1
|
Yan Y, Sun Y, Guo X, An Y, Chang Y. Immune Evasion Mechanism of Neurotropic Viruses. Rev Med Virol 2024; 34:e2589. [PMID: 39384363 DOI: 10.1002/rmv.2589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024]
Abstract
The persistent challenge posed by viruses that infect the central nervous system lies in their sophisticated ability to evade the host immune system. This review explores into the complex mechanisms of immune evasion employed by these neurotropic viruses, focussing on their modulation of host immune responses, evasion of adaptive immunity, and the cellular and molecular strategies that enable their persistence. Key areas explored include viral latency and reactivation, the inhibition of apoptosis, and antigenic variation, with a detailed examination of viral proteins and their interactions with host cellular processes.
Collapse
Affiliation(s)
- Yayun Yan
- The Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
- The Department of Neurology, The Third Bethune Hospital of Jilin University, Xiamen, China
| | - Yu Sun
- The Department of Neurology, The Third Bethune Hospital of Jilin University, Xiamen, China
| | - Xinyuan Guo
- The Department of Neurology, The Third Bethune Hospital of Jilin University, Xiamen, China
| | - Yuanchao An
- The Department of Neurology, The Third Bethune Hospital of Jilin University, Xiamen, China
| | - Ying Chang
- The Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
- The Department of Neurology, The Third Bethune Hospital of Jilin University, Xiamen, China
| |
Collapse
|
2
|
Wang S, Jaggi U, Katsumata M, Ghiasi H. The importance of IFNα2A (Roferon-A) in HSV-1 latency and T cell exhaustion in ocularly infected mice. PLoS Pathog 2024; 20:e1012612. [PMID: 39352890 PMCID: PMC11469491 DOI: 10.1371/journal.ppat.1012612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/11/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Published studies have generated compelling results indicating that type I IFN modulates function of HSV-1 latency-associated transcript (LAT). One member of type I IFN is IFNα2A also called Roferon-A). IFNα2A has been used in monotherapy or in combination therapy with other drugs to treat viral infections and different kinds of cancer in humans. The goal of this study was to determine whether the absence of IFNα2A affects primary and latent infections in ocularly infected mice. Therefore, we generated a mouse strain lacking IFNα2A expression (IFNα2A-/-). Ocular HSV-1 replication, IFN and immune cell expressions on days 3 and 5 post infection (PI), as well as eye disease, survival, latency-reactivation, and T cell exhaustion were evaluated in ocularly infected IFNα2A-/- and wild type (WT) control mice. Absence of IFNα2A did not affect other members of the IFNα family but it affected IFNβ and IFNγ expressions as well as some immune cells on day 5 PI compared to WT mice. Viral replication in the eye, eye disease, and survival amongst ocularly infected IFNα2A-/- mice were similar to that of WT infected mice. The absence of IFNα2A significantly reduced the levels of latency and T cell exhaustion but not time of reactivation compared with control mice. Our results suggest that blocking IFNα2A expression may be a useful tool in reducing latency and the subsequent side effects associated with higher levels of latency.
Collapse
Affiliation(s)
- Shaohui Wang
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Ujjaldeep Jaggi
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Makoto Katsumata
- Rodent genetics core facility, Department of Comparative Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| |
Collapse
|
3
|
Salazar S, Luong KTY, Nua T, Koyuncu OO. Interferon-λ Activates a Differential Response in Peripheral Neurons That Is Effective against Alpha Herpesvirus Infections. Pathogens 2023; 12:1142. [PMID: 37764950 PMCID: PMC10536099 DOI: 10.3390/pathogens12091142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Alpha herpesviruses (α-HV) infect host mucosal epithelial cells prior to establishing a life-long latent infection in the peripheral nervous system. The initial spread of viral particles from mucosa to the nervous system and the role of intrinsic immune responses at this barrier is not well understood. Using primary neurons cultured in compartmentalized chambers, prior studies performed on Pseudorabies virus (PRV) have demonstrated that type I and type II interferons (IFNs) induce a local antiviral response in axons via distinct mechanisms leading to a reduction in viral particle transport to the neuronal nucleus. A new class of interferons known as type III IFNs has been shown to play an immediate role against viral infection in mucosal epithelial cells. However, the antiviral effects of type III IFNs within neurons during α-HV infection are largely unknown. In this study, we focused on elucidating the antiviral activity of type III IFN against PRV neuronal infection, and we compared the interferon-stimulated gene (ISGs) induction pattern in neurons to non-neuronal cells. We found that IFN pre-exposure of both primary neurons and fibroblast cells significantly reduces PRV virus yield, albeit by differential STAT activation and ISG induction patterns. Notably, we observed that type III IFNs trigger the expression of a subset of ISGs mainly through STAT1 activation to induce an antiviral state in primary peripheral neurons.
Collapse
Affiliation(s)
| | | | | | - Orkide O. Koyuncu
- Department of Microbiology and Molecular Genetics, School of Medicine and Center for Virus Research, University of California, Irvine, CA 92697, USA; (S.S.); (K.T.Y.L.); (T.N.)
| |
Collapse
|
4
|
Mohnke J, Stark I, Fischer M, Fischer PM, Schlosser A, Grothey A, O’Hare P, Sodeik B, Erhard F, Dölken L, Hennig T. pUL36 Deubiquitinase Activity Augments Both the Initiation and the Progression of Lytic Herpes Simplex Virus Infection in IFN-Primed Cells. J Virol 2022; 96:e0096322. [PMID: 36314822 PMCID: PMC9683058 DOI: 10.1128/jvi.00963-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022] Open
Abstract
The evolutionarily conserved, structural HSV-1 tegument protein pUL36 is essential for both virus entry and assembly. While its N-terminal deubiquitinase (DUB) activity is dispensable for infection in cell culture, it is required for efficient virus spread in vivo, as it acts as a potent viral immune evasin. Interferon (IFN) induces the expression of hundreds of antiviral factors, including many ubiquitin modulators, which HSV-1 needs to neutralize to efficiently initiate a productive infection. Herein, we discover two functions of the conserved pUL36 DUB during lytic replication in cell culture in an understudied but equally important scenario of HSV-1 infection in IFN-treated cells. Our data indicate that the pUL36 DUB contributes to overcoming the IFN-mediated suppression of productive infection in both the early and late phases of HSV-1 infection. We show that incoming tegument-derived pUL36 DUB activity contributes to the IFN resistance of HSV-1 in IFN-primed cells to efficiently initiate lytic virus replication. Subsequently, the de novo expressed DUB augmented the efficiency of virus replication and increased the output of infectious virus. Notably, the DUB defect was only apparent when IFN was applied prior to infection. Our data indicate that IFN-induced defense mechanisms exist and that they work to both neutralize infectivity early on and slow the progression of HSV-1 replication in the late stages of infection. Also, our data indicate that pUL36 DUB activity contributes to the disarming of these host responses. IMPORTANCE HSV-1 is a ubiquitous human pathogen that is responsible for common cold sores and may also cause life-threatening disease. pUL36 is an essential, conserved herpesvirus protein with N-terminal deubiquitinating (DUB) activity. The DUB is dispensable for HSV-1 replication in cell culture but represents an important viral immune evasin in vivo. IFN plays a pivotal role in HSV-1 infection and suppresses viral replication both in vitro and in vivo. Here, we show that DUB activity contributes to overcoming IFN-induced cellular resistance in order to more efficiently initiate lytic replication and produce infectious virions. As such, DUB activity in the incoming virions increases their infectivity, while the de novo synthesized DUB augments productive infection. Thus, the HSV-1 DUB antagonizes the activity of IFN-inducible effector proteins to facilitate productive infection at multiple levels. Our findings underscore the importance of using more challenging cell culture systems to fully understand virus protein functions.
Collapse
Affiliation(s)
- Jonas Mohnke
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Irmgard Stark
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Mara Fischer
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Patrick M. Fischer
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Zentrum - Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Arnhild Grothey
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Peter O’Hare
- Department of Virology, Imperial College London, Norfolk Place, London, United Kingdom
| | - Beate Sodeik
- Institut für Virologie, Medizinische Hochschule Hannover, Hannover, Germany
- RESIST Exzellenzcluster, Medizinische Hochschule Hannover, Hannover, Germany
| | - Florian Erhard
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Lars Dölken
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Thomas Hennig
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Peng T, Phasouk K, Sodroski CN, Sun S, Hwangbo Y, Layton ED, Jin L, Klock A, Diem K, Magaret AS, Jing L, Laing K, Li A, Huang ML, Mertens M, Johnston C, Jerome KR, Koelle DM, Wald A, Knipe DM, Corey L, Zhu J. Tissue-Resident-Memory CD8 + T Cells Bridge Innate Immune Responses in Neighboring Epithelial Cells to Control Human Genital Herpes. Front Immunol 2021; 12:735643. [PMID: 34552595 PMCID: PMC8450389 DOI: 10.3389/fimmu.2021.735643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/11/2021] [Indexed: 12/02/2022] Open
Abstract
Tissue-resident-memory T cells (TRM) populate the body's barrier surfaces, functioning as frontline responders against reencountered pathogens. Understanding of the mechanisms by which CD8TRM achieve effective immune protection remains incomplete in a naturally recurring human disease. Using laser capture microdissection and transcriptional profiling, we investigate the impact of CD8TRM on the tissue microenvironment in skin biopsies sequentially obtained from a clinical cohort of diverse disease expression during herpes simplex virus 2 (HSV-2) reactivation. Epithelial cells neighboring CD8TRM display elevated and widespread innate and cell-intrinsic antiviral signature expression, largely related to IFNG expression. Detailed evaluation via T-cell receptor reconstruction confirms that CD8TRM recognize viral-infected cells at the specific HSV-2 peptide/HLA level. The hierarchical pattern of core IFN-γ signature expression is well-conserved in normal human skin across various anatomic sites, while elevation of IFI16, TRIM 22, IFITM2, IFITM3, MX1, MX2, STAT1, IRF7, ISG15, IFI44, CXCL10 and CCL5 expression is associated with HSV-2-affected asymptomatic tissue. In primary human cells, IFN-γ pretreatment reduces gene transcription at the immediate-early stage of virus lifecycle, enhances IFI16 restriction of wild-type HSV-2 replication and renders favorable kinetics for host protection. Thus, the adaptive immune response through antigen-specific recognition instructs innate and cell-intrinsic antiviral machinery to control herpes reactivation, a reversal of the canonical thinking of innate activating adaptive immunity in primary infection. Communication from CD8TRM to surrounding epithelial cells to activate broad innate resistance might be critical in restraining various viral diseases.
Collapse
Affiliation(s)
- Tao Peng
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Khamsone Phasouk
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Catherine N. Sodroski
- Department of Microbiology and Virology Program, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Sijie Sun
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Yon Hwangbo
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Erik D. Layton
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Lei Jin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Alexis Klock
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Kurt Diem
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Amalia S. Magaret
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Lichen Jing
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Kerry Laing
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Alvason Li
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Meei-Li Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Max Mertens
- Department of Microbiology and Virology Program, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Christine Johnston
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - David M. Koelle
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington School of Medicine, Seattle, WA, United States
- Benaroya Research Institute, Seattle, WA, United States
| | - Anna Wald
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Department of Epidemiology, University of Washington, Seattle, WA, United States
| | - David M. Knipe
- Department of Microbiology and Virology Program, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Lawrence Corey
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington School of Medicine, Seattle, WA, United States
| | - Jia Zhu
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Tseng YY, Gowripalan A, Croft SN, Smith SA, Helbig KJ, Man SM, Tscharke DC. Viperin has species-specific roles in response to herpes simplex virus infection. J Gen Virol 2021; 102. [PMID: 34406117 PMCID: PMC8513645 DOI: 10.1099/jgv.0.001638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Viperin is a gene with a broad spectrum of antiviral functions and various mechanisms of action. The role of viperin in herpes simplex virus type 1 (HSV-1) infection is unclear, with conflicting data in the literature that is derived from a single human cell type. We have addressed this gap by investigating viperin during HSV-1 infection in several cell types, spanning species and including immortalized, non-immortalized and primary cells. We demonstrate that viperin upregulation by HSV-1 infection is cell-type-specific, with mouse cells typically showing greater increases compared with those of human origin. Further, overexpression and knockout of mouse, but not human viperin significantly impedes and increases HSV-1 replication, respectively. In primary mouse fibroblasts, viperin upregulation by infection requires viral gene transcription and occurs in a predominantly IFN-independent manner. Further we identify the N-terminal domain of viperin as being required for the anti-HSV-1 activity. Interestingly, this is the region of viperin that differs most between mouse and human, which may explain the apparent species-specific activity against HSV-1. Finally, we show that HSV-1 virion host shutoff (vhs) protein is a key viral factor that antagonises viperin in mouse cells. We conclude that viperin can be upregulated by HSV-1 in mouse and human cells, and that mouse viperin has anti-HSV-1 activity.
Collapse
Affiliation(s)
- Yeu-Yang Tseng
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Anjali Gowripalan
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sarah N. Croft
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Stewart A. Smith
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Karla J. Helbig
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Si Ming Man
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - David C. Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- *Correspondence: David C. Tscharke,
| |
Collapse
|
7
|
Abstract
We previously reported that herpes simplex virus 1 (HSV-1) ICP22 binds to CD80 and suppresses CD80 expression in vitro and in vivo. Similar to ICP22, the cellular costimulatory molecules CD28, CTLA4, and PD-L1 also bind to CD80. In this study, we asked whether, similar to ICP22-null virus, the absence of these costimulatory molecules will reduce HSV-1 infectivity. To test our hypothesis, CD28−/−, CD28−/− CTLA4−/−, PD-L1−/−, and wild-type control BALB/c mice were ocularly infected with HSV-1 strain KOS. Levels of virus replication in the eye, corneal scarring (CS), latency, and reactivation in infected mice were determined. Expression of different genes in the trigeminal ganglia (TG) of latently infected mice was also determined by NanoString and quantitative reverse transcription-PCR (qRT-PCR). In the absence of costimulatory molecules, latency levels were higher than those in wild-type control mice, but despite higher latency, a significant number of TG from infected knockout mice did not reactivate. Reduced reactivation correlated with downregulation of 26 similar cellular genes that are associated with inflammatory signaling and innate immune responses. These results suggest that lower reactivation directly correlates with lower expression of interferon signaling. Thus, despite having different modes of actions, we identified a similar function for CD28, CTLA4, and PD-L1 in HSV-1 reactivation that is dependent on their interactions with CD80. Therefore, blocking these interactions could be a therapeutic target for HSV-1-induced reactivation.
Collapse
|
8
|
Zhang R, Chen S, Zhang Y, Wang M, Qin C, Yu C, Zhang Y, Li Y, Chen L, Zhang X, Yuan X, Tang J. Pseudorabies Virus DNA Polymerase Processivity Factor UL42 Inhibits Type I IFN Response by Preventing ISGF3-ISRE Interaction. THE JOURNAL OF IMMUNOLOGY 2021; 207:613-625. [PMID: 34272232 DOI: 10.4049/jimmunol.2001306] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/13/2021] [Indexed: 01/01/2023]
Abstract
Alphaherpesviruses are large dsDNA viruses with an ability to establish persistent infection in hosts, which rely partly on their ability to evade host innate immune responses, notably the type I IFN response. However, the relevant molecular mechanisms are not well understood. In this study, we report the UL42 proteins of alphaherpesvirus pseudorabies virus (PRV) and HSV type 1 (HSV1) as a potent antagonist of the IFN-I-induced JAK-STAT signaling pathway. We found that ectopic expression of UL42 in porcine macrophage CRL and human HeLa cells significantly suppresses IFN-α-mediated activation of the IFN-stimulated response element (ISRE), leading to a decreased transcription and expression of IFN-stimulated genes (ISGs). Mechanistically, UL42 directly interacts with ISRE and interferes with ISG factor 3 (ISGF3) from binding to ISRE for efficient gene transcription, and four conserved DNA-binding sites of UL42 are required for this interaction. The substitution of these DNA-binding sites with alanines results in reduced ISRE-binding ability of UL42 and impairs for PRV to evade the IFN response. Knockdown of UL42 in PRV remarkably attenuates the antagonism of virus to IFN in porcine kidney PK15 cells. Our results indicate that the UL42 protein of alphaherpesviruses possesses the ability to suppress IFN-I signaling by preventing the association of ISGF3 and ISRE, thereby contributing to immune evasion. This finding reveals UL42 as a potential antiviral target.
Collapse
Affiliation(s)
- Rui Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Shifan Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Ying Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Mengdong Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Chao Qin
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Cuilian Yu
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Yunfan Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Yue Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Liankai Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Xinrui Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Xiufang Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jun Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| |
Collapse
|
9
|
Drake GJ, Haycock J, Dastjerdi A, Davies H, Lopez FJ. Use of immunostimulants in the successful treatment of a clinical EEHV1A infection in an Asian elephant (
Elephas maximus
). VETERINARY RECORD CASE REPORTS 2020. [DOI: 10.1136/vetreccr-2020-001158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gabby J Drake
- Veterinary DepartmentChester ZooChesterCheshire West and ChesterUK
| | - Jonathan Haycock
- MVIU VirologyAnimal and Plant Health AgencyAddlestoneSurreyUK
- School of Veterinary MedicineFaculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Akbar Dastjerdi
- MVIU VirologyAnimal and Plant Health AgencyAddlestoneSurreyUK
| | - Hannah Davies
- MVIU VirologyAnimal and Plant Health AgencyAddlestoneSurreyUK
- School of Veterinary MedicineFaculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - F Javier Lopez
- Veterinary DepartmentChester ZooChesterCheshire West and ChesterUK
| |
Collapse
|
10
|
Banerjee A, Kulkarni S, Mukherjee A. Herpes Simplex Virus: The Hostile Guest That Takes Over Your Home. Front Microbiol 2020; 11:733. [PMID: 32457704 PMCID: PMC7221137 DOI: 10.3389/fmicb.2020.00733] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Alpha (α)-herpesviruses (HSV-1 and HSV-2), like other viruses, are obligate intracellular parasites. They hijack the cellular machinery to survive and replicate through evading the defensive responses by the host. The viral genome of herpes simplex viruses (HSVs) contains viral genes, the products of which are destined to exploit the host apparatus for their own existence. Cellular modulations begin from the entry point itself. The two main gateways that the virus has to penetrate are the cell membrane and the nuclear membrane. Changes in the cell membrane are triggered when the glycoproteins of HSV interact with the surface receptors of the host cell, and from here, the components of the cytoskeleton take over. The rearrangement in the cytoskeleton components help the virus to enter as well as transport to the nucleus and back to the cell membrane to spread out to the other cells. The entire carriage process is also mediated by the motor proteins of the kinesin and dynein superfamily and is directed by the viral tegument proteins. Also, the virus captures the cell’s most efficient cargo carrying system, the endoplasmic reticulum (ER)–Golgi vesicular transport machinery for egress to the cell membrane. For these reasons, the host cell has its own checkpoints where the normal functions are halted once a danger is sensed. However, a cell may be prepared for the adversities from an invading virus, and it is simply commendable that the virus has the antidote to these cellular strategies as well. The HSV viral proteins are capable of limiting the use of the transcriptional and translational tools for the cell itself, so that its own transcription and translation pathways remain unhindered. HSV prefers to constrain any self-destruction process of the cell—be it autophagy in the lysosome or apoptosis by the mitochondria, so that it can continue to parasitize the cell for its own survival. This review gives a detailed account of the significance of compartmentalization during HSV pathogenesis. It also highlights the undiscovered areas in the HSV cell biology research which demand attention for devising improved therapeutics against the infection.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Division of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, India
| | - Smita Kulkarni
- Division of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, India
| | - Anupam Mukherjee
- Division of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, India
| |
Collapse
|
11
|
Oladunni FS, Sarkar S, Reedy S, Balasuriya UBR, Horohov DW, Chambers TM. Equid Herpesvirus 1 Targets the Sensitization and Induction Steps To Inhibit the Type I Interferon Response in Equine Endothelial Cells. J Virol 2019; 93:e01342-19. [PMID: 31511388 PMCID: PMC6854505 DOI: 10.1128/jvi.01342-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
Equid herpesvirus 1 (EHV-1) is a viral pathogen of horse populations worldwide spread by the respiratory route and is known for causing outbreaks of neurologic syndromes and abortion storms. Previously, we demonstrated that an EHV-1 strain of the neuropathogenic genotype, T953, downregulates the beta interferon (IFN-β) response in vitro in equine endothelial cells (EECs) at 12 h postinfection (hpi). In the present study, we explored the molecular correlates of this inhibition as clues toward an understanding of the mechanism. Data from our study revealed that EHV-1 infection of EECs significantly reduced both Toll-like receptor 3 (TLR3) and TLR4 mRNA expression at 6 hpi and 12 hpi. While EHV-1 was able to significantly reduce IRF9 mRNA at both 6 hpi and 12 hpi, the virus significantly reduced IFN regulatory factor 7 (IRF7) mRNA only at 12 hpi. EHV-1 did not alter the cellular level of Janus-activated kinase 1 (JAK1) at any time point. However, EHV-1 reduced the cellular level of expression of tyrosine kinase 2 (TYK2) at 12 hpi. Downstream of JAK1-TYK2 signaling, EHV-1 blocked the phosphorylation and activation of signal transducer and activator of transcription 2 (STAT2) when coincubated with exogenous IFN, at 12 hpi, although not at 3 or 6 hpi. Immunofluorescence staining revealed that the virus prevented the nuclear translocation of STAT2 molecules, confirming the virus-mediated inhibition of STAT2 activation. The pattern of suppression of phosphorylation of STAT2 by EHV-1 implicated viral late gene expression. These data help illuminate how EHV-1 strategically inhibits the host innate immune defense by limiting steps required for type I IFN sensitization and induction.IMPORTANCE To date, no commercial vaccine label has a claim to be fully protective against the diseases caused by equid herpesvirus 1 (EHV-1), especially the neurologic form. The interferon (IFN) system, of which type I IFN is of great importance, still remains a viable immunotherapeutic option against EHV-1 infection. The type I IFN system has been exploited successfully to treat other viral infections, such as chronic hepatitis B and C in humans. The current state of research on how EHV-1 interferes with the protective effect of type I IFN has indicated transient induction of type I IFN production followed by a rapid shutdown in vitro in equine endothelial cells (EECs). The significance of our study is the identification of certain steps in the type I IFN signaling pathway targeted for inhibition by EHV-1. Understanding this pathogen-host relationship is essential for the long-term goal of developing effective immunotherapy against EHV-1.
Collapse
Affiliation(s)
- Fatai S Oladunni
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
- Department of Veterinary Microbiology, University of Ilorin, Ilorin, Nigeria
| | - Sanjay Sarkar
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Stephanie Reedy
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Udeni B R Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - David W Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Thomas M Chambers
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
12
|
Dauber B, Saffran HA, Smiley JR. The herpes simplex virus host shutoff (vhs) RNase limits accumulation of double stranded RNA in infected cells: Evidence for accelerated decay of duplex RNA. PLoS Pathog 2019; 15:e1008111. [PMID: 31626661 PMCID: PMC6821131 DOI: 10.1371/journal.ppat.1008111] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/30/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
The herpes simplex virus virion host shutoff (vhs) RNase destabilizes cellular and viral mRNAs and blunts host innate antiviral responses. Previous work demonstrated that cells infected with vhs mutants display enhanced activation of the host double-stranded RNA (dsRNA)-activated protein kinase R (PKR), implying that vhs limits dsRNA accumulation in infected cells. Confirming this hypothesis, we show that partially complementary transcripts of the UL23/UL24 and UL30/31 regions of the viral genome increase in abundance when vhs is inactivated, giving rise to greatly increased levels of intracellular dsRNA formed by annealing of the overlapping portions of these RNAs. Thus, vhs limits accumulation of dsRNA at least in part by reducing the levels of complementary viral transcripts. We then asked if vhs also destabilizes dsRNA after its initial formation. Here, we used a reporter system employing two mCherry expression plasmids bearing complementary 3’ UTRs to produce defined dsRNA species in uninfected cells. The dsRNAs are unstable, but are markedly stabilized by co-expressing the HSV dsRNA-binding protein US11. Strikingly, vhs delivered by super-infecting HSV virions accelerates the decay of these pre-formed dsRNAs in both the presence and absence of US11, a novel and unanticipated activity of vhs. Vhs binds the host RNA helicase eIF4A, and we find that vhs-induced dsRNA decay is attenuated by the eIF4A inhibitor hippuristanol, providing evidence that eIF4A participates in the process. Our results show that a herpesvirus host shutoff RNase destabilizes dsRNA in addition to targeting partially complementary viral mRNAs, raising the possibility that the mRNA destabilizing proteins of other viral pathogens dampen the host response to dsRNA through similar mechanisms. Essentially all viruses produce double-stranded RNA (dsRNA) during infection. Host organisms therefore deploy a variety of dsRNA receptors to trigger innate antiviral defenses. Not surprisingly, viruses in turn produce an array of antagonists to block this host response. The best characterized of the viral antagonists function by binding to and masking dsRNA and/or blocking downstream signaling events. Other less studied viral antagonists appear to function by reducing the levels of dsRNA in infected cells, but exactly how they do so remains unknown. Here we show that one such viral antagonist, the herpes simplex virus vhs ribonuclease, reduces dsRNA levels in two distinct ways. First, as previously suggested, it dampens the accumulation of partially complementary viral mRNAs, reducing the potential for generating dsRNA. Second, it helps remove dsRNA after its formation, a novel and surprising activity of a protein best known for its activity on single-stranded mRNA. Many other viral pathogens produce proteins that target mRNAs for rapid destruction, and it will be important to determine if these also limit host dsRNA responses in similar ways.
Collapse
Affiliation(s)
- Bianca Dauber
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Holly A. Saffran
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - James R. Smiley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
13
|
Qin C, Zhang R, Lang Y, Shao A, Xu A, Feng W, Han J, Wang M, He W, Yu C, Tang J. Bclaf1 critically regulates the type I interferon response and is degraded by alphaherpesvirus US3. PLoS Pathog 2019; 15:e1007559. [PMID: 30682178 PMCID: PMC6364948 DOI: 10.1371/journal.ppat.1007559] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/06/2019] [Accepted: 01/03/2019] [Indexed: 01/12/2023] Open
Abstract
Type I interferon response plays a prominent role against viral infection, which is frequently disrupted by viruses. Here, we report Bcl-2 associated transcription factor 1 (Bclaf1) is degraded during the alphaherpesvirus Pseudorabies virus (PRV) and Herpes simplex virus type 1 (HSV-1) infections through the viral protein US3. We further reveal that Bclaf1 functions critically in type I interferon signaling. Knockdown or knockout of Bclaf1 in cells significantly impairs interferon-α (IFNα) -mediated gene transcription and viral inhibition against US3 deficient PRV and HSV-1. Mechanistically, Bclaf1 maintains a mechanism allowing STAT1 and STAT2 to be efficiently phosphorylated in response to IFNα, and more importantly, facilitates IFN-stimulated gene factor 3 (ISGF3) binding with IFN-stimulated response elements (ISRE) for efficient gene transcription by directly interacting with ISRE and STAT2. Our studies establish the importance of Bclaf1 in IFNα-induced antiviral immunity and in the control of viral infections.
Collapse
Affiliation(s)
- Chao Qin
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yue Lang
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Anwen Shao
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Aotian Xu
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenhai Feng
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jun Han
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengdong Wang
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wanwei He
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Cuilian Yu
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Tang
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Kloker LD, Berchtold S, Smirnow I, Schaller M, Fehrenbacher B, Krieg A, Sipos B, Lauer UM. The Oncolytic Herpes Simplex Virus Talimogene Laherparepvec Shows Promising Efficacy in Neuroendocrine Cancer Cell Lines. Neuroendocrinology 2019; 109:346-361. [PMID: 31280274 DOI: 10.1159/000500159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/04/2019] [Indexed: 01/17/2023]
Abstract
Metastatic neuroendocrine cancer still constitutes a palliative situation, lacking promising treatment options. Oncolytic virotherapy, a novel type of virus-based immunotherapy, lyses tumor cells using genetically engineered viruses thereby activating the immune system to induce an optimized antitumor response which could bring down tumor masses to a stage of minimal residual tumor disease. The oncolytic vector talimogene laherparepvec (T-VEC, herpes simplex virus [HSV] type 1) has already shown excellent safety profiles in clinical studies and has become the first ever FDA/EMA-approved oncolytic virus (OV). This work presents a first preclinical assessment of this state-of-the-art OV, using a panel of human neuroendocrine tumor/neuroendocrine carcinoma (NET/NEC) cell lines. Cytotoxicity, transgene expression, and viral replication patterns were studied. Furthermore, the antiproliferative activity was compared to the one of mTOR inhibitor Everolimus and also interactions between the OV and Everolimus were evaluated. Moreover, virostatic effects of ganciclovir (GCV) on replication of T-VEC were assessed and electron microscopic pictures were taken to comprehend viral envelopment and details of the replication cycle of T-VEC in human neuroendocrine cancer. It could be shown that T-VEC infects, replicates in, and lyses human NET/NEC cells exhibiting high oncolytic efficiencies already at quite low virus concentrations. Interestingly, Everolimus was not found to have any relevant impact on rates of viral replication, but no additive effects could be proved using a combinatorial therapy regimen. On the other hand, GCV was shown to be able to limit replication of T-VEC, thus establishing an important safety feature for future treatments of NET/NEC patients. Taken together, T-VEC opens up a promising novel treatment option for NET/NEC patients, warranting its further preclinical and clinical development.
Collapse
Affiliation(s)
- Linus D Kloker
- Department of Clinical Tumor Biology, University Hospital, University of Tübingen, Tübingen, Germany
| | - Susanne Berchtold
- Department of Clinical Tumor Biology, University Hospital, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Tübingen, Germany
| | - Irina Smirnow
- Department of Clinical Tumor Biology, University Hospital, University of Tübingen, Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, University Hospital, University of Tübingen, Tübingen, Germany
| | - Birgit Fehrenbacher
- Department of Dermatology, University Hospital, University of Tübingen, Tübingen, Germany
| | - Andreas Krieg
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Bence Sipos
- Department of Clinical Tumor Biology, University Hospital, University of Tübingen, Tübingen, Germany
| | - Ulrich M Lauer
- Department of Clinical Tumor Biology, University Hospital, University of Tübingen, Tübingen, Germany,
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Tübingen, Germany,
| |
Collapse
|
15
|
Roy S, Coulon PG, Srivastava R, Vahed H, Kim GJ, Walia SS, Yamada T, Fouladi MA, Ly VT, BenMohamed L. Blockade of LAG-3 Immune Checkpoint Combined With Therapeutic Vaccination Restore the Function of Tissue-Resident Anti-viral CD8 + T Cells and Protect Against Recurrent Ocular Herpes Simplex Infection and Disease. Front Immunol 2018; 9:2922. [PMID: 30619285 PMCID: PMC6304367 DOI: 10.3389/fimmu.2018.02922] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/28/2018] [Indexed: 12/18/2022] Open
Abstract
Recurrent viral diseases often occur after the viruses evade the hosts' immune system, by inducing exhaustion of antiviral T cells. In the present study, we found that functionally exhausted herpes simplex virus type 1 (HSV-1) -specific CD8+ T cells, with elevated expression of lymphocyte activation gene-3 (LAG-3), an immune checkpoint receptor that promotes T cell exhaustion, were frequent in symptomatic (SYMP) patients with a history of numerous episodes of recurrent corneal herpetic disease. Similarly, following UV-B induced virus reactivation from latency the symptomatic wild-type (WT) B6 mice that developed increase virus shedding and severe recurrent corneal herpetic disease had more exhausted HSV-specific LAG-3+CD8+ T cells in both trigeminal ganglia (TG) and cornea. Moreover, a therapeutic blockade of LAG-3 immune checkpoint with antagonist antibodies combined with a therapeutic immunization with gB498-505 peptide immunodominant epitope of latently infected B6 mice significantly restored the quality and quantity of functional HSV-1 gB498-505 specific CD8+ T cells in both TG and cornea and protected against UV-B induced recurrent corneal herpes infection and disease. In contrast to dysfunctional HSV-specific CD8+ T cells from WT B6 mice, more functional HSV-specific CD8+ T cells were detected in LAG-3-/- deficient mice and were associated with less UV-B induced recurrent corneal herpetic disease. Thus, the LAG-3 pathway plays a fundamental role in ocular herpes T cell immunopathology and provides an important immune checkpoint target that can synergizes with T cell-based therapeutic vaccines against symptomatic recurrent ocular herpes.
Collapse
Affiliation(s)
- Soumyabrata Roy
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Pierre-Grégoire Coulon
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Grace J Kim
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Sager S Walia
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Taikun Yamada
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Mona A Fouladi
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Vincent T Ly
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States.,Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States.,Institute for Immunology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
16
|
Maldov DG, Andronova VL, Grigorian SS, Isaeva EI, Balakina AA, Terentyev AA, Ilyichev AV, Galegov GA. [The mechanism of stimforte action on herpesvirus infection.]. Vopr Virusol 2018; 63:218-223. [PMID: 30550098 DOI: 10.18821/0507-4088-2018-63-5-218-223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/12/2017] [Indexed: 11/17/2022]
Abstract
Increased protease activity and a significant amount of granzyme B were observed in in organs of mice infected with acute herpes simplex virus HSV-1 with the introduction of Stimforte (100 or 250 µg/mouse). Thus, this drug activates killer cells, which play an extremely important role in the suppression of HSV-1 infection. Although the administration of Stimforte (100 μg/mouse) to intact mice results in the activation of IFN-β production and does not activate the production of IFN-λ, Stimforte administration to animals infected with HSV-1 reduces production of IFN-β in serum, brain and lungs, whereas the production of IFN-λ considerably increases as the result of administration of 100 μg/mouse of Stimforte.
Collapse
Affiliation(s)
- D G Maldov
- SKY LTD, Moscow, 129301, Russian Federation
| | - V L Andronova
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation
| | - S S Grigorian
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation
| | - E I Isaeva
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation
| | - A A Balakina
- Institute of Problems of Chemical Physics, 142432, Moscow Region, Russian Federation
| | - A A Terentyev
- Institute of Problems of Chemical Physics, 142432, Moscow Region, Russian Federation
| | | | - G A Galegov
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation
| |
Collapse
|
17
|
Leoni V, Vannini A, Gatta V, Rambaldi J, Sanapo M, Barboni C, Zaghini A, Nanni P, Lollini PL, Casiraghi C, Campadelli-Fiume G. A fully-virulent retargeted oncolytic HSV armed with IL-12 elicits local immunity and vaccine therapy towards distant tumors. PLoS Pathog 2018; 14:e1007209. [PMID: 30080893 PMCID: PMC6095629 DOI: 10.1371/journal.ppat.1007209] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/16/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022] Open
Abstract
Oncolytic herpes simplex viruses (oHSVs) showed efficacy in clinical trials and practice. Most of them gain cancer-specificity from deletions/mutations in genes that counteract the host response, and grow selectively in cancer cells defective in anti-viral response. Because of the deletions/mutations, they are frequently attenuated or over-attenuated. We developed next-generation oHSVs, which carry no deletion/mutation, gain cancer-specificity from specific retargeting to tumor cell receptors-e.g. HER2 (human epidermal growth factor receptor 2)-hence are fully-virulent in the targeted cancer cells. The type of immunotherapy they elicit was not predictable, since non-attenuated HSVs induce and then dampen the innate response, whereas deleted/attenuated viruses fail to contrast it, and since the retargeted oHSVs replicate efficiently in tumor cells, but spare other cells in the tumor. We report on the first efficacy study of HER2-retargeted, fully-virulent oHSVs in immunocompetent mice. Their safety profile was very high. Both the unarmed R-LM113 and the IL-12-armed R-115 inhibited the growth of the primary HER2-Lewis lung carcinoma-1 (HER2-LLC1) tumor, R-115 being constantly more efficacious. All the mice that did not die because of the primary treated tumors, were protected from the growth of contralateral untreated tumors. The long-term survivors were protected from a second contralateral tumor, providing additional evidence for an abscopal immunotherapeutic effect. Analysis of the local response highlighted that particularly R-115 unleashed the immunosuppressive tumor microenvironment, i.e. induced immunomodulatory cytokines, including IFNγ, T-bet which promoted Th1 polarization. Some of the tumor infiltrating cells, e.g. CD4+, CD335+ cells were increased in the tumors of all responders mice, irrespective of which virus was employed, whereas CD8+, Foxp3+, CD141+ were increased and CD11b+ cells were decreased preferentially in R-115-treated mice. The durable response included a breakage of tolerance towards both HER2 and the wt tumor cells, and underscored a systemic immunotherapeutic vaccine response.
Collapse
Affiliation(s)
- Valerio Leoni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Andrea Vannini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Valentina Gatta
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Julie Rambaldi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Mara Sanapo
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Catia Barboni
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Patrizia Nanni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Pier-Luigi Lollini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Costanza Casiraghi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- * E-mail:
| |
Collapse
|
18
|
Herpes Simplex Virus 1 Inhibits TANK-Binding Kinase 1 through Formation of the Us11-Hsp90 Complex. J Virol 2018; 92:JVI.00402-18. [PMID: 29743370 DOI: 10.1128/jvi.00402-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/02/2018] [Indexed: 01/06/2023] Open
Abstract
The Us11 protein of herpes simplex virus 1 (HSV-1) is an accessory factor with multiple functions. In virus-infected cells, it inhibits double-stranded RNA-dependent protein kinase (PKR), 2',5'-oligoadenylate synthetase, RIG-I, and MDA-5. However, its precise role is incompletely defined. By screening a human cDNA library, we showed that the Us11 protein targets heat shock protein 90 (Hsp90), which inactivates TANK binding kinase 1 (TBK1) and antiviral immunity. When ectopically expressed, HSV-1 Us11 precludes TBK1 from access to Hsp90 and interferon (IFN) promoter activation. Consistently, the Us11 protein, upon HSV infection, suppresses the expression of beta interferon (IFN-β), RANTES, and interferon-stimulated genes. This is mirrored by a blockade in the phosphorylation of interferon regulatory factor 3. Mechanistically, the Us11 protein associates with endogenous Hsp90 to disrupt the Hsp90-TBK1 complex. Furthermore, Us11 induces destabilization of TBK1 through a proteasome-dependent pathway. Accordingly, Us11 expression facilitates HSV growth. In contrast, TBK1 expression restricts viral replication. These results suggest that control of TBK1 by Us11 promotes HSV-1 infection.IMPORTANCE TANK binding kinase 1 plays a key role in antiviral immunity. Although multiple factors are thought to participate in this process, the picture is obscure in herpes simplex virus infection. We demonstrated that the Us11 protein of HSV-1 forms a complex with heat shock protein 90, which inactivates TANK binding kinase 1 and IFN induction. As a result, expression of the Us11 protein promotes HSV replication. These experimental data provide a new insight into the molecular network of virus-host interactions.
Collapse
|
19
|
Zhang X, Jiang Q, Xu X, Wang Y, Liu L, Lian Y, Li H, Wang L, Zhang Y, Jiang G, Zeng J, Zhang H, Han JDJ, Li Q. Immune mechanisms induced by an HSV-1 mutant strain: Discrepancy analysis of the immune system gene profile in comparison with a wild-type strain. Vaccine 2018; 36:2394-2402. [PMID: 29602705 DOI: 10.1016/j.vaccine.2018.03.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/07/2018] [Accepted: 03/21/2018] [Indexed: 02/01/2023]
Abstract
Herpes simplex virus is a prevalent pathogen of humans of various age groups. The fact that no prophylactic or therapeutic vaccine is currently available suggests a significant need to further investigate the immune mechanisms induced by the virus and various vaccine candidates. We previously generated an HSV-1 mutant strain, M3, with partial deletions in ul7, ul41 and LAT that produced an attenuated phenotype in mice. In the present study, we performed a comparative analysis to characterize the immune responses induced by M3 versus wild-type HSV-1 in a mouse model. Infection with wild-type HSV-1 triggered an inflammatory-dominated response and adaptive immunity suppression and was accompanied by severe pathological damage. In contrast, infection with M3 induced a systematic immune response involving full activation of both innate and adaptive immunity and was accompanied by no obvious pathological changes. Furthermore, the immune response induced by M3 protected mice from lethal challenge with wild-type strains of HSV-1 and restrained virus proliferation and impaired latency. These data are useful for further HSV-1 vaccine development using a mutant strain construction strategy.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Quanlong Jiang
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xingli Xu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Yongrong Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Lei Liu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Yaru Lian
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Hao Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Lichun Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Ying Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Guorun Jiang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Jieyuan Zeng
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Han Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Jing-Dong Jackie Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China.
| |
Collapse
|
20
|
Linderman JA, Kobayashi M, Rayannavar V, Fak JJ, Darnell RB, Chao MV, Wilson AC, Mohr I. Immune Escape via a Transient Gene Expression Program Enables Productive Replication of a Latent Pathogen. Cell Rep 2017; 18:1312-1323. [PMID: 28147283 DOI: 10.1016/j.celrep.2017.01.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/30/2016] [Accepted: 01/09/2017] [Indexed: 12/28/2022] Open
Abstract
How type I and II interferons prevent periodic reemergence of latent pathogens in tissues of diverse cell types remains unknown. Using homogeneous neuron cultures latently infected with herpes simplex virus 1, we show that extrinsic type I or II interferon acts directly on neurons to induce unique gene expression signatures and inhibit the reactivation-specific burst of viral genome-wide transcription called phase I. Surprisingly, interferons suppressed reactivation only during a limited period early in phase I preceding productive virus growth. Sensitivity to type II interferon was selectively lost if viral ICP0, which normally accumulates later in phase I, was expressed before reactivation. Thus, interferons suppress reactivation by preventing initial expression of latent genomes but are ineffective once phase I viral proteins accumulate, limiting interferon action. This demonstrates that inducible reactivation from latency is only transiently sensitive to interferon. Moreover, it illustrates how latent pathogens escape host immune control to periodically replicate by rapidly deploying an interferon-resistant state.
Collapse
Affiliation(s)
- Jessica A Linderman
- Department of Microbiology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA
| | - Mariko Kobayashi
- Laboratory of Molecular Neuro-Oncology & Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave., Box 226, New York, NY 10065, USA
| | - Vinayak Rayannavar
- Department of Microbiology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Kimmel Center for Biology & Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA
| | - John J Fak
- Laboratory of Molecular Neuro-Oncology & Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave., Box 226, New York, NY 10065, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology & Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave., Box 226, New York, NY 10065, USA
| | - Moses V Chao
- Department of Cell Biology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Department of Physiology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Department of Neuroscience, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Kimmel Center for Biology & Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA
| | - Angus C Wilson
- Department of Microbiology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center at NYU Medical Center, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center at NYU Medical Center, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA.
| |
Collapse
|
21
|
Osman R, Gonzalez-Cano P, Brownlie R, Griebel PJ. Induction of interferon and interferon-induced antiviral effector genes following a primary bovine herpesvirus-1 (BHV-1) respiratory infection. J Gen Virol 2017; 98:1831-1842. [PMID: 28675355 DOI: 10.1099/jgv.0.000825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Invitro investigations have identified a variety of mechanisms by which herpesviruses evade interferon-stimulated antiviral effector mechanisms. However, these immune evasion mechanisms have not been evaluated during a bovine herpesvirus-1 (BHV-1) infection. This study investigated the transcription and secretion of type I and II interferons (IFNs) and the transcription of IFN-stimulated genes (ISGs) during a primary BHV-1 infection of the upper respiratory tract (URT) in naïve calves. IFN-α, -β and -γ transcription in nasal turbinates and protein levels in nasal secretions increased following infection. Increased IFN type I and II secretion was detected 3 days post-infection (p.i.) and IFN production increased in parallel with virus shedding. Expression of ISGs, including Mx1, OAS and BST-2, also increased significantly (P<0.05) in nasal turbinates on day 3 p.i. and elevated ISG expression persisted throughout the period of viral shedding. In contrast, RNAase L gene expression was not induced during the BHV-1 infection in the nasal turbinates, but was induced on day 10 p.i. in the trachea. In vitro studies confirmed that recombinant bovine (rBo)IFN-α, -β and -γ induced expression of Mx1, OAS and BST-2, but decreased RNAse L transcript in bovine epithelial cells. Relative to vesicular stomatitisvirus (VSV), BHV-1 was resistant to the antiviral activity of rBoIFN-α and -γ, but treatment of epithelial cells with 10 ng rBoIFN-β ml-1 effected an 80 % inhibition of BHV-1 replication and complete inhibition of VSV replication. These observations confirm that the transcription and translation of type I and II IFNs increase during BHV-1 infection, while the transcription of some ISGs is not inhibited.
Collapse
Affiliation(s)
- Rahwa Osman
- School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Patricia Gonzalez-Cano
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Robert Brownlie
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Philip J Griebel
- School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada.,Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| |
Collapse
|
22
|
Zhang J, Liu H, Wei B. Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection. J Zhejiang Univ Sci B 2017; 18:277-288. [PMID: 28378566 PMCID: PMC5394093 DOI: 10.1631/jzus.b1600460] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/07/2017] [Indexed: 12/14/2022]
Abstract
Herpes simplex virus type 1 (HSV-1), a neurotropic member of the alphaherpes virus family, is among the most prevalent and successful human pathogens. HSV-1 can cause serious diseases at every stage of life including fatal disseminated disease in newborns, cold sores, eye disease, and fatal encephalitis in adults. HSV-1 infection can trigger rapid immune responses, and efficient inhibition and clearance of HSV-1 infection rely on both the innate and adaptive immune responses of the host. Multiple strategies have been used to restrict host innate immune responses by HSV-1 to facilitate its infection in host cells. The adaptive immunity of the host plays an important role in inhibiting HSV-1 infections. The activation and regulation of T cells are the important aspects of the adaptive immunity. They play a crucial role in host-mediated immunity and are important for clearing HSV-1. In this review, we examine the findings on T cell immune responses during HSV-1 infection, which hold promise in the design of new vaccine candidates for HSV-1.
Collapse
|
23
|
The ATP-Dependent RNA Helicase DDX3X Modulates Herpes Simplex Virus 1 Gene Expression. J Virol 2017; 91:JVI.02411-16. [PMID: 28148788 DOI: 10.1128/jvi.02411-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/25/2017] [Indexed: 01/08/2023] Open
Abstract
The human protein DDX3X is a DEAD box ATP-dependent RNA helicase that regulates transcription, mRNA maturation, and mRNA export and translation. DDX3X concomitantly modulates the replication of several RNA viruses and promotes innate immunity. We previously showed that herpes simplex virus 1 (HSV-1), a human DNA virus, incorporates DDX3X into its mature particles and that DDX3X is required for optimal HSV-1 infectivity. Here, we show that viral gene expression, replication, and propagation depend on optimal DDX3X protein levels. Surprisingly, DDX3X from incoming viral particles was not required for the early stages of the HSV-1 infection, but, rather, the protein controlled the assembly of new viral particles. This was independent of the previously reported ability of DDX3X to stimulate interferon type I production. Instead, both the lack and overexpression of DDX3X disturbed viral gene transcription and thus subsequent genome replication. This suggests that in addition to its effect on RNA viruses, DDX3X impacts DNA viruses such as HSV-1 by an interferon-independent pathway.IMPORTANCE Viruses interact with a variety of cellular proteins to complete their life cycle. Among them is DDX3X, an RNA helicase that participates in most aspects of RNA biology, including transcription, splicing, nuclear export, and translation. Several RNA viruses and a limited number of DNA viruses are known to manipulate DDX3X for their own benefit. In contrast, DDX3X is also known to promote interferon production to limit viral propagation. Here, we show that DDX3X, which we previously identified in mature HSV-1 virions, stimulates HSV-1 gene expression and, consequently, virion assembly by a process that is independent of its ability to promote the interferon pathway.
Collapse
|
24
|
Johnston C, Wald A. Genital Herpes. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
25
|
Heikkilä O, Nygårdas M, Paavilainen H, Ryödi E, Hukkanen V. Interleukin-27 Inhibits Herpes Simplex Virus Type 1 Infection by Activating STAT1 and 3, Interleukin-6, and Chemokines IP-10 and MIG. J Interferon Cytokine Res 2016; 36:617-629. [DOI: 10.1089/jir.2016.0015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Outi Heikkilä
- Department of Virology, University of Turku, Turku, Finland
| | | | - Henrik Paavilainen
- Department of Virology, University of Turku, Turku, Finland
- Drug Research Doctoral Programme, University of Turku, Turku, Finland
| | - Elina Ryödi
- Department of Virology, University of Turku, Turku, Finland
| | - Veijo Hukkanen
- Department of Virology, University of Turku, Turku, Finland
| |
Collapse
|
26
|
Strunk U, Ramos DG, Saffran HA, Smiley JR. Role of Herpes simplex virus 1 VP11/12 tyrosine-based binding motifs for Src family kinases, p85, Grb2 and Shc in activation of the phosphoinositide 3-kinase-Akt pathway. Virology 2016; 498:31-35. [DOI: 10.1016/j.virol.2016.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022]
|
27
|
Zanuzzi CN, Bravi ME, Scrochi MR, Nishida F, Fuentealba NA, Diessler ME, Sguazza HG, Muglia CI, Gimeno EJ, Portiansky EL, Barbeito CG, Galosi CM. Microvascular lesions and changes in cell proliferation and death, and cytokine expression in the placentas of mice experimentally infected with Equid Herpesvirus 1. Res Vet Sci 2016; 109:121-128. [PMID: 27892860 DOI: 10.1016/j.rvsc.2016.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/23/2016] [Accepted: 09/12/2016] [Indexed: 02/04/2023]
Abstract
This study describes the changes observed in the placentas of mice experimentally infected with an abortigenic strain of EHV-1 at mid-pregnancy and euthanized at days 3 and 4 post-infection. We analyzed microscopic vascular alterations, cell proliferation and death by immunohistochemistry, and the expression of IFN-γ, TNF-α and the IL-10 by qPCR and flow cytometry. Infected mice showed slight respiratory signs and ruffled fur during the first two days post-infection. Virus isolation and DNA detection were positive only in the lungs of the infected mice. Vascular congestion, increase in the labyrinth area, and a significant reduction in fetal capillary endothelium surface of infected placentas were found. Cell proliferation was significantly reduced in the infected placentas, whereas the apoptosis was significantly increased. IL10, TNF and IFN-γ showed different expression in the infected placentas and uteri. The effects of EHV-1 during pregnancy depend on different pathogenic mechanisms in which vascular alterations, and cell death and proliferation and local cytokine changes are compromised.
Collapse
Affiliation(s)
- C N Zanuzzi
- Department of Histology and Embryology, School of Veterinary Sciences, National University of La Plata, Argentina; National Research Council (CONICET), Argentina.
| | - M E Bravi
- Department of Virology, School of Veterinary Sciences, National University of La Plata, Argentina; Agency for the Promotion of Science and Technology (ANPCyT), Argentina
| | - M R Scrochi
- Department of Virology, School of Veterinary Sciences, National University of La Plata, Argentina; Department of Histology and Embryology, School of Veterinary Sciences, National University of La Plata, Argentina; National Research Council (CONICET), Argentina
| | - F Nishida
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata, Argentina
| | - N A Fuentealba
- Department of Virology, School of Veterinary Sciences, National University of La Plata, Argentina; National Research Council (CONICET), Argentina
| | - M E Diessler
- Department of Histology and Embryology, School of Veterinary Sciences, National University of La Plata, Argentina
| | - H G Sguazza
- Department of Virology, School of Veterinary Sciences, National University of La Plata, Argentina
| | - C I Muglia
- Department of Immunopathology, Institute of Immunological and Physiopathological Studies (IIFP), Argentina; National Research Council (CONICET), Argentina
| | - E J Gimeno
- National Research Council (CONICET), Argentina
| | - E L Portiansky
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata, Argentina; National Research Council (CONICET), Argentina
| | - C G Barbeito
- Department of Histology and Embryology, School of Veterinary Sciences, National University of La Plata, Argentina; Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata, Argentina; National Research Council (CONICET), Argentina
| | - C M Galosi
- Department of Virology, School of Veterinary Sciences, National University of La Plata, Argentina; Scientific Research Commission (CIC) of Province of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
28
|
Herpes Simplex Virus 1 Interaction with Myeloid Cells In Vivo. J Virol 2016; 90:8661-72. [PMID: 27440876 DOI: 10.1128/jvi.00881-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/13/2016] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) enters mice via olfactory epithelial cells and then colonizes the trigeminal ganglia (TG). Most TG nerve endings are subepithelial, so this colonization implies subepithelial viral spread, where myeloid cells provide an important line of defense. The outcome of infection of myeloid cells by HSV-1 in vitro depends on their differentiation state; the outcome in vivo is unknown. Epithelial HSV-1 commonly infected myeloid cells, and Cre-Lox virus marking showed nose and lung infections passing through LysM-positive (LysM(+)) and CD11c(+) cells. In contrast, subcapsular sinus macrophages (SSMs) exposed to lymph-borne HSV-1 were permissive only when type I interferon (IFN-I) signaling was blocked; normally, their infection was suppressed. Thus, the outcome of myeloid cell infection helped to determine the HSV-1 distribution: subepithelial myeloid cells provided a route of spread from the olfactory epithelium to TG neurons, while SSMs blocked systemic spread. IMPORTANCE Herpes simplex virus 1 (HSV-1) infects most people and can cause severe disease. This reflects its persistence in nerve cells that connect to the mouth, nose, eye, and face. Established infection seems impossible to clear. Therefore, we must understand how it starts. This is difficult in humans, but mice show HSV-1 entry via the nose and then spread to its preferred nerve cells. We show that this spread proceeds in part via myeloid cells, which normally function in host defense. Myeloid infection was productive in some settings but was efficiently suppressed by interferon in others. Therefore, interferon acting on myeloid cells can stop HSV-1 spread, and enhancing this defense offers a way to improve infection control.
Collapse
|
29
|
Herpes Simplex Virus 1 Serine Protease VP24 Blocks the DNA-Sensing Signal Pathway by Abrogating Activation of Interferon Regulatory Factor 3. J Virol 2016; 90:5824-5829. [PMID: 27076640 DOI: 10.1128/jvi.00186-16] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/05/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The interferon (IFN)-mediated antiviral response is a central aspect of host defense; however, viruses have evolved multiple strategies to counteract IFN-mediated responses in order to successfully infect the host. Herpes simplex virus 1 (HSV-1), a typical human-restricted DNA virus, is capable of counteracting host immune responses via several distinct viral proteins, thus establishing a lifelong latent infection. In this study, we demonstrate that the VP24 protein, a serine protease of HSV-1 essential for the formation and maturation of capsids, is a novel antagonist of the beta interferon (IFN-β) pathway. Here, VP24 was shown for the first time to dampen interferon stimulatory DNA (ISD)-triggered IFN-β production and inhibit IFN-β promoter activation induced by cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) and by STING, respectively. Further study demonstrated that ectopic expression of VP24 selectively blocked IFN regulatory factor 3 (IRF3) but not NF-κB promoter activation. In addition, VP24 was demonstrated to downregulate ISD-induced phosphorylation and dimerization of IRF3 during HSV-1 infection with a VP24 stable knockdown human foreskin fibroblast cell line. The underlying molecular mechanism is that VP24 abrogates the interaction between TANK-binding kinase 1 (TBK1) and IRF3, hence impairing IRF3 activation. These results illustrate that VP24 is able to block the production of IFN-β by inhibiting IRF3 activation, which may represent a critical adaptation to enable viral effective replication within the host. IMPORTANCE This study demonstrated that HSV-1 protein VP24 could inhibit IFN-β production and promoter activation triggered by ISD, cGAS and STING and by STING, respectively. VP24 selectively blocked IRF3 promoter activation and ISD-induced phosphorylation and dimerization of IRF3 without affecting the NF-κB promoter activation during viral infection. VP24 also inhibited IRF3 activation by impeding the interaction between TBK1 and IRF3 during viral infection. This study provides new insights into the immune evasion mediated by HSV-1 and identifies VP24 as a crucial effector for HSV-1 to evade the host DNA-sensing signal pathway.
Collapse
|
30
|
Sarkar S, Balasuriya UBR, Horohov DW, Chambers TM. Equine herpesvirus-1 infection disrupts interferon regulatory factor-3 (IRF-3) signaling pathways in equine endothelial cells. Vet Immunol Immunopathol 2016; 173:1-9. [PMID: 27090619 DOI: 10.1016/j.vetimm.2016.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 12/25/2022]
Abstract
Equine herpesvirus-1 (EHV-1) is a major respiratory viral pathogen of horses, causing upper respiratory tract disease, abortion, neonatal death, and neurological disease that may lead to paralysis and death. EHV-1 replicates initially in the respiratory epithelium and then spreads systemically to endothelial cells lining the small blood vessels in the uterus and spinal cord leading to abortion and EHM in horses. Like other herpesviruses, EHV-1 employs a variety of mechanisms for immune evasion including suppression of type-I interferon (IFN) production in equine endothelial cells (EECs). Previously we have shown that the neuropathogenic T953 strain of EHV-1 inhibits type-I IFN production in EECs and this is mediated by a viral late gene product. But the mechanism of inhibition was not known. Here we show that T953 strain infection of EECs induced degradation of endogenous IRF-3 protein. This in turn interfered with the activation of IRF-3 signaling pathways. EHV-1 infection caused the activation of the NF-κB signaling pathways, suggesting that inhibition of type-I IFN production is probably due to interference in IRF-3 and not NF-κB signal transduction.
Collapse
Affiliation(s)
- Sanjay Sarkar
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA.
| | - Udeni B R Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - David W Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - Thomas M Chambers
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| |
Collapse
|
31
|
Lau L, Gray EE, Brunette RL, Stetson DB. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science 2015; 350:568-71. [PMID: 26405230 DOI: 10.1126/science.aab3291] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/11/2015] [Indexed: 12/18/2022]
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) detects intracellular DNA and signals through the adapter protein STING to initiate the antiviral response to DNA viruses. Whether DNA viruses can prevent activation of the cGAS-STING pathway remains largely unknown. Here, we identify the oncogenes of the DNA tumor viruses, including E7 from human papillomavirus (HPV) and E1A from adenovirus, as potent and specific inhibitors of the cGAS-STING pathway. We show that the LXCXE motif of these oncoproteins, which is essential for blockade of the retinoblastoma tumor suppressor, is also important for antagonizing DNA sensing. E1A and E7 bind to STING, and silencing of these oncogenes in human tumor cells restores the cGAS-STING pathway. Our findings reveal a host-virus conflict that may have shaped the evolution of viral oncogenes.
Collapse
Affiliation(s)
- Laura Lau
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Elizabeth E Gray
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Rebecca L Brunette
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Daniel B Stetson
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
32
|
Sarkar S, Balasuriya UBR, Horohov DW, Chambers TM. Equine herpesvirus-1 suppresses type-I interferon induction in equine endothelial cells. Vet Immunol Immunopathol 2015; 167:122-9. [PMID: 26275803 DOI: 10.1016/j.vetimm.2015.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/23/2015] [Accepted: 07/30/2015] [Indexed: 12/31/2022]
Abstract
Equine herpesvirus-1 (EHV-1) is one of the most common and important respiratory viral pathogens of horses. EHV-1 in horses replicates initially in the respiratory epithelium and then spreads systematically to endothelial cells lining the small blood vessels in the uterus and spinal cord, and highly pathogenic virus strains can produce aborted fetuses or myeloencephalopathy. Like other herpes viruses, EHV-1 employs a variety of mechanisms for immune evasion. Some herpes viruses down-regulate the type-I interferon (IFN) response to infection, but such activity has not been described for EHV-1. Here, in an in vitro system utilizing an established equine endothelial cell line, we studied the temporal effect on IFN-β responses following infection with the neuropathogenic T953 strain of EHV-1. Results show that after an early induction of IFN-β, the virus actively shut down further production of IFN-β and this was correlated with expression of the viral late genes. Expression of the IFN response factor viperin, a marker of host cell type-I IFN responses, was also suppressed by T953 virus infection. EHV-1-mediated suppression of host type-I IFN responses may play an important role in EHV-1 pathogenesis and the mechanism of this, presumably involving a viral late gene product, warrants investigation.
Collapse
Affiliation(s)
- Sanjay Sarkar
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA.
| | - Udeni B R Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - David W Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - Thomas M Chambers
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| |
Collapse
|
33
|
Rosato PC, Leib DA. Neuronal Interferon Signaling Is Required for Protection against Herpes Simplex Virus Replication and Pathogenesis. PLoS Pathog 2015; 11:e1005028. [PMID: 26153886 PMCID: PMC4495997 DOI: 10.1371/journal.ppat.1005028] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/17/2015] [Indexed: 12/28/2022] Open
Abstract
Interferon (IFN) responses are critical for controlling herpes simplex virus 1 (HSV-1). The importance of neuronal IFN signaling in controlling acute and latent HSV-1 infection remains unclear. Compartmentalized neuron cultures revealed that mature sensory neurons respond to IFNβ at both the axon and cell body through distinct mechanisms, resulting in control of HSV-1. Mice specifically lacking neural IFN signaling succumbed rapidly to HSV-1 corneal infection, demonstrating that IFN responses of the immune system and non-neuronal tissues are insufficient to confer survival following virus challenge. Furthermore, neurovirulence was restored to an HSV strain lacking the IFN-modulating gene, γ34.5, despite its expected attenuation in peripheral tissues. These studies define a crucial role for neuronal IFN signaling for protection against HSV-1 pathogenesis and replication, and they provide a novel framework to enhance our understanding of the interface between host innate immunity and neurotropic pathogens. Herpes simplex virus type 1 (HSV-1) is a ubiquitous virus that can cause cold sores, blindness, and even death from encephalitis. There is no vaccine against HSV, and although antiviral drugs can control HSV-1, it persists because it establishes lifelong latent infections in neurons. Humans with deficiencies in innate immunity have significant problems controlling HSV infections. In this study we therefore sought to elucidate the role of neuronal innate immunity in the control of viral infection. Sensory neurons, in which HSV resides, have projection which that extend long distances to innervate the skin, the initial site of HSV infection. We found that neurons can respond to interferon beta, a molecule that strongly stimulates innate immunity and inhibits virus growth, at both the cell body and at the end of these long projections. Moreover, we found that this interferon response of neurons is critical for controlling HSV infection in vivo and that the interferon responses of non-neuronal cells are insufficient to provide protection. Our results have important implications for understanding how the nervous system defends itself against virus infections.
Collapse
Affiliation(s)
- Pamela C. Rosato
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - David A. Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
34
|
Rosato PC, Leib DA. Neurons versus herpes simplex virus: the innate immune interactions that contribute to a host-pathogen standoff. Future Virol 2015; 10:699-714. [PMID: 26213562 PMCID: PMC4508759 DOI: 10.2217/fvl.15.45] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herpes simplex virus (HSV) is a prevalent neurotropic virus, which establishes lifelong latent infections in the neurons of sensory ganglia. Despite our long-standing knowledge that HSV predominately infects sensory neurons during its life cycle, little is known about the neuronal antiviral response to HSV infection. Recent studies show that while sensory neurons have impaired intrinsic immunity to HSV infection, paracrine IFN signaling can potentiate a potent antiviral response. Additionally, antiviral autophagy plays an important role in neuronal control of HSV infection. Here we review the literature of antiviral signaling and autophagy in neurons, the mechanisms by which HSV can counteract these responses, and postulate how these two pathways may synergize to mediate neuronal control of HSV infection and yet result in lifelong persistence of the virus.
Collapse
Affiliation(s)
- Pamela C Rosato
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - David A Leib
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
35
|
Paavilainen H, Romanovskaya A, Nygårdas M, Bamford DH, Poranen MM, Hukkanen V. Innate responses to small interfering RNA pools inhibiting herpes simplex virus infection in astrocytoid and epithelial cells. Innate Immun 2015; 21:349-57. [PMID: 24996409 DOI: 10.1177/1753425914537921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/29/2014] [Indexed: 11/16/2022] Open
Abstract
Herpes simplex virus (HSV) is a human pathogen that can cause severe diseases such as encephalitis, keratitis and neonatal herpes. Control of HSV infection may be achieved by using small interfering (si)RNAs. We have designed and enzymatically produced pools of siRNAs targeting HSV. In addition to the target-specific effects, such siRNAs may induce innate immunity responses that may contribute to antiviral effects. HSV has versatile ways of modulating innate immunity, and it remains unclear whether HSV-specific antiviral treatment would benefit from the potential immunostimulatory effects of siRNAs. To address this, cell lines derived from epithelium and nervous system were studied for innate immunity reactions to HSV infection, to siRNA treatment, and to a combination of treatment and infection. In addition, the outcome of HSV infection was quantitated. We show that innate immunity reactions vary drastically between the cell lines. Moreover, our findings indicate only a minimal relation between the antiviral effect and the treatment-induced innate immunity responses. Thus, the antiviral effect is mainly sequence specific and the inhibition of HSV infection is not ascribed to the slight innate immunity induction.
Collapse
Affiliation(s)
| | | | | | - Dennis H Bamford
- Department of Biosciences, University of Helsinki, Helsinki, Finland Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Minna M Poranen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Veijo Hukkanen
- Department of Virology, University of Turku, Turku, Finland
| |
Collapse
|
36
|
Crow MS, Javitt A, Cristea IM. A proteomics perspective on viral DNA sensors in host defense and viral immune evasion mechanisms. J Mol Biol 2015; 427:1995-2012. [PMID: 25728651 DOI: 10.1016/j.jmb.2015.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 12/22/2022]
Abstract
The sensing of viral DNA is an essential step of cellular immune response to infections with DNA viruses. These human pathogens are spread worldwide, triggering a wide range of virus-induced diseases, and are associated with high levels of morbidity and mortality. Despite similarities between DNA molecules, mammalian cells have the remarkable ability to distinguish viral DNA from their own DNA. This detection is carried out by specialized antiviral proteins, called DNA sensors. These sensors bind to foreign DNA to activate downstream immune signaling pathways and alert neighboring cells by eliciting the expression of antiviral cytokines. The sensing of viral DNA was shown to occur both in the cytoplasm and in the nucleus of infected cells, disproving the notion that sensing occurred by simple spatial separation of viral and host DNA. A number of omic approaches, in particular, mass-spectrometry-based proteomic methods, have significantly contributed to the constantly evolving field of viral DNA sensing. Here, we review the impact of omic methods on the identification of viral DNA sensors, as well as on the characterization of mechanisms involved in host defense or viral immune evasion.
Collapse
Affiliation(s)
- Marni S Crow
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Aaron Javitt
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
37
|
Gianni T, Campadelli-Fiume G. The epithelial αvβ3-integrin boosts the MYD88-dependent TLR2 signaling in response to viral and bacterial components. PLoS Pathog 2014; 10:e1004477. [PMID: 25375272 PMCID: PMC4223072 DOI: 10.1371/journal.ppat.1004477] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/16/2014] [Indexed: 12/15/2022] Open
Abstract
TLR2 is a cell surface receptor which elicits an immediate response to a wide repertoire of bacteria and viruses. Its response is usually thought to be proinflammatory rather than an antiviral. In monocytic cells TLR2 cooperates with coreceptors, e.g. CD14, CD36 and αMβ2-integrin. In an earlier work we showed that αvβ3-integrin acts in concert with TLR2 to elicit an innate response to HSV, and to lipopolysaccharide. This response is characterized by production of IFN-α and -β, a specific set of cytokines, and NF-κB activation. We investigated the basis of the cooperation between αvβ3-integrin and TLR2. We report that β3-integrin participates by signaling through Y residues located in the C-tail, known to be involved in signaling activity. αvβ3-integrin boosts the MYD88-dependent TLR2 signaling and IRAK4 phosphorylation in 293T and in epithelial, keratinocytic and neuronal cell lines. The replication of ICP0minus HSV is greatly enhanced by DN versions of MYD88, of Akt – a hub of this pathway, or by β3integrin-silencing. αvβ3-integrin enables the recruitment of TLR2, MAL, MYD88 at lipid rafts, the platforms from where the signaling starts. The PAMP of the HSV-induced innate response is the gH/gL virion glycoprotein, which interacts with αvβ3-integrin and TLR2 independently one of the other, and cross-links the two receptors. Given the preferential distribution of αvβ3-integrin to epithelial cells, we propose that αvβ3-integrin serves as coreceptor of TLR2 in these cells. The results open the possibility that TLR2 makes use of coreceptors in a variety of cells to broaden its spectrum of activity and tissue specificity. In an earlier work we showed that a relevant contribution to the overall IFN-based antiviral response of the cell to herpes simplex virus is exerted by αvβ3-integrin which acts in concert with TLR2 in eliciting this response. Major characteristics of this branch of the innate response are the secretion of IFN-α and -β, of a specific set of cytokines, and the activation of NF-κB. The response is elicited also by LPS, indicating that the αvβ3-integrin TLR2 sentinels sense both bacteria and viruses. The IFN response is usually thought to be elicited by the endosomal and cytoplasmic sensors. Here we have investigated the basis of the αvβ3-integrin–TLR2 response, and found that αvβ3-integrin acts through its signaling C-tail, and boosts the MYD88- IRAK4-dependent TLR2 response. This is seen also in epithelial and neuronal cells which exemplify targets of HSV infection. Altogether, the results argue that αvβ3-integrin may serve as a coreceptor of TLR2 in epithelial cells. A point of novelty is that the TLR2 coreceptors known to date - CD14, CD36 and αMβ2-integrins - are typical of monocytic-derived cells (macrophages, DCs). To our knowledge a TLR2 coreceptor for epithelial cells was not known to date.
Collapse
Affiliation(s)
- Tatiana Gianni
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum–University of Bologna, Bologna, Italy
- * E-mail:
| |
Collapse
|
38
|
Collins SE, Mossman KL. Danger, diversity and priming in innate antiviral immunity. Cytokine Growth Factor Rev 2014; 25:525-31. [PMID: 25081316 DOI: 10.1016/j.cytogfr.2014.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 12/24/2022]
Abstract
The prototypic response to viral infection involves the recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), leading to the activation of transcription factors such as IRF3 and NFkB and production of type 1 IFN. While this response can lead to the induction of hundreds of IFN-stimulated genes (ISGs) and recruitment and activation of immune cells, such a comprehensive response is likely inappropriate for routine low level virus exposure. Moreover, viruses have evolved a plethora of immune evasion strategies to subvert antiviral signalling. There is emerging evidence that cells have developed very sensitive methods of detecting not only specific viral PAMPS, but also more general danger or stress signals associated with viral entry and replication. Such stress-induced cellular responses likely serve to prime cells to respond to further PAMP stimulation or allow for a rapid and localized intracellular response independent of IFN production and its potential immune sequelae. This review discusses diversity in innate antiviral players and pathways, the role of "danger" sensing, and how alternative pathways, such as the IFN-independent pathway, may serve to prime cells for further pathogen attack.
Collapse
Affiliation(s)
- Susan E Collins
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, Institute for Infectious Disease Research, McMaster University, Hamilton, Canada L8S 4K1
| | - Karen L Mossman
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, Institute for Infectious Disease Research, McMaster University, Hamilton, Canada L8S 4K1.
| |
Collapse
|
39
|
Intrinsic innate immunity fails to control herpes simplex virus and vesicular stomatitis virus replication in sensory neurons and fibroblasts. J Virol 2014; 88:9991-10001. [PMID: 24942587 DOI: 10.1128/jvi.01462-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) establishes lifelong latent infections in the sensory neurons of the trigeminal ganglia (TG), wherein it retains the capacity to reactivate. The interferon (IFN)-driven antiviral response is critical for the control of HSV-1 acute replication. We therefore sought to further investigate this response in TG neurons cultured from adult mice deficient in a variety of IFN signaling components. Parallel experiments were also performed in fibroblasts isolated concurrently. We showed that HSV-1 replication was comparable in wild-type (WT) and IFN signaling-deficient neurons and fibroblasts. Unexpectedly, a similar pattern was observed for the IFN-sensitive vesicular stomatitis virus (VSV). Despite these findings, TG neurons responded to IFN-β pretreatment with STAT1 nuclear localization and restricted replication of both VSV and an HSV-1 strain deficient in γ34.5, while wild-type HSV-1 replication was unaffected. This was in contrast to fibroblasts in which all viruses were restricted by the addition of IFN-β. Taken together, these data show that adult TG neurons can mount an effective antiviral response only if provided with an exogenous source of IFN-β, and HSV-1 combats this response through γ34.5. These results further our understanding of the antiviral response of neurons and highlight the importance of paracrine IFN-β signaling in establishing an antiviral state. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a ubiquitous virus that establishes a lifelong latent infection in neurons. Reactivation from latency can cause cold sores, blindness, and death from encephalitis. Humans with deficiencies in innate immunity have significant problems controlling HSV infections. In this study, we therefore sought to elucidate the role of neuronal innate immunity in the control of viral infection. Using neurons isolated from mice, we found that the intrinsic capacity of neurons to restrict virus replication was unaffected by the presence or absence of innate immunity. In contrast, neurons were able to mount a robust antiviral response when provided with beta interferon, a molecule that strongly stimulates innate immunity, and that HSV-1 can combat this response through the γ34.5 viral gene. Our results have important implications for understanding how the nervous system defends itself against virus infections.
Collapse
|
40
|
The herpes simplex virus 1 virion host shutoff protein enhances translation of viral late mRNAs by preventing mRNA overload. J Virol 2014; 88:9624-32. [PMID: 24920814 DOI: 10.1128/jvi.01350-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED We recently demonstrated that the virion host shutoff (vhs) protein, an mRNA-specific endonuclease, is required for efficient herpes simplex virus 1 (HSV-1) replication and translation of viral true-late mRNAs, but not other viral and cellular mRNAs, in many cell types (B. Dauber, J. Pelletier, and J. R. Smiley, J. Virol. 85:5363-5373, 2011, http://dx.doi.org/10.1128/JVI.00115-11). Here, we evaluated whether the structure of true-late mRNAs or the timing of their transcription is responsible for the poor translation efficiency in the absence of vhs. To test whether the highly structured 5' untranslated region (5'UTR) of the true-late gC mRNA is the primary obstacle for translation initiation, we replaced it with the less structured 5'UTR of the γ-actin mRNA. However, this mutation did not restore translation in the context of a vhs-deficient virus. We then examined whether the timing of transcription affects translation efficiency at late times. To this end, we engineered a vhs-deficient virus mutant that transcribes the true-late gene US11 with immediate-early kinetics (IEUS11-ΔSma). Interestingly, IEUS11-ΔSma showed increased translational activity on the US11 transcript at late times postinfection, and US11 protein levels were restored to wild-type levels. These results suggest that mRNAs can maintain translational activity throughout the late stage of infection if they are present before translation factors and/or ribosomes become limiting. Taken together, these results provide evidence that in the absence of the mRNA-destabilizing function of vhs, accumulation of viral mRNAs overwhelms the capacity of the host translational machinery, leading to functional exclusion of the last mRNAs that are made during infection. IMPORTANCE The process of mRNA translation accounts for a significant portion of a cell's energy consumption. To ensure efficient use of cellular resources, transcription, translation, and mRNA decay are tightly linked and highly regulated. However, during virus infection, the overall amount of mRNA may increase drastically, possibly overloading the capacity of the translation apparatus. Our results suggest that the HSV-1 vhs protein, an mRNA-specific endoribonuclease, prevents mRNA overload during infection, thereby allowing translation of late viral mRNAs. The requirement for vhs varies between cell types. Further studies of the basis for this difference likely will offer insights into how cells regulate overall mRNA levels and access to the translational apparatus.
Collapse
|
41
|
Abstract
A hallmark of the antiviral response is the induction of interferons. First discovered in 1957 by Issac and Lindeman, interferons are noted for their ability to interfere with viral replication. Interferons act via autocrine and paracrine pathways to induce an antiviral state in infected cells and in neighboring cells containing interferon receptors. Interferons are the frontline defenders against viral infection and their primary function is to locally restrict viral propagation. Viruses have evolved mechanisms to escape the host interferon response, thus gaining a replicative advantage in host cells. This review will discuss recent findings on the mechanisms viruses use to evade the host interferon response. This knowledge is important because the treatment of viral infections is a challenge of global proportions and a better understanding of the mechanisms viruses use to persist in the host may uncover valuable insights applicable to the discovery of novel drug targets.
Collapse
|
42
|
Ma Y, He B. Recognition of herpes simplex viruses: toll-like receptors and beyond. J Mol Biol 2013; 426:1133-47. [PMID: 24262390 DOI: 10.1016/j.jmb.2013.11.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/31/2013] [Accepted: 11/13/2013] [Indexed: 12/25/2022]
Abstract
Herpes simplex viruses (HSVs) are human pathogens that establish lytic and latent infections. Reactivation from latency occurs intermittently, which represents a lifelong source of recurrent infection. In this complex process, HSV triggers and neutralizes innate immunity. Therefore, a dynamic equilibrium between HSV and the innate immune system determines the outcome of viral infection. Detection of HSV involves pathogen recognition receptors that include Toll-like receptors, retinoic acid-inducible gene I-like receptors, and cytosolic DNA sensors. Moreover, innate components or pathways exist to sense membrane fusion upon viral entry into host cells. Consequently, this surveillance network activates downstream transcription factors, leading to the induction of type I interferon and inflammatory cytokines. Not surprisingly, with the capacity to establish chronic infection HSV has evolved strategies that modulate or evade innate immunity. In this review, we describe recent advances pertinent to the interplay of HSV and the induction of innate immunity mediated by pathogen recognition receptors or pathways.
Collapse
Affiliation(s)
- Yijie Ma
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Bin He
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, IL 60612, USA.
| |
Collapse
|
43
|
Lucas-Hourani M, Dauzonne D, Jorda P, Cousin G, Lupan A, Helynck O, Caignard G, Janvier G, André-Leroux G, Khiar S, Escriou N, Desprès P, Jacob Y, Munier-Lehmann H, Tangy F, Vidalain PO. Inhibition of pyrimidine biosynthesis pathway suppresses viral growth through innate immunity. PLoS Pathog 2013; 9:e1003678. [PMID: 24098125 PMCID: PMC3789760 DOI: 10.1371/journal.ppat.1003678] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/16/2013] [Indexed: 12/19/2022] Open
Abstract
Searching for stimulators of the innate antiviral response is an appealing approach to develop novel therapeutics against viral infections. Here, we established a cell-based reporter assay to identify compounds stimulating expression of interferon-inducible antiviral genes. DD264 was selected out of 41,353 compounds for both its immuno-stimulatory and antiviral properties. While searching for its mode of action, we identified DD264 as an inhibitor of pyrimidine biosynthesis pathway. This metabolic pathway was recently identified as a prime target of broad-spectrum antiviral molecules, but our data unraveled a yet unsuspected link with innate immunity. Indeed, we showed that DD264 or brequinar, a well-known inhibitor of pyrimidine biosynthesis pathway, both enhanced the expression of antiviral genes in human cells. Furthermore, antiviral activity of DD264 or brequinar was found strictly dependent on cellular gene transcription, nuclear export machinery, and required IRF1 transcription factor. In conclusion, the antiviral property of pyrimidine biosynthesis inhibitors is not a direct consequence of pyrimidine deprivation on the virus machinery, but rather involves the induction of cellular immune response. Our therapeutic arsenal to treat viral diseases is extremely limited, and there is a critical need for molecules that could be used against multiple viruses. Among possible strategies, there is a growing interest for molecules stimulating cellular defense mechanisms. We recently developed a functional assay to identify stimulators of antiviral genes, and selected compound DD264 from a chemical library using this approach. While searching for its mode of action, we identified this molecule as an inhibitor of pyrimidine biosynthesis, a metabolic pathway that fuels the cell with pyrimidine nucleobases for both DNA and RNA synthesis. Interestingly, it was recently shown that inhibitors of this metabolic pathway prevent the replication of RNA viruses. Here, we established a functional link between pyrimidine biosynthesis pathway and the induction of antiviral genes, and demonstrated that pyrimidine biosynthesis inhibitors like DD264 or brequinar critically rely on cellular immune response to inhibit virus growth. Thus, pyrimidine deprivation is not directly responsible for the antiviral activity of pyrimidine biosynthesis inhibitors, which rather involves the induction of a metabolic stress and subsequent triggering of cellular defense mechanisms.
Collapse
Affiliation(s)
- Marianne Lucas-Hourani
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
| | - Daniel Dauzonne
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR176, Paris, France
| | - Pierre Jorda
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR176, Paris, France
| | - Gaëlle Cousin
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR176, Paris, France
| | - Alexandru Lupan
- Institut Pasteur, Unité de Chimie et Biocatalyse, Paris, France
- CNRS, UMR3523, Paris, France
| | - Olivier Helynck
- Institut Pasteur, Unité de Chimie et Biocatalyse, Paris, France
- CNRS, UMR3523, Paris, France
| | - Grégory Caignard
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
| | - Geneviève Janvier
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
| | - Gwénaëlle André-Leroux
- Institut Pasteur, Unité de Biochimie Structurale, Paris, France
- CNRS, UMR 3528, Paris, France
| | - Samira Khiar
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
| | - Nicolas Escriou
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
| | - Philippe Desprès
- Institut Pasteur, Unité Interactions moléculaires Flavivirus-Hôtes, Paris, France
| | - Yves Jacob
- CNRS, UMR3569, Paris, France
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Paris, France
- Dana-Farber Cancer Institute, Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Boston, Massachusetts, United States of America
| | - Hélène Munier-Lehmann
- Institut Pasteur, Unité de Chimie et Biocatalyse, Paris, France
- CNRS, UMR3523, Paris, France
- * E-mail: (HML); (FT); (POV)
| | - Frédéric Tangy
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
- * E-mail: (HML); (FT); (POV)
| | - Pierre-Olivier Vidalain
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
- * E-mail: (HML); (FT); (POV)
| |
Collapse
|
44
|
Herpes simplex virus 1 E3 ubiquitin ligase ICP0 protein inhibits tumor necrosis factor alpha-induced NF-κB activation by interacting with p65/RelA and p50/NF-κB1. J Virol 2013; 87:12935-48. [PMID: 24067962 DOI: 10.1128/jvi.01952-13] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
NF-κB plays central roles in regulation of diverse biological processes, including innate and adaptive immunity and inflammation. HSV-1 is the archetypal member of the alphaherpesviruses, with a large genome encoding over 80 viral proteins, many of which are involved in virus-host interactions and show immune modulatory capabilities. In this study, we demonstrated that the HSV-1 ICP0 protein, a viral E3 ubiquitin ligase, was shown to significantly suppress tumor necrosis factor alpha (TNF-α)-mediated NF-κB activation. ICP0 was demonstrated to bind to the NF-κB subunits p65 and p50 by coimmunoprecipitation analysis. ICP0 bound to the Rel homology domain (RHD) of p65. Fluorescence microscopy demonstrated that ICP0 abolished nuclear translocation of p65 upon TNF-α stimulation. Also, ICP0 degraded p50 via its E3 ubiquitin ligase activity. The RING finger (RF) domain mutant ICP0 (ICP0-RF) lost its ability to inhibit TNF-α-mediated NF-κB activation and p65 nuclear translocation and degrade p50. Notably, the RF domain of ICP0 was sufficient to interact with p50 and abolish NF-κB reporter gene activity. Here, it is for the first time shown that HSV-1 ICP0 interacts with p65 and p50, degrades p50 through the ubiquitin-proteasome pathway, and prevents NF-κB-dependent gene expression, which may contribute to immune evasion and pathogenesis of HSV-1.
Collapse
|
45
|
Suppression of PACT-induced type I interferon production by herpes simplex virus 1 Us11 protein. J Virol 2013; 87:13141-9. [PMID: 24067967 DOI: 10.1128/jvi.02564-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) Us11 protein is a double-stranded RNA-binding protein that suppresses type I interferon production through the inhibition of the cytoplasmic RNA sensor RIG-I. Whether additional cellular mediators are involved in this suppression remains to be determined. In this study, we report on the requirement of cellular double-stranded RNA-binding protein PACT for Us11-mediated perturbation of type I interferon production. Us11 associates with PACT tightly to prevent it from binding with and activating RIG-I. The Us11-deficient HSV-1 was indistinguishable from the Us11-proficient virus in the suppression of interferon production when PACT was compromised. More importantly, HSV-1-induced activation of interferon production was abrogated in PACT knockout murine embryonic fibroblasts. Our findings suggest a new mechanism for viral evasion of innate immunity through which a viral double-stranded RNA-binding protein interacts with PACT to circumvent type I interferon production. This mechanism might also be used by other PACT-binding viral interferon-antagonizing proteins such as Ebola virus VP35 and influenza A virus NS1.
Collapse
|
46
|
Herpes simplex virus 1-encoded tegument protein VP16 abrogates the production of beta interferon (IFN) by inhibiting NF-κB activation and blocking IFN regulatory factor 3 to recruit its coactivator CBP. J Virol 2013; 87:9788-801. [PMID: 23824799 DOI: 10.1128/jvi.01440-13] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Host cells activate innate immune signaling pathways to defend against invading pathogens. To survive within an infected host, viruses have evolved intricate strategies to counteract host immune responses. Herpesviruses, including herpes simplex virus type 1 (HSV-1), have large genomes and therefore have the capacity to encode numerous proteins that modulate host innate immune responses. Here we define the contribution of HSV-1 tegument protein VP16 in the inhibition of beta interferon (IFN-β) production. VP16 was demonstrated to significantly inhibit Sendai virus (SeV)-induced IFN-β production, and its transcriptional activation domain was not responsible for this inhibition activity. Additionally, VP16 blocked the activation of the NF-κB promoter induced by SeV or tumor necrosis factor alpha treatment and expression of NF-κB-dependent genes through interaction with p65. Coexpression analysis revealed that VP16 selectively blocked IFN regulatory factor 3 (IRF-3)-mediated but not IRF-7-mediated transactivation. VP16 was able to bind to IRF-3 but not IRF-7 in vivo, based on coimmunoprecipitation analysis, but it did not affect IRF-3 dimerization, nuclear translocation, or DNA binding activity. Rather, VP16 interacted with the CREB binding protein (CBP) coactivator and efficiently inhibited the formation of the transcriptional complexes IRF-3-CBP in the context of HSV-1 infection. These results illustrate that VP16 is able to block the production of IFN-β by inhibiting NF-κB activation and interfering with IRF-3 to recruit its coactivator CBP, which may be important to the early events leading to HSV-1 infection.
Collapse
|
47
|
Abstract
AbstractBovine herpesvirus 1 (BHV-1) causes a variety of diseases and is globally distributed. It infects via mucosal epithelium, leading to rapid lytic replication and latent infection, primarily in sensory ganglia. Large amounts of virus can be excreted by the host on primary infection or upon recrudescence of latent infection, resulting in disease spread. The bovine immune response to BHV-1 is rapid, robust, balanced, and long-lasting. The innate immune system is the first to respond to the infection, with type I interferons (IFNs), inflammatory cytokines, killing of infected host cells, and priming of a balanced adaptive immune response. The virus possesses a variety of immune evasion strategies, including inhibition of type I IFN production, chemokine and complement binding, infection of macrophages and neutrophils, and latency. BHV-1 immune suppression contributes to the severity of its disease manifestations and to the bovine respiratory disease complex, the leading cause of cattle death loss in the USA.
Collapse
|
48
|
Zhang J, Wang S, Wang K, Zheng C. Herpes simplex virus 1 DNA polymerase processivity factor UL42 inhibits TNF-α-induced NF-κB activation by interacting with p65/RelA and p50/NF-κB1. Med Microbiol Immunol 2013; 202:313-25. [PMID: 23636254 DOI: 10.1007/s00430-013-0295-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/09/2013] [Indexed: 12/29/2022]
Abstract
Herpes simplex virus 1 (HSV-1) is the archetypal member of the alphaherpesvirus with a large genome encoding over 80 viral proteins, many of which are involved in virus-host interactions and show immune modulatory capabilities. In this study, we demonstrated that the HSV-1 UL42 protein, a DNA polymerase processivity factor, was a novel antagonism of the canonical NF-κB signaling pathway. UL42 was shown to significantly suppress TNF-α mediated NF-κB activation. Co-immunoprecipitation experiment revealed that UL42 bound to the NF-κB subunits p65 and p50. Fluorescence microscopy demonstrated that UL42 abolished nuclear translocation of p65 and p50 upon TNF-α-stimulation. But the inhibiting capacity of UL42 2R/2A (R279A, R280A) and UL42 3R/3A (R113A, R279A and R280A) mutants were less than wild type UL42. Also UL42 bound to the Rel homology domain of the NF-κB subunit p65 and p50. Notably, the N-terminal of UL42 was sufficient to interact with p65 and p50 and abolished NF-κB reporter gene activity. Thus, it was first time we demonstrated that HSV-1 UL42 appeared to prevent NF-κB-dependent gene expression by retaining p65 and p50 in the cytoplasm, and UL42-dependent transcriptional activation were inherently coupled to promote HSV-1 lytic replication, which also may contribute to immune evasion and pathogenesis of HSV-1.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Virology, Molecular Virology and Viral Immunology Research Group, Wuhan Institute of Virology, Chinese Academy of Sciences, China
| | | | | | | |
Collapse
|
49
|
Smith MC, Goddard ET, Perusina Lanfranca M, Davido DJ. hTERT extends the life of human fibroblasts without compromising type I interferon signaling. PLoS One 2013; 8:e58233. [PMID: 23472163 PMCID: PMC3589264 DOI: 10.1371/journal.pone.0058233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 02/05/2013] [Indexed: 12/24/2022] Open
Abstract
Primary cells are often used to study viral replication and host-virus interactions as their antiviral pathways have not been altered or inactivated; however, their use is restricted by their short lifespan. Conventional methods to extend the life of primary cultures typically utilize viral oncogenes. Many of these oncogenes, however, perturb or inactivate cellular antiviral pathways, including the interferon (IFN) response. It has been previously shown that expression of the telomerase reverse transcriptase (TERT) gene extends the life of certain cell types. The effect that TERT expression has on the innate antiviral response to RNA- and DNA-containing viruses has not been examined. In the current study, we introduced the human TERT (hTERT) gene into a primary human embryonic lung (HEL-299) cell strain, which is known to respond to the type I IFN, IFN-β. We show that the resulting HEL-TERT cell line is capable of replicating beyond 100 population doublings without exhibiting signs of senescence. Treatment with IFN-β resulted in the upregulation of four model IFN stimulated genes (ISGs) in HEL-299 and HEL-TERT cells. Both cell lines supported the replication of herpes simplex virus type 1 (HSV-1) and vesicular stomatitis virus (VSV) and impaired the replication of both viruses upon IFN-β pretreatment. Introduction of the viral oncoprotein, simian virus 40 (SV40) large T-antigen, which is frequently used to immortalize cells, largely negated this effect. Taken together, our data indicate that expression of hTERT does not alter type 1 IFN signaling and/or the growth of two viruses, making this cell line a useful reagent for studying viral replication and virus-cell interactions.
Collapse
Affiliation(s)
- Miles C. Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Erica T. Goddard
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Mirna Perusina Lanfranca
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - David J. Davido
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| |
Collapse
|
50
|
Ramakrishna C, Openshaw H, Cantin EM. The case for immunomodulatory approaches in treating HSV encephalitis. Future Virol 2013; 8:259-272. [PMID: 23956785 DOI: 10.2217/fvl.12.138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
HSV encephalitis (HSE) is the most prevalent sporadic viral encephalitis. Although safe and effective antiviral therapies and greatly improved noninvasive diagnostic procedures have significantly improved outcomes, mortality (~20%) and debilitating neurological sequelae in survivors remain unacceptably high. An encouraging new development is that the focus is now shifting away from the virus exclusively, to include consideration of the host immune response to infection in the pathology underlying development of HSE. In this article, the authors discuss results from recent studies in experimental mouse models, as well as clinical reports that demonstrate a role for exaggerated host inflammatory responses in the brain in the development of HSE that is motivating researchers and clinicians to consider new therapeutic approaches for treating HSE. The authors also discuss results from a few studies that have shown that immunomodulatory drugs can be highly protective against HSE, which supports a role for deleterious host inflammatory responses in HSE. The impressive outcomes of some immunomodulatory approaches in mouse models of HSE emphasize the urgent need for clinical trials to rigorously evaluate combination antiviral and immunomodulatory therapy in comparison with standard antiviral therapy for treatment of HSE, and support for such an initiative is gaining momentum.
Collapse
Affiliation(s)
- Chandran Ramakrishna
- Department of Virology, Beckman Research Institute of City of Hope; Duarte, CA 91010-3000, USA
| | | | | |
Collapse
|