 adenoviral vectors had a profound cytopathic effect leading to death of oligodendrocytes and hence demyelination. A similar cytopathic effect was demonstrated using an adenoviral vector expressing the neurocytokine ciliary neurotrophic factor (AdCNTF). As the titre of injected virus was decreased there was a significant decrease in the number of transgene expressing cells. These experiments therefore indicated that in immunodeficient recipients there is a narrow window of virus titre that results in a high rate of infectivity and expression without significant cytopathic consequences. At higher viral titres the cytopathic effects include oligodendrocyte death and demyelination, while at lower titres there is a significant decrease in the efficiency of the number of cells expressing the transgene.
Collapse
Affiliation(s)
- R m Franklin
- Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | | | | |
Collapse
|
50
|
Ishii T, Ohsugi K, Nakamura S, Sato K, Hashimoto M, Mikoshiba K, Sakuragawa N. Gene expression of oligodendrocyte markers in human amniotic epithelial cells using neural cell-type-specific expression system. Neurosci Lett 1999; 268:131-4. [PMID: 10406022 DOI: 10.1016/s0304-3940(99)00297-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously reported that human amniotic epithelial (HAE) cells expressed neuronal and glial cell markers using immunostaining and western blotting. To study the expression system of these cell markers in HAE cells, we investigated the expression of mRNA for oligodendrocyte markers in HAE cells by reverse-transcriptase-polymerase chain reaction (RT-PCR) and northern blotting. Neural cell-specific expression system was used to examine the transcriptional activity of myelin basic protein (MBP). Oligodendrocyte markers were expressed such as CNPase, MBP and proteolipid protein (PLP and DM-20). PLP gene transcripts in the cells were in a lower level than DM-20, compared with those of human brain. Neural cell-type-specific expression system disclosed HAE cells were about 20% positive for beta-Gal using AdexMBP-NL-LacZ. This strongly indicates that HAE cells have MBP-specific gene expressing cells.
Collapse
Affiliation(s)
- T Ishii
- Department of Inherited Metabolic Disease, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|