1
|
Cong Y, Wu Y, Liu Y, Ai Y, Wang X, Wei C, Ding H, Xu G, Sun W. TCDD inhibits the proliferation of C17.2 cells through the activation of the c-Cbl/β-catenin signaling pathway. Toxicol In Vitro 2025; 104:106014. [PMID: 39880321 DOI: 10.1016/j.tiv.2025.106014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/23/2024] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) belongs to the category of persistent environmental pollutants, and gestational exposure to TCDD can lead to cognitive, memory, and motor deficits, as well as altered neuron development in rodents. However, the molecular mechanisms underlying TCDD's neurotoxicity remain unclear. Neural stem cells (NSCs) possess the capacity for self-renewal and can generate various cell types within the brain, playing fundamental roles in brain development and regeneration. This study investigated the impact of TCDD on the proliferation of mouse NSCs, specifically focusing on the C17.2 cell line. The results demonstrated that TCDD inhibited the proliferation of C17.2 cells in a dose-dependent manner. Even low doses of TCDD (5 nM) significantly reduced C17.2 cell proliferation. Regarding the molecular mechanisms, it was found that TCDD induced the degradation of β-catenin, a key regulator of cell proliferation, through the upregulation of the E3 ubiquitin ligase, casitas B-lineage lymphoma (c-Cbl), which was dependent on the aryl-hydrocarbon Receptor (AhR). Furthermore, knockdown of c-Cbl alleviated the TCDD-induced inhibition of C17.2 proliferation and of the reduction of β-catenin expression. Our research provides foundational data to understand the mechanism of TCDD-induced neurotoxicity through the inhibition of NSCs proliferation, and suggests that the c-cbl/β-catenin pathway may serve as a potential therapeutic target for countering the neurotoxicants of TCDD.
Collapse
Affiliation(s)
- Yewen Cong
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China; Affiliated Matern & Care Hospital, Nantong University, Nantong 226007, Jiangsu, China
| | - Yue Wu
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Yue Liu
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Yongjun Ai
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Xiping Wang
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Chunxi Wei
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Haoyu Ding
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Guangfei Xu
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China.
| | - Wenxing Sun
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China.
| |
Collapse
|
2
|
Sun N, Wang H, Wang XY, Yu Q, Han JY, Huang Y, Zhou WX. Deletion of AhR attenuates fear memory leaving other types of memory intact. Behav Brain Res 2023; 451:114505. [PMID: 37217138 DOI: 10.1016/j.bbr.2023.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
The aryl hydrocarbon receptor (AhR), a classic "environmental sensor", has been found to play an important role in cognitive and emotional function. Recent studies showed AhR deletion led to an attenuated fear memory, providing a potential target against fear memory, whether it is the consequence of attenuated sense of fear or memory ability deficit or both is unclear. Here this study aims to work this out. The freezing time in contextual fear conditioning (CFC) reduced significantly in AhR knockout mice, indicating an attenuated fear memory. Hot plate test and acoustic startle reflex showed that AhR knockout did not change the pain threshold and hearing, excluded the possibility of sensory impairments. Results from NORT, MWM and SBT showed that deletion of AhR had little effects on other types of memory. But the anxiety-like behaviors reduced both in naïve or suffered (tested after CFC) AhR knockout mice, showing that AhR-deficient mice have a reduced basal and stressful emotional response. The basal low-frequency to high-frequency (LF/HF) ratio of the AhR knockout mice was significantly lower than that of the control group, indicating lower sympathetic excitability in the basal state, suggesting a low level of basal stress in the knockout mice. Before and after CFC, the LF/HF ratio of AhR-KO mice tended to be significantly lower than that of WT mice, and their heart rate was significantly lower; and the AhR-KO mice also has a decreased serum corticosterone level after CFC, suggesting a reduced stress response in AhR knockout mice. Altogether, the basal stress level and stress response were significant reduced in AhR knockout mice, which might contribute to the attenuated fear memory with little impairment on other types of memory, suggesting AhR as a "psychologic sensor" additional to "environmental sensor".
Collapse
Affiliation(s)
- Na Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin-Yue Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Qi Yu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jin-Yuan Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yan Huang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Wen-Xia Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
3
|
Vijay A, Boyle NR, Kumar SM, Perdew GH, Srinivasan S, Patterson AD. Aryl hydrocarbon receptor activation affects nitrergic neuronal survival and delays intestinal motility in mice. Toxicol Sci 2023; 192:117-128. [PMID: 36782369 PMCID: PMC10025877 DOI: 10.1093/toxsci/kfad014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Despite progress describing the effects of persistent organic pollutants (POPs) on the central nervous system, the effect of POPs on enteric nervous system (ENS) function remains underexplored. We studied the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a POP, and a potent aryl hydrocarbon receptor (AHR) ligand, on the ENS and intestinal motility in mice. C57Bl/6J mice treated with TCDD (2.4 µg/kg body weight) for 8 weeks (once per week) exhibited significant delay in intestinal motility as shown by reduced stool frequency, prolonged intestinal transit time, and a persistence of dye in the jejunum compared to control mice with maximal dye retention in the ileum. TCDD significantly increased Cyp1a1 expression, an AHR target gene, and reduced the total number of neurons and affected nitrergic neurons in cells isolated from WT mice, but not Ahr-/- mice. In immortalized fetal enteric neuronal cells, TCDD-induced nuclear translocation of AHR as well as increased Cyp1a1 expression. AHR activation did not affect neuronal proliferation. However, AHR activation resulted in enteric neuronal toxicity, specifically, nitrergic neurons. Our results demonstrate that TCDD adversely affects nitrergic neurons and thereby contributes to delayed intestinal motility. These findings suggest that AHR signaling in the ENS may play a role in modulating TCDD-induced gastrointestinal pathophysiology.
Collapse
Affiliation(s)
- Anitha Vijay
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nina R Boyle
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Supriya M Kumar
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Shanthi Srinivasan
- Department of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
4
|
Trang TB, Tai PT, Nishijo M, Anh TN, Thao PN, Hoa VT, Nghi TN, Van Luong H, Nishijo H. Adverse effects of dioxins on cognitive ability and motor performance of 5-year-old children residing in a hotspot of dioxin contamination originating from Agent Orange in Vietnam: A prospective cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155138. [PMID: 35405238 DOI: 10.1016/j.scitotenv.2022.155138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Bien Hoa airbase is the most dioxin-polluted hotspot in Vietnam. In 2012, a birth cohort living around Bien Hoa airbase was recruited for assessment of physical and neurological development. In the present study, neurodevelopment scores at 5 years of age were assessed by the Kaufman Assessment Battery for Children, Second Edition and the Movement Assessment Battery for Children, Second Edition for 185 children in Bien Hoa and 104 children in Ha Dong (unexposed control group) to clarify the effects of dioxin. 2,3,7,8-tetrachlorodibenzo-p-dioxin concentrations in breast milk of women in Bien Hoa were approximately three times higher than those of women in Ha Dong (2.33 vs. 0.69 pg/g fat, p < 0.001). In general, neurodevelopment scores were lower in Bien Hoa children than in Ha Dong children. In boys, scores differed for number recall (12.6 vs. 14.0, p = 0.036), triangles (10.7 vs. 12.4, p = 0.005), manual dexterity (8.3 vs. 9.7, p = 0.037), balance (7.4 vs. 10.3, p < 0.001), and total movement scores (8.0 vs. 10.1, p = 0.003). After adjusting for covariates, linear regression analysis indicated that the scores of the triangles, balance, and total movement tests were inversely associated with levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin and of toxic equivalency of polychlorinated dibenzodioxins and polychlorinated dibenzofurans. In girls, scores differed for the triangles test (11.0 vs. 12.6, p = 0.005), hand movement test (9.6 vs. 11.3, p = 0.003), and balance test (9.1 vs. 10.7, p = 0.050); toxic equivalency of polychlorinated dibenzofurans was inversely associated with hand movement and balance scores. Overall, perinatal dioxin exposure appears to have a long-term impact on neurodevelopment.
Collapse
Affiliation(s)
- Thieu Ban Trang
- Department of Anatomy, Vietnam Military Medical University, 160-Phung Hung, Ha Dong, Ha Noi, Viet Nam
| | - Pham The Tai
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, 222-Phung Hung, Ha Dong, Ha Noi, Viet Nam.
| | - Muneko Nishijo
- Department of Epidemiology and Public Health, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan.
| | - Tran Ngoc Anh
- Department of Anatomy, Vietnam Military Medical University, 160-Phung Hung, Ha Dong, Ha Noi, Viet Nam
| | - Pham Ngoc Thao
- Military Hospital 103, Vietnam Military Medical University, 261-Phung Hung, Ha Dong, Ha Noi, Viet Nam
| | - Vu Thi Hoa
- Department of Epidemiology and Public Health, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
| | - Tran Ngoc Nghi
- Ministry of Health, 138 A-Giang Vo, Kim Ma, Ba Dinh, Ha Noi, Viet Nam
| | - Hoang Van Luong
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, 222-Phung Hung, Ha Dong, Ha Noi, Viet Nam
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| |
Collapse
|
5
|
Latchney SE, Majewska AK. Persistent organic pollutants at the synapse: Shared phenotypes and converging mechanisms of developmental neurotoxicity. Dev Neurobiol 2021; 81:623-652. [PMID: 33851516 DOI: 10.1002/dneu.22825] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/27/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022]
Abstract
The developing nervous system is sensitive to environmental and physiological perturbations in part due to its protracted period of prenatal and postnatal development. Epidemiological and experimental studies link developmental exposures to persistent organic pollutants (POPs) including polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, polybrominated diphenyl ethers, and benzo(a)pyrene to increased risk for neurodevelopmental disorders in children. Mechanistic studies reveal that many of the complex cellular processes that occur during sensitive periods of rapid brain development are cellular targets for developmental neurotoxicants. One area of research interest has focused on synapse formation and plasticity, processes that involve the growth and retraction of dendrites and dendritic spines. For each chemical discussed in this review, we summarize the morphological and electrophysiological data that provide evidence that developmental POP exposure produces long-lasting effects on dendritic morphology, spine formation, glutamatergic and GABAergic signaling systems, and synaptic transmission. We also discuss shared intracellular mechanisms, with a focus on calcium and thyroid hormone homeostasis, by which these chemicals act to modify synapses. We conclude our review highlighting research gaps that merit consideration when characterizing synaptic pathology elicited by chemical exposure. These gaps include low-dose and nonmonotonic dose-response effects, the temporal relationship between dendritic growth, spine formation, and synaptic activity, excitation-inhibition balance, hormonal effects, and the need for more studies in females to identify sex differences. By identifying converging pathological mechanisms elicited by POP exposure at the synapse, we can define future research directions that will advance our understanding of these chemicals on synapse structure and function.
Collapse
Affiliation(s)
- Sarah E Latchney
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD, USA.,Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Ania K Majewska
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, USA.,Center for Visual Science, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
6
|
Teino I, Matvere A, Pook M, Varik I, Pajusaar L, Uudeküll K, Vaher H, Trei A, Kristjuhan A, Org T, Maimets T. Impact of AHR Ligand TCDD on Human Embryonic Stem Cells and Early Differentiation. Int J Mol Sci 2020; 21:E9052. [PMID: 33260776 PMCID: PMC7731104 DOI: 10.3390/ijms21239052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which mediates the effects of a variety of environmental stimuli in multiple tissues. Recent advances in AHR biology have underlined its importance in cells with high developmental potency, including pluripotent stem cells. Nonetheless, there is little data on AHR expression and its role during the initial stages of stem cell differentiation. The purpose of this study was to investigate the temporal pattern of AHR expression during directed differentiation of human embryonic stem cells (hESC) into neural progenitor, early mesoderm and definitive endoderm cells. Additionally, we investigated the effect of the AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the gene expression profile in hESCs and differentiated cells by RNA-seq, accompanied by identification of AHR binding sites by ChIP-seq and epigenetic landscape analysis by ATAC-seq. We showed that AHR is differentially regulated in distinct lineages. We provided evidence that TCDD alters gene expression patterns in hESCs and during early differentiation. Additionally, we identified novel potential AHR target genes, which expand our understanding on the role of this protein in different cell types.
Collapse
Affiliation(s)
- Indrek Teino
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Antti Matvere
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Martin Pook
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Inge Varik
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Laura Pajusaar
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Keyt Uudeküll
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Helen Vaher
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Annika Trei
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Arnold Kristjuhan
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Tõnis Org
- Chair of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia;
- Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia
| | - Toivo Maimets
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| |
Collapse
|
7
|
Xing PY, Pettersson S, Kundu P. Microbial Metabolites and Intestinal Stem Cells Tune Intestinal Homeostasis. Proteomics 2020; 20:e1800419. [PMID: 31994831 DOI: 10.1002/pmic.201800419] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Microorganisms that colonize the gastrointestinal tract, collectively known as the gut microbiota, are known to produce small molecules and metabolites that significantly contribute to host intestinal development, functions, and homeostasis. Emerging insights from microbiome research reveal that gut microbiota-derived signals and molecules influence another key player maintaining intestinal homeostasis-the intestinal stem cell niche, which regulates epithelial self-renewal. In this review, the literature on gut microbiota-host crosstalk is surveyed, highlighting the effects of gut microbial metabolites on intestinal stem cells. The production of various classes of metabolites, their actions on intestinal stem cells are discussed and, finally, how the production and function of metabolites are modulated by aging and dietary intake is commented upon.
Collapse
Affiliation(s)
- Peter Yuli Xing
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore.,Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, South Spine, Level B3, Block S2-B3a, Singapore, 639798, Singapore
| | - Sven Pettersson
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, SE, 17 177, Stockholm, Sweden
| | - Parag Kundu
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.,The Center for Microbes, Development and Health, Laboratory for Microbiota-Host Interactions, Institute Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Life Science Research Building, Shanghai, 200031, China
| |
Collapse
|
8
|
Keshavarzi M, Khoshnoud MJ, Ghaffarian Bahraman A, Mohammadi-Bardbori A. An Endogenous Ligand of Aryl Hydrocarbon Receptor 6-Formylindolo[3,2-b]Carbazole (FICZ) Is a Signaling Molecule in Neurogenesis of Adult Hippocampal Neurons. J Mol Neurosci 2020; 70:806-817. [DOI: 10.1007/s12031-020-01506-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/05/2020] [Indexed: 01/08/2023]
|
9
|
Klocke C, Lein PJ. Evidence Implicating Non-Dioxin-Like Congeners as the Key Mediators of Polychlorinated Biphenyl (PCB) Developmental Neurotoxicity. Int J Mol Sci 2020; 21:E1013. [PMID: 32033061 PMCID: PMC7037228 DOI: 10.3390/ijms21031013] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
Despite being banned from production for decades, polychlorinated biphenyls (PCBs) continue to pose a significant risk to human health. This is due to not only the continued release of legacy PCBs from PCB-containing equipment and materials manufactured prior to the ban on PCB production, but also the inadvertent production of PCBs as byproducts of contemporary pigment and dye production. Evidence from human and animal studies clearly identifies developmental neurotoxicity as a primary endpoint of concern associated with PCB exposures. However, the relative role(s) of specific PCB congeners in mediating the adverse effects of PCBs on the developing nervous system, and the mechanism(s) by which PCBs disrupt typical neurodevelopment remain outstanding questions. New questions are also emerging regarding the potential developmental neurotoxicity of lower chlorinated PCBs that were not present in the legacy commercial PCB mixtures, but constitute a significant proportion of contemporary human PCB exposures. Here, we review behavioral and mechanistic data obtained from experimental models as well as recent epidemiological studies that suggest the non-dioxin-like (NDL) PCBs are primarily responsible for the developmental neurotoxicity associated with PCBs. We also discuss emerging data demonstrating the potential for non-legacy, lower chlorinated PCBs to cause adverse neurodevelopmental outcomes. Molecular targets, the relevance of PCB interactions with these targets to neurodevelopmental disorders, and critical data gaps are addressed as well.
Collapse
Affiliation(s)
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA;
| |
Collapse
|
10
|
Chen Y, Xie HQ, Sha R, Xu T, Zhang S, Fu H, Xia Y, Liu Y, Xu L, Zhao B. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and up-regulation of neurofilament expression in neuronal cells: Evaluation of AhR and MAPK pathways. ENVIRONMENT INTERNATIONAL 2020; 134:105193. [PMID: 31775093 DOI: 10.1016/j.envint.2019.105193] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/25/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Dioxin exposure is reported to affect nervous system development and increase the risk of neurodegenerative diseases. Generally, dioxin exerts its neurotoxicity via aryl hydrocarbon receptor (AhR). Neurofilament (NF) light (NFL) protein is a biomarker for both neuronal differentiation and neurodegeneration and its expression is controlled by the mitogen-activated protein kinase (MAPK) pathway. However, the effects of dioxin on NFL expression and involved mechanisms are incompletely understood. We aimed to investigate the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on NFL expression and elucidate the underlining signaling pathways and their potential crosstalk, specifically between MAPK and AhR pathway. We employed primary cultured rat cortical neurons to evaluate the effect of TCDD exposure on NFL expression. We also used nerve growth factor (NGF)-treated PC12 cells with specific inhibitors to investigate the involvement of and potential crosstalk between the MAPK pathway and the AhR pathway in mediating the effects of TCDD on NFL expression. After TCDD exposure, NFL mRNA and protein levels were upregulated in cultured neurons. NFL protein was preferentially found in the cell body compared with neurites of the cultured neurons. In PC12 cells, TCDD enhanced both NGF-induced NFL expression and phosphorylation of ERK1/2 and p38. The addition of MAPK-pathway inhibitors (PD98059 and SB230580) partially blocked the TCDD-induced NFL upregulation. CH223191, an AhR antagonist, reversed the upregulation of NFL and phosphorylation of ERK1/2 and p38 induced by TCDD. This study demonstrated TCDD-induced upregulation of NFL in cultured neurons, with protein retained in the cell body. TCDD action was dependent on activation of AhR and MAPK, while crosstalk was found between these two signaling pathways.
Collapse
Affiliation(s)
- Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Sha
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Songyan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hualing Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Yingjie Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Yiyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
11
|
Sarma SN, Nagano R, Ohsako S. Tyroxine Hydroxylase-Positive Neuronal Cell Population is Increased by Temporal Dioxin Exposure at Early Stage of Differentiation from Human Embryonic Stem Cells. Int J Mol Sci 2019; 20:ijms20112687. [PMID: 31159217 PMCID: PMC6600215 DOI: 10.3390/ijms20112687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
Background: The neurological effects of short-term dioxin exposure during the fetal period is an important health risk in humans. Here, we investigated the effects of dioxin on neural differentiation using human embryonic stem cells (hESCs) to evaluate human susceptibility to dioxin. Methods: Using an enzymatic bulk passage, neural differentiation from human ESCs was carried out. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) was added to various stages of culture. The expression levels of the neuronal markers microtubule-associated protein 2 (MAP2) and thyroxine hydroxylase (TH) were measured by RT-qPCR and image analysis of immunostaining. Results: Although early-stage neuronal cells are quite resistant to TCDD, the numbers of neural rosettes and increases in mRNA expression levels and the number of cells positive for MAP2 and TH were significant by temporal exposure at embryoid body stage (Day9-exposure group). In contrast, the TCDD exposures against ESCs (Day0-exposure group) and differentiated neural cells (Day35-exposure group) were not affected at all. The increment was similarly observed by continuous exposure of TCDD from Day9 through Day60. Conclusions: These results indicated that dioxin exposure during the early stage of differentiation from hESCs increases the contents of neuronal cells, especially TH-positive neuronal cells. Regulations of aryl hydrocarbon receptor (AHR) signaling in an early stage of embryogenesis should be investigated extensively to understand the mechanism underlying the increase in neuronal cell populations and to apply the knowledge to regenerative medicine.
Collapse
Affiliation(s)
- Sailendra Nath Sarma
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Reiko Nagano
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Seiichiroh Ohsako
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
12
|
Rannug A, Rannug U. The tryptophan derivative 6-formylindolo[3,2-b]carbazole, FICZ, a dynamic mediator of endogenous aryl hydrocarbon receptor signaling, balances cell growth and differentiation. Crit Rev Toxicol 2018; 48:555-574. [PMID: 30226107 DOI: 10.1080/10408444.2018.1493086] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is not essential to survival, but does act as a key regulator of many normal physiological events. The role of this receptor in toxicological processes has been studied extensively, primarily employing the high-affinity ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, regulation of physiological responses by endogenous AHR ligands remains to be elucidated. Here, we review developments in this field, with a focus on 6-formylindolo[3,2-b]carbazole (FICZ), the endogenous ligand with the highest affinity to the receptor reported to date. The binding of FICZ to different isoforms of the AHR seems to be evolutionarily well conserved and there is a feedback loop that controls AHR activity through metabolic degradation of FICZ via the highly inducible cytochrome P450 1A1. Several investigations provide strong evidence that FICZ plays a critical role in normal physiological processes and can ameliorate immune diseases with remarkable efficiency. Low levels of FICZ are pro-inflammatory, providing resistance to pathogenic bacteria, stimulating the anti-tumor functions, and promoting the differentiation of cancer cells by repressing genes in cancer stem cells. In contrast, at high concentrations FICZ behaves in a manner similar to TCDD, exhibiting toxicity toward fish and bird embryos, immune suppression, and activation of cancer progression. The findings are indicative of a dual role for endogenously activated AHR in barrier tissues, aiding clearance of infections and suppressing immunity to terminate a vicious cycle that might otherwise lead to disease. There is not much support for the AHR ligand-specific immune responses proposed, the differences between FICZ and TCDD in this context appear to be explained by the rapid metabolism of FICZ.
Collapse
Affiliation(s)
- Agneta Rannug
- a Karolinska Institutet, Institute of Environmental Medicine , Stockholm , Sweden
| | - Ulf Rannug
- b Department of Molecular Biosciences , The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| |
Collapse
|
13
|
Janosik T, Rannug A, Rannug U, Wahlström N, Slätt J, Bergman J. Chemistry and Properties of Indolocarbazoles. Chem Rev 2018; 118:9058-9128. [PMID: 30191712 DOI: 10.1021/acs.chemrev.8b00186] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The indolocarbazoles are an important class of nitrogen heterocycles which has evolved significantly in recent years, with numerous studies focusing on their diverse biological effects, or targeting new materials with potential applications in organic electronics. This review aims at providing a broad survey of the chemistry and properties of indolocarbazoles from an interdisciplinary point of view, with particular emphasis on practical synthetic aspects, as well as certain topics which have not been previously accounted for in detail, such as the occurrence, formation, biological activities, and metabolism of indolo[3,2- b]carbazoles. The literature of the past decade forms the basis of the text, which is further supplemented with older key references.
Collapse
Affiliation(s)
- Tomasz Janosik
- Research Institutes of Sweden , Bioscience and Materials, RISE Surface, Process and Formulation , SE-151 36 Södertälje , Sweden
| | - Agneta Rannug
- Institute of Environmental Medicine , Karolinska Institutet , SE-171 77 Stockholm , Sweden
| | - Ulf Rannug
- Department of Molecular Biosciences, The Wenner-Gren Institute , Stockholm University , SE-106 91 Stockholm , Sweden
| | | | - Johnny Slätt
- Department of Chemistry, Applied Physical Chemistry , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Jan Bergman
- Karolinska Institutet , Department of Biosciences and Nutrition , SE-141 83 Huddinge , Sweden
| |
Collapse
|
14
|
The Aryl Hydrocarbon Receptor and the Nervous System. Int J Mol Sci 2018; 19:ijms19092504. [PMID: 30149528 PMCID: PMC6163841 DOI: 10.3390/ijms19092504] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
The aryl hydrocarbon receptor (or AhR) is a cytoplasmic receptor of pollutants. It translocates into the nucleus upon binding to its ligands, and forms a heterodimer with ARNT (AhR nuclear translocator). The heterodimer is a transcription factor, which regulates the transcription of xenobiotic metabolizing enzymes. Expressed in many cells in vertebrates, it is mostly present in neuronal cell types in invertebrates, where it regulates dendritic morphology or feeding behavior. Surprisingly, few investigations have been conducted to unravel the function of the AhR in the central or peripheral nervous systems of vertebrates. In this review, we will present how the AhR regulates neural functions in both invertebrates and vertebrates as deduced mainly from the effects of xenobiotics. We will introduce some of the molecular mechanisms triggered by the well-known AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which impact on neuronal proliferation, differentiation, and survival. Finally, we will point out the common features found in mice that are exposed to pollutants, and in AhR knockout mice.
Collapse
|
15
|
Tan YQ, Chiu-Leung LC, Lin SM, Leung LK. The citrus flavonone hesperetin attenuates the nuclear translocation of aryl hydrocarbon receptor. Comp Biochem Physiol C Toxicol Pharmacol 2018; 210:57-64. [PMID: 29763690 DOI: 10.1016/j.cbpc.2018.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/03/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023]
Abstract
The environmental polycyclic aromatic hydrocarbons (PAH) and dioxins are carcinogens and their adverse effects have been largely attributed to the activation of AhR. Hesperetin is a flavonone found abundantly in citrus fruits and has been shown to be a biologically active agent. In the present study, the effect of hesperetin on the nuclear translocation of AhR and the downstream gene expression was investigated in MCF-7 cells. Confocal microscopy indicated that 7, 12-dimethylbenz[α]anthracene (DMBA) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) -induced nuclear translocation of AhR was deterred by hesperetin treatment. The reduced nuclear translocation could also be observed in Western analysis. Reporter-gene assay further illustrated that the induced XRE transactivation was weakened by the treatment of hesperetin. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay demonstrated that the gene expressions of CYP1A1, 1A2, and 1B1 followed the same pattern of AhR translocation. These results suggested that hesperetin counteracted AhR transactivation and suppressed the downstream gene expression.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/antagonists & inhibitors
- 9,10-Dimethyl-1,2-benzanthracene/toxicity
- Active Transport, Cell Nucleus/drug effects
- Antineoplastic Agents, Phytogenic/metabolism
- Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Breast Neoplasms/chemically induced
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Breast Neoplasms/prevention & control
- Carcinogens, Environmental/chemistry
- Carcinogens, Environmental/toxicity
- Cytochrome P-450 CYP1A1/antagonists & inhibitors
- Cytochrome P-450 CYP1A1/chemistry
- Cytochrome P-450 CYP1A1/genetics
- Cytochrome P-450 CYP1A1/metabolism
- Cytochrome P-450 CYP1A2/chemistry
- Cytochrome P-450 CYP1A2/genetics
- Cytochrome P-450 CYP1A2/metabolism
- Cytochrome P-450 CYP1B1/antagonists & inhibitors
- Cytochrome P-450 CYP1B1/chemistry
- Cytochrome P-450 CYP1B1/genetics
- Cytochrome P-450 CYP1B1/metabolism
- Dietary Supplements
- Down-Regulation
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Reporter/drug effects
- Hesperidin/metabolism
- Humans
- MCF-7 Cells
- Microscopy, Confocal
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Polychlorinated Dibenzodioxins/antagonists & inhibitors
- Polychlorinated Dibenzodioxins/chemistry
- Receptors, Aryl Hydrocarbon/antagonists & inhibitors
- Receptors, Aryl Hydrocarbon/metabolism
Collapse
Affiliation(s)
- Yan Qin Tan
- Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | | | - Shu-Mei Lin
- Department of Food Science, National Chiayi University, Chiayi City, Taiwan
| | - Lai K Leung
- Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| |
Collapse
|
16
|
Harrill JA. Human-Derived Neurons and Neural Progenitor Cells in High Content Imaging Applications. Methods Mol Biol 2018; 1683:305-338. [PMID: 29082500 DOI: 10.1007/978-1-4939-7357-6_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to advances in the fields of stem cell biology and cellular engineering, a variety of commercially available human-derived neurons and neural progenitor cells (NPCs) are now available for use in research applications, including small molecule efficacy or toxicity screening. The use of human-derived neural cells is anticipated to address some of the uncertainties associated with the use of nonhuman culture models or transformed cell lines derived from human tissues. Many of the human-derived neurons and NPCs currently available from commercial sources recapitulate critical process of nervous system development including NPC proliferation, neurite outgrowth, synaptogenesis, and calcium signaling, each of which can be evaluated using high content image analysis (HCA). Human-derived neurons and NPCs are also amenable to culture in multiwell plate formats and thus may be adapted for use in HCA-based screening applications. This article reviews various types of HCA-based assays that have been used in conjunction with human-derived neurons and NPC cultures. This article also highlights instances where lower throughput analysis of neurodevelopmental processes has been performed and which demonstrate a potential for adaptation to higher-throughout imaging methods. Finally, a generic protocol for evaluating neurite outgrowth in human-derived neurons using a combination of immunocytochemistry and HCA is presented. The information provided in this article is intended to serve as a resource for cell model and assay selection for those interested in evaluating neurodevelopmental processes in human-derived cells.
Collapse
Affiliation(s)
- Joshua A Harrill
- Center for Toxicology and Environmental Health, LLC, 5120 Northshore Drive, Little Rock, AR, 72118, USA.
| |
Collapse
|
17
|
Aryl hydrocarbon receptor (AHR): "pioneer member" of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of "sensors" of foreign and endogenous signals. Prog Lipid Res 2017; 67:38-57. [PMID: 28606467 DOI: 10.1016/j.plipres.2017.06.001] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/05/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022]
Abstract
The basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family comprises many transcription factors, found throughout all three kingdoms of life; bHLH/PAS members "sense" innumerable intracellular and extracellular "signals" - including endogenous compounds, foreign chemicals, gas molecules, redox potential, photons (light), gravity, heat, and osmotic pressure. These signals then initiate downstream signaling pathways involved in responding to that signal. The term "PAS", abbreviation for "per-Arnt-sim" was first coined in 1991. Although the mouse Arnt gene was not identified until 1991, evidence of its co-transcriptional binding partner, aryl hydrocarbon receptor (AHR), was first reported in 1974 as a "sensor" of foreign chemicals, up-regulating cytochrome P450 family 1 (CYP1) and other enzyme activities that usually metabolize the signaling chemical. Within a few years, AHR was proposed also to participate in inflammation. The mouse [Ah] locus was shown (1973-1989) to be relevant to chemical carcinogenesis, mutagenesis, toxicity and teratogenesis, the mouse Ahr gene was cloned in 1992, and the first Ahr(-/-) knockout mouse line was reported in 1995. After thousands of studies from the early 1970s to present day, we now realize that AHR participates in dozens of signaling pathways involved in critical-life processes, affecting virtually every organ and cell-type in the animal, including many invertebrates.
Collapse
|
18
|
Stanford EA, Ramirez-Cardenas A, Wang Z, Novikov O, Alamoud K, Koutrakis P, Mizgerd JP, Genco CA, Kukuruzinska M, Monti S, Bais MV, Sherr DH. Role for the Aryl Hydrocarbon Receptor and Diverse Ligands in Oral Squamous Cell Carcinoma Migration and Tumorigenesis. Mol Cancer Res 2016; 14:696-706. [PMID: 27130942 PMCID: PMC4987205 DOI: 10.1158/1541-7786.mcr-16-0069] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022]
Abstract
UNLABELLED Over 45,000 new cases of oral and pharyngeal cancers are diagnosed and account for over 8,000 deaths a year in the United States. An environmental chemical receptor, the aryl hydrocarbon receptor (AhR), has previously been implicated in oral squamous cell carcinoma (OSCC) initiation as well as in normal tissue-specific stem cell self-renewal. These previous studies inspired the hypothesis that the AhR plays a role in both the acquisition and progression of OSCC, as well as in the formation and maintenance of cancer stem-like cells. To test this hypothesis, AhR activity in two oral squamous cell lines was modulated with AhR prototypic, environmental and bacterial AhR ligands, AhR-specific inhibitors, and phenotypic, genomic and functional characteristics were evaluated. The data demonstrate that: (i) primary OSCC tissue expresses elevated levels of nuclear AhR as compared with normal tissue, (ii) AhR mRNA expression is upregulated in 320 primary OSCCs, (iii) AhR hyperactivation with several ligands, including environmental and bacterial ligands, significantly increases AhR activity, ALDH1 activity, and accelerates cell migration, (iv) AhR inhibition blocks the rapid migration of OSCC cells and reduces cell chemoresistance, (v) AhR knockdown inhibits tumorsphere formation in low adherence conditions, and (vi) AhR knockdown inhibits tumor growth and increases overall survival in vivo These data demonstrate that the AhR plays an important role in development and progression of OSCC, and specifically cancer stem-like cells. Prototypic, environmental, and bacterial AhR ligands may exacerbate OSCC by enhancing expression of these properties. IMPLICATIONS This study, for the first time, demonstrates the ability of diverse AhR ligands to regulate AhR activity in oral squamous cell carcinoma cells, as well as regulate several important characteristics of oral cancer stem cells, in vivo and in vitro Mol Cancer Res; 14(8); 696-706. ©2016 AACR.
Collapse
Affiliation(s)
- Elizabeth A Stanford
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | | | - Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Olga Novikov
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts. Boston University Molecular and Translational Medicine Program, Boston, Massachusetts
| | - Khalid Alamoud
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, Massachusetts
| | - Petros Koutrakis
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Caroline A Genco
- Integrative Physiology and Integrative Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - Maria Kukuruzinska
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, Massachusetts
| | - Stefano Monti
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston Massachusetts
| | - Manish V Bais
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, Massachusetts
| | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts.
| |
Collapse
|
19
|
Stanford EA, Wang Z, Novikov O, Mulas F, Landesman-Bollag E, Monti S, Smith BW, Seldin DC, Murphy GJ, Sherr DH. The role of the aryl hydrocarbon receptor in the development of cells with the molecular and functional characteristics of cancer stem-like cells. BMC Biol 2016; 14:20. [PMID: 26984638 PMCID: PMC4794823 DOI: 10.1186/s12915-016-0240-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 02/22/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Self-renewing, chemoresistant breast cancer stem cells are believed to contribute significantly to cancer invasion, migration and patient relapse. Therefore, the identification of signaling pathways that regulate the acquisition of stem-like qualities is an important step towards understanding why patients relapse and towards development of novel therapeutics that specifically target cancer stem cell vulnerabilities. Recent studies identified a role for the aryl hydrocarbon receptor (AHR), an environmental carcinogen receptor implicated in cancer initiation, in normal tissue-specific stem cell self-renewal. These studies inspired the hypothesis that the AHR plays a role in the acquisition of cancer stem cell-like qualities. RESULTS To test this hypothesis, AHR activity in Hs578T triple negative and SUM149 inflammatory breast cancer cells were modulated with AHR ligands, shRNA or AHR-specific inhibitors, and phenotypic, genomic and functional stem cell-associated characteristics were evaluated. The data demonstrate that (1) ALDH(high) cells express elevated levels of Ahr and Cyp1b1 and Cyp1a1, AHR-driven genes, (2) AHR knockdown reduces ALDH activity by 80%, (3) AHR hyper-activation with several ligands, including environmental ligands, significantly increases ALDH1 activity, expression of stem cell- and invasion/migration-associated genes, and accelerates cell migration, (4) a significant correlation between Ahr or Cyp1b1 expression (as a surrogate marker for AHR activity) and expression of stem cell- and invasion/migration-associated gene sets is seen with genomic data obtained from 79 human breast cancer cell lines and over 1,850 primary human breast cancers, (5) the AHR interacts directly with Sox2, a master regulator of self-renewal; AHR ligands increase this interaction and nuclear SOX2 translocation, (6) AHR knockdown inhibits tumorsphere formation in low adherence conditions, (7) AHR inhibition blocks the rapid migration of ALDH(high) cells and reduces ALDH(high) cell chemoresistance, (8) ALDH(high) cells are highly efficient at initiating tumors in orthotopic xenografts, and (9) AHR knockdown inhibits tumor initiation and reduces tumor Aldh1a1, Sox2, and Cyp1b1 expression in vivo. CONCLUSIONS These data suggest that the AHR plays an important role in development of cells with cancer stem cell-like qualities and that environmental AHR ligands may exacerbate breast cancer by enhancing expression of these properties.
Collapse
Affiliation(s)
- Elizabeth A. Stanford
- />Department of Environmental Health, Boston University School of Public Health, 72 East Concord Street (R-408), Boston, Massachusetts 02118 USA
- />Boston University Molecular and Translational Medicine Program, 72 E. Concord Street, Boston, MA 02118 USA
| | - Zhongyan Wang
- />Department of Environmental Health, Boston University School of Public Health, 72 East Concord Street (R-408), Boston, Massachusetts 02118 USA
| | - Olga Novikov
- />Department of Environmental Health, Boston University School of Public Health, 72 East Concord Street (R-408), Boston, Massachusetts 02118 USA
- />Boston University Molecular and Translational Medicine Program, 72 E. Concord Street, Boston, MA 02118 USA
| | - Francesca Mulas
- />Department of Medicine, Boston University School of Medicine, Section of Computational Biomedicine, Boston, MA 02118 USA
| | - Esther Landesman-Bollag
- />Department of Medicine, Boston University School of Medicine, Section of Hematology and Oncology, 650 Albany Street, Boston, MA 02118 USA
| | - Stefano Monti
- />Department of Medicine, Boston University School of Medicine, Section of Computational Biomedicine, Boston, MA 02118 USA
| | - Brenden W. Smith
- />Boston University Molecular and Translational Medicine Program, 72 E. Concord Street, Boston, MA 02118 USA
- />Department of Medicine, Boston University School of Medicine, Section of Hematology and Oncology, 650 Albany Street, Boston, MA 02118 USA
- />Boston University and Boston Medical Center, Center for Regenerative Medicine (CReM), 710 Albany Street, Boston, MA 02118 USA
| | - David C. Seldin
- />Department of Medicine, Boston University School of Medicine, Section of Hematology and Oncology, 650 Albany Street, Boston, MA 02118 USA
| | - George J. Murphy
- />Department of Medicine, Boston University School of Medicine, Section of Hematology and Oncology, 650 Albany Street, Boston, MA 02118 USA
- />Boston University and Boston Medical Center, Center for Regenerative Medicine (CReM), 710 Albany Street, Boston, MA 02118 USA
| | - David H. Sherr
- />Department of Environmental Health, Boston University School of Public Health, 72 East Concord Street (R-408), Boston, Massachusetts 02118 USA
| |
Collapse
|
20
|
Aftabi Y, Colagar AH, Mehrnejad F. An in silico approach to investigate the source of the controversial interpretations about the phenotypic results of the human AhR-gene G1661A polymorphism. J Theor Biol 2016; 393:1-15. [PMID: 26776670 DOI: 10.1016/j.jtbi.2016.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 12/11/2015] [Accepted: 01/01/2016] [Indexed: 12/21/2022]
Abstract
Aryl hydrocarbon receptor (AhR) acts as an enhancer binding ligand-activated intracellular receptor. Chromatin remodeling components and general transcription factors such as TATA-binding protein (TBP) are evoked on AhR-target genes by interaction with its flexible transactivation domain (TAD). AhR-G1661A single nucleotide polymorphism (SNP: rs2066853) causes an arginine to lysine substitution in the acidic sub-domain of TAD at position 554 (R554K). Although, numerous studies associate the SNP with some abnormalities such as cancer, other reliable investigations refuse the associations. Consequently, the interpretation of the phenotypic results of G1661A-transition has been controversial. In this study, an in silico analysis were performed to investigate the possible effects of the transition on AhR-mRNA, protein structure, interaction properties and modifications. The analysis revealed that the R554K substitution affects secondary structure and solvent accessibility of adjacent residues. Also, it causes to decreasing of the AhR stability; altering the hydropathy features of the local sequence and changing the pattern of the residues at the binding site of the TAD-acidic sub-domain. Generating of new sites for ubiquitination and acetylation for AhR-K554 variant respectively at positions 544 and 560 was predicted. Our findings intensify the idea that the AhR-G1661A transition may affects AhR-TAD interactions, especially with the TBP, which influence AhR-target genes expression. However, the previously reported flexibility of the modular TAD could act as an intervening factor, moderate the SNP effects and causes distinct outcomes in different individuals and tissues.
Collapse
Affiliation(s)
- Younes Aftabi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Post Code: 47416-95447, Mazandaran, Iran
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Post Code: 47416-95447, Mazandaran, Iran.
| | - Faramarz Mehrnejad
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, P.O. Box: 14395-1561, Tehran, Iran
| |
Collapse
|
21
|
Tarnow P, Tralau T, Luch A. G protein-coupled receptor 30 ligand G-1 increases aryl hydrocarbon receptor signalling by inhibition of tubulin assembly and cell cycle arrest in human MCF-7 cells. Arch Toxicol 2015; 90:1939-48. [DOI: 10.1007/s00204-015-1615-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/01/2015] [Indexed: 11/30/2022]
|
22
|
Kobayashi Y, Hirano T, Omotehara T, Hashimoto R, Umemura Y, Yuasa H, Masuda N, Kubota N, Minami K, Yanai S, Ishihara-Sugano M, Mantani Y, Yokoyama T, Kitagawa H, Hoshi N. Immunohistochemical analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity on the developmental dentate gyrus and hippocampal fimbria in fetal mice. J Vet Med Sci 2015; 77:1355-61. [PMID: 26096965 PMCID: PMC4667650 DOI: 10.1292/jvms.15-0238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dioxins are widespread persistent environmental contaminants with adverse impacts on humans and experimental animals. Behavioral and cognitive functions are impaired by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure. TCDD exerts its toxicity via the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor. The hippocampus, which plays important roles in episodic memory and spatial function, is considered vulnerable to TCDD-induced neurotoxicity, because it contains the AhR. We herein investigated the effects of TCDD toxicity on hippocampal development in embryonic mice. TCDD was administered to dams at 8.5 days postcoitum with a single dose of 20, 200, 2,000 and 5,000 ng/kg body weight (groups T20, T200, T2000 and T5000, respectively), and the brains were dissected from their pups at embryonic day 18.5. Immunohistochemical analysis demonstrated that the Glial Fibrillary Acidic Protein (GFAP) immunoreactivities in the dentate gyrus (DG) were reduced in the T5000 group. Granular GFAP immunoreactivity was observed in the hippocampal fimbria, and the number of immunoreactive fimbria was significantly decreased in the T5000 group. The number of Proliferating Cell Nuclear Antigen (PCNA)-positive cells was decreased in all TCDD-exposed groups and significantly reduced in the T20, T200 and T5000 groups. Together, these results demonstrate that maternal TCDD exposure has adverse impacts on neural stem cells (NSCs), neural precursor cells (NPCs) and granular cells in the DG and disrupts the NSC maintenance and timing of differentiation in the hippocampal fimbria, which in turn interrupt neuronal development in future generations of mice.
Collapse
Affiliation(s)
- Yoshihiro Kobayashi
- Laboratory of Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Esser C, Rannug A. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol Rev 2015; 67:259-79. [PMID: 25657351 DOI: 10.1124/pr.114.009001] [Citation(s) in RCA: 375] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is an evolutionarily old transcription factor belonging to the Per-ARNT-Sim-basic helix-loop-helix protein family. AhR translocates into the nucleus upon binding of various small molecules into the pocket of its single-ligand binding domain. AhR binding to both xenobiotic and endogenous ligands results in highly cell-specific transcriptome changes and in changes in cellular functions. We discuss here the role of AhR for immune cells of the barrier organs: skin, gut, and lung. Both adaptive and innate immune cells require AhR signaling at critical checkpoints. We also discuss the current two prevailing views-namely, 1) AhR as a promiscuous sensor for small chemicals and 2) a role for AhR as a balancing factor for cell differentiation and function, which is controlled by levels of endogenous high-affinity ligands. AhR signaling is considered a promising drug and preventive target, particularly for cancer, inflammatory, and autoimmune diseases. Therefore, understanding its biology is of great importance.
Collapse
Affiliation(s)
- Charlotte Esser
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany (C.E.); and Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (A.R.)
| | - Agneta Rannug
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany (C.E.); and Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (A.R.)
| |
Collapse
|
24
|
Impact of endocrine-disrupting chemicals on neural development and the onset of neurological disorders. Pharmacol Rep 2014; 65:1632-9. [PMID: 24553011 DOI: 10.1016/s1734-1140(13)71524-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/25/2013] [Indexed: 10/25/2022]
Abstract
Even though high doses of organic pollutants are toxic, relatively low concentrations have been reported to cause long-term alterations in functioning of individual organisms, populations and even next generations. Among these pollutants are dioxins, polychlorinated biphenyls, pesticides, brominated flame retardants, plasticizers (bisphenol A, nonylphenol, and phthalates) as well as personal care products and drugs. In addition to toxic effects, they are able to interfere with hormone receptors, hormone synthesis or hormone conversion. Because these chemicals alter hormone-dependent processes and disrupt functioning of the endocrine glands, they have been classified as endocrine-disrupting chemicals (EDCs). Because certain EDCs are able to alter neural transmission and the formation of neural networks, the term neural-disrupting chemicals has been introduced, thus implicating EDCs in the etiology of neurological disorders. Recently, public concern has been focused on the effects of EDCs on brain function, concomitantly with an increase in neuropsychiatric disorders, including autism, attention deficit and hyperactivity disorder as well as learning disabilities and aggressiveness. Several lines of evidence suggest that exposure to EDCs is associated with depression and could result in neural degeneration. EDCs act via several classes of receptors with the best documented mechanisms being reported for nuclear steroid and xenobiotic receptors. Low doses of EDCs have been postulated to cause incomplete methylation of specific gene regions in the young brain and to impair neural development and brain functions across generations. Efforts are needed to develop systematic epidemiological studies and to investigate the mechanisms of action of EDCs in order to fully understand their effects on wildlife and humans.
Collapse
|
25
|
Ramadhin C, Pillay B, Olaniran AO. Cell-based assays for IGF-I bioactivity measurement: overview, limitations and current trends. Growth Factors 2014; 32:130-8. [PMID: 25060037 DOI: 10.3109/08977194.2014.939806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Insulin-like growth factor-I (IGF-I) is an important growth promoting protein that is involved in numerous cellular responses and multiple biological systems. Although the molecular structure, function and recombinant production of IGF-I in various hosts have been the subject of much researches over the recent past, methods to determine the bioactivity of this protein have not been fully explored. Several assays have traditionally been used to measure IGF-I bioactivity, but have not become a routine laboratory practice due to the high cost involved and technical problems. Thus, there is still a need for a rapid, technically simple and accurate assay to determine IGF-I bioactivity. This review highlights the various cell-based assays currently commercially available for measuring the bioactivity of IGF-I along with their limitations. This is aimed at presenting the modern-day IGF researcher with a holistic overview of the current trends and future prospects regarding IGF-I bioactivity determinations.
Collapse
Affiliation(s)
- Charlotte Ramadhin
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal , Durban , Republic of South Africa
| | | | | |
Collapse
|
26
|
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces expression of p27kip1 and FoxO3a in female rat cerebral cortex and PC12 cells. Toxicol Lett 2014; 226:294-302. [DOI: 10.1016/j.toxlet.2014.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/15/2014] [Accepted: 02/22/2014] [Indexed: 12/17/2022]
|
27
|
Chang CC, Sue YM, Yang NJ, Lee YH, Juan SH. 3-Methylcholanthrene, an AhR agonist, caused cell-cycle arrest by histone deacetylation through a RhoA-dependent recruitment of HDAC1 and pRb2 to E2F1 complex. PLoS One 2014; 9:e92793. [PMID: 24658119 PMCID: PMC3962457 DOI: 10.1371/journal.pone.0092793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/25/2014] [Indexed: 12/15/2022] Open
Abstract
We previously showed that treating vascular endothelial cells with 3-methylcholanthrene (3MC) caused cell-cycle arrest in the Go/G1 phase; this resulted from the induction of p21 and p27 and a decreased level and activity of the cyclin-dependent kinase, Cdk2. We further investigated the molecular mechanisms that modulate cell-cycle regulatory proteins through the aryl-hydrocarbon receptor (AhR)/Ras homolog gene family, member A (RhoA) dependent epigenetic modification of histone. AhR/RhoA activation mediated by 3MC was essential for the upregulation of retinoblastoma 2 (pRb2) and histone deacetylase 1 (HDAC1), whereas their nuclear translocation was primarily modulated by RhoA activation. The combination of increased phosphatase and tensin homolog (PTEN) activity and decreased phosphatidylinositide 3-kinase (PI3K) activation by 3MC led to the inactivation of the Ras-cRaf pathway, which contributed to pRb2 hypophosphorylation. Increased HDAC1/pRb2 recruitment to the E2F1 complex decreased E2F1-transactivational activity and H3/H4 deacetylation, resulting in the downregulation of cell-cycle regulatory proteins (Cdk2/4 and Cyclin D3/E). Co-immunoprecipitation and electrophoretic mobility shift assay (EMSA) results showed that simvastatin prevented the 3MC-increased binding activities of E2F1 proteins in their promoter regions. Additionally, RhoA inhibitors (statins) reversed the effect of 3MC in inhibiting DNA synthesis by decreasing the nuclear translocation of pRb2/HDAC1, leading to a recovery of the levels of cell-cycle regulatory proteins. In summary, 3MC decreased cell proliferation by the epigenetic modification of histone through an AhR/RhoA-dependent mechanism that can be rescued by statins.
Collapse
Affiliation(s)
- Chih-Cheng Chang
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Yuh-Mou Sue
- Department of Nephrology, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Nian-Jie Yang
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Hui Juan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
28
|
Wan C, Liu J, Nie X, Zhao J, Zhou S, Duan Z, Tang C, Liang L, Xu G. 2, 3, 7, 8-Tetrachlorodibenzo-P-dioxin (TCDD) induces premature senescence in human and rodent neuronal cells via ROS-dependent mechanisms. PLoS One 2014; 9:e89811. [PMID: 24587053 PMCID: PMC3933666 DOI: 10.1371/journal.pone.0089811] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/27/2014] [Indexed: 11/30/2022] Open
Abstract
The widespread environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent toxicant that causes significant neurotoxicity. However, the biological events that participate in this process remain largely elusive. In the present study, we demonstrated that TCDD exposure triggered apparent premature senescence in rat pheochromocytoma (PC12) and human neuroblastoma SH-SY5Y cells. Senescence-associated β-galactosidase (SA-β-Gal) assay revealed that TCDD induced senescence in PC12 neuronal cells at doses as low as 10 nM. TCDD led to F-actin reorganization and the appearance of an alternative senescence marker, γ-H2AX foci, both of which are important features of cellular senescence. In addition, TCDD exposure altered the expression of senescence marker proteins, such as p16, p21 and p-Rb, in both dose- and time-dependent manners. Furthermore, we demonstrated that TCDD promotes mitochondrial dysfunction and the accumulation of cellular reactive oxygen species (ROS) in PC12 cells, leading to the activation of signaling pathways that are involved in ROS metabolism and senescence. TCDD-induced ROS generation promoted significant oxidative DNA damage and lipid peroxidation. Notably, treatment with the ROS scavenger N-acetylcysteine (NAC) markedly attenuated TCDD-induced ROS production, cellular oxidative damage and neuronal senescence. Moreover, we found that TCDD induced a similar ROS-mediated senescence response in human neuroblastoma SH-SY5Y cells. In sum, these results demonstrate for the first time that TCDD induces premature senescence in neuronal cells by promoting intracellular ROS production, supporting the idea that accelerating the onset of neuronal senescence may be an important mechanism underlying TCDD-induced neurotoxic effects.
Collapse
Affiliation(s)
- Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jiao Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xiaoke Nie
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Songlin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Zhiqing Duan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Cuiying Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Lingwei Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Guangfei Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
- * E-mail: .
| |
Collapse
|
29
|
Yao B, Lin L, Street RC, Zalewski ZA, Galloway JN, Wu H, Nelson DL, Jin P. Genome-wide alteration of 5-hydroxymethylcytosine in a mouse model of fragile X-associated tremor/ataxia syndrome. Hum Mol Genet 2013; 23:1095-107. [PMID: 24108107 DOI: 10.1093/hmg/ddt504] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder in which patients carry premutation alleles of 55-200 CGG repeats in the FMR1 gene. To date, whether alterations in epigenetic regulation modulate FXTAS has gone unexplored. 5-Hydroxymethylcytosine (5hmC) converted from 5-methylcytosine (5mC) by the ten-eleven translocation (TET) family of proteins has been found recently to play key roles in neuronal functions. Here, we undertook genome-wide profiling of cerebellar 5hmC in a FXTAS mouse model (rCGG mice) and found that rCGG mice at 16 weeks showed overall reduced 5hmC levels genome-wide compared with age-matched wild-type littermates. However, we also observed gain-of-5hmC regions in repetitive elements, as well as in cerebellum-specific enhancers, but not in general enhancers. Genomic annotation and motif prediction of wild-type- and rCGG-specific differential 5-hydroxymethylated regions (DhMRs) revealed their high correlation with genes and transcription factors that are important in neuronal developmental and functional pathways. DhMR-associated genes partially overlapped with genes that were differentially associated with ribosomes in CGG mice identified by bacTRAP ribosomal profiling. Taken together, our data strongly indicate a functional role for 5hmC-mediated epigenetic modulation in the etiology of FXTAS, possibly through the regulation of transcription.
Collapse
Affiliation(s)
- Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Faust D, Kletting S, Ueberham E, Dietrich C. Aryl hydrocarbon receptor-dependent cell cycle arrest in isolated mouse oval cells. Toxicol Lett 2013; 223:73-80. [DOI: 10.1016/j.toxlet.2013.08.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 12/16/2022]
|
31
|
Tan W, Wong TY, Wang Y, Huang J, Leung LK. CYP19 expression is induced by 2,3,7,8-tetrachloro-dibenzo-para-dioxin in human glioma cells. Mol Cell Endocrinol 2013; 375:106-12. [PMID: 23727336 DOI: 10.1016/j.mce.2013.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/24/2013] [Accepted: 05/21/2013] [Indexed: 11/24/2022]
Abstract
Dioxins are the most concerned environmental pollutants. Recent studies have shown that these compounds could disrupt the proper functioning of our endocrine system. Estrogen is synthesized in glial cells of the brain. The hormone has been linked to the maintenance of normal brain operation, ranging from neurotransmission to synapse formation. Aromatase or CYP19 is the enzyme responsible for estrogen synthesis. In the present study, we demonstrated that 2,3,7,8-tetrachloro-dibenzo-para-dioxin (TCDD) stimulated the enzyme activity in human brain cells as low as 1pM. Increased brain-specific CYP19 mRNA species was also observed in these cells. Since the brain-specific promoter I.f of CYP19 contains two binding motifs for CCAAT/enhancer binding protein, electrophoretic mobility shift assay was performed to validate the activation. We further traced the triggering signal and found that the mitogen-activated protein kinases ERK-1/2 were activated. In summary, TCDD could induce CYP19 transcription in brain cells. Exposure to the pollutant might perturb the hormonal balance in the brain.
Collapse
Affiliation(s)
- Wenjuan Tan
- Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | | | | | | | |
Collapse
|
32
|
Wang BJ, Wu PY, Lu YC, Chang CH, Lin YC, Tsai TC, Hsu MC, Lee H. Establishment of a cell-free bioassay for detecting dioxin-like compounds. Toxicol Mech Methods 2013; 23:464-70. [DOI: 10.3109/15376516.2013.781254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Latchney SE, Hein AM, O'Banion MK, DiCicco-Bloom E, Opanashuk LA. Deletion or activation of the aryl hydrocarbon receptor alters adult hippocampal neurogenesis and contextual fear memory. J Neurochem 2013; 125:430-45. [PMID: 23240617 DOI: 10.1111/jnc.12130] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/07/2012] [Accepted: 12/13/2012] [Indexed: 12/24/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the toxicity of dioxin and serves multiple developmental roles. In the adult brain, while we now localize AhR mRNA to nestin-expressing neural progenitor cells in the dentate gyrus (DG) of the hippocampus, its function is unknown. This study tested the hypothesis that AhR participates in hippocampal neurogenesis and associated functions. AhR deletion and activation by the potent environmental toxicant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), adversely impacted neurogenesis and cognition. Adult AhR-deficient mice exhibited impaired hippocampal-dependent contextual fear memory while hippocampal-independent memory remained intact. AhR-deficient mice displayed reduced cell birth, decreased cell survival, and diminished neuronal differentiation in the DG. Following TCDD exposure, wild-type mice exhibited impaired hippocampal-dependent contextual memory, decreased cell birth, reduced neuronal differentiation, and fewer mature neurons in the DG. Glial differentiation and apoptosis were not altered in either TCDD-exposed or AhR-deficient mice. Finally, defects observed in TCDD-exposed mice were dependent on AhR, as TCDD had no negative effects in AhR-deficient mice. Our findings suggest that AhR should be further evaluated as a potential transcriptional regulator of hippocampal neurogenesis and function, although other sites of action may also warrant consideration. Moreover, TCDD exposure should be considered as an environmental risk factor that disrupts adult neurogenesis and potentially related memory processes.
Collapse
Affiliation(s)
- Sarah E Latchney
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
34
|
Tran C, Richmond O, Aaron L, Powell JB. Inhibition of constitutive aryl hydrocarbon receptor (AhR) signaling attenuates androgen independent signaling and growth in (C4-2) prostate cancer cells. Biochem Pharmacol 2012; 85:753-62. [PMID: 23266674 DOI: 10.1016/j.bcp.2012.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/07/2012] [Accepted: 12/12/2012] [Indexed: 01/07/2023]
Abstract
The aryl hydrocarbon receptor is a member of the basic-helix-loop-helix family of transcription factors. AhR mediates the biochemical and toxic effects of a number of polyaromatic hydrocarbons such as 2,3,7,8,-tetrachloro-dibenzo-p-dioxin (TCDD). AhR is widely known for regulating the transcription of drug metabolizing enzymes involved in the xenobiotic metabolism of carcinogens and therapeutic agents, such as cytochrome P450-1B1 (CYP1B1). Additionally, AhR has also been reported to interact with multiple signaling pathways during prostate development. Here we investigate the effect of sustained AhR signaling on androgen receptor function in prostate cancer cells. Immunoblot analysis shows that AhR expression is increased in androgen independent (C4-2) prostate cancer cells when compared to androgen sensitive (LNCaP) cells. RT-PCR studies revealed constitutive AhR signaling in C4-2 cells without the ligand induced activation required in LNCaP cells. A reduction of AhR activity by short RNA mediated silencing in C4-2 cells reduced expression of both AhR and androgen responsive genes. The decrease in androgen responsive genes correlates to a decrease in phosphorylated androgen receptor and androgen receptor expression in the nucleus. Furthermore, the forced decrease in AhR expression resulted in a 50% decline in the growth rate of C4-2 cells. These data indicates that AhR is required to maintain hormone independent signaling and growth by the androgen receptor in C4-2 cells. Collectively, these data provide evidence of a direct role for AhR in androgen independent signaling and provides insight into the molecular mechanisms responsible for sustained androgen receptor signaling in hormone refractory prostate cancer.
Collapse
Affiliation(s)
- Cindy Tran
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Drive, Atlanta, GA 30314, United States
| | | | | | | |
Collapse
|
35
|
Tomasini MC, Beggiato S, Ferraro L, Tanganelli S, Marani L, Lorenzini L, Antonelli T. Prenatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin produces alterations in cortical neuron development and a long-term dysfunction of glutamate transmission in rat cerebral cortex. Neurochem Int 2012; 61:759-66. [DOI: 10.1016/j.neuint.2012.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 06/25/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
|
36
|
Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation. Toxicol Appl Pharmacol 2012; 263:360-7. [PMID: 22820424 DOI: 10.1016/j.taap.2012.07.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/08/2012] [Accepted: 07/10/2012] [Indexed: 01/25/2023]
Abstract
Baicalein is a flavonoid, known to have anti-inflammatory and anti-cancer effects. As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell cycle, we suspected that the anti-cancer effect of baicalein is associated with AhR. This study investigated the molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3, including whether such effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell cycle was arrested at the G1 phase and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased. When the AhR was suppressed by siRNA, the reduction of pRb was partially reversed, accompanied by a decrease of cell population at G1 phase and an increase at S phase, while the reduction of cyclin D1 and CDK4 did not change. This finding suggests that the baicalein activation of AhR is indeed associated with the reduction of pRb, but is independent of the reduction of cyclin D1 and CDK4. When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is both mediated by baicalein through activation of AhR and facilitation of cyclin D1 degradation, which causes cell cycle arrest at the G1 phase, and results in the inhibition of cell proliferation.
Collapse
|
37
|
Palmer JA, Poenitzsch AM, Smith SM, Conard KR, West PR, Cezar GG. Metabolic biomarkers of prenatal alcohol exposure in human embryonic stem cell-derived neural lineages. Alcohol Clin Exp Res 2012; 36:1314-24. [PMID: 22324771 DOI: 10.1111/j.1530-0277.2011.01732.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/24/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD) are a leading cause of neurodevelopmental disability. The mechanisms underlying FASD are incompletely understood, and biomarkers to identify those at risk are lacking. Here, we perform metabolomic analysis of embryoid bodies and neural lineages derived from human embryonic stem (hES) cells to identify the neural secretome produced in response to ethanol (EtOH) exposure. METHODS WA01 and WA09 hES cells were differentiated into embryoid bodies, neural progenitors, or neurons. Cells along this progression were cultured for 4 days with 0, 0.1, or 0.3% EtOH. Supernatants were subjected to C18 chromatography followed by ESI-QTOF-MS. Features were annotated using public databases, and the identities of 4 putative biomarkers were confirmed with purified standards and comparative MS/MS. RESULTS EtOH treatment induced statistically significant changes to metabolite abundance in human embryoid bodies (180 features), neural progenitors (76 features), and neurons (42 features). There were no shared significant features between different cell types. Fifteen features showed a dose-response to EtOH. Four chemical identities were confirmed: L-thyroxine, 5'-methylthioadenosine, and the tryptophan metabolites, L-kynurenine and indoleacetaldehyde. One feature with a putative annotation of succinyladenosine was significantly increased in both EtOH treatments. Additional features were selective to EtOH treatment but were not annotated in public databases. CONCLUSIONS EtOH exposure induces statistically significant changes to the metabolome profile of human embryoid bodies, neural progenitors, and neurons. Several of these metabolites are normally present in human serum, suggesting their usefulness as potential serum FASD biomarkers. These findings suggest the biochemical pathways that are affected by EtOH in the developing nervous system and delineate mechanisms of alcohol injury during human development.
Collapse
Affiliation(s)
- Jessica A Palmer
- Department of Animal Sciences, University of Wisconsin-Madison, USA
| | | | | | | | | | | |
Collapse
|
38
|
Casado FL, Singh KP, Gasiewicz TA. Aryl hydrocarbon receptor activation in hematopoietic stem/progenitor cells alters cell function and pathway-specific gene modulation reflecting changes in cellular trafficking and migration. Mol Pharmacol 2011; 80:673-82. [PMID: 21791576 PMCID: PMC3187533 DOI: 10.1124/mol.111.071381] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 07/26/2011] [Indexed: 01/25/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a transcription factor belonging to the Per-ARNT-Sim family of proteins. These proteins sense molecules and stimuli from the cellular/tissue environment and initiate signaling cascades to elicit appropriate cellular responses. Recent literature reports suggest an important function of AhR in hematopoietic stem cell (HSC) biology. However, the molecular mechanisms by which AhR signaling regulates HSC functions are unknown. In previous studies, we and others reported that treatment of mice with the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) compromises the competitive reconstitution of bone marrow (BM) cells into irradiated host animals. Additional studies indicated a requirement for AhR in hematopoietic cells and not marrow microenvironment cells. In this study, we tested the hypothesis that TCDD-mediated phenotypic and functional changes of HSCs are a result of changes in gene expression that disrupt stem cell numbers and/or their migration. TCDD treatment to mice increased the numbers of phenotypically defined HSCs in BM. These cells showed compromised migration to the BM in vivo and to the chemokine CXCL12 in vitro, as well as increased expression of the leukemia-associated receptors CD184 (CXCR4) and CD44. Gene expression profiles at 6 and 12 h after exposure were consistent with the phenotypic and functional changes observed. The expressions of Scin, Nqo1, Flnb, Mmp8, Ilf9, and Slamf7 were consistently altered. TCDD also disrupted expression of other genes involved in hematological system development and function including Fos, JunB, Egr1, Ptgs2 (Cox2), and Cxcl2. These data support a molecular mechanism for an AhR ligand to disrupt the homeostatic cell signaling of HSCs that may promote altered HSC function.
Collapse
Affiliation(s)
- Fanny L Casado
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
| | | | | |
Collapse
|
39
|
Lew BJ, Manickam R, Lawrence BP. Activation of the aryl hydrocarbon receptor during pregnancy in the mouse alters mammary development through direct effects on stromal and epithelial tissues. Biol Reprod 2011; 84:1094-102. [PMID: 21270426 DOI: 10.1095/biolreprod.110.087544] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Activation of the aryl hydrocarbon receptor (AHR), an environment-sensing transcription factor, causes profound impairment of mammary gland differentiation during pregnancy. Defects include decreased ductal branching, poorly formed alveolar structures, suppressed expression of milk proteins, and failure to nutritionally support offspring. AHR is activated by numerous environmental toxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and plays an as yet poorly understood role in development and reproduction. To better understand how AHR activation affects pregnancy-associated mammary gland differentiation, we used a combination of ex vivo differentiation, mammary epithelial transplantation, and AHR-deficient mice to determine whether AHR modulates mammary development through a direct effect on mammary epithelial cells (MECs) or by altering paracrine or systemic factors that drive pregnancy-associated differentiation. Studies using mutant mice that express an AHR protein lacking the DNA-binding domain show that defects in pregnancy-associated differentiation require AHR:DNA interactions. We then used fluorescence-based cell sorting to compare changes in gene expression in MECs and whole mammary tissue to gain insight into affected signaling pathways. Our data indicate that activation of the AHR during pregnancy directly affects mammary tissue development via both a direct effect on MECs and through changes in cells of the fat pad, and point to gene targets in MECs and stromal tissues as putative AHR targets.
Collapse
Affiliation(s)
- Betina J Lew
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, New York, USA
| | | | | |
Collapse
|