1
|
Younesi FS, Hinz B. The Myofibroblast Fate of Therapeutic Mesenchymal Stromal Cells: Regeneration, Repair, or Despair? Int J Mol Sci 2024; 25:8712. [PMID: 39201399 PMCID: PMC11354465 DOI: 10.3390/ijms25168712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts. Transiently activated myofibroblasts restore tissue integrity after organ injury by producing and contracting extracellular matrix into scar tissue. In contrast, persistent myofibroblasts cause excessive scarring-called fibrosis-that destroys organ function. In this review, we focus on the relevance and molecular mechanisms of myofibroblast activation upon contact with stiff cell culture plastic or recipient scar tissue, such as hypertrophic scars of large skin burns. We discuss cell mechanoperception mechanisms such as integrins and stretch-activated channels, mechanotransduction through the contractile actin cytoskeleton, and conversion of mechanical signals into transcriptional programs via mechanosensitive co-transcription factors, such as YAP, TAZ, and MRTF. We further elaborate how prolonged mechanical stress can create persistent myofibroblast memory by direct mechanotransduction to the nucleus that can evoke lasting epigenetic modifications at the DNA level, such as histone methylation and acetylation. We conclude by projecting how cell culture mechanics can be modulated to generate MSCs, which epigenetically protected against myofibroblast activation and transport desired regeneration potential to the recipient tissue environment in clinical therapies.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
2
|
Tolouei AE, Oruji F, Tehrani S, Rezaei S, Mozaffari A, Jahri M, Nasiri K. Gingival mesenchymal stem cell therapy, immune cells, and immunoinflammatory application. Mol Biol Rep 2023; 50:10461-10469. [PMID: 37904011 DOI: 10.1007/s11033-023-08826-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/12/2023] [Indexed: 11/01/2023]
Abstract
MSC-based therapeutic strategies have proven to be incredibly effective. Robust self-renewal, multilineage differentiation, and potential for tissue regeneration and disease treatments are all features of MSCs isolated from oral tissue. Human exfoliated deciduous teeth, dental follicles, dental pulp, apical papilla SCs, and alveolar bone are the primary sources of oral MSC production. The early immunoinflammatory response is the first stage of the healing process. Oral MSCs can interact with various cells, such as immune cells, revealing potential immunomodulatory regulators. They also have strong differentiation and regeneration potential. Therefore, a ground-breaking strategy would be to research novel immunomodulatory approaches for treating disease and tissue regeneration that depend on the immunomodulatory activities of oral MSCs during tissue regeneration.
Collapse
Affiliation(s)
| | - Farshid Oruji
- College of Medicine, Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sahar Tehrani
- Department of Pediatric Dentistry, School of Dentistry, Ahvaz Jundishapour University of Medical Sciences Ahvaz, Ahvaz, Iran
| | - Sara Rezaei
- Restorative Dentistry Resident, Faculty of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Asieh Mozaffari
- Department of Periodontics, Faculty of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Jahri
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Tung VSK, Mathews F, Boruk M, Suppa G, Foronjy R, Pato MT, Pato CN, Knowles JA, Evgrafov OV. Cultured Mesenchymal Cells from Nasal Turbinate as a Cellular Model of the Neurodevelopmental Component of Schizophrenia Etiology. Int J Mol Sci 2023; 24:15339. [PMID: 37895019 PMCID: PMC10607243 DOI: 10.3390/ijms242015339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The study of neurodevelopmental molecular mechanisms in schizophrenia requires the development of adequate biological models such as patient-derived cells and their derivatives. We previously utilized cell lines with neural progenitor properties (CNON) derived from the superior or middle turbinates of patients with schizophrenia and control groups to study schizophrenia-specific gene expression. In this study, we analyzed single-cell RNA seq data from two CNON cell lines (one derived from an individual with schizophrenia (SCZ) and the other from a control group) and two biopsy samples from the middle turbinate (MT) (also from an individual with SCZ and a control). We compared our data with previously published data regarding the olfactory neuroepithelium and demonstrated that CNON originated from a single cell type present both in middle turbinate and the olfactory neuroepithelium and expressed in multiple markers of mesenchymal cells. To define the relatedness of CNON to the developing human brain, we also compared CNON datasets with scRNA-seq data derived from an embryonic brain and found that the expression profile of the CNON closely matched the expression profile one of the cell types in the embryonic brain. Finally, we evaluated the differences between SCZ and control samples to assess the utility and potential benefits of using CNON single-cell RNA seq to study the etiology of schizophrenia.
Collapse
Affiliation(s)
- Victoria Sook Keng Tung
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY 11203, USA
| | - Fasil Mathews
- Department of Otolaryngology, State University of New York at Downstate, Brooklyn, NY 11203, USA
| | - Marina Boruk
- Department of Otolaryngology, State University of New York at Downstate, Brooklyn, NY 11203, USA
| | - Gabrielle Suppa
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY 11203, USA
| | - Robert Foronjy
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY 11203, USA
| | - Michele T. Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA (C.N.P.)
| | - Carlos N. Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA (C.N.P.)
| | - James A. Knowles
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA;
| | - Oleg V. Evgrafov
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY 11203, USA
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA;
| |
Collapse
|
4
|
Bardag Gorce F, Al Dahan M, Narwani K, Terrazas J, Ferrini M, Calhoun CC, Uyanne J, Royce-Flores J, Crum E, Niihara Y. Human Oral Mucosa as a Potentially Effective Source of Neural Crest Stem Cells for Clinical Practice. Cells 2023; 12:2216. [PMID: 37759439 PMCID: PMC10526281 DOI: 10.3390/cells12182216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
We report in this study on the isolation and expansion of neural crest stem cells (NCSCs) from the epithelium of oral mucosa (OM) using reagents that are GMP-certified and FDA-approved for clinical use. Characterization analysis showed that the levels of keratins K2, K6C, K4, K13, K31, and K15-specific to OM epithelial cells-were significantly lower in the experimental NCSCs. While SOX10 was decreased with no statistically significant difference, the earliest neural crest specifier genes SNAI1/2, Ap2a, Ap2c, SOX9, SOX30, Pax3, and Twist1 showed a trend in increased expression in NCSCs. In addition, proteins of Oct4, Nestin and Noth1 were found to be greatly expressed, confirming NCSC multipotency. In conclusion, our study showed that the epithelium of OM contains NCSCs that can be isolated and expanded with clinical-grade reagents to supply the demand for multipotent cells required for clinical applications in regenerative medicine. Supported by Emmaus Medical Inc.
Collapse
Affiliation(s)
- Fawzia Bardag Gorce
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Mais Al Dahan
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Kavita Narwani
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
| | - Jesus Terrazas
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Monica Ferrini
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Colonya C. Calhoun
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Department of Surgery, UCLA, David Geffen School of Medicine, Los Angeles, CA 90095, USA
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
- Department of Oral & Maxillofacial Surgery and Hospital Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Jettie Uyanne
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- Herman Ostrow School of Dentistry of USC, Los Angeles, CA 90089, USA
| | - Jun Royce-Flores
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Eric Crum
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- Department of Surgery, UCLA, David Geffen School of Medicine, Los Angeles, CA 90095, USA
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Yutaka Niihara
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Emmaus Medical, Inc., Torrance, CA 90503, USA
| |
Collapse
|
5
|
Wang Z, Knight R, Stephens P, Ongkosuwito EM, Wagener FADTG, Von den Hoff JW. Stem cells and extracellular vesicles to improve preclinical orofacial soft tissue healing. Stem Cell Res Ther 2023; 14:203. [PMID: 37580820 PMCID: PMC10426149 DOI: 10.1186/s13287-023-03423-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/20/2023] [Indexed: 08/16/2023] Open
Abstract
Orofacial soft tissue wounds caused by surgery for congenital defects, trauma, or disease frequently occur leading to complications affecting patients' quality of life. Scarring and fibrosis prevent proper skin, mucosa and muscle regeneration during wound repair. This may hamper maxillofacial growth and speech development. To promote the regeneration of injured orofacial soft tissue and attenuate scarring and fibrosis, intraoral and extraoral stem cells have been studied for their properties of facilitating maintenance and repair processes. In addition, the administration of stem cell-derived extracellular vesicles (EVs) may prevent fibrosis and promote the regeneration of orofacial soft tissues. Applying stem cells and EVs to treat orofacial defects forms a challenging but promising strategy to optimize treatment. This review provides an overview of the putative pitfalls, promises and the future of stem cells and EV therapy, focused on orofacial soft tissue regeneration.
Collapse
Affiliation(s)
- Zhihao Wang
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands
| | - Rob Knight
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Phil Stephens
- Advanced Therapeutics Group, School of Dentistry, Cardiff University, Cardiff, Wales, UK
| | - E M Ongkosuwito
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands
| | - Frank A D T G Wagener
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands
| | - Johannes W Von den Hoff
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Tung VSK, Mathews F, Boruk M, Suppa G, Foronjy R, Pato M, Pato C, Knowles JA, Evgrafov OV. Cultured Mesenchymal Cells from Nasal Turbinate as a Cellular Model of the Neurodevelopmental Component of Schizophrenia Etiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534295. [PMID: 37034711 PMCID: PMC10081251 DOI: 10.1101/2023.03.28.534295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Study of the neurodevelopmental molecular mechanisms of schizophrenia requires the development of adequate biological models such as patient-derived cells and their derivatives. We previously used cell lines with neural progenitor properties (CNON) derived from superior or middle turbinates of patients with schizophrenia and control groups to study gene expression specific to schizophrenia. In this study, we compared single cell-RNA seq data from two CNON cell lines, one derived from an individual with schizophrenia (SCZ) and the other from a control group, with two biopsy samples from the middle turbinate (MT), also from an individual with SCZ and a control. In addition, we compared our data with previously published data from olfactory neuroepithelium (1). Our data demonstrated that CNON originated from a single cell type which is present both in middle turbinate and olfactory neuroepithelium. CNON express multiple markers of mesenchymal cells. In order to define relatedness of CNON to the developing human brain, we also compared CNON datasets with scRNA-seq data of embryonic brain (2) and found that the expression profile of CNON very closely matched one of the cell types in the embryonic brain. Finally, we evaluated differences between SCZ and control samples to assess usability and potential benefits of using single cell RNA-seq of CNON to study etiology of schizophrenia.
Collapse
Affiliation(s)
| | - Fasil Mathews
- Department of Otolaryngology, State University of New York at Downstate, Brooklyn, NY, USA
| | - Marina Boruk
- Department of Otolaryngology, State University of New York at Downstate, Brooklyn, NY, USA
| | - Gabrielle Suppa
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY, USA
| | - Robert Foronjy
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY, USA
| | | | - Carlos Pato
- Department of Psychiatry, Rutgers University
| | - James A. Knowles
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Oleg V. Evgrafov
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY, USA
| |
Collapse
|
7
|
Knight R, Board-Davies E, Brown H, Clayton A, Davis T, Karatas B, Burston J, Tabi Z, Falcon-Perez JM, Paisey S, Stephens P. Oral Progenitor Cell Line-Derived Small Extracellular Vesicles as a Treatment for Preferential Wound Healing Outcome. Stem Cells Transl Med 2022; 11:861-875. [PMID: 35716044 PMCID: PMC9397654 DOI: 10.1093/stcltm/szac037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/28/2022] [Indexed: 12/11/2022] Open
Abstract
Scar formation during wound repair can be devastating for affected individuals. Our group previously documented the therapeutic potential of novel progenitor cell populations from the non-scarring buccal mucosa. These Oral Mucosa Lamina Propria-Progenitor Cells (OMLP-PCs) are multipotent, immunosuppressive, and antibacterial. Small extracellular vesicles (sEVs) may play important roles in stem cell-mediated repair in varied settings; hence, we investigated sEVs from this source for wound repair. We created an hTERT immortalized OMLP-PC line (OMLP-PCL) and confirmed retention of morphology, lineage plasticity, surface markers, and functional properties. sEVs isolated from OMLP-PCL were analyzed by nanoparticle tracking analysis, Cryo-EM and flow cytometry. Compared to bone marrow-derived mesenchymal stromal cells (BM-MSC) sEVs, OMLP-PCL sEVs were more potent at driving wound healing functions, including cell proliferation and wound repopulation and downregulated myofibroblast formation. A reduced scarring potential was further demonstrated in a preclinical in vivo model. Manipulation of OMLP-PCL sEVs may provide novel options for non-scarring wound healing in clinical settings.
Collapse
Affiliation(s)
- Rob Knight
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK,Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK,PETIC, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Emma Board-Davies
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK,Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK
| | - Helen Brown
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK,Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK
| | - Aled Clayton
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK,Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Terence Davis
- PETIC, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Ben Karatas
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK,Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - James Burston
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK,Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK,Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Zsuzsanna Tabi
- PETIC, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Juan M Falcon-Perez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain,Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain,IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Stephen Paisey
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK,PETIC, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Phil Stephens
- Corresponding author: Phil Stephens, Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, CF14 4XY, Wales, UK.
| |
Collapse
|
8
|
The Effect of Oral Mucosal Mesenchymal Stem Cells on Pathological and Long-Term Outcomes in Experimental Traumatic Brain Injury. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4065118. [PMID: 35528162 PMCID: PMC9071883 DOI: 10.1155/2022/4065118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/26/2022] [Accepted: 04/09/2022] [Indexed: 01/10/2023]
Abstract
Background Neuroprotective effects of stem cells have been shown in some neurologic diseases. In this study, the effect of oral mucosal mesenchymal stem cells (OMSCs) on traumatic brain injury (TBI) was evaluated in long term. Materials and Methods TBI was induced by Marmarou's method. The number of 2 × 106 OMSCs was intravenously injected 1 and 24 h after the injury. Brain edema and pathological outcome were assessed at 24 h and 21 days after the injury. Besides, long-term neurological, motor, and cognitive outcomes were evaluated at days 3, 7, 14, and 21 after the injury. Results OMSCs administration could significantly inhibit microglia proliferation, and reduce brain edema and neuronal damage, at 24 h and 21 days after the injury. Neurological function improvement was observed in the times evaluated in OMSCs group. Cognitive and motor function dysfunction and anxiety-like behavior were prevented especially at 14 and 21 days after the injury in the treatment group. Conclusion According to the results of this study, OMSCs administration after TBI reduced brain edema and neuronal damage, improved neurologic outcome, and prevented memory and motor impairments and anxiety-like behavior in long term.
Collapse
|
9
|
Takizawa H, Karakawa A, Suzawa T, Chatani M, Ikeda M, Sakai N, Azetsu Y, Takahashi M, Urano E, Kamijo R, Maki K, Takami M. Neural crest-derived cells possess differentiation potential to keratinocytes in the process of wound healing. Biomed Pharmacother 2021; 146:112593. [PMID: 34968925 DOI: 10.1016/j.biopha.2021.112593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/02/2022] Open
Abstract
Neural crest-derived cells (NCDCs), which exist as neural crest cells during the fetal stage and differentiate into palate cells, also exist in adult palate tissues, though with unknown roles. In the present study, NCDCs were labeled with EGFP derived from P0-Cre/CAG-CAT-EGFP (P0-EGFP) double transgenic mice, then their function in palate mucosa wound healing was analyzed. As a palate wound healing model, left-side palate mucosa of P0-EGFP mice was resected, and stem cell markers and keratinocyte markers were detected in healed areas. NCDCs were extracted from normal palate mucosa and precultured with stem cell media for 14 days, then were differentiated into keratinocytes or osteoblasts to analyze pluripotency. The wound healing process started with marginal mucosal regeneration on day two and the entire wound area was lined by regenerated mucosa with EGFP-positive cells (NCDCs) on day 28. EGFP-positive cells comprised approximately 60% of cells in healed oral mucosa, and 65% of those expressed stem cell markers (Sca-1+, PDGFRα+) and 30% expressed a keratinocyte marker (CK13+). In tests of cultured palate mucosa cells, approximately 70% of EGFP-positive cells expressed stem cell markers (Sca-1+, PDGFRα+). Furthermore, under differentiation inducing conditions, cultured EGFP-positive cells were successfully induced to differentiate into keratinocytes and osteoblasts. We concluded that NCDCs exist in adult palate tissues as stem cells and have potential to differentiate into various cell types during the wound healing process.
Collapse
Affiliation(s)
- Hideomi Takizawa
- Department of Orthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan; Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Akiko Karakawa
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Tetsuo Suzawa
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Masahiro Chatani
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Megumi Ikeda
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Division of Endodontology, Department of Conservative Dentistry, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Nobuhiro Sakai
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yuki Azetsu
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Masahiro Takahashi
- Department of Orthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan
| | - Eri Urano
- Department of Prosthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Koutaro Maki
- Department of Orthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan
| | - Masamichi Takami
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|
10
|
Healey N. The mouth's curative superpowers. Nature 2021:10.1038/d41586-021-02923-7. [PMID: 34707273 DOI: 10.1038/d41586-021-02923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Guo S, Redenski I, Levenberg S. Spinal Cord Repair: From Cells and Tissue Engineering to Extracellular Vesicles. Cells 2021; 10:cells10081872. [PMID: 34440641 PMCID: PMC8394921 DOI: 10.3390/cells10081872] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition, often leading to severe motor, sensory, or autonomic nervous dysfunction. As the holy grail of regenerative medicine, promoting spinal cord tissue regeneration and functional recovery are the fundamental goals. Yet, effective regeneration of injured spinal cord tissues and promotion of functional recovery remain unmet clinical challenges, largely due to the complex pathophysiology of the condition. The transplantation of various cells, either alone or in combination with three-dimensional matrices, has been intensively investigated in preclinical SCI models and clinical trials, holding translational promise. More recently, a new paradigm shift has emerged from cell therapy towards extracellular vesicles as an exciting "cell-free" therapeutic modality. The current review recapitulates recent advances, challenges, and future perspectives of cell-based spinal cord tissue engineering and regeneration strategies.
Collapse
Affiliation(s)
- Shaowei Guo
- The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
- Correspondence: (S.G.); (S.L.)
| | - Idan Redenski
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel;
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel;
- Correspondence: (S.G.); (S.L.)
| |
Collapse
|
12
|
Lim JY, In Park S, Park SA, Jeon JH, Jung HY, Yon JM, Jeun SS, Lim HK, Kim SW. Potential application of human neural crest-derived nasal turbinate stem cells for the treatment of neuropathology and impaired cognition in models of Alzheimer's disease. Stem Cell Res Ther 2021; 12:402. [PMID: 34256823 PMCID: PMC8278635 DOI: 10.1186/s13287-021-02489-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
Background Stem cell transplantation is a fascinating therapeutic approach for the treatment of many neurodegenerative disorders; however, clinical trials using stem cells have not been as effective as expected based on preclinical studies. The aim of this study is to validate the hypothesis that human neural crest-derived nasal turbinate stem cells (hNTSCs) are a clinically promising therapeutic source of adult stem cells for the treatment of Alzheimer’s disease (AD). Methods hNTSCs were evaluated in comparison with human bone marrow-derived mesenchymal stem cells (hBM-MSCs) according to the effect of transplantation on AD pathology, including PET/CT neuroimaging, immune status indicated by microglial numbers and autophagic capacity, neuronal survival, and cognition, in a 5 × FAD transgenic mouse model of AD. Results We demonstrated that hNTSCs showed a high proliferative capacity and great neurogenic properties in vitro. Compared with hBM-MSC transplantation, hNTSC transplantation markedly reduced Aβ42 levels and plaque formation in the brains of the 5 × FAD transgenic AD mice on neuroimaging, concomitant with increased survival of hippocampal and cortex neurons. Moreover, hNTSCs strongly modulated immune status by reducing the number of microglia and the expression of the inflammatory cytokine IL-6 and upregulating autophagic capacity at 7 weeks after transplantation in AD models. Notably, compared with transplantation of hBM-MSCs, transplantation of hNTSCs significantly enhanced performance on the Morris water maze, with an increased level of TIMP2, which is necessary for spatial memory in young mice and neurons; this difference could be explained by the high engraftment of hNTSCs after transplantation. Conclusion The reliable evidence provided by these findings reveals a promising therapeutic effect of hNTSCs and indicates a step forward the clinical application of hNTSCs in patients with AD.
Collapse
Affiliation(s)
- Jung Yeon Lim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Sang In Park
- Institute of Catholic Integrative Medicine (ICIM), Incheon St. Mary's Hospital, The Catholic University of Korea, 56 Dongsu-ro, Bupyeong-gu, Incheon, 21431, Republic of Korea
| | - Soon A Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jung Ho Jeon
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Ho Yong Jung
- Institute of Catholic Integrative Medicine (ICIM), Incheon St. Mary's Hospital, The Catholic University of Korea, 56 Dongsu-ro, Bupyeong-gu, Incheon, 21431, Republic of Korea
| | - Jung-Min Yon
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, The Catholic University of Korea, 63-ro 10, Yeoungdeungpo-gu, Seoul, 07345, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
13
|
Kim D, Lee AE, Xu Q, Zhang Q, Le AD. Gingiva-Derived Mesenchymal Stem Cells: Potential Application in Tissue Engineering and Regenerative Medicine - A Comprehensive Review. Front Immunol 2021; 12:667221. [PMID: 33936109 PMCID: PMC8085523 DOI: 10.3389/fimmu.2021.667221] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
A unique subpopulation of mesenchymal stem cells (MSCs) has been isolated and characterized from human gingival tissues (GMSCs). Similar to MSCs derived from other sources of tissues, e.g. bone marrow, adipose or umbilical cord, GMSCs also possess multipotent differentiation capacities and potent immunomodulatory effects on both innate and adaptive immune cells through the secretion of various types of bioactive factors with immunosuppressive and anti-inflammatory functions. Uniquely, GMSCs are highly proliferative and have the propensity to differentiate into neural cell lineages due to the neural crest-origin. These properties have endowed GMSCs with potent regenerative and therapeutic potentials in various preclinical models of human disorders, particularly, some inflammatory and autoimmune diseases, skin diseases, oral and maxillofacial disorders, and peripheral nerve injuries. All types of cells release extracellular vesicles (EVs), including exosomes, that play critical roles in cell-cell communication through their cargos containing a variety of bioactive molecules, such as proteins, nucleic acids, and lipids. Like EVs released by other sources of MSCs, GMSC-derived EVs have been shown to possess similar biological functions and therapeutic effects on several preclinical diseases models as GMSCs, thus representing a promising cell-free platform for regenerative therapy. Taken together, due to the easily accessibility and less morbidity of harvesting gingival tissues as well as the potent immunomodulatory and anti-inflammatory functions, GMSCs represent a unique source of MSCs of a neural crest-origin for potential application in tissue engineering and regenerative therapy.
Collapse
Affiliation(s)
- Dane Kim
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alisa E Lee
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Qilin Xu
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Qunzhou Zhang
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Anh D Le
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center of Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States.,Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
14
|
Höving AL, Windmöller BA, Knabbe C, Kaltschmidt B, Kaltschmidt C, Greiner JFW. Between Fate Choice and Self-Renewal-Heterogeneity of Adult Neural Crest-Derived Stem Cells. Front Cell Dev Biol 2021; 9:662754. [PMID: 33898464 PMCID: PMC8060484 DOI: 10.3389/fcell.2021.662754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Stem cells of the neural crest (NC) vitally participate to embryonic development, but also remain in distinct niches as quiescent neural crest-derived stem cell (NCSC) pools into adulthood. Although NCSC-populations share a high capacity for self-renewal and differentiation resulting in promising preclinical applications within the last two decades, inter- and intrapopulational differences exist in terms of their expression signatures and regenerative capability. Differentiation and self-renewal of stem cells in developmental and regenerative contexts are partially regulated by the niche or culture condition and further influenced by single cell decision processes, making cell-to-cell variation and heterogeneity critical for understanding adult stem cell populations. The present review summarizes current knowledge of the cellular heterogeneity within NCSC-populations located in distinct craniofacial and trunk niches including the nasal cavity, olfactory bulb, oral tissues or skin. We shed light on the impact of intrapopulational heterogeneity on fate specifications and plasticity of NCSCs in their niches in vivo as well as during in vitro culture. We further discuss underlying molecular regulators determining fate specifications of NCSCs, suggesting a regulatory network including NF-κB and NC-related transcription factors like SLUG and SOX9 accompanied by Wnt- and MAPK-signaling to orchestrate NCSC stemness and differentiation. In summary, adult NCSCs show a broad heterogeneity on the level of the donor and the donors' sex, the cell population and the single stem cell directly impacting their differentiation capability and fate choices in vivo and in vitro. The findings discussed here emphasize heterogeneity of NCSCs as a crucial parameter for understanding their role in tissue homeostasis and regeneration and for improving their applicability in regenerative medicine.
Collapse
Affiliation(s)
- Anna L. Höving
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre North Rhine-Westphalia (NRW), Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Beatrice A. Windmöller
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Cornelius Knabbe
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre North Rhine-Westphalia (NRW), Ruhr University Bochum, Bad Oeynhausen, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| |
Collapse
|
15
|
Yoshida H, Suzawa T, Shibata Y, Takahashi M, Kawai R, Takami M, Maki K, Kamijo R. Neural crest-derived cells in nasal conchae of adult mice contribute to bone regeneration. Biochem Biophys Res Commun 2021; 554:173-178. [PMID: 33798944 DOI: 10.1016/j.bbrc.2021.03.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 01/02/2023]
Abstract
Neural crest-derived cells (NCDCs), a class of adult stem cells not restricted to embryonic tissues, are attractive tissue regenerative therapy candidates because of their ease of isolation, self-renewing properties, and multipotency. Although adult NCDCs can undergo osteogenic differentiation in vitro, whether they induce bone formation in vivo remains unclear. Previously, our group reported findings showing high amounts of NCDCs scattered throughout nasal concha tissues of adult mice. In the present study, NCDCs in nasal conchae labeled with enhanced green fluorescent protein (EGFP) were collected from adult P0-Cre/CAG-CAT-EGFP double transgenic mice, then cultured in serum-free medium to increase the number. Subsequently, NCDCs were harvested and suspended in type I atelocollagen gel, then an atelocollagen sponge was used as a scaffold for the cell suspension. Atelocollagen scaffolds with NCDCs were placed on bone defects created in a mouse calvarial bone defect model. Over the ensuing 12 weeks, micro-CT and histological analysis findings showed that mice with scaffolds containing NCDCs had slightly greater bone formation as compared to those with a scaffold alone. Furthermore, Raman spectroscopy revealed spectral properties of bone in mice that received scaffolds with NCDCs similar to those of native calvarial bone. Bone regeneration is important not only for gaining bone mass but also chemical properties. These results are the first to show the validity of biomolecule-free adult nasal concha-derived NCDCs for bone regeneration, including the chemical properties of regenerated bone tissue.
Collapse
Affiliation(s)
- Hiroshi Yoshida
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan; Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - Tetsuo Suzawa
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan.
| | - Yo Shibata
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, School of Dentistry, Showa University, Tokyo, Japan
| | - Masahiro Takahashi
- Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - Ryota Kawai
- Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - Masamichi Takami
- Department of Pharmacology, School of Dentistry, Showa University, Tokyo, Japan
| | - Koutaro Maki
- Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
16
|
Pilon N. Treatment and Prevention of Neurocristopathies. Trends Mol Med 2021; 27:451-468. [PMID: 33627291 DOI: 10.1016/j.molmed.2021.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Neurocristopathies form a heterogeneous group of rare diseases caused by abnormal development of neural crest cells. Heterogeneity of neurocristopathies directly relates to the nature of these migratory and multipotent cells, which generate dozens of specialized cell types throughout the body. Neurocristopathies are thus characterized by congenital malformations of tissues/organs that otherwise appear to have very little in common, such as the craniofacial skeleton and enteric nervous system. Treatment options are currently very limited, mainly consisting of corrective surgeries. Yet, as reviewed here, analyses of normal and pathological neural crest development in model organisms have opened up the possibility for better treatment options involving cellular and molecular approaches. These approaches provide hope that some neurocristopathies might soon be curable or preventable.
Collapse
Affiliation(s)
- Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal H3C 3P8, Québec, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Québec, Canada; Département de Pédiatrie, Université de Montréal, Montréal H3T 1C5, Québec, Canada.
| |
Collapse
|
17
|
Soto J, Ding X, Wang A, Li S. Neural crest-like stem cells for tissue regeneration. Stem Cells Transl Med 2021; 10:681-693. [PMID: 33533168 PMCID: PMC8046096 DOI: 10.1002/sctm.20-0361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Neural crest stem cells (NCSCs) are a transient population of cells that arise during early vertebrate development and harbor stem cell properties, such as self‐renewal and multipotency. These cells form at the interface of non‐neuronal ectoderm and neural tube and undergo extensive migration whereupon they contribute to a diverse array of cell and tissue derivatives, ranging from craniofacial tissues to cells of the peripheral nervous system. Neural crest‐like stem cells (NCLSCs) can be derived from pluripotent stem cells, placental tissues, adult tissues, and somatic cell reprogramming. NCLSCs have a differentiation capability similar to NCSCs, and possess great potential for regenerative medicine applications. In this review, we present recent developments on the various approaches to derive NCLSCs and the therapeutic application of these cells for tissue regeneration.
Collapse
Affiliation(s)
- Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
| | - Xili Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, People's Republic of China
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA.,Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA.,Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
18
|
Pérez-Luz S, Loria F, Katsu-Jiménez Y, Oberdoerfer D, Yang OL, Lim F, Muñoz-Blanco JL, Díaz-Nido J. Altered Secretome and ROS Production in Olfactory Mucosa Stem Cells Derived from Friedreich's Ataxia Patients. Int J Mol Sci 2020; 21:ijms21186662. [PMID: 32933002 PMCID: PMC7555998 DOI: 10.3390/ijms21186662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Friedreich’s ataxia is the most common hereditary ataxia for which there is no cure or approved treatment at present. However, therapeutic developments based on the understanding of pathological mechanisms underlying the disease have advanced considerably, with the implementation of cellular models that mimic the disease playing a crucial role. Human olfactory ecto-mesenchymal stem cells represent a novel model that could prove useful due to their accessibility and neurogenic capacity. Here, we isolated and cultured these stem cells from Friedreich´s ataxia patients and healthy donors, characterizing their phenotype and describing disease-specific features such as reduced cell viability, impaired aconitase activity, increased ROS production and the release of cytokines involved in neuroinflammation. Importantly, we observed a positive effect on patient-derived cells, when frataxin levels were restored, confirming the utility of this in vitro model to study the disease. This model will improve our understanding of Friedreich´s ataxia pathogenesis and will help in developing rationally designed therapeutic strategies.
Collapse
Affiliation(s)
- Sara Pérez-Luz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
- Molecular Genetics Unit, Institute of Rare Diseases Research, Institute of Health Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km 2,200, 28220 Madrid, Spain
| | - Frida Loria
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Calle Budapest 1, 28922 Madrid, Spain
- Correspondence: ; Tel.: +34-911-964-594
| | - Yurika Katsu-Jiménez
- Karolinska Institutet, Department of Microbiology Tumor and Cell Biology, Solnaväjen 1, 171 77 Stockholm, Sweden;
| | - Daniel Oberdoerfer
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
| | - Oscar-Li Yang
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
| | - Filip Lim
- Department of Molecular Biology, Autonomous University of Madrid, Francisco Tomás y Valiente 7, 28049 Madrid, Spain;
| | - José Luis Muñoz-Blanco
- Department of Neurology, Hospital Universitario Gregorio Marañón, Dr. Esquerdo 46, 28007 Madrid, Spain;
| | - Javier Díaz-Nido
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
| |
Collapse
|
19
|
Queckbörner S, Syk Lundberg E, Gemzell-Danielsson K, Davies LC. Endometrial stromal cells exhibit a distinct phenotypic and immunomodulatory profile. Stem Cell Res Ther 2020; 11:15. [PMID: 31907034 PMCID: PMC6945659 DOI: 10.1186/s13287-019-1496-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In Asherman's syndrome (AS), intrauterine scarring and fibrotic adhesions lead to menstrual disorders, pregnancy loss, or infertility. A few clinical trials have piloted cell therapy to overcome AS. Understanding the role of the stromal compartment in endometrial regeneration remains poorly understood. We hypothesize that endometrial stromal cells (eSCs) represent a relevant cell population to establish novel cell-based therapeutics for endometrial disorders. The aim of this study was to characterize eSCs and evaluate their immune-cell interactions. METHODS eSCs were isolated from healthy donors, during the proliferative stage of the menstrual cycle. Cells were characterized for expression of mesenchymal stromal cell (MSC) markers and assessed for their tumorigenic potential. eSCs were co-cultured with interferon γ and tumor necrosis factor α, and cell surface expression of their respective receptors and human leukocyte antigen (HLA) I and II determined by flow cytometry. Secreted levels of key immunomodulatory factors were established. eSCs were cultured with activated peripheral blood mononuclear cells, and T cell differentiation and proliferation determined. RESULTS eSCs demonstrated an MSC surface phenotype and exhibited multipotency. Expanded eSCs retained chromosomal stability and demonstrated no tumorigenicity. Upon stimulation, eSCs licensed to an anti-inflammatory phenotype with upregulated secretion of immunomodulatory factors. Stimulated eSCs did not express HLA class II. eSCs suppressed the proliferation and activation of CD4+ T cells, with the eSC secretome further downregulating central memory T cells and upregulating effector memory (EM) cells. CONCLUSIONS Differential responsiveness to inflammation by eSCs, compared to other MSC sources, demonstrates the need to understand the specific functional effects of individual stromal cell sources. A lack of HLA class II and triggering of EM T cell differentiation strongly links to innate in vivo roles of eSCs in tissue repair and immune tolerance during pregnancy. We conclude that eSCs may be an ideal cell therapy candidate for endometrial disorders.
Collapse
Affiliation(s)
- Suzanna Queckbörner
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet, and Karolinska University Hospital, S-171 64, Solna, Sweden.
| | - Elisabeth Syk Lundberg
- Department of Clinical Genetics, Karolinska University Hospital, S-171 76, Stockholm, Sweden
| | - Kristina Gemzell-Danielsson
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet, and Karolinska University Hospital, S-171 64, Solna, Sweden
| | - Lindsay C Davies
- Department of Laboratory Medicine, Karolinska Institutet, S-141 52, Huddinge, Sweden
| |
Collapse
|
20
|
Yang Y, Knight R, Stephens P, Zhang Y. Three-dimensional culture of oral progenitor cells: Effects on small extracellular vesicles production and proliferative function. J Oral Pathol Med 2019; 49:342-349. [PMID: 31788854 DOI: 10.1111/jop.12981] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/12/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Small extracellular vesicles (SEVs) have a diameter between 30 and 150 nm and play a key role in cell-cell communication. As cells cultured in 3D vs 2D behave differently, this project aimed to assess whether there were differences in SEVs derived from human oral mucosa lamina propria-progenitor cells (OMLP-PCs) cultured in a 3D matrix compared with traditional 2D monolayer cultures. METHODS OMLP-PCs were cultured in 3D type I collagen matrices or on traditional 2D tissue culture plastic. Cell morphology and viability were assessed by light microscopy, actin staining, and trypan blue staining. SEVs secreted by OMLP-PCs were purified and quantitatively analyzed by a BCA assay and nanoparticle tracking analysis (NTA; nanosight™). SEVs were further characterized by flow cytometry. SEV proliferative function was assessed by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS Cells cultured in 3D grew well as observed by light microscopy and phalloidin staining with cells branching in three dimensions (as opposed to the cells grown as monolayers on tissue culture plastic). NTA demonstrated a significantly higher number of SEV-sized particles in the conditioned medium of cells grown in 3D type I collagen matrices vs a 2D monolayer (P < .01). Like SEVs from 2D culture, SEVs from 3D culture demonstrated a particle size within the expected SEV range. Tetraspanin analysis confirmed that 3D-derived SEVs were positive for typical, expected tetraspanins. Cell proliferation analysis demonstrated that SEVs produced through 3D cell culture conditions significantly reduced the proliferation of skin fibroblasts when compared with SEVs from 2D monolayers (P < .05). CONCLUSION 3D culture of OMLP-PCs produced typical SEVs but in a greater amount than when the same cells were cultured in 2D. The downstream proliferative potential of the SEVs was influenced by the initial culture methodology. Future work should now assess the potential effects of 3D SEVs on key wound healing activities.
Collapse
Affiliation(s)
- Yu Yang
- Oral Mucosa Department, Dental Hospital of China Medical University, Shenyang, China.,Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, UK
| | - Rob Knight
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, UK
| | - Phil Stephens
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, UK
| | - Ying Zhang
- Oral Mucosa Department, Dental Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Grinnemo KH, Löfling M, Nathanson L, Baumgartner R, Ketelhuth DFJ, Beljanski V, Davies LC, Österholm C. Immunomodulatory effects of interferon-γ on human fetal cardiac mesenchymal stromal cells. Stem Cell Res Ther 2019; 10:371. [PMID: 31801632 PMCID: PMC6894330 DOI: 10.1186/s13287-019-1489-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/09/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs), due to their regenerative and immunomodulatory properties, are therapeutically used for diseases, including heart failure. As early gestational-phase embryonic tissues exhibit extraordinary regenerative potential, fetal MSCs exposed to inflammation offer a unique opportunity to evaluate molecular mechanisms underlying preferential healing, and investigate their inherent abilities to communicate with the immune system during development. The principal aim of this study was to evaluate the effects of interferon-γ (IFNγ) on the immunomodulatory effects of first-trimester human fetal cardiac (hfc)-MSCs. METHODS hfcMSCs (gestational week 8) were exposed to IFNγ, with subsequent analysis of the whole transcriptome, based on RNA sequencing. Exploration of surface-expressed immunoregulatory mediators and modulation of T cell responses were performed by flow cytometry. Presence and activity of soluble mediators were assessed by ELISA or high-performance liquid chromatography. RESULTS Stimulation of hfcMSCs with IFNγ revealed significant transcriptional changes, particularly in respect to the expression of genes belonging to antigen presentation pathways, cell cycle control, and interferon signaling. Expression of immunomodulatory genes and associated functional changes, including indoleamine 2,3-dioxygenase activity, and regulation of T cell activation and proliferation via programmed cell death protein (PD)-1 and its ligands PD-L1 and PD-L2, were significantly upregulated. These immunoregulatory molecules diminished rapidly upon withdrawal of inflammatory stimulus, indicating a high degree of plasticity by hfcMSCs. CONCLUSIONS To our knowledge, this is the first study performing a systematic evaluation of inflammatory responses and immunoregulatory properties of first-trimester cardiac tissue. In summary, our study demonstrates the dynamic responsiveness of hfcMSCs to inflammatory stimuli. Further understanding as to the immunoregulatory properties of hfcMSCs may be of benefit in the development of novel stromal cell therapeutics for cardiovascular disease.
Collapse
Affiliation(s)
- Karl-Henrik Grinnemo
- Department of Molecular Medicine and Surgery, Karolinska Institutet, BioClinicum J10:20, SE-171 64, Solna, Sweden
- Division of Cardiothoracic Surgery and Anesthesiology, Department of Surgical Sciences, Uppsala University, Akademiska University Hospital, 751 85, Uppsala, Sweden
| | - Marie Löfling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, BioClinicum J10:20, SE-171 64, Solna, Sweden
| | - Lubov Nathanson
- Institute for Neuroimmune Medicine, Dr Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Roland Baumgartner
- Department of Medicine Solna, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Daniel F J Ketelhuth
- Department of Medicine Solna, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Vladimir Beljanski
- Cell Therapy Institute, Dr Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Lindsay C Davies
- Department of Laboratory Medicine, Karolinska Institutet, SE-141 52, Huddinge, Sweden
| | - Cecilia Österholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, BioClinicum J10:20, SE-171 64, Solna, Sweden.
| |
Collapse
|
22
|
Li N, Li X, Chen K, Dong H, Kagami H. Characterization of spontaneous spheroids from oral mucosa-derived cells and their direct comparison with spheroids from skin-derived cells. Stem Cell Res Ther 2019; 10:184. [PMID: 31234925 PMCID: PMC6591807 DOI: 10.1186/s13287-019-1283-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/29/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022] Open
Abstract
Background Our group has developed a novel method for spontaneous spheroid formation using a specific low-adherence culture plate with around 90° water contact angle. In this study, this method was applied for oral mucosa-derived cells. First, the feasibility of spontaneous spheroid formation was tested. Next, the characteristics of spontaneous spheroids from oral mucosa- and skin-derived cells were compared with special focus on the stemness and neuronal differentiation capability. Methods Oral mucosal cells were obtained from the palate and buccal mucosa of C57BL/6J mice. Similarly, skin cells were obtained from the back of the same mouse strain. Passage 2–3 cells were inoculated into the specific low-adherence culture plates to form spontaneous spheroids. The effect of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and B27 supplement on spheroid formation and maintenance was assessed. Immunofluorescence and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were performed to investigate the expression of pluripotency markers, cell proliferation and apoptosis markers, and neurogenic differentiation markers. Results Using this culture plate, spontaneous spheroid formation was feasible. This process depended on the presence of serum but was independent of the additives such as bFGF, EGF, and B27 supplement, although they improved the efficiency and were essential for spheroid maintenance. This result was confirmed by the higher expression of Caspase7 in the spheroids cultured without the additives than that with the additives. The spheroids from oral mucosa-derived cells expressed stem cell markers, such as Sox2, SSEA1, Oct4, Nanog, and Nestin. The expression of Sox2 in spheroids from oral mucosal cells was higher than that in spheroids from skin-derived cells. Both spheroid-forming cell types had the ability to differentiate into neural and Schwann cells after neurogenic induction, although significantly higher MAP 2, MBP, Nestin, and Nurr1 gene expression was noted in the cells from oral mucosa-derived spheroids. Conclusions The results showed that spontaneous spheroids from oral mucosa-derived cells contain highly potent stem cells, which were as good as skin-derived stem cells. The high expression of certain neuronal marker genes suggests an advantage of these cells for regeneration therapy for neuronal disorders. Electronic supplementary material The online version of this article (10.1186/s13287-019-1283-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ni Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Xianqi Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Institute for Oral Science, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - Kai Chen
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Hongwei Dong
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Hideaki Kagami
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan. .,Institute for Oral Science, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan. .,Department of General Medicine, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
23
|
Scott KA, Li G, Manwaring J, Nikolavsky DA, Fudym Y, Caza T, Badar Z, Taylor N, Bratslavsky G, Kotula L, Nikolavsky D. Liquid buccal mucosa graft endoscopic urethroplasty: a validation animal study. World J Urol 2019; 38:2139-2145. [PMID: 31175459 DOI: 10.1007/s00345-019-02840-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/03/2019] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To validate a novel method of urethral stricture treatment using liquid buccal mucosal grafts (LBMG) to augment direct vision internal urethrotomy (DVIU) in an animal model. MATERIALS AND METHODS A rabbit stricture model was used to test this method. Strictures were induced in 26 rabbits using electroresection of urethral epithelium. The animals were randomized into two groups: Group-1, treated with DVIU and LBMG in fibrin glue, and Group-2, DVIU with fibrin glue only. LBMG was prepared by suspension of mechanically minced buccal mucosa micrografts in fibrin glue. This LBMG-fibrin glue mixture was later injected into the urethrotomies of Group-1 animals. All animals were killed at 24 weeks after repeat retrograde urethrogram (RUG) and urethroscopy by surgeon blinded to the treatment arm. Radiographic images and histological specimens were reviewed by a radiologist and a pathologist, respectively, blinded to the treatment arm. Stricture treatment was considered a success if a diameter measured on RUG increased by ≥ 50% compared to pre-treatment RUG diameter. Histological specimens were assessed for the presence of BMG engraftment. RESULTS In Group-1, 8/12(67%) animals demonstrated engraftment of LBMG, compared to none in Group-2 (p = 0.0005). 7/12(58%) in Group-1 showed radiographic resolution/improvement of strictures compared to 5/13 Group-2 rabbits (38%, p = 0.145). The median percent change for the Group-1 was 59%, compared to 41.6% for Group-2 (p = 0.29). CONCLUSION This proof-of-concept study demonstrates feasibility of LBMG for endoscopic urethral stricture repairs. Further studies are needed to establish the role of this novel concept in treatment of urethral strictures.
Collapse
Affiliation(s)
- Kathryn A Scott
- Department of Urology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Guanqun Li
- Department of Urology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Jared Manwaring
- Department of Urology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Daniela A Nikolavsky
- Department of Urology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Yelena Fudym
- Department of Pathology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Tiffany Caza
- Department of Pathology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Zain Badar
- Department of Radiology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Nicole Taylor
- Department of Radiology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Gennady Bratslavsky
- Department of Urology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Leszek Kotula
- Department of Urology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Dmitriy Nikolavsky
- Department of Urology, State University of New York Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
24
|
Al-Taweel FBH, Al-Magsoosi MJN, Douglas CWI, Whawell SA. Identification of key determinants in Porphyromonas gingivalis host-cell invasion assays. Eur J Oral Sci 2018; 126:367-372. [PMID: 30070725 DOI: 10.1111/eos.12557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2018] [Indexed: 01/09/2023]
Abstract
The periodontal pathogen Porphyromonas gingivalis can invade host cells, a virulence trait which may contribute to the persistence of infection at subgingival sites. Whilst the antibiotic protection assay has been commonly employed to investigate and quantify P. gingivalis invasion, data obtained have varied widely and a thorough investigation of the factors influencing this is lacking. We investigated the role of a number of bacterial and host-cell factors and report that the growth phase of P. gingivalis, source (laboratory strain vs. clinical strain), host-cell identity (cell line vs. primary), host-cell lysis method, and host-cell passage number had no significant effect on bacterial invasion. However, incubation time, host-cell seeding density, method of quantification (viable count vs. DNA), and whether host cells were plated or in suspension, were shown to influence invasion. Also, cells isolated by rapid adhesion to fibronectin exhibited higher levels of P. gingivalis invasion, possibly as a result of increased levels of active α5β1 integrin. Interestingly, this may represent a population of cells with stem cell-like properties. This study provides important new information by identifying the most important factors that influence P. gingivalis invasion assays and may help to explain variations in the levels previously reported.
Collapse
Affiliation(s)
- Firas B H Al-Taweel
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | | | - Charles W I Douglas
- Academic Unit of Oral & Maxillofacial Medicine, Surgery & Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Simon A Whawell
- Academic Unit of Oral & Maxillofacial Medicine, Surgery & Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| |
Collapse
|
25
|
Kim DH, Lim JY, Kim SW, Lee W, Park SH, Kwon MY, Park SH, Lim MH, Back SA, Yun BG, Jeun JH, Hwang SH. Characteristics of Nasal Septal Cartilage-Derived Progenitor Cells during Prolonged Cultivation. Otolaryngol Head Neck Surg 2018; 159:774-782. [PMID: 29787348 DOI: 10.1177/0194599818777195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objective To produce alternate cell sources for tissue regeneration, human nasal septal cartilage-derived progenitor cells (NSPs) were tested to identify whether these cells meet the criteria of cartilage progenitor cells. We also evaluated the effects of prolonged cultivation on the characteristics of NSPs. Study Design In vitro study. Setting Academic research laboratory. Methods NSPs were isolated from discarded human nasal septal cartilage. NSPs were cultured for 10 passages. The expression of septal progenitor cell surface markers was assessed by fluorescence-activated cell sorting. Cell proliferation was measured with a cell-counting kit. Cytokine secretion was analyzed with multiplex immunoassays. Chondrogenic differentiation of NSPs without differentiation induction was analyzed with type II collagen immunohistochemistry. Cartilage-specific protein expression was evaluated by Western blotting. Under osteo- and adipodifferentiation media, 2 lineage differentiation potentials were evaluated by histology and gene expression analysis. Results Surface epitope analysis revealed that NSPs are positive for mesenchymal stem cells markers and negative for hematopoietic cell markers. Cultured NSPs showed sufficient cell expansion and chondrogenic potential, as demonstrated by immunostaining and expression of cartilage-specific protein. IL-6, IL-8, and transforming growth factor ß were secreted by over 200 pg/mL. The osteo- and adipodifferentiation potentials of NSPs were identified by histology and specific gene expression. The aforementioned characteristics were not influenced by prolonged cultivation. Conclusion NSPs represent an initial step toward creating a cell source from surgically discarded tissue that may prove useful in cartilage regeneration.
Collapse
Affiliation(s)
- Do Hyun Kim
- 1 Department of Otolaryngology-Head and Neck Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Yeon Lim
- 1 Department of Otolaryngology-Head and Neck Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Won Kim
- 1 Department of Otolaryngology-Head and Neck Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - WeonSun Lee
- 2 Institute of Clinical Medicine Research, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Hi Park
- 2 Institute of Clinical Medicine Research, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mi Yeon Kwon
- 2 Institute of Clinical Medicine Research, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sun Hwa Park
- 1 Department of Otolaryngology-Head and Neck Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mi Hyun Lim
- 1 Department of Otolaryngology-Head and Neck Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang A Back
- 1 Department of Otolaryngology-Head and Neck Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byeong Gon Yun
- 1 Department of Otolaryngology-Head and Neck Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Ho Jeun
- 1 Department of Otolaryngology-Head and Neck Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Se Hwan Hwang
- 3 Department of Otolaryngology-Head and Neck Surgery, Bucheon St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
26
|
Davies L, Board-Davies E, Tour G, Shamlou B, Sloan A, Stephens P, LeBlanc K. Oral progenitor cell regulation of first line defense and its dysregulation in chronic graft versus host disease. Cytotherapy 2018. [DOI: 10.1016/j.jcyt.2018.02.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Isaac J, Nassif A, Asselin A, Taïhi I, Fohrer-Ting H, Klein C, Gogly B, Berdal A, Robert B, Fournier BP. Involvement of neural crest and paraxial mesoderm in oral mucosal development and healing. Biomaterials 2018; 172:41-53. [PMID: 29715594 DOI: 10.1016/j.biomaterials.2018.04.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/15/2018] [Indexed: 01/21/2023]
Abstract
Tissue engineering therapies using adult stem cells derived from neural crest have sought accessible tissue sources of these cells because of their potential pluripotency. In this study, the gingiva and oral mucosa and their associated stem cells were investigated. Biopsies of these tissues produce neither scarring nor functional problems and are relatively painless, and fresh tissue can be obtained readily during different chairside dental procedures. However, the embryonic origin of these cells needs to be clarified, as does their evolution from the perinatal period to adulthood. In this study, the embryonic origin of gingival fibroblasts were determined, including gingival stem cells. To do this, transgenic mouse models were used to track neural crest derivatives as well as cells derived from paraxial mesoderm, spanning from embryogenesis to adulthood. These cells were compared with ones derived from abdominal dermis and facial dermis. Our results showed that gingival fibroblasts are derived from neural crest, and that paraxial mesoderm is involved in the vasculogenesis of oral tissues during development. Our in vitro studies revealed that the neuroectodermal origin of gingival fibroblasts (or gingival stem cells) endows them with multipotential properties as well as a specific migratory and contractile phenotype which may participate to the scar-free properties of the oral mucosa. Together, these results illustrate the high regenerative potential of neural crest-derived stem cells of the oral mucosa, including the gingiva, and strongly support their use in cell therapy to regenerate tissues with impaired healing.
Collapse
Affiliation(s)
- Juliane Isaac
- Cordeliers Research Center, Laboratory of Molecular Oral Physiopathology, INSERM UMRS 1138, 15 rue de l'école de médecine, 75006 Paris, France; Paris-Descartes and Paris-Diderot Universities, UFR Odontology, 75006 Paris, France; Institut Pasteur, URA CNRS 2578, 25 Rue Du Docteur Roux, Paris, F-75724, France
| | - Ali Nassif
- Cordeliers Research Center, Laboratory of Molecular Oral Physiopathology, INSERM UMRS 1138, 15 rue de l'école de médecine, 75006 Paris, France; Paris-Descartes and Paris-Diderot Universities, UFR Odontology, 75006 Paris, France; AP-HP, Bretonneau Hospital, Dental Department, Paris 75018, France; Institut Pasteur, URA CNRS 2578, 25 Rue Du Docteur Roux, Paris, F-75724, France
| | - Audrey Asselin
- Cordeliers Research Center, Laboratory of Molecular Oral Physiopathology, INSERM UMRS 1138, 15 rue de l'école de médecine, 75006 Paris, France; Paris-Descartes and Paris-Diderot Universities, UFR Odontology, 75006 Paris, France
| | - Ihsène Taïhi
- Cordeliers Research Center, Laboratory of Molecular Oral Physiopathology, INSERM UMRS 1138, 15 rue de l'école de médecine, 75006 Paris, France; Paris-Descartes and Paris-Diderot Universities, UFR Odontology, 75006 Paris, France; AP-HP, Hospital Complex Henri-Mondor Albert-Chenevier, CIC-BT-504, 94000 Creteil, France
| | - Hélène Fohrer-Ting
- Cell Imaging and Flow Cytometry Platform (CICC), Center de Recherche des Cordeliers, Paris, France
| | - Christophe Klein
- Cell Imaging and Flow Cytometry Platform (CICC), Center de Recherche des Cordeliers, Paris, France
| | - Bruno Gogly
- Cordeliers Research Center, Laboratory of Molecular Oral Physiopathology, INSERM UMRS 1138, 15 rue de l'école de médecine, 75006 Paris, France; Paris-Descartes and Paris-Diderot Universities, UFR Odontology, 75006 Paris, France; AP-HP, Hospital Complex Henri-Mondor Albert-Chenevier, CIC-BT-504, 94000 Creteil, France
| | - Ariane Berdal
- Cordeliers Research Center, Laboratory of Molecular Oral Physiopathology, INSERM UMRS 1138, 15 rue de l'école de médecine, 75006 Paris, France; Paris-Descartes and Paris-Diderot Universities, UFR Odontology, 75006 Paris, France; Reference Center for Dental Rare Disease, Rothschild Hospital, 75012 Paris, France
| | - Benoît Robert
- Institut Pasteur, URA CNRS 2578, 25 Rue Du Docteur Roux, Paris, F-75724, France
| | - Benjamin P Fournier
- Cordeliers Research Center, Laboratory of Molecular Oral Physiopathology, INSERM UMRS 1138, 15 rue de l'école de médecine, 75006 Paris, France; Paris-Descartes and Paris-Diderot Universities, UFR Odontology, 75006 Paris, France; Reference Center for Dental Rare Disease, Rothschild Hospital, 75012 Paris, France.
| |
Collapse
|
28
|
Davies LC, Board-Davies E, Shamlou B, Boberg E, Garming-Legert K, Le Blanc K. Stromal progenitor cell modulation by thalidomide in the treatment of oral chronic graft-versus-host disease. Cytotherapy 2018; 20:755-758. [PMID: 29580863 DOI: 10.1016/j.jcyt.2018.02.370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/14/2018] [Accepted: 02/17/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Lindsay C Davies
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | - Berfin Shamlou
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Erik Boberg
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Divisions of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | - Katarina Le Blanc
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Divisions of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
29
|
Zhang Q, Nguyen PD, Shi S, Burrell JC, Xu Q, Cullen KD, Le AD. Neural Crest Stem-Like Cells Non-genetically Induced from Human Gingiva-Derived Mesenchymal Stem Cells Promote Facial Nerve Regeneration in Rats. Mol Neurobiol 2018; 55:6965-6983. [PMID: 29372546 DOI: 10.1007/s12035-018-0913-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023]
Abstract
Non-genetic induction of somatic cells into neural crest stem-like cells (NCSCs) is promising for potential cell-based therapies for post-traumatic peripheral nerve regeneration. Here, we report that human gingiva-derived mesenchymal stem cells (GMSCs) could be reproducibly and readily induced into NCSCs via non-genetic approaches. Compared to parental GMSCs, induced NCSC population had increased expression in NCSC-related genes and displayed robust differentiation into neuronal and Schwann-like cells. Knockdown of the expression of Yes-associated protein 1 (YAP1), a critical mechanosensor and mechanotransducer, attenuated the expression of NCSC-related genes; specific blocking of RhoA/ROCK activity and non-muscle myosin II (NM II)-dependent contraction suppressed YAP1 and NCSC-related genes and concurrently abolished neural spheroid formation in NCSCs. Using a rat model of facial nerve defect, implantation of NCSC-laden nerve conduits promoted functional regeneration of the injured nerve. These promising findings demonstrate that induced NCSCs derived from GMSCs represent an easily accessible and promising source of neural stem-like cells for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA, 19104, USA
| | - Phuong D Nguyen
- Division of Plastic and Reconstructive Surgery, University of Pennsylvania Perelman School of Medicine, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Shihong Shi
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA, 19104, USA
| | - Justin C Burrell
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, 3320 Smith Walk, Philadelphia, PA, 19104, USA
| | - Qilin Xu
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA, 19104, USA
| | - Kacy D Cullen
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, 3320 Smith Walk, Philadelphia, PA, 19104, USA
| | - Anh D Le
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA, 19104, USA.
- Department of Oral and Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Perelman Center for Advanced Medicine, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
30
|
Sachdeva S, Cobourne MT. Dental mesenchymal stem cell research—How much will it translate to clinical orthodontics? Semin Orthod 2017. [DOI: 10.1053/j.sodo.2017.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
The characterization of human oral mucosal fibroblasts and their use as feeder cells in cultivated epithelial sheets. Future Sci OA 2017; 3:FSO243. [PMID: 29134127 PMCID: PMC5674271 DOI: 10.4155/fsoa-2017-0074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/07/2017] [Indexed: 01/22/2023] Open
Abstract
Aim To characterize human oral mucosa middle interstitial tissue fibroblasts (hOMFs) and their application in the cultivation of epithelial sheets. Methodology hOMFs were cultured with methylcellulose to form cell clusters. hOMFs amplified in adhesive culture were analyzed by flow cytometry, and were found to differentiate into multiple cell types suitable for the cultivation of human corneal epithelial sheets. hOMFs were expanded from clusters to analyze CD56 and PDGFRα expression. Results These cells showed similar differentiation patterns as keratocytes, and similar expression patterns as mesenchymal and neural cells. Furthermore, we established human corneal epithelial sheets using hOMFs. Conclusion hOMFs may be of neural crest origin and possess multipotent differentiation capacity, and are suitable for use as an autologous cell source for corneal regeneration.
Collapse
|
32
|
Gugliandolo A, Rajan TS, Scionti D, Diomede F, Bramanti P, Mazzon E, Trubiani O. Reprogramming of Oncogene Expression in Gingival Mesenchymal Stem Cells Following Long-Term Culture In Vitro. Cell Reprogram 2017; 19:159-170. [DOI: 10.1089/cell.2016.0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
| | | | | | - Francesca Diomede
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio”, Chieti-Pescara, Chieti, Italy
| | | | | | - Oriana Trubiani
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio”, Chieti-Pescara, Chieti, Italy
| |
Collapse
|
33
|
Variation in human dental pulp stem cell ageing profiles reflect contrasting proliferative and regenerative capabilities. BMC Cell Biol 2017; 18:12. [PMID: 28148303 PMCID: PMC5288874 DOI: 10.1186/s12860-017-0128-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 01/20/2017] [Indexed: 12/17/2022] Open
Abstract
Background Dental pulp stem cells (DPSCs) are increasingly being recognized as a viable cell source for regenerative medicine. Although significant variations in their ex vivo expansion are well-established, DPSC proliferative heterogeneity remains poorly understood, despite such characteristics influencing their regenerative and therapeutic potential. This study assessed clonal human DPSC regenerative potential and the impact of cellular senescence on these responses, to better understand DPSC functional behaviour. Results All DPSCs were negative for hTERT. Whilst one DPSC population reached >80 PDs before senescence, other populations only achieved <40 PDs, correlating with DPSCs with high proliferative capacities possessing longer telomeres (18.9 kb) than less proliferative populations (5–13 kb). High proliferative capacity DPSCs exhibited prolonged stem cell marker expression, but lacked CD271. Early-onset senescence, stem cell marker loss and positive CD271 expression in DPSCs with low proliferative capacities were associated with impaired osteogenic and chondrogenic differentiation, favouring adipogenesis. DPSCs with high proliferative capacities only demonstrated impaired differentiation following prolonged expansion (>60 PDs). Conclusions This study has identified that proliferative and regenerative heterogeneity is related to contrasting telomere lengths and CD271 expression between DPSC populations. These characteristics may ultimately be used to selectively screen and isolate high proliferative capacity/multi-potent DPSCs for regenerative medicine exploitation.
Collapse
|
34
|
Zhou J, Rogers JH, Lee SH, Sun D, Yao H, Mao JJ, Kong KY. Oral Mucosa Harbors a High Frequency of Endothelial Cells: A Novel Postnatal Cell Source for Angiogenic Regeneration. Stem Cells Dev 2016; 26:91-101. [PMID: 27832737 DOI: 10.1089/scd.2016.0175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Endothelial progenitor cells/endothelial cells (EPCs/ECs) have great potential to treat pathological conditions such as cardiac infarction, muscle ischemia, and bone fractures, but isolation of EPC/ECs from existing cell sources is challenging due to their low EC frequency. We have isolated endothelial progenitor (EP)-like cells from rat oral mucosa and characterized their yield, immunophenotype, growth, and in vivo angiogenic potential. The frequency of EP-like cells derived from oral mucosa is thousands of folds higher than EPCs derived from donor-match bone marrow samples. EP-like cells from oral mucosa were positive for EC markers CD31, VE-Cadherin, and VEGFR2. Oral mucosa-derived EP-like cells displayed robust uptake of acetylated low-density lipoprotein and formed stable capillary networks in Matrigel. Subcutaneously implanted oral mucosa-derived EP-like cells anastomosed with host blood vessels, implicating their ability to elicit angiogenesis. Similar to endothelial colony-forming cells, EP-like cells from oral mucosa have a significantly higher proliferative rate than human umbilical vein endothelial cells. These findings identify a putative EPC source that is easily accessible in the oral cavity, potentially from discarded tissue specimens, and yet with robust yield and potency for angiogenesis in tissue and organ regeneration.
Collapse
Affiliation(s)
- Jian Zhou
- 1 Center for Craniofacial Regeneration, Columbia University Medical Center , New York, New York.,2 Department of General Dentistry, Capital Medical University School of Stomatology , Beijing, China
| | - Jason H Rogers
- 3 Department of Internal Medicine and the Cancer Research and Treatment Center, University of New Mexico Health Science Center , Albuquerque, New Mexico
| | - Scott H Lee
- 4 Pratt School of Engineering, Duke University , Durham, North Carolina
| | - DongMing Sun
- 5 W. M. Keck Center for Collaborative Neuroscience, Rutgers University , New Brunswick, New Jersey
| | - Hai Yao
- 6 Clemson-MUSC Bioengineering Program , Department of Craniofacial Biology, Charleston, South Carolina
| | - Jeremy J Mao
- 1 Center for Craniofacial Regeneration, Columbia University Medical Center , New York, New York
| | - Kimi Y Kong
- 1 Center for Craniofacial Regeneration, Columbia University Medical Center , New York, New York.,7 Hematology/Oncology Division, Department of Medicine, University of Florida , Gainesville, Florida
| |
Collapse
|
35
|
Novel Concept and Method of Endoscopic Urethral Stricture Treatment Using Liquid Buccal Mucosal Graft. J Urol 2016; 196:1788-1795. [DOI: 10.1016/j.juro.2016.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2016] [Indexed: 11/18/2022]
|
36
|
Liu JA, Cheung M. Neural crest stem cells and their potential therapeutic applications. Dev Biol 2016; 419:199-216. [PMID: 27640086 DOI: 10.1016/j.ydbio.2016.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
Abstract
The neural crest (NC) is a remarkable transient structure generated during early vertebrate development. The neural crest progenitors have extensive migratory capacity and multipotency, harboring stem cell-like characteristics such as self-renewal. They can differentiate into a variety of cell types from craniofacial skeletal tissues to the trunk peripheral nervous system (PNS). Multiple regulators such as signaling factors, transcription factors, and migration machinery components are expressed at different stages of NC development. Gain- and loss-of-function studies in various vertebrate species revealed epistatic relationships of these molecules that could be assembled into a gene regulatory network defining the processes of NC induction, specification, migration, and differentiation. These basic developmental studies led to the subsequent establishment and molecular validation of neural crest stem cells (NCSCs) derived by various strategies. We provide here an overview of the isolation and characterization of NCSCs from embryonic, fetal, and adult tissues; the experimental strategies for the derivation of NCSCs from embryonic stem cells, induced pluripotent stem cells, and skin fibroblasts; and recent developments in the use of patient-derived NCSCs for modeling and treating neurocristopathies. We discuss future research on further refinement of the culture conditions required for the differentiation of pluripotent stem cells into axial-specific NC progenitors and their derivatives, developing non-viral approaches for the generation of induced NC cells (NCCs), and using a genomic editing approach to correct genetic mutations in patient-derived NCSCs for transplantation therapy. These future endeavors should facilitate the therapeutic applications of NCSCs in the clinical setting.
Collapse
Affiliation(s)
- Jessica Aijia Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
37
|
Lindsay SL, Barnett SC. Are nestin-positive mesenchymal stromal cells a better source of cells for CNS repair? Neurochem Int 2016; 106:101-107. [PMID: 27498150 PMCID: PMC5455984 DOI: 10.1016/j.neuint.2016.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/30/2016] [Accepted: 08/02/2016] [Indexed: 02/08/2023]
Abstract
In recent years there has been a great deal of research within the stem cell field which has led to the definition and classification of a range of stem cells from a plethora of tissues and organs. Stem cells, by classification, are considered to be pluri- or multipotent and have both self-renewal and multi-differentiation capabilities. Presently there is a great deal of interest in stem cells isolated from both embryonic and adult tissues in the hope they hold the therapeutic key to restoring or treating damaged cells in a number of central nervous system (CNS) disorders. In this review we will discuss the role of mesenchymal stromal cells (MSCs) isolated from human olfactory mucosa, with particular emphasis on their potential role as a candidate for transplant mediated repair in the CNS. Since nestin expression defines the entire population of olfactory mucosal derived MSCs, we will compare these cells to a population of neural crest derived nestin positive population of bone marrow-MSCs. Human olfactory mucosa is a new source of mesenchymal stromal cells (MSCs). Some bone marrow MSCs are nestin-positive, neural crest derived and regulate hematopoietic stem cell activation. Human olfactory mucosa contains a population of nestin-positive MSCs that secrete CXCL12 and may have promote CNS repair.
Collapse
Affiliation(s)
- Susan L Lindsay
- Institute of Infection, Inflammation and Immunity, Glial Cell Biology Group, Sir Graeme Davies Building, Room B329, 120 University Place, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Susan C Barnett
- Institute of Infection, Inflammation and Immunity, Glial Cell Biology Group, Sir Graeme Davies Building, Room B329, 120 University Place, University of Glasgow, Glasgow, G12 8TA, United Kingdom.
| |
Collapse
|
38
|
Umezawa T, Higa K, Serikawa M, Yamamoto M, Matsunaga S, Shimazaki J, Abe S. Proliferative activity of skeletal myoblast sheet by paracrine effects of mesenchymal stem cells. J Oral Biosci 2016; 58:158-166. [PMID: 32512684 DOI: 10.1016/j.job.2016.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVES The purpose of this study was to examine the proliferative activity enhancement of skeletal myoblasts in the presence and absence of mesenchymal stem cells (MSC). METHODS We artificially fabricated two types of cell sheets by co-culturing rabbit skeletal myoblast sheets with rabbit MSCs using type IA collagen gel (MC+), and cell sheets without rabbit MSCs (MC-). RESULTS The results of hematoxylin and eosin staining revealed that MC+ was thicker than MC- on day 7. Immunohistochemical staining revealed a low level of desmin expression in both sheets on day 2. Desmin expression increased at days 7 and 12, and desmin localization was consistent with the stratified area. Reverse transcription PCR revealed the presence of MyoD and PAX7 in both sheets on days 2, 7, and 12. The presence of myogenin was confirmed in both sheets on days 7 and 12. Hepatocyte growth factor expression was evident in MC+ on day 2, and in both sheets on day 7. Measurement of cell proliferative activity based on DNA cell cycle analysis indicated that MC+ had significantly higher cell proliferative activity than MC- on day 7. There were no significant differences in cell proliferative activity between MC+ and MC- on day 12. CONCLUSIONS This study demonstrated that the presence of MSCs could transiently enhance the proliferative activity of myoblasts, but that this enhancement is ultimately diminished due to contact inhibition.
Collapse
Affiliation(s)
- Takashi Umezawa
- Department of Anatomy, Tokyo Dental College, 2-9-18, Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan.
| | - Kazunari Higa
- Department of Ophthalmology/Cornea Center, Tokyo Dental College, 5-11-13 Sugano Ichikawa-shi, Chiba 272-8513, Japan
| | - Masamitsu Serikawa
- Department of Anatomy, Tokyo Dental College, 2-9-18, Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, 2-9-18, Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Satoru Matsunaga
- Department of Anatomy, Tokyo Dental College, 2-9-18, Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Jun Shimazaki
- Department of Ophthalmology/Cornea Center, Tokyo Dental College, 5-11-13 Sugano Ichikawa-shi, Chiba 272-8513, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18, Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
39
|
Locke M, Davies LC, Stephens P. Oral mucosal progenitor cell clones resist in vitro myogenic differentiation. Arch Oral Biol 2016; 70:100-110. [PMID: 27343692 DOI: 10.1016/j.archoralbio.2016.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 12/23/2015] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
Abstract
Progenitor cells derived from the oral mucosa lamina propria (OMLP-PCs) demonstrate an ability to differentiate into tissue lineages removed from their anatomical origin. This clonally derived population of neural-crest cells have demonstrated potential to differentiate along mesenchymal and neuronal cell lineages. OBJECTIVE Significant efforts are being made to generate functioning muscle constructs for use in research and clinical tissue engineering. In this study we aimed to determine the myogenic properties of clonal populations of expanded OMLP-PCs. DESIGN PCs were subject to several in vitro culture conditions in an attempt to drive myogenic conversion. Methodologies include use of demethylation gene-modifying reagents, mechanical conditioning of tissue culture substrates, tuneable polyacrylamide gels and a 3-dimensional construct as well as published myogenic media compositions. PCR and immunostaining for the muscle cell markers Desmin and MyoD1 were used to assess muscle differentiation. RESULTS The clones tested did not intrinsically express myogenic lineage markers. Despite use of two and 3-dimensional pre-published in vitro culture protocols OMLP clones could not be differentiated down a myogenic lineage. CONCLUSIONS Within the confines of these experimental parameters it was not possible to generate identifiable muscle using the clonal populations. When reviewing the previously successful reports of myogenic conversion, cells utilised have either been derived from tissues that are already 'primed' with the requisite myogenic genetic potential or have undergone specific genetic reprogramming to enhance the myogenic conversion rate. This, along with as yet unidentified stromal interplay, may therefore be required for positive myogenic differentiation to be realised.
Collapse
Affiliation(s)
- Matthew Locke
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, United Kingdom.
| | - Lindsay C Davies
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, United Kingdom.
| | - Phil Stephens
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, United Kingdom.
| |
Collapse
|
40
|
Nicolescu MI. Regenerative Perspective in Modern Dentistry. Dent J (Basel) 2016; 4:dj4020010. [PMID: 29563452 PMCID: PMC5851266 DOI: 10.3390/dj4020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/16/2016] [Accepted: 04/21/2016] [Indexed: 12/02/2022] Open
Abstract
This review aims to trace the contour lines of regenerative dentistry, to offer an introductory overview on this emerging field to both dental students and practitioners. The crystallized depiction of the concept is a translational approach, connecting dental academics to scientific research and clinical utility. Therefore, this review begins by presenting the general features of regenerative medicine, and then gradually introduces the specific aspects of major dental subdomains, highlighting the progress achieved during the last years by scientific research and, in some cases, which has already been translated into clinical results. The distinct characteristics of stem cells and their microenvironment, together with their diversity in the oral cavity, are put into the context of research and clinical use. Examples of regenerative studies regarding endodontic and periodontal compartments, as well as hard (alveolar bone) and soft (salivary glands) related tissues, are presented to make the reader further acquainted with the topic. Instead of providing a conclusion, we will emphasize the importance for all dental community members, from young students to experienced dentists, of an early awareness rising regarding biomedical research progress in general and regenerative dentistry in particular.
Collapse
Affiliation(s)
- Mihnea Ioan Nicolescu
- Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Histology and Cytology Division, Bucharest, 8 Eroilor Sanitari Blvd., RO-050474, Romania.
- Victor Babeș National Institute of Pathology, Radiobiology Laboratory, Bucharest, Romania.
| |
Collapse
|
41
|
Hughes D, Song B. Dental and Nondental Stem Cell Based Regeneration of the Craniofacial Region: A Tissue Based Approach. Stem Cells Int 2016; 2016:8307195. [PMID: 27143979 PMCID: PMC4842076 DOI: 10.1155/2016/8307195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/16/2016] [Indexed: 12/22/2022] Open
Abstract
Craniofacial reconstruction may be a necessary treatment for those who have been affected by trauma, disease, or pathological developmental conditions. The use of stem cell therapy and tissue engineering shows massive potential as a future treatment modality. Currently in the literature, there is a wide variety of published experimental studies utilising the different stem cell types available and the plethora of available scaffold materials. This review investigates different stem cell sources and their unique characteristics to suggest an ideal cell source for regeneration of individual craniofacial tissues. At present, understanding and clinical applications of stem cell therapy remain in their infancy with numerous challenges to overcome. In spite of this, the field displays immense capacity and will no doubt be utilised in future clinical treatments of craniofacial regeneration.
Collapse
Affiliation(s)
- Declan Hughes
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, UK
| | - Bing Song
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, UK
| |
Collapse
|
42
|
Howard-Jones RA, Cheung OKY, Glen A, Allen ND, Stephens P. Integration-Free Reprogramming of Lamina Propria Progenitor Cells. J Dent Res 2016; 95:882-8. [PMID: 26994108 DOI: 10.1177/0022034516637579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Producing induced pluripotent stem cells (iPSCs) from human tissue for use in personalized medicine strategies or therapeutic testing is at the forefront of medicine. Therefore, identifying a source of cells to reprogram that is easily accessible via a simple noninvasive procedure is of great clinical importance. Reprogramming these cells to iPSCs through nonintegrating methods for genetic manipulation is paramount for regenerative purposes. Here, we demonstrate reprogramming of oral mucosal lamina propria progenitor cells from patients undergoing routine dental treatment. Reprogramming was performed utilizing nonintegrating plasmids containing all 6 pluripotency genes (OCT4, SOX2, KLF4, NANOG, LIN28, and cMYC). Resulting iPSCs lacked genetic integration of the vector genes and had the ability to differentiate down mesoderm, ectoderm, and endoderm lineages, demonstrating pluripotency. In conclusion, oral mucosal lamina propria progenitor cells represent a source of cells that can be obtained with minimal invasion, as they can be taken concurrently with routine treatments. The resulting integration-free iPSCs therefore have great potential for use in personalized medicine strategies.
Collapse
Affiliation(s)
- R A Howard-Jones
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK
| | - O K Y Cheung
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK
| | - A Glen
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK
| | - N D Allen
- School of Biosciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
| | - P Stephens
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
43
|
Boddupally K, Wang G, Chen Y, Kobielak A. Lgr5 Marks Neural Crest Derived Multipotent Oral Stromal Stem Cells. Stem Cells 2016; 34:720-31. [PMID: 26865184 DOI: 10.1002/stem.2314] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 10/09/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
Abstract
It has been suggested that multipotent stem cells with neural crest (NC) origin persist into adulthood in oral mucosa. However their exact localization and role in normal homeostasis is unknown. In this study, we discovered that Lgr5 is expressed in NC cells during embryonic development, which give rise to the dormant stem cells in the adult tongue and oral mucosa. Those Lgr5 positive oral stromal stem cells display properties of NC stem cells including clonal growth and multipotent differentiation. RNA sequencing revealed that adult Lgr5+ oral stromal stem cells express high number of neural crest related markers like Sox9, Twist1, Snai1, Myc, Ets1, Crabp1, Epha2, and Itgb1. Using lineage-tracing experiments, we show that these cells persist more than a year in the ventral tongue and some areas of the oral mucosa and give rise to stromal progeny. In vivo transplantation demonstrated that these cells reconstitute the stroma. Our studies show for the first time that Lgr5 is expressed in the NC cells at embryonic day 9.5 (E9.5) and is maintained during embryonic development and postnataly in the stroma of the ventral tongue, and some areas of the oral mucosa and that Lgr5+ cells participate in the maintenance of the stroma.
Collapse
Affiliation(s)
- Keerthi Boddupally
- Department of Otolaryngology, Head & Neck Surgery, University of Southern California, Los Angeles, California, USA.,Department of Biochemistry and Molecular Biology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Guangfang Wang
- Department of Otolaryngology, Head & Neck Surgery, University of Southern California, Los Angeles, California, USA.,Department of Biochemistry and Molecular Biology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yibu Chen
- Norris Medical Library, University of Southern California, Los Angeles, California, USA
| | - Agnieszka Kobielak
- Department of Otolaryngology, Head & Neck Surgery, University of Southern California, Los Angeles, California, USA.,Department of Biochemistry and Molecular Biology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
44
|
Abe S, Yamaguchi S, Sato Y, Harada K. Sphere-Derived Multipotent Progenitor Cells Obtained From Human Oral Mucosa Are Enriched in Neural Crest Cells. Stem Cells Transl Med 2015; 5:117-28. [PMID: 26582909 DOI: 10.5966/sctm.2015-0111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/16/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED : Although isolation of oral mucosal stromal stem cells has been previously reported, complex isolation methods are not suitable for clinical application. The neurosphere culture technique is a convenient method for the isolation of neural stem cells and neural crest stem cells (NCSCs); neurosphere generation is a phenotype of NCSCs. However, the molecular details underlying the isolation and characterization of human oral mucosa stromal cells (OMSCs) by neurosphere culture are not understood. The purpose of the present study was to isolate NCSCs from oral mucosa using the neurosphere technique and to establish effective in vivo bone tissue regeneration methods. Human OMSCs were isolated from excised human oral mucosa; these cells formed spheres in neurosphere culture conditions. Oral mucosa sphere-forming cells (OMSFCs) were characterized by biological analyses of stem cells. Additionally, composites of OMSFCs and multiporous polylactic acid scaffolds were implanted subcutaneously into immunocompromised mice. OMSFCs had the capacity for self-renewal and expressed neural crest-related markers (e.g., nestin, CD44, slug, snail, and MSX1). Furthermore, upregulated expression of neural crest-related genes (EDNRA, Hes1, and Sox9) was observed in OMSFCs, which are thought to contain an enriched population of neural crest-derived cells. The expression pattern of α2-integrin (CD49b) in OMSFCs also differed from that in OMSCs. Finally, OMSFCs were capable of differentiating into neural crest lineages in vitro and generating ectopic bone tissues even in the subcutaneous region. The results of the present study suggest that OMSFCs are an ideal source of cells for the neural crest lineage and hard tissue regeneration. SIGNIFICANCE The sphere culture technique is a convenient method for isolating stem cells. However, the isolation and characterization of human oral mucosa stromal cells (OMSCs) using the sphere culture system are not fully understood. The present study describes the isolation of neural crest progenitor cells from oral mucosa using this system. Human OMSCs form spheres that exhibit self-renewal capabilities and multipotency, and are enriched with neural crest-derived cells. These oral mucosa sphere-forming cells can generate ectopic bone tissue in vivo. Therefore, the results of the present study show that the sphere culture system can be applied, without the need for complex isolation techniques, to produce multipotent spheres with the properties of neural crest stem cells. Furthermore, a convenient strategy is demonstrated for the isolation and culture of human OMSCs that could have clinical applications.
Collapse
Affiliation(s)
- Shigehiro Abe
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Yamaguchi
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaka Sato
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiyoshi Harada
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
45
|
Grimm WD, Giesenhagen B, Hakki S, Schau I, Sirak S, Sletov A, Varga G, Vukovic MA, Widera D. Translational Research and Therapeutic Applications of Neural Crest-Derived Stem Cells in Regenerative Periodontology. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40496-015-0067-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Board-Davies E, Moses R, Sloan A, Stephens P, Davies LC. Oral Mucosal Lamina Propria-Progenitor Cells Exert Antibacterial Properties via the Secretion of Osteoprotegerin and Haptoglobin. Stem Cells Transl Med 2015; 4:1283-93. [PMID: 26378260 DOI: 10.5966/sctm.2015-0043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/27/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The oral cavity possesses a diverse microflora, yet recurrent infections within healthy individuals are rare. Wound healing within the buccal mucosa is preferential, potentially because of the presence of oral mucosal lamina propria-progenitor cells (OMLP-PCs). In addition to their multipotency, OMLP-PCs demonstrate potent immunosuppressive properties. The present study investigated whether OMLP-PCs possess antibacterial properties, directly interacting with microorganisms and contributing to the maintenance of a balanced oral microflora. Gram-positive and -negative bacteria were cocultured with OMLP-PCs, buccal mucosal fibroblasts, or their respective conditioned media (CM). Bacterial growth was significantly inhibited when cocultured with OMLP-PCs or their CM. No antibacterial activity was apparent within the fibroblasts. Analysis of the OMLP-PC CM indicated constitutive secretion of osteoprotegerin (OPG) and haptoglobin (Hp). Exposure of the bacteria to OPG or Hp demonstrated their differential antibacterial properties, with neutralization/blocking studies confirming that the growth of Gram-positive bacteria was partially restored by neutralizing OPG within OMLP-PC CM; blocking Hp restored the growth of Gram-negative bacteria. The present study demonstrates, for the first time, the broad-spectrum antibacterial properties of OMLP-PCs. We report the direct and constitutive antibacterial nature of OMLP-PCs, with retention of this effect within the CM suggesting a role for soluble factors such as OPG and Hp. Knowledge of the immunomodulatory and antibacterial properties of these cells could potentially be exploited in the development of novel cell- or soluble factor-based therapeutics for the treatment of infectious diseases such as pneumonia or ailments such as chronic nonhealing wounds. SIGNIFICANCE Oral mucosal lamina propria-progenitor cells (OMLP-PCs) are a cell source with known immunomodulatory properties. The present report demonstrates the novel finding that OMLP-PCs possess potent antibacterial properties, halting the growth of Gram-positive and -negative bacteria through the secretion of soluble factors. OMLP-PCs constitutively secrete osteoprotegerin (OPG) and haptoglobin (Hp) at levels high enough to exert antibacterial action. OPG, a glycoprotein not previously known to be antibacterial, can suppress Gram-positive bacterial growth. Hp is only active against Gram-negative microorganisms. These findings indicate that OMLP-PCs could offer great potential in the development of novel cell- or soluble factor-based therapies for the treatment of infectious illness, such as bacterial pneumonia, through systemic infusion and of chronic wounds through local administration.
Collapse
Affiliation(s)
- Emma Board-Davies
- Wound Biology Group, Tissue Engineering and Reparative Dentistry, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, United Kingdom
| | - Rachael Moses
- Wound Biology Group, Tissue Engineering and Reparative Dentistry, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, United Kingdom
| | - Alastair Sloan
- Wound Biology Group, Tissue Engineering and Reparative Dentistry, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, United Kingdom
| | - Phil Stephens
- Wound Biology Group, Tissue Engineering and Reparative Dentistry, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, United Kingdom
| | - Lindsay C Davies
- Wound Biology Group, Tissue Engineering and Reparative Dentistry, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, United Kingdom Centre for Hematology and Regenerative Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
47
|
Localization and osteoblastic differentiation potential of neural crest-derived cells in oral tissues of adult mice. Biochem Biophys Res Commun 2015. [PMID: 26225748 DOI: 10.1016/j.bbrc.2015.07.106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In embryos, neural crest cells emerge from the dorsal region of the fusing neural tube and migrate throughout tissues to differentiate into various types of cells including osteoblasts. In adults, subsets of neural crest-derived cells (NCDCs) reside as stem cells and are considered to be useful cell sources for regenerative medicine strategies. Numerous studies have suggested that stem cells with a neural crest origin persist into adulthood, especially those within the mammalian craniofacial compartment. However, their distribution as well as capacity to differentiate into osteoblasts in adults is not fully understood. To analyze the precise distribution and characteristics of NCDCs in adult oral tissues, we utilized an established line of double transgenic (P0-Cre/CAG-CAT-EGFP) mice in which NCDCs express green fluorescent protein (GFP) throughout their life. GFP-positive cells were scattered like islands throughout tissues of the palate, gingiva, tongue, and buccal mucosa in adult mice, with those isolated from the latter shown to form spheres, typical cell clusters composed of stem cells, under low-adherent conditions. Furthermore, GFP-positive cells had markedly increased alkaline phosphatase (a marker enzyme of osteoblast differentiation) activity and mineralization as shown by alizarin red staining, in the presence of bone morphogenetic protein (BMP)-2. These results suggest that NCDCs reside in various adult oral tissues and possess potential to differentiate into osteoblastic cells. NCDCs in adults may be a useful cell source for bone regeneration strategies.
Collapse
|
48
|
Vukicevic V, Rubin de Celis MF, Pellegata NS, Bornstein SR, Androutsellis-Theotokis A, Ehrhart-Bornstein M. Adrenomedullary progenitor cells: Isolation and characterization of a multi-potent progenitor cell population. Mol Cell Endocrinol 2015; 408:178-84. [PMID: 25575455 DOI: 10.1016/j.mce.2014.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/25/2014] [Accepted: 12/27/2014] [Indexed: 12/19/2022]
Abstract
The adrenal is a highly plastic organ with the ability to adjust to physiological needs by adapting hormone production but also by generating and regenerating both adrenocortical and adrenomedullary tissue. It is now apparent that many adult tissues maintain stem and progenitor cells that contribute to their maintenance and adaptation. Research from the last years has proven the existence of stem and progenitor cells also in the adult adrenal medulla throughout life. These cells maintain some neural crest properties and have the potential to differentiate to the endocrine and neural lineages. In this article, we discuss the evidence for the existence of adrenomedullary multi potent progenitor cells, their isolation and characterization, their differentiation potential as well as their clinical potential in transplantation therapies but also in pathophysiology.
Collapse
Affiliation(s)
- Vladimir Vukicevic
- Division of Molecular Endocrinology, Medical Clinic III, Carl Gustav Carus University Clinic, Technische Universität Dresden, 01307 Dresden, Germany
| | - Maria Fernandez Rubin de Celis
- Division of Molecular Endocrinology, Medical Clinic III, Carl Gustav Carus University Clinic, Technische Universität Dresden, 01307 Dresden, Germany
| | - Natalia S Pellegata
- Institute of Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Stefan R Bornstein
- Medical Clinic III, Carl Gustav Carus University Clinic, Technische Universität Dresden, 01307 Dresden, Germany; Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Androutsellis-Theotokis
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany; Division of Stem Cell Biology, Medical Clinic III, Carl Gustav Carus University Clinic, Technische Universität Dresden, 01307 Dresden, Germany
| | - Monika Ehrhart-Bornstein
- Division of Molecular Endocrinology, Medical Clinic III, Carl Gustav Carus University Clinic, Technische Universität Dresden, 01307 Dresden, Germany; Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany.
| |
Collapse
|
49
|
Lu L, Li Y, Du MJ, Zhang C, Zhang XY, Tong HZ, Liu L, Han TL, Li WD, Yan L, Yin NB, Li HD, Zhao ZM. Characterization of a Self-renewing and Multi-potent Cell Population Isolated from Human Minor Salivary Glands. Sci Rep 2015; 5:10106. [PMID: 26054627 PMCID: PMC4460572 DOI: 10.1038/srep10106] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
Adult stem cells play an important role in maintaining tissue homeostasis. Although these cells are found in many tissues, the presence of stem cells in the human minor salivary glands is not well explored. Using the explant culture method, we isolated a population of cells with self-renewal and differentiation capacities harboring that reside in the human minor salivary glands, called human minor salivary gland mesenchymal stem cells (hMSGMSCs). These cells show embryonic stem cell and mesenchymal stem cell phenotypes. Our results demonstrate that hMSGMSCs have the potential to undergo mesodermal, ectodermal and endodermal differentiation in conditioned culture systems in vitro. Furthermore, in vivo transplantation of hMSGMSCs into SCID mice after partial hepatectomy shows that hMSGMSCs are able to survive and engraft, characterized by the survival of labeled cells and the expression of the hepatocyte markers AFP and KRT18. These data demonstrate the existence of hMSGMSCs and suggest their potential in cell therapy and regenerative medicine.
Collapse
Affiliation(s)
- Lin Lu
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yan Li
- 1] International Medical Plastic and Cosmetic Centre, China Meitan General Hospital, Beijing, PR China [2] Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Ming-juan Du
- Department of Cosmetic and Plastic Surgery, Evercare Beijing Medical &Beauty Hospital, Beijing, PR China
| | - Chen Zhang
- Microinvasive Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Xiang-yu Zhang
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Hai-zhou Tong
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Lei Liu
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Ting-lu Han
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Wan-di Li
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Li Yan
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Ning-bei Yin
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Hai-dong Li
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Zhen-min Zhao
- 1] Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China [2] People's Hospital of Jincheng City, Jincheng, Shanxi, PR China
| |
Collapse
|
50
|
Colombo JS, Howard-Jones RA, Young FI, Waddington RJ, Errington RJ, Sloan AJ. A 3D ex vivo mandible slice system for longitudinal culturing of transplanted dental pulp progenitor cells. Cytometry A 2015; 87:921-8. [PMID: 25963448 PMCID: PMC4973699 DOI: 10.1002/cyto.a.22680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Harnessing mesenchymal stem cells for tissue repair underpins regenerative medicine. However, how the 3D tissue matrix maintains such cells in a quiescent state whilst at the same time primed to respond to tissue damage remains relatively unknown. Developing more physiologically relevant 3D models would allow us to better understand the matrix drivers and influence on cell‐lineage differentiation in situ. In this study, we have developed an ex vivo organotypic rat mandible slice model; a technically defined platform for the culture and characterization of dental pulp progenitor cells expressing GFP driven by the β‐actin promoter (cGFP DPPCs). Using confocal microscopy we have characterized how the native environment influences the progenitor cells transplanted into the dental pulp. Injected cGFP‐DPPCs were highly viable and furthermore differentially proliferated in unique regions of the mandible slice; in the dentine region, cGFP‐DPPCs showed a columnar morphology indicative of expansion and lineage differentiation. Hence, we demonstrated the systematic capacity for establishing a dental pulp cell‐micro‐community, phenotypically modified in the tooth (the “biology”); and at the same time addressed technical challenges enabling the mandible slice to be accessible on platforms for high‐content imaging (the biology in a “multiplex” format). © 2015 The Authors. Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- John S Colombo
- School of Dentistry, University of Utah, Salt Lake City, Utah.,Tissue Engineering and Reparative Dentistry, Cardiff Institute of Tissue Engineering and Repair, School of Dentistry, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom
| | - Rachel A Howard-Jones
- Tissue Engineering and Reparative Dentistry, Cardiff Institute of Tissue Engineering and Repair, School of Dentistry, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom.,Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom
| | - Fraser I Young
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Cardiff, Wales, United Kingdom
| | - Rachel J Waddington
- Tissue Engineering and Reparative Dentistry, Cardiff Institute of Tissue Engineering and Repair, School of Dentistry, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom
| | - Rachel J Errington
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom
| | - Alastair J Sloan
- Tissue Engineering and Reparative Dentistry, Cardiff Institute of Tissue Engineering and Repair, School of Dentistry, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom
| |
Collapse
|