1
|
dos Santos PP, Fujimori ASS, Polegato BF, Okoshi MP. The Therapeutic Potential of Orange Juice in Cardiac Remodeling: A Metabolomics Approach. Metabolites 2025; 15:198. [PMID: 40137162 PMCID: PMC11944373 DOI: 10.3390/metabo15030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Cardiovascular diseases are a leading cause of death worldwide, and the process of cardiac remodeling lies at the core of most of these diseases. Sustained cardiac remodeling almost unavoidably ends in progressive muscle dysfunction, heart failure, and ultimately death. Therefore, in order to attenuate cardiac remodeling and reduce mortality, different therapies have been used, but it is important to identify adjuvant factors that can help to modulate this process. One of these factors is the inclusion of affordable foods in the diet with potential cardioprotective properties. Orange juice intake has been associated with several beneficial metabolic changes, which may influence cardiac remodeling induced by cardiovascular diseases. Current opinion highlights how the metabolites and metabolic pathways modulated by orange juice consumption could potentially attenuate cardiac remodeling. It was observed that orange juice intake significantly modulates phospholipids, energy metabolism, endocannabinoid signaling, amino acids, and gut microbiota diversity, improving insulin resistance, dyslipidemia, and metabolic syndrome. Specifically, modulation of phosphatidylethanolamine (PE) metabolism and activation of PPARα and PPARγ receptors, associated with improved energy metabolism, mitochondrial function, and oxidative stress, showed protective effects on the heart. Furthermore, orange juice intake positively impacted gut microbiota diversity and led to an increase in beneficial bacterial populations, correlated with improved metabolic syndrome. These findings suggest that orange juice may act as a metabolic modulator, with potential therapeutic implications for cardiac remodeling associated with cardiovascular diseases.
Collapse
Affiliation(s)
- Priscila Portugal dos Santos
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (B.F.P.); (M.P.O.)
| | | | | | | |
Collapse
|
2
|
Safarchi A, Al-Qadami G, Tran CD, Conlon M. Understanding dysbiosis and resilience in the human gut microbiome: biomarkers, interventions, and challenges. Front Microbiol 2025; 16:1559521. [PMID: 40104586 PMCID: PMC11913848 DOI: 10.3389/fmicb.2025.1559521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
The healthy gut microbiome is important in maintaining health and preventing various chronic and metabolic diseases through interactions with the host via different gut-organ axes, such as the gut-brain, gut-liver, gut-immune, and gut-lung axes. The human gut microbiome is relatively stable, yet can be influenced by numerous factors, such as diet, infections, chronic diseases, and medications which may disrupt its composition and function. Therefore, microbial resilience is suggested as one of the key characteristics of a healthy gut microbiome in humans. However, our understanding of its definition and indicators remains unclear due to insufficient experimental data. Here, we review the impact of key drivers including intrinsic and extrinsic factors such as diet and antibiotics on the human gut microbiome. Additionally, we discuss the concept of a resilient gut microbiome and highlight potential biomarkers including diversity indices and some bacterial taxa as recovery-associated bacteria, resistance genes, antimicrobial peptides, and functional flexibility. These biomarkers can facilitate the identification and prediction of healthy and resilient microbiomes, particularly in precision medicine, through diagnostic tools or machine learning approaches especially after antimicrobial medications that may cause stable dysbiosis. Furthermore, we review current nutrition intervention strategies to maximize microbial resilience, the challenges in investigating microbiome resilience, and future directions in this field of research.
Collapse
Affiliation(s)
- Azadeh Safarchi
- Microbiome for One Systems Health FSP, CSIRO, Westmead, NSW, Australia
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Ghanyah Al-Qadami
- Microbiome for One Systems Health FSP, CSIRO, Westmead, NSW, Australia
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Cuong D Tran
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Michael Conlon
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| |
Collapse
|
3
|
Dhuique‐Mayer C, Servent A. An overview of the nutritional quality and health benefits linked to the world diversity of citrus fruits/juices. J Food Sci 2025; 90:e17576. [PMID: 39731722 PMCID: PMC11717066 DOI: 10.1111/1750-3841.17576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 12/30/2024]
Abstract
Citrus juices represent a nutrient-dense beverage due to the remarkable balance in their bioactive compounds (vitamins, minerals, dietary fibers, and phytochemicals such as flavonoids and carotenoids). This review aims to examine the nutritional quality and the health benefits of citrus juice consumption linked to the world diversity of citrus fruits. This work provides heterogenous data found on the main citrus bioactive compounds, especially carotenoids and flavonoids, which are difficult to correlate to particular geographic areas. Through an example of study, this work addresses the question of how and to what extent the content of citrus bioactive compounds is linked to the health benefits observed in humans. We explore through the more recent human clinical trials, the health effects of consuming citrus fruit or taking dietary supplements of bioactive compounds to prevent the exponential increase of world chronic diseases (type 2 diabetes, cardiovascular diseases, and obesity) and discuss the effects of dose. Finally, even if the data highlight the importance of geographical origin in accumulation of carotenoids or flavonoids from different Citrus species, the difference of content in front of the complex human metabolism of their absorption has lesser consequences for health than the fact of consuming citrus or not. The citrus health effect results in a synergistic action of numerous phytochemicals whose targeted health benefits vary depending more on the diversity of Citrus species than their geographic origin. Therefore, the use of the diversity of Citrus species could be an interesting approach to providing functional food.
Collapse
Affiliation(s)
- Claudie Dhuique‐Mayer
- QualiSud, Univ. Montpellier, CIRAD, Institut AgroUniversité d'Avignon, Université de La RéunionMontpellierFrance
- CIRADUMR QualiSudMontpellierFrance
| | - Adrient Servent
- QualiSud, Univ. Montpellier, CIRAD, Institut AgroUniversité d'Avignon, Université de La RéunionMontpellierFrance
- CIRADUMR QualiSudMontpellierFrance
| |
Collapse
|
4
|
Pinheiro DF, Maciel GM, Lima NP, Lima NF, Ribeiro IS, Haminiuk CWI. Impact of fruit consumption on gut microbiota: Benefits, contaminants, and implications for human health. Trends Food Sci Technol 2024; 154:104785. [DOI: 10.1016/j.tifs.2024.104785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Espín JC, Jarrín‐Orozco MP, Osuna‐Galisteo L, Ávila‐Gálvez MÁ, Romo‐Vaquero M, Selma MV. Perspective on the Coevolutionary Role of Host and Gut Microbiota in Polyphenol Health Effects: Metabotypes and Precision Health. Mol Nutr Food Res 2024; 68:e2400526. [PMID: 39538982 PMCID: PMC11605795 DOI: 10.1002/mnfr.202400526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Indexed: 11/16/2024]
Abstract
"Personalized nutrition" aims to establish nutritional strategies to improve health outcomes for non-responders. However, it is utopian since most people share similar nutritional requirements. "Precision health," encompassing lifestyles, may be more fitting. Dietary (poly)phenols are "healthy" but non-nutritional molecules (thus, we can live without them). The gut microbiota influences (poly)phenol effects, producing metabolites with different activity than their precursors. Furthermore, producing distinctive metabolites, like urolithins, lunularin, and equol, leads to the term "polyphenol-related gut microbiota metabotypes," grouping individuals based on a genuine microbial metabolism of ellagic acid, resveratrol, and isoflavones, respectively. Additionally, (poly)phenols exert prebiotic-like effects through their antimicrobial activities, typically reducing microbial diversity and modulating microbiota functionality by impacting its composition and transcriptomics. Since the gut microbiota perceives (poly)phenols as a threat, (poly)phenol effects are mostly a consequence of microbiota adaptation through differential (poly)phenol metabolism (e.g., distinctive reductions, dehydroxylations, etc.). This viewpoint is less prosaic than considering (poly)phenols as essential nutritional players in human health, yet underscores their health significance in a coevolutionary partnership with the gut microbiota. In the perspective on the gut microbiota and (poly)phenols interplay, microbiota metabotypes could arbiter health effects. An innovative aspect is also emphasized: modulating the interacting microbial networks without altering the composition.
Collapse
Affiliation(s)
- Juan Carlos Espín
- Laboratory of Food & Health; Research Group on Quality, Safety and Bioactivity of Plant FoodsCEBAS‐CSIC30100 Campus de EspinardoMurciaSpain
| | - María Paula Jarrín‐Orozco
- Laboratory of Food & Health; Research Group on Quality, Safety and Bioactivity of Plant FoodsCEBAS‐CSIC30100 Campus de EspinardoMurciaSpain
| | - Leire Osuna‐Galisteo
- Laboratory of Food & Health; Research Group on Quality, Safety and Bioactivity of Plant FoodsCEBAS‐CSIC30100 Campus de EspinardoMurciaSpain
| | - María Ángeles Ávila‐Gálvez
- Laboratory of Food & Health; Research Group on Quality, Safety and Bioactivity of Plant FoodsCEBAS‐CSIC30100 Campus de EspinardoMurciaSpain
| | - María Romo‐Vaquero
- Laboratory of Food & Health; Research Group on Quality, Safety and Bioactivity of Plant FoodsCEBAS‐CSIC30100 Campus de EspinardoMurciaSpain
| | - María Victoria Selma
- Laboratory of Food & Health; Research Group on Quality, Safety and Bioactivity of Plant FoodsCEBAS‐CSIC30100 Campus de EspinardoMurciaSpain
| |
Collapse
|
6
|
Sokal-Dembowska A, Jarmakiewicz-Czaja S, Filip R. Flavonoids and Their Role in Preventing the Development and Progression of MAFLD by Modifying the Microbiota. Int J Mol Sci 2024; 25:11187. [PMID: 39456969 PMCID: PMC11508831 DOI: 10.3390/ijms252011187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
With the increasing prevalence and serious health consequences of metabolic-associated fatty liver disease (MAFLD), early diagnosis and intervention are key to effective treatment. Recent studies highlight the important role of dietary factors, including the use of flavonoids, in improving liver health. These compounds possess anti-inflammatory, antioxidant, and liver-protective properties. Flavonoids have been shown to affect the gut microbiota, which plays a key role in liver function and disease progression. Therefore, their role in preventing the development and progression of MAFLD through modulation of the microbiome seems to be of interest. This narrative review aims to consolidate the current evidence on the effects of selected flavonoids on MAFLD progression, their potential mechanisms of action, and the implications for the development of personalized dietary interventions for the management of liver disease.
Collapse
Affiliation(s)
- Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland.; (S.J.-C.)
| | - Sara Jarmakiewicz-Czaja
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland.; (S.J.-C.)
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
7
|
Sejbuk M, Mirończuk-Chodakowska I, Karav S, Witkowska AM. Dietary Polyphenols, Food Processing and Gut Microbiome: Recent Findings on Bioavailability, Bioactivity, and Gut Microbiome Interplay. Antioxidants (Basel) 2024; 13:1220. [PMID: 39456473 PMCID: PMC11505337 DOI: 10.3390/antiox13101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Polyphenols are organic chemical compounds naturally present in plants, renowned for their anti-inflammatory, antioxidant, immunomodulatory, anticancer, and cardiovascular protective properties. Their bioactivity and bioavailability can vary widely depending on the methods of food processing and interactions with the gut microbiome. These factors can induce changes in polyphenols, affecting their ability to achieve their intended health benefits. Thus, it is essential to develop and apply food processing methods that optimize polyphenol content while maintaining their bioactivity and bioavailability. This review aims to explore how various food processing techniques affect the quantity, bioactivity, and bioavailability of polyphenols, as well as their interactions with the gut microbiome, which may ultimately determine their health effects.
Collapse
Affiliation(s)
- Monika Sejbuk
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (I.M.-C.); (A.M.W.)
| | - Iwona Mirończuk-Chodakowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (I.M.-C.); (A.M.W.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (I.M.-C.); (A.M.W.)
| |
Collapse
|
8
|
Cabral RP, Ribeiro APD, Monte MG, Fujimori ASS, Tonon CR, Ferreira NF, Zanatti SG, Minicucci MF, Zornoff LAM, Paiva SARD, Polegato BF. Pera orange juice ( Citrus sinensis L. Osbeck) alters lipid metabolism and attenuates oxidative stress in the heart and liver of rats treated with doxorubicin. Heliyon 2024; 10:e36834. [PMID: 39263053 PMCID: PMC11388782 DOI: 10.1016/j.heliyon.2024.e36834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
Background Doxorubicin (DOX) is a highly effective chemotherapy drug widely used to treat cancer, but its use is limited due to multisystemic toxicity. Lipid metabolism is also affected by doxorubicin. Orange juice can reduce dyslipidemia in other clinical situations and has already been shown to attenuate cardiotoxicity. Our aim is to evaluate the effects of Pera orange juice (Citrus sinensis L. Osbeck) on mitigating lipid metabolism imbalance, metabolic pathways, and DOX induced cytotoxic effects in the heart and liver. Methods Twenty-four male Wistar rats were allocated into 3 groups: Control (C); DOX (D); and DOX plus Pera orange juice (DOJ). DOJ received orange juice for 4 weeks, while C and D received water. At the end of each week, D and DOJ groups received 4 mg/kg/week DOX, intraperitoneal. At the end of 4 weeks animals were submitted to echocardiography and euthanasia. Results Animals treated with DOX decreased water intake and lost weight over time. At echocardiography, DOX treated rats presented morphologic alterations in the heart. DOX increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol, high density lipoprotein (HDL), low-density lipoprotein (LDL), and triglycerides. It also reduced superoxide dismutase (SOD) activity, increased protein carbonylation in the heart and dihydroethidium (DHE) expression in the liver, decreased glucose transporter type 4 (GLUT4) and the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ1) in the heart, and reduced carnitine palmitoyltransferase I (CPT1) in the liver. Conclusion DOX caused dyslipidemia, liver and cardiac toxicity by increasing oxidative stress, and altered energy metabolic parameters in both organs. Despite not improving changes in left ventricular morphology, orange juice did attenuate oxidative stress and mitigate the metabolic effects of DOX.
Collapse
|
9
|
Carnauba RA, Sarti FM, Hassimotto NMA, Lajolo FM. 100% Orange Juice Consumption is Associated with Socioeconomic Status, Improved Nutrient Adequacy, and Higher Bioactive Compounds Intake: Results from Brazilian National Dietary Survey 2017-2018. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:498-504. [PMID: 38407157 DOI: 10.1080/27697061.2024.2318598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE The consumption of 100% orange juice (OJ) has been associated with nutrient adequacy and better diet quality. To date, there are few analyses exploring 100% OJ consumption patterns across populations, with no data from Brazil. We aimed to explore the associations between 100% OJ consumption, sociodemographic factors, and nutrient intake in a representative sample of the Brazilian general population aged 10 years or older. METHODS Data were obtained from the National Dietary Survey 2017-2018, a cross-sectional study including data on individual food intake of 46,164 subjects aged ≥10 years collected using two 24-h dietary recalls. RESULTS 100% OJ was consumed by 11% of the population, with a mean intake of 43.0 ml/d. Males were more frequent consumers compared to females, and the percentage of consumers increased with education and income. 100% OJ consumption was associated with higher intakes of energy, vitamin C, folate, calcium, magnesium, potassium, polyphenols, and carotenoids. There is no significant difference in fiber intake between consumers and non-consumers. 100% OJ consumers had a higher percentage of the population meeting the Estimated Average Requirement for vitamin A, vitamin C, vitamin D, folate, calcium, and magnesium. CONCLUSION Our results suggest that 100% OJ could be a component of a healthy diet, helping individuals to achieve nutrient recommendations.
Collapse
Affiliation(s)
- Renata A Carnauba
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center, CEPID-FAPESP (Research Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - Flavia M Sarti
- Center for Research in Complex Systems Modeling, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Neuza M A Hassimotto
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center, CEPID-FAPESP (Research Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - Franco M Lajolo
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center, CEPID-FAPESP (Research Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| |
Collapse
|
10
|
Coutinho CP, Fraga LN, Rozenbaum AC, Carnauba RA, Vanzele PAR, Sparvoli LG, Taddei CR, Lajolo FM, Hassimotto NMA. Chronic consumption of orange juice modifies urinary excretion of flavanone gut-derived metabolites through gut microbiota modulation. Food Res Int 2024; 186:114328. [PMID: 38729714 DOI: 10.1016/j.foodres.2024.114328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
The metabolism and absorption of citrus flavanones are intrinsically linked to the gut microbiota, creating a bidirectional relationship where these compounds influence the microbiome, and in turn, the microbiota affects their metabolism. This study evaluates the effect of acute and chronic consumption of orange juice (OJ) on the urinary excretion of gut-derived flavanone metabolites and the gut microbiota. Health volunteers ingested 500 mL of OJ for 60 days in a single-arm human intervention study. Blood and feces were collected at baseline and after 60 days, with an additional 24-hour urine collection after a single dose on day 1 and day 63. LC-MS/MS analyzed urinary flavanone metabolites, while 16S rRNA sequencing characterized gut microbiota. Total urinary hesperetin conjugates excretion significantly decreased over 60 days, while gut-derived total phenolic acids, particularly three hydroxybenzoic acids, increased. Moreover, the heterogeneity of the total amount of flavanone conjugates, initially categorizing individuals into high-, medium- and low- urinary excretor profiles, shifted towards medium-excretor, except for five individuals who remained as low-excretors. This alteration was accompanied by a decrease in intestinal β-glucosidase activity and a shift in the relative abundance of specific genera, such as decreases in Blautia, Eubacterium hallii, Anaerostipes, and Fusicatenibacter, among which, Blautia was associated with higher urinary flavanone conjugates excretion. Conversely, an increase in Prevotella was observed. In summary, chronic OJ consumption induced transient changes in gut microbiota and altered the metabolism of citrus flavanones, leading to distinct urinary excretion profiles of flavanone metabolites.
Collapse
Affiliation(s)
- Camille Perella Coutinho
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Layanne Nascimento Fraga
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Adriana Campos Rozenbaum
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Renata Alves Carnauba
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Pedro Augusto Ramos Vanzele
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences. University of São Paulo, São Paulo 05508-000. Brazil
| | - Luiz Gustavo Sparvoli
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences. University of São Paulo, São Paulo 05508-000. Brazil
| | - Carla R Taddei
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences. University of São Paulo, São Paulo 05508-000. Brazil; School of Arts, Science and Humanities, University of São Paulo, São Paulo 03828-000, Brazil
| | - Franco Maria Lajolo
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Neuza Mariko Aymoto Hassimotto
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil.
| |
Collapse
|
11
|
Baudin J, Hernandez-Baixauli J, Quesada-Vázquez S, Mulero F, Puiggròs F, Arola L, Caimari A. Combined supplementation with hesperidin, phytosterols and curcumin decreases adiposity and improves metabolic health in ovariectomized rats. Food Funct 2024; 15:4905-4924. [PMID: 38598180 DOI: 10.1039/d3fo05122f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent years many women have looked for alternative therapies to address menopause. Hesperidin, phytosterols and curcumin are bioactive compounds that can ameliorate some cardiovascular risk factors associated with menopause, although there are no data concerning the effects of their combined supplementation. We used ovariectomized (OVX) rats, a postmenopausal model with oestrogen deficiency, to evaluate whether supplementation with a multi-ingredient (MI) including hesperidin, phytosterols and curcumin for 57 days would display beneficial effects against fat mass accretion and metabolic disturbances associated with menopause. Twenty OVX rats were orally supplemented with either MI (OVX-MI) or vehicle (OVX). Furthermore, 10 OVX rats orally received the vehicle along with subcutaneous injections of 17β-oestradiol biweekly (OVX-E2), whereas 10 rats were sham operated and received oral and injected vehicles (control group; SH). MI supplementation partly counteracted the fat mass accretion observed in OVX animals, which was evidenced by decreased total fat mass, adiposity index, the weight of retroperitoneal, inguinal and mesenteric white adipose tissue (MWAT) depots and MWAT adipocyte hypertrophy. These effects were accompanied by a significant decrease in the circulating levels of leptin and the mRNA levels of the fatty acid uptake-related genes Lpl and Cd36 in MWAT. These results were very similar to those observed in OVX-E2 animals. OVX-MI rats also displayed a higher lean body mass, lean/fat mass ratio, adiponectin-to-leptin ratio and insulin sensitivity than their OVX counterparts. Our findings can pave the way for using this MI formulation as an alternative therapy to manage obesity and to improve the cardiometabolic health of menopausal women.
Collapse
Affiliation(s)
- Julio Baudin
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Sergio Quesada-Vázquez
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain.
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain.
| |
Collapse
|
12
|
Pheiffer C, Riedel S, Dias S, Adam S. Gestational Diabetes and the Gut Microbiota: Fibre and Polyphenol Supplementation as a Therapeutic Strategy. Microorganisms 2024; 12:633. [PMID: 38674578 PMCID: PMC11051981 DOI: 10.3390/microorganisms12040633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is an escalating public health concern due to its association with short- and long-term adverse maternal and child health outcomes. Dysbiosis of microbiota within the gastrointestinal tract has been linked to the development of GDM. Modification of microbiota dysbiosis through dietary adjustments has attracted considerable attention as adjunct strategies to improve metabolic disease. Diets high in fibre and polyphenol content are associated with increased gut microbiota alpha diversity, reduced inflammation and oxidative processes and improved intestinal barrier function. This review explores the potential of fibre and polyphenol supplementation to prevent GDM by investigating their impact on gut microbiota composition and function.
Collapse
Affiliation(s)
- Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.R.); (S.D.)
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa;
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Sylvia Riedel
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.R.); (S.D.)
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Stephanie Dias
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.R.); (S.D.)
| | - Sumaiya Adam
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa;
- Diabetes Research Centre, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
13
|
Niu H, Zhou M, Zogona D, Xing Z, Wu T, Chen R, Cui D, Liang F, Xu X. Akkermansia muciniphila: a potential candidate for ameliorating metabolic diseases. Front Immunol 2024; 15:1370658. [PMID: 38571945 PMCID: PMC10987721 DOI: 10.3389/fimmu.2024.1370658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Metabolic diseases are comprehensive disease based on obesity. Numerous cumulative studies have shown a certain correlation between the fluctuating abundance of Akkermansia muciniphila and the occurrence of metabolic diseases. A. muciniphila, a potential probiotic candidate colonized in the human intestinal mucus layer, and its derivatives have various physiological functions, including treating metabolic disorders and maintaining human health. This review systematically explicates the abundance change rules of A. muciniphila in metabolic diseases. It also details the high efficacy and specific molecules mechanism of A. muciniphila and its derivatives in treating obesity, type 2 diabetes mellitus, cardiovascular disease, and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Huifang Niu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Minfeng Zhou
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Daniel Zogona
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zheng Xing
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Chen
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dandan Cui
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fengxia Liang
- School of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
14
|
Arilla E, Martínez-Monzó J, Codoñer-Franch P, García-Segovia P, Igual M. Stability of vitamin C, carotenoids, phenols, and antioxidant capacity of pasteurised orange juice with resistant maltodextrin storage. FOOD SCI TECHNOL INT 2024; 30:18-29. [PMID: 36083164 DOI: 10.1177/10820132221124200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resistant maltodextrin (RMD) was added at increasing concentrations (0%, 2.5%, 5% and 7.5%) before pasteurisation to orange juice to analyse its potential protective effect on the health-related bioactive compounds of pasteurised orange juice throughout its storage time. Samples were characterised in terms of basic physico-chemical properties and bioactive compounds at the beginning of the storage. Higher concentrations of RMD proved to better preserve the bioactive compounds of orange juice, thus obtaining a higher antioxidant capacity (AC). Stability of all samples was determined by measuring the same parameters at days 0, 15, 45, 75, 105, 136 and 170 of storage. °Brix and pH were very stable in all samples along storage, while all bioactive compouds had negative variations. However, RMD addition slightly improved ascorbic acid, vitamin C, total phenols, and total carotenoids retention, improving then its AC. This effect was greater in the 5% RMD-added samples. All bioactive compounds showed a positive Pearson's correlation coefficient with AC. Colour variations were also measured at days 105 and 170. All samples had a positive variation of all colour parameters, being this clearer at day 170. This work enlights the potential functionality of RMD to better preserve the health-related compounds of pasteurised orange juice.
Collapse
Affiliation(s)
- Elías Arilla
- Food Technology Department, Food Investigation and Innovation Group, Universitat Politècnica de València, Valencia, Spain
| | - Javier Martínez-Monzó
- Food Technology Department, Food Investigation and Innovation Group, Universitat Politècnica de València, Valencia, Spain
| | - Pilar Codoñer-Franch
- Department of Pediatrics, Obstetrics and Gynecology, University of València, València, Spain
- Department of Pediatrics, University Hospital Dr. Peset, Foundation for the Promotion of Health and Bio-medical Research un the Valencian Region (FISABIO), Valencia, Spain
| | - Purificación García-Segovia
- Food Technology Department, Food Investigation and Innovation Group, Universitat Politècnica de València, Valencia, Spain
| | - Marta Igual
- Food Technology Department, Food Investigation and Innovation Group, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
15
|
Saberi-Karimian M, Safarian-Bana H, Fazeli M, Tabatabaeizadeh SA, Ferns GA, Ghayour-Mobarhan M. Gut microbiota and metabolic syndrome: What's new? METABOLIC SYNDROME 2024:527-541. [DOI: 10.1016/b978-0-323-85732-1.00050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Morshedzadeh N, Ramezani Ahmadi A, Behrouz V, Mir E. A narrative review on the role of hesperidin on metabolic parameters, liver enzymes, and inflammatory markers in nonalcoholic fatty liver disease. Food Sci Nutr 2023; 11:7523-7533. [PMID: 38107097 PMCID: PMC10724641 DOI: 10.1002/fsn3.3729] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 12/19/2023] Open
Abstract
Insulin resistance, oxidative stress, hyperlipidemia, and inflammation play main roles in the development of nonalcoholic fatty liver disease (NAFLD). Some studies have reported that hesperidin can reduce hyperglycemia and hyperlipidemia by inhibiting inflammatory pathways. In the current study, our purpose was to evaluate whether it can influence the primary parameters in NAFLD and improve the treatment effectiveness for future trials. Various studies have found that hesperidin involves multiple signaling pathways such as cell proliferation, lipid and glucose metabolism, insulin resistance, oxidative stress, and inflammation, which can potentially affect NAFLD development and prognosis. Recent findings indicate that hesperidin also regulates key enzymes and may affect the severity of liver fibrosis. Hesperidin inhibits reactive oxygen species production that potentially interferes with the activation of transcription factors like nuclear factor-κB. Appropriate adherence to hesperidin may be a promising approach to modulate inflammatory pathways, metabolic indices, hepatic steatosis, and liver injury.
Collapse
Affiliation(s)
- Nava Morshedzadeh
- Student Research CommitteeKerman University of Medical SciencesKermanIran
- Department of Nutrition, Faculty of Public HealthKerman University of Medical SciencesKermanIran
| | | | - Vahideh Behrouz
- Department of Nutrition, Faculty of Public HealthKerman University of Medical SciencesKermanIran
| | - Elias Mir
- Student Research CommitteeKerman University of Medical SciencesKermanIran
| |
Collapse
|
17
|
Muralidharan J, Romain C, Bresciani L, Mena P, Angelino D, Del Rio D, Chung LH, Alcaraz PE, Cases J. Nutrikinetics and urinary excretion of phenolic compounds after a 16-week supplementation with a flavanone-rich ingredient. Food Funct 2023; 14:10506-10519. [PMID: 37943075 DOI: 10.1039/d3fo02820h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Background: Polyphenols are a broad group of compounds with a complex metabolic fate. Flavanones and their metabolites provide cardiovascular protection and assistance in long-term body composition management. Objective: This study evaluates the nutrikinetics and the bioavailability of phenolic compounds after both acute and chronic supplementation with a flavanone-rich product, namely Sinetrol® Xpur, in healthy overweight and obese volunteers. Design: An open-label study including 20 volunteers was conducted for 16 weeks. Participants received Sinetrol® Xpur, either a low dose (900 mg per day) or a high dose (1800 mg per day), in capsules during breakfast and lunch. They were advised to follow an individualized isocaloric diet and avoid a list of polyphenol-rich foods 48 hours before and during the pharmacokinetic measurements. Results: Over 20 phase II and colonic metabolites were measured in the plasma. Two peaks were observed at 1 h and 7h-10 h after the first capsule ingestion. No significant differences in the AUC were observed in circulating metabolites between both doses. In urine excretion, 53 metabolites were monitored, including human phase II and colonic metabolites, at weeks 1 and 16. Cumulative urine excretion was higher after the high dose than after the low dose in both acute and chronic studies. Total urinary metabolites were significantly lower in week 16 compared to week 1. Conclusion: Although the urinary excreted metabolites reduced significantly over 16 weeks, the circulating metabolites did not decrease significantly. This study suggests that chronic intake might not offer the same bioavailability as in the acute study, and this effect does not seem to be dose-dependent. The clinical trial registry number is NCT03823196.
Collapse
Affiliation(s)
| | - Cindy Romain
- Fytexia, ZAE via Europa - 3 rue d'Athènes, 34350 Vendres, France.
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Donato Angelino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, 64100, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Linda H Chung
- Research Center for High Performance Sport - UCAM Universidad Católica de Murcia, Murcia, Spain
- Department of Food and Nutrition Technology, Universidad Católica de Murcia, Murcia, Spain
| | - Pedro E Alcaraz
- Research Center for High Performance Sport - UCAM Universidad Católica de Murcia, Murcia, Spain
- Department of Food and Nutrition Technology, Universidad Católica de Murcia, Murcia, Spain
| | - Julien Cases
- Fytexia, ZAE via Europa - 3 rue d'Athènes, 34350 Vendres, France.
| |
Collapse
|
18
|
Li F, Zeng K, Ming J. Lowering glycemic levels via gastrointestinal tract factors: the roles of dietary fiber, polyphenols, and their combination. Crit Rev Food Sci Nutr 2023; 65:575-611. [PMID: 37966135 DOI: 10.1080/10408398.2023.2278169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Dietary fiber (DF) and polyphenols (DP) are typical blood sugar-lowering components, and both play distinct yet interconnected roles in exerting their blood sugar-lowering effects. We comprehensively summarized the single and combined effects of DF and DP on blood glucose homeostasis through regulating the relevant factors in the upper gastrointestinal tract (UGT) and lower gastrointestinal tract (LGT). In the UGT, DF slowed down glucose metabolism by enhancing digesta viscosity and hindering enzyme-substrate interaction. DP primarily targeted enzymes and substrates. When combined, DP enhanced the adsorption capacity of DF for glucose. DF weakened DP's inhibitory effect on enzymes. Both DF and DP disrupted glucose intestinal uptake via physical or genomic modulation, but the co-consumption of DF and DP demonstrated a lower inhibitory effect on glucose uptake than DP alone. In the LGT, DF and DP showed synergistic or antagonistic effects on gut microbiota. Remarkably, whole foods exhibited potent prebiotic effects due to their compound-rich matrix, potentially enhancing glucose homeostasis and expanding dietary options for glucose regulation research.
Collapse
Affiliation(s)
- Fuhua Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Research Group Food Chem and Human Nutrition, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
19
|
Maurer Sost M, Stevens Y, Salden B, Troost F, Masclee A, Venema K. Citrus Extract High in Flavonoids Beneficially Alters Intestinal Metabolic Responses in Subjects with Features of Metabolic Syndrome. Foods 2023; 12:3413. [PMID: 37761122 PMCID: PMC10529306 DOI: 10.3390/foods12183413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The objective of this study was to investigate the effects of a citrus extract rich in citrus flavonoids on intestinal metabolic responses in subjects with features of metabolic syndrome, in an in vitro colon fermentation system (TIM-2) and fecal samples obtained from human subjects in an in vivo trial. In the TIM-2 system inoculated with fecal samples of volunteers with features of metabolic syndrome, continuous citrus extract supplementation (500 mg/day) resulted in increased cumulative short-chain fatty acid (SCFA) levels compared to the control condition, which was mainly due to increased production of butyrate, acetate, and valerate. In human volunteers, 12 weeks of daily supplementation with 500 mg citrus extract resulted in a significant shift in the SCFA profile towards more butyrate (p = 0.022) compared to the placebo group. Furthermore, there was a trend towards a reduction in fecal calprotectin levels, a marker for intestinal inflammation, compared to the placebo (p = 0.058). Together, these results suggest that citrus extract intake may have a positive effect on intestinal metabolic responses and through this, on host health in subjects with features of metabolic syndrome. Further research is needed to provide more insight into the potential underlying mechanisms and to study effects on clinical parameters.
Collapse
Affiliation(s)
- Mônica Maurer Sost
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University-Campus Venlo, 5928 SZ Venlo, The Netherlands;
| | - Yala Stevens
- BioActor BV, 6229 GS Maastricht, The Netherlands;
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Bouke Salden
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands; (B.S.); (A.M.)
| | - Freddy Troost
- Food Innovation and Health, Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Ad Masclee
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands; (B.S.); (A.M.)
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University-Campus Venlo, 5928 SZ Venlo, The Netherlands;
| |
Collapse
|
20
|
Corrêa TAF, Tobaruela EDC, Capetini VC, Quintanilha BJ, Cortez RV, Taddei CR, Hassimotto NMA, Hoffmann C, Rogero MM, Lajolo FM. Blood orange juice intake changes specific bacteria of gut microbiota associated with cardiometabolic biomarkers. Front Microbiol 2023; 14:1199383. [PMID: 37469434 PMCID: PMC10352659 DOI: 10.3389/fmicb.2023.1199383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Blood orange juice is an important source of flavanones and anthocyanins, mainly hesperidin, narirutin, and cyanidin-3-O-glucoside. The benefits of these bioactive compounds have been reported, but the mechanistic details behind their biological effects are not well established. This study investigated the effects of Moro orange (Citrus sinensis L. Osbeck) juice (MOJ) on gut microbiota composition and cardiometabolic biomarkers in overweight women. In this study, 12 overweight women (BMI from 25.0 to 29.9 kg/m2), aged 18-37 years, consumed 500 mL of MOJ every day for 4 weeks. We assessed the gut microbiota composition, levels of short-chain fatty acids (SCFAs), cardiometabolic biomarkers, and insulin resistance (HOMA-IR) at baseline and after 2 weeks and 4 weeks of MOJ intake. The results suggested that MOJ intake affected the abundance of specific operational taxonomic units (OTUs) of the gut microbiota but did not significantly alter the diversity and general composition of the gut microbiota. However, MOJ intake increased the production of SCFAs, especially propionic and isobutyric acids, and significantly improved cardiometabolic biomarkers such as blood pressure and plasma VCAM-1 levels in the overweight women. Additionally, we observed significant associations between gut microbiota OTUs belonging to the Bacteroidetes phyla and Prevotella 9 genera and the cardiometabolic biomarkers. Furthermore, MOJ reduced fasting glucose and insulin levels and HOMA-IR values, thereby enhancing insulin sensitivity in the insulin-resistant overweight women. Finally, we highlighted the importance of orange juice intake duration because some beneficial changes such as blood pressure improvements were evident at the 2-week time interval of the intervention, but other changes became significant only at the 4-week interval of MOJ intake. In conclusion, our study demonstrated that changes in specific OTUs of the gut microbiota in response to MOJ intake were associated with significant improvements in some cardiometabolic biomarkers and SCFA levels in overweight women with insulin resistance.
Collapse
Affiliation(s)
- Telma Angelina Faraldo Corrêa
- Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), São Paulo, Brazil
| | - Eric de Castro Tobaruela
- Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), São Paulo, Brazil
| | - Vinicius Cooper Capetini
- Food Research Center (FoRC), São Paulo, Brazil
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Bruna Jardim Quintanilha
- Food Research Center (FoRC), São Paulo, Brazil
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Ramon Vitor Cortez
- Department of Clinical Analyses and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carla R. Taddei
- Department of Clinical Analyses and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Neuza Mariko Aymoto Hassimotto
- Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), São Paulo, Brazil
| | - Christian Hoffmann
- Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), São Paulo, Brazil
| | - Marcelo Macedo Rogero
- Food Research Center (FoRC), São Paulo, Brazil
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Franco Maria Lajolo
- Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), São Paulo, Brazil
| |
Collapse
|
21
|
Sip S, Sip A, Miklaszewski A, Żarowski M, Cielecka-Piontek J. Zein as an Effective Carrier for Hesperidin Delivery Systems with Improved Prebiotic Potential. Molecules 2023; 28:5209. [PMID: 37446871 DOI: 10.3390/molecules28135209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Hesperidin is a polyphenol derived from citrus fruits that has a broad potential for biological activity and the ability to positively modify the intestinal microbiome. However, its activity is limited by its low solubility and, thus, its bioavailability-this research aimed to develop a zein-based hesperidin system with increased solubility and a sustained release profile. The study used triple systems enriched with solubilizers to maximize solubility. The best system was the triple system hesperidin-zein-Hpβ-CD, for which the solubility improved by more than six times. A significant improvement in the antioxidant activity and the ability to inhibit α-glucosidase was also demonstrated, due to an improved solubility. A release profile analysis was performed in the subsequent part of the experiments, confirming the sustained release profile of hesperidin, while improving the solubility. Moreover, the ability of selected probiotic bacteria to metabolize hesperidin and the effect of this flavonoid compound on their growth were investigated.
Collapse
Affiliation(s)
- Szymon Sip
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Anna Sip
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| | - Andrzej Miklaszewski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland
| | - Marcin Żarowski
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewski 49, 60-355 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
22
|
Fraga LN, Milenkovic D, Coutinho CP, Rozenbaum AC, Lajolo FM, Hassimotto NMA. Interaction between APOE, APOA1, and LPL Gene Polymorphisms and Variability in Changes in Lipid and Blood Pressure following Orange Juice Intake: A Pilot Study. Mol Nutr Food Res 2023; 67:e2200847. [PMID: 37128695 DOI: 10.1002/mnfr.202200847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/04/2023] [Indexed: 05/03/2023]
Abstract
SCOPE Chronic orange juice intake is associated with reduced risk of cardiovascular disease, however, a large inter-individual variability in response to orange juice for lipid profile and blood pressure has been observed. This heterogeneity in responsiveness could be associated with single nucleotide polymorphism (SNP), which has not been previously addressed. This study aims to investigate the influence of SNP in apolipoprotein E (APOE), apolipoprotein A1 (APOA1), mevalonate (MVK), and lipase lipoprotein (LPL) genes in the biological response after chronic orange juice intake. METHODS AND RESULTS Forty-six volunteers ingested 500 mL daily for 60 days and blood pressure and biochemical parameters are measured. Also, SNPs in APOE, APOA1, MVK, and LPL genes are genotyped in the volunteers that are medium/high excretors of flavanone metabolites. Genotypes CC (APOA1), AA, and GG (LPL) are associated with positive health effects of orange juice and the CC (APOE), GG (APOA1), GG, and AA (LPL) genotypes are associated with no effects of orange juice consumption (p < 0.05). CONCLUSION These results identify for the first-time SNP associated with effects of orange juice on lipid levels and blood pressure, results that may provide bases for future precise nutritional recommendations regarding this flavanone-rich food to lower the risk for cardiovascular disease.
Collapse
Affiliation(s)
- Layanne Nascimento Fraga
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Dragan Milenkovic
- Department of Nutrition, University of California Davis, Davis, CA, 95616-5270, USA
| | - Camille Perella Coutinho
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Adriana Campos Rozenbaum
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Franco Maria Lajolo
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Neuza Mariko Aymoto Hassimotto
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|
23
|
Zhao Y, Yu S, Li L, Zhao H, Li Y, Jiang L, Liu M. Feeding citrus flavonoid extracts decreases bacterial endotoxin and systemic inflammation and improves immunometabolic status by modulating hindgut microbiome and metabolome in lactating dairy cows. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 13:386-400. [PMID: 37214215 PMCID: PMC10196341 DOI: 10.1016/j.aninu.2023.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/09/2023] [Accepted: 03/01/2023] [Indexed: 05/24/2023]
Abstract
The objectives of this study were to determine the effects of dietary supplementation with citrus flavonoid extracts (CFE) on milk performance, serum biochemistry parameters, fecal volatile fatty acids, fecal microbial community, and fecal metabolites in dairy cows. Eight multiparous lactating Holstein cows were used in a replicated 4 × 4 Latin square design (21-day period). Cows were fed a basal diet without addition (CON) or basal diet with added CFE at 50 (CFE50), 100 (CFE10), and 150 g/d (CFE150). Feeding CFE up to 150 g/d increased milk yield and milk lactose percentage. Supplementary CFE linearly decreased milk somatic cell count. Serum cytokines interleukin-1β (IL-1β), IL-2, IL-6, and tumor necrosis factor-α (TNF-α) concentrations decreased linearly as the levels of CFE increased. Cows in CFE150 had lower serum lipopolysaccharide and lipopolysaccharide binding protein compared with CON. These results indicate feeding CFE decreased systemic inflammation and endotoxin levels in dairy cows. Furthermore, feeding CFE linearly increased the concentrations of total volatile fatty acids, acetate, and butyrate in feces. The relative abundances of beneficial bacteria Bifidobacterium spp., Clostridium coccoides-Eubacterium rectale group, and Faecalibacterium prausnitzii in feces increased linearly with increasing CFE supplementation. The diversity and community structure of fecal microbiota were unaffected by CFE supplementation. However, supplementing CFE reduced the relative abundances of genera Ruminococcus_torques_group, Roseburia, and Lachnospira, but increased genera Bacteroides and Phascolarctobacterium. Metabolomics analysis showed that supplementary CFE resulted in a significant modification in the fecal metabolites profile. Compared with CON, fecal naringenin, hesperetin, hippuric acid, and sphingosine concentrations were greater in CFE150 cows, while fecal GlcCer(d18:1/20:0), Cer(d18:0/24:0), Cer(d18:0/22:0), sphinganine, and deoxycholic acid concentrations were less in CFE150 cows. Predicted pathway analysis suggested that "sphingolipid metabolism" was significantly enriched. Overall, these results indicate that citrus flavonoids could exert health-promoting effects by modulating hindgut microbiome and metabolism in lactating cows.
Collapse
Affiliation(s)
- Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Beinong Enterprise Management Co., Ltd., Beijing, 102206, China
| | - Shiqiang Yu
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Huiying Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yuqin Li
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Ming Liu
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
24
|
Ren Y, Sun S, Su Y, Ying C, Luo H. Effect of fruit on glucose control in diabetes mellitus: a meta-analysis of nineteen randomized controlled trials. Front Endocrinol (Lausanne) 2023; 14:1174545. [PMID: 37214237 PMCID: PMC10198260 DOI: 10.3389/fendo.2023.1174545] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Objective Diabetes mellitus is a worldwide health problem, and it remains unclarified whether fruit is beneficial in glycemic control. This study aimed to analyze evidence from randomized controlled trials evaluating the effect of fruit consumption on glucose control. Methods We searched the PubMed, EMBASE, Ovid, Web of Science, and Cochrane Central Register of Controlled Trials databases from the respective database inception dates to December 30, 2022, to identify randomized controlled trials that evaluated the effects of fruit consumption on glucose control. Two researchers independently screened the studies in accordance with the inclusion and exclusion criteria, and performed the literature quality evaluation and data extraction. RevMan 5.4 software was used to perform the data analysis. Results Nineteen randomized controlled trials with 888 participants were included. Fruit consumption significantly decreased the fasting blood glucose concentration (MD -8.38, 95% CI -12.34 to -4.43), but it showed no significant difference in the glycosylated hemoglobin (MD -0.17, 95% CI -0.51 to 0.17). Subgroup analyses further suggested that the consumption of both fresh and dried fruit decreased the fasting blood glucose concentration. Conclusions Increasing the fruit intake reduced fasting blood glucose concentration. Therefore, we recommend that patients with diabetes eat more fruits while ensuring that their total energy intake remains unchanged.
Collapse
Affiliation(s)
- Yu Ren
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Shuang Sun
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, The Third Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Yongwei Su
- Department of Orthopedic, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chenfei Ying
- Department of Orthopedic, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Hua Luo
- Department of Orthopedic, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
25
|
Ziółkiewicz A, Kasprzak-Drozd K, Rusinek R, Markut-Miotła E, Oniszczuk A. The Influence of Polyphenols on Atherosclerosis Development. Int J Mol Sci 2023; 24:ijms24087146. [PMID: 37108307 PMCID: PMC10139042 DOI: 10.3390/ijms24087146] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Polyphenols have attracted tremendous attention due to their pro-health properties, including their antioxidant, anti-inflammatory, antibacterial and neuroprotective activities. Atherosclerosis is a vascular disorder underlying several CVDs. One of the main risk factors causing atherosclerosis is the type and quality of food consumed. Therefore, polyphenols represent promising agents in the prevention and treatment of atherosclerosis, as demonstrated by in vitro, animal, preclinical and clinical studies. However, most polyphenols cannot be absorbed directly by the small intestine. Gut microbiota play a crucial role in converting dietary polyphenols into absorbable bioactive substances. An increasing understanding of the field has confirmed that specific GM taxa strains mediate the gut microbiota-atherosclerosis axis. The present study explores the anti-atherosclerotic properties and associated underlying mechanisms of polyphenols. Moreover, it provides a basis for better understanding the relationship between dietary polyphenols, gut microbiota, and cardiovascular benefits.
Collapse
Affiliation(s)
- Agnieszka Ziółkiewicz
- Department of Inorganic Chemistry, Medical University of Lublin, Dr Wiotolda Chodźki 4a, 20-093 Lublin, Poland
| | - Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Dr Wiotolda Chodźki 4a, 20-093 Lublin, Poland
| | - Robert Rusinek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Ewa Markut-Miotła
- Department of Lung Diseases and Children Rheumatology, Medical University of Lublin, Prof. Antoniego Gębali 6, 20-093 Lublin, Poland
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Dr Wiotolda Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
26
|
Pasdaran A, Hamedi A, Shiehzadeh S, Hamedi A. A review of citrus plants as functional foods and dietary supplements for human health, with an emphasis on meta-analyses, clinical trials, and their chemical composition. Clin Nutr ESPEN 2023; 54:311-336. [PMID: 36963879 DOI: 10.1016/j.clnesp.2023.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/10/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Fruits, flowers, leaves, essential oils, hydrosols, and juices of citrus spp. Are utilized to prepare various forms of food products. Along with their nutritional values, in the health industry, different parts of the plants of the citrus genus have been used as supplements or remedies to prevent or control diseases. This review focused on reported meta-analyses and clinical trials on the health benefits of citrus plants as functional foods. Also, chemical compounds of various citrus species were reviewed. The following information sources were used for data collection: Google Scholar, the Web of Science, Scopus, and PubMed. Various keywords, including "citrus AND chemical compounds," "citrus AND phytochemicals," "citrus species," "citrus AND meta-analysis," "nutritional and therapeutical values of citrus spp.," "clinical trials AND citrus," "clinical trials AND Rutaceae," "health benefits of citrus spp.," "citrus edible or non-edible applications," and scientific names of the citrus plants were utilized to collect data for the review. The scientific name and common name of all twenty-eight citrus species, along with any of the above keywords, were also searched in the mentioned databases. Scientific papers and data sources were sought to review and discuss the citrus plant's nutritional and therapeutic importance. Several meta-analyses and clinical trials have reported beneficial effects of citrus spices on a variety of cancer risks, cardiovascular risk factors, neurologic disorders, urinary tract conditions, and gastrointestinal tract conditions. They have shown anxiolytic, antimicrobial, and pain-alleviating effects. Some of them can be helpful in managing obesity and cardiovascular risk factors.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Hamedi
- School of Agriculture, Shiraz University, Shiraz, Iran
| | - Sara Shiehzadeh
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
27
|
Bioaccessibility and Bioavailability of Diet Polyphenols and Their Modulation of Gut Microbiota. Int J Mol Sci 2023; 24:ijms24043813. [PMID: 36835225 PMCID: PMC9961503 DOI: 10.3390/ijms24043813] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
It is generally accepted that diet-derived polyphenols are bioactive compounds with several potentially beneficial effects on human health. In general, polyphenols have several chemical structures, and the most representative are flavonoids, phenolic acids, and stilbenes. It should be noted that the beneficial effects of polyphenols are closely related to their bioavailability and bioaccessibility, as many of them are rapidly metabolized after administration. Polyphenols-with a protective effect on the gastrointestinal tract-promote the maintenance of the eubiosis of the intestinal microbiota with protective effects against gastric and colon cancers. Thus, the benefits obtained from dietary supplementation of polyphenols would seem to be mediated by the gut microbiota. Taken at certain concentrations, polyphenols have been shown to positively modulate the bacterial component, increasing Lactiplantibacillus spp. and Bifidobacterium spp. involved in the protection of the intestinal barrier and decreasing Clostridium and Fusobacterium, which are negatively associated with human well-being. Based on the diet-microbiota-health axis, this review aims to describe the latest knowledge on the action of dietary polyphenols on human health through the activity of the gut microbiota and discusses micro-encapsulation of polyphenols as a strategy to improve the microbiota.
Collapse
|
28
|
Wang K, Zhao Y, Xu L, Liao X, Xu Z. Health outcomes of 100% orange juice and orange flavored beverage: A comparative analysis of gut microbiota and metabolomics in rats. Curr Res Food Sci 2023; 6:100454. [PMID: 36815996 PMCID: PMC9932342 DOI: 10.1016/j.crfs.2023.100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/08/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
A high intake of sugar-sweetened fruity beverage (FB) is associated with a higher risk of metabolic syndromes, but the health outcome of 100% fruit juice (FJ) intake remains unclear. We aim to reveal health outcomes of diet intervention (FJ or FB) with system profiling via interaction of gut microbiota and metabolomics in a rat (Rattus norvegicus) model. Firstly, the glucose, sucrose, fructose, and bioactive metabolites of FJ and FB were analyzed, and FJ possessed higher sucrose and flavonoids, while FB showed higher glucose and fructose. Secondly, C0 was set as the control group on Day 0, and a 4-week diet invention was performed to control, FJ-intake, and FB-intake groups with normal saline, FJ, and FB, respectively. The results showed that FJ improved alpha diversity and decreased the Firmicutes/Bacteroidota ratio (F/B ratio) of gut microbiota and prevented insulin resistance. However, FB possessed unchanged microbial diversity and enhanced F/B ratio, causing insulin resistance with renal triglyceride accumulation. In summary, FJ, although naturally containing similar amounts of total free sugars as FB, could be a healthier drink choice.
Collapse
Affiliation(s)
- Kewen Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Lei Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Corresponding author.
| | - Zhenzhen Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Corresponding author. College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
29
|
Ruiz-Iglesias P, Estruel-Amades S, Massot-Cladera M, Franch À, Pérez-Cano FJ, Castell M. Rat Mucosal Immunity following an Intensive Chronic Training and an Exhausting Exercise: Effect of Hesperidin Supplementation. Nutrients 2022; 15:nu15010133. [PMID: 36615791 PMCID: PMC9824398 DOI: 10.3390/nu15010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Stressful situations such as a high-intensity exercise or exhausting training programs can act as immune disruptors leading to transitory immunodepression status, which can be accompanied by alterations of the gastrointestinal functions. Hesperidin intake has demonstrated ergogenic activity and is able to influence the intestinal ecosystem and immunity. We aimed to investigate the effect of hesperidin consumption in rats submitted to an intense training and a final exhaustion test, focusing on the functionality of the intestinal immune system and on the cecal microbiota. Rats, supplemented or not with hesperidin, were intensively trained on a treadmill for 5 weeks. Samples were obtained 24 h after a regular training session, and immediately and 24 h after a final exhaustion test. Cecal microbiota and composition and function of mesenteric lymph node (MLN) lymphocytes and mucosal immunoglobulin A (IgA) were determined. Results showed that chronic intense exercise followed by an exhausting test induced changes in the intestinal immune compartment such as the distribution and function of MLN lymphocytes. Although the hesperidin supplementation did not prevent these alterations, it was able to enhance IgA synthesis in the intestinal compartment. This could be important in enhancing the immune intestinal barrier in this stressful situation.
Collapse
Affiliation(s)
- Patricia Ruiz-Iglesias
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Sheila Estruel-Amades
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Malén Massot-Cladera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Àngels Franch
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
- Correspondence: (F.J.P.-C.); (M.C.); Tel.: +34-934-024-505 (F.J.P.-C. & M.C.)
| | - Margarida Castell
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.J.P.-C.); (M.C.); Tel.: +34-934-024-505 (F.J.P.-C. & M.C.)
| |
Collapse
|
30
|
Potential Properties of Natural Nutraceuticals and Antioxidants in Age-Related Eye Disorders. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010077. [PMID: 36676026 PMCID: PMC9863869 DOI: 10.3390/life13010077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Eye health is crucial, and the onset of diseases can reduce vision and affect the quality of life of patients. The main causes of progressive and irreversible vision loss include various pathologies, such as cataracts, ocular atrophy, corneal opacity, age-related macular degeneration, uncorrected refractive error, posterior capsular opacification, uveitis, glaucoma, diabetic retinopathy, retinal detachment, undetermined disease and other disorders involving oxidative stress and inflammation. The eyes are constantly exposed to the external environment and, for this reason, must be protected from damage from the outside. Many drugs, including cortisonics and antinflammatory drugs have widely been used to counteract eye disorders. However, recent advances have been obtained via supplementation with natural antioxidants and nutraceuticals for patients. In particular, evidence has accumulated that polyphenols (mostly deriving from Citrus Bergamia) represent a reliable source of antioxidants able to counteract oxidative stress accompanying early stages of eye diseases. Luteolin in particular has been found to protect photoreceptors, thereby improving vision in many disease states. Moreover, a consistent anti-inflammatory response was found to occur when curcumin is used alone or in combination with other nutraceuticals. Additionally, Coenzyme Q10 has been demonstrated to produce a consistent effect in reducing ocular pressure, thereby leading to protection in patients undergoing glaucoma. Finally, both grape seed extract, rich in anthocyanosides, and polynsatured fatty acids seem to contribute to the prevention of retinal disorders. Thus, a combination of nutraceuticals and antioxidants may represent the right solution for a multi-action activity in eye protection, in association with current drug therapies, and this will be of potential interest in early stages of eye disorders.
Collapse
|
31
|
Liu M, Zhong P. Modulating the Gut Microbiota as a Therapeutic Intervention for Alzheimer's Disease. Indian J Microbiol 2022; 62:494-504. [PMID: 36458227 PMCID: PMC9705639 DOI: 10.1007/s12088-022-01025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/05/2022] [Indexed: 11/05/2022] Open
Abstract
Growing evidence suggested that the change of composition and proportion of intestinal microbiota may be related to many diseases, such as irritable bowel syndrome, bipolar disorder, Parkinson's disease, as well as Alzheimer's disease. Current literature supports the fact that unbalanced gut microbial composition (gut dysbiosis) is a risk factor for AD. In our review, we briefly sum up the recent progress regarding the correlations between the gut microbiota and AD. Therapeutic interventions capable of modulating the make-up of the gut microflora may exert beneficial effects on AD, preventing or delaying the beginning of AD or counteracting its development. Additionally, well-documented approaches that can positively influence AD may exert their beneficial effects through modifying the gut microbiota. Therefore, other novel interventions which can target on gut microbiota will also be potential therapies for AD. The chances and challenges that AD is confronted with in the research field of microbiomics are also discussed in this review.
Collapse
Affiliation(s)
- Mingli Liu
- Neurology, Yangpu District Shidong Hospital of Shanghai, No. 999 Shiguang Road, Yangpu District, Shanghai, China
| | - Ping Zhong
- Neurology, Yangpu District Shidong Hospital of Shanghai, No. 999 Shiguang Road, Yangpu District, Shanghai, China
| |
Collapse
|
32
|
Vilas-Boas AA, Magalhães D, Campos DA, Porretta S, Dellapina G, Poli G, Istanbullu Y, Demir S, San Martín ÁM, García-Gómez P, Mohammed RS, Ibrahim FM, El Habbasha ES, Pintado M. Innovative Processing Technologies to Develop a New Segment of Functional Citrus-Based Beverages: Current and Future Trends. Foods 2022; 11:foods11233859. [PMID: 36496667 PMCID: PMC9735808 DOI: 10.3390/foods11233859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
The food industries are interested in developing functional products due to their popularity within nutritional and healthy circles. Functional fruit-based beverages represent one of the fast-growing markets due to the high concentrations of bioactive compounds (BCs), which can be health promoters. Hence, functional beverages based on citrus fruits are a potential way to take advantage of their nutritional and bioactive properties that could attract the interest of consumers. In order to ensure microbial and quality stability, the beverages are subjected to preservation treatment; however, the application of high temperatures leads to the loss of thermolabile BCs. Nowadays, innovative processing technologies (IPT) such as pulsed electric field (PEF), high-pressure processing (HPP), ultrasound processing (US), ohmic heating (OH), and microwave (MW) are a promising alternative due to their efficiency and low impact on juice BCs. The available literature concerning the effects of these technologies in functional fruit-based beverages is scarce; thus, this review gathers the most relevant information about the main positive and negative aspects of the IPT in functional properties, safety, and consumer acceptance of functional citrus-based beverages, as well as the use of citrus by-products to promote the circular economy in citrus processing.
Collapse
Affiliation(s)
- Ana A. Vilas-Boas
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Daniela Magalhães
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Débora A. Campos
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Sebastiano Porretta
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121 Parma, Italy
| | - Giovanna Dellapina
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121 Parma, Italy
| | - Giovanna Poli
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121 Parma, Italy
| | - Yildiray Istanbullu
- Central Research Institute of Food and Feed Control, Adalet M, 1. Hürriyet Cd. No:128, 16160 Osmangazi, Bursa, Turkey
| | - Sema Demir
- Central Research Institute of Food and Feed Control, Adalet M, 1. Hürriyet Cd. No:128, 16160 Osmangazi, Bursa, Turkey
| | - Ángel Martínez San Martín
- National Technological Centre for the Food and Canning Industry (CTNC), C. Concordia, s/n, 30500 Molina de Segura, Murcia, Spain
| | - Presentación García-Gómez
- National Technological Centre for the Food and Canning Industry (CTNC), C. Concordia, s/n, 30500 Molina de Segura, Murcia, Spain
| | - Reda S. Mohammed
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - Faten M. Ibrahim
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - El Sayed El Habbasha
- Field Crops Research Department, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
- Correspondence:
| |
Collapse
|
33
|
The effects of citrus flavonoids and their metabolites on immune-mediated intestinal barrier disruption using an in vitro co-culture model. Br J Nutr 2022; 128:1917-1926. [PMID: 35086580 DOI: 10.1017/s0007114521004797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hesperidin and naringin are citrus flavonoids with known anti-oxidative and anti-inflammatory properties. Evidence from previous studies indicates that both these compounds and the metabolites that are formed during intestinal metabolism are able to exert beneficial effects on intestinal barrier function and inflammation. However, so far, studies investigating the relative contributions of the various compounds are lacking. Therefore, we assessed the effect of citrus flavonoids and their intestinal metabolites on immune-mediated barrier disruption in an in vitro co-culture model. Caco-2 cell monolayers were placed in co-culture with phorbol 12-myristate 13-acetate-stimulated THP-1-Blue™ NF-κB cells for 30 h. At baseline, the citrus flavonoids and their metabolites were added to the apical compartment (50 or 100 µM per compound). After 24 h, THP-1 cells were incubated with lipopolysaccharide (LPS) in the basolateral compartment for 6 h. Incubation with citrus flavonoids and their metabolites did not induce changes in transepithelial electrical resistance, fluorescein isothiocyanate-dextran 4 kDa permeation or gene expression of barrier-related genes for any of the compounds tested. After LPS stimulation, NF-κB activity was significantly inhibited by all compounds (100 µM) except for one metabolite (all P ≤ 0·03). LPS-induced production of the cytokines IL-8, TNF-α and IL-6 was inhibited by most compounds (all P < 0·05). However, levels of IL-1β were increased, which may contribute to the lack of an improved barrier effect. Overall, these results suggest that citrus flavonoids may decrease intestinal inflammation via reduction of NF-κB activity and that the parent compounds and their metabolites formed during intestinal metabolism are able to exert comparable effects.
Collapse
|
34
|
Kuznetzova AB, Prazdnova EV, Chistyakov VA, Kutsevalova OY, Batiushin MM. Are Probiotics Needed in Nephrology? NEPHROLOGY (SAINT-PETERSBURG) 2022; 26:18-30. [DOI: 10.36485/1561-6274-2022-26-4-18-30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- A. B. Kuznetzova
- Academy of Biology and Biotechnology named after D.I. Ivanovsky, Southern Federal University
| | - E. V. Prazdnova
- Academy of Biology and Biotechnology named after D.I. Ivanovsky, Southern Federal University
| | - V. A. Chistyakov
- Academy of Biology and Biotechnology named after D.I. Ivanovsky, Southern Federal University
| | - O. Yu. Kutsevalova
- Federal State Budgetary Institution "National Medical Research Center of Oncology"
| | | |
Collapse
|
35
|
Huo J, Wu L, Lv J, Cao H, Gao Q. Effect of fruit intake on functional constipation: A systematic review and meta-analysis of randomized and crossover studies. Front Nutr 2022; 9:1018502. [PMID: 36276840 PMCID: PMC9583540 DOI: 10.3389/fnut.2022.1018502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022] Open
Abstract
Functional constipation (FC) is commonly treated with fruits whose efficacy remains unclear. We conducted a meta-analysis of fruit intervention for FC and provided evidence-based recommendations. We searched seven databases from inception to July 2022. All randomized and crossover studies on the effectiveness of fruits on FC were included. We conducted sensitivity and subgroup analysis. A total of 11 studies were included in this review. Four trials showed that kiwifruits have significantly increased stool frequency (MD = 0.26, 95% CI (0.22, 0.30), P < 0.0001, I2 = 0%) than palm date or orange juice in the fixed-effect meta-analysis. Three high-quality studies suggested that kiwifruits have a better effect than ficus carica paste on the symptom of the FC assessed by the Bristol stool scale in the fixed-effect meta-analysis [MD = 0.39, 95% CI (0.11, 0.66), P < 0.05, I2 = 27%]. Besides, five trials showed that fruits can increase the amount of Lactobacillus acidophilus [MD = 0.82, 95% CI (0.25, 1.39), P < 0.05, I2 = 52%], analyzed with the random-effect model. Subgroup meta-analysis based on the types of fruits suggested that fruits including pome fruit, citrus fruit, and berries have increased the effect of Bifidobacterium t more than the stone fruits in the random effect meta-analysis [MD = 0.51, 95% CI (0.23, 0.79), P < 0.05, I2 = 84%]. Totally, fruit intake may have potential symptom alleviation on the FC as evidence shows that they can affect stool consistency, stool frequency, and gut microbiota. Further large-scale studies are needed to gain more confident conclusions concerning the association between fruit intake and FC in the future.
Collapse
Affiliation(s)
- Jinghong Huo
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China,Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Lingyu Wu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China,Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Jinming Lv
- Department of Neuroelectrophysiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hongdou Cao
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China,Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Qinghan Gao
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China,Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China,*Correspondence: Qinghan Gao,
| |
Collapse
|
36
|
Santos KGD, Yoshinaga MY, Glezer I, Chaves-Filho ADB, Santana AAD, Kovacs C, Magnoni CD, Lajolo FM, Miyamoto S, Aymoto Hassimotto NM. Orange juice intake by obese and insulin-resistant subjects lowers specific plasma triglycerides: A randomized clinical trial. Clin Nutr ESPEN 2022; 51:336-344. [PMID: 36184225 DOI: 10.1016/j.clnesp.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/24/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND & AIMS Dyslipidaemia is usually common in obesity, insulin resistance, and type 2 diabetes mellitus. Clinical trials suggest that orange juice may have a positive impact on lipid metabolism and blood lipid profiles; however conflicting results have been reported. Here, we applied a combined untargeted/targeted lipidomic analysis of plasma to examine the impact of orange (Citrus sinensis) juice intake on the lipidome profile of obese and insulin-resistant subjects. METHODS Twenty-five participants, both sexes, aged 40-60 years, with obesity and insulin resistance (homeostasis model assessment of insulin resistance (HOMA-IR) index >2.71) ingested 400 mL of orange juice 'Pera' (C. sinensis) for 15 d. Cardiometabolic biomarkers, anthropometric parameters, blood pressure, and plasma lipidomic analysis results were assessed at the beginning and end of the intervention. RESULTS After the 15-d intervention, a significant decrease was observed in the diastolic blood pressure and blood lipid profile. Among plasma lipidomes, 316 lipid molecules were identified, with the triglycerides (TGs) subclass being the most abundant (n = 106). Plasma lipidome profiling revealed a major signature of the intervention; with concentrations of 37 TG species decreasing after intervention. Qualitatively, oleic and linoleic acids were among the most prevalent fatty acids linked to the altered TG species, representing 50% of TG chains. Modulated TG species were positively correlated with total TG and very low-density lipoprotein levels, as well as systolic and diastolic blood pressure. A strong inter-individual trend was observed, wherein, compared with less responsive subjects, the high responsive subjects displayed the highest decrease in the concentrations of altered TG species, as as well as systolic blood pressure (decrease of 10.3 ± 6.8 mmHg) and body weight (decrease of 0.67 ± 0.71 kg). CONCLUSIONS These findings suggest that orange juice has a positive impact on lipid metabolism, mainly regarding the composition of TG-specific fatty acid chains and cholesterol esters, protecting against insulin resistance. Furthermore, lipidomics may help clarify alterations at the molecular level after an intervention, contributing to improve the evaluation of the link between dyslipidaemia, insulin resistance, and nutrition.
Collapse
Affiliation(s)
- Karina Gama Dos Santos
- Food Research Center (FoRC), 05508-080, São Paulo, Brazil; School of Pharmaceutical Sciences (University of São Paulo), 05508-000, São Paulo, Brazil; Department of Clinical Nutrition, Dante Pazzanese Institute of Cardiology, 04012-090, São Paulo, Brazil.
| | - Marcos Yukio Yoshinaga
- Department of Biochemistry, Institute of Chemistry (University of São Paulo), 05508-900, São Paulo, Brazil.
| | - Isaias Glezer
- Department of Biochemistry, Escola Paulista de Medicina (Federal University of São Paulo), São Paulo, Brazil
| | | | - Aline Alves de Santana
- Food Research Center (FoRC), 05508-080, São Paulo, Brazil; School of Pharmaceutical Sciences (University of São Paulo), 05508-000, São Paulo, Brazil
| | - Cristiane Kovacs
- Department of Clinical Nutrition, Dante Pazzanese Institute of Cardiology, 04012-090, São Paulo, Brazil
| | - Carlos Daniel Magnoni
- Department of Clinical Nutrition, Dante Pazzanese Institute of Cardiology, 04012-090, São Paulo, Brazil
| | - Franco Maria Lajolo
- Food Research Center (FoRC), 05508-080, São Paulo, Brazil; School of Pharmaceutical Sciences (University of São Paulo), 05508-000, São Paulo, Brazil
| | - Sayuri Miyamoto
- Department of Biochemistry, Institute of Chemistry (University of São Paulo), 05508-900, São Paulo, Brazil
| | - Neuza Mariko Aymoto Hassimotto
- Food Research Center (FoRC), 05508-080, São Paulo, Brazil; School of Pharmaceutical Sciences (University of São Paulo), 05508-000, São Paulo, Brazil
| |
Collapse
|
37
|
Bagheri S, Zolghadri S, Stanek A. Beneficial Effects of Anti-Inflammatory Diet in Modulating Gut Microbiota and Controlling Obesity. Nutrients 2022; 14:3985. [PMID: 36235638 PMCID: PMC9572805 DOI: 10.3390/nu14193985] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity has consistently been associated with an increased risk of metabolic abnormalities such as diabetes, hyperlipidemia, and cardiovascular diseases, as well as the development of several types of cancer. In recent decades, unfortunately, the rate of overweight/obesity has increased significantly among adults and children. A growing body of evidence shows that there is a relationship between metabolic disorders such as obesity and the composition of the gut microbiota. Additionally, inflammation is considered to be a driving force in the obesity-gut microbiota connection. Therefore, it seems that anti-inflammatory nutrients, foods, and/or diets can play an essential role in the management of obesity by affecting the intestinal flora and controlling inflammatory responses. In this review, we describe the links between the gut microbiota, obesity, and inflammation, and summarize the benefits of anti-inflammatory diets in preventing obesity.
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran
| | - Agata Stanek
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St, 41-902 Bytom, Poland
| |
Collapse
|
38
|
Tan P, Jin L, Qin X, He B. Natural flavonoids: Potential therapeutic strategies for non-alcoholic fatty liver disease. Front Pharmacol 2022; 13:1005312. [PMID: 36188561 PMCID: PMC9524541 DOI: 10.3389/fphar.2022.1005312] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 01/30/2023] Open
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) is increasing rapidly worldwide; however, there are currently limited treatments for NAFLD. The disease spectrum includes simple fatty liver, non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and progression to hepatocellular carcinoma (NASH-HCC). The therapeutic effects of NAFLD remain controversial. Although researchers have conducted studies on the pathogenesis of NAFLD, its pathogenesis and anti-NAFLD mechanisms have not been fully elucidated. Previous studies have found that flavonoids, as natural substances with extensive pharmacological activity and good therapeutic effects, have excellent antioxidant, anti-inflammatory, metabolic disease improvement, anti-tumor, and other properties and can significantly alleviate NAFLD. Flavonoids could be further developed as therapeutic drugs for NAFLD. In this paper, the pathogenesis of NAFLD and the mechanisms of flavonoids against NAFLD are summarized to provide a theoretical basis for screening flavonoids against non-alcoholic liver injury.
Collapse
Affiliation(s)
- Panli Tan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Li Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang Qin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
39
|
Sharma BR, Jaiswal S, Ravindra PV. Modulation of gut microbiota by bioactive compounds for prevention and management of type 2 diabetes. Biomed Pharmacother 2022; 152:113148. [PMID: 35665671 DOI: 10.1016/j.biopha.2022.113148] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/10/2022] [Accepted: 05/15/2022] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by hyperglycemia and insulin resistance. Gut microbiota (GM) are specific groups of microbes colonized in the gastrointestinal (GI) tract. They profoundly influence health, disease protection, and associated with metabolic activities, and play a vital role in the production of functional metabolites from dietary substances. Dysbiosis of GM has been linked to the onset of T2DM and can be altered to attain eubiosis by intervention with various nutritional bioactive compounds such as polyphenols, prebiotics, and probiotics. This review presents an overview of the evidence and underlying mechanisms by which bioactive compounds modulate the GM for the prevention and management of T2DM.
Collapse
Affiliation(s)
- Basista Rabina Sharma
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), KRS Road, Opp. Rail Museum, Mysuru 570020, India
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| | - P V Ravindra
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), KRS Road, Opp. Rail Museum, Mysuru 570020, India.
| |
Collapse
|
40
|
Fruit Bioactive Compounds: Effect on Lactic Acid Bacteria and on Intestinal Microbiota. Food Res Int 2022; 161:111809. [DOI: 10.1016/j.foodres.2022.111809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
|
41
|
Li M, Zheng Y, Zhao J, Liu M, Shu X, Li Q, Wang Y, Zhou Y. Polyphenol Mechanisms against Gastric Cancer and Their Interactions with Gut Microbiota: A Review. Curr Oncol 2022; 29:5247-5261. [PMID: 35892986 PMCID: PMC9332243 DOI: 10.3390/curroncol29080417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/14/2022] Open
Abstract
The lack of new drugs and resistance to existing drugs are serious problems in gastric cancer(GC) treatment. The research found polyphenols possess anti-Helicobacter pylori(Hp) and antitumor activities and may be used in the research and development of drugs for cancer prevention and treatment. However, polyphenols are affected by their chemical structures and physical properties, which leads to relatively low bioavailability and bioactivity in vivo. The intestinal flora can improve the absorption, utilization, and biological activity of polyphenols, whereas polyphenol compounds can increase the richness of the intestinal flora, reduce the activity of carcinogenic bacteria, stabilize the proportion of core flora, and maintain homeostasis of the intestinal microenvironment. Our review summarizes the gastrointestinal flora-mediated mechanisms of polyphenol against GC.
Collapse
Affiliation(s)
- Matu Li
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, China; (M.L.); (J.Z.); (M.L.)
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jinyu Zhao
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, China; (M.L.); (J.Z.); (M.L.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Meimei Liu
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, China; (M.L.); (J.Z.); (M.L.)
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiaochuang Shu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qiang Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
42
|
Santhiravel S, Bekhit AEDA, Mendis E, Jacobs JL, Dunshea FR, Rajapakse N, Ponnampalam EN. The Impact of Plant Phytochemicals on the Gut Microbiota of Humans for a Balanced Life. Int J Mol Sci 2022; 23:ijms23158124. [PMID: 35897699 PMCID: PMC9332059 DOI: 10.3390/ijms23158124] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
The gastrointestinal tract of humans is a complex microbial ecosystem known as gut microbiota. The microbiota is involved in several critical physiological processes such as digestion, absorption, and related physiological functions and plays a crucial role in determining the host’s health. The habitual consumption of specific dietary components can impact beyond their nutritional benefits, altering gut microbiota diversity and function and could manipulate health. Phytochemicals are non-nutrient biologically active plant components that can modify the composition of gut microflora through selective stimulation of proliferation or inhibition of certain microbial communities in the intestine. Plants secrete these components, and they accumulate in the cell wall and cell sap compartments (body) for their development and survival. These compounds have low bioavailability and long time-retention in the intestine due to their poor absorption, resulting in beneficial impacts on gut microbiota population. Feeding diets containing phytochemicals to humans and animals may offer a path to improve the gut microbiome resulting in improved performance and/or health and wellbeing. This review discusses the effects of phytochemicals on the modulation of the gut microbiota environment and the resultant benefits to humans; however, the effect of phytochemicals on the gut microbiota of animals is also covered, in brief.
Collapse
Affiliation(s)
- Sarusha Santhiravel
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Alaa El-Din A Bekhit
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Eresha Mendis
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Joe L Jacobs
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Ellinbank, VIC 3821, Australia
- Centre for Agricultural Innovation, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Niranjan Rajapakse
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Eric N Ponnampalam
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia
| |
Collapse
|
43
|
Grace-Farfaglia P, Frazier H, Iversen MD. Essential Factors for a Healthy Microbiome: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8361. [PMID: 35886216 PMCID: PMC9315476 DOI: 10.3390/ijerph19148361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/19/2022]
Abstract
Recent discoveries of the purpose and potential of microbial interactions with humans have broad implications for our understanding of metabolism, immunity, the host−microbe genetic interactions. Bioavailability and bioaccessibility of phytonutrients in foods not only enrich microbial diversity in the lower human gastrointestinal tract (GIT) but also direct the functioning of the metagenome of the microbiota. Thus, healthy choices must include foods that contain nutrients that satisfy both the needs of humans and their microbes. Physical activity interventions at a moderate level of intensity have shown positive effects on metabolism and the microbiome, while intense training (>70% VO2max) reduces diversity in the short term. The microbiome of elite endurance athletes is a robust producer of short-chain fatty acids. A lifestyle lacking activity is associated with the development of chronic disease, and experimental conditions simulating weightlessness in humans demonstrate loss of muscle mass occurring in conjunction with a decline in gut short-chain fatty acid (SCFA) production and the microbes that produce them. This review summarizes evidence addressing the relationship between the intestinal microbiome, diet, and physical activity. Data from the studies reviewed suggest that food choices and physical fitness in developed countries promote a resource “curse” dilemma for the microbiome and our health.
Collapse
Affiliation(s)
- Patricia Grace-Farfaglia
- Health Sciences, College of Health Professions, Sacred Heart University, Fairfield, CT 06825, USA
| | - Heather Frazier
- Department of Nutrition, School of Mathematics, Science and Engineering, University of the Incarnate Word, San Antonio, TX 78209, USA;
| | - Maura Daly Iversen
- Public Health and Physical Therapy and Human Movement Sciences, College of Health Professions, Sacred Heart University, Fairfield, CT 06825, USA;
| |
Collapse
|
44
|
Involvement of the Intestinal Microbiota in the Appearance of Multiple Sclerosis: Aloe vera and Citrus bergamia as Potential Candidates for Intestinal Health. Nutrients 2022; 14:nu14132711. [PMID: 35807891 PMCID: PMC9269320 DOI: 10.3390/nu14132711] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple sclerosis (MS) is a neurological and inflammatory autoimmune disease of the Central Nervous System in which selective activation of T and B lymphocytes prompts a reaction against myelin, inducing demyelination and axonal loss. Although MS is recognized to be an autoimmune pathology, the specific causes are many; thus, to date, it has been considered a disorder resulting from environmental factors in genetically susceptible individuals. Among the environmental factors hypothetically involved in MS, nutrition seems to be well related, although the role of nutritional factors is still unclear. The gut of mammals is home to a bacterial community of about 2000 species known as the “microbiota”, whose composition changes throughout the life of each individual. There are five bacterial phylas that make up the microbiota in healthy adults: Firmicutes (79.4%), Bacteroidetes (16.9%), Actinobacteria (2.5%), Proteobacteria (1%) and Verrucomicrobia (0.1%). The diversity and abundance of microbial populations justifies a condition known as eubiosis. On the contrary, the state of dysbiosis refers to altered diversity and abundance of the microbiota. Many studies carried out in the last few years have demonstrated that there is a relationship between the intestinal microflora and the progression of multiple sclerosis. This correlation was also demonstrated by the discovery that patients with MS, treated with specific prebiotics and probiotics, have greatly increased bacterial diversity in the intestinal microbiota, which might be otherwise reduced or absent. In particular, natural extracts of Aloe vera and bergamot fruits, rich in polyphenols and with a high percentage of polysaccharides (mostly found in indigestible and fermentable fibers), appear to be potential candidates to re-equilibrate the gut microbiota in MS patients. The present review article aims to assess the pathophysiological mechanisms that reveal the role of the microbiota in the development of MS. In addition, the potential for supplementing patients undergoing early stages of MS with Aloe vera as well as bergamot fibers, on top of conventional drug treatments, is discussed.
Collapse
|
45
|
Guimarães JT, Almeida PP, Brito ML, Cruz BO, Costa NS, Almeida Ito RV, Mota JC, Bertolo MR, Morais ST, Neto RP, Tavares MIB, Souto F, Bogusz Junior S, Pimentel TC, Stockler-Pinto MB, Freitas MQ, Cruz AG. In vivo functional and health benefits of a prebiotic soursop whey beverage processed by high-intensity ultrasound: Study with healthy Wistar rats. Food Chem 2022; 380:132193. [DOI: 10.1016/j.foodchem.2022.132193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/21/2021] [Accepted: 01/16/2022] [Indexed: 12/31/2022]
|
46
|
Li P, Yao X, Zhou Q, Meng X, Zhou T, Gu Q. Citrus Peel Flavonoid Extracts: Health-Beneficial Bioactivities and Regulation of Intestinal Microecology in vitro. Front Nutr 2022; 9:888745. [PMID: 35685878 PMCID: PMC9171401 DOI: 10.3389/fnut.2022.888745] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022] Open
Abstract
Citrus peel and its extracts are rich in flavonoids, which are beneficial to human health. In this study, the extraction, component analysis, biological activity and intestinal microbiota regulation of citrus peel flavonoid extracts (CPFEs) were investigated. CPFEs from 14 Chinese cultivars were purified by ultrasound-assisted extraction and XAD-16 macroporous resin. The total flavonoid content of lemon was greatest at 103.48 ± 0.68 mg/g dry weight (DW) by NaNO2-Al(NO3)3-NaOH spectrophotometry. Using high-performance liquid chromatography–diode array detection, the highest concentrations of naringin, hesperidin and eriocitrin were found in grapefruit (52.03 ± 0.51 mg/g DW), chachiensis (43.02 ± 0.37 mg/g DW) and lemon (27.72 ± 0.47 mg/g DW), respectively. Nobiletin was the most polymethoxylflavone in chachiensis at 16.91 ± 0.14 mg/g DW. CPFEs from chachiensis and grapefruit had better antioxidant activity, α-glucosidase inhibitory and sodium glycocholate binding ability. In addition, chachiensis and grapefruit CPFEs had positive effects on intestinal microecology, as evidenced by a significant increase in the relative abundance of Bifidobacterium spp., and production of short-chain fatty acids, especially acetic acid, by a simulated human intestinal model. Collectively, our results highlight the biological function of CPFEs as prebiotic agents, indicating their potential use in food and biomedical applications.
Collapse
|
47
|
Qi X, Ye J, Wen Y, Liu L, Cheng B, Cheng S, Yao Y, Zhang F. Evaluating the Effects of Diet-Gut Microbiota Interactions on Sleep Traits Using the UK Biobank Cohort. Nutrients 2022; 14:1134. [PMID: 35334789 PMCID: PMC8951611 DOI: 10.3390/nu14061134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
Previous studies showed that diet and gut microbiota had a correlation with sleep. However, the potential interaction effects of diet and gut microbiota on sleep are still unclear. The phenotypic data of insomnia (including 374,505 subjects) and sleep duration (including 372,805 subjects) were obtained from the UK Biobank cohort. The Single Nucleotide Polymorphisms (SNPs) associated with 114 gut microbiota, 84 dietary habits, and 4 dietary compositions were derived from the published Genome-wide Association Study (GWAS). We used Linkage Disequilibrium Score Regression (LDSC) to estimate the genetic correlation and colocalization analysis to assess whether dietary habits and insomnia/sleep duration shared a causal variant in a region of the genome. Using UK Biobank genotype data, the polygenetic risk score of gut microbiota, dietary habits, and dietary compositions were calculated for each subject. Logistic regression and linear regression models were used to assess the potential effects of diet-gut microbiota interactions on sleep phenotypes, including insomnia and sleep duration. Insomnia and sleep duration were used as dependent variables, and sex, age, the Townsend Deprivation Index scores, and smoking and drinking habits were selected as covariates in the regression analysis. All statistical analyses were conducted using R-3.5.1 software. Significant genetic correlations were discovered between insomnia/sleep duration and dietary habits. Further, we found several significant dietary compositions-gut microbiota interactions associated with sleep, such as fat × G_Collinsella_RNT (p = 1.843 × 10-2) and protein × G_Collinsella_HB (p = 7.11 × 10-3). Besides, multiple dietary habits-gut microbiota interactions were identified for sleep, such as overall beef intake × G_Desulfovibrio_RNT (p = 3.26 × 10-4), cups of coffee per day × G_Escherichia_Shigella_RNT (p = 1.14 × 10-3), and pieces of dried fruit per day × G_Bifidobacterium_RNT (p = 5.80 × 10-3). This study reported multiple diet-gut microbiota interactions associated with sleep, which may provide insights into the biological mechanisms of diet and gut microbiota affecting sleep.
Collapse
Affiliation(s)
- Xin Qi
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Jing Ye
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (J.Y.); (Y.W.); (L.L.); (B.C.); (S.C.); (Y.Y.)
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (J.Y.); (Y.W.); (L.L.); (B.C.); (S.C.); (Y.Y.)
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (J.Y.); (Y.W.); (L.L.); (B.C.); (S.C.); (Y.Y.)
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (J.Y.); (Y.W.); (L.L.); (B.C.); (S.C.); (Y.Y.)
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (J.Y.); (Y.W.); (L.L.); (B.C.); (S.C.); (Y.Y.)
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (J.Y.); (Y.W.); (L.L.); (B.C.); (S.C.); (Y.Y.)
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (J.Y.); (Y.W.); (L.L.); (B.C.); (S.C.); (Y.Y.)
| |
Collapse
|
48
|
Yang Y, Trevethan M, Wang S, Zhao L. Beneficial Effects of Citrus Flavanones Naringin and Naringenin and Their Food Sources on Lipid Metabolism: An Update on Bioavailability, Pharmacokinetics, and Mechanisms. J Nutr Biochem 2022; 104:108967. [PMID: 35189328 DOI: 10.1016/j.jnutbio.2022.108967] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
Naringin and naringin's aglycone naringenin belong to a subclass of flavonoids called flavanones. While many studies of pure naringenin and naringin and their food sources have shown beneficial health effects, including improved lipid metabolism, in animals and humans, the mechanisms underlying the lipid-lowering effects have not been completely understood. In recent years, multiple studies using various in vitro and rodent models have revealed new mechanisms underlying the hypolipidemic effects of naringin and naringenin, including regulation of lipid digestion, reverse cholesterol transport, and LDL receptor expression. In addition, naringin and naringenin show diverse effects in populations with different health conditions, such as obesity and diabetes. Furthermore, a novel naringin and naringenin enriched food source citrus bergamia (bergamot) and other citrus fruits have recently been studied for lipid-lowering effects in animal models and human clinical trials. In this review, we provide an update on recent advances on naringin and naringenin and their enriched food sources on lipid metabolism and underlying mechanisms. Because absorption, distribution, metabolism, and excretion, particularly in the presence of food matrix, impact the bioavailability, which in turn affects the bioactivities of these flavonoids in vivo, we also summarize new findings from the pharmacokinetics studies and on interplays between naringin and naringenin and gut microbiota.
Collapse
Affiliation(s)
- Yang Yang
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996
| | - Myah Trevethan
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996
| | - Shu Wang
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004
| | - Ling Zhao
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996.
| |
Collapse
|
49
|
Golubev D, Zemskaya N, Shevchenko O, Shaposhnikov M, Kukuman D, Patov S, Punegov V, Moskalev A. Honeysuckle extract (Lonicera pallasii L.) exerts antioxidant properties and extends the lifespan and healthspan of Drosophila melanogaster. Biogerontology 2022; 23:215-235. [PMID: 35122571 DOI: 10.1007/s10522-022-09954-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
Honeysuckle Lonicera pallasii (Lonicera caerulea L.) is an excellent source of anthocyanins which have a number of health-promoting properties mainly associated with antioxidant and anti-inflammatory activities. Cyanidin-3-O-glucoside (C3G) is one of the most common anthocyanins naturally found in honeysuckle. The goal of the present study was to investigate antioxidant and anti-aging properties of Lonicera pallasii (Lonicera caerulea L.) extract (LE) and C3G using red blood cells (RBC) and Drosophila melanogaster models. LE and C3G treatment at a concentration of 100 μM induced enhancement of median and maximum lifespan up to 8%. LE and C3G supplementation at a concentration of 100 μM increased stress resistance up to 10%. The locomotor activity decreased during LE and C3G treatment in 4 and 6 weeks up to 52% in females. The integrity of the intestinal barrier was increased by 4% after LE treatment. These effects were accompanied by increased expression of Hif1 (pro-longevity gene) in response to C3G treatment and decreased expression of Keap1 (anti-longevity gene) after C3G and LE supplementation. RNA interference-mediated knockdown of Sirt6 completely abolished the positive effect obtained of LE and C3G supplementation in males which indicates that lifespan-extending effect is associated with Sirt6 activation. The experiments on the various in-vitro models (including radical scavenging activity and oxidative hemolysis of RBC demonstrated antioxidant and membrane-protective activities of LE and C3G. The present study indicates that Lonicera extract can prolong the lifespan and improve the healthspan of Drosophila model through biological and antioxidant activities.
Collapse
Affiliation(s)
- Denis Golubev
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Nadezhda Zemskaya
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Oksana Shevchenko
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Mikhail Shaposhnikov
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Daria Kukuman
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Sergey Patov
- Institute of Chemistry of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Vasily Punegov
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Alexey Moskalev
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982.
| |
Collapse
|
50
|
Pu Z, Sun Y, Jiang H, Hou Q, Yan H, Wen H, Li G. Effects of Berberine on Gut Microbiota in Patients with Mild Metabolic Disorders Induced by Olanzapine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 49:1949-1963. [PMID: 34961418 DOI: 10.1142/s0192415x21500920] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Secondary metabolic disturbances in patients with schizophrenia or bipolar disorder may be attributed to olanzapine. It is important to prevent mild metabolic disorders progressing to metabolic syndrome. This study aims to investigate the effects of berberine on intestinal flora in patients with mild metabolic disorders induced by olanzapine. A total of 132 patients with schizophrenia, bipolar disorder, or schizoaffective psychosis that had been treated with olanzapine for at least 9 months were randomly assigned ([Formula: see text] = 66 each) to receive berberine or placebo tablets for 12 weeks. Metabolic assessments and intestinal flora were quantified at baseline and after 4, 8, and 12 weeks of treatment. Incidence rates of adverse reactions were recorded. FPG, FPI, HOMA-IR, HbA1, TG, BMI, and WC were significantly lower in patients who received berberine compared to placebo after 12 weeks of treatment ([Formula: see text]< 0.05). The abundance of firmicutes and coliform were significantly lower and the abundance of bacteroides significantly higher in patients who received berberine compared to placebo after 12 weeks of treatment ([Formula: see text]< 0.05). In patients who received berberine, the abundance of firmicutes was significantly decreased, and the abundance of bacteroides was significantly increased, and in patients who received placebo, the abundance of firmicutes was significantly increased post-treatment, compared to baseline (both [Formula: see text]< 0.05). In conclusions, berberine may regulate intestinal flora and metabolism in patients with schizophrenia or bipolar disorder and mild metabolic disturbances induced by olanzapine.
Collapse
Affiliation(s)
- Zhengping Pu
- Shanghai Mental Health Center, Shanghai Jiao Tong, University School of Medicine, Xuhui 200030, Shanghai, P. R. China.,Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang 314500, Zhejiang, P. R. China
| | - Yunying Sun
- Endocrinology Department, First People's Hospital of Haining, Haining 314400, Zhejiang, P. R. China
| | - Hongxia Jiang
- Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang 314500, Zhejiang, P. R. China
| | - Qingmei Hou
- Department of Clinical Psychology, The Second Specialized Hospital of Hegang, Hegang 154102, Heilongjiang, P. R. China
| | - Hui Yan
- Department of Psychiatry, Second People's Hospital of Taizhou, Tiantai 317200, Zhejiang, P. R. China
| | - Hui Wen
- Department of Traditional Chinese Medicine, Second People's Hospital of Tongxiang, Tongxiang 314500, Zhejiang, P. R. China
| | - Guorong Li
- Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang 314500, Zhejiang, P. R. China
| |
Collapse
|